

THE VITAMIN B₁ AND C CONTENT OF MUNG BEANS AND MUNG BEAN SPROUTS

Thesis for the Degree of M. S. MICHIGAN STATE COLLEGE Hui-Jan Yeh 1939

THE VITAMIN B1 AND C CONTENT OF MUNG BEANS

AND MUNG BEAN SPROUTS

By

Hui-lan Yeh

A THESIS

Submitted to the Graduate School of Michigan State College of Agriculture and Applied Science in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

Department of Nutrition Division of Home Economics

ACKNOWLEDGMENTS

The writer wishes to express her sincere appreciation to Miss Flora M. Hanning of the Home Economics Division of Michigan State College, under whose supervision this study was conducted, for her interest and helpful criticism, and te Dr. Marie Dye, Dean of the Home Economics Division of Michigan State College for her helpful suggestions.

Acknowledgment is also given to the La Choy Food Product Company, Detroit, Michigan for generously donating the bean sprouts used in this study.

TABLE OF CONTENTS

	Page
Introduction	3
Literature Review	6
Determination of Moisture and the Proportion	
of the Cotyledonal and Non-cotyledonal Parts	
Experimental Procedure	10
Results and Discussion	11
Vitamin B _l	
Experimental Procedure	13
Results and Discussion	20
Vitamin C	
Experimental Procedure	26
Results and Discussion	30
Summary	35
Bibliography	36
Appendix	38

THE VITAMIN B, AND C CONTENT OF MUNG BEANS AND MUNG BEAN SPROUTS

Introduction

Green mung beans (<u>Phaseolus aureus</u>), sometimes called green gram beans, are very commonly used in China either in the form of dry beans or sprouts, but more often as sprouts. Mung bean sprouts take the place of vegetables in the diet. They are available all through the year and are quite cheap. In some parts of the country the sprouts are sold with the cotyledonal part cut off, probably for better palatability and appearance. Mung bean sprouts are undoubtedly an important item in the Chinese dietary.

There are many kinds of mung beans. Those commonly used in China are more or less round in shape, green in color, and about 2.5 mm. by 2.5 mm. by 3 mm. in size. This kind of beans was also used in this experiment.

The method often used in cooking the dry beans is boiling in a large quantity of water for hours until very tender. The details of the procedure of sprouting the beans differs slightly in different sections of the country; but the general principles are almost the same. They are:

- 1. Washed clean.
- 2. Soaked for about 5 to 10 hours.
- 3. Sprouted in a perforated bottom container.
- 4. Sprinkled with water many times a day to insure dampness.

5. Kept in a perfectly dark and warm condition.

The sprouts are usually 7 to 9 cm. in length from root tip to the expanded cotyledons, of which about 5 cm. is white, fleshy, and thick. The cotyledons are pale yellow in color and have expanded. Often the plumule has emerged from between the cotyledons. The plumule is usually yellow in color and $\frac{1}{2}$ to 1 cm. in length.

Though some investigations have been made of the value of mung beans and their sprouts as sources of vitamins, the information is far from complete. This work was undertaken in the hope of increasing our knowledge of this important Chinese food. The object was to investigate the three points mentioned below:

- 1. The vitamin B_1 and C content of mung bean sprouts.
- 2. The difference of the content of these vitamins between dry and sprouted beans.
- 3. The distribution of these two vitamins in cotyledonal and non-cotyledonal parts.

Literature Review

Vitamin B₁

Most of the work on the vitamin value of mung beans and mung bean sprouts was done in India and China and published in those countries. Miller (11) reported that Embrey (5) had found that dry mung means, when fed as 45% of the weight of the diet, contained enough vitamin B_1 for the growth of mice. The bean sprouts also were fed in dried form, and at a 25% level, contained enough vitamin B_1 for the growth of mice. About 10 mice were used in each group. Embrey suggested as a result of her experiments that vitamin B_1 increased when the beans were sprouted.

Santos (12) also stated that the cooked sprouted beans showed greater vitamin B_1 potency than cooked beans. He used recovery of weight of animal as a measure of the vitamin B of the food tested. The age of the rats was not stated, but most of them weighed considerably over one hundred grams when placed on the experimental diet. Both the beans and the sprouts were cooked, then dried and fed as a vitamin B_1 supplement. Seven rats were fed on the beans, 4 receiving 1 gm., and 3 receiving $\frac{1}{2}$ gm. daily supplements; and 6 rats on the sprouts, 3 receiving 1 gm., and 3 receiving $\frac{1}{2}$ gm. supplements daily.

Miller (11) reported the vitamin value of mung bean sprouts, supplied by the local market in Honolulu. Sherman's method was followed in her research for the comparison of vitamin B₁ value between raw and cooked sprouts (steamed for 5 minutes). Nine rats were put on 3 gram raw sprouts level and 1 on 4 gm. level. For cooked sprouts 10 rats were put on 2.7 gm. level and 2 on 3.6 gm. level. The rats were fed daily except Sundays for a period of 8 weeks. She concluded that the amount of raw sprouts for maintaining net weight in standard rats for a period of 8 weeks was between 2.5 gm. and 3.0 gm., and between 2.2 and 2.7 gm. for the cooked sprouts (equivalent to 2.5 and 3.0 gm. of raw). According to Sherman's unit basis, raw bean sprouts contained 150 to 180 units per pound and the cooked sprouts 150 to 170 units per pound of which correction had been made for the difference in water content.

Jansen (9) stated that about 30% of katjang idjoe (mung beans) was enough to cure polyneuritis in pigeons. Donath (4) found that katjang idjoe were quite rich in vitamin B_{γ} .

Van Veen (14) reported one International unit of witamin B_1 per gm. of dry black mung beans (<u>Phaseolus radiatus</u>). Spruyt (13) found that black mung beans had the same amount of vitamin B_1 as green mung beans.

The work of Wilson (16) showed that the green mung beans contained 150 to 160 units of vitamin B_1 per 100 gm. of dry beans. The unit of vitamin B_1 was defined as the quantity which, when given to a rat each day would produce an increase of weight of 10 gm. per week for at least 3 weeks. They claimed that this unit was equal to an International unit and to 4 micrograms of the Jansen and Donath's crystals. The rats were put on vitamin B_1 free diet when they weighed about 30 gm. At least 6 rats were used for each test.

• •

•

. . ۰. • • •

• •

• •

, , , τ. . •

-. 1 •

Vitamin C

Donath (4) found that dry katjang idjoe (mung beans) contained no vitamin C. Ghosh (7) found by titration method that dry beans contained 4.0 mg. of vitamin C per 100 gm. and sprouted beans contained 31.0 mg. per 100 gm. Ahmad (7) found that the vitamin C content of dry mung beans was 3.0 mg. per 100 gm. and of sprouted beans was 23.0 mg. per 100 gm. Guha (8) found that ascorbic acid in <u>Phaseolus</u> <u>Mungo</u> was increased 7 to 8 times by germination.

Miller (11) reported that 2.5 to 3.0 gm. of raw sprouts seemed to protect guinea pigs from scurvy, while 2.7 gm. of cooked sprouts (equivalent to 3.0 gm. raw) did not. However, according to her experimental data, she thought that the amount needed to protect against scurvy probably lay between 3 to 4 gm. Nine guinea pigs distributed on 4 different levels of raw sprouts, and 8 guinea pigs on 4 different levels of cooked sprouts were used in this experiment. The results obtained indicated that there was considerable destruction of vitamin C even in the 5 minutes of cooking. She concluded that, on the basis of Sherman's unit, raw mung bean sprouts contained 180 units of vitamin C per pound; and in the cooked state, the bean sprouts probably had approximately 150 units per pound or possibly a little less. She claimed that in the raw state mung bean sprouts have a vitamin C content equal to that of lemon, orange, and tomato juice; and when cooked 5 minutes, a slightly lower value.

Wats (15) reported that 3 gm. of sprouts of each of the varieties

of beans tested was enough to protect guinea pigs from scurvy. His result checked very closely with Miller's (11) findings.

Chi (3) found that mung bean sprouts contained 0.022 mg. per gm. determined by the Harris method, 0.15 mg. per gm. by the iodometric method, and [+(?)] by biological assays.

<u>Determination of Moisture and the Proportion of the</u> <u>Cotyledonal and Non-cotyledonal Parts</u>

Experimental Procedure

I. Moisture:

Since the method and condition for sprouting the beans is slightly different in different places, the moisture content is expected to be different. It would be ef interest if the vitamin value could be compared on the dry basis so these determinations were made.

About 20 gm. of fresh or frozen bean sprouts, and about 10 gm. of dry beans were used in each determination. Two or four determinations were made on each sample. They were weighed on an analytical balance to one tenth of a mg. The samples were first dried at a temperature below 60° C. in an oven which had an electric motor to circulate air. Then, the samples were transferred into another ordinary drying oven at 65° C., and dried to constant weight. The moisture content of fresh sprouts from Detroit was determined at 60° C., but it was found there were not enough changes in weight to cause a decrease of 0.1% when put into the oven at 65° C.

II. Proportion of the two parts --- cotyledonal and non-cotyledonal:

In each determination 100 gm. of bean sprouts were used. The sprouts were cut at the point right next to the cotyledonal part. After all of them were cut, the two parts were weighed again. The weighings were made on a torsion balance. All of the processes were completed as quickly as possible and with minimum handling so as to prevent loss of moisture.

Results and Discussion

I. Moisture:

Moisture content is given in Table I. According to the moisture content of sprouts from Lansing, 100 gm. of dry beans as purchased would give 1125 gm. of bean sprouts. According to the moisture content of bean sprouts from Detroit, 100 gm. of dry beans as purchased would give 1506 gm. of sprouts, assuming that the addition of water would account for the total change in weight.

Table I.	Moisture	Content
----------	----------	---------

Material	I of Moisture
Dry beans	6.6
Powdered dry beans	6.5
Fresh bean sprouts from Lansing	91.7
Fresh bean sprouts from Detroit	93.8
Frozen bean sprouts from Detroit	93.4

II. Proportion of two parts --- cotyledonal and non-cotyledonal parts:

There were 19 determinations of 5 different samples made. The percentage of cotyledonal part ranged from 10.6 to 12.8% with an average of 11.4% by weight. The percentage of non-cotyledonal part ranged from 86.4 to 89.0% with an average of 87.8%. The sum of the percentage of these two parts was 99.2%. The weight lost due to evaporation was 0.8%. Assuming that the rate of evaporation •

· · · · ·

- - •

•

•

· ·

. ,

was the same on these parts, the percentage of the cotyledonal and non-cotyledonal parts would be 11.5 and 88.5%. This was termed as corrected proportion of the two parts. The results are given in Table 2.

No. of determinations	Cotyledonal part	Non-cotyledonal part
1	10.8%	87.5%
3	11.0	89.0
2	12.8	86.4
4	12.0	87.0
9	10.6	88 .8
Average	11.4%	87.8%
Corrected average	11.5%	88.5%

Table 2. Proportion of cotyledonal part and non-cotyledonal part of the bean sprouts.

<u>Vitamin B</u>,

Experimental Procedure

I. Preparation of supplements:

1. The bean sprouts.

The bean sprouts for the vitamin B₁ assay were kindly supplied by the La Choy Food Products Company in Detroit. During the period of transportation the sprouts were kept in dry ice. They looked perfectly fresh upon arrival. Immediately after the bean sprouts arrived, a small portion of them was cut in the same manner as was done in the determination of the proportion of the cotyledonal and noncotyledonal parts of the sprouts. After this was completed (about 3-4 hours, during which they were kept cold) both the whole sprouts and the non-cotyledonal parts were put into wax paper cups of one pint capacity, placed in the freezing room in the Horticulture Building, and kept frozen.

2. The dry beans.

The dry beans were purchased from Lansing. These beans and the beans used by the La Choy Food Products Company for sprouting were shipped from Manchuria. The beans were washed with water, dried in air, and ground to fine powder.

3. The standard solution.

The standard vitamin B₁ solution was prepared by dissolving exactly 10 mg. of thiamin chloride hydrochloride in 100 c.c. of 20% alcohol solution. This solution was called stock solution. Two c.c. of the stock solution was diluted to 250 c.c. with distilled water. Five c.c. of the final solution equaled 4 gamma of thiamin chloride hydrochloride.

II. Preparation of basal ration:

Chase and Sherman's (2) vitamin B_1 deficient diet was used. The composition of the ration is as follows:

Casein free from witamin B ₁	18%
Salt mixture (McCollum and Steenbock)	4
Butter fat	8
Cod liver oil	2
Autoclaved yeast	15
Starch	53

1. Purification of casein.

The casein was purified by extracting with 60% cold alcohol (by weight). With 1.5 liter of 60% alcohol, 300 gm. of casein was treated and the whole was shaken for $\frac{1}{2}$ hour and then allowed to stand for $5\frac{1}{2}$ hours. The mixture was filtered with suction and thoroughly washed with 750 c.c. of 60%alcohol. The casein was shaken with another 1-liter portion of 60% alcohol for one half hour. After standing 19 hours, it was filtered, washed with 750 c.c. of 60% alcohol, and finally with one half liter of 95% alcohol and then dried in air.

2. Autoclaving yeast.

Dried powdered baker's yeast was mixed with 0.1 NaOH to make a smooth paste in a proportion of 100 gm. yeast to 125 c.c. NaOH. The mixture was then heated in a pressure cooker at 15 pounds pressure for 6 hours. The resulting yeast was neutralized with standard HCl. It was dried in an oven at 60° C. and then ground.

3. Salt mixture.

Salts were weighed on a torsion balance. They were ground separately in a mortor, mixed and ground. The final mixture was passed through a 40 mesh seive.

Composition of salt mixture #2 --- U.S.P.X. (Modification of McCollum and Steenboch #40)

Sodium chloride (NaCl)	0.173
Anhydrous magnesium sulfate (MgSO4)	0.266
Sodium phosphate (NaH ₂ PO ₄ • H ₂ O)	0.347
Potassium phosphate (K ₂ HPO ₄)	0.954
Calcium acid phosphate CaH ₄ (PO ₄) ₂ • H_2O	0.540
Ferrie citrate $(1\frac{1}{2}H_2^0)$	0.118
Calcium lactate	1.300

- 4. Butter fat. -- Commercial butter was melted, decanted, and filtered.
- 5. Cod liver cil. --Patches' cod liver cil was used.
- 6. Corn starch. -- Argo's corn starch was used.

III. Selection and care of animals.

Rats were used as experimental animals. They were of known heredity. When the rats were about 4 weeks old and weighed about 47-55 gm., they were put on vitamin B_1 deficient diet for about

2 weeks. At the end of the first week harnesses were put on so as to prevent coprophagy. After the first week, rats were weighed every other day, and some times each day at the end of the second week. Growth curves were made. The weight of the rats usually went down after harnesses were put on but it would usually be up again on the fourth day. When the weight of a rat went down the second time, that rat was considered to have been depleted in witamin B_1 . The average weight of the whole group at the end of the depletion period was about 70 gm.

Rats were distributed into different groups according to sex and litter. About 4-5 rats were put on each supplement at the beginning of the experiment. Later on, more rats were put on the level where the growth curve was considered to be nearer to the positive control group. Table III shows the distribution.

After rats were put on supplement, they were weighed weekly and the food consumption was also recorded. At the time of weighing, harnesses were taken off and were not put back until late in the afternoon. During this period the rats could clean themselves.

IV. Feeding supplements.

1. Experimental period.

A 4 weeks growth test period was used. It has been found in this laboratory that the 4 weeks period has approximately the same significance as longer periods.

2. Technique in feeding.

All supplements were fed each day including Sunday. Supplements were limited, but basal diet was fed ad. libitum. The feeding was usually done at about 11 o'clock each morning.

Experiment
Feeding
in the
Animels
5
Distribution
HI.
Table

	Positin	16			Whole		Whole		Whole		Non-	Non-			
Supplement	contro. 4 thian	L Bin	Negati contro	8 - I	sprout 10 gin		sprout 8 gm		sprout 6 80		cotyledonal part 10. gm	L cotyled	[one]	Dry bea	8
rets	rat no.	•vt•	rat no.	T I	rat no.	Mt.	rat no.	Vta	rat no.	MT =	rat no. wt.	rat no.	wte	rat no.	wte
	3937 e	55	3939 £ -	76	3945 9 L	65	39448 -	73	3939 6 RR	2	3944 ⁶ RR 68	3967	68	3937 Ê L	2
	3941 Å R	63	3937 6 R	68	39378	78	3937 <mark>8</mark> L	68	3937 8 r	76	39410B 74	39676	62	3939ÊL	73
	3944bR	81	3944ÅL	78	3944 0 B	59	3941ÅL	75	3941 ÅB	61	39454R 64	39 68 8	64	3944 8 L	69
	39456	19	3941 % L	62	3941 9 R	68	3945ÅB	61	3945 û r	75	3939Вы 74	39705	63	3941 <mark>0</mark> -	67
	3937 6 B	75	3945ÅL	78	3945 8 -	1	3939 ÅR	77	3944 ⁰ R	65				3945ÅB	72
	3944 6 -	78			3941 6	74			3967ÅL	68				39376B	80
	3967 ° L	63			-				3967 6 7	2				3967 \$ R	60
	3967 6 B	75							3968 0L	68				39680	58
	3968 ^g l	67							3968 9 R	20				3968 6 -	68
	3970ÅL	64							3970 ⁶ RR	8				1 8 0765	20

*Initial weight of the experimental period.

Food cups were taken out so that the rats ate the supplement. In case of positive controls water bottles were taken instead of food cups. Any spilled food was picked up at one o'clock or at three in the afternoon, according to the schedule of the day. If all the supplement was eaten, food cup or water bottle was put back at that time. At night spilled food was again picked up, and all the water bottles and food cups were put back. If too much of the sprouts was left, the watter bottle was taken out and the food cup was put in. In case of dry beans, about 3-5 gm. more of basal ration was put in with the supplement. The reason for doing this was to be sure that they ate all the supplement and at the same time had enough food. Water and food were available all of the time except for special reasons as mentioned above.

3. Bean sprouts.

The approximate amount of sprouts needed daily was taken out each day from the freezing room. The amount left was put into an evaporating dish, wrapped with wax paper, and kept in the freezing unit of an electric refrigerator. The sprouts were weighed on a small sensitive torsion balance immediately after they were taken out from the freezing room. Care was taken to keep them from thawing. Weighing while they were cold was, of course, not the most accurate way, but, if time were taken to let them come up to room temperature, the bean sprouts would thaw and water would come out from the tissue. Since vitamin B_1 is water soluble, the loss of water this way probably induced higher error than weighing while they were cold.

4. Dry beans.

The dry beans were kept in a glass jar at room temperature. They were weighed also on the same torsion balance on which the sprouts were weighed. Each gm. of beans was mixed with about 1-2 gm. of basal ration and then fed to the rats. During the first week of the experiment beans were moistened with water; but later it was found that after drying, the beans became a hard mass, and the rats did not like it. Hence, the beans were mixed with food instead of moistened with water.

5. Thiamin chloride hydrochloride solution.

It was pipetted out with a 5 c.c. pipette into a small cup.

Vitamin B,

Results and Discussion

The records of individual rats are given in Tables 9 to 24 in the appendix, and the summary of data may be found in Table 4. The curve of the growth of rats and the histogram of the food consumption of the rats are shown in Fig. 1.

The witamin B_1 value, expressed in terms of micrograms of thiamin chloride hydrochloride and International units (equivalent to 3 micrograms of thiamin chloride hydrochloride), was calculated on the basis of gain in weight with the positive control group as a standard of comparison. The results from levels of 6 gm. of both the non-cotyledonal part of sprouts and the whole sprouts were used in calculating the vitamin B_1 value. The results are tabulated as follows:

Table 5. Vitamin B1 Content of Mung Beans and Mung Bean Sprouts

		Vitamin B, Va	lue of 100 gm.	
	<u>on</u> r	aw weight	on dry we	ight
	Microgram of	International	Microgram of	International
	thiamin	unit	thiamin	unit
Food	per 100 gm.	per 100 gms.	per 100 gm.	per 100 gm.
Dry beans	618	206	662	221
Whole				
bean sprouts	85	28	1288	429
Non-cotyledonal part	L			
of been sproute	s 66	22		***

Table 4. Summary of Data of Growth and Food Consumption of the Rats in Vitamin B₁ Assay.

Weeklr Food Consumption in gms. lst wk 2nd wk. 3rd wk. 4 th wk. Av. 19.2 36.5 36.6 31.0 40.3 35.0 40.6 40.5 38.2 33.3 **38 • 9** 44.0 38.6 44.4 45.5 14.5 38.5 30.3 40.6 35.2 42.0 35.8 42.3 18.2 36.2 34.8 30.0 39.5 33.0 39.6 38.0 20.0 35.7 36.4 34.2 35.5 32.6 24.4 30.3 37.6 11.7 -7.3 10.5 6**°**6 6.8 6.7 8.7 11.0 2nd wk. 3rd wk. 4th wk. Av. 15.0 9•2 10.2 6.5 11.5 8.7 4.0 -11.5 Weekly gain in gm. 10.3 6.2 12.0 10.0 10.6 13.4 13.8 -5.8 9.5 5.3 **0°**6 7.3 -7.5 4.9 1.1 7.8 lst wk. 7.3 8•8 8.3 12.6 9.7 11.4 10.8 -5.0 Average weight initial 69.4 64.3 69.2 68.7 70.0 68.3 71.0 61.9 Animal No. ų ទ 3 2 4 4 S Q -10 gm. non-coty-Negative control ledonal part of 4 micrograms of ledonal part of 6 gm. non-cotythiamin hydro-10 gm. whole sprouts sprouts chloride sprouts 6 gm. whole sprouts gm. whole sprouts Dry beens Ø

Average Weekly Food Consumption*

•

.

.

The results showed that dry beans contained 618 micrograms of thismin per 100 gm. raw weight, and 662 micrograms of thismin per 100 gm. dry weight; and sprouts contained 85 micrograms of thismin per 100 gm. raw weight and 1288 micrograms of thismin per 100 gm. dry weight. Apparently the vitamin B_1 increased about 2 times as much as that of the original dry beans after sprouting.

The growth rate per week in the dry beans group was considerably higher than the positive control group. If the supplement level were decreased about one fourth of the amount fed in this experiment, the vitamin B_1 walue might be a little higher than the present figure; but this would not effect the result very much as shown by the fact that the value calculated from the 8 gm. level sprouts gave almost the same value as from the 6 gm. level of sprouts. When the results from the 8 gm. level sprouts, in which the growth rate of the rats was even higher than that of the rats supplemented with 1 gm. of dry beans, was used in calculating, the vitamin B_1 content of bean sprouts was 81 micrograms of thiamin chloride per 100 gm. raw weight. The vitamin B_1 value was enly 4 micrograms thiamin chloride less than that calculated from the results of the 6 gm. level of sprouts.

When the vitamin B_1 value was calculated from the results of the 10 gm. level of bean sprouts, the vitamin B_1 content per 100 gm. raw weight dropped to 69 micrograms of thiamin chloride. This might indicate that the amount of vitamin B_1 in 8 gm. of bean sprouts was almost enough for the maximum growth of rats. When the vitamin B_1 intake was increased beyond what the body needed, it might be simply stored in the body, probably excreted, or it might be utilized less efficiently by the body. When the amount of sprouts in the supplement

was increased from 6 to 8 gm., the gain in weight increased accordingly; but when it was increased from the 8 to the 10 gm. level, the gain in weight of the rats was considerably less per unit weight of the supplement. Therefore, the vitamin B_1 value calculated from the 10 gm. level of sprouts would not represent the true value of the sprouts. Furthermore, the number of animals used in the 8 gm. and the 10 gm. levels was less than that in the 6 gm. level; the average value from the 8 and 10 gm. levels would not be so significant as that from the 6 gm. level.

The vitamin B_1 value of non-cotyledonal part of the mung bean sprouts was decidedly lower than that of the whole sprouts. There were only 66 micrograms of thiamin chloride in 100 gm. of raw noncotyledonal part of sprouts, while there were 85 micrograms in 100 gm. of raw whole bean sprouts. In other words, the vitamin B_1 was not evenly distributed in the whole sprouts but more concentrated in the cotyledonal part.

When the vitamin value was calculated from the results of the 10 gm. level, the vitamin B_1 content of the non-cotyledonal part of the sprouts was 58 micrograms of thiamin chloride per 100 gm. raw weight. This value was also lower than that calculated from the results of 6 gm. level. There were only 4 rats on each of these levels, which is rather a small group of rats in view of the individual variations of the rats.

This test has found that dry mung beans are a good source of witamin B_1 (206 International unit per 100 gm. raw weight); whole bean sprouts are a fairly good source (28 International unit per 100 gm. raw weight); and the non-cotyledonal part of bean sprouts is a fair

source of vitamin B_1 (22 International unit per 100 gm. raw weight). After sprouting, the vitamin B_1 content of the beans increased to approximately two times the original value.

/

Vitamin C

Experimental Procedure

The beans used for this part of the experiment were purchased in two Chinese restaurants in Lansing. In both of the restaurants, the beans were generally sprouted for seven days. The length of the sprouts was about 7-9 cm., which was almost the same as those from the La Choy Food Products Company, used in the vitamin B_1 test. The sprouts were stored in a tightly covered glass jar and kept in an ice box before analysis. They were analyzed as they were, without being washed.

The vitamin C content was determined by the microchemical titration method. The details of Tillman's method modified by Bessey and King (1) were followed with few modifications. Bessey and King (1) found that the dye titration method checked with the biological assays. We have assumed that to be true of mung bean sprouts, and in this study, the reducing value of the materials tested is reported as vitamin C.

I. Standardization of 2-6 dichlorophenolindophenol solution.

Meander and Guerrant's method (10) was used. They found that the curve obtained for the titrations against sodium thiosulfate was comparable with that in which ascorbic acid was used. In successive portions of hot water, 0.1 gm. of dye was dissolved and filtered into a 200 c.c. volumetric flask. When all the dye was dissolved, the filter was washed with a small amount of hot water until the washings were nearly colorless. Fifteen c.c. of the dye solution was pipetted into a 100 c.c. Erlenmeyer flask; 0.5 to 1.0 gm. potassium iodide and 0.5 to 1.0 c.c. of diluted sulfuric acid (1 to 4) were added. After shaking to facilitate the oxidation of the potassium iodide, the liberated iodine was titrated with 0.01 sodium thiosulfate, using 1 c.c. of 1% soluble starch as an indicator. The sodium thiosulfate was standardized with standard potassium dichromate solution. The potassium dichromate was of good quality, dried, and had been kept in a dessicator. Fales⁹ procedure (6) of standardization was followed. One c.c. of 0.01 N sodium thiosulfate was equivalent to 0.88 mg. of ascorbic acid.

II. Extraction and titration.

About 5 gm. of dry beans or bean sprouts were weighed and ground with 2-3 gm. of acid washed white sand and a small amount of 2% meta-phosphoric acid until a paste was formed. The mixture was washed with some more 2% meta-phosphoric acid and transferred to a 50 c.c. centrifuge tube. The mixture was centrifuged then for about 5 minutes. The clear solution was filtered through a quick filter (Whatman No. 41) into a 100 c.c. Erlenmeyer flask. Another 10 c.c. or 15 c.c. of meta-phosphoric acid were used to wash the mortar and stirred into the solids, which were again centrifuged. The washing and rinsing were repeated twice more. The total volume of about 50 c.c. was titrated with standardized dye. A persistence of a pink color for about 15 seconds was taken as the end point of the titrations. The titration was carried out within two minutes. The time between weighing and titration was kept as short as possible -- usually within two hours. During this period, direct sunlight was kept out of the laboratory as much as possible.

Distilled water was used instead of redistilled water as recommended by Bessey and King(1). The use of distilled water in the manipulations was checked with redistilled water twice. Lemon juice was used as a source of vitamin C. It was found that even when the distilled water was concentrated 5 times, the difference of the results between distilled and redistilled water was less than 1%, which is within the experimental error of the method. Therefore, distilled water was used all through the experiment.

The method of standardization was checked many times. The value of dye solution standardized by Meander's (10) method was practically the same as the value standardized against pure ascorbic acid. A difference of 1-2\$ was within the experimental error.

During the period of acquiring technique, at least four determinations were run on each sample. Afterwards only duplicates or triplicates were run. Only two determinations were carried on at one time so as to lessen the atmospheric oxidation. The vitamin C content of dry beans, of whole sprouts, and of the non-cotyledonal part of bean sprouts was determined. The cotyledonal part was calculated by difference.

III. Recovery tests:

1. Test for atmospheric oxidation.

0.5 mg, portions of pure ascorbic acid solution dissolved in 2% metaphoric acid were pipetted out into 100 c.c. Erlenmeyer flasks and were let stand without covering for the same amount of time as the grinding process would require. Then, these solutions were diluted to about 50 c.c. with more 2% metaphosphoric acid and let stand for the same amount of time as the actual determination would require. The results indicated that the destruction of vitamin C by atmospheric oxidation was less than 2% in cool weather, and the percentage of destruction was higher in hot summer weather. It went up to about 10% destruction on a very hot day.

2. Test for completeness of extraction:

0.5 gm portions of pure ascorbic acid solution were ground, washed, and filtered in the same manner as the actual determination. The results were compared with the same amount of ascorbic acid which was exposed to air for the same amount of time. The results showed that the extraction was complete.

3. Oxidation in presence of oxidase:

0.5 gm. portions of ascorbic acid solution were added to weighed samples of sprouts and the amount of vitamin C found in excess of the average amount of the vitamin C of the same sample was taken as the amount of recovery. In this case, it was very difficult to get a very uniform sampling of sprouts, but the average of the recovery might give some idea of the action of oxidase under the particular situation. Recovery tests were done on two samples of sprouts and one of dry beans. The average percentage of recovery of two determinations on one of the samples of sprouts was 101%, and the average of three determinations on the other sample was 99.7% (97.0%, 98.9%, 103.2%). The average percentage of recovery of two determinations on dry beans was 96% (94.0%, 98.0%).

Results and Discussion

The results of the vitamin C determination are given in Table 6. The average vitamin C content of dry beans was 6.7 mg. per 100 gm. raw weight, and 7.2 mg. per 100 gm. of dried weight (dried at 65° C.). The average vitamin C content of the whole bean sprouts was 9.4 mg. per 100 gm. fresh weight and 113.3 mg. per 100 gm. dried weight. The average vitamin C content of the non-cotyledonal part was also 9.4 mg. per 100 gm. fresh weight. Apparently the vitamin C distributed uniformly in these two parts, and the proportion would be the same as the proportion of fresh weight.

Wu (17) reported that the moisture content of whole bean sprouts was 91.72 and of the non-cotyledonal parts was 93.22. If the vitamin C content of the non-cotyledonal parts was calculated on this basis, it would become 138.2 mg. per 100 gm., indicating a slightly higher content of vitamin C in the non-cotyledonal part on the dried weight basis.

One hundred gm. of raw dry beans contained 6.7 mg. of vitamin C, and the amount of sprouts (1125 gm.) from 100 gm. of beans would have 105.8 mg. of vitamin C. The vitamin C value of mung beans was increased 15.8 times when the beans were sprouted. A summary of the data is given in Table 7.

The reported value of viatmin G in green mung bean sprouts ranged from 2.2 mg. to 31.0 mg. (7) per 100 gm. of fresh sprouts. Miller (11) used biological assays and reported more than two times as much vitamin G as reported in this study. The methods of sprouting, the time of sprouting, the kind of beans, and the freshness of the sprouts may account for these differences.

	Percentage	Vitamin C cont	ent mg. per 100 gm
••••••••••••••••••••••••••••••••••••••	of moisture	Fresh basis	Dried basis
Bean sprouts	91 . 7	9 .4	113.3
Non-cotyledonal parts of sprouts	93 ,2	9.4	138 .2*
Dry beans	6.6	6.7	7,2

Table 7. Summary of Vitamin C Content of Mung Beans and Mung Bean Sprouts.

* Moisture content was not determined in this laboratory.

Sam ple_no	Faod	No. of deter- min- ations	Vitemin C value in mg/g of fresh weight of each titration	Av.	Remarks
1	Dry beans	2	0.062 0.066	0.064	
2	•	4	0.062 0.065 0.064 0.067	0.065	2 % metaphos- phoric acid
3	•	2	0.068 0.070	0.069	Ed twichlow
4	R.	4	0.063 0.070 0.070 0.072	0.069	acetic acid
Av.	٠			0.067	
5	Bean sprout	2	0.099 0.104	0.102	The sprouts
6	-	3	0.096 0.100 0.103	0.100	Determinations were made 1 to
7		1	0.084	0.084	5 hrs. after delivery.
8		1	0.093	0.093	
9.	•	2	0.090 0.091	0.091	
10	•	2	0.110 0.111	0.111	
n.	•	3	0.067 0.082 0.081	0.077	
۸ v .	•			0.094	Fresh deter-
12.	•	2	0.089 0.092	0.091	minations were made after stored over
13	*	3	0.086 0.088 0.098	0.091	nighte
14	Non-cotyled- onal part of bean sprout.	3	0.075 0.085 0.085	0.082	
15		2	0.088 0.105	0 .097	Determinations
16	•	2	0.099 0.100	0.100	were made 1 to 4 hrs. after delivery.
17	•	2	0.095 0.099	0.097	
Av.	•			0.094	Frech stared
18	•	2	0.090 0.092	0.091	over night,

· -

Table 6. Vitamin C Content of Mung Beans and Their Sprouts

When the bean sprouts did not look very fresh, slightly dry, or light brownish in color at the tip of the sprouts, the vitamin C content was usually about one half of the fresh sprouts. The average vitamin C contents of two samples (21 and 23, not fresh) were 5.3 mg. per 100 gm. and 5.9 mg. per 100 gm. of the sprouts. Sample 20, though stored over one night, looked fresher than sample 21. The vitamin C content of sample 20 was accordingly higher. The vitamin C value of samples 19 and 22 varied so much in different determinations, that the results were not averaged. When the bean sprouts looked quite brownish all over or in part, and slightly soft, the vitamin C value according to the titration method, dropped to almost none. This effect of the condition of the samples is tabulated on Table 8.

If, however, the fresh sample was stored over night in a refrigerator and appeared in good condition, it gave results comparable to those determined with the shorter time before testing, as shown in samples 12, 13, and 18 of Table 7.

This test has found that dry mung beans are a poor source of vitamin C (6.7 mg. per 100 gm. raw weight); but the vitamin C content increases 15.8 times after sprouting. Both whole bean sprouts and the non-cotyledonal part of the sprouts are fairly good sources of vitamin C (9.4 mg. per 100 gm. fresh weight).

Semp1 DO=	Food	No. of determi- nations	> V	itamin C of fresh tit	value i weight (tration	n mg/gm. of each		Av.	Remarks
61	Been sprouts	ю	0_066	0.080	0.162				5 days old, stored over night in ice box, leaves turned green and red.
202	ŧ	S	0,075	0.081	0_083	0•087	160-0	0,085	6 days old, s tored over night in ice box.
51	Ŧ	ល	0.047	0_058				0_053	6 days old, stored over night in ice box in small quentity, looked dry.
22	2	ଷ	0_044	0.100					6 days old, stored over night in ice box in large quantity.
23	×	ю	0.057	0•059	0•060			0•059	Did not look fresh. Report from restaurant stated it had not been good for days.

Table 8. Vitamin C Content of Bean Sprouts (not fresh).

Summary

- I. Dry mung beans, mung bean sprouts, and the non-cotyledonal part of the sprouts were analyzed for their vitamin B₁ and C content.
- II. The average vitamin B₁ content (microgram thiamin chloride hydrochloride per 100 gm. raw weight) of (a) dry mung beans was 618 micrograms, (b) bean sprouts was 85 micrograms,
 (c) non-cotyledonal part was 66 micrograms.
- III. The average vitamin C content (miligrams per 100 gm. raw weight) of (a) dry mung beans was 6.7 miligrams, (b) bean sprouts was 9.4 miligrams, (c) non-cotyledonal part of the sprouts was 9.4 miligrams.
- IV. The vitamin C content of mung beans was increased 15.8 times after the beans were sprouted, and the vitamin B_1 content of mung beans was increased about 2 times after the beans were sprouted.
- V. The vitamin C of the bean sprouts was evenly distributed in the whole sprout, while vitamin B₁ probably was more concentrated in the cotyledonal part of the sprouts.

Bibliography

- 1. Bessey, O. A., and C. G. King. The distribution of vitamin C in plant and animal tissues, and its determination. J. Biol. Chem., 103, 687, (1933).
- 2. Chase, E. F., and H. C. Sherman. A quantitative study of the determinations of the antineuritic vitamin B. J.A.C.S., 53, 3506, (1931).
- 3. Chi, and E. E. Read. The vitamin C content of Chinese foods and drugs. Chinese J. Physiol. 9, 47, (1935-6).
- 4. Donath, W. F. Synopsis of the antixerophthalmic antineuritic, and antiscorbutic witamin percentages, besides the protein, fat, carbohydrate and water contents of different Indian foodstuffs, Mededeel, Dienst Voldsgezondheid Nederland.-Indie, <u>18</u>, 334, (1929).
- 5. Embvey, H. Investigation of some Chinese foods. China Med. J., 32, 405, (1921).
- 6. Fales, H. A. "Inorganic Quantitative Analysis." p. 354.
- 7. Fixsen, A. and Roscoe. Tables of the vitamin content of human and animal foods. Nutr. Abs. and Rev., <u>7</u>, 823, (1937-8)
- 8. Guha, B. C. and A. R. Ghosh. Vitamin C in Indian foodstuffs. Current Sci., 3, 210, (1934).
- 9. Jansen, B. C. P. On the need of anti-beri beri vitamins of the animal organism and on the amount of this vitamin indifferent foodstuffs. Dutch East Indies-Mededeelingen van den Burgerlijk Geneeskundige Dienst. 61, (1923).
- 10. Menader, M. H. and N. B. Guerrant. Standardization of 2, 6-dichlorophenolindophenol. An improved method. Indst. Eng. Chem. Anal. Ed., 10, 25, (1938).
- 11. Miller, C. D. and D. B. Hair. The vitamin content of mung bean sprouts. J. Home Econ., 20, 263 (1928).
- 12. Santos, F. O. Some plant sources of vitamin B and C. Am. J. Physicl. <u>59</u>, 310, (1922).
- 13. Spruyt, J. P. and W. J. Donath. Antineuritic (B₁) vitamin content of "black" katjang idjoe (<u>Phaseolus radiatus</u>). Geneesk. Tijdschr. Ned.-Ind., <u>75</u>, 601, (1935).

- 14. van Veen, A. G. Vitamin B content of some foods. Gennesk. Tijdschr. Ned-Ind., <u>75</u>, 2500, (1935).
- 15. Wats, R. C. and W. J. Woodhouse. Some sources of vitamin C in India. The antiscorbutic value of various kinds of sprouted mung (<u>Phasiolus Mungo</u>) and their extracted juices. Indian J. Med. Res., <u>21</u>, 167, (1934).
- 16. Wilson, H. E. C., B. A. Ahmad, G. Ray, and R. C. Guha. The vitamin B₁ content of some common Indian foodstuffs. Indian J. Med. Res., <u>24</u>, 813, (1937).

17. Wu, H. "Introduction to Nutrition." <u>吴惠 营養概論</u>

Appendix

Table 9. Growth of Positive Control Rats

.

Rat	numbér	39370	39446	3944ÅR	3941 ÅR	3945 0	3937 8 B	3967 9 1	3967 Å B	3968 <mark>0</mark> L	3970 Ê	Gain whole Total	of the group Average
Initia	J weight	55	78	81	69	61	75	59	75	67	64	694	69 .4
U	lst wk.	6	12	6	F	5	H	80	Ħ	13	2	18	1.6
ite3	2nd wk.	ю	12	4	0	ю	4	ю	12	S	ю	49	4.9
دلالي ال	3rd wk.	Q	80	10	13	o	Q	5 •	4	10	G	62	6.2
ЭМ	4th wk.	ю	10	ณ	12	8	13	ณ	12	o	ю	65	6 . 5
Total	gain	51	42	23	36	25	34	œ	34	28	22	273	27.3
Aver Weekly	age gain	5•3	10.5	5.8	0•6	6.3	8.5	2•0	8,5	7.0	5 • 5	68 . 3	6 . 8

Table 10. Growth of Rats Supplemented with 1 gm. Dry Mung Beans Per Day

		a treet	2027	20201	701107	_0 105	TOLET		0000L	40502	307081	Gain	of the group
Initie	uumuur ul weight	80	101060	13	69	57 E	72	09	38 38	68	101	687	68•7
u	lst wk.	13	ø	18	0	12	15	4	15	18	11	114	11.4
tey .	2nd wk.	25	31	ю	11	S	1	10	DT	12	ω	95	3 • 5
ekly 1	3rd wk.	15	15	କ୍ଷ	7	16	କ୍ଷ	21	ω	Q	L	120	12•0
	4th wk.	10	10	10	13	٩	σι	Ø	DI	Oi	. 2	92	8 • 8
Total	gain	63	45	51	31	39	43	ž	43	45	27	421	42.1
Avei	rage Y gain	15•8	11•3	12.8	7.8	8 ● 6	10,8	8 • 5	10.8	11.3	6 • 8	105.3	10•5

						Gain c Whole	f the group
Rat	number	3967 9	39676	39708	3968	Total A	verage
Initia	al weight	68	62	63	64	257	64.3
in	lst wk.	8	8	7	6	29	7.3
89	2nd wk.	7	4	8	2	21	5.3
eekl	3rd wk.	16	4	10	10	40	10 .0
M	4th wk.	0	5	3	8	16	4.0
Total	gain	31	21	28	26	106	26.6
Ave: weekly	rage y gain	· 7.8	5.3	7.0	6.5	26 •6	6.7

Table 11. Growth of Rats Supplemented with 6 gm Noncotyledonal Part of Mung Bean Sprouts Per Day.

Table 12. Growth of Rats Supplemented with 10 gm. Noncotyledonal Part of Mung Bean Sprouts Per Day.

Rat	number	3944 RR	3941 5 B	3945 0 R	3939 8 LL	Gain whole Total	of the group Average
Initi	al weight	68	74	64	74	280	70
	lst wk.	3	12	8	12	35	8.8
gair	2nd wk.	7	12	7	10	36	9.0
skly	3rd wk.	8	12	7	14	41	10.3
Me	4th wk.	10	12	8	16	46	11.5
Total	gain	28	48	30	52	158	39.6
Ave: weekly	rage y gain	7.0	12.0	7.5	13.0	39.5	5 9.9

Day
Per
Sprouts
Been
Mung
Whole
ы
HS
9
with
emented
[ddnS
Rats
of
Growth
13.
Table

Rat	number	3944 8 R	3939ÅRR	3945ÅR	3941 8 B	3937 \$ R	3967ÅL	3967ÅR	3968 \$ R	3968 0 1	39 70 8 RR	Gain o whole Total A	f the group verage
Initia	il Weight	65	ß	75	19	76	68	70	70	68	60	683	68•3
u	lst wk.	4	14	ğ	7	7	16	ω	ю	ω	Q	83	8.3
183 J	2nd vk.	œ	0	Ω.	Q	7	10	ю	12	16	4	11	7.1
(ŢŊə	3rd wk.	Q	DI	14	16	o	12	11	2	11	10	106	10.6
PM	4th wk.	0	15	Q	0	10	Q	œ	13	11	O1	87	8.7
Total	gain	27	39	35	53	33	44	8	35	46	29	347	34.7
Aver Weekly	rage rgain	6 . 8	8 * 6	8 8	7.3	8.3	11•0	7•5	8•8	11.5	7.3	86.8	8.7

Rat	number	39390R	3944 8-	3945 9 B	39418L	3937 2 L	Gain <u>whole</u> Total	of the group Average
Initia	al weight	77	73	61	75	68	354	71
	lst wk.	16	13	7	19	8	63	12,6
gair	2nd wk.	18	0	1	10	10	39	7.8
ikl y	3rd wk.	20	12	9	17	9	67	13.4
Wee	4th wk.	16	6	4	14	11	51	10.2
Total	gain	70	31	21	60	38	220	44.0
Ave: weekly	rage 7 gain	17.5	7.8	5.3	15.0	9.5	55	11.0

Table 14. Growth of Rats Supplemented with 8 gm. of Whole Mung Bean Sprouts Per Day.

Table 15. Growth of Rats Supplemented with 10 gm. of Whole Mung Bean Sprouts Per Day.

Rat	number	39418-	3945 4 L	<u>3945</u>	3941 ° R	3944 • B	3937	Gai <u>whol</u> Tota	n of e grp. 1 Av.
Initi	al weight	74	65	71	68	59	78	415	69.2
e	lst wk.	17	8	11	14	11	4	65	10.8
gain	2nd wk.	4	8	10	1	3	18	44	7.3
ekly	3rd wk.	21	9	18	8	9	18	83	13.8
W.C.	4th wk.	17	14	16	18	6	19	90	15.0
Total	gain	59	39	55 •	41	29	59	282	46.9
Ave: weekl;	rage y gain	14.8	9.8	13.8	10.3	7.3	14.8	70.5	5 11.7

Table 16. Growth of Negative Control Rats

Rat	number	3939 6	3937 6 R	394ÅL	3941 % L	3945 б L	3970 ⁹ B	3970 °-	Gain whole Total	of the group Average
Initia	L veight	76	68	78	62	78	56	57	475	67.9
	lst wk.	н	-1	ୟ •	ನ •	ي •	-10	-10	-35	-5.0
uîs;	2nd wk.	2-	-11	-13	-13	L -	4 -	ম 1	-52	-7.5
ekly g	3rd wk.	L-	- 7	ю 1	On E	-1 2 died	= 6 died	ស ៖	62-	• 2 • 8
əW	4th wk.	- 12	- 3 died	11-	- 4 died			-4 died	÷23	-11, 5
Total	gain	-22	- 28	•29	-28	-24	8	-19	-170	-24.3
Aver Weekly	tage gain	=5.5	•8 •5	-7.3	-7.6	- 8 . 8	- 7.4	₩+ ● ©1. 8	6 1.2	-7.3

Rats
Control
Positive
of
Consumption
Food
17.
Table

	•		•	÷				0	4	4	ċ	Consum of the	ption whole grp.
Kat	numbei	5937	939440	3944 o K	3941 6H	39454	5957¥B	39674L	39676B	29708	3968¥L	Total	Average
u	lst w	t. 35	40	40	34	33	34	37	40	36	35	364	36.4
orid At	2nd wh	с• 30	46	41	32	32	44	33	38	33	33	362	36•2
unsu Yəəy	3rd wh	t . 35	38	41	38	34	41	27	32	35	31	352	35.2
00	4th wł	۲ • 29	44	40	40	38	43	29	43	38	38	382	38. 2
GOL	Total Isumpti	ton 129	168	162	144	137	162	126	153	142	137	1460	146.0
Av. Cor	v week] isumpti	Ly 10n 32.	5 42 • 0	40.5	36	34.3	40.5	31.5	38 • 3	35 • 5	34 • 3	365	36•5

Day
Per
Beans
Mung
Dry
of
Ē,
ч Ч
wit
supplemented
Rats
of
Consumption
Food
18 .
Table

lat	number	39376	B 39376L	3939ÅL	3944	39418-	3945 Å B	3967 8 R	3968 2 B	3968 Å-	3970 €L	_1	Cons of the Total
	lst wk	. 42	27	40	24	39	39	29	34	34	34		342
uoţì	2nd vk	•	35	32	36	34	30	31	29	31	38		348
duns Type	3rd wk	• 48	42	45	34	40	46	33	32	35	30		385
uoo M	4th wk		38	42	43	37	40	35	37	35	40		389
con	Total sumpti	on 184	142	159	137	150	155	128	132	135	142	[1464
Av. con	week sumpti	ly on 46.	0 35.5	39 • 8	34.3	37.5	38 • 8	32	33	33 . 8	35 . 5		366

						Consumption
Rat	number	3967 -	39678	39708-	3968 -	of the whole group Total Average
_	lst wk.	31	31	30	29	121 30.3
ly otion	2nd wk.	31	29	31	27	118 30.0
feek) Isump	3rd wk.	34	27	32	28	121 30.3
201 C 01	4th wk.	35	32	35	31	133 33.3
CO	Total nsumption	131	119	128	115	493 123.9
Av. Coi	. weekly nsumption	32,8	29.8	32	28.8	123.3 31.0

Table 19. Food Consumption of Rats Supplemented with 6 gm. of Non-cotyledonal Part of Mung Bean Sprouts Per Day.

Table 20. Food Consumption of Rats Supplemented with 10 gm. of Non-cotyledonal Part of Mung Bean Sprouts Per Day.

							•	Consu of the w	mption whole group	<u>)</u>
Ra	it	num	ber	3944¥RR	39416B	<u>3945¥R</u>	39396LL	Total	Average	-
		lst	wk.	35	37	32	38	142	35,5	
P	tion	2nd	wk.	33	43	39	43	158	39.5	
eekl	duns	3rd	wk.	41	4 4	36	47	168	42.0	
*	COD	4th	wk.	41	48	38	49	176	44.0	
C	or	Tota	al ption	150	172	145	177	64 4	161.0	
A	lv . sor	. Wo nsumj	eekly ption	37.5	43.	36.3	44.3	161	40.3	-

Food Consumption of Rats Supplemented with 6 gm of Whole Mung Bean Sprouts Per Day Table 21.

												Consu	nption
Rat	number	3944 ⁸ R	39399ER	3945ÅR	3941 9 B	3967 \$ R	3967ÅL	3968ÊR	3968⁹R	3968ÅL	0 3970+RR	of wh Total	ole gru. Average
1	lst vk.	53	37	63	53	35	42	32	31	31	31	326	32.6
tion Ty	2nd vk.	. 33	30	52	35	41	38	28	29	36	31	330	33,0
iansı Jansı	3rd wk.	• 33	34	42	38	39	43	32	30	32	35	358	35.8
ເດງ	4th wk.	• 33	4 0	41	36	41	34	48	38	38	37	386	38 •6
u o u o	Total sumpti	on 128	141	141	138	154	157	140	128	137	134	1398	139•8
Av.	veek] sumpti	ly on 32.0	35.3	35+3	34 . 5	38•5	39 • 3	35 ° 0	32•0	34.3	33 • 5	349 • 5	35.0

48

.

Rat	number	3939 8 R	3944 \$	3945 9 B	3941 L	3937 2 L	Consumption of the whole group Total Average
	lst wk.	40	37	32	42	37	188 37.6
ily	2nd wk.	50	36	27	45	40	198 39.6
Week	3rd wk.	44	40	35	47	37	203 40.6
COL	4th wk.	60	38	31	53	40	222 44.4
col	Total nsumption	194	151	125	187	154	811 162.2
Av. Co	• weekly nsumption	48.5	37.8	31.3	46.8	38.5	20.3 40.6

Table 22. Food Consumption of Bats Supplemented with 8 gm. of Whole Mung Bean Sprouts Per Day.

Table 23. Food Consumption of Rats Supplemented with 10 gm. of While Mung Bean Sprouts Per Day.

Rat	num	ber							Con	sumption
			39415	3945 2 L	39458	3941 9 R	3944 1 B	<u>3937</u>	<u>of wh</u> Total	Average
-	lst	wk.	40	33	43	34	31	33	214	35.7
kly ption	2nd	wk.	40	37	41	31	34	45	228	38.0
Wee] nsumj	3rd	wk.	50	41	50	38	33	42	254	42.3
8	4th	wk.	52	47	49	41	33	51	273	45,5
CO	Tot. nsum	al ption	182	158	183	144	131	171	969	16.2
ÂV. Coi	. W	eekly ption	45.5	39.5	45.8	36.	32,8	42,8	242.3	40.5

Rats
Control
Negative
of
Consumption
Food
24.
Table

		•	•		•			Consum of the wh	ption ole group
Rat number	39396	3937BR	39446L	3941 % L	3945BL	39704B	39708	Total	Average
g lst wk.	31	21	25	27	27	19	21	171	24.4
t 2nd wk.	32	23	Q	17	19	13	16	140	20.0
ord ak. Sonsu	28	15	18	12	10 died	8 d ie d	18	16	18 . 2
Meekly Kth Weekly	17	2 died	12	5 died			o	23	14•5
Total consumption	108	61	75	19	56	6	55	456	65.1
Av. Weekly consumption	27.0	18 ⊕ 6	18 . 8	16 . 5	21.0	1 4. 8	17.5	134.2	19•2

ROOM USE ONLY

Apr 14'81 Sep 2 '43 Apr 15'44

Jun 12 45 Colo 17 10 HIC 10 Apr 5 '49 Jun 9 40 Killin Use was

OCT 5 IGRE R

