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ABSTRACT

TRANSIENT DYNAMICS OF NONLINEAR OSCILLATORS WITH
APPLICATIONS TO CENTRIFUGAL PENDULUM VIBRATION

ABSORBERS

By

Ryan James Monroe

We consider the transient behavior of centrifugal pendulum vibration absorbers (CPVAs),

specifically, the overshoot problem encountered when these absorbers are suddenly activated.

CPVAs are passive devices used to address torsional vibrations in rotating systems, for

example, helicopter rotors and crankshafts of internal combustion engines. They consist

of pendulums mounted on a rotor, driven by system rotation, and tuned in such a manner

that in steady-state operation they counteract engine-order fluctuating torques acting on the

rotor, thereby smoothing vibrations. The primary feature of these devices is that they are

order tuned, that is, tuned to a given multiple of the rotation rate, as opposed to the more

common frequency tuned absorbers. Recently these absorbers have been proposed to expand

the operating envelope for cylinder deactivation in variable displacement engines, in order to

improve fuel economy. In these applications, the system encounters conditions in which the

absorbers are suddenly activated and undergo a beating-type transient motion, resulting in

overshoot of the absorber amplitude before it reaches steady-state. This overshoot depends

on a number of parameters, including the difference between the absorber’s natural frequency

and the frequency of excitation, the ratio of absorber inertia to rotor inertia, the system

damping, and system nonlinearities. An approximate analytical model is developed, using

perturbation methods, that predicts the overshoot in terms of these parameters, and the

model results are verified by simulations of the equations of motion and by experiments



using a fully instrumented spin rig. The predictive results are found to provide a useful

bound on the overshoot, and will be of use when designing absorber systems so that they

do not exceed rattle space constraints during startup. It is found that absorbers with near

tautochronic paths behave much like linear absorbers, and when lightly damped and start

from small initial conditions, they have an overshoot close to 100%. For absorbers with

softening paths, such as the commonly used circular path absorbers, the overshoot can reach

up to 173%, depending on system and input parameters.
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= 121%; (c) Γc = 0.477, ñ = 1.5 (σc = −2.25), λ = 0.2 (ξc = −3.732),
simulated percent overshoot = 124%. Additional parameters used to simulate
the full EOM include: Γ0 = Γ/2, α = 0, and β = 1. . . . . . . . . . . . . . . 91

4.4 The percent overshoot of an absorber system subject to zero initial conditions,
computed using the pseudo-energy method for Di = 0, and using the averaged
equations for Di 6= 0; for (a) general path and (b) near-tautochronic absorbers. 93

4.5 The rotor and absorber response to a step input of sinusoidal torque. (a) Rotor
and (b) absorber response to input +Γ sin(nθ); (c) rotor and (d) absorber
response to input −Γ sin(nθ). . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Comparison of the general path pseudo-energy method with simulations of
the full EOM for µ = 0, n = 1.5, ε = 0.03, Γ0 = Γ/2, α = 0, and β = 1.
Solid line is the pseudo-energy prediction. Simulation data: Sweep of χc
by varying λ from 0.80 to 0 with εΓ = 0.005, and σc = −3.25 (ñ = 1.51).
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-4 for a fixed λ = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xii



4.7 Comparison of the general path pseudo-energy method with simulations of
the full EOM for µ = 0, n = 1.5, Γ0 = Γ/2, α = 0, and β = 1. Solid line is
the pseudo-energy prediction. (a) ε = 0.07 with simulation data: Sweep of
χc by varying λ from 0.80 to 0 with εΓ = 0.012, and σc = −2.68 (ñ = 1.51).
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for simulation: ñ = 1.309 (both absorbers), ζ1 = 0.0013 (response shown in
red), ζ2 = 0.0042 (response shown in black), T0 = 0.937 Nm, Tn = 1.40

Nm, Ω = 36.652 rad/s, J = 0.0636 kg·m2, m = 0.241 kg (both absorbers),
cc = 0.162 m (both absorbers, see Tab. 5.2), ρ0c = 0.041 m (both absorbers,
see Tab. 5.2), and a ramp of half a torque cycle in of the fluctuating torque. 134

6.3 Experimental comparison of the transient overshoot of a circular path absorber
when forced at n = 1.26 using two types of fluctuating torque inputs that have
the same magnitude but a different ramp duration. (a) Response to a near
step input of the torque, resulting in an overshoot of 94%. (b) Response to a
ramp input of the torque with a duration of 10 torque cycles, resulting in an
overshoot of 15%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
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G.1 Depicting the percent overshoot for the damped system subject to zero initial
conditions. The damping levels include D = 0, D = 0.05, and D = 0.10
as labeled in the figure. The solid curves are obtained by numerically solving
equation (G.6) which is the constant of motion for small damping. The circles
are obtained by simulating the average equations (equations (3.6) and (3.7))
for the two levels of damping. The damping increases the critical system
parameter χ? as shown in Fig. 3.6 and this increases the operating regime for
a transient response about the lower branch equilibria (A). The constant of
motion provides a very good approximation of the damped transient response
of the system up to a damping level of about D = 0.10. . . . . . . . . . . . . 151
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Chapter 1

Introduction

Centrifugal Pendulum Vibration Absorbers (CPVAs) are passive devices used to address

torsional vibrations in rotating systems, for example, helicopter rotors [77] and internal

combustion engine crankshafts [55]. As shown in Fig. 1.1 (a), a CPVA consists of a pen-

dulum mounted on a rotor, driven by system rotation, and tuned in such a manner that

in steady-state operation the system dynamics lead to a torque from the pendulum that

counteracts engine-order fluctuating torques acting on the rotor, thereby smoothing rotor

torsional vibrations. Multiple CPVAs are placed around a rotor for balancing, and each is

typically constructed using a bifilar (two point) suspension, as shown in Fig. 1.1 (b). These

absorber designs consists of the following essential components: an absorber mass (D) and

two rollers (A), which suspend the absorber from a flange (C) that is fixed to the rotor.

The rollers ride on surfaces (B) on the absorber and flange, which are identical but inverted,

and are machined so that the absorber follows a user-designed path. This path, along with

the absorber mass and placement (distance from the rotor center), are the essential design

ingredients for an absorber system. For example, Fig. 1.1 (c) shows an implementation of
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four absorbers mounted on a helicopter rotor, for which the absorbers follow a cycloidal

path [38]. In this chapter we describe some current motivations for using CPVAs in auto-

motive engines, provide a basic description of how they work, and include a discussion of

previous work in the area.

1.1 Motivation

As pressures to improve fuel economy and reduce emissions continue to increase [1], cylinder

deactivation, which shuts down inessential cylinders during low-power operating conditions,

remains a viable technology. The fuel savings for these engines is typically in the 5-10% range,

accruing from reductions in pumping losses [22]. However, there is a current limitation on

the range of engine speeds over which one can deactivate cylinders, and this is limited on

the low-rpm end primarily by vibration issues. Therefore, if absorbers can be designed

such that they reduce torsional vibration (in the cylinder deactivated mode), then one can

expand the engine speed range over which the engine can deactivate cylinders, resulting in

additional fuel savings. Absorber design considerations for steady-state operation are already

well understood, and have proven to work well, even down to idle speeds for a prototype

V8/V4 engine [55]. However, transient absorber motions, specifically, those induced by

abrupt transitions from full cylinder (non-resonant excitation) to reduced cylinder (resonant

excitation) are not well understood, and the issues associated with these transient responses,

for example, bumper impacts and non-synchronous responses, are directly relevant to the

acceptance and implementation of CPVAs in these engines. Furthermore, a literature search

on analytical treatments of transient dynamics in nonlinear systems turned up only a handful

of publications [2, 15, 20, 32, 39, 42, 64], and none have considered the percent overshoot

2



(a)
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Figure 1.1: (a) Depiction of the basic CPVA model, consisting of a pendulum (absorber)
attached to a rotor, which is driven by a mean torque and and fluctuating torque of order
n. (b) The basic elements of a bifilar absorber shown in a deflected (off-center) position (the
device shown was designed and fabricated by Chrysler for experimentation in the MSU lab);
elements A are the rollers used for the bifilar suspension, B is one of the machined surfaces
that dictates the path followed by the absorber, C is a flange that is attached to the rotor,
and D is the absorber mass; note that the machined surfaces on the flange and absorber are
identical but inverted. (c) Helicopter rotor with 4 bifilar absorbers attached (photo by S.
Shaw, aboard the USS Nimitz, 1991). For interpretation of the references to color in this
and all other figures, the reader is referred to the electronic version of this dissertation.
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of a nonlinear oscillator suddenly subjected to harmonic excitation, which is precisely the

information needed for the current investigation.

Successful reduction of torsional vibrations using CPVAs has other applications for im-

proving fuel economy. Several automotive manufacturers are working to develop high-torque,

fuel-efficient, four-cylinder engines, which typically operate with high compression ratios and

at low speeds, which inherently lead to large torsional oscillations. These engines can be

more aggressively tuned for fuel economy, for example, by running at lower engine speeds,

if torsional vibration issues are addressed. Also, in cars with automatic transmissions, the

torque converter is the source of significant losses. When the torque converter is locked there

is an essentially rigid link between the engine and wheels, which minimizes these losses. The

ability to initiate torque converter lockup is dictated by the level of torsional vibrations be-

tween the engine and downstream powertrain components, and thus improved efficiency of

the powertrain can be achieved if one can reduce engine torsional vibrations. Another feature

of future engines that is relevant to transient absorber response is that of start-stop tech-

nology, which stops the engine entirely for zero load conditions, for example, when stopped

at traffic lights. These engine technologies provide transient environments under which the

absorbers must be able to survive without unwanted dynamics.

Thus, the primary goal of this work is to develop a fundamental understanding of the

transient dynamics in nonlinear systems, so that it can be applied to the design of absorber

systems for automotive applications. Thus, a systematic analytical and experimental study

of transient absorber response is carried out for a parameterized family of absorber paths

that includes those of practical interest. This is accomplished by building on the current

knowledge of absorber responses, including work on linear and nonlinear absorber models [58,
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59, 69], as well as taking advantage of the existing experimental facility used in previous

studies [26, 52,53,70].

The main technical results of this dissertation are organized around chapters on vari-

ous topics, as follows: in Chapter 2 we improve the absorber system model by accounting

for the roller dynamics and investigating the effects of the rollers on system response and

performance; in Chapter 3 we derive an analytical method for the computing the percent

overshoot of a nonlinear Duffing oscillator subject to a suddenly applied harmonic force with

general initial conditions, and testing the results against simulations; in Chapters 4 & 5 we

apply the analytical results to CPVA models, including theoretical predictions compared

with simulations (Chapter 4), and experimental verification (Chapter 5) for circular path

and near tautochronic path absorbers.

1.2 Basic Operation of a CPVA

In an internal combustion engine, engine-order fluctuating torques are a result of the net

torque applied to the crankshaft as each cylinder fires in succession as the crank rotates. In

many situations, this applied torque is dominated by a mean component T0 and the first

harmonic of order n, Tn sinnθ, where θ ≈ Ωt and Ω is the mean rotor speed and n is the

order of excitation. 1 For example, for a four-stroke engine with K cylinders, n = K/2. The

order of excitation n has the same connotation as an angular frequency, except that n is

dimensionless. The mean torque T0 maintains the mean rotor speed Ω, and the fluctuating

excitation torque produces torsional oscillations about this mean speed. If an absorber can

1Higher harmonic torques, at orders 2n, etc., exist, but their amplitudes are generally
negligible in comparison to the first and are often ignored in practice.
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be tuned correctly, it will respond to this excitation and produce a counter-torque, thereby

reducing torsional oscillations of the rotor. The primary feature of CPVAs is that they

are order tuned, as opposed to the more common frequency tuned absorbers, so that the

absorber’s natural frequency (ωa = ñΩ) stays tuned relative to the excitation frequency

(ñ ≈ n) at all engine speeds (Ω). Therefore, the absorber is effective at reducing torsional

vibrations across an entire range of rotor speeds. In contrast, a frequency tuned device can

be tuned only to a single rotor speed.

In order for a CPVA to be effective at reducing the torsional vibration of the rotor, the

absorbers tuning order should be near to, or slightly greater than, that of the excitation

order, that is, ñ ≈ n with ñ ≥ n; this is referred to as over-tuning [31]. This tuning

results in steady-state operation in which the absorber response is out of phase relative to

the excitation torque, which reduces torsional vibrations of the rotor. If one under-tunes

an absorber, it is closer to the absorber/rotor system resonance and its amplitude grows

rapidly as the torque is increased, leading more quickly to nonlinear behavior. A possible

disastrous nonlinear behavior is the jump bifurcation that results in large amplitude steady-

state absorber response that is in phase relative to the excitation, resulting in amplification

of rotor torsional vibrations [5,56]. Another important nonlinear effect is symmetry-breaking

bifurcations in systems composed of multiple absorbers [4,5,11,68]. All of these bifurcations

are possible due to the system nonlinearities that arise from both the absorber path, as well

as the kinematic coupling to the rotor.

The absorber natural frequency of oscillation is determined by its free vibration response

when the rotor spins at a constant speed Ω; this frequency is proportional to Ω and generally

depends on amplitude through nonlinear effects determined by the absorber path. This
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frequency consists of a linear part ñΩ, determined by the curvature of the path at its vertex,

and a nonlinear part dictated by a parameter λ that describes how the path curvature

varies as a function of travel along the path. The restoring force acting on the absorber

is the component of the centrifugal load tangential to the absorber path, and the path

curvature determines the nature of this force. For instance, a circular path, which has

constant curvature, results in an oscillator containing a nonlinear softening restoring force

(that is, the effective stiffness decreases as a function of amplitude), resulting in a softening

nonlinear dynamic response. As one might expect, there exists a path which results in a

linear restoring force, resulting in a simple harmonic response for all amplitudes; this path

is referred to as the tautochronic path, and is known to be a particular epicycloid. Section

2.2.1 provides more details about the path parameters and their geometric interpretation.

Paths also exist which exhibit nonlinear hardening restoring forces, such as the cycloidal

path described in the patent by Madden [38]. Denman [17] has introduced a very convenient

framework for describing paths that include circles, cycloids, and epicycloids, using a two

parameter (ñ and λ) path, as described in Section 2.2.1.

The path nonlinearities described above directly affect the forced response of the ro-

tor/absorber system. However, in the forced vibration case, the excitation acts on the rotor,

and rotor/absorber inertial coupling comes into play, which results in additional system non-

linearities. For circular path absorbers, the path nonlinearity is dominant over a large range

of absorber motions. However, for the tautochronic path, which has a neutral path in terms

of nonlinearity, the system is slightly softening as a result of kinematic coupling to the rotor.

However, when the rotor is driven, the effect of the applied torque is reduced at large am-

plitudes by kinematic effects, with the net effect being an overall slight hardening behavior
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for forced vibration [49]. In addition, for all absorbers, the response is also affected by the

dynamics of the rollers, which introduce additional kinematic path nonlinearities through

their inertia. Lastly, the situation can become even more complicated when multiple ab-

sorbers are attached to a rotor [4, 5, 11, 68]. For such systems the absorbers can exhibit

non-synchronous steady-state responses, even when the absorbers are identical [4, 5, 11, 68].

Therefore, it is important to understand how system parameters and nonlinearities affect the

dynamic response, so that these systems can be designed to operate effectively in a passive

manner.

1.3 Background

CPVAs have been in use for about 100 years, and studied scientifically for about 80 years. The

contributions, in chronological order, go from initial experimentation and implementation

in industrial applications, to linear modeling of the steady-state response, and finally to

the more recent contributions about the nonlinear steady-state response, both analytically

and experimentally; this history is briefly summarized below. Up to the present, the focus

has always been on the steady-state response, which is applicable in aerospace applications.

However, the renewed interest in automotive applications has raised the issue of system

transient response, and that is the main thrust of the study described herein.

Our knowledge of absorber system dynamics has come along way since the first known

conceptual design, which dates back to 1911 [31]. In 1911, the first frequency tuned vibration

absorber was proposed in a U.S. patent by Frahm [23]. In the early 1930s the basic principles

of operation of order-tuned vibration absorbers were first disclosed in patents [62, 63]. The

general idea behind the order-tuned absorbers was that of mounting a mass to a rotating
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system such that it is free to oscillate and react in the desired manner to reduce fluctuations

in the rotor speed, that is, torsional vibrations. Taylor was the first to realize the importance

of the order-tuned device and introduced it into industry [73]. Constructions of order-tuned

devices were first carried out by R. Chilton of the Wright Aeronautical Corporation, who

used the bifilar design, and E.A. Ryder and G.L. Williams of the Pratt and Whitney Aircraft

Company, who used a roller design [27]. The bifilar design (see Fig. 1.1 (c)) is still the typical

implementation used in applications today, including light aircraft engines and helicopter

rotors.

The mathematical and dynamics modeling of absorber systems began with investigat-

ing the absorber system’s linear dynamic response, in order to determine how to tune an

absorber to be effective at counteracting an order n excitation. The absorber COM paths

initially used were circular, with curvature selected to meet the small amplitude (linear)

tuning condition [41]. Den Hartog [28] was the first to clearly describe the detuning caused

by nonlinear effects that arise at modest amplitudes for these absorbers. In regards to linear

theory, Den Hartog [27] investigated how viscous damping and detuning an absorber (the rel-

ative tuning between the absorber tuning order and the excitation order) affect the resulting

linear steady-state torsional vibration of the rotor. Den Hartog was also the first to account

for the nonlinearity in the pendulum free vibration response, showing that the softening

restoring force of the circular path resulted in a detuning of the pendulum, which grew with

increasing amplitude (i.e. the absorber tuning order decreased with increasing amplitude of

oscillation). He suggested overtuning the absorber to account for this effect. Newland [56]

(a Den Hartog Ph.D. student), investigated the forced vibration response of circular path

absorbers and showed that the softening restoring force can result in the devastating non-
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linear jump bifurcation described above. To avoid this jump, Newland [56], quantified the

required level of over-tuning for circular path absorbers. He provided guidelines for robust

tuning to avoid the jump bifurcation, while maintaining absorber effectiveness in terms of

reducing torsional vibrations. These types of results, which were originally carried out using

harmonic balance methods [56], were recently extended using perturbation calculations to

consider a more general family of paths, and to determine the dynamic stability of single

and multi-absorber systems [5, 68].

Due to the potentially disastrous non-linear jump response associated with the circular

path, another phase of research has involved the study of non-circular paths that can avoid

the jump. These studies also consider the effects of the path on absorber effectiveness at

reducing order n vibrations, while avoiding amplification of higher harmonic vibrations, i.e.,

2n, 3n.... It turns out that for an over-tuned absorber, the jump bifurcation is only possi-

ble for softening paths, and this is why non-circular paths that are either tautochronic or

hardening are advantageous [5, 68]. These paths, when over-tuned, have only one possible

steady-state amplitude response (for a system with a single absorber), which is the desired

response that is out of phase with the excitation. Madden [38] was the first to suggest a

non-circular path that was capable of overcoming the jump response, specifically by using

a cycloid, which is the solution of the classical brachistochrone problem, and the less well-

known tautochrone problem.2 The cycloidal path suggested by Madden produces a slightly

hardening response. The brachristochrone/tautochrone epicycloidal path for a centrifugal

2The brachistochrone is the solution to the problem posed in June 1696 by Johann
Bernouilli: “Given two points A and B in a vertical plane, find the curve that a point
M, moving on a path AMB must follow such that, starting from A, reaches B in the shortest
time under its own gravity.” It turns out that the cycloid actually solves both the minimum
time (brachristochrone) and the equal time independent of starting amplitudes (tautochrone)
problem for a gravitational field.
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field was known to Huygens, but brought to use in absorbers by Denman [16]. Denman’s

work simplified the study of absorber paths, since it provides a general framework in which

the equations of motion can be developed for a two-parameter family of paths. The param-

eter ñ sets the linear tuning, while the parameter λ allows one to vary paths from circular

(strongly softening), to tautochronic (neutral), to cycloidal (hardening) [17]. This formu-

lation provided a means by which perturbation studies can be performed to systematically

investigate the effects that path parameters have on the system response. A study by Lee &

Shaw [33] showed that, although the epicycloidal path results in a favorable simple harmonic

absorber response (for constant rotor speed), the torque that the absorber puts back on

the rotor is not a pure harmonic of order n, due to the nonlinear kinematic coupling of the

absorber to the rotor. This implies that the tautochronic epicycloid, while avoiding detun-

ing, is not able to exactly counteract a purely harmonic torque, as is desired. A solution

to this problem was a subharmonic absorber system, which consists of a pair of identical

absorbers riding on epicycloidal paths tuned to one half the order of the excitation torque.

These generated, via a subharmonic response, a torque that is exactly a pure harmonic over

a wide range of amplitudes [34, 35]. Further analyses by Chao & Shaw [12,13] incorporated

path imperfections in the analysis and determined design guidelines for systems of identical,

multiple, subharmonic absorber pairs.

The subharmonic absorber system is actually one of a number of non-synchronous steady-

state responses that can result from symmetry-breaking bifurcations inherent in systems

with multiple identical absorbers. Except for the subharmonic absorber, non-synchronous

responses are not desired in practice, since the absorbers do not function in an optimal

manner with minimal amplitudes. This observation has motivated several investigations
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into determining system parameter conditions that result in non-synchronous responses,

so that absorbers can be designed to operate synchronously in the steady-state. In fact,

multiple absorber systems are typically required in applications, in order to balance the

rotating system, by placing sets of absorbers symmetrically about the rotor center. Chao &

Shaw [11] and Shaw & Geist [68] showed that for tautochronic and nearly-tautochronic path

absorbers, a critical excitation torque magnitude exists which, if exceeded, results in loss

of stability of the synchronous response, resulting in nonsynchronous absorber responses.

This bifurcation can be avoided by sufficient levels of absorber damping and/or intentional

absorber mistuning, both of which degrade absorber performance in terms of reducing rotor

torsional vibrations. In a related study, Chao & Shaw [14] found that the post-bifurcation

dynamics are dominated by a stable steady-state solution branch in which one absorber

undergoes a much larger amplitude of motion relative to the others, essentially a form of

nonlinear localized response. A similar study by Alsuwaiyan and Shaw showed that for

hardening and softening paths (i.e., paths that are not nearly tautochronic), the bifurcation

to a non-synchronous response can be avoided for softening paths if the absorber is designed

with an over-tuning level that is greater than or equal to a value set by the viscous damping

coefficient and the excitation order n [4,5]. It was also found that for sufficiently over-tuned

neutral (tautochronic) and hardening paths, the non-synchronous response is not possible,

nor is the jump, and these properties make epicycloidal and cycloidal paths quite appealing.

To extend these results to nearly tautochronic paths, a recent study by Shaw & Geist [68]

describes analytical results for the stability of the synchronous absorber response against

both jump and symmetry-breaking bifurcations, in terms of the two path parameters. The

mathematical tools needed to investigate the stability of the synchronous response in multiple
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absorber systems include circulant matrices, which are thoroughly covered in [57].

To validate the steady-state response analytical results, a number of experiments were

performed using both single and multiple absorber systems. These were carried out using an

experimental rig described in detail in [26] and Chapter 5 of this dissertation. This apparatus

allows one to input a specified excitation torque signal (in terms of order and amplitude),

and measure the resulting response of the rotor and up to four attached absorbers. The

torque signal is specified in LabVIEW and then sent to a servo motor which excites the

rotor and the attached absorbers. The responses of the rotor and absorbers are recorded

in LabVIEW for post-processing the data. The steady-state experiments performed to date

have included excitation order sweeps (at constant excitation amplitude) and excitation

amplitude sweeps (at constant excitation order). These results show excellent agreement

with theoretical predictions for circular path pendulum-type absorbers [26, 52–54], as well

as for tautochronic path absorbers [65, 70]. As expected, non-synchronous motions were

observed in the multiple absorber experiments for cases when the absorbers tuning order

was near the excitation order (i.e. ñ ≈ n) [52–54]. However, the non-synchronous motions

observed in the experiments involving four absorbers did not agree in form with the previous

analytical predictions. In particular, Nester et al. [52–54] found that for low torque levels,

a subset of the four absorbers were essentially inactive (almost zero amplitude), and that

as the excitation amplitude was increased, more absorbers became active, and eventually

synchronous with the active set of absorbers, one at a time, until all four were active. These

results deserve further investigation, and some suggestions based on recent observations

during the course of this work are given in Chapter 6. More recently, Vidmar [75] performed

an analytical and experimental study accounting for both Coulomb and viscous damping
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using the same circular path pendulum-type absorber as described in Nester [53, 54]. The

Coulomb friction was adjusted by tightening the screw on the bearing about which the

absorber swings, and it was found that the Coulomb friction resulted in a sticking (zero

rotational velocity relative to the rotor) of the absorber up to a certain level of torque. As

expected, this resulted in no reduction in torsional vibration, until the absorbers broke free

and began to move [75].

As discussed in Section 1.1, these absorbers have been proposed to expand the operating

envelope for cylinder deactivation in variable displacement engines, which offers improved

fuel economy by reductions in pumping losses. In these engines, cylinders are deactivated

depending on the loading conditions. This is accomplished by closing the intake and exhaust

valves and stopping fuel transmission to the deactivated cylinders. Currently, these engines

are required to operate in full cylinder mode in the low-RPM range due to vibration issues

associated with the reduced cylinder mode at low speeds. Therefore, vibration absorbers

tuned to the reduced cylinder mode excitation order have the potential to allow such engines

to run at lower speeds, and higher loads, in reduced cylinder mode. In fact, if idle can be

reached within allowable vibration limits, significant improvements in mileage will be realized

for the standard driving cycle that is used to establish official vehicle mileage. It was shown

in an experimental study on a prototype Ford V8/V4 engine that these absorbers allowed one

to operate at much lower engine speeds, thereby expanding the operating range for reduced

cylinder operation, and improving fuel savings [55]; this is the only known experimental study

of absorbers on a variable displacement automotive engine. Another experimental study by

Albright et al. [3] using a roller type absorber, showed the absorber to work well when the

excitation exists at integer orders of crankshaft rotation, without the added amplification of
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a torsional resonance which occurred in their high power V8 drag motors.

While known to be effective for steady-state operation, the transient behavior of absorbers

is a looming question when considering them for automotive implementations. A transient

event that is especially important in engines that employ cylinder deactivation is that of

the deactivation event, in which the fluctuating torques on the crankshaft change quite

suddenly in terms of the order and amplitude. In general, the engine order is reduced

(typically by a factor of 1/2, when half the cylinders are deactivated) and the amplitude is

increased by a factor of about 2-3 (due to fewer harmonic cancellations). If the absorbers

are tuned for the reduced-cylinder mode of operation, this abrupt change corresponds to

a transition from non-resonant to near-resonant excitation for the absorber response, the

effects of which are amplified by the increase in excitation level. This leads to a beating-type

transient motion, resulting in overshoot of the absorber response before it reaches steady

state conditions [58,69]. An experimental and theoretical transient investigation by Palmer

for softening paths showed that simulations of the averaged equations provided a satisfactory

prediction of the experimental results for circular path absorbers [59]. Palmer suggested that

the averaged equations provide an efficient way to determine the bounds on the overshoot,

the beating frequencies, and the decay rates. A subsequent study investigated the transient

response of exactly tautochronic paths, and scaled the amplitudes so that a closed form

solution of the envelope of the transient response could be obtained [53, 54]. This linear

analysis provided explicit formulae for many important quantities, including peak amplitude,

steady-state amplitude, settling time, and beat period. This thesis extends and amplifies

these previous studies.
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1.4 Summary of Results

The main contributions of this work include the following: We have provided a model of the

absorber that includes the dynamics of the support rollers used in bifilar suspensions, and

derived, for the first time, a tautochronic path for this case. In terms of problem formulation,

we combined the two types of path scalings introduced by Shaw et al. [5,11,14,26,52,53,68,70]

into a single framework from which an approximate analytical method for the transient

overshoot of a CPVA system can be obtained. In addition, a unique rescaling of the averaged

equations was introduced that combines the order detuning, the amplitude of excitation,

and the system nonlinearity, into a single parameter, χ. The analytical predictions are

based on the method of averaging, and for an undamped system the prediction of overshoot

involves solving the roots of a pseudo-energy equation. When the dominant nonlinearity

arises from the path, the undamped overshoot result is obtained in closed form, as the roots

of a quartic polynomial that depend solely on χ. This result follows from an analysis of

the transient response of a standard Duffing oscillator with suddenly applied near-resonant

harmonic excitation, a treatment that is, to the author’s knowledge, original. For paths that

are nearly tautochronic, an additional parameter γ is required, and the overshoot roots must

be found numerically. The addition of damping introduces a dissipation parameter D for all

paths, and the predictions require simulation of the averaged equations. These analytical

predictions are compared against simulations of the original equations of motion, simulations

of the averaged equations, and experiments performed using a circular path absorber and a

near-tautochronic path absorber. The main results are presented in Fig. 5.6 (a) & (b), which

show that the analytical overshoot predictions provide a useful upper bound to the data,

thus making it a convenient tool for conservative absorber designs. As expected, the full
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equations of motion do the best at predicting the overshoot in general cases, but simulations

of the averaged equations are also quite accurate. Lastly, as shown in Fig. 5.7 (a) & (b),

more aggressive absorber designs can be obtained if a bound on the absorber damping is

known.
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Chapter 2

Accounting for Roller Inertia in the

Bifilar CPVA System Model

2.1 Introduction

A bifilar suspended CPVA employs a pair of cylindrical rollers which suspend the absorber

mass as shown in Fig. 2.1. This arrangement results in the absorber mass translating, but

not rotating, relative to the rotor. Other implementations do exist such as a roller type

absorber system [30], but the bifilar suspension has been most common in practice. An

important aspect of these absorbers is their tuning, which is determined by the path along

which their center of mass moves. This tuning, which for these absorbers is order tuning

rather than frequency tuning, consists of linear and nonlinear components. The linear part

sets the small amplitude vibration characteristics, and has long been understood [28, 31].

The linear tuning order is set to be close to the order of excitation, so that the absorber

responds to the excitation in such a manner so as to reduce torsional vibrations of the rotor.
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The softening nonlinear aspects of the commonly-used circular path absorbers were known

to cause problems, since their frequency of free oscillation decreases as a function of vibration

amplitude, thereby resulting in detuning [28,56]. Absorber paths that overcome this problem

have been proposed and studied, and include cycloids, epicycloids, and generalizations of

these [5,17,38]. Much of this work simply ignored the inertial effects of the rollers. However,

Denman [17] included the roller inertia in a study of absorbers with quite general paths,

and derived a means of including the effects of roller inertia for the linear tuning. His

work included the nonlinear dynamics of the rollers in the equations of motion, but does

not provide a systematic investigation of how to design nonlinear aspects of the dynamics

to account for rollers. That work also included a thorough description of the zero roller

inertia tautochronic absorber path, that is, the path that renders the absorber frequency

as constant for all physically realizable amplitudes of response, i.e., a path such that the

absorber is neither softening nor hardening out to large amplitudes.

Although the roller masses are small in comparison to the absorber mass, it is important

to know how the overall system dynamics are affected by the inertia of the rollers. This

is obvious for the linear tuning, since a slight off-tuning dramatically affects the system

response in terms of absorber effectiveness and operating range [5, 68]. The purpose of the

present work is to systematically quantify the effects of rollers on the linear and nonlinear

system response, so that one can design absorber systems that fully account for the dynamics

of the rollers.

We begin with a derivation and description of the equations of motion in a nondimensional

form that is convenient for analysis; this, and many subsequent steps, follow previous work

on CPVAs, cf. [11, 68]. The absorber path and the attendant linear and nonlinear tuning
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Figure 2.1: Picture taken by Steve Shaw of a helicopter rotor with four bifilar absorbers
attached (taken aboard the USS Nimitz).

parameters are then considered, and the tautochronic path that accounts for rollers is derived.

This is followed by a perturbation analysis of the system dynamics, and an example is

presented that demonstrates the influence of rollers on the system response. It is seen that

so long as the rollers are accounted for in the linear tuning, and the nonlinear tuning is close

to tautochronic, then the overall system response is largely insensitive to small variations in

the nonlinear tuning, which is influenced by the inertia of the rollers. In fact, the rollers are

found to provide a slight hardening effect on the absorber response, which actually shifts

the system away from potential jumps in the absorber response. This chapter closes with a

brief discussion of the results.

20



2.2 Dynamic Model

In this section the dynamic model for a CPVA suspended in a bifilar configuration by a

pair of rollers is constructed. The model is introduced by defining parameters for a single

absorber with general inertial properties and a pair of rollers that are assumed to roll without

slipping.1 After these basic features and some nondimensional parameters are introduced,

the equations of motion for a system composed of a rotor with N CPVAs riding on rollers are

derived by a Lagrangian approach. Here we simply outline the steps of the derivation, since

the details are available in previous work [5,17]. The equations of motion are then presented

for a single absorber which are non-dimenionalized and re-scaled for the purpose of doing

analysis. This includes a perturbation calculation which is used to determine the effects that

the rollers have on the system response; these steps also follow previous work [11, 68], but

here include the effects of rollers.

The bifilar construction of CPVAs using rollers consists of four essential components: a

rotor, an absorber mass, and two rollers, as shown in Fig. 2.2. The rotor is subjected to

a fluctuating torque, resulting in torsional vibrations of the rotor. The absorber mass is

a generalized centrifugal pendulum and will be referred to herein simply as the pendulum.

The pendulum is suspended from the rotor by the rollers, which roll along two cutouts in

the rotor, as shown in Fig. 2.2. The rollers also roll along identical, inverted cutouts on the

pendulum. This arrangement kinematically forces the pendulum center of mass (COM) to

follow a path that is dictated by the shape of the cutouts. In many applications, for ease of

manufacturing, these cutouts are simply circles. In general, the dynamic model for the bifilar

construction is described by the motion of the COM of N identical pendulums, each of mass

1We have examined the motions of such rollers in an experimental rig and found that
they indeed roll without slipping in all situations observed.
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mP and moment of inertia IP about the pendulum’s COM. These are attached to a rotor

which has a moment of inertia Ic about the center of rotation, point 0, as shown in Fig. 2.2.

As previously mentioned, it is assumed that the two rollers, each of mass mR, radius A, and

moment of inertia iR about their COM, roll without slip along the cutouts. Note that in

this arrangement the arclength distance S displaced by the COM of the pendulum along its

path is twice that moved by the COM of each of the rollers along their respective paths [17].

The positions of both the pendulum and the rollers’ COM relative to the rotating coordinate

system at point O can be conveniently expressed in terms of a function RP (S), which is the

distance from the center of the rotor O to the pendulum COM at a position corresponding

to S. Here all absorber paths are taken to be identical and symmetric about a vertex at

S = 0 such that RP (−S) = RP (S). Here we denote R(0) = c, which is the largest value of

RP (S). Under these assumptions the dynamic system consists of N + 1 degrees of freedom,

corresponding to the positions Si of the pendulums and the rotor orientation θ. We present

a derivation for this system and then specialize to the case N = 1 which is sufficient for the

present study.

The system kinetic energy is given by

Tt = Tc +
N∑
i=1

(TPi
+ TRi

), (2.1)

where Tc accounts for the rotational kinetic energy of the rotor, TPi
is the total kinetic

energy of the ith pendulum, and TRi
is the total kinetic energy of the the ith pair of rollers.

For the pendulum and rollers we compute the kinetic energy using the translation of the
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COM and rotation about the COM. The total kinetic energy can then be written as

T = Tc(θ̇) +
N∑
i=1

{
TRi

(θ̇, Ṡi, Si) + TPi
(θ̇, Ṡi, Si)

}
(2.2)

=
1

2

(
J +

N∑
i=1

(
mPR

2
P (Si) + 2mR

(
H2 +

+ (c/2−D)2 + (c/2−D)YP (Si) +
1

4
R2
P (Si)

)
+2iR

))
θ̇2

+
N∑
i=1

(
(mP +

1

2
mR)G(Si) +

1

2
mR(2D − c)

∂XP (Si)

∂Si
− iR/A

)
Ṡiθ̇

+
N∑
i=1

1

2

(
mP +

1

2
mR +

1

2
(iR/A

2)

)
Ṡ2
i ,

where J = Ic + NIP is the total inertia of the rotor and the pendulums about their re-

spective COM, A is the roller radius, and D and H are, respectively, the vertical and

horizontal distances from the rotor center O to the roller COM when the pendulum is at

its vertex; see Fig. 2.2. The terms XP (S) and YP (S) locate the pendulum’s COM posi-

tion relative to the rotor-fixed X − Y coordinate system, and R2
P (S) = X2

P (S) + Y 2
P (S)

(see [17] or Appendix B for further details). Lastly, G(S) =
√
R2
P (S)− 1

4(∂R2
P (S)/∂S)2 =

RP

√
1− (∂RP (S)/∂S)2, is RP times the cosine of the angle between the local tangent to

the absorber path at S and the normal to the radial line passing through O and the point at

S on the path [68]. Therefore, G(0) = R(0) = c, and G(S) = 0 corresponds to the absorber

moving directly towards the rotor center, which gives the maximum achievable value of S,

denoted by Smax, for many absorber paths. This limit will be investigated further dur-

ing the perturbation calculations, for which the absorber path and the maximum possible
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absorber amplitude will be important.
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Figure 2.2: Depiction of a bifilar roller-suspended pendulum (left) attached to a rotor, and
the paths of the pendulum COM and rollers’ COM (right).

Using the kinetic energy in equation (2.2), and generalized forces from dissipation and

applied loads, one can derive the equations of motion for the system using the Euler-Lagrange

method. These derivations, and subsequent non-dimensionalization and rescaling, with the

rollers absent, are described in previous work [11,14]. An important step in the development
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of the equations of motion is that the rotor angle θ is used to replace time as the independent

variable, which converts nonlinear θ-dependent torques into external excitation terms. The

equations of motion are presented by first introducing a number of variables and parameters,

after which we present the absorber and rotor equations of motion. These equations are,

of course, coupled in the following way: the absorber response is driven by the torsional

acceleration of the rotor, and the rotor dynamics are affected by torques produced by the

absorbers as they move along their paths. The goal is to design the absorbers such that

these torques counteract an applied fluctuating torque that acts on the rotor, that is, the

torque that produces the unwanted torsional vibrations.

We first introduce s, g, xP , yP , rP , and a as non-dimensional versions of their corre-

sponding upper case versions given in equation (2.2), in which physical system lengths are

normalized by the distance c, ε is defined as the absorber to rotor inertia ratio mP c
2/J , and

many parameters that are known to be small are scaled by ε for convenience. The nondi-

mensional rotor speed is denoted by ν, which is the rotor speed θ̇ normalized by the mean

rotor speed Ω; thus torsional vibrations are represented by fluctuations in ν and the desired

constant rotor speed operating state is represented by ν = 1. The effects of damping and

applied torques are included by their generalized forces, and are specified below. Using these

definitions, and following the steps of previous derivations [11, 14], the equation of motion

for a single absorber (N = 1) is found to be

(1 + εδ + εξ)ν2s′′ +
(

(1 + εδ + εξ)s′ + (2.3)

+ (1 + εδ)g(s)− 2εξa− 2εδ`
∂xP (s)

∂s

)
ν′ν +

− ν2
(

1

2

∂r2P (s)

∂s
(1 + εδ) + 2εδ`

∂yP (s)

∂s

)
= −εµs′ν,
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where primes indicate derivatives with respect to θ, εµ is an effective viscous damping coef-

ficient along the absorber path, and εδ, εξ, and ` are the non-dimensional terms introduced

by the rollers. Table 2.1 provides definitions of these nondimensional roller parameters in

terms of physical variables, from which one can see that ` is related to the placement of the

roller relative to the absorber (see Fig. 2.2), while εδ and εξ are related to the roller mass

and moment of inertia, respectively. Note that these parameters are related to one another

in a manner that depends on the details of the roller’s inertial properties and placement on

the rotor. These three coefficients capture the effects of the rollers, which is the primary

subject of this work.2

The rotor equation of motion is similarly derived, and is found to be relatively compli-

cated. It is therefore given here in expanded form, which to first order in ε is given by,

νν′ = ε
(

Γ sin(nθ) + Γ0 − µ0ν
)
−ε
(
νν′r2P (s) + (2.4)

+ νν′g(s)s′ + ν2∂r
2
P (s)

∂s
s′ + ν2∂g(s)

∂s
s′2 + ν2g(s)s′′

)
+O(ε2),

where νν′ is the rotor angular acceleration (the normalized value of θ̈ with θ as the in-

dependent variable, specifically, νν′ = θ̈/Ω2 [11]), Γ sin(nθ) is the order n component of

the fluctuating torque (the source of the rotor torsional vibrations), Γ0 is the mean torque

acting on the rotor, µ0ν is the equivalent viscous rotor bearing resistance torque, and the

remaining terms are the torque on the rotor resulting from the motion of the absorber (as

can be seen since they are proportional to the nondimensional absorber inertia, ε). Details

2Note that many designs require that ` > −0.5, which according to Fig. 2.2 means that
the roller COM is closer to the rotor center then the pendulum COM. The situation of
` < −0.5, which is the configuration shown in Fig. 2.2, is avoided because it can cause
out-of-plane instabilities in the absorber motion unless the absorber motion is restricted.
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of this derivation and the relationships between physical system parameters and the non-

dimensional quantities (other than those associated with the rollers) can be found in [11,14],

and the full equation is given in Appendix A. It is worth noting that the effects of the

rollers do not appear explicitly at this order, since they are order ε compared to the absorber

inertia, and therefore appear at order ε2 in νν′. However, the rollers have a significant affect

on the absorber response s, since the system is acting near resonance and the rollers affect

the linear tuning. Finally, it should be noted that the assumptions that the nondimensional

Table 2.1: Relationship between the non-dimensional roller and physical system parameters.
εδ εξ `

1
2(mR/mP ) 1

2

{
iR/(mPA

2)
}

1
2 −D/c

damping parameters, torques, and absorber to rotor and roller to absorber inertia ratios, are

small, and thus scaled by ε, are consistent with parameter ranges found in most applications.

2.2.1 Formulation of the Absorber Path

In order to completely specify the equations of motion, the path of the absorber COM must

be prescribed. In practical implementations this path is dictated by the shape of the cutouts

shown in Fig. 2.2, which are designed to achieve desired absorber performance. After an

absorber path is specified, equations (2.3) and (2.4) can then be solved (by numerical or

perturbation methods) for the response of the absorber and rotor. As one might expect, the

shape of the path plays an important role in the system response and the effectiveness of the

absorber in attenuating the rotor torsional vibrations, and several studies have considered

these effects [5, 68]. As in previous work, we specify these paths using the two-parameter

family of curves introduced by Denman [17]. This class of paths is uniquely determined
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by linear and nonlinear tuning parameters, as follows: we denote ñ as the linear absorber

tuning order and λ as the nonlinear tuning parameter. The linearized absorber frequency

of oscillation for constant rotor speed Ω is given by ñΩ in the dimensional case, or simply

by the order ñ in the nondimensional case. The nonlinear tuning parameter controls the

frequency-amplitude dependence of the absorber’s vibration response, that is, its hardening

or softening effects. Both of these path parameters can be introduced into the equations of

motion through the pendulum’s position rP (s), as is now described. It should be noted that

in the following ñ is the tuning order and that ñ0 is the tuning order for the special case of

zero roller inertia, and it has a special geometric interpretation, described subsequently.

In order to specify the equations of motion in terms of the parameters ñ (or ñ0) and λ, we

need to formulate the pendulum position function rP (s) as a function of these parameters.

Denman [17] provides a detailed development of this formulation, the highlights of which are

presented here and in Appendix B. This path formulation is valid for a family of epicycloidal

paths described by nonlinear tuning values in the range 0 ≤ λ < 1, with limiting cases of

circles (λ = 0) and cycloids (λ = 1) [17,24].

We first consider the linear tuning problem. The linear tuning order without rollers ñ0

is well known [17] and is dictated by the ratio of the distance from the effective pendulum

pivot point to the rotor center, c− ρ0, to the effective pendulum length, ρ0, specifically,

ñ0 =

√
c− ρ0
ρ0

=

√
c

ρ0
− 1. (2.5)

We will use ñ0 throughout the rest of this chapter as a convenience instead of using its full

expression which is related to the path curvature ρ0 as well as the distance c as shown in

equation (5); however, it is important to note that only when considering the zero roller
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inertia case does ñ0 correspond to the linear tuning parameter ñ.

In order to consider the entire path, including nonlinear effects, one utilizes the non-

dimensional version of the general path expressions provided in Appendix B, specifically,

r2P (s) = 1 +

(
λ2

λ2 − 1

)
s2 + 2

(
λ2 − λ2

e0
(λ2 − 1)2

)(
1− λ2

e0 −
∂xP
∂s

√
(1− λ2

e0)2 − s2λ2 − sλ2∂yP
∂s

)
,(2.6)

where

∂yP
∂s

= sin

(
1

λ
sin−1

(
λ(ñ2

0 + 1)s
))

,

∂xP
∂s

= cos

(
1

λ
sin−1

(
λ(ñ2

0 + 1)s
))

,

λe0 = ñ0/
√
ñ2

0 + 1. (2.7)

Note that λe0 is a special zero-roller nonlinear tuning parameter described below. The reader

is reminded that ñ0 is a tuning parameter only for zero roller inertia, that is, for ε = 0.

It is important to account for the rollers when selecting the tuning parameters ñ and λ,

because improper path selection can lead to poor performance, and even instabilities in the

desired response [5]. To avoid these undesirable effects, one typically takes ñ to be slightly

larger than n (i.e., the absorber is slightly over-tuned linearly), and the nonlinear tuning

parameter is selected so that the path is neutral, λ = λe, or slightly stiffening, that is,

λe < λ ≤ 1, where λe is defined below [5,56,68].

2.3 The Tautochronic Path with Rollers

It is known that if roller inertia is neglected the pendulum can be modeled as an equivalent

point mass, with its moment of inertia about its COM included with that of the rotor, since
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in a bifilar suspension the absorber rotates identically with the rotor [17]. In that case there

is a special absorber path for which the absorber behaves like a linear oscillator, even for

large amplitude motions. This tautochronic, or equal time, path is known to be a particular

epicycloid [17], and it renders the absorber to have the same frequency, or, more precisely,

the same order, out to large amplitudes. The absorber amplitude in this case is limited

by the cusp on the epicycloidal path, which occurs at s = smax, at which g(smax) = 0.

A previously unanswered question is whether or not such a tautochronic path exists when

roller inertia is accounted for in the model. In this section we show that such a path indeed

exists, and we derive its form.

To consider this problem, we take the absorber equation of motion (2.3) with zero damp-

ing (µ = 0) and a constant rotor speed (ν = 1, ν′ = 0), yielding

(1 + εδ + εξ)s′′ − 1

2

∂r2P (s)

∂s
(1 + εδ)− 2εδ`

∂yP (s)

∂s
= 0, (2.8)

where ∂r2P /∂s is given by

∂r2P
∂s

= 2

(
λ2

λ2 − 1

)
s+ 2

(
λ2
e0 − λ

2

λ2 − 1

)
∂yP
∂s

. (2.9)

The goal here is to show that there exists a nonlinear tuning parameter λ = λe that renders

this as a linear oscillator with a fixed order ñ for all amplitudes. It will be shown that this

special path is described by an epicycloid in the two parameter family developed above.

Before turning to the general case, we first consider the roller-free tautochrone, for which

δ = ξ = 0 in equation (2.8). In this case it is not difficult to show that the choice of λ = λe0 =

ñ0/
√
ñ2

0 + 1 renders equation (2.9) as ∂r2P /∂s = −2ñ2
0s, resulting in the linear oscillator
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s′′ + ñ2
0s = 0 for equation (2.8). The attendant path function is rP0(s) =

√
1− ñ2

0s
2,

corresponding to the roller-free tautochronic epicycloid of order ñ0.

For the development that includes roller inertia it is convenient to express the equation

of motion (2.8) in a Taylor series in s. Using the given expressions for ∂yP /∂s and ∂r2P /∂s,

expanding in s, and recognizing a pattern in the series, the equation of motion can be written

as

s′′ + ñ2s+

(
χ

1 + εδ + εξ

) ∞∑
k=1

((
(ñ2

0 + 1)s
)2k+1

(2k + 1)!

k∏
i=1

(
(2i+ 1)2λ2 − 1

))
= 0, (2.10)

where χ = (1+εδ)(λ2−λ2
e0)−2εδ`(λ2−1). It is immediately seen that a (linear) tautochronic

absorber of order ñ is recovered for χ = 0.3 This condition results in the following simple

expression for the tautochronic value of λ,

λe =

√
ñ2(1 + εα)

1 + ñ2(1 + εα)
, (2.11)

where α = ξ/(1 + εδ) contains the effects from the rollers. Selection of this value for λ yields

the linear oscillator s′′ + ñ2s = 0, as desired. Note that although we have retained the

(typically small) parameter ε in this analysis, the results are exact and do not depend on

small roller inertia, or any other small parameters. The (small) correction in the nonlinear

3One can also obtain the tautochrone condition by substituting equation (2.9) into equa-
tion (2.8) and realizing that tautochronic motion implies that terms proportional to ∂yP /∂s
must vanish. The present approach, however, is cleaner in terms of keeping conditions on
the tuning parameters separate.
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tuning parameter due to roller inertia can be approximated by expanding in ε, which yields,

λ2
e = λ2

e0 − ε
(

2`δ

1 + ñ2
0

)
+O(ε2), (2.12)

showing that λe may be larger or smaller than λe0, depending on the sign of `, since ε, δ > 0.

The linear tuning order ñ falls out directly from the coefficient of s in the expansion and

can be expressed in terms of ñ0, which dictates the vertex curvature of the path (and the

roller-free linear tuning) and the roller parameters, as follows,

ñ2 =
ñ2

0(1 + εδ(1− 2`))− 2ε`δ

1 + εδ + εξ
. (2.13)

This expression, which is a nondimensional form of the linear tuning equation derived by

Denman [17], directly shows the influence of the rollers on the linear tuning parameter. To

achieve good absorber performance, ñ and ñ0 will differ by at most a few percent, but this

difference is important since the system operates near resonance.

For absorber path design one chooses a value of ñ that gives the desired system response

from the coupled rotor/absorber equations of motion, and the corresponding path is deter-

mined by the following steps. First, solve equation (2.13) for ñ0 in terms of ñ and the roller

parameters, yielding a special value denoted as ñ0e, which fixes the path vertex curvature

by equation (2.5). The absorber path is then generated by utilizing ñ0 = ñ0e and λ = λe in

equations (B.4) and (B.5) in Appendix B, and scaling up (xP (s), yP (s)) and s by the factor

c to obtain (XP (S), YP (S)), and taking −Smax < S < Smax. From this one can generate

the cutouts for the rollers shown in Fig. 2.2, which are given by 1
2(XP (S), YP (S)) and placed
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at coordinates given by D and H as shown in Fig. 2.2.4 We now turn to examples.

In the following comparisons of paths we assume that the distance c is fixed, which is

typically the case, since a designer wants to maximize the absorber moment arm within the

allowable space. In designing a vibration absorber for a given application one must satisfy

constraints on absorber mass, absorber amplitude, and the absorber placement, all of which

are limited in some manner by c. Within these constraints one chooses an absorber path

that will give good performance and will avoid instabilities throughout the torque range of

interest. Typically, the required path is linearly overtuned and nonlinearly tuned between

an epicycloid and a cycloid, that is, is neutral or hardening (i.e. ñ ≥ n and λe ≤ λ ≤ 1) [68].

Shown in Fig. 2.3 (a) are cycloidal, circular, and three epicycloidal paths, all with the

same linear tuning ñ. The epicycloidal paths are tautochronic paths for three values of the

roller inertia, corresponding to δ = 0, 1/4, and 1/2. The cycloidal and circular paths have

δ = 0 and are shown to convey the boundaries of typical paths between the circular and

cycloidal paths. To generate the tautochronic paths, which are seen to be nearly identical,

we fix the linear tuning ñ, and choose δ and ξ, and then solve equation (2.11) for λe. We also

use the assumption of a solid roller which implies that δ = 2ξ for the tautochronic paths.

Note that while the three tautochronic paths appear to be nearly identical, they have slightly

different vertex curvatures, as required to have the same ñ for different roller inertias.

Figure 2.3 (b) depicts how the path vertex curvature depends on ñ for three values of the

roller inertia, with tuning near 1.5. Note that in order to achieve a specific linear tuning the

path curvature increases as the roller inertia increases, assuming all other parameters are

4Note that achieving a specific geometry that provides the desired value of tuning is a
complicated iterative process since the shape of the cutouts, their placement, the location of
the absorber COM, the roller paths, and the tuning parameters are all interdependent. This
process can be automated in a computer program [24].
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fixed. Note that the roller inertia also affects the value of the nonlinear tuning coefficient

λe, as seen from equation (2.12), and that it may increase or decrease, depending on the

sign of `.

xx (a)

(b)

Figure 2.3: Influence of roller inertia on the absorber COM path, for ε = 0.10 and ` = −0.25.
(a) Five sample paths: a circle, a cycloid, and three epicycloids, for ñ = 1.5. (b) Vertex
curvature vs. ñ for three values of roller mass.
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2.4 Perturbation Analysis

Here we consider the dynamic response of the system, paying special attention to the effects

of the rollers. We take a perturbation approach similar to previous work [5, 11, 70], here

incorporating the effects of the relatively small rollers by inclusion of the terms involving εδ,

εξ, and `. The perturbation analysis will make use of a base system that has the tautochronic

path without rollers, represented by parameters ñ0 and λe0. It is noted that in light of the

existence of a tautochronic path with rollers, a perturbation could be performed about that

path instead of the roller-free tautochronic path. This was investigated and it was found that

the formulation is significantly more complicated than the perturbation approach presented

here. One minor complication with the present approach is that one has to transform results

obtained for the values of ñ0 and λe0 into values of ñ and λe, using equations (2.13) and

(2.11), in order to obtain the desired path.

To obtain the equations in a form suitable for perturbation calculations, further expan-

sions on equations (2.3) and (2.4) are carried out such that we obtain an oscillator equation

that governs the absorber dynamics, with the rotor coupling and roller corrections appearing

at order ε, along with the damping. This is possible due to the small inertia ratio, which

represents the rotor-absorber coupling, as described in [11, 68, 70]. To begin, we note from

equation (2.4) that the torques acting on the rotor are all of order ε, which results in the

rotor speed being nearly unity. It is then reasonable to assume the form ν = 1 + εw+O(ε2),

where w captures the torsional fluctuations of the rotor. If we use this assumption, and the

fact that steady rotor oscillations require a balance of mean torque and rotor bearing resis-

tance, stated as Γ0−µ0ν = O(ε), we can use equation (2.4) to express the rotor acceleration

35



νν′ = εw′ +O(ε2), where

w′ = Γ sin(nθ)−
∂r2P (s)

∂s
s′ − ∂g(s)

∂s
s′2 − g(s)s′′. (2.14)

We next expand the absorber equation of motion (2.3) about ε = 0 and substitute the

expansion ν = 1 + εw +O(ε2), and keep only order ε terms, one obtains

s′′ − 1

2

∂r2P (s)

∂s
= ε

(
2δ`

∂yP (s)

∂s
− ξ

2

∂r2P (s)

∂s
− µs′ − (s′ + g(s))w′

)
+O(ε2). (2.15)

Equation (2.14) can then be substituted into equation (2.15), which uncouples the absorber

equation of motion from the rotor equation of motion. Note that this uncoupling process

results in an oscillator equation that governs the absorber dynamics, and it includes the

excitation acting on the absorber through the rotor acceleration, which is expressed to leading

order in terms of the applied torque and the absorber dynamics. To get the desired form of the

absorber equation, we introduce a nonlinear detuning parameter κ, substitute λ = λe0 + εκ

into the absorber path derivatives (∂yP /∂s and ∂r2P /∂s) in equation (2.15), and expand

about ε = 0. This results in an oscillator that is weakly nonlinear, with weak forcing, and

weak damping, expressed in the form

s′′ + ñ2
0s = εf(s, s′, θ) +O(ε2), (2.16)
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where

f(s, s′, θ) = −µs′ + 2δ`
∂yP
∂s
|λe0 + ξñ2

0 + (2.17)

−2κñ0

√
1 + ñ2

0

(
(1 + ñ2

0)s−
∂yP
∂s
|λe0

)
+

−[s′ + g0(s)]

(
Γ sin(nθ) + 2ñ2

0s
′s−

∂g0(s)

∂s
s′2 + g0(s)ñ2

0s

)
,

and (∂yP /∂s)|λe0 is the path derivative (∂yP /∂s) evaluated at λ = λe0. Also, the term

g0(s) =
√

1− ñ2
0(1 + ñ2

0)s2 is the leading order part of g(s), that is, its ε = 0 version,

or, equivalently, its roller-free tautochronic version. In addition, to obtain equation (2.17),

−ñ2
0s is substituted for s′′ in equation (2.14), which is valid to leading order in ε, as can be

seen from equation (2.16). Note that the substitution of λ = λe0 + εκ gives the desired form

for equation (2.16), amenable to the method of averaging. It introduces a parameter κ in

the order ε terms which controls the variation of the nonlinear tuning parameter λ from the

roller-free case. Specifically, when accounting for rollers in the averaged equations one must

select κ = (λ− λe0)/ε for the desired value of λ and λe0 (that is, ñ0). This, along with ñ,

allows one to investigate a two-parameter family of absorber paths near the perfectly tuned

tautochronic path, with one parameter each for linear and nonlinear tuning. See [68] for a

similar formulation of multi-absorber systems without rollers.

Finally, it is important to note that these equations of motion, while weakly nonlinear,

are not restricted to small amplitudes, that is, no amplitude expansions have been carried

out. This is a consequence of the tautochronic nature of the unperturbed absorber path,

and it results in equations that are valid for all physically realizable amplitudes, that is, up

to limits imposed by motion-limiting snubbers, or at most, the cusps on the epicycloidal
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absorber path.

2.4.1 Application of the Method of Averaging

To obtain approximate solutions to the equations of motion, we apply the method of aver-

aging. The absorber response is expressed in terms of polar coordinates of the form

s(θ) = Z(θ) cos
(
nθ + ψ(θ)

)
s′(θ) = −nZ(θ) sin

(
nθ + ψ(θ)

)
, (2.18)

where Z(θ) and ψ(θ) are the absorber amplitude and phase, which will, under conditions

of practical operation, be slowly varying functions of the rotor angle θ . This coordinate

transformation imposes a constraint on Z′(θ) and ψ′(θ), as follows

Z′(θ) cos
(
nθ + ψ(θ)

)
−ψ′(θ)Z(θ) sin

(
nθ + ψ(θ)

)
= 0. (2.19)

Substitution of the transformation in equation (2.18) into equation (2.16) results in an equa-

tion with only first order derivatives of Z(θ) and ψ(θ). This result and equation (2.19) are

linear in Z′(θ) and ψ′(θ) and are easily solved for (Z′(θ), ψ′(θ)). The resulting equations

each have terms of order ε and a term with the factor (n2 − ñ2
0). This term results from

the fact that the solution to equation (2.16) with ε = 0 is simply the linear solution with

frequency (order) ñ0, whereas the coordinate transformation assumes a frequency (order) of

n. The presence of the ε << 1 terms results in slowly varying amplitudes and phases, except

for the fast phase drift due to the difference between n and ñ0. Since absorbers are effective

only when tuned near the excitation order, the difference between n and ñ0 is small, and so
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we define an excitation order detuning parameter ∆ via

ε∆ = n2 − ñ0
2. (2.20)

With this assumption, the equations for Z′(θ) and ψ′(θ) become slowly varying, that is,

all terms are O(ε), and can thus be averaged in θ over one period, 2π/n. This results in

autonomous equations for the average values of Z and ψ, which are denoted as z and φ.

The averaging in this problem is non-trivial due to the nature of terms like ∂yP /∂s and

g0(s). Exact analytical expressions for the averages of these terms is not available, and so

some terms will be left in the form of integrals that are computed numerically. Approximate

solutions to these integrals can be computed using amplitude expansions in z, although we

do not pursue that here.

The results for the averaged equations for z and φ are given by

z′ =
ε

n

(
−µzn

2
+ Γ cos(φ)F1(z)

)
+O(ε2) (2.21)

φ′ =
ε

zn

(
−2M(z)

(
κñ0

√
1 + ñ2

0 + δ`

)
−Γ sin(φ)F2(z)+ (2.22)

+
z

2

(
2ñ0(1 + ñ2

0)3/2κ−∆− ñ2
0(ξ − 1)

)
+

+
z3

8
ñ2

0

(
n2(3 + ñ2

0)− 3ñ2
0(1 + ñ2

0)

))
+O(ε2),

where F1, F2, and M are integrals related to the path function, and are given in Appendix

C5. It is important to note that the only restriction on the amplitude of these equations is

5It is noted that the integrals F1(z) and F2(z) can be expressed as elliptic functions and
this is done in Chapter 4.
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that imposed by the cusps on the path, specifically, |s| < smax, where g(smax) = 0.

2.4.2 Steady-State Response

Now that the equations of motion have been averaged and reduced to two first-order au-

tonomous differential equations describing the slow evolution of the amplitude and phase,

one can investigate the steady-state response of the system in terms of amplitude, phase, and

stability. To do this we set z′ = 0 and φ′ = 0, denote the steady-state values as (z̄, φ̄), solve

equations (2.21) and (2.22) for cos(φ̄) and sin(φ̄), and use cos2(φ̄) + sin2(φ̄) = 1, resulting in

an equation relating the applied torque amplitude Γ to the steady-state absorber amplitude

z̄ and the system parameters, as follows,

Γ2 =

(
µz̄n

2F1(z̄)

)2

+
1

F2
2 (z̄)

(
z̄

2

(
2ñ0(1 + ñ2

0)3/2κ−∆ + (2.23)

− ñ2
0(ξ − 1)

)
−2M(z̄)

(
κñ0

√
1 + ñ2

0 + δ`

)
+

+
z̄3

8
ñ2

0

(
n2(3 + ñ2

0)− 3ñ2
0(1 + ñ2

0)

))2

.

For plotting purposes it is convenient to choose a steady-state amplitude z̄ and compute the

applied torque (which involves evaluating the integrals in F1, F2, and M as a function of

z̄). Once the amplitude and applied torque have been computed, the absorber steady-state

phase φ̄ can be obtained using equations (2.21) and (2.22) set to zero.

It is also of interest to know the resulting torsional vibration amplitude of the rotor. A

good measure of this is the rotor angular acceleration νν′ = εw′ + O(ε2), which is conve-

niently captured by εw′. Therefore, one can obtain an approximation of the rotor vibration

amplitude from w′ using equation (2.14). Of particular interest is the amplitude of the order
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n harmonic of this acceleration, since that is the order which the absorber is designed to

reduce. This component can be computed via the magnitude of the corresponding complex

Fourier coefficient,

|w′|n =
n

π
|
∫ 2π/n

0
e−inθw′(θ)dθ | . (2.24)

The reader should note that the w′(θ) used here is the reduced form of equation (2.14),

obtained by substitution of λ = λe0+εκ into ∂r2P /∂s and g(s), which results in the following

expression for w′(θ), after keeping only leading order terms in ε,

w′(θ) = Γ sin(nθ) + 2ñ2
0ss
′ −

∂g0(s)

∂s
s′2 + ñ2

0g0(s)s, (2.25)

and where, as mentioned above, −ñ2
0s is substituted for s′′. Also, note that the effects of

the rollers are not explicit here, since they appear at higher order, but will affect w′(θ) via

their effects on the absorber response. The steady-state response conditions for s and s′ are

substituted here, and the attendant non-dimensional steady-state rotor acceleration is given

to leading order by νν′ = εw′. Note that the absorber and rollers add rotational inertia,

and therefore their presence reduces torsional vibrations by a flywheel effect, even if they

don’t move along their paths, and this must be accounted for in order to assess the dynamic

effectiveness of the absorbers [68]. We therefore compare the value of |w′|n experienced

with the absorber free to move, as compared to its value with the absorber locked at its

vertex (s = s′ = 0). According to equation (2.25) the reference condition is given simply by

|w′|n,ref = Γ and this is denoted as the “reference line” in the following section.

In order to assess the maximum torque range over which the absorbers can operate, it will

be useful to know the maximum allowable amplitude of the absorber motion. As discussed
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above, this can be determined by solving g(smax) = 0. For purposes of doing steady-state

analysis within this amplitude level, we will use the approximate cusp amplitude expression

derived by Denman [17], which assumes a roller-free order ñ0 tautochronic path. This

approximation for the maximum absorber amplitude is given by

smax ≈ smax,0 =
1

ñ0

√
1 + ñ2

0

, (2.26)

which is exact in the roller-free case. Here it is assumed that the steady state absorber

amplitude must satisfy z̄ < smax,0. In the examples to follow we will be using a linear

tuning of ñ0 ≈ 1.5, for which the cusp amplitude is approximately smax,0 = 0.37. This will

be a sufficient approximation for demonstrating parameter trends in the allowable torque

range. In all cases we will compute steady-state responses for torque ranges up to the point

where z̄ = 0.36. For further details on the path cusp points for general paths, see [17,68].

With expressions describing the steady-state response of the absorber and rotor in hand,

we now turn to a specific example of practical interest, which will emphasize how the rollers

affect the steady-state system response.

2.4.3 Example

In this example we use the results derived above to investigate how the roller inertia, as

determined by the parameters δ and ξ (see Tab. 2.1), affects the response of the system.

Our focus here will be on a single absorber that is designed to be exactly tuned with respect

to an excitation order of 1.5, that is, we take ñ = n = 1.5. As shown in Fig. 2.4, we will

consider a 3 × 3 matrix of cases with three values of roller inertia and three paths, all of

which are close to, or exactly, tautochronic.
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We make some simplifying assumptions in order to fix some parameters. First, to simplify

the number of roller parameters we can relate ξ to δ by assuming a solid uniform roller, as is

typically used in practice. This assumption implies that iR = mRA
2/2, which corresponds

to δ = 2ξ. In addition, we fix the absorber geometry throughout all comparisons by taking

` = −0.25.

Figure 2.4: A table depicting the nine roller mass cases used in the simulations shown in
Figs. 2.5 and 2.6. The zero roller mass (δ = 0) case (Case x.1) is the same for all three Cases
I, II, and III. Whereas, the δ = 1/4 (Case x.2) and δ = 1/2 (Case x.3) roller mass Cases
will have different linear and nonlinear tuning values as shown. Therefore, seven of the nine
total Cases have unique pairs of linear and nonlinear tuning values which is why only seven
response curves are shown in Fig. 2.5 with linetypes indicated in this table.

This investigation considers three values for the roller masses, which includes a range of

practical interest. All of the details for the nine roller mass cases are depicted in Fig. 2.4.

The first value is zero roller mass (δ = 0), corresponding to linear tuning ñ = ñ0 and a

tautochronic path with λ = λe = λe0; these are labeled as Case x.1 in Fig. 2.4, where x

takes on I, II, or III. We also consider δ = 1/4 (Case x.2) and δ = 1/2 (Case x.3), for which
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the linear tuning is ñ (> ñ0) and the tautochronic path has λe (> λe0). Each of the three

values of roller mass will be used for the following three cases: In Case I we fix ñ0 = 1.5

which then also fixes λe0; this is the case in which the roller inertia is ignored, and thus the

zero roller mass path will be exactly tautochronic. In this case, we will be able to quantify

the effects of ignoring roller mass in both the linear and nonlinear tuning. The reader should

realize that in Case I, the absorber COM paths for δ = 0, 1/4, and 1/2 are exactly the same

because the initial radius of curvature of the path ρ0 is fixed for a fixed ñ0 (see equation

(2.5)) and λe0 is independent of roller mass (recall λe0 = ñ2
0/(ñ

2
0 + 1)).

In Case II, we fix ñ = 1.5 and use the λ = λe0 corresponding to the roller-free linear

tuning. This corresponds to the case in which the roller inertia is accounted for in the linear

tuning, but ignored for nonlinear tuning effects. This was done in Denman [17], and was

standard practice, since it was not known until the present work that a tautochronic path

existed that accounts for the inertia of the rollers. As noted above, the initial radius of

curvature depends on the roller mass for fixed values of ñ, c, and `. So, in this situation the

radius of curvature depends on the value of δ, both initially (ρ0) and continually up to the

cusps (λe0).

For Case III we fix ñ = 1.5 and use the correct tautochronic path for rollers, for which

λ = λe. Similar to Case II, the absorber paths have different radii of curvature. In fact, the

initial radius of curvatures will be the same for Cases II and III since the linear tuning is

computed in the same way. However, Case III will have different non-linear tuning, that is,

λe instead of λe0.

Figure 2.5 shows the steady state absorber response amplitude z̄ versus the applied torque

amplitude Γ for the three values of roller inertia for each of the three cases described above
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Figure 2.5: Steady-state absorber response amplitude z̄ vs. applied torque amplitude Γ for
the three Cases described in the text. The linetypes for the Case I responses are indicated
in the first row of Fig. 2.4. The linetypes for the Case II responses are indicated in the
second row of Fig. 2.4. The linetypes for the Case III responses are indicated in the third
row of Fig. 2.4. Only one response line exists for Cases (x.1) because for δ = 0 the linear and
nonlinear tuning are equal for all three Cases. The final three lines of the legend correspond
to results from simulations of equations (2.3) and (2.4). Only simulations of Case I is depicted
since all are very close to one another. Parameter values: ε = 0.10, µ = 0.30, ` = −0.25,
n = 1.5.

and in Fig. 2.4. Note that there are seven response curves, since for zero roller inertia,

ñ = ñ0 and λe = λe0, and thus the response is the same for Cases (x.1) for x = I, II,

III (see the first column (δ = 0) in Fig. 2.4). The line types for the seven response curves

are indicated in Fig. 2.4. Additionally, note that in plotting the steady-state amplitude

response in all Cases, except the simulated ones as shown in Fig. 2.5, the non-linear tuning

parameter λ is controlled using the parameter κ (as defined in Section 2.4). Case I, in which

the rollers are ignored, is described by the first row of Fig. 2.4, and these three response

curves in Fig. 2.5 show the largest deviation of the three Cases. The deviation present in

Case I shows a (desirable) hardening response as the roller mass is increased. Therefore, if
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an absorber is designed with a tautochronic path that ignores the rollers, they will actually

gain some torque range before the cusps are reached, albeit at a slight reduction in absorber

effectiveness (as shown in Fig. 2.6 and described below). For Cases II and III all plots are

virtually identical to the roller-free curve from Case I (i.e. Case I.1), which implies that

for the roller inertia values used here, if one accounts for the rollers in the linear tuning ñ,

the nonlinear tautochronic roller correction is essentially inconsequential. The main point of

these results is that one need only account for roller inertia in the linear tuning.

Simulations of the non-linear equations of motion (using equations (2.3) and (2.4)) are

also shown in Fig. 2.5 to illustrate the accuracy of the averaged solutions. Note that only

Case I is simulated because the results are virtually indistinguishable in terms of amplitude,

only the torque range differs.

Figure 2.6: Order n harmonic amplitude of the rotor response, |w′|n, vs. applied torque
amplitude Γ for Case I. All absorber designs shown in the legend of Fig. 2.5 result in in-
distinguishable rotor response amplitudes, but different torque ranges. Only a simulation of
the full nonlinear equations using δ = 0 (Cases x.1) is depicted since the other roller mass
values are indistinguishable. Parameter values: ε = 0.10, µ = 0.30, ` = −0.25, n = 1.5.
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Figure 2.6 shows the amplitude of the order n harmonic of the rotor, |w′|n, as it depends

on the level of applied torque Γ, along with the reference line. Here we show only the three

curves from Case I, since all these curves fall very close to the roller-free curve of Case I,

although they have different end points, set by the cusp limits. This shows the effectiveness

of the absorber at attenuating torsional vibration levels at this order. It is important to note

that if one ignores the effects of the rollers, the resulting response predictions are conserva-

tive in terms of the torque range, since the rollers provide an increased hardening (that is,

increased effective stiffness) for the absorber response. In terms of the rotor response, if the

absorber is slightly over-tuned using ñ0 with respect to the excitation order n, adding roller

mass results in the absorber being slightly less effective at attenuating torsional vibrations,

as is seen in Fig. 2.6. This is because the tuning order will increase, which moves the absorber

further away from the resonant excitation of order n. Lastly, simulation of the non-linear

equations of motion using equations (2.3) and (2.4) are shown in Fig. 2.6 to illustrate the

accuracy of the averaged equations. Note that only the δ = 0 case is presented here because

results from the other cases are virtually indistinguishable.

To compliment Figs. 2.5 and 2.6, simulations of the non-linear equations of motion are

displayed in Figs. 2.7 and 2.8. Note that in these plots the independent variable is the rotor

angle θ, playing the role of time. Shown in Fig. 2.7 is the steady-state absorber response,

normalized by the amplitude of the order n applied torque Γ. Figure 2.7 shows that the

normalized absorber amplitude speak/Γ decreases as the applied torque Γ increases, which

is a result of the non-linear hardening behavior of the absorber response, as shown in Fig. 2.5.

Shown in Fig. 2.8 is the normalized steady-state rotor acceleration, w′/Γ, over the same θ

interval, for the applied torque levels given in Fig. 2.7, plus the case Γ = 0.40. Note that
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Figure 2.7: Steady-state absorber response normalized by the applied torque amplitude Γ
vs. the rotor angle θ for δ = 1/2 from Case III (i.e. Case III.3). The results demonstrate the
hardening nature of the system. Parameter values: ε = 0.10, µ = 0.30, ` = −0.25, n = 1.5.

the rotor acceleration contains a few significant harmonics, in fact, three, and their relative

contributions change as Γ increases. Recall that if the absorbers were locked there is only

an order n harmonic in the steady-state rotor acceleration, and therefore, the additional

harmonics are a result of the absorber dynamics and their nonlinear interactions with the

rotor. The higher harmonics are prominent since the order n harmonic is largely reduced by

the absorbers.

2.5 Conclusions

There are two main contributions of this investigation. First, a tautochronic absorber path

that accounts for roller inertia has been found. Second, a perturbation analysis of the
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Figure 2.8: Steady-state rotor acceleration w′ vs. rotor angle θ for δ = 1/2 from Case III
(i.e. Case III.3). Note that the rotor acceleration is composed of multiple harmonics and
the relative contribution of these harmonics depends on the torque amplitude. Parameter
values: ε = 0.10, µ = 0.30, ` = −0.25, n = 1.5.

equations of motion shows that the response of a system with a nearly tautochronic absorber

that includes roller inertia in the linear tuning parameter ñ is largely insensitive to the choice

of the nonlinear tuning parameter λ. In fact, if the rollers are ignored altogether in the

absorber design, the analysis shows that the system can handle a greater torque range with

virtually no change in the vibration levels of the rotor. This is mostly due to the fact that

the rollers will affect the linear tuning which results in a roller-free absorber design that will

be off its ideal tuning value. To a lesser degree, it is also because the rollers will provide a

slight hardening effect due to their influence on the nonlinear tuning. However, it appears

that for the sizes of rollers typically in use, one needs to include their effects only in the

linear tuning in order to achieve satisfactory performance.
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Chapter 3

Transient Response of Forced

Nonlinear Oscillators

3.1 Introduction

Most studies of the response of nonlinear vibratory systems subjected to harmonic excitation

focus on steady state response. Typical investigations consider periodic responses, stability

and bifurcations of these, quasiperiodic responses, and chaotic responses. In this chapter we

consider the transient response of the Duffing equation subjected to harmonic excitation,

focusing on overshoot that occurs when the excitation is suddenly switched on. The Duffing

oscillator is an archetypical nonlinear system that arises in many engineering problems [5,

7, 20, 21, 29, 51, 61, 67]. There exists a large body of work on the steady state response and

its stability for this classical oscillator; see, for example, [51]. However, in certain design

scenarios it is useful to know the short-term transient dynamics of the response [40]. For

instance, one may have design constraints on the peak amplitude of a system response,
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and the transient response amplitude may violate this constraint, even when the steady

state amplitude does not. Such an application motivated the present study, specifically, the

response of a vibration absorber that starts in an inactive state and is suddenly brought into

conditions for it to be active, leading to beating type transients. Another consideration is

that a transient can sometimes result in the system ending up in an undesirable steady state,

in situations where multiple stable steady state responses exist. For nonlinear systems one

can investigate such transient responses through numerical simulations, and in some cases

this is the only feasible approach. However, for simple systems, analytical results can be

derived and provide predictive results that are useful in design. Here we derive such results

for the Duffing oscillator.

The approach for investigating the transient response of a linear oscillator is straight-

forward, since one can express the exact solution of the differential equation governing

the system response in terms of the system and excitation parameters and initial condi-

tions [28, 69, 74]. Another approach is to find a constant of motion for the system that

relates the position, velocity, system parameters, and initial conditions, from which the peak

response can be determined [10, 36, 37]. Both approaches provide exact analytical results

for the transient response. However, the constant of motion approach typically does not

apply for nonautonomous systems. As for nonlinear systems, the direct solution approach

can be used only in a few special cases [8], whereas the latter approach can be applied to

a number of nonlinear systems [9, 18, 19, 60]. In addition, the constant of motion approach

is well suited for problems such as determination of the overshoot, in which the velocity is

known (zero in this case) at some desired system position (peak amplitude in this case).

A limitation with the constant of motion approach is that it is not directly applicable to
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systems with time-dependent excitation. However, the method of averaging provides a mean

of removing this time dependence for a certain class of systems, so that a constant of motion

for the averaged system can be obtained [71]. Only a few treatments of transient response in

non-linear systems are known to the authors, see [15,20,25,32,39,42,64], and we know of no

published analytical results for the overshoot of the Duffing oscillator, as considered here.

The primary focus here is an analytical treatment of the transient overshoot problem of

the Duffing oscillator that allows for predictions. The main result is a closed form expression

for the overshoot for the case of zero damping when the system starts with zero initial

conditions. It is shown that this undamped result provides a useful, conservative bound for

system overshoot, one that is quite accurate for systems with light damping. The analysis is

aided by a convenient scaling of the position and time such that the three system parameters

(force magnitude, frequency detuning, and nonlinearity) are combined into a single parameter

χ governing the response of the scaled system. The results are compared against simulations

of the original non-linear oscillator and the averaged equations to demonstrate their accuracy.

3.2 The Model, Averaged Equations, and Scaling

The system of interest here is a single degree of freedom oscillator with small damping,

nonlinearity, and harmonic excitation, driven near resonance, expressed as

x′′ + ω2
0x = ε

(
F sin(ωt+ φ)− ξx3 − µx′

)
, (3.1)
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where ε is a small parameter. In order to apply the method of averaging, we use the standard

change of coordinates,

x(t) = a(t) sin (ωt+ ψ(t)) , (3.2)

x′(t) = a(t)ω cos (ωt+ ψ(t)) ,

which will have slowly varying amplitude and phase when ε << 1 and the forcing is near

resonance, ω ≈ ωn. Constraining the response of equation (3.1) to be in the form (3.2),

defining the frequency detuning as εσ = ω2 − ω2
0, and averaging over one period of the

excitation, results in the following standard averaged equations

r′ = − ε

2ω

(
F sin(Φ) + µrω

)
, (3.3)

rΦ′ =
ε

2ω

(
3

4
ξr3 − F cos(Φ)− σr

)
, (3.4)

where r is the averaged amplitude and Φ = ϕ−φ is the relative phase between the averaged

oscillator phase ϕ and the phase of the forcing. In addition, since the forcing phase φ is

constant we have replaced ϕ′ with Φ′ in equation (3.4) for convenience in the subsequent

analysis. The steady state response of equations (3.3) and (3.4) has been studied extensively.

We reduce the number of system parameters by scaling the dependent variable r and the

independent variable t as follows

t =

(
4ω

εσ

)
τ, r = 2

(
F

σ

)
p, (3.5)

where it is assumed that σ 6= 0. Utilizing this scaling in equations (3.3) and (3.4) results in
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the rescaled averaged equations,

dp

dτ
= − sin(Φ)−Dp (3.6)

p
dΦ

dτ
= 4χp3 − cos(Φ)− 2p, (3.7)

where

χ =
3

2
ξ

(
F2

σ3

)
and D = 2

(
µω

σ

)
. (3.8)

Note that this scaling introduces a complication of the results exactly at resonance, where

σ = 0. However, it will be shown that this is not a limitation for the overshoot problem

since the results can be computed in the limit σ → 0. Also, it is important to note that

when σ < 0 both position and time of the scaled system become negative, since ε > 0 and

ω > 0. In this case, the system is solved in reverse time, which may lead one to think the

system amplitude response will grow exponentially. However, the sign of the scaled damping

coefficient depends on σ as well, such that solving reverse time will result in exponential

decay, as expected. In addition, the results presented subsequently are simplified by making

use of the inherent symmetry in the hardening vs. softening Duffing responses, in such a

manner that negative amplitude responses can be ignored. However, it will be shown that

this symmetry between softening vs. hardening Duffing oscillators does not carry over to

the phase response, and therefore we will need to consider the individual cases for the phase

response.
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3.2.1 The Steady-State Response

The steady state response of the scaled system is obtained by letting dp/dτ = 0 and dϕ/dτ =

0, which results in the following equations for the steady state amplitude p̄ and phase Φ̄,

(Dp̄)2 + (4χp̄3 − 2p̄)2 = 1, (3.9)

tan
(
Φ̄
)

=
−D

4χp̄2 − 2
. (3.10)

It is seen that this scaling has reduced the system parameter dependence of the steady state

response from four (ξ, F , σ, µ) to two (χ, D). In general, one can solve equation (3.9)

analytically to obtain six roots governing the steady state amplitude p̄ as a function of D

and χ. However, for plotting the steady state response we use only the three positive roots,

since the other three are symmetric with respect to p̄ = 0 and don’t provide any additional

information about the steady state amplitude. These roots are given explicitly in Appendix

D. More specifically, the three ignored roots are negative, which for σ < 0 lead to a positive r̄

(see equation (3.5)) that match the positive roots for p̄ when σ > 0 case. It is also important

to note that there is a symmetry in the steady state frequency responses of two Duffing

oscillators wherein one is hardening (ξ1) and the other is softening (ξ2), such that ξ1 = −ξ2,

with all other parameters fixed. As seen by the definition of χ, the frequency response of

these two systems are symmetric about σ = 0, provided the other parameters are the same.

When considering the steady state phase response, this symmetry does not exist, that is,

Φ̄1 6= Φ̄2 for σ1 = −σ2, as can be seen from equation (3.10), where the steady state phase

depends on the sign of σ through the damping coefficient D. Therefore, in the scaled system,

for a given value of the damping coefficient D, one distinct steady state amplitude exists as
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χ is swept, an example of which is shown in Fig. 3.1 (a). However, the steady state phase can

take one of two forms, depending on the sign of D, which is governed by σ; these are shown

in Fig. 3.1 (b) and (c). As expected, Fig. 3.1 (a), (b), & (c) exhibit the familiar bistable

region over which three steady state responses exist for a single value of χ, two of which

are stable. We refer to these in terms of “the lower branch” (labeled as A), “the middle

branch” (labeled as B), and “the upper branch” (labeled as C), designated by their relative

amplitudes. The bistable region is given by χ?1 < χ < χ?2, which depends on the damping

coefficient D. Explicit formulas for χ?1 and χ?2 are given in Appendix D. For the case of zero

damping (D = 0), the results simplify to χ?1 = 0 and χ?2 = 8/27.

3.2.2 The Averaged Equation Phase Portraits

The (p, Φ) phase portraits of the averaged equations are very useful for analyzing the tran-

sient trajectories of the Duffing equation, and the remainder of the chapter will make use

of this information. In fact, for many of the results we will focus on the undamped case,

D = 0, since this case yields analytical solutions that provide a good approximation, and a

useful bound, for lightly damped systems.

Figure 3.2 (a)-(c) show phase portraits of a lightly damped system (D = 0.30) for three

values of χ, displaying the three topologically distinct cases.1 Attendant sample transient

time responses are shown in Fig. 3.2 (d)-(f) for the initial conditions (p0, Φ0) labeled as

IC#1, IC#2, and IC#3. Figure 3.2 (a) shows a sample phase portrait for χ < χ?1. For this

1Note that we have not shown the case when D 6= 0 and χ ∈ (0, χ?1), which is the case
of the lower branch A existing alone. However, as seen from Fig. 3.1 (a)-(c), this case will
be qualitatively similar to the case of χ < 0, which is shown in Fig. 3.2 (a), except that the
equilibrium point C is replaced with equilibrium A. Also note that this case will not exist
for D = 0.
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(a)

(b)

(c)

Figure 3.1: Steady-state response of the scaled averaged system as a function of χ. (a)
Steady-state amplitude; (b) Steady-state phase for D = 0.30, relevant for σ > 0; (c) Steady-
state phase for D = −0.30, relevant for σ < 0.
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range of χ only the upper branch (C) exists. Figure 3.2 (d) depicts a sample transient time

response for this case with initial condition IC#1, specifically, with zero amplitude, p0 = 0.

Since p(τ) describes the amplitude envelope of the oscillatory response with frequency near

ω, the oscillation in p demonstrates the beating nature of the x response. Note that p and x

both have a peak amplitude of ppeak, and that p decays to the steady state amplitude p̄C

of branch (C). The more interesting phase portrait for the bistable case is shown in Fig. 3.2

(b), for a value of χ ∈ (χ?1, χ
?
2). As depicted in the time responses shown in Fig. 3.2 (e)

& (f), depending on the initial conditions (p0, Φ0), generic transient trajectories approach

either (A) or (C). The sample initial conditions shown have equal initial amplitudes and

different initial phases, as indicated by IC#2 and IC#3 in Fig. 3.2. As usual, the basins of

attraction for these two stable outcomes are separated by the stable manifold of the saddle

point (B). Lastly, Fig. 3.2 (c) shows a sample phase portrait for χ > χ?2, for which C is the

only possible steady state.

We now turn to an analysis that offers predictive results for the peak of the transient

response.

3.3 Percent Overshoot for the Undamped System

In this section an analytical result for the percent overshoot for the undamped Duffing

oscillator is derived. In general, the percent overshoot of a system is defined as

% Overshoot =

(
pmax − pss

pss

)
×100, (3.11)
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where pmax is the peak amplitude during a transient response and pss is the resulting steady

state amplitude (given by one of the roots p̄). We begin by deriving an energy-like constant

of motion for the undamped (D = 0) scaled averaged equations. This is a fourth order

polynomial in p whose roots dictate the important features of the transient response. These

roots are a function of the initial conditions (p0, Φ0), the parameter χ, and the relative

phase of the response Φ. It will be shown that the peak amplitude of the response occurs

at a relative phase of either Φ = 0 or Φ = π, so that the roots can be expressed in terms

of the initial conditions and χ. One feature of interest will be the case where the transient

response approaches the saddle point B for χ ∈ (χ?1, χ
?
2), since this will represent the basin

boundary in the bistable case.

3.3.1 Transient Response Amplitudes

The averaged equations (3.6) and (3.7) with D = 0 is conservative and has a constant of

motion that can be determined by combining equations (3.6) and (3.7) into a differential

equation for p(Φ). Integrating this exact equation leads to the following integral of motion,

−χp4 + p2 + p cos(Φ) = c1, (3.12)

where c1 is an arbitrary constant determined by the initial conditions (p0,Φ0) and χ. Equa-

tion (3.12) allows one to construct the phase portrait for the conservative averaged system in

the usual manner: Given initial conditions (p0,Φ0) one can obtain c1 and then solve equation

(3.12) for phase plane trajectories in the form p(Φ) (or, simpler in this case Φ(p), since it has

only two branches). An example phase portrait is shown in Fig. 3.3 for χ = 0.066 ∈ (χ?1, χ
?
2),

which is an undamped version of the phase portrait shown in Fig. 3.2 (b).
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In general, equation (3.12) will have four roots for p that can be obtained exactly and will

generate the level curves shown in Fig. 3.3; these roots are presented in Appendix D. In order

to generate the level curves shown in Fig. 3.3, as well as the level curves when χ is outside

of the bistable region, one needs only three of the four roots. Furthermore, it turns out that

only two of these roots involve trajectories that include the peak amplitude about the steady

state equilibria, and therefore the other two roots are ignored for the present study. The two

roots governing the transient trajectories of interest are given in equations (F.1) and (F.2)

in Appendix F. Given a value of χ in the bistable region, and initial conditions (p0,Φ0),

the root p1 (given in equation (F.1)) will generate a transient trajectory as a function of Φ

about the lower branch steady state equilibria A. On the other hand, for any value of χ and

initial conditions (p0,Φ0), the root p2 (given in equation (F.2)) will generate a transient

trajectory as a function of Φ about the upper branch steady state equilibria C.

These results provide an analytical expression for the percent overshoot of the undamped

Duffing oscillator. For χ in the bistable region, the peak amplitude of transient trajectories

approaching branch A (branch C, respectively) can be determined by evaluating the root

p1 (p2, respectively) at Φ = π (Φ = 0, respectively). Outside the bistable region, the

transient peak amplitude about the upper branch C can be determined by evaluating root

p2 at Φ = π when χ < χ?1 = 0, and at Φ = 0 for χ > χ?2 = 8/27.2 Note that for a negative

initial amplitude condition p0 < 0, corresponding to σ < 0 according to equation (3.5), the

determination of the peak amplitude pmax is slightly modified, the details for which are

given in Appendix E. To determine the percent overshoot, the steady state amplitudes for

2Although we have not shown the undamped portraits when χ is outside the bistable
region, the interested reader can refer to the damped phase portraits shown in Fig. 3.2 (a)
& (c) to clarify where Φ is evaluated.
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A and C are also required. These can be determined as a function of χ by solving equation

(3.9) for p̄, using the analytical expressions given in Appendix D (equations (D.1)-(D.2))

evaluated at D = 0. From the peak and steady state amplitudes, the percent overshoot

can be computed in an explicit form. This result is rather cumbersome, due to the roots

involved, and is therefore not given explicitly, but it is straightforward to compute.

3.3.2 Basin Separation Trajectory

It is also of use to determine the location of the saddle point B (see equation (D.3)), since

this, along with the attendant transient trajectories, determines basin boundaries for steady-

state fixed points A and C. This information is useful if it is desired to have a system reach

a particular steady state when operating in the bistable region.

To begin, we first derive the initial conditions that will result in a transient trajectory

on the stable or unstable manifolds of B when D = 0. This is done by evaluating the initial

conditions for equation (3.12) at the steady state amplitude p0 = pB and phase Φ0 = π,

resulting in the following condition on equation (F.3),

c?1(χ) = c1(χ, pB, π) (3.13)

=
1

288χ3

(
4χ(3ν)2/3 + 1921/6δν1/3

(9

2
ν1/3 − 32/3

)
+

+ 3χ2
(

16− 18(3ν)1/3 + 9(3ν)2/3
))

,
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where

ν = δ
√

3− 9χ2, (3.14)

δ = χ3/2√27χ− 8,

for χ ∈ (0, 8/27). One can now use c?1 in the expressions for p1 and p2 to generate stable

and unstable manifolds, as shown in Fig. 3.4 (a)-(c). The trajectory of particular interest is

the stable manifold, which is obtained from c?1 in the expression for p1 (equation (F.1)).

In general, these undamped basin boundaries provide a good approximation for the basin

boundaries of the lightly damped system near the saddle. These results can be used as

follows: Suppose that the steady state at A is desired for all initial phases, then the maximum

initial amplitude allowed is given by pcr = p1(χ, 0, c?1), as indicated by the horizontal lines

in Fig. 3.4 (a) & (b) for two different values of χ. Note that for χ ∈ (4/27, 8/27), no such

pcr exists, since at χ = 4/27 the homoclinic orbit to B changes character such that all small

amplitude initial conditions lie in the basin of C, an example of which is shown in Fig. 3.4

(c).

3.3.3 Numerical Examples

In this section two examples are shown to illustrate the main overshoot results, and the

benefits of introducing the parameter χ. Although these examples consider only the case of

zero initial amplitude (p0 = 0, Φ0 ∈ [0, 2π)), corresponding to c1 = 0, results for any initial

conditions can be obtained by varying c1. The first example compares the percent overshoot

for systems with three different sets of original system parameters (F, ξ, σ) that all yield the

same value of χ, and thus the same percent overshoot. The second example shows how the
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percent overshoot varies as a function of χ in the bistable region. Both examples show the

percent overshoot relative to the lower branch A, since this is the resulting steady state for

p0 = 0 when χ < 4/27. However, in the second example, for χ > 4/27 and χ < 0, the zero

amplitude initial conditions result in a percent overshoot relative to C.

For the case of zero initial conditions (c1 = 0) and zero damping (D = 0), the percent

overshoot is a function of χ only. Figure 3.5 (a)-(c) show simulations of the original equation

(3.1) for three different sets of system parameter values that each give χ = 0.094. The

overshoot is calculated using the explicit expressions for the peak and steady state amplitudes

for response A in equation (3.11); these expressions are equation (D.1), from Appendix D for

the steady state amplitude, and equation (F.1) evaluated at Φ = π for the peak amplitude,

from Appendix F. The result for χ = 0.094 is a predicted percent overshoot of 115.8%. This

prediction is compared with the results from direct simulations of equation (3.1), which are

indicated in the figure caption, showing the accuracy of the results. Note that the differences

in system parameters result in differences in the amplitude scales and the transient beat

frequencies, but the percent overshoot is essentially identical in all three cases.

We now consider how the percent overshoot resulting from zero amplitude initial condi-

tions depends on χ. The analytical results are shown in Fig. 3.6 (a), where the overshoot

relative to branch C is shown by the gray curves and those relative to branch A are shown

by the black curve. Note that the percent overshoot for a linear undamped system is 100%,

and there is transition at χ = 0 from percent overshoot values less than 100% to those larger

than 100%. Due to the nature of χ, this can be interpreted in various ways. For example,

the overshoot for a hardening system (ξ > 0) driven below resonance (σ < 0) will be less

than 100% and it can go only to A, while that for a softening system (ξ < 0) driven below
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resonance (σ < 0) will be greater than 100% in its transition to A. Note that the maximum

possible overshoot is 173%, for systems, obtained just below χ = 4/27. The transition at

χ = 4/27 corresponds to the case when the zero amplitude initial trajectory is on the stable

manifold of B. For χ > 4/27, zero amplitude initial conditions result in transient trajectories

headed towards C, and in this case the percent overshoot is less than 100%, since the differ-

ence between the peak and steady state amplitude is smaller for upper branch trajectories.

Lastly, note that as χ → ±∞ the percent overshoot is asymptotic to the limiting value of

58.74%, which corresponds to the percent overshoot at resonance, σ = 0, for branch (C).

Figure 3.6 (b) shows a comparison of the analytical results (those shown in Fig. 3.6 (a))

and simulations of both the original Duffing equation (3.1) and the averaged equations (3.6)

and (3.7), for the case of zero amplitude initial conditions. These results demonstrate the

accuracy of the analytical method, and how it degrades as one increases the value of ε.

3.4 Conclusions

We have derived an approximate analytical method for predicting the overshoot for the

transient response of a weakly nonlinear Duffing oscillator that is harmonically forced near

resonance. The method makes use of the system’s averaged equations, which yield an integral

of motion in the undamped case, by which the system parameters and initial conditions can

be related to the amplitude and phase of the system response. The resulting equation for

the amplitude is a fourth order polynomial, which can be solved as function of the response

phase, system parameters, and initial conditions. This gives analytical expressions with

parameter dependence for the amplitude response, with useful information about the peak

amplitude and, for bistable systems, the ultimate steady state response achieved. A unique
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scaling reduces the problem to two parameters, χ, that combines the force magnitude F , the

frequency detuning σ, and the nonlinearity ξ, and D, which involves damping. Thus, the

undamped results, which provide a useful bound for the overshoot in lightly damped systems,

depend on a single parameter. Of course, the presence of damping will alter these results. A

correction for small D has been computed and is given in Appendices G & H. However, the

payoff is small in comparison with the extensive nature of these calculations and therefore it

seems to be more efficient to simply obtain the damped overshoot by simulating the damped

average equations.

The results presented here are being used to predict overshoot for centrifugal pendulum

vibration absorbers, which, in some applications, are activated when suddenly subjected to

near resonant excitation [45–47,69]. These absorbers must be designed to not exceed specified

amplitudes, even during startup, and so transient predictions such as those derived here are

of great practical value. For the case of tautochronic absorbers [11, 14, 68, 70], the system

nonlinearities are much more complicated than the cubic term in the Duffing equation, yet

we have shown that their averaged equations are integrable in the undamped case, so that

similar predictive results can be achieved for that system [45–47]. Furthermore, this percent

overshoot approach has also been applied to the case of parametric resonance and it has

been found to produce simpler formulas for the overshoot than those given here. In fact, for

the case of near zero initial conditions (i.e. p0 ≈ 0) it is remarkably found that the percent

overshoot is simply 100(
√

2 − 1), and is therefore independent of the system parameters

contained. These results include experimental evidence of the constant overshoot for near

zero initial conditions, as well as an outline for computing the overshoot for non-zero initial

conditions [44]. These extensions suggest that the approach may be quite general for weakly
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nonlinear systems of a more general form, and quite possibly for classes of conservative

strongly nonlinear systems with periodic excitation.
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Figure 3.2: Sample phase portraits and transient time traces for three values of χ, with
D = 0.30. (a) Phase portrait for χ = −1 < χ?1; (b) Phase portrait for χ = 0.10 ∈ (χ?1, χ

?
2);

(c) Phase portrait for χ = 1 > χ?2; (d) Transient time response for zero initial conditions
IC#1 for χ = −1; (e) Transient time response for χ = 0.10 and initial conditions IC#2;
(f) Transient time response for χ = 0.10 and initial conditions IC#3. Note that the initial
amplitudes p0 are the same for IC#2 and IC#3, but the different initial phases Φ0 result in
different steady state outcomes.
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Figure 3.3: Phase plane plotted using level curves of equation (3.12) by varying c1, for
χ = 0.066 and D = 0.
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(a)

(b)

(c)

Figure 3.4: Stable and unstable manifolds of B for three values of χ. (a) χ = 0.02; (b)
χ = 0.10; (c) χ = 0.20. Figure 3.4 (a) and (b) show lines of constant amplitude pcr, which
indicate the maximum amplitude of initial conditions p0 such that the response will approach
the lower branch for all values of the initial phase Φ0. The topology of the homoclinic orbit
about A changes from Fig. 3.4 (a),(b) to that of Fig. 3.4 (c) for χ > 4/27. It is seen that for
χ ∈ (4/27, 8/27), small amplitude initial conditions will result in a large amplitude steady
state C, for all initial phases.
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(a)

(b)

(c)

Figure 3.5: Numerical simulations of equation (3.1) for ε = 0.03 and ω = 2, and three sets
of system parameter values that yield χ = 0.094, with a predicted overshoot of 115.8%. (a)
F = 1/2, σ = 2, ξ = 2, simulated percent overshoot = 116.6%; (b) F = 0.125, σ = −1,
ξ = −4, simulated percent overshoot = 115.3%; (c) F = 0.177, σ = 1, ξ = 1, simulated
percent overshoot = 116.1%.
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Figure 3.6: (a) The analytical results for percent overshoot versus χ for zero initial conditions.
The percent overshoot is computed relative to either the upper branch C, shown by the solid
gray curves, or the lower branch equilibria A, shown by the solid black curve, depending
on χ, as indicated in the inset. At χ = 4/27, zero initial conditions results in a trajectory
on the stable manifold of B. When χ < 0 or χ > 4/27, zero initial conditions results in
transient trajectories about equilibria C, as shown in Fig. 3.4 (c). Note that the phase at
which equation (F.2) is evaluated to obtain pmax for the percent overshoot is different for
χ < 0 and χ > 4/27, as described in Section 3.3.1. (b) Comparison of the analytical solution
and simulations of both the Duffing oscillator (equation (3.1)) and the averaged equations
(equations (3.6) and (3.7)) for the case of zero initial conditions and different values of ε.
The parameter values used in the simulations include: F = 1/2, σ = 1.75, ω = 2. The
nonlinearity ξ is varied from -4 to 7 to sweep the χ domain shown, and it is noted that the
percent overshoot is asymptotic to 58.74% as χ → ±∞ (i.e., as one approaches resonance,
σ → 0).
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Chapter 4

Transient Dynamics of a Single CPVA

System, Theory

4.1 Introduction

In the present chapter we focus on the transient response characteristics of a single absorber

fitted to a rotor that is subjected to engine-order torsional excitation. Absorbers with a wide

range of paths, including both circular and tautochronic (neither hardening nor softening

out to large amplitudes [11,68,70]), the most common types used in practice, are considered.

The results obtained are also applicable to the synchronous response of systems with multiple

identical absorbers. We derive an approximate analytical method for predicting the percent

overshoot of an absorber during startup, such as occurs during cylinder deactivation, which

leads to a nonlinear beating type of absorber response in the transition to steady-state. The

model is quite general and provides a relatively simple method for predicting the overshoot

when the absorber has zero damping and starts with zero initial conditions. The results
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are found to accurately predict the transient overshoot observed in simulations of the full

nonlinear equations of motion (EOM) when damping is small (as is the case in practice).

Furthermore, we show in Chapter 5 that these overshoot results provide a useful upper bound

for transient absorber response, which is useful for design purposes.

The results are obtained by first deriving the full nonlinear EOM for a single absorber

system and then scaling the equations in two ways that allow for the application of pertur-

bation methods. The method of averaging yields equations that govern the slowly varying

amplitude and phase of the absorber response envelope. These equations have been used in

previous studies of steady-state response, and are used here to predict the transient absorber

amplitude response for a range of practical absorber paths. The prediction is based on prop-

erties of the conservative slow-flow equations for zero absorber damping. Using the scaling

introduced in Chapter 3, these equations are rescaled to combine the excitation amplitude,

the difference in absorber and excitation frequencies, and the absorber path nonlinearity,

into a single system parameter that dictates the response. For absorber paths not near-

tautochronic, e.g., circles and cycloids, the problem reduces to the transient response of a

simple Duffing oscillator, which was the subject of Chapter 3. The approximate results ob-

tained are shown to provide accurate predictions for the full EOM for a wide range of system

parameters and operating conditions. The results for undamped absorbers are expressed in

terms of either one or two nondimensional parameters, depending on the path type, while

the results for systems with damping require the simulation of the averaged equations, and

involve one more parameter.
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4.2 System Modeling

The dynamic model for the CPVA system is based on the schematic shown in Fig. 4.1,

which is sufficiently general to describe the two experimental absorber systems described in

Chapter 5. The pendulum absorber is modeled as a point-mass m located at the pendulum

center of mass (COM), which moves along a prescribed path on a rotor of inertia J that

is subjected to a harmonic, engine-order torque excitation. This system has two degrees of

freedom, described by the absorber arc-length S and the rotor/crank angle θ. Note that

absorber arc-length is used, as opposed to angular position, since it is more accommodating

to non-circular paths; see Fig. 4.1. A small scaling parameter, defined to be the ratio of

absorber to rotor rotational inertia, ε = mc2/J , is used throughout this work in order

to scale small nondimensional parameters, which include damping, applied torques, and

absorber inertia; these assumptions are entirely consistent with parameters encountered in

practical applications.

We begin by deriving the non-dimensional EOM for the CPVA system model shown in

Fig. 4.1. Using a two-parameter formulation for the path along which the absorber rides rel-

ative to the rotor [17], the EOM can accommodate a family of paths such as those shown in

Fig. 4.1. The equations are scaled using ε in order to capture the leading order effects of non-

linearity, damping, applied torque, and absorber-to-rotor coupling. Two different parameter

scalings are used, depending on the absorber path type, since for near-tautochronic absorbers

the path nonlinearity is essentially zero. The averaged equations for these two types of sys-

tems, with zero damping, are then used to determine a constant of motion governing the

transient response, from which one can predict the percent overshoot. The physical assump-

tions used in obtaining both the full non-linear EOM, as well as the subsequent reduced
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Figure 4.1: Depiction of the CPVA system model showing three possible paths for the
absorber COM. The outermost (circular) and innermost (cycloidal) paths bound the two-
parameter family under consideration; the middle path corresponds to the tautochrone. The
paths are shown enlarged, and not to scale relative to the rotor, to exaggerate the differences
in the paths.

set of approximate equations include: (1) a rigid rotor; (2) small viscous damping in the

absorber, εµ << 1 and rotor εµ0 << 1; (3) single order harmonic torque, εΓ sin(nθ); (4) the

rotor spins at a nearly constant speed, θ̇ ≈ Ω; (5) small inertia ratio, ε = mc2
J << 1; (6)

applied torque is small (compared to the system kinetic energy), εΓ << 1, εΓ0 << 1; and (7)

the independent variable employed is the rotor angle θ rather than time t. For convenience,

these assumptions will be referred to by their respective numbers in the model development.
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4.2.1 Equations of Motion

Only a brief summary of the derivation of the EOM for the system is presented here, since

this has been previously described in the literature, and these equations are similar to those

derived in Chapter 21. The absorber coordinate S and rotor speed θ̇ are non-dimensionalized

using, respectively, the distance c from rotor center to absorber path vertex, s = S/c, and the

mean rotor speed Ω, ν = θ̇/Ω. Also, the independent variable is switched from time t to θ,

in order convert the fluctuating torque Tn sin(nθ) from a nonlinear term into a type of non-

autonomous term, which facilitates the perturbation analysis. The resulting non-dimensional

EOM for the absorber (s) and the rotor (ν) are,

βνs′′ +
(
g(s) + α + βs′

)
ν′ − 1

2

dr2P (s)

ds
ν = −εβµs′, (4.1)

νν′ + ε

((
g(s) + α

)
(νν′s′ + ν2s′′) +

dg(s)

ds
ν2s′2+ (4.2)

+
dr2P (s)

ds
ν2s′ + νν′r2P (s) + µ0ν − Γ0 − Γ sin(nθ)

)
= 0,

where rP (s) is the radial distance from the center of the rotor to the absorber’s COM, εµ is

the coefficient of absorber viscous damping, εµ0 is the viscous damping coefficient in the rotor

bearing, εΓ0 is the magnitude of the mean torque applied to the rotor, εΓ is the magnitude

of the fluctuating torque applied to the rotor, n is the excitation order, and the function

g(s) =
√
r2P (s)− (dr2P /ds)

2/4 is a path dependent function, specifically, it is the cosine of

the angle between the local tangent to the path and a line normal to a radial line passing

1The rollers are neglected in this derivation and pendulum-type absorbers are accommo-
dated in addition to the bifilar configuration.
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through the rotor center and the path vertex. Coefficients β and α are additional rotational

inertia terms related to the absorber geometry; these arise because the circular path absorbers

can be implemented as compound pendulums with a single point pivot suspension, in which

case their rotational inertia contributes to the absorber inertia. More common absorber

implementations use a bifilar (two point) suspension which constrains the absorber body

such that it only translates relative to the rotor. In the bifilar case, the point mass model

suffices, with the absorber rotational inertia bundled in with that of the rotor, J . The bifilar

suspension is able to easily accommodate both circular or non-circular absorber paths. For

example, a circular path absorber with a bifilar suspension has α = 0 and β = 1, whereas a

circular path absorber with a single point suspension has α = r2/(cρ0) and β = 1+(r/ρ0)2,

where r is the radius of gyration of the pendulum about its center of mass [53], c is the

distance from the absorber path vertex to the center of rotation of the rotor (see Fig. 4.1) ,

and ρ0 is the initial radius of curvature of the absorber path at its vertex (see Fig. 4.1).

Clearly, the absorber and rotor responses are coupled. A perturbation study of the

system response is made convenient by uncoupling these EOM to leading order in ε using

some approximations. The uncoupling is accomplished by using assumptions (4)-(6), as

follows. Briefly, the applied fluctuating torque Γ induces small speed fluctuations about the

constant non-dimensional rotor speed, described by ν = 1 + εw(θ). After substituting this

into equations (4.1) and (4.2) and expanding in ε, the rotor acceleration w′, expressed in

expanded form, can be substituted into the absorber equation, which results in an oscillator-

type equation governing the response of the absorber [49,50]. This equation, which includes

the nonlinear effects arising from the specified absorber path rP (s), as well as the effects of
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the rotor acceleration, is given by,

s′′ − 1

2β

dr2P (s)

ds
= εF (s, s′, s′′, θ) +O(ε2). (4.3)

where

F (s, s′, s′′, θ) = −µs′−
(

(g(s) + α)/β + s′
)(

Γ sin(nθ)−

((
g(s) + α

)
s′′ + dg(s)

ds
s′2 +

dr2P (s)

ds
s′
))

.

Note that the mean torque Γ0 and the rotor bearing resistance µ0ν fall to higher order when

one assumes that they balance to order ε, i.e., µ0ν − Γ0 = O(ε). The next section describes

the absorber COM path formulation and how it affects the absorber response.

4.2.2 The Absorber Path

The path followed by the absorber COM determines the form of its effective restoring force,

specifically, by the component of the centrifugal load that is tangent to the absorber path.

In the absorber oscillator equation (4.3), this is described by the term dr2P (s)/ds. Here we

employ a two parameter family of paths, introduced by Denman [17], ranging from circles to

cycloids, that are described by the linear tuning order ñ and a nonlinear tuning parameter

λ. Specifically, the local radius of curvature on the absorber path, normalized by c, is given

by ρ =
√
ρ2
0 − λ

2s2 where ρ0 = 1/(1 + ñ2) is the value at the vertex, which sets the linear

tuning. This family of paths consists of epicycloids for λ ∈ (0, 1), with limiting cases of a

circle for λ = 0 and a cycloid for λ = 1 [17]. In this formulation the absorber restoring force
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can be written, in an expanded form, as

dr2P (s)

ds
= −2βñ2s+ (λ2

e − λ2)

(
1

3
(1 + βñ2)3s3 +O(s5)

)
. (4.4)

As seen in equation (4.4), ñ (with β) sets the small amplitude, linear, free vibration natural

frequency of the absorber. This linear tuning is a function of the absorber geometry, as

described above and shown in Fig. 4.1. The parameter λ sets the large amplitude, nonlinear,

free vibration response, which can be softening (λ < λe), hardening (λ > λe), or neutral

(λ = λe), where λe = βñ/

√
βñ2 + 1 is a special value that results in a purely linear restoring

force, even at large amplitudes, thus realizing the tautochronic path [49,50].

The middle absorber path shown in Fig. 4.1 is tautochronic, while the outermost and

innermost paths shown in Fig. 4.1 are circular (λ = 0) and cycloidal (λ = 1), respectively. It

is important to note that a CPVA system with a tautochronic path is nonlinear, due to the

inertial coupling to the rotor, described by terms of order ε in equation (4.3). As described

below, for analysis by perturbations, the absorber amplitudes for paths that are nearly

tautochronic must be scaled differently than those for other paths in this family, in order

to introduce the dominant nonlinearity at leading order. Therefore, these scalings aren’t

specific for perturbation studies of an exact circular or an exact tautochronic path absorber,

but rather, they provide a good approximation of the response for all paths in the prescribed

family, specifically, for all epicycloids with λ ∈ (0, 1). The tautochronic path perturbation

results are valid for all feasible absorber amplitudes and capture the essential dynamics for

paths that are nearly tautochronic, that is, with λ ≈ λe; here the dominant nonlinear effects

arise from kinematic coupling with the rotor. The general path perturbation results capture

the essential dynamics for all paths that are not nearly tautochronic, although their scaling
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limits the results to moderate amplitudes; for these paths the dominant nonlinear effects

arise from the absorber path. These scalings are referred to herein, respectively, as near-

tautochronic path scaling and general path scaling. The approximate equations obtained for

these cases have a similar structure, as described below. For zero absorber damping, the

general path problem formulation can be expressed in terms of a single parameter, χ. The

near-tautochronic path problem can be expressed in terms of χ and an additional parameter,

γ, where the near-tautochronic results approach the general path results in the limit γ → 0.

4.2.3 Scaling and Asymptotic Analysis

Here we describe the scalings used for general path and near-tautochronic path absorbers.

The equations are scaled in such a way to extract to leading order the effects of damping,

forcing, detuning from resonance, and nonlinearities. The method of averaging is employed

to obtain a set of first-order differential equations governing the slowly varying amplitude

and phase of the absorber response. The derivations are only summarized here, since these

averaged equations and their steady-state responses have been investigated elsewhere for

both general paths [5, 26, 52, 53] and near-tautochronic paths [11, 14, 68, 70]. Here we focus

on an additional scaling of the previously studied averaged equations which further reduces

the number of system parameters, thus simplifying the transient analysis, and providing a

framework that describes the averaged equations for all paths in a unified manner.

To extract the desired effects at order ε, one substitutes equation (4.4) into equation (4.3)

and employs the scalings shown in Tab. 4.1 for the two types of paths, where the subscript c is

used for terms in the general path scaling (c stands for circular, since that is the most common

of these paths) and the subscript t is used for terms in the near-tautochronic path scaling.
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The essential difference in these scalings is that the absorber amplitude must be scaled for

the general path in order to capture the cubic path nonlinearity to order ε. In contrast, for

near-tautochronic paths the absorber response is nearly linear out to large amplitudes, and

thus the amplitude does not need to be scaled. Here we introduce a parameter κ to allow

the path to deviate slightly from exact tautochronicity. In all cases the absorber is tuned

such that it addresses the order n excitation, and thus we introduce the (small) detuning

parameters σi (i = c, t), which describe the difference between n and ñ, as employed in the

averaging process. Explicit expressions for the σi are found below in equations (4.13) and

(4.15). As shown in Tab. 4.1, the general path case requires an adjustment to the scaling of

the torque so it will be retained at order ε. Finally, for the case of a compound pendulum

circular path absorber, the torque scaling also involves absorber geometry and inertia terms

β and α.

Table 4.1: Parameter scalings for general and near-tautochronic paths.
Type of Path General Path Near Tautochronic

Amplitude s =
√
εrc s = rt

Path λ λ = λe + εκ
Torque Γ =

√
εΓcβ/(1 + α) Γ = Γt

Damping µ µ

Expanding the absorber equations in ε and retaining order ε terms yields an absorber

oscillator equation with weak damping, forcing, and nonlinearity, in the following universal

form

r′′i + ñ2ri = εfi(ri, r
′
i, θ) +O(ε2), (4.5)

where subscript i = c, t indicates the path type, and the expressions for fi(ri, r
′
i, θ) are given

by

fc(rc, r
′
c, θ) = −ξcr3c − Γc sin(nθ)− µr′c +

(1 + α)2

β
r′′c , (4.6)
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for the general path, where ξc is the effective path nonlinearity coefficient given explicitly

below in equation (4.14). For the near-tautochronic path scaling,

ft(rt, r
′
t, θ) = −µr′t −

κ

3
ñ(1 + ñ2)5/2r3t + (4.7)

−[r′t + g0(rt)]

(
Γt sin(nθ) + 2ñ2r′trt −

∂g0(rt)

∂rt
r′t

2 − g0(rt)r
′′
t

)
,

where g0(rt) =
√

1− ñ2(1 + ñ2)r2t is the leading order part of g(s), that is, its ε = 0

version2. The perturbation function fi(ri, r
′
i, θ) and its subsequent averaged form are well

known for both the general path and the near-tautochronic path systems [5,11,14,26,52,53,

68,70]. Here we make a small adjustment to the previous approach, before averaging, which

involves extracting the linear detuning term εr′′i from the right hand side of equations (4.6)

and (4.7) and rewriting equation (4.8) as

r′′i + n̂2ri = ε̂fi(ri, r
′
i, θ) +O(ε̂2), (4.8)

where n̂ = ñ/
√

1− Λε, ε̂ = ε/(1 − Λε), Λ = (1 + α)2/β, and we employ averaging on

this form of the oscillator. For averaging, one makes the assumption of a nearly harmonic

response at the forcing frequency via the coordinate transformation [ri, r
′
i] = [zi(θi) sin(nθi+

ψi(θi)), zi(θi)n cos(nθi + ψi(θi))], and averages over one period of the forcing, 2π/n. This

results in two first order differential equations governing the slowly varying amplitude ai

and phase φi, where (ai, φi) are the averages of (zi, ψi) over one period. For brevity, these

2The near tautochronic perturbation function ft(rt, r
′
t, θ) is the same as that obtained in

equation (2.17) of Chapter 2, except, the rollers are neglected here and the path derivative
∂yP /∂s is expanded in amplitude to extract up to the cubic Duffing nonlinearity term

(1/3)κñ(1 + ñ2)5/2r3t .
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averaged equations are not presented explicitly here, but a scaled version of them is shown

next, and the interested reader can find intermediate results in the papers cited above.

One can significantly simplify the analysis of the averaged equations by scaling the ab-

sorber amplitude ai and independent variable (the rotor angle) θi by the system parameters

in the following way [48],

θi =

(
4n

ε̂σi

)
Θi, ai = −2

(
Γi
σi

)
pi, (4.9)

for σi 6= 0. This scaling results in the following averaged equations that are valid for both

classes of paths,

dpi
dΘi

= − sin(φi)F
i
1(pi)−Dipi (4.10)

pi
dφi
dΘi

= 4χip
3
i − cos(φi)F

i
2(pi)− 2pi, (4.11)

where

χi =
3

2
ξi

(
Γ2
i

σ3
i

)
, Di = 2

(
nµ

σi

)
, (4.12)

and σi and ξi are the detuning and the effective path nonlinearity of the respective oscillators,

respectively, which are given by

σc =
n2 − ñ2

ε
− (1 + α)2

β
ñ2, (4.13)

ξc =
1

6β

(
1 + βñ2)2(λ2 + (λ2 − 1)βñ2), (4.14)
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for the general path, and

σt =
n2 − ñ2

ε
− ñ2, (4.15)

ξt = ñ2(n2(1 + ñ2/3)− ñ2(1 + ñ2)
)
+ (4.16)

+
κ

3
ñ
√

1 + ñ2
(
1 + ñ2(2 + ñ2)

)
,

for the near-tautochronic path. The functions Fi1 and Fi2 are a primary difference in the equa-

tions for the two types of paths. For general paths, Fc1 = Fc2 = 1 and one recovers a scaled

version of the well-known averaged Duffing equation for the case of weak nonlinearity, damp-

ing, and forcing near resonance which is investigated in Chapter 3. For near-tautochronic

paths Ft1(pt) and Ft2(pt) are based on elliptic functions and are given by

Ft1 =
4

3π

((
1

γp2t

+ 1

)
EE(γp2t ) +

(
1− 1

γp2t

)
EK(γp2t )

)
, (4.17)

Ft2 =
4

3π

((
2− 1

γp2t

)
EE(γp2t ) +

(
1

γp2t

− 1

)
EK(γp2t )

)
, (4.18)

where

γ =
4ñ2(1 + ñ2)Γ2

t

σ2
t

(4.19)

is the additional parameter introduced by the near-tautochronic scaling, and in the limit

γ → 0, Ft1, F
t
2 → 1. The functions EK(γp2t ) and EE(γp2t ) are the complete elliptic integrals

of the first and second kind, which depend on the absorber amplitude pt and the parameter

γ. These terms arise since the rotor acceleration has a diminished effect on how it drives the

absorber at large amplitudes along the path, thus providing an amplitude-dependent effective
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forcing. In fact, parameter γ describes an effective hardening of the system response, in the

sense that the excitation has a reduced effect at large amplitudes, as described in more detail

below. For the general path case, the path nonlinearity dominates these effects, which are

scaled out by the amplitude expansion.

The scaling given in equation (4.9) reduces the parameter dependence of the averaged

equations from four parameters (ξi, Γi, σi, µ) to two parameters (χc, Dc) for the general

path and to three parameters (χt, Dt, γ) for the near-tautochronic path. For the undamped

system Di = 0, the general path averaged equations depend on a single parameter χc,

making it particularly attractive for analysis.

In order to compute the percent overshoot of the absorber transient response, the steady-

state response is needed. The steady-state response amplitude p̄i can be computed from

equations (4.10) and (4.11) by setting dpi/dτi = dφi/dτi = 0 and using sin2(φi)+cos2(φi) =

1, which results in the following implicit expression for p̄i,

(
Dip̄i

F i1(pi)

)2
+

(
4χip̄

3
i − 2p̄i

F i2(pi)

)2
= 1. (4.20)

For the general path, equation (4.20) is a cubic in p̄2c and can be solved explicitly [48]. For

the near-tautochronic paths, p̄t is numerically obtained, due to the elliptic functions Ft1 and

Ft2.
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4.3 Analytical Predictions of Transient Amplitudes

The percent overshoot of a system is defined as

P.O. =

(
pmax − p̄

p̄

)
×100, (4.21)

where pmax is the peak amplitude achieved during the transient response and p̄ is the steady-

state amplitude. For this system the transient is a beating type of motion, composed roughly

of harmonic components at orders n and ñ, with the latter shifted by amplitude-dependent

nonlinear effects. For a linear system this overshoot can be computed exactly [28, 69]. For

the undamped nonlinear system the overshoot can be computed by using a constant of

motion for the averaged equations, providing a useful bound for systems with weak damping.

With this constant of motion, and the previous steady-state amplitude results, the percent

overshoot approximation can be constructed for both path types. This approach will be

referred to as the pseudo-energy method. In the present study we focus on the case of

zero initial conditions, since it is a close approximation to the absorber response in variable

displacement automotive engines when cylinders deactivate. However, the results easily

generalize to arbitrary initial conditions. In this section, we show results for the zero initial

condition overshoot problem using the pseudo-energy method. In the following section we

investigate the accuracy of the method by comparing it with simulations of the full EOM.

We also provide a comment on how the form of the input torque during cylinder deactivation

transition can effect absorber overshoot.
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4.3.1 The Pseudo Energy Method

For zero absorber damping (Di = 0), one combines equations (4.10) and (4.11) to obtain an

exact first order differential equation,

dpi
dφi

=
−pi sin(φi)F

i
1(pi)−Dip2i

4χip
3
i − cos(φi)F

i
2(pi)− 2pi

. (4.22)

which is integrated, resulting in the following constant of motion,

−χip
4
i + p2i +Gi(pi) cos(φi) = c1, (4.23)

where Gc(pc) = pc, Gt(pt) = ptF
t
1(pt), and c1 is the constant of integration. Note that

for the general path this is a quartic (cubic) equation for c1 6= 0 (c1 = 0), and for nearly

tautochronic paths the equation involves elliptic functions. Equation (4.23) allows one to

simply construct the phase portrait for the undamped averaged system in the usual way. A

thorough study of transient responses and overshoot using equation (4.23) for the general

path case, that is, for Duffing’s equation, is given in Chapter 3. Here we describe only those

results needed to compute the percent overshoot subject to zero initial conditions, that is,

for c1 = 0.

Only those absorber responses that reduce torsional vibrations are of interest, and for

the undamped system these satisfy φi = π, such that the absorber response is exactly

out of phase with the excitation. To obtain this response, and also avoid undesirable non-

synchronous responses [68], one over-tunes the absorbers by making ñ > n (σi < 0) with

|ñ−n| << 1, which results in torsional vibration reduction. For hardening absorber systems,

ξi > 0 (χi < 0), the over-tuned system will have only a single order n steady-state response,
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which is described by a stable equilibrium of the averaged equations [48]. On the other

hand, for softening absorber systems (ξi < 0), for 0 < χi < χ?i the over-tuned system is bi-

stable and the lower amplitude steady-state equilibrium is the one that results in the desired

response with φi = π. At χ?i , the initial conditions (pi0, φi0) result in a trajectory that lies

on the stable manifold of the saddle point, and for χi > χ?i the system transitions to the

upper branch steady-state response which is in phase with the excitation, φi = 0, resulting

in vibration amplification. The jump parameter value, χ?i , is further described below.

A sample response with zero initial conditions that leads to the desired response using the

general path scaling is shown in the phase space (pc, φc) in Fig. 4.2 (a), and its equivalent

s(θ) response is shown in Fig. 4.2 (b); this is for a damped system with parameters χc = 0.10,

ξc < 0, and Dc = 0.30. Note that p(Θ), obtained from simulating the averaged equations,

accurately captures the envelope of the beating behavior of s(θ). The transient response

of a system with a hardening path is identical to that in Fig. 4.2 (a) & (b), except that

the trajectory labeled as coming from the saddle point would come in from infinity, since

the saddle doesn’t exist for χi < 0. For undamped systems, the beating response continues

indefinitely (it is motion on a torus), and the averaged equation response will follow a closed

curve around the target steady-state equilibrium. For small damping, the peak amplitude

should be well approximated by the undamped value, unless the beat period is long compared

to the envelope settling time. Using the pseudo-energy method, a closed form result for

the percent overshoot of general path absorbers is possible because both the steady-state

amplitude (equation (4.20)) and the peak transient amplitude (equation (4.23)) can be solved

exactly. In fact, because of the parameter scaling employed, this result depends on the single

parameter χc [48]. For near-tautochronic paths, a closed form expression is not available,
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due to the presence of elliptic functions, but the percent overshoot can be computed in a

straightforward manner using numerical root-finding techniques.

(a)

(b)

Figure 4.2: A damped zero initial condition transient trajectory, IC #1, obtained from
simulations of the general path averaged equations, indicating the peak and steady-state
amplitudes; (a) shown in the phase space, and (b) as the absorber response versus θ. System
parameter values: Dc = 0.30 and χc = 0.10. Also shown in (a) is the trajectory from the
unstable manifold of the saddle that tends toward the desired steady state.

To demonstrate the utility of the general path scaling, shown in Fig. 4.3 (a)-(c) is the

transient absorber response obtained from simulations of the full EOM for three undamped

(µ = 0) systems using an inertia ratio of ε = 0.03, excitation order n = 1.5 and three
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different sets of system parameters ñ, λ, and Γ, as indicated in the caption. These five

system parameters specify the averaged system parameters σc, ξc, and Γc. For all three

systems χc = 0.112, for which the pseudo-energy method gives an overshoot prediction of

122%, and all three simulated system overshoots are very near the predicted value. Note

that the differences in system parameters result in differences in the amplitude scales and

the transient beat frequencies, but the percent overshoot is essentially identical in all three

cases. Lastly, we note that the two noncircular path cases (λ = 0.1 and 0.2) are not typical

for applications, but serve the purpose of demonstrating the accuracy of the prediction in

its most sensitive regime, which is the softening range of χc > 0, as shown in Fig. 4.4 (a).

The percent overshoot for zero initial conditions computed using the pseudo-energy

method for D = 0 and the averaged equations for D 6= 0 for both general path and near-

tautochronic path absorbers are shown in Fig. 4.4 (a) & (b), respectively. These figures

depict how the parameters χi, γ, and Di affect the overshoot for the two types of paths. For

an over-tuned absorber (σi < 0), the overshoot for absorbers with hardening paths occurs

for χi < 0 and with softening paths it occurs for χi > 0. Note that the general path scaling

captures the zero initial condition overshoot of an undamped linear system (ξc = 0 and

χc = 0), which is 100%, and the absorber path in this case is the tautochrone, λ = λe. On

the other hand, due to the different parameter definitions, for the near-tautochronic scaling,

λ = λe corresponds to κ = 0 and makes ξt small and negative, that is, nonzero, in a man-

ner that depends on n and ñ (see equation (4.16)). And, although ξt is softening for the

tautochronic path, the parameter γ results in a hardening effect, as shown in Fig. 4.4 (b),

and thus these effects compete in a manner that depends on the system parameters Γt and

σt (see equation (4.19)). One interpretation of Fig. 4.4 (a) & (b) is, that for a fixed tuning
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(a)

(b)

(c)

Figure 4.3: Simulations of the full EOM (equations (4.1) and (4.2)) for ε = 0.03 and n = 1.5,
and three sets of system parameter values that yield χc = 0.112, with a predicted overshoot
of 122%. (a) Γc = 1.171, ñ = 1.52 (σc = −4.263), λ = 0 (ξc = −4.22), simulated percent
overshoot = 119%; (b) Γc = 0.799, ñ = 1.51 (σc = −3.253), λ = 0.1 (ξc = −4.03), simulated
percent overshoot = 121%; (c) Γc = 0.477, ñ = 1.5 (σc = −2.25), λ = 0.2 (ξc = −3.732),
simulated percent overshoot = 124%. Additional parameters used to simulate the full EOM
include: Γ0 = Γ/2, α = 0, and β = 1.
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σi, and a fixed excitation amplitude Γi, increasing (decreasing) the nonlinearity from the

linear system (ξi = 0) will result in a decrease (increase) in the overshoot. The softening

paths will eventually reach the jump point at χ = χ?, which is the last overshoot point

shown on all seven curves for χi > 0 in Fig. 4.4. Therefore, for zero initial conditions, one

can see how the damping and the scaling will affect the location of the jump point. The

presence of damping reduces the absorber overshoot and extends the parameter range over

which the transient response from zero initial conditions results in the desired response. In

addition, for the near-tautochronic scaling, the parameter γ has a similar effect of reducing

the system overshoot as the jump point is approached. However, this effect diminishes as

the system moves in the opposite (hardening) direction, and eventually the γ 6= 0 overshoot

will converge to the γ = 0 overshoot curve as χt → −∞3.

4.3.2 Ramping the Excitation Torque

At this point an important issue regarding the form of the excitation torque will be addressed.

It is observed in simulations of the full EOM that the sign of the torque immediately after

it is switched on (i.e., +Γ sin(nθ) or −Γ sin(nθ)) has a significant effect on the level of

absorber overshoot. While the steady-state amplitude of the absorber does not depend on

this sign, the peak amplitude of the first transient pulse in the beat response does depend

on the manner in which the torque is initially applied. This is because a torque input

that is initially positive (negative) will cause a rapid, but temporary, increase (decrease)

in the rotor speed, and this will temporarily increase (decrease) the centrifugal restoring

3We note that the near-tautochronic averaged equations can be evaluated in the limit
γ → 0, resulting in the same averaged equations obtained for the general path scaling,
except for the differences in definitions of the system parameters χt and χc.
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Figure 4.4: The percent overshoot of an absorber system subject to zero initial conditions,
computed using the pseudo-energy method for Di = 0, and using the averaged equations for
Di 6= 0; for (a) general path and (b) near-tautochronic absorbers.
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force acting on the absorber mass, which results in a decrease (increase) in the absorber

overshoot. This situation is depicted in Fig. 4.5 (a)-(d), which shows the simulated rotor

and absorber response for sinusoidal inputs started with opposite signs, and the resulting

difference in rotor transient and absorber overshoot. This effect is not captured by our

(a) (b)

(c) (d)

Figure 4.5: The rotor and absorber response to a step input of sinusoidal torque. (a) Rotor
and (b) absorber response to input +Γ sin(nθ); (c) rotor and (d) absorber response to input
−Γ sin(nθ).

model, since the scaling employed assumes a constant mean rotor speed (ν = 1) in equation

(4.3), an assumption used to uncouple the absorber and rotor responses to leading order in ε.

Therefore, the perturbation analysis cannot capture this transient change in the mean rotor

speed. This difference in the overshoot is not observed in experiments [47], due to the fact
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that the torque input is not an exact step input of a sinusoid, but, due to the electronics, has

a short transition period. Furthermore, this short transition in the torque input is even more

likely in automotive applications, since cylinder deactivation is not instantaneous. Therefore,

we minimize this dependence on the torque sign by quickly ramping up the sinusoidal torque

from zero to its full value. The duration of the ramp θr used in simulations is the minimum

crank angle duration that removes the torque sign dependence, and this is found to be one-

half a forcing cycle, θr = π/n. This ramp time is small compared to the time at which

the absorber peak amplitude is reached. Using this ramp, the difference in the absorber

overshoot is essentially eliminated; for example, for the case shown in Fig. 4.5 (b) & (d), the

ramped input results in overshoot values of 118.30% and 118.56% for negative and positive

torque, respectively.

4.4 Results and Discussion

We now compare results from the analytically predicted overshoot with those obtained from

simulations of the full EOM, equations (4.1) and (4.2). The analytical predictions for zero

absorber damping (µ = 0, Di = 0) are obtained using the pseudo-energy method and

those with non-zero absorber damping are obtained by simulating the averaged equations

(equations (4.10) and (4.11)). It is shown that the general path scaling provides an accurate

estimate of the overshoot for absorber systems throughout the entire two-parameter family

of paths when peak amplitudes are kept at moderate levels. In fact, it is noted that as the

nonlinear absorber path parameter λ increases from a circle towards a cycloid, the absorber

cusp amplitude smax decreases [17]. Therefore, for paths near tautochronic, the general path

pseudo-energy is found to provide the same accuracy as the near-tautochronic path pseudo-
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energy when considering moderate absorber amplitudes riding on paths with λe ≤ λ ≤ 1.

However, the accuracy of the general path breaks down as the excitation and tuning order

increase, so that the absorber is pushed out near the cusp of the epicycloid, and the near-

tautochronic scaling is able to predict the overshoot for these cases. In all comparisons we

fix the excitation order n = 1.5, which corresponds to the transient response from cylinder

deactivation to 3 cylinders, from, say 6 cylinders, assuming a four-stroke engine. Lastly, in

all simulations of the full EOM we set the mean torque Γ0 = Γ/2.4

Shown in Fig. 4.6 is a comparison for the general path pseudo-energy theory and simu-

lations of the full EOM for the case of zero damping and a system inertia ratio of ε = 0.03.

The three sets of simulations shown in Fig. 4.6 are obtained by individually sweeping the

three system parameters contained in χc, namely ξc, Γc, and σc. In the full EOM, the sweep

of ξc is performed by sweeping the nonlinear tuning parameter λ, the sweep of Γc is done

by sweeping the non-dimensional torque εΓ, and the sweep of σc is performed by sweeping

the linear tuning order ñ. The exact values used in the three sweeps can be extracted from

the information given in the caption of Fig. 4.6. The results show that the pseudo-energy

method gives a very accurate prediction of the system response, except for the sweep of σc,

which shows some deviation in the simulation points closest to χ = 0 and χ = χ? = 4/27.

For the simulations near χ = 0, the deviation is due to the fact the absorber is far from

resonance (as far as ñ = 1.58 which results in σc = −10.463), where it is not surprising that

the averaging method breaks down. Furthermore, recall that χc scales like σ−3
c , making

it relatively sensitive to changes in the detuning. For simulations near χ?, the deviation is

due to the large absorber amplitudes that occur when the system is excited very close to

4We note that the results shown here break down when the mean torque is Γ0 > 2Γ,
which is expected since both torques are scaled in the same manner.
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resonance, as close as ñ = 1.501 at the simulation point closest to χ?.5 This is in contrast

to the εΓ and λ sweeps, which were performed at a linear tuning of ñ = 1.51, resulting in

moderate peak absorber amplitudes in all cases.
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Figure 4.6: Comparison of the general path pseudo-energy method with simulations of the
full EOM for µ = 0, n = 1.5, ε = 0.03, Γ0 = Γ/2, α = 0, and β = 1. Solid line is the
pseudo-energy prediction. Simulation data: Sweep of χc by varying λ from 0.80 to 0 with
εΓ = 0.005, and σc = −3.25 (ñ = 1.51). Sweep of χc by varying εΓ from 0.001 to 0.006
with ξc = −4.09 (λ = 0), and σc = −3.25 (ñ = 1.51). Sweep of χc by varying ñ from 1.58
to 1.501 with εΓ = 0.003 (note that in this case varying ñ results in sweeping ξc from -5 to
-4 for a fixed λ = 0).

Shown in Fig. 4.7 (a)-(b) is a comparison between the general path pseudo energy method

and simulations of the full EOM for the case of increasing the system inertia ratio ε. Note

that increasing ε has the same effect as increasing the absolute magnitudes of the three main

system parameters, as seen from the caption of Fig. 4.7. The results of Fig. 4.7 indicate that

5Recall that for general path absorbers, the absorber amplitude is scaled by ε1/2, and
the resulting perturbation equations break down for large amplitudes.
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the full EOM overshoot results begin to deviate from the theory in a manner similar to that

seen for the detuning sweep shown in Fig. 4.6. As is standard in perturbation equations,

as one increases the small scaling parameter, the accuracy of the approximation diminishes.

In addition, increasing ε will increase the torque magnitude εΓ, and the magnitude of the

softening nonlinearity ξc which results in larger transient amplitudes, which violates the

moderate amplitude assumption used for these paths. This effect becomes more prominent

near χ?. Near χc = 0, only the detuning sweep deviates significantly; this is expected,

since the absorber is tuned far from resonance (ñ = 1.58). On the other hand, there is

less deviation for the overshoot near χc = 0 for the full EOM sweeps of λ and εΓ, because

the nonlinearity ξc and torque amplitude Γc tend to zero as χc → 0. Overall, the theory

provides a valuable prediction for the absorber overshoot up to ε ≈ 0.10, and the predictions

are generally conservative, except near the jump point.

Shown in Fig. 4.8 are results for lightly damped systems, using the general path averaged

equations for the theory and comparing with simulations of the full EOM. Two sets of

data are shown, for which the value of the damping ratio ζ is doubled from ζ = 0.001 to

ζ = 0.0026. Note that only system parameters λ and εΓ are swept, since the scaled damping

coefficient Di, which is held constant for these parameter sweeps, depends on n and ñ (see

equation (4.12)). The damping dependence on the excitation and tuning parameters is an

interesting consequence of the scaling, and for a linear system χc = 0, the damped overshoot

is remarkably only a function of the damping coefficient Dc. Additionally, as one approaches

resonance, σc → 0, Dc → ∞, which recovers the zero overshoot result for a damped linear

system excited exactly at resonance. As seen in Fig. 4.8, the averaged equations provide an

6The viscous damping coefficient µ is related to the damping ratio ζ by µ = 2ζñ.
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Figure 4.7: Comparison of the general path pseudo-energy method with simulations of the
full EOM for µ = 0, n = 1.5, Γ0 = Γ/2, α = 0, and β = 1. Solid line is the pseudo-energy
prediction. (a) ε = 0.07 with simulation data: Sweep of χc by varying λ from 0.80 to 0
with εΓ = 0.012, and σc = −2.68 (ñ = 1.51). Sweep of χc by varying εΓ from 0.003 to
0.013 with ξc = −4.09 (λ = 0), and σc = −2.68 (ñ = 1.51). Sweep of χc by varying ñ
from 1.58 to 1.501 with εΓ = 0.01 (note that in this case varying ñ results in varying ξc from
-5 to -4 for a fixed λ = 0) (b) ε = 0.10 with simulation data: Sweep of χc by varying λ
from 0.80 to 0 with εΓ = 0.019, and σc = −2.55 (ñ = 1.51). Sweep of χc by varying εΓ
from 0.005 to 0.021 with ξc = −4.09 (λ = 0), and σc = −2.55 (ñ = 1.51). Sweep of χc
by varying ñ from 1.58 to 1.501 with εΓ = 0.016 (note that in this case varying ñ results in
sweeping ξc from -5 to -4 for a fixed λ = 0)
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accurate prediction of the damped system overshoot, with the same limitations discussed

previously, plus the additional requirement of small damping, required since the damping

coefficient µ is scaled by ε for all paths.
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Figure 4.8: Comparison of the general path pseudo-energy method with simulations of the
full EOM for Dc = 0.05 (ζ = 0.001) and Dc = 0.10 (ζ = 0.002). Simulation data: Sweep of
χc by varying λ from 0 to 0.80 with εΓ = 0.013. Sweep of χc by varying εΓ from 0.003 to
0.013 with ξc = −4.09 (λ = 0). Other parameter values used in simulations are: ñ = 1.51,
n = 1.5, ε = 0.07, Γ0 = Γ/2, α = 0, and β = 1.

Shown in Fig. 4.9 (a) & (b) is a comparison of the near-tautochronic pseudo-energy results

and simulations of the full EOM for λ = λe and ε = 0.07. Two pseudo-energy curves are

generated, obtained by sweeping ñ and εΓ, since both χt and γ depend on these two system

parameters. As seen in Fig. 4.9 (a) & (b), the near-tautochronic pseudo-energy method
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provides a conservative estimate of the absorber overshoot. The results show the tautochronic

absorber to be almost linear, that is, with 100% overshoot nearly all the way up to the cusp

amplitudes. This near-linear behavior is a result of the fact that the path nonlinearity is zero

(by definition of the tautochrone), and the competition between the small softening value of

ξt for λ = λe and the mild hardening effect of γ (which diminishes the effect of the torque on

the absorber), resulting in an almost net neutral effect. Therefore, the general path pseudo-

energy method, which predicts 100% overshoot for the tautochronic path absorber, is as good

as the near-tautochronic pseudo-energy for a range of ñ values, in this case near 1.5. As the

tuning order ñ and excitation order n increase, the magnitude of the softening nonlinearity

ξt increases, with negligible change in the hardening parameter γ (for a slightly over-tuned

absorber, ñ > n) which eventually results in the general path failing to capture the amount

of softening observed in the overshoot. In fact, this is observed at ñ = 1.51 when λ is

very close but just below tautochronic λe, in this case the softening observed in simulations

of the full EOM overshoot is only accurately captured using the near-tautochronic scaling.

However, it seems that for practical non-circular paths (i.e. λe ≤ λ ≤ 1), the general path

scaling provides a good approximation of overshoot for slightly over-tuned systems up to an

excitation order of n = 3.

4.5 Conclusions

The results of this chapter provide a simple way to estimate the overshoot of centrifugal

vibration absorbers when the rotor is suddenly subjected to near-resonant torsional excita-

tion. A simple, compact formulation for the percent overshoot of the absorber amplitude

is derived from the full equations of motion by a series of rescalings and approximations,

101



0 0.05 0.1 0.15 0.2
80

100

120

140

160

χt

%
O

ve
rs

ho
ot

 

 

Dt = 0, Pseudo Energy (Sweep Γ)

Full EOM Sims. (Sweep Γ)

(a)

0 0.05 0.1 0.15 0.2

80

100

120

140

160

χt

%
O

ve
rs

ho
ot

 

 

Dt = 0, Pseudo Energy (Sweep ñ)
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Figure 4.9: Comparison of the near-tautochronic path pseudo-energy method with simula-
tions of the full EOM for λ = λe, µ = 0, n = 1.5, ε = 0.07, Γ0 = Γ/2, α = 0, and β = 1. (a)
Simulation data: Sweep of χt by varying εΓ from 0.009 to 0.033 and σt = −2.68 (ñ = 1.51).
(b) Simulation data: Sweep of χt by varying ñ from 1.67 to 1.50 with εΓ = 0.028.

including the method of averaging. For the case when the dominant nonlinearity arises from

the absorber path, and damping is negligible, the formulation boils down to a convenient
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closed form expression (specifically, roots of a cubic or quartic equation, depending on initial

conditions) that depends on a single parameter. In fact, this case reduces to the transient

response of a simple Duffing oscillator, considered in Chapter 3. For absorber systems where

the dominant nonlinearity arises from kinematic coupling to the rotor, the overshoot esti-

mate for undamped systems depends on two parameters, and requires finding the root of an

equation that involves elliptic functions. For all path types, more accurate estimates that ac-

count for damping are available via simulation of the averaged equations. Simulations of the

full nonlinear equations of motion demonstrate the accuracy and utility of the approximate

results over a wide range of system parameters. From a design point of view, the undamped

system results are particularly convenient, since they are easy to compute and provide a

conservative estimate of the overshoot. These results will be of use for a variety of applica-

tions, including use in automotive engines that utilize cylinder deactivation. Experimental

verification of these results are provided in Chapter 5.
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Chapter 5

Transient Dynamics of a Single CPVA

System, Experiment

5.1 Introduction

The results of an experimental investigation of the transient dynamics of centrifugal pen-

dulum vibration absorbers (CPVAs) are presented, and compared with the theoretical and

simulation results described in Chapter 4. Here we describe the experimental apparatus,

the methods used for determining system parameters, and the results of systematic experi-

ments performed using the apparatus. The experiments conducted consist of responses due

to the instantaneous activation of near-resonant torsional excitation of the rotor, so that the

absorber response transitions from an essentially quiescent state to a periodic steady-state.

This mimics the conditions encountered during cylinder deactivation in variable displace-

ment automotive engines fitted with pendulum absorbers that are tuned for the torsional

excitation encountered in the reduced cylinder mode of operation. This input leads to a

104



beating-type transient motion, resulting in an overshoot of the absorber amplitude response

before it reaches steady state. The purpose of this chapter is to experimentally measure this

overshoot in order to verify the analytical predictions in Chapter 4.

We consider the response of a system consisting of a rotor and a single absorber. The

fully instrumented apparatus can provide prescribed torque inputs and measure the result-

ing responses of the absorber and rotor. The overshoot experiments are performed using

absorbers with two different path types, circular and near-tautochronic. Both paths have a

softening nonlinearity when coupled to the rotor, one quite strong (circular path) and one

close to neutral (near-tautochronic). These differences will be useful for validating the model

equations of motion (EOM) and verifying the analytical overshoot predictions.

The apparatus absorbers used in this study have been used previously for studies of

steady state responses, which considered single and multi-absorber systems, and were used

to validate perturbation analytical results for general path absorbers [26, 53, 76] and near-

tautochronic path absorbers [70]. Previous studies considering the transient dynamics of

pendulum vibration absorbers include simulations for circular path absorbers [59] and ana-

lytical closed form results for damped linear absorbers [69], which closely approximate the

results for near-tautochronic absorbers. In this chapter we describe the first known system-

atic experimental investigation of transient absorber response, and compare it with analytical

predictions.

The chapter begins with a description of the experimental test apparatus, whose main

components are explained in detail, along with a description of how the rig is used to perform

cylinder deactivation experiments. The processes for identifying the required experimental

system parameters, specifically, the absorber tuning order ñ, the absorber damping µ, the
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nonlinearity in the absorber path λ, and the system inertia ratio ε, are explained. With

these parameters in hand, comparisons between analysis, simulations, and experiments can

be carried out for a range of loading conditions. It is shown that the EOM provide a very

accurate prediction of the experimentally observed overshoot, that the damped averaged

equations also provide accurate, and mostly conservative, predictions, and that the pseudo-

energy predictions provide an upper bound for the overshoot. The benefits of the pseudo-

energy results are that they are simple to obtain, are expressed in terms of minimal system

parameters, notably, χc, and are conservative, making them very convenient for accounting

for transient responses in absorber designs. One conclusion of this study is that the general

path model is suitable for most absorber paths, and the near-tautochronic results are required

only in special situations. In fact, for the experiments described here, the general path results

suffice for both absorbers.

5.2 The Experimental Apparatus

We begin by providing a description of the components of the experimental spin rig shown

in Fig. 5.1, and explain how the rig is used to perform the transient experiments. This basic

rig was described and characterized previously in works considering steady state absorber

responses [26,52,53,70]. For the present studies the rig was upgraded with a new servo mo-

tor (C) and controller (B) and has undergone significant software updates for motor control,

response readouts, and data processing. In addition, flywheel weights were fabricated to

allow the inertia ratio of the system ε to be adjusted [76]. Lastly, to study the gravitational

influence on the absorber dynamics, the rig has been modified so that it can be run horizon-

tally, i.e., rotated by 90o from the orientation shown in Fig. 5.1. Gravity will have very little
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Figure 5.1: The experimental apparatus, with components: (A) computer for system control
and data processing, (B) motor controller, (C) servo motor, (D) rotor encoder, (E) absorber
with encoder.

influence on the absorbers response at speeds when cylinder deactivation is likely to occur.

Therefore, all experiments described here are carried out with the test rig in the orientation

shown in Fig. 5.1. This eliminates the effects of gravity and allows the experiments to be

run at low speeds, specifically, Ω ≈ 350 RPM.

5.2.1 System Components and Parameters

The experimental apparatus uses an electric motor and control system capable of applying

a user-specified torque to the rotor, including transient inputs, while maintaining a near-

constant rotation speed of the rotor. The rotor and absorbers are fitted with encoders for

measuring their responses, and a current feedback measurement from the motor is utilized

to determine the instantaneous torque acting on the rotor. A primary advantage of this

apparatus is that it allows one to systematically vary the torque order n, and thus the
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detuning between the input order and the absorber order, a parameter not easily changed

in engines and other rotors, since these orders are typically integers and fixed by hardware.

The apparatus consists of five main components, labeled (A)-(E) in Fig. 5.1. Component

(A) is a computer running a LabVIEW program that generates the user specified harmonic

torque signal and sends it to the control box (B), which then sends the signal to the motor

(C), commanding it to perform the desired torque. The computer is also used for data

collection and processing. Note that the applied torque in an automotive engine depends on

the rotor angle θ (e.g., Tn sin(nθ)), rather than time, and therefore the harmonic torque signal

generated in LabVIEW uses feedback from encoder (D), which instantaneously measures the

rotor orientation. This encoder produces 1000 pulses per revolution and informs LabVIEW

how to increment the torque during rotor revolution. The torque signal contains a mean

component T0, used to maintain a desired rotor speed Ω, plus a user-specified varying part,

which can be harmonic (Tn sin(nθ)), step, etc. The mean rotor speed is held close to constant

by making slight incremental adjustments to T0, determined by an onboard slow-time PID

controller in LabVIEW. The mean torque T0 and fluctuating torque Tf are related to their

non-dimensional counterparts Γ0,f by T0,f /(JΩ2) = εΓ0,f , where J is the rotor inertia and

ε = mc2/J is the (small) ratio of absorber rotational inertia to rotor inertia, expressed in

terms of the absorber mass m and the distance from the rotor center to the absorber zero

position c, as shown in Fig. 4.1.

The vibration absorbers are placed at position (E) in Fig. 5.1. Here we consider two

different absorber types, one with a circular path and the other with a nearly tautochronic

path. This allows us to experimentally investigate the effects of the path nonlinearity on the

absorber overshoot, and make comparisons with model predictions [46]. The absorber shown
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in Fig. 5.2 (a) is a near-tautochronic path absorber with a bifilar suspension, as considered

in [70]. The tautochronic path is accomplished by suspending the absorber mass (the dark

gray block in Fig. 5.2 (a)) from two tempered blue spring steel bands that wrap around

aluminum cheeks that are machined with the required evolutes, so that the center of mass

follows the desired involute. In addition, to achieve the bifilar type suspension, there are

bearings at each point where the steel bands connect to the absorber, and these constrain the

absorber such that it only translates relative to the rotor, and does not induce any bending

in the bands. The absorber shown in Fig. 5.2 (b) is a circular path pendulum type absorber

suspended at a single pivot point, as considered in [53]. In contrast to the near-tautochronic

absorber, the circular path absorber is a compound pendulum absorber suspended by a

pin and needle bearing. Note that this absorber will translate and rotate relative to the

rotor, which affects its effective inertia, and thus its linear tuning order ñ, as explained

below. A rotary encoder is attached to the absorbers (E) (only shown on the tautochronic

absorber in Fig. 5.2 (a)), which provides an angular measurement of the absorber position.

Note that although the path followed by the near-tautochronic absorber is not circular, the

angular measurement taken by the encoder using a pin on the absorber and an arm with a

slot on the encoder, varies almost linearly with the arc-length [43]. Therefore, the encoder

angular measurement is used to determine the position for both types of absorbers, with a

measurement resolution of about 0.25o.

5.2.2 Transient Testing Capabilities

The rig is capable of performing experiments which emulate cylinder deactivation events in

variable displacement automotive engines. Typically, half of the cylinders are shut down
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(a)

(b)

Figure 5.2: Absorber pendulums: (a) near-tautochronic absorber (dark gray), suspended
by two steel bands that wrap around cheeks, generating the desired path, shown with an
encoder attached; (b) circular path absorber (inverted “T”), suspended by a pin and needle
bearing, as indicated.

during deactivation, which results in a torque order transition from 2n to n where, for a four

stroke N cylinder engine, n = N/4. This is accompanied by an increase in the amplitude
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of the dominant harmonic torque Tn by a factor of about 2-3 over that experienced in

full cylinder operation. This increase in amplitude results from the fact that the remaining

active cylinders must generate more torque per cylinder in order to maintain the mean torque

through the transition [66]. The experimental rig can perform these transitions by specifying

step changes in torque amplitude and order, according to the scenario described. The rig is

very flexible and can be programmed to investigate a wide variety of transient torque inputs.

Since the absorber response in full cylinder mode is nonresonant, and thus nearly zero, zero

initial conditions are used for all experimental runs. The step input is achieved by suddenly

applying and maintaining a fluctuating torque Tn sin(nθ), superimposed on the mean torque

T0. A sample of such an experiment using the circular path absorber is displayed in Fig. 5.3

(a)-(d), where the torque input measured by the motor feedback is shown in Fig. 5.3 (a),

and the absorber response is shown in Fig. 5.3 (b). To see the rapid oscillations and initial

transitions in these signals, close ups of Fig. 5.3 (a) & (b) are shown in Fig. 5.3 (c) &

(d), respectively. In this simulated cylinder deactivation event (depicted in Fig. 5.3 (a)),

the absorbers abruptly experience a near-resonant excitation, resulting in the beating-type

transient response shown in Fig. 5.3 (b), composed of dominant harmonic components at

order n and approximately order ñ, the latter shifted by nonlinear effects. The absorbers

eventually settle down into the order n steady-state, on a time scale set by the frequency

nΩ and damping.

5.3 Parameter Identification

In order to compare the experimental and analytical results, the experimental system pa-

rameter values need to be determined for both types of absorbers. The torque order n and
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Figure 5.3: An experimentally simulated cylinder deactivation event showing the torque
input and the resulting transient absorber response. (a) Input torque T = T0 + Tn sin(nθ)
applied to rotor by the servo motor; (b) absorber transient amplitude response to the input
torque; (c) zoom-in of the input torque at the transition point; (d) zoom-in of the absorber
response at the transition point.

amplitude Tn, as well as the mean rotor speed Ω, can be varied by the user. The parameters

taken to be fixed for each absorber type include the absorber equivalent viscous damping

coefficient µ, the absorber tuning order ñ, and the absorber/rotor inertia ratio ε. Only a

brief summary of how each system parameter is estimated is given, since these methods are

abstracted from previous works [26,52,53,70]. An error analysis in regards to the uncertainty

in the estimated system parameters is performed following the NIST Type A method [72].
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Within the computed uncertainty bounds, the system parameters are chosen based on best

agreement with transient simulations of the full EOM. The system parameters used to make

analytical predictions are given in Tab. 5.1, and all of the estimated system parameters

with their respective uncertainties for the circular path and the tautochronic path absorbers

are given in Tabs. 5.2 & 5.3, respectively. In the following section, absorber overshoot re-

sults from transient experiments that mimic cylinder deactivation will be shown, along with

comparisons with analytical predictions.

Table 5.1: The main system parameters for the spin rig needed for comparison with analytical
predictions.

Type of Path General Path Near Tautochronic
Damping µ = 0.0395 µ = 0.0675

Tuning Order ñ = 1.312 ñ = 1.449
Inertia Ratio ε = 0.0864 ε = 0.1074

Path Curvature λ = 0 κ = −1.518 (λ = 0.66)

The absorber linear tuning order ñ is obtained through a combination of physical length

measurements and experimental tests. For the near-tautochronic path absorber, the linear

tuning order is defined as

ñ =

√
c− ρ0
ρ0

, (5.1)

and for the circular path pendulum, the linear tuning order is defined as

ñ =

√
c− ρ0
ρ0β

, (5.2)

where c is the distance from the center of rotation O of the spin rig to that of the absorbers’

COM and ρ0 is the radius of curvature of the absorber path at its vertex, as depicted in

Fig. 4.1. The circular path absorber tuning order ñ contains the additional term β that

accounts for the inertial effects associated with a compound pendulum; specifically, the

113



rotational inertia scales the effective pendulum length ρ0, as described in equation (5.2).

Recall that parameters β and α were introduced in Chapter 4 to account for the compound

pendulum absorber implementation, and these are related to the absorber geometry and

inertia as follows

β = 1 +

(
r

ρ0

)2
, α =

r2

cρ0
, (5.3)

where r is the radius of gyration of the circular path absorber about its COM; see Nester [53]

for details. Note that these arise from the single point suspension of the absorber, and β = 1

and α = 0 for all absorbers with bifilar suspensions, regardless of the path.

Following the method given in [53,70], the tuning order ñ was determined experimentally

by performing a sweep in the excitation order n, i.e., a frequency sweep. According to linear

theory, when the rotor is excited at n = ñ, the rotor vibration amplitude |θ̈| is zero for zero

damping, or a minimum for small damping. Therefore, the order n is experimentally swept

and the corresponding rotor vibrations at each order are measured from the encoder on the

rotor shaft. Specifically, the rotor encoder gives an instantaneous speed signal θ̇(t) whose

harmonic magnitudes in steady-state |θ̇|j (j = n, 2n, . . .) are computed using an FFT, which

are multiplied by jΩ to get the desired acceleration harmonic magnitudes, |θ̈|j . Using this

method, with j = n, the circular path and near-tautochronic absorber tuning orders are

found to be ñ = 1.312 and ñ = 1.449, respectively. The radius of gyration for the circular

path absorber is found to be r = 0.0347m, as computed using the physically measured

parameters ρ0, c (see Tab. 5.2), along with the measured value for ñ. This results in α = 0.181

and β = 1.714. Due to the bifilar suspension of the near-tautochronic path absorber, one

can can simply use the measured geometry, specifically, c and ρ0, given in Tab. 5.3, which

yields values that precisely match the tuning obtained by order sweep measurements.
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The experimental order sweep must be performed at a low level of fluctuating torque level

Tn in order to keep the absorber amplitudes in the linear response range. On the other hand,

the tautochronic path nonlinearity is only very lightly softening, from the kinematic coupling

to the rotor, and the low torque amplitude requirement is not required for this absorber.

However, the near-tautochronic path absorber used here exhibited some nonlinear frequency-

amplitude dependence that was observed from an experimental order sweep performed over

a range of torque levels, Tn. From the measured results, the nonlinear path curvature for

the near-tautochronic absorber is found to be slightly softening (λ = 0.66), which results

in a value of κ = −1.518 that describes the nonlinear detuning for near-tautochronic path

absorbers [46, 68]1.

The absorber dissipation is modeled as an equivalent viscous damping and the atten-

dant coefficient is measured experimentally. Although some Coulomb damping has been

observed and quantified for the circular path absorber [76], for amplitudes greater than 10o

the absorber decay is captured very accurately with a viscous model. To obtain the damping

coefficients, the log decrement method is applied to 13 consecutive peaks of a ringdown in

amplitude, which is obtained by switching off the oscillating torque during a steady-state

oscillation, resulting in a free decay of the absorber/rotor system. Note that in fact the

rotor and absorber are coupled, and the rotor and absorber have independent damping char-

acteristics; however, the experimentally measured values provide an effective damping that

captures the combined effect that these dissipation sources have on the absorber, and there-

fore best reflects the damping coefficient needed for the absorber oscillator model considered

in Chapter 4. The log decrement restricts the amplitudes used in calculating the damping

1The experimental results presented in [70] were limited in amplitude such that they
match very closely those for an exact tautochronic path.

115



ratio to the linear range, that is, below 25o. The damping ratio ζ calculated from the log

decrement is related to the absorber damping coefficient by,

µ = 2ζñ, (5.4)

where µ is the non-dimensional damping coefficient used in Chapter 4. As shown in Tabs. 5.1

& 5.2, the circular path absorber damping ratio is found to be 0.13% of critical, which yields

a damping coefficient of µ = 0.0395. As shown in Tabs. 5.1 & 5.3, the tautochronic path

absorber damping ratio is found to be 0.25% of critical, which yields a damping coefficient

of µ = 0.0675.

The system inertia ratio is defined as

ε =
mc2

J
, (5.5)

where m is the absorber mass, and J is the inertia of the rotor. The mass m and the distance

c are obtained from direct measurements and the rotor inertia J is obtained through exper-

iment. The rotor inertia is experimentally obtained by locking down the absorbers and ap-

plying increasing levels of fluctuating torque Tn sin(nθ), measuring the resulting steady-state

rotor vibrations, θ̈, at each torque level, and then computing the magnitudes of harmonics

|θ̈|n as previously described. Using a linear input-output relationship, the locked rotor in-

ertia Jlocked can be obtained from a line of best fit through the data points (Tn,|θ̈|n). The

locked rotor inertia Jlocked is related to the rotor inertia via J = Jlocked −mc
2, where J

contains the inertia of the rotor system with no absorbers plus the inertia of the absorbers

about their respective COM; see Shaw et al. [70] for more details.
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Table 5.2: System parameters for the spin rig and circular path absorber; final values chosen
that give the best match between experiments and theory.

Parameter Range Value Chosen
c (m) 0.160± 0.002 0.162
ρ0 (m) 0.040± 0.001 0.041
ζ 0.002± 0.0007 0.0013

m (kg) 0.241± 0.001 0.241

J (kg·m2) 0.0735± 0.0003 0.0732

Table 5.3: System parameters for the spin rig and tautochronic path absorber; final values
chosen that give the best match between experiments and theory.

Parameter Range Value Chosen
c (m) 0.1783± 0.001 0.1785
ρ0 (m) 0.0576± 0.0001 0.0576
ζ 0.003± 0.0006 0.0025

m (kg) 0.173± 0.001 0.173

J (kg·m2) 0.0514± 0.0002 0.0512

5.4 Results & Discussion

The full predictive capabilities of the modeling and analysis are demonstrated by comparing

simulations of the full EOM, simulations of the averaged equations, the zero damping pseudo-

energy predictions, and the experimental results for both types of absorbers. The full EOM

simulations use a short ramp input of the fluctuating torque, with a build-up duration of

one half of a torque cycle θr = π/n, as described in Chapter 4. All of the experimental

results shown here are performed at a mean rotor speed of Ω = 350 RPM. Percent overshoot

results obtained by sweeping the individual system parameters n and Γi are first shown,

followed by a summary of all results in which the parameters n, Γ and ξ are collapsed into

χ, demonstrating the utility of the scaling.

Shown in Figs. 5.4 & 5.5 (a)-(f) are the percent overshoot results obtained from exper-

iments using the circular path (Fig. 5.4) and near-tautochronic path (Fig. 5.5) absorbers,

compared with simulations of the averaged equations and the full EOM. Figures 5.4 & 5.5
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Figure 5.4: Comparison of theory and experiments for the circular path absorber. Percent
overshoot vs. n for (a) Γc = 0.223, (b) Γc = 0.372, and (c) Γc = 0.50. Percent overshoot vs.
Γc for (d) n = 1.27, (e) n = 1.28, and (f) n = 1.30.
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Figure 5.5: Comparison of theory and experiments for the near-tautochronic path absorber.
Percent overshoot vs. n for (a) Γt = 0.11, (b) Γt = 0.184, and (c) Γt = 0.21. Percent
overshoot vs. Γt for (d) n = 1.41, (e) n = 1.43, and (f) n = 1.44.
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(a)-(c) show the effect that sweeping the torque order n has on the system overshoot for

a fixed torque amplitude Γi. As the torque order n approaches the resonant tuning orders

ñ = 1.312 (circular path) and ñ = 1.449 (tautochronic path), the overshoot increases, as

expected for lightly damped systems. Figures 5.4 & 5.5 (d)-(f) show the effect that sweeping

the torque amplitude Γi has on the system overshoot for a fixed torque order n. This shows

that increasing the torque amplitude increases the percent overshoot for a fixed amount of

detuning, as expected for a softening system. In comparing Figs. 5.4 & 5.5, it is seen that

the observed overshoot levels are significantly less for the near-tautochronic absorber as com-

pared to the circular path absorber, specifically, a maximum of 100% compared to 124%.

This is primarily a result of the relative levels of softening between the two paths. A smaller

secondary effect in the reduction of the overshoot for the near-tautochronic paths is due to

the effective hardening parameter, γ, that limits the effect of the torque at moderate and

large amplitudes. For paths that are near-tautochronic, and for hardening paths, the com-

bination of the kinematic softening and the hardening parameter γ, result in a system that

does not experience a jump in the system response (unless the absorbers are undertuned,

which is undesirable and never used in practice) [68].

Order n sweeps are shown in Fig. 5.5 (a)-(c) for the near-tautochronic absorber, along

with the pseudo-energy results for both the general path and the near-tautochronic path

models, showing that the near-tautochronic path theory is more conservative than the general

path theory. Due to the fact that the torques Γc and Γt are scaled differently, three additional

plots would be needed to compare both pseudo-energy methods for the torque sweep of the

near-tautochronic absorber; these are not shown because they demonstrate the same trend

as that shown in Fig. 5.5 (a)-(c). Therefore, the near-tautochronic absorber with nonlinear
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tuning λ = 0.66 is in the region where either model can provide accurate estimates of

the overshoot. However, as one moves closer to a circular path, by reducing λ, the near-

tautochronic theory fails to capture the amount of softening in the path and will under-

predict the amount of overshoot. Similarly, moving the path towards the tautochrone, that

is, increasing λ towards λe, the near-tautochronic theory performs the best because the

general path theory is unable to capture the amount of system softening, and therefore

under-predicts the overshoot2. As discussed in Chapter 4, for nonlinear tuning between

a tautochrone and a cycloid, λe ≤ λ ≤ 1, both theories provide similar accuracy in the

overshoot estimate for excitation orders up to n = 3, beyond which the softening is not

accurately captured with the general path theory.

As a whole, the simulations of the full EOM in Figs. 5.4 & 5.5 perform the best at

predicting the experimental system overshoot. However, the averaged equations offer the

convenience of having fewer parameters and being much faster to obtain, and they are

generally conservative at estimating the experimentally observed overshoot, which is useful

for design. Lastly, the small amount of scatter in the experimental overshoot seen in Figs. 5.4

& 5.5, which is not observed in the simulations of the full EOM, is due to a combination of

the torque sign (+Γi or −Γi) at transition, as well as the transition time (ramp duration),

both of which vary among the experimental results, but are not accounted for in the model.

The scatter is not observed in the simulations of the full EOM, due to the consistency in

the torque sign (+Γi for all simulations) and the fixed ramp duration of θr = π/n. This

shows the sensitivity of the absorber overshoot to the torque profile at transition, making

2Recall that a tautochronic path system with λe is slightly softening (ξt < 0) in the
near-tautochronic theory and is linear (ξc = 0) in the general path theory. For the near-
tautochronic theory, the level of softening increases as the excitation order n and tuning
order ñ increase.
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it an important design consideration that is most easily treated through simulation. The

worst case torque profile is an abrupt transition with a torque acting in the direction that

instantaneously slows down the rotor speed, thereby reducing the absorber restoring force

and resulting in more overshoot. For non-zero initial conditions, this scenario can be made

even worse, depending on the dynamic state of the absorber at the time of the transition.

Shown in Fig. 5.6 (a) & (b) is the percent overshoot obtained from the general path

pseudo-energy solution, simulations of the averaged equations (with damping), simulations

of the full EOM, and experimental results, for the circular path absorber (Fig. 5.6 (a))

and the near-tautochronic path absorber (Fig. 5.6 (b)), which are collapsed onto the single

system parameter χc. As expected, the circular path absorbers jump shortly beyond the

point χ?, where the jump offset is due to damping. In fact, the circular path absorber jumps

at very small torque levels when the excitation order reaches the pendulum tuning order

n ≈ ñ = 1.312. In contrast, the near-tautochronic absorbers do not jump, but instead reach

their physical limits. In fact, they run well beyond their tuning order ñ = 1.449, before they

began to limit out at n = 1.48. As noted previously, it is observed that the full EOM perform

the best at predicting the experimentally measured overshoot, while the averaged equations

provide a mostly conservative estimate. In addition, not a single experimentally measured

overshoot value was observed to be above the (undamped) pseudo-energy curve, making

this curve a useful upper bound for the overshoot that one would expect during a cylinder

deactivation event. An attractive feature of this upper bound is that it is the solution of a

cubic equation, which has a closed form, and it depends on the single parameter χc.

Lastly, the introduction of the damping parameter Di offers a more accurate bound on the

overshoot. However, recall that the scaled damping coefficients Di depend on the absorber
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Figure 5.6: Comparisons of theory and experiments for the (a) circular path absorber and
the (b) near-tautochronic path absorber; percent overshoot vs. χc.
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damping coefficients µ, the excitation order n, the tuning order ñ, and the inertia ratio ε,

so that one cannot show a single overshoot curve versus χ that represents a fixed level of

damping. Fig. 5.7 shows three curves for various levels of damping, along with the same

experimental data presented in Fig. 5.6. The three curves are the zero damping general path

pseudo-energy result, Dc = 0, along with the curves generated by simulating the damped

general path averaged equations. The damping coefficient Di in the damped simulations is

computed by using the values of the damping ratio that bound the range of uncertainty (given

in Tabs. 5.2 & 5.3) for each absorber, as well as the smallest (largest) excitation order n used

in the experiments which will minimize (maximize) Di. For the circular path absorber, the

damping ratios used are ζ = 0.0013 and ζ = 0.0025, with excitation orders of n = 1.261 and

n = 1.312, which yield Dc = 0.036 and Dc = 0.152, respectively. For the near-tautochronic

path absorber, the damping ratios used are ζ = 0.0024 and ζ = 0.0036, with excitation

orders of n = 1.413 and n = 1.485, which yield Dc = 0.062 and Dc = 0.193, respectively. It

is seen that the curves that account for damping bound most of the experimentally observed

overshoot data, thus providing a more precise prediction. Such results can be used to develop

more aggressive absorber designs, provided estimates of the absorber damping are known.

5.5 Conclusions

The results presented here demonstrate the validity of the analytical predictions in Chapter

4, and provide the tools required for estimating, with confidence, absorber overshoot for

a wide range of system parameters. While the experimental results presented focused on

zero initial conditions, the analysis is quite general and is able to predict overshoot levels for

arbitrary initial conditions. In this experimental study, two types of absorbers were used, one
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with a circular path (λ = 0) and the other with a near-tautochronic path (λ = 0.66). These

two paths span about 2/3 of the parameter range for the Denman family of epicycloidal

paths. Both paths are nonlinearly softening, which are the most sensitive to changes in

the excitation parameters that lead to transient response; this makes them well suited for

testing the theoretical predictions. The experimental results show that numerical solutions

of the full equations of motion perform the best at capturing the observed overshoot, while

the general path and near-tautochronic path results obtained by simulating the damped

averaged equations were mostly conservative, but still quite accurate. In fact, the general

path results also worked well at predicting the response of the near-tautochronic absorbers,

but the reverse was not true, as expected. The pseudo-energy method provides a quick and

convenient method for determining a useful upper bound for absorber overshoot, which for

the general path is available in closed form and depends on a single system parameter χc.

For the near-tautochronic paths, the pseudo-energy method depends on two parameters,

and requires numerical solution for the root of a single equation involving elliptic functions.

However, the overshoot for most such paths, with small damping, is essentially that of a

linear system, that is, about 100%. It is worth noting that it appears that the general path

results can be used to estimate absorber overshoot for most practical absorber designs [46].

However, the full near-tautochronic results are required for excitation orders greater than

n = 3 that will operate at large amplitudes. Lastly, if estimates of the absorber damping are

known, an accurate bound on the overshoot can be obtained by simulations of the averaged

equations, and this allows for more aggressive absorber designs when compared to using the

conservative upper bound obtained from the pseudo-energy method.
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Figure 5.7: Bounding the experimental data using simulations of the damped general path
averaged equations for the (a) circular path absorber and (b) the near-tautochronic path
absorber; percent overshoot vs. χc.
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Chapter 6

Conclusions and Directions for Future

Work

The first part of this study considering improving the absorber system model by accounting

for the rollers which suspend the pendulum mass in bifilar absorber configurations. This

analysis led to the discovery of a tautochronic absorber path that accounts for roller inertia,

a previously unknown result. It was shown that when the rollers are accounted for in the

linear tuning ñ, the tautochronic path with rollers results in a forced absorber response that

is slightly more hardening than the roller-free absorber path. In addition, a perturbation

analysis extracted the leading order roller influences on the absorber kinematics, in order

to determine the accuracy of the previous roller-free assumptions on the absorber’s tuning

parameters ñ and λ. The perturbation results show that for practical roller sizes, the rollers

have a very small influence on the nonlinear tuning. Therefore, for the sizes of rollers

typically in use, one needs to include their effects only in the linear tuning in order to

achieve satisfactory performance.
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The roller investigation employed a near tautochronic path scaling [11, 14, 68, 70] on the

full equations of motion in order to perform the perturbation analysis, and for these paths

the dominant nonlinearity arises from kinematic coupling to the rotor. The other type of

scaling employed in this work is the general path scaling [5,26,52,53], which applies in cases

where the dominant nonlinearity arises from the absorber path. The resulting approximate

models obtained from these two scalings have a very similar form and can be analyzed in a

similar manner. The general path results involve polynomial nonlinearities arising from the

path, whereas the near tautochronic path results involve elliptic function nonlinearities that

arise from the absorber/rotor coupling.

At the heart of the model for the coupled absorber/rotor system is a harmonically forced

(near resonance) nonlinear oscillator, and the analysis of the transient response starts with

an investigation of the harmonically forced Duffing oscillator with cubic stiffness nonlin-

earity. The major contributions of this study include an approximate method to compute

the nonlinear percent overshoot, based on a unique scaling of the position and independent

variable that significantly simplifies the oscillators parameter dependence. Specifically, the

excitation amplitude, the system nonlinearity, and the order detuning can be combined into

a single parameter, χ. This parameter, and a damping parameter D, completely dictate

the response. The overshoot results derived here are quite fundamental and, to the author’s

knowledge, original. The nonlinear percent overshoot method makes use of the system’s

averaged equations, which yield an integral of motion in the undamped (D = 0) case [71],

by which the amplitude and phase of the system response are related to χ and the initial

conditions. This integral of motion is quartic in amplitude for non-zero initial conditions and

cubic in amplitude for zero initial conditions, and the roots can be found in closed form. The

128



roots give phase space trajectories that are a function of the response phase, χ, and initial

conditions. These transient trajectories contain the peak amplitudes and, for bistable sys-

tems, the ultimate steady state response achieved, both of which are important to absorber

design.

The scaling employed here reduces the averaged system to two parameters, χ, described

above, and D, which involves the damping. Thus, the undamped results, which provide

a useful bound for the overshoot in lightly damped systems, depend only on χ. With the

presence of damping, the averaged equations can no longer be integrated exactly, however,

an approximate integral of motion for small damping is possible, and this computation is

summarized in Appendices G & H. The payoff, in terms of analytical approximation and

its accuracy, is small in comparison with the extensive nature of these calculations, and

thus it appears to be more efficient to simply obtain the damped overshoot by simulating

the averaged equations with damping. The undamped results provide quick estimates of the

overshoot for CPVAs, which must be designed to not exceed specified amplitudes, even during

abrupt startups, making them of great practical value to absorber design. Additionally, for

the case of tautochronic absorbers [11, 14, 68, 70], the system nonlinearities are much more

complicated than the cubic term in the Duffing equation, yet the averaged equations are

integrable in the undamped case, so that similar predictive results can be achieved for that

system. Furthermore, this percent overshoot approach has also been applied to the case of

parametric resonance and it has been found to produce simpler formulas for the overshoot

than those given here. In fact, for the case of near zero initial conditions (i.e. p0 ≈ 0)

it is remarkably found that the percent overshoot is simply 100(
√

2 − 1), and is therefore

independent of the system parameters contained. Completion of these results, which include
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experimental evidence of the constant overshoot for near zero initial conditions, and an

outline for computing the overshoot for non-zero initial conditions [46], are still in progress.

These extensions suggest that the pseudo-energy approach may be quite general for weakly

nonlinear systems of a general form, and also possibly for classes of conservative, strongly

nonlinear systems with periodic excitation.

Another contribution of this work is that, for the first time, the general path [5,26,52,53]

and near tautochronic path [11, 14, 68, 70] perturbation results are formulated together in a

single, compact framework. This is useful for all investigations, and is used here to solve

the nonlinear overshoot problem. For the general path case, with negligible damping, the

formulation boils down to previously mentioned closed form expression (specifically, roots

of a cubic or quartic equation, depending on initial conditions) that depends on a single

parameter. For the near tautochronic path case, the overshoot estimate for undamped

systems depends on two parameters, and requires finding the root of an equation that involves

elliptic functions. For all path types, more accurate estimates that account for damping are

available via simulation of the averaged equations.

An experimental study of the transient response of pendulum vibration absorbers during

a simulated cylinder deactivation event demonstrated the validity of the analytical approxi-

mations. While these results focused on zero initial conditions, the analysis is quite general

and is able to predict overshoot levels for absorbers with all paths used in practice. In the

experiments, two types of absorbers are used, including a circular path absorber (λ = 0) and

a near tautochronic path absorber (λ = 0.66); these paths span about 2/3 of the total range

in the Denman family. Both paths are in the softening region of the family, which is most

sensitive to changes in the excitation parameters and the torque profile at startup, which
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makes them well suited for testing the theoretical predictions. The experimental results from

both absorbers show that the equations of motion perform best at capturing the observed

overshoot, while the averaged equations were mostly conservative, but still quite accurate.

In fact, the general path averaged equations worked well at predicting the response of the

near tautochronic absorbers, except at large amplitudes, but the reverse was not true, as

expected. The pseudo-energy method provides a quick and simple method for determining

a useful upper bound for absorber overshoot. This result is available in closed form for the

general path and depends on a single system parameter χc, and it appears that the general

path results can be used to estimate absorber overshoot for most practical absorber designs.

Lastly, if estimates of the absorber damping are known, an accurate bound on the overshoot

can be obtained by simulation of the averaged equations, and this allows for slightly more

aggressive absorber designs, when compared to using the upper bound obtained from the

pseudo-energy method.

A major issue yet to be explored is the possibility of non-synchronous transient dynamics

in multi-absorber systems. A preliminary experimental investigation of transient dynamics

using two circular path absorbers was carried out during the course of the present work.

An interesting behavior, observed in both experiments and simulations of absorbers with

slightly different levels of damping, is a transient response wherein the two absorbers start

at zero, then exchange energy in a non-synchronous manner as they begin to settle down,

but ultimately end up in a near-synchronous response, with the difference in steady-states

attributed to the different damping values. Such a response, from experiments and simula-

tions, is shown in Fig. 6.1 (a) & (b). This occurred at a torque order n = 1.292, where the

absorber motion was initially synchronous, until a critical torque amplitude was reached. As
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the torque amplitude was incremented further, the non-synchronous transient motion shown

in Fig. 6.1 (a) & (b) was observed, until a level beyond which the absorbers eventually

jumped to the upper branch steady-state, as expected. The simulation shown in Fig. 6.1

(b), using the experimentally measured system parameters, captures this bifurcation very

accurately, which is believed to be a result of the difference in the values of the equivalent

viscous damping coefficients µi between the two absorbers, since the absorbers have nearly

identical tuning orders ñ = 1.309. Also, as the difference in damping values was decreased

in simulations, this bifurcation disappeared. In addition, when the torque order was in-

creased to n = 1.302, the steady-state behavior observed by Nester was reproduced [52–54].

Specifically, at near resonance excitation n ≈ ñ, one absorber was in an inactive state (near

zero steady-state amplitude), while the other absorber was active. The transient response

leading to this must, of course, be non-synchronous. As shown in Fig. 6.2 (a), after the

first beat cycle, the transient amplitude response shows the absorber with larger damping

(black) decays to a near zero state, while the other grows to nearly twice the predicted

synchronous steady-state amplitude. A simulation using the experimentally measured pa-

rameters is shown in Fig. 6.2 (b), where it is seen that differences in viscous damping cannot

fully capture this behavior. However, the addition of Coulomb damping may capture this

behavior since Vidmar [75] observed that Coulomb damping plays a more prominent role at

smaller amplitudes, i.e, less than 10o swing angle, in these circular path absorbers. As the

torque amplitude was incremented further at order n = 1.302, a non-synchronous motion

similar to that observed in Fig. 6.1 (a) & (b) was observed, until the absorbers eventually

jumped to the upper branch. To date, this bifurcation has not been captured analytically,

but this investigation is underway. This problem is more easily tackled by performing a
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Figure 6.1: Non-synchronous transient motion to a steady-state near-synchronous response
using two circular path absorbers at torque order n = 1.292: (a) experiment and (b) sim-
ulation. Parameter values used for simulation: ñ = 1.309 (both absorbers), ζ1 = 0.002
(response shown in red), ζ2 = 0.0035 (response shown in black), T0 = 1.069 Nm, Tn = 2.919

Nm, Ω = 36.652 rad/s, J = 0.0636 kg·m2, m = 0.241 kg (both absorbers), cc = 0.162 m
(both absorbers, see Tab. 5.2), ρ0c = 0.041 m (both absorbers, see Tab. 5.2), and a ramp
of half a torque cycle in of the fluctuating torque.
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Figure 6.2: Non-synchronous transient motion to a non-synchronous steady-state at torque
order n = 1.302: (a) experiment and (b) simulation. Parameter values used for simulation:
ñ = 1.309 (both absorbers), ζ1 = 0.0013 (response shown in red), ζ2 = 0.0042 (response

shown in black), T0 = 0.937 Nm, Tn = 1.40 Nm, Ω = 36.652 rad/s, J = 0.0636 kg·m2,
m = 0.241 kg (both absorbers), cc = 0.162 m (both absorbers, see Tab. 5.2), ρ0c = 0.041
m (both absorbers, see Tab. 5.2), and a ramp of half a torque cycle in of the fluctuating
torque.
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steady-state stability analysis along similar lines to that performed in [6, 68], before a tran-

sient stability analysis is considered. Following the stability analysis using circulant matrices

in [68], one could investigate the transient stability of such a response. Of course, one would

have to assume identical absorber systems with zero damping, but such results may provide

useful bounds for lightly damped systems.

Other topics for future consideration include: more gradual transitions, transient re-

sponses of systems with absorbers tuned to multiple orders, and a more detailed investiga-

tion of the transition during cylinder deactivation, using more realistic engine torque data.

Along these lines is the design of torque profiles that minimize overshoot, such as the ramp

used in Chapter 4. An example of an experimental run demonstrating this idea is shown

in Fig. 6.3, which results in significantly less overshoot when compared to the step input.

A similar approach that may be easier to physically implement involves discretely jumping

the excitation order between off-resonant and resonant during a transition between these

two cases, by turning on and off cylinders, thus allowing the absorber amplitude to gradu-

ally build up. Analysis of these behaviors will generally require simulations, but the effort

involved in a detailed parameter study can be minimized by making use of the rescaling

developed in this work, and the averaged equations, which are much faster to simulate.
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Figure 6.3: Experimental comparison of the transient overshoot of a circular path absorber
when forced at n = 1.26 using two types of fluctuating torque inputs that have the same
magnitude but a different ramp duration. (a) Response to a near step input of the torque,
resulting in an overshoot of 94%. (b) Response to a ramp input of the torque with a duration
of 10 torque cycles, resulting in an overshoot of 15%.
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Appendix A

Order ε2 terms

The order ε2 terms for the rotor equation of motion are given by

− ε2
(
−µνg(s)s′ + 4ξa2

(
νν′ − 1

2a
νν′s′ − 1

2a
ν2s′′

)
+

+ 4δ

(
νν′
(
h2 + `2 +

1

4
r2P (s) + `yp(s) +

1

4
g(s)s′ − 1

2
`s′

∂xP (s)

∂s

)
+

+ ν2
(1

4

∂r2P (s)

∂s
s′ + 1

4

∂g(s)

∂s
s′2 + `s′

∂yP (s)

∂s
+

1

4
g(s)s′′+

− 1

2
`
∂xP (s)

∂s
s′′ − 1

2
`s′2

∂x2
P (s)

∂s2

)))
,

which completes the rotor equation of motion (2.4), since there are no higher order terms.
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Appendix B

Pendulum Path Details

Here we follow the path formulation of Denman [17], in which the local radius of path

curvature ρ is described by ρ2 = ρ2
0 − λ

2S2. Denman derives the position of the pendulum

in terms of rotating Cartesian coordinates XP and YP , which can be used to find R2
P =

X2
P + Y 2

P . The expressions for XP and YP are

XP =
ρ0

1− λ2

(
sin

(
1

λ
sin−1

(λS
ρ0

))
cos

(
sin−1

(λS
ρ0

))
+ (B.1)

− λ2S

ρ0
cos

(
1

λ
sin−1

(λS
ρ0

)))
,

and

YP = −c−
ρ0

1− λ2

(
cos

(
1

λ
sin−1

(λS
ρ0

))
cos

(
sin−1

(λS
ρ0

))
+ (B.2)

+
λ2S

ρ0
sin

(
1

λ
sin−1

(λS
ρ0

))
−1

)
.
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Using trigonometric relations one can obtain the following expression,

cos

(
sin−1

(λS
ρ0

))
=

√
1−

(λS
ρ0

)2
. (B.3)

If one substitutes equation (B.3) into equations (B.1) and (B.2), normalizes the path expres-

sions and the arc length S by c, and makes use of equation (2.5) to replace ρ0 with ñ0, the

following non-dimensional path expressions are obtained,

xP =
1

1− λ2

(
sin

(
1

λ
sin−1

(
λ(1 + ñ2

0)s
))√( 1

1 + ñ2
0

)2
−λ2s2 + (B.4)

− sλ2 cos

(
1

λ
sin−1

(
λ(1 + ñ2

0)s
)))

,

and

yP = −1+ (B.5)

− 1

1− λ2

(
cos

(
1

λ
sin−1

(
λ(1 + ñ2

0)s
))√( 1

1 + ñ2
0

)2
−λ2s2 +

+ sλ2 sin

(
1

λ
sin−1

(
λ(1 + ñ2

0)s
))
− 1

1 + ñ2
0

)
.
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Appendix C

Averaging Integrals

The integrals that result from the averaging process, and are not available in convenient

closed form, are defined by

F1(z) =
1

2π

∫ 2π

0
sin2(x)

√
1− ñ2

0(1 + ñ2
0)z2 cos2(x) dx, (C.1)

F2(z) =
1

2π

∫ 2π

0
cos2(x)

√
1− ñ2

0(1 + ñ2
0)z2 cos2(x) dx, (C.2)

and

M(z) =
1

2π

∫ 2π

0
cos(x) sin

(
1

λe0
sin−1

(
zñ0

√
1 + ñ2

0 cos(x)

))
dx. (C.3)
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Appendix D

Steady-State Amplitudes

The steady state amplitudes for branch A, branch C, and saddle branch B are given by

three of the six possible roots to equation (3.9) when χ 6= 0. The three roots are as follows,

pA(χ,D) =
1√
3χ

√
1 +

1

8
(1 + i

√
3)(3D2 − 4)λ−1/3 +

1

8
(1− i

√
3)λ1/3, (D.1)

pC(χ,D) =
1√
3χ

√
1 +

1

4
(4− 3D2)λ−1/3 +

1

4
λ1/3, (D.2)

pB(χ,D) =
1√
3χ

√
1− 1

8
(1− i

√
3)(3D2 − 4)λ−1/3 − 1

8
(1 + i

√
3)λ1/3, (D.3)

where

λ =2(27χ− 4− 9D2) + 3
√

3

√
D6 + 8D2(D2 + 2− 9χ) + 4χ(27χ− 8). (D.4)

The root pC is valid for all values of χ 6= 0. The roots pA and pB are valid in the bistable

region χ ∈ (χ?1, χ
?
2). This range is determined by the conditions on χ for these roots to be
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real, specifically,

χ?1 =
1

54

(
8 + 18D2 −

√(
4− 3D2

)3
)
, (D.5)

χ?2 =
1

54

(
8 + 18D2 +

√(
4− 3D2

)3
)
. (D.6)

For the undamped system results, roots are simply evaluated at D = 0. The linear (ξ =

0, χ = 0) steady state forced response steady is recovered from equation (3.9), and is given

by p̄ = 1√
4+D2

.
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Appendix E

Transient Response Symmetry

Similar to the steady state amplitude response, the transient amplitude response also pos-

sesses a symmetry that allows one to use the derived results to capture the case when p < 0,

which arises when σ < 0 in the rescaled system. To see this, substitute p = −k into equation

(3.12) to obtain

−χk4 + k2 − k cos(Φ) = c1, (E.1)

which, upon replacing Φ with Φ + π, one obtains

−χk4 + k2 + k cos(Φ) = c1, (E.2)

which is the same as equation (3.12). Therefore the transient trajectories for p < 0 are the

same as those for p > 0 with a phase shift of Φ+π. The percent overshoot results for p0 < 0

are obtained by computing c1 using initial conditions (|p0|, Φ0 + π). The resulting c1 is

then used in the roots given in equations (F.1) and (F.2) to find the peak amplitude pmax

for the overshoot calculation.
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Appendix F

Undamped Transient Response

Amplitudes

Here we give the full analytical results needed for the percent overshoot calculation given in

equation (3.11). The percent overshoot calculation uses the peak transient amplitude and

the steady state amplitude for a given χ and initial conditions (p0, Φ0). The two roots of the

transient equation (equation (3.12)) that contain the peak amplitudes about steady states

A and C, as explained in the text, are given by,

p1(χ,Φ, c1) =
1

2
√

3χ

(
√

2 + κ−
(

4− κ+
6
√

3χ cos(Φ)√
2 + κ

)1/2
)
, (F.1)

p2(χ,Φ, c1) =
1

2
√

3χ

(
√

2 + κ+

(
4− κ+

6
√

3χ cos(Φ)√
2 + κ

)1/2
)
, (F.2)

where κ is

κ = β

(
2

α

)1/3
+

(
α

2

)1/3
,
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and β and α are defined as follows,

β =1 + 12c1χ,

α =γ +

√
γ2 − 4β3,

γ =9χ
(

3 cos2(Φ) + 8c1

)
−2.

The constant c1 is determined by the initial conditions (p0, Φ0) and χ, specifically,

c1(χ, p0,Φ0) = −χp40 + p20 + p0 cos(Φ0). (F.3)

The roots p1 and p2 give transient trajectories as a function of the relative phase Φ, and for

D = 0 the peak occurs at Φ = 0 or Φ = π, depending on the system parameters χ and the

initial conditions (p0, Φ0). With the transient amplitude roots given here and the steady

state amplitude roots given in Appendix D, one can formulate the percent overshoot about

equilibria A and C by following the procedure given in Section 3.3.1.
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Appendix G

Amplitude Correction for Small

Damping

It is now of interest to investigate a correction to the percent overshoot calculation for

the case of small damping. As mentioned earlier, no exact integral of motion is known for

equations (3.6) and (3.7) when D 6= 0, however, an approximate solution for the case of small

damping D << 1 will be derived. The approach used here follows that of Denman’s [18],

who expands the constant of motion in a power series using the damping coefficient D and

derives n partial differential equations to be solved at each order Dn. This expansion will

only be solved up to first order in D, where the D0 order solution will recover the result

derived in equation (3.12) and the D1 solution is summarized in Appendix H. The resulting

constant of motion which is corrected for small damping is then compared with simulations

of the average equations (equations (3.6) and (3.7)) to show its accuracy. This correction

only provides an analytical result for the constant of motion, analytical results for the peak

amplitude pmax of this constant of motion are intractable and these amplitudes are obtained
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numerically and then used in the percent overshoot calculation.

Following the work of Denman’s [18], one can determine a corrected constant of motion

for the damped system by expanding the constant of motion Ψ(p,Φ, χ,D) in a power series

Ψ(p,Φ, χ,D) = Ψ0(p,Φ, χ) +DΨ1(p,Φ, χ) +D2Ψ2(p,Φ, χ) + ....., (G.1)

where Ψ0 is the constant of motion when D = 0 as found in equation (3.12) and Ψ1, Ψ2

are the first and second order corrections for the damped system, respectively. As will be

shown, the exact solution for the first order damping correction Ψ1 will be quite complicated

rendering the second order or higher corrections not practical even if an exact solution exists.

Therefore, for the remainder of the derivations the terms of order D2 and above will be

dropped from the series. To formulate the governing partial differential equation (PDE), one

takes the total derivative of equation (G.1) w.r.t ϕ which results in

dΨ

dϕ
=
∂Ψ0
∂ϕ

+
∂Ψ0
∂p

∂p

∂ϕ
+D

(
∂Ψ1
∂ϕ

+
∂Ψ1
∂p

∂p

∂ϕ

)
+ .... = 0, (G.2)

which is equal to zero since Ψ = constant and dΨ = 0. The term ∂p/∂ϕ was obtained earlier

by dividing equation (3.6) by equation (3.7) resulting in

dp

dϕ
=

p sin(Φ) +Dp2

cos(Φ) + 2p− 4χp3
, (G.3)

and this equation is no longer an exact first order differential equation when D 6= 0. The

governing PDE’s for the constants of motion Ψ0 and Ψ1 are obtained after plugging equation
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(G.3) into equation (G.2) and equating powers of D

∂Ψ0
∂ϕ

(
cos(Φ) + 2p− 4χp3

)
+
∂Ψ0
∂p

p sin(Φ) = 0, (G.4)

∂Ψ1
∂ϕ

(
cos(Φ) + 2p− 4χp3

)
+
∂Ψ1
∂p

p sin(Φ) +
∂Ψ0
∂p

p2 = 0. (G.5)

As expected, the solution to equation (G.4) is the constant of motion for the undamped

system found in equation (3.12). Using the result for Ψ0 in equation (G.5), the first order

correction Ψ1 can be obtained in closed form with the aid of Mathematica and the result

is summarized in Appendix H. Using the results for Ψ0 and Ψ1, the corrected constant of

motion to first order can be constructed from equation (G.1)

Ψ = −χp4 + p2 + p cos(Φ) +DΨ1(p,Φ, χ) = c2, (G.6)

where c2 is the constant of integration determined by the initial conditions (p0, Φ0), system

parameters χ, and the damping coefficient D. Note that there are two separate Ψ1 functions

that satisfy equation (G.5), however, the function given in Appendix H contains the desired

peak amplitude pmax which is corrected for small damping.

Shown in Fig. G.1 is the percent overshoot for zero initial conditions (c2 ≈ 0) which

includes the analytical zero damping (D = 0) result from Fig. 3.6 as well as two additional

curves for two levels of damping indicated in the Figure. Note that equation (H.1) cannot

be evaluated at p = 0 or Φ = nπ for all whole numbers n but this isn’t a problem because

as seen in Fig. 3.2 (a), (b), & (c), the damping slightly shifts the phase at which equation

(G.6) is evaluated to get the peak amplitude so that it doesn’t occur at Φ = 0 or π as in

the undamped case. The solid lines shown in Fig. G.1 are obtained by numerically solving
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equation (G.6) for pmax after setting c2 = 0 and evaluating Φ at its steady state value1

using equation (3.10). The percent overshoot is then calculated by substituting pmax and

the corresponding damped steady state amplitude obtained from either equation (D.1) or

(D.2) depending on χ. The circles shown in Fig. G.1 are simulations of the average equations

(equations (3.6) and (3.7)) for the two damping levels indicated in the Figure and undamped

simulation is not shown since it was shown in Fig. 3.6. As may be expected, the damping

increases the critical system parameter condition χ? = 4/27 shown in Fig. 3.6 and this

increases the system parameter regime for operation about the lower branch equilibria (A).

The corrected constant of motion for small damping shows a good approximation up to

about D = 0.10. Therefore, for small damping, equation (G.6) provides an alternative to

simulations of the average equations when analyzing the transient response of a system.

Lastly, it is noted the damping coefficient D of the scaled system (p, Φ) is related to the

damping coefficient µ of the original system (r, Φ) through equation (3.8) and this can be

related to the damping ratio ζ which will depend on the excitation frequency ω and the

natural frequency ω0.

1Note that this value of Φ satisfies p′ = 0 (see equation (3.6)) which corresponds to the
peak amplitude of a transient trajectory.
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Figure G.1: Depicting the percent overshoot for the damped system subject to zero initial
conditions. The damping levels include D = 0, D = 0.05, and D = 0.10 as labeled in the
figure. The solid curves are obtained by numerically solving equation (G.6) which is the
constant of motion for small damping. The circles are obtained by simulating the average
equations (equations (3.6) and (3.7)) for the two levels of damping. The damping increases
the critical system parameter χ? as shown in Fig. 3.6 and this increases the operating regime
for a transient response about the lower branch equilibria (A). The constant of motion
provides a very good approximation of the damped transient response of the system up to a
damping level of about D = 0.10.
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Appendix H

The Damped Transient Amplitude

Response Polynomial

This appendix gives the exact analytical results needed for the percent overshoot calculation

given in equation (3.11) when small damping (D << 1) is present. The damped percent

overshoot calculation uses the peak transient amplitude and the steady state amplitude for

a given set of system parameters χ, initial conditions (p0, Φ0), and the damping coefficient

D. The peak amplitudes are obtained by numerically solving equation (G.6) where Ψ1 is

the first order correction for the damped system. There exists two solutions for Ψ1 that

satisfy the PDE in equation (G.5), but the solution containing the desired peak amplitude
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information is given below

Ψ1(p,Φ, χ) =

(
−3(G1 −G3)(G1 −G4)(G4 −G2)(G2 − p

2)2H2H4χ+ (H.1)

− (G1 −G4)H1H4(G2 − p
2)2
(

3G2
2χ− 3G1G4χ+G2(3G1χ+ 3G4χ− 2)− 2p2+

+ 2χp4 − 2p cos(Φ)
)

+

+ (G1 −G2)

(
(G1 −G4)H3H4(3G1χ+ 3G2χ+ 3G3χ+ 3G4χ− 2)(G2 − p

2)2+

− (G2 −G4)
(

3G4χp
4 − 3χp6 + 3G1χ(G3 − p

2)(G4 − p
2) + 3G3χp

2(p2 −G4)
)))

/

(
2(G1 −G2)(G2 −G4)p sin(Φ)

)
,

where H1, H2, and H3 are elliptic integrals of the first, second, and third kind, respectively;

which are defined below

H1 = F (θ,m) =

∫ θ

0
(1−m sin(q)2)−1/2dq =

= F

(
sin−1

(√
(G2 −G4)(G1 − p2)

(G1 −G4)(G2 − p2)

)
,
(G2 −G3)(G1 −G4)

(G1 −G3)(G2 −G4)

)
,

H2 = E(θ,m) =

∫ θ

0
(1−m sin(q)2)1/2dq =

= E

(
sin−1

(√
(G2 −G4)(G1 − p2)

(G1 −G4)(G2 − p2)

)
,
(G2 −G3)(G1 −G4)

(G1 −G3)(G2 −G4)

)
,

H3 = Π(n, θ,m) =

∫ θ

0
(1− n sin(q)2)−1(1−m sin(q)2)−1/2dq =

= Π

(
G1 −G4
G2 −G4

, sin−1

(√
(G2 −G4)(G1 − p2)

(G1 −G4)(G2 − p2)

)
,
(G2 −G3)(G1 −G4)

(G1 −G3)(G2 −G4)

)
,
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and H4 is defined as follows

H4 =

√
(G1 −G2)(G3 − p2)

(G1 −G3)(G2 − p2)

√
(G1 −G2)(G2 −G4)(G1 − p2)(G4 − p2)

(G1 −G4)2(G2 − p2)2
.

To compute H1 through H4 and ultimately equation (H.1), the functions G1 through G4

are required which are defined below

G1 = − 1

2χ

(√
2

δ

(
J2(1− χ)− 1

)
+2− 1

3

(
J1

21/3
+ 4J2 +

J3
J1

)
− δ + 1

)
,

G2 =
1

2χ

(√
2

δ

(
J2(1− χ)− 1

)
+2− 1

3

(
J1

21/3
+ 4J2 +

J3
J1

)
− δ + 1

)
,

G3 = − 1

2χ

(√
2

δ

(
J2(χ− 1) + 1

)
+2− 1

3

(
J1

21/3
+ 4J2 +

J3
J1

)
+ δ + 1

)
,

G4 =
1

2χ

(√
2

δ

(
J2(χ− 1) + 1

)
+2− 1

3

(
J1

21/3
+ 4J2 +

J3
J1

)
+ δ + 1

)
,

where

δ =

√
1 +

1

3

(
J1

21/3
− 2J2 +

J3
J1

)
. (H.2)
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Finally, to compute the functions G1 through G4, the functions J1 through J3 are required

which are defined below

J1 =

(
2− 18χ+ 27χ2 − 24χp2 + 72χ2p2 + 120χ2p4 − 72χ3p4 − 320χ3p6 + 480χ4p8+

− 384χ5p10 + 128χ6p12+

− 24χp
(

1 + 24χ2p4 − 32χ3p6 + 16χ4p8 − χ(3 + 8p2)
)

cos(Φ)+

+ 96χ2p2(1− 2χp2)2 cos(Φ)2 − 128χ3p3 cos(Φ)3 + 3
√

3

(
χ3
(

896χ3p8 − 768χ4p10+

+ 256χ5p12 − 4(1 + 4p2)− 16χ2p4(9 + 32p2) + 9χ(3 + 16p2 + 16p4)+

− 16p
(

1 + 64χ2p4 − 96χ3p6 + 48χ4p8 − χ(9 + 16p2)
)

cos(Φ)+

+ 128χp2(1− 6χp2 + 6χ2p4) cos(Φ)2 − 256χ2p3 cos(Φ)3
))1/2

)1/3

,

J2 =

(
1 + 2χp

(
p− χp3 + cos(Φ)

))
,

J3 =21/3
(

1 + 24χ2p4 − 32χ3p6 + 16χ4p8 − 2χ(3 + 4z2)+

− 8χp(1− 2χp2)2 cos(Φ) + 16χ2p2 cos(Φ)2
)
.
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