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ABSTRACT

ELASTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA:

by

Juergen H. Staudte

The propagation of plane elastic waves in an aniso-

tropic material is investigated. Using a compact tensor nota-

tion, the theory is developed such that the fundamental quantities

necessary to describe wave propagation can be calculated. These

include the velocities of the wavefronts of the acoustic beam,

the particle displacement vectors, and the directions of the

energy flow. A computer program, which numerically calculates

these quantities, is included. A

As the wave propagation properties of light are similar

and in general, are better known, the optical theory is reviewed,

using Maxwell's equations as a basis. Light propagation is

studied by using such concepts as wave surfaces and normal velocity

surfaces; the same surfaces are generated for elastic waves from

the numerical results of the computer program. From this, the

anomaly of cuspidal edges on the wave surfaces of elastic waves

is discussed.

The similarities between conical refraction for light

and elastic waves are discussed. The pertinent quantities

associated with elastic conical refraction are calculated for

quartz.
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NOTATION CONVENTION

A vector D linearly related to a vector E in the manner

'D, E... en. en E.

Di 6;. ea," 613 EL

D
3 £3. E31 E33 E3

where 1, 2 and 3 represent x, y and 2 respectively, can be

      

written in the simpler form

Di: 6;; E3 .

Further simplification cert: be achieved by introducing the

Einstein summation convention: when a small letter subscript

occurs twice in the same term, summation with respect to that

subscript is to be automatically understood. The above equation

can, therefore, be written as

D‘ ' 5;; ES .

A quadratic term such as U: will mean U" U; and, therefore,

summation will be understood. The subscriptsi, a , k and l

will represent the coordinate components. The capital letter N

used as a subscript will only be a label for the N'th root and,

therefore, is excluded from the usual rules of tensor summation.

All summation will be understood to be from 1 to 3.

Any vector quantity such as E can have auxiliary

quantities defined as follows:

a) E the magnitude of 'E' ;

A

-

b) E the unit vector in the direction of E ;

c) El; the i'th component of the vector E .

V
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Dot above a letter denotes differentiation with

respect to time.

Unit vector along the i'th coordinate axis

Spatial coordinate: x1 = x; x = y;:x = z.
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Amplitude vector

The i'th direction cosine of the N'th elastic

displacement eigenvector

Magnetic flux density vector
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Elastic constants (rank four tensor)

The i'th direction cosine of the N'th electric
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Electric displacement

Electric field vector

Magnetic field intensity vector

Plane wave propagation vector

A.
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CHAPTER I

INTRODUCTION

The study of light and elastic wave propagation have a

common history in their early development. With the publication

of Huygens' treatise1 in 1690, the study of wave propagation began.

Since light was thought to be prepagated through the aether, which

was conceived to be an elastic solid, the elastic theory was devel-

oped to a great extent. Not until 1817 was the transverse nature

of light suggested by Young and, ten years later, incorporated

into the theory of crystal optics by Fresnelz. From this point

on, the longitudinal nature of wave pr0pagation was neglected

for some time. Christoffel3 in 1877 wrote a memoir on elastic

wave propagation in anisotropic media and developed a method for

calculating phase velocities for three plane waves originating

from an arbitrary disturbance in a plane. The technique for the

determination of the characteristic displacement vectors associated

with these plane waves was given by Lord Kelvin in his Baltimore

Lectures)+ in 190%. In 1927, Love5 developed an expression to cal-

culate the direction of the energy flow for each of the plane waves.

wave behavior in crystals is usually analyzed by studying

the propagation of a disturbance which originated at a point, or

which is a plane wave. Both concepts are useful and correct, and

they can be derived from each other. Huygens' principle considers

only point sources; plane waves can be constructed from an infinite

set of point sources. When the plane wave approach is used, the



point source can be constructed from an infinite set of plane

waves that travel in all directions. The surface of equal phase

of a disturbance that is generated by a point source is called

the wave surface. By using Huygens' construction, the direction

and velocity of energy flow fo plane source can be determined.

rA

When a disturbance is a plane wave, the velocity normal to the

plane of equal disturbance is called the normal velocity or the

phase velocity of the plane wave. In practice, the point source

approach is most useful in graphical techniques, and for con-

structing models for better comprehension of the problem; but

for analytical work, the plane wave techniques are more suitable

because more powerful mathematical methods are available.

The disturbances can be of quite different nature.

Only two will be discussed in this paper, namely the electromag-

netic wave in the form of light, and the focus of our discussion,

the elastic wave. Light is studied in Chapter II for comparison

and for the better understanding of the wave surfaces and wave

vectors or elastic waves.

Many different approaches for solving elastic wave

propagation problems have been introduced over the years. Usually

the different methods did not introduce anything new but they

rather presented the methods of Kelvin and Love in a simpler form

by taking special conditions into consideration. This paper will

discuss in detail the earlier mentioned developments in tensor

notation. The results of an experiment which renders visible



elastic waves are used to illustrate the main features of elastic

propagation in anistropic media.

From some numerical results calculated using the computer

program in Appendix C, several propagation phenomena of elastic

waves are discussed. These include the existence of bicuspidal

edges on wave surfaces. The appearance of bicuspidal edges imply

that as many as five distinct signals from a point source may be

observed. The possibility of this type of surface was first dis-

covered by Musgrave6 about ten years ago. Surfaces calculated

using the theory presented here are the same as those calculated

by Musgrave - using a different technique.

Conical refraction in optics is discussed and the basic

principles are extended to elastic waves. A numerical example is

presented for quartz. Also, a graphical method for presenting

energy flow and characteristic particle displacement is suggested

and demonstrated.



CHAPTER II

THE THEORY OF THE PROPAGATION OF LIGHT

IN ANISOTROPIC MEDIA

The fundamental properties of light proPagation in

crystals can be derived from‘Maxwell's equations. For an infinite,

homogenous, nondissipative material with no sources present, Maxwell's

equations can be written as follows:

17xE§=-%J§

V
.

(1)

V xfi: f5 , (2)

and v.6‘VOfito . (3)

The interaction of the electric field E with nonferrous materials

is of the order of 105 larger than the interaction of the mag-

netic field intensity F, . For this reason, only interactions

of the electric field with the material are considered. The

electric displacement 5 is linearly related to E by the dielec-

tric or permittivity tensor in the following manner:

0 8 00 itQ. <a,£§. (>

For convenience, we let the axes of the chosen coordin-

ate system coincide with the principal axes of the ex; quadric,

and then we can write

D,= é1E1 , w)



etc. The wave equation for an electromagnetic wave can now be

constructed by substituting Eq. 2 into the curl of Eq. 1 which

gives

.0

VXVxE=-:-§i5=v(v-§)-V’E, (6)

where [1, is the permeability(B=/J°H) and C. is the speed of

light in a vacuum. A plane wave solution of Eq. 6 will be assumed;

i.e.,

E=gexP[i(W«F-wt)]. (7)

L( is the propagation vector whose components can be written

as “La K1; where I; are direction cosines. It is also noted

that the phase velocity 17' of the plane wave is fifi' . Equation 7

can, therefore, be rewritten as

E‘éié; €XPLLK<£§X§’UL)]) (8)

where 6%L is the coordinate unit vector. Substituting Eq. 8

into Eq. 6, we get

ésx‘v‘D: -.- K‘1,;(I~E)- “11M: Ego, <9)

Simplifying and rewriting Eq. 9 in component form and noting that

Z’I‘ i , we obtain for one component

,L‘nn‘D,“ %+ AMI), (10)
ct



or
D g 2' (IO?)

’ l/1£.-§/Aozyl~
I

 

(11)

and similar expressions for the other components. If we calcu-

#

late V'D‘O , we find

£2011?)
 

 

.1_1 == C) (12)

U/EL — ”a D" ’

or on multiplying by/lo/Z'E,

1

.1; '_ C) (13)

'lfleilub"’1"' .

Let us define Vi al/EL/lr Equation 11 and Eq. 12 can now be

rewritten as

 

D = 5'1. 1' (11+)

‘ I‘D V,‘-\7’-

and

all

#1' =0 (15)

V; " 177'

Written out and simplified, Eq. 15 becomes

1 l ‘ " 16

A. “’1“ WW;- v‘) + UV:—v‘Xg— u‘) + £30,} 0%,;03:0} )

2.

Equation 16 is a quadratic equation in 13 and therefore has

1

two roots which will be written as 17" where N = l, 2. A

capital letter N used as a subscript will only be a label for



the bl 'th root and, therefore, is excluded from the usual

rules of tensor summation. These two velocities II" , known

as the characteristic or eigenvelocities, are associated with

two directions or eigenvectors into which an arbitrary electric

displacement is resolved. These eigenvectors can be calculated

by substituting tn: into Eq. 1h, which yields the components of

the displacement vectors. The direction cosines d”; of the

eigenvectors are now obtained from the normalized ratios of these

 

 

components 16’-

dNL 3 War-1 )

"5

where r", 2 , Du: z I .

'“ l ._ (17)

]r =;.lZ!2.‘: 4&3E(\fl—”Uh) '

and ”2‘ D": 1. (VII' 35') ’

 

 

Kn : D", :——£3(V‘2- £—

3 DH: £.(v;-v£~)

It can be shown that the two displacement eigenvectors are

orthogonal by using Eq. 16 to prove that their scalar product

is zero.

With the information obtained up to this point, we

can find the power flow using Poynting's theorem. The power flows

along a vector 5 , known as the Poynting vector, where

3=%(EXH). (18)



We are not interested in the magnitude of the power flow but

just the direction. The electric vector, which is necessary to

calculate 3; in Eq. 18, can be obtained from the electric dis-

placement eigenvector by using Eq. 5. Two electric vectors is”

are found and, therefore, two different gig will result. From

Maxwell's equations, we know that D is perpendicular to K ,

and both if and 15 are perpendicular to F; . Equation 18 shows

3 to be perpendicular to E and H and, therefore,“5 , E ,R,

and S are in the same plane (see Fig. 1). Figure 2 shows a three

dimensional picture of a beam of light of arbitrary displacement

A

D A

T E

*5

  A

T— f’K

3

A

5

Figure 1. DEgram showing the relationship of

vectors of an electromagnetic wave.

For a plane wave with displacement

and electric field E , the energy

will flow along 5 and the wavefronts

are normal to R . All vectors shown

are in the plans. of the paper. The

magnetic field ll (not shown) points

perpendicularly out of the paper.
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D
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Figure 2. Diagram showing the propagation .7

characteristics of an electromagnetic

wave in an anisotropic medium. The

incoming light of arbitrary polarization

upon entering the medium at B is re-

solved into two beams of discrete polar-

ization 5' and D; . The wave fronts

A, B, C and C are parallel and denote

the successive positions after increments

of unit time. The normal velocity vectors

n. , N1 show the magnitude of the vel-

ocity in the direction of the ray vectors

. , R1 indicate the ray velocities in the

directions of the power flows.
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entering an anisotropic solid at normal incidence to the surface.

Illustrated in the figure are all previously discussed vectors

for the case where the beam is split into two beams: one where

5 is parallel to E , and the other where it is not.

If R- is varied and the subsequent end points of ii.

and R; (as defined in Fig. 2) are plotted, the envelope of these

points will produce two surfaces which are the wave surfaces.

Using the same procedure for n. and N1. , two other surfaces

are produced which are the normal velocity surfaces. From

Fig. 2, we can see that h“ and ii; are perpendicular to their

respective wavefronts. The end points of F7. and R; (which

originate in the plane B) lie in the planes of their respective

wavefronts. Each wavefront will be shown later to be tangent to

a wave surface at some point. Figure 3 illustrates in two dimen-

sions the construction of both surfaces by the method described

above. The locus of endpoints of the vectors R. and n define

the wave surface and normal velocity surface, respectively. For

a particular R. and n , the line connecting the endpoints of

the two vectors will lie in the plane of the wavefront. The

construction and the relationship of the two types of surfaces

to each other can be seen in Fig. 3. Having constructed the

wave surfaces, the phase velocity and the ray direction can be

obtained graphically from Fig. h. For a plane wave of direction

5F) (see Fig. ’4), the wavefront or line?“ must be constructed

‘1.

in such a way as to be perpendicular to 0N and tangent to a point



ll

 

  
Figure 3. The wave surface (inner)and normal

velocity surface (outer; as defined by

the ray vector and normal velocity

VGCCOI‘.

9&3“:

    

 
 

Figure h. Construction of the wave surface from

the normal velocity and ray velocity.

\ M”.   
 

    
  
 

’0

a o7
o " \ "_ \

Figure‘sz Construction of the envelopes defining

plane waves from point sources using

Huygens' principle.
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on the wave surface which occurs at the only possible point of

contact. This point of contact R will give us the direction

of the ray 5? . The ray velocity is defined by the length OR ;

the normal velocity '0'” is given by ON . The polarization or

Ielectric displacement can be recovered by considering Fig. 1.

The points R , 0 , and N define the plane in which the vectors

5 , E , R , and 3 lie. Therefore, we illustrate in Fig. 1L

a simple construction that yields 5 and E . As two surfaces

exist for electromagnetic waves, the previous considerations will

hold for both, and therefore enable us to obtain the quantities

for both resolved rays.

If a point source of light were placed in a material,

generally two sets of wavefronts would emanate from this point;

each set having the shape of one of the wave surfaces. This is

true, since such a point source may be considered to be composed

of an infinite set of plane waves. Conversely, a plane source

can be thought of as an infinite set of point sources which radiate

coherently. The electric diaplacements of wave surfaces from each

of the point sources will interfere and will only have nonvanish-

ing amplitude in the envelope of all the wave surfaces. This

construction is known as Huygens' construction and is illustrated

in fig. 5.

It shall be noted that quantitatively the use of the

wave surfaces has many limitations. The graphical method which

must be applied produces only approximate numerical results.
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Moreover, these representations are limited to two dimensions.

Nevertheless, they are very useful in explaining propagation

phenomena qualitatively, in predicting anomalies, and in showing

the overall picture. Their usefulness will become obvious when

conical refraction is studied in a later chapter.

In the next chapter the same approach as used in this

chapter will be taken for obtaining some insight into the behavior

of elastic waves; also, we will draw heavily on the results of

this chapter.



CHAPTER III

THE THEORY OF THE PROPAGATION OF ELASTIC WAVES

IN ANISOTROPIC MEDIA

In order to study the behavior of elastic waves, we

must determine essentially the same vectors, surfaces and veloc-

ities as in the case of light. Again, we will construct the wave

equation and the solution will be assumed to be a plane wave. We

will let the stresses, strains and particle displacements be

linearly related to each other and nonlinear effects, which are

small, will be neglected.

For a linear anisotropic material the following tensor

relationship expresses Hooke's law:

513 " Gian. en. (19)

where 513 are the components of stress tensor, 6&1. , the strain

tensor and Ciikl are known as the elastic constants. The compon-

ents of strain are related to the particle displacement l} by

a-L 3.2L 2.9L 2

ELL glam-+3“). (O)

Newton's second law for a continuous medium can be written as

F1 = Paul (21)

where F5 is the equilibrium density of the medium. This

force F3 arises from stress gradients in the material,

1h
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F:a : :5 Gris .

25 )QL

(22)

 

Combining Eq. 21 and Eq. 22, we get the following equation for

a linear homogenous, continuous, anisotropic medium,

0- = 301:5 (23)

o 6 25)(L .

Substituting Eq. 19 and Eq. 20 into Eq. 23, we obtain the wave

 

equation:

" I 3 aUk 30..

.=-— c.. i a +..__ (an)

For the above differential equation we will assume a plane wave

solution giVen by

U" AEXP[L(V-7-wt)], (25)

The phase velocity of a plane wave is given by O:%and Ktkl,

thus the displacement U can be written

A O

U = A5 65 exp[»k(x;l.,;-ut)], (26)

Substituting Eq. 26 into Eq. 2h, we get (See Appendix A for details)

(27)

(Pill- 851 PowwAi .0)
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where [-1 ‘-’ 1,11,. C'~

(28)

Equation 27 has non-trival solutions only if the determinant of

the coefficients of A5 is equal to zero:

Fa _ 5&9on = 0° (29)

Equation 29 is a cubic equation in P031 and, therefore, we can

obtain three roots or velocities ”N . The three velocities are

the phase velocities of three plane waves with the same propaga-

tion direction I . In general, the wave of largest velocity is

mostly longitudinal in nature and is commonly called the quasi-

longitudinal wave. The other two waves are quasishear waves.

In the study of light we have seen that only two trans-

verse waves with different velocities can exist. Each eigen-

velocity is associated with a displacement eigen vector which we

calculate by substituting the eigenvelocities back into the equa-

tion for is . The same technique can be used for elastic waves

by substituting 31,: into Eq. 27. The displacement eigenvector

components can be derived by solving for the ratios of A~5(See

Appendix A). The normalized displacement eigenvector components

are again direction cosines and are written as ONL' A plane

wave of arbitrary diaplacement and direction I. will be resolved

into three orthogonal displacement eigenvectors. The displacement
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eigenvectors are completely uncoupled and therefore travel in-

dependently with their corresponding eigenvelocities. For a

particular plane wave, the amplitudes of the displacement eigen-

vectors can be written as

I - A . (30)

AN " CN e}. ON)-

where the CN‘S are the displacement amplitudes into which the

initial displacement has been resolved.

The three resolved plane waves can now be written by

inserting Eq. 30 into Eq. 26 obtaining

UN 2" CN an}, 6,; explLKUa
ia-vntfl.

(31)

As in light, we should suspect that the power flow of

each of the three possible plane waves for a given I? is not

along R- and neither parallel nor perpendicular to A" . The

components of the power flow across a unit surface that is normal

to the crystallographic axis are derived in Appendix A, and are

given as

A:

‘ ‘ (32)

fi,‘ :=’ (713“Jj .

Substituting Eq. 19, Eq. 20, and Eq. 31 into Eq. 32, we get

(See Appendix A)

.. J. a 3—3- . (33)

Eu; ‘ 2C" ‘0'” C53 in. a", (1,a~k+ ham.) .
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" P" P‘ INormalizing under the condition that N! + ”a + ”3 a ,

we obtain the direction cosines of the energy flux or the components

of the elastic Poynting vector. The angle of deviation 5" of the

elastic Poynting vectors PM from the propagation vector K can

be written as

605 5N=1LPNL (3“)

where a,” in this equation are the direction cosines. The

magnitude of the ray vector can be calculated from

17N

(RAY) COS 5»

The velocity of the disturbance which carries the energy is

‘0'" (35)

called the ray velocity and, as in light, the wavesurface can

be constructed by plotting all possible endpoints of the ray

vector. In Fig. 6 an example is given of such surfaces for

elastic waves in aluminum.

 

, I’C’m

       
Figure 6. Wave surfaces of aluminum.
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For light the deviation angles of the power flow from

the wave normals are at most a few degrees; but, for elastic waves,

deviations can be as much as a radian. The deviation of power flow

for a plane wave prOpagating in the direction o£:;;axis in quartz

was numerically calculated to be about 25 degrees for all three

waves.

For this specific case, the results of an experiment9

which renders the sound beam.visible will be used to illustrate

the properties of eigenvelocities, diSplacement eigenvectors, and

the ray deviation. Figure 7 shows the direction of power flow and

the wavefronts of a quasilongitudinal and a quasishear elastic wave.

In order to fully interpret the photographs of Figure 7,

a short review of the case of a plane wave propagating along the

Y-axis in a sample of quartz is appropriate. Figure 8 shows two

displacement eigenvectors and their associated power flow direc-

tions as calculated from known elastic constants. The third dis-

placement eigenvector is out of the page and its associated power

flow is close to power flow of the shown quasishear wave.

If a displacement is imposed along the Y-axis, as for

example, by an X-cut quartz transducer which is mounted on a

surface perpendicular to the Y-axis, two modes of displacement

can be excited simultaneously. The transducer does not have a

displacement component along the X-axis and therefore no motion

is resolved in the direction the eigenvector which is directed

along the X-axis. The quartz-air interface on the right side of
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Figure 7. Photographs showinggthe wavefronts and

power flows of quasilongitudinal (affand

quasishear (b) waves in quartz.



Figure 8.
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Schematic diagram of the displacement

eigenvector and directions of power flow

for an elastic wave propagating in the

direction 65 the y-axis in quartz.
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Figure 7 reflects the two sound beams back along the same paths

which they have traveled before reflection. By adjusting the

driving frequency of the transducer, a stationary wave can be

established. It is these two stationary waves that are rendered

visible in Figure 7.

In the lower left of Fig. 7a the outline of the x-cut

quartz transducer, whose motion is along the y-axis, can be seen.

This figure shows the quasilongitudinal mode with its wavefronts

and power flow clearly visible. The motion of the x-cut trans-

ducer is, of course, resolved into a longitudinal wave and a

transverse or shear wave. The energy flow of the quasishear wave

is downward and, therefore, is reflected about and eventually

dissipated. Consequently, this shear wave has no chance to

develop sufficient amplitude to be visible. The longitudinal

beam is spreading and therefore fills up every possible space

for this mode. The upper left and lower right triangular regions

of the block contain no sound due to reflection from the upper

and lower surfaces. If we move the transducer to the upper corner,

a longitudinal resonance is now impossible because it would be

reflected about as the quasishear wave is in Fig. 7a; however,

the shear mode can be tuned to resonance. Figure 7b shows the

quasishear mode in resonance. Due to the lower velocity of the

quasishear mode, the separation of the wavefronts is less.

In Chapter II, the electrical equivalent quantities

were derived as in this chapter. From those quantities, the

normal velocity surface, the wave surface, and the concept of
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point sources and plane waves in Huygens' construction were devel-

oped. Since the latter mentioned concepts are identical for elastic

waves, no discussion is necessary but only a short comparison is

appropriate. Of course, due to the greater complexity of elastic

waves compared to electromagnetic waves, additional anomalies

are found, and they will be discussed in the next chapter.

The question whether Huygens' construction and its con-

sequences are valid for elastic waves can, to some extent, be

answered by comparing our numerical results with numerical results

6.7
given by Musgrave who used Huygens' construction as the founda-

tion for his expressions. Musgrave transformed Eq. 27 into a form

which can be interpreted as the analytical expression of the normal

velocity surface. By studying Fig. 5, we can see that the wave

surface can be graphically obtained from the normal velocity sur-

faces by using Huygens' construction. Musgrave10 derived an

analytic expression for the points on the wave surfaces by using

the equations of the normal velocity surfaces and the equations

required for constructing the tangent surfaces. Those points on

the wave surface belong to a particular plane wave propagation

vector and therefore give the ray velocities and ray directions

directly. Musgrave calculated by his method the normal velocity

7

surfaces and the wave surfaces for some crystals of cubic and

hexagonal6 symmetry. In.Appendix C, a computer program is described

which numerically calculates all necessary quantities with the

equations given in this chapter. The expressions given in this
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chapter and the expressions given by Musgrave are mathematically

of different form. Since it is not completely obvious by looking

at the two forms that they will give the same numerical results,

several surfaces previously calculated by Musgrave were recalcu-

lated for comparison. As expccted, the results were identical

and, therefore, both methods are compatible for calculating the

direction of energy flow. The use of wave surfaces and Huygens'

principle should give us valuable clues to the behavior of elastic

waves. Fig. 6 shows such surfaces for aluminum. Its behavior is

close to isotropic and therefore the surfaces are smooth and simple.

More complicated surfaces are discussed in the next section.



CHAPTER IV

SPECIAL TOPICS

A. Wave Surfaces With Cuspidal Edges
 

A wave surface can be interpreted as the surface which

describes the boundary between the disturbed and undisturbed region

due to a wave emanating from a point source. For light, the wave

surfaces are either of one sheet or, in general, at most of two

sheets. As two wave surfaces are possible, in general, a flash from

a point source would result in two flashes when observed through an

anisotropic material far away from the source. From Fig. 6, we can

see that elastic waves have three wave surfaces and, therefore, we

would receive three pulses from a single pulse originating from a

point. If we look caredully at the wave surfaces shown in Fig. 9

and 10, we see cuSpidal edges on the wave surfaces of one shear mode.

Observation in the angular regions of the cuspidal edges will result

in the reception of as many as five pulses rather than the normal

three. This peculiar phenomenon usually occurs when the deviation

of the power flow is large. A detailed study of cuspidal edges has

been given by Musgrave8.

We can use Huygens' construction to illustrate what happens

when we consider plane waves rather than a point source. Using the

techniques previously eXplained for Fig. 5, we have explored the

bicuspidal edges on the wavesurface of KBr. In this example, the

bicuspidal edge in the [001] plane is symmetric about the <110>

direction. In Fig. 11, we have drawn tangent lines to the wave-

35
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surfaces at every point where a surface crosses the 110 direction.

The normal velocities and direction of the prOpagation vectors

were then ascertained by constructing perpendicular intersectors

which also passed through the origin. We find that five waves

have their power flow in a particular 110 direction: namely, three

wave (one longitudinal and two shear) with wave normals in the

110 direction, and two other shear waves whose respective propa-

gation directions are approximately 100 and 800 from the 100

direction. Hence, the bicuspidal edges on wavefronts can be

interpreted to mean that more than one plane wave have their

power flowsin the same direction.

Using the approximate values given above as a guide,

better values for the propagation direction with power flow in

the 110 direction were found by calculating the direction of

power flow for several propagation directions about nearly 100

from the axis. These desired propagation directions were found

to be 8.90 and 81.10 respectively.

B. Graphical Representation of Power Flow

It is now clear that wave surfaces are able to describe

elastic wave behavior in a material qualitatively; however, quan-

titatively they are not too useful except for approximate values.

Another limitation is the difficulty of representing them in three

dimensions. In order to pontray elastic wave behavior more accur-

ately in three dimensions, several graphical techniques have been
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devisedll. Figure 12 is an example of a graph which can be used

to present the direction of the power flow or the displacement

eigenvector for a particular mode in a specific material. Figure

12 shows the power flow of the quasilongitudinal mode in quartz.

This graph gives a good overall view of energy flow of one mode

in a specific material. The square grid represents the power flow

direction of the longitudinal wave and the superimposed grid repre-

sents the direction of the propagation vector ii . If ii is known

and plotted on the superimposed grid, this point read from the

square grid will give the direction of the power flow. The

reverse procedure can be used if the direction of the power flow

is known or if a particular beam direction is desired.

C. Conical Refraction

In optical biaxial crystals, light exhibits a peculiar

phenomenon, known as conical refraction. An investigation of this

phenomenon in light can be extended to elastic waves. By analyzing

the wave surfaces of optical biaxial crystals, it is found that

there are four directions where the intersection of the wave sur-

faces resembles the top of a volcano. Figure 13a shows the cross-

section of a hypothetical wave surface (this is a construct for

explanation only). If a plane wave of single propagation direc-

tion ”(0 were possible, the surface normal to 1‘0 ‘would touch

the entire rim of the volcano-like wave surfaces. In the case
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W (b)

Figure 13. Conical refraction of light in biaxial

crystals. (a) shows the cross section of

intersecting wave surfaces which1’ives

rise to conical refraction. (b) shows

the power flow of two slightly off axis

wavevectors.

where the propagation vectors deviate greatly from 12; , as F‘.

and El; shown in Fig. 13, the energy would flow, according to

Huygens' construction, to the points P. and a, for R, with

normal velocities 17“ and V“ respectively and for R1 to the

points P1 and Q3. with normal velocities 1),“ and ”a respectively.

If we let X, and R1. approach 120 , the points P. and Q1 and

P1 and Q. will be nearly at the same position and the normal

velocities will approach each other. Any finite beam of light

which propagates along “0 will consist of an infinite number of
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plane waves whose propagation vector is very nearly l‘o . Under

ordinary conditions, a narrow pencil of light can be achieved at

best. In Fig. 13b, the power flows of the two propagation vectors

are shown. A pencil of light will produce an entire cone of light.

The identical conditions are present in certain directions

in anisotropic materials for transverse elastic waves. These con-

ditions are met along trigonal axes such as in the z-direction of

quartz or in the (111) directions in certain cubic crystals. For

the above directions, the cone is circular, but in other special

directions where conical refraction occurs the cross section of the

cone is not necessarily circular. With the computer program in

the appendix, calculations have been made for conical refraction

occuring about the z-direction for quartz. The displacement eigen-

vectors and the power flows have been computed and plotted in Fig.

1h for propagation vectors which are .01 degrees off the z-axis.

Each R vector has two shear modes with their power

flows nearly 16.80 from the z-axis. In Fig. 1h, the surface of a

unit sphere is mapped into the plane of the paper with its pole

(z-axis) pointing out of the paper. Points in this plane represent

endpoints of vectors with their origin at the center of the sphere.

The endpoints of the ik vectors all lie on the dashed circle and

their corresponding power flow lie on the solid circle. Some

A

typical F< vectors are shown as solid and open dots on the dashed

circle. The intersections of the line which passes through the
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Figure 1h. Conical refraction in quartz.
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A

pole and the endpoint of a particular 1‘ vector with the solid

circle gives the corresponding power flow vectors. 0n the end-

points of the power flow vectors, the corresponding disPlacement

eigenvectors all which lie in the xy-plane, are shown as arrows.

The solid and dashed arrows correspond to solid and open dots,

respectively. The direction of the power flow and the displace-

ment vectors are very insensitive to small angular changes of the

propagation vector R from the z-axis. Any finite source will

have a distribution of a vectors about the z-axis and, there-

fore, the power will flow to all points on the solid circle.

In summation, I would like to point out that, in general,

observed light propagation phenomena in anisotropic media are a

result of the decomposition of a wave of arbitrary polarization

into two eigenpolarizations which travel independently, with

different normal velocities and ray directions. As we have seen,

this.is.alae the case in sound, and, therefore, the method of

analysis used in studying optical problems, such as ordinary

refraction, conical refraction, reflection, circular and el-

can

liptical polarization, interference, etc., andAbe directly applied

to elastic waves.



APPENDIX A

MATHEMATICAL DETAILS FOR ELASTIC WAVE PROPAGATION

In this appendix we develop the details which are

necessary in order to make proper use of the computer program

in Appendix C; at the same time, the theory outlined in Chapter

III is worked out in full. While going through the mathematical

steps, reference to the computer program is made by giving the

range of card numbers in double brackets as ((27-3h)). These

cards will be the computer program's equivalent mathematical

steps. Equation 2%, which is the wave equation of an anisotropic,

linear homogeneous solid is written as follows:

 

 

O. I

A].

POUS=TC£5H 3 (43” +430) ( )
bx); ax]. a)". '

The solution assumed for the above wave equation is a plane

wave U , (Eq. 25) where

.. In .

U = A; 8,; expthyQ " 17“]. (A2)

Differentiating Eq. A2, we obtain

bu-
t A: “Us. “221.1,. (A3)

3X; 3X; ’

and

u 1... _- . 1 1

U5 - U3 K '0'. (A11)

35
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Substituting Eq. A3 and Eq. Ah into Eq. A1, we find

1 ’- ~-.'.. . ’- 1 (A5
P,” K Ui'zcisu“ “(1,141.3 X‘A;)fi’ )

where

GL'Lthlgrvt).

1

Dividing by K 1.1, the above equation becomes

P."11“ = 2. C11“ 11(XLA.+1.A,),
(A6)

Since (3‘5“(1kAlJ is equivalent to C‘is‘lh‘I‘Ah) , Eq. A6 can be

rewritten as

= .L . (A7)

P 1.7 A3 1 21(C53uLC15Lh)Ah

Defining a new variable, namely

. = . c.. (A8)

PM. 1‘ A ‘1” 1

and noting that C “Cl , Eq. A6 can be rewritten as
Liht iith

(11(90’1553/‘111‘ 0. (A9)

The above has non-trivial solutions only if the determinant of the

coefficients is equal to zero:

 

 

Pit. .. po 17" 61h” = O ) (A10)
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The above is a cubic equation in P. '07" and therefore has three

roots. The three roots are the eigenvelocities which are associated

with three eigenvectors. The numerical calculations are made in

the computer program from card #5 through 93.

Substituting the eigenvelocities into Eq. A9, we obtain

E. - Po“: [:1 r", AN!

[:1 ’11-. 9,739: Ft) AM. ‘0.

as [:5 F33. P00: ANS

To calculate the three components of the three eigenvectors, we

    
)

solve Eqs. All simultaneously for the ratio's of the AN]... 5.
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One of the three possible forms of ratio's {3b is written as

f°11°ws= (wk-106)):

Am -.-. I

.

ra A... t ,

P1 All}: «.- Es(r:.’gv
u)” ELI-:3 . (A12)

A m RU},- 8,0,3}- TL [:3 2

{i

 

=Am = mm wan-mm

AN‘ “1(113“ 9017;)‘C3n3

 

If two or all off-diagonal terms of r are zero, as is the case

if R is along the crystal axis, the above ratios are indeter-

minate. Therefore, we must test for that condition ((57)) and

proceed to solve Eqs. All in a different way. From Eq. A10, we

can see that if all off-diagonal terms are zero, it follows that

Expat") Gk.) and the displacements are along the corresponding

crystal axis ((132-138)). If only one off-diagonal term is non-

zero, we obtain one po 17:; immediately with the corresponding

A”; being along a coordinate axis. The remaining nonzero minor

will be a quadratic equation in 9.1,; . Substituting the two roots

of the quadratic equation into Eqs. A11 and nothing that the com-

ponent of the pure displacement vector found initially will be

set to zero, we obtain the ratios of the ANA; by solving Eqs. All

simultaneously ((106-132) ) .

In order to obtain the eigendisplacement direction
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cosines a”; , we must normalize by aNL: fi/(P;f((l39-l’+5)).

The direction of power flow in an anisotropic material

can be obtained by considering the energy change in a finite vol-

ume per unit time. The energy change per unit time must be equal

to the power flow out of the volume. If the components of power

flow out of the volume are considered to be along the coordinate

axes across a unit area, the elastic equivalent to the Poynting .

vector can be obtained.

If V is the potential energy per unit volume, the

stress can be written as

3V (A13)

36“} - 61.3 ’

or

am: “Eidezg’cuuiéu dc. (Am)

Therefore, we find

5...;

.. l ..

\h/" ‘:l;¢.“ (igidalfizj ‘ ii (335 €55)
‘1

0

(A15)

The total energy per unit volume is the sum kinetic energy 1-

and potential energy W , or

6' (A16)

4- i .
E =T+W=

Ji Pot-’13.

.L ..

1‘)



The rate of change of energy in the unit volume can be obtained

by differentiating (Eq. A16) with respect to time,

E‘ Busus *z°71$€33+1°:)e~) (A17)

The last two terms can be shown to be equal by use of Hooke's

.0

law. From Eq. 22, P U; can be rewritten and substituted into

0

Eq. A16, resulting in

 

- 'am- . 30- a .
E: A U. + “—4. = .0 . (A18)

9X; ’5 "3X; aXL(G;!U5)'

The total energy change in a finite volume can thus be written

as

' 3
.. -— ' . ( )

Converting this integral into a surface integral by use of the

divergence theorem, we get

-‘ - '. (A20)
P. - Ev ~ JACK»), db,

s

where: /5; is the component of surface area normal to the

direction 1. Thus the elastic equivalent to the Poynting vector

is

P. = 01:3 0' , (A21)
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Substituting Eq. 17 and Eq. 19 into Eq. A21, we obtain

| 25‘) 2’th1 0
.g—c“ __L°_E.+_____. . (A22)

PM 2 ‘JKL( 3x1. axh)u~5’

From Eq. 30, the incident plane wave has been resolved into

diSplacement eigenvectors, where three plane waves were obtained

of the form

MC»:mi. 9.; ”P“ “1» (M1; " RN] . (A23)

Taking the time and space derivatives of Eq. A23, we obtain

 

. 1!.
U~5=-,‘,un (Nam!- (Azu)

and

3(1):. Liz
:- u~C~1 (A25)

Substituting Eq. AZH and Eq. A25 into Eq. A22, we find that

. l. 2 l. 1.
1

PAN... 1 CN kN v" an; (ONE 1!. + a,“ ‘1); 1”. (A26)

Time-averaging Eq. A26 over one cycle and noting that tif'fi?’

N

we obtain

‘1-

 

.L ’- ‘0
Puz‘zcn 1," (1.5", °~5(°~ulg* ain‘t).
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Equation A27 gives us the elastic Poynting vector with the components

of power flow across unit area in the direction of the crystal

axes. The numerical calculations have been accomplished in the

computer program by card number 1&6 through 156 and the normali-

zation is accomplished by card numbers 157 through 161.

z

The normal velocity 17” is calculated from PD’D'N by

cards 161 and 163.



APPENDIX B

INSTRUCTIONS FOR THE USE OF THE COMPUTER PROGRAM

The program, written Fortran II, calculates:

l)’ The directions of the displacement eigenvectors,

in terms of a) direction cosines,

b) angles in spherical coordinates.

2) The direction of the associated power flow,

(ray direction) in terms of

a) direction cosines

b) angles in spherical coordinates.

3) The deviation of the ray direction from the plane

wave normal.

h) The normal and ray velocities.

The input necessary for calculating these quantities

is:

l) The elastic constants of the material,

2) The density of the material,

3) The direction of propagation of the desired elastic

plane wave.

3321.12

The input is achieved in the following sequence:

Card Field Format Explanation

l 1 5A8 Reads the program name

2-10 1-9 9F7.h Inputs the elastic constants. Table

I lists the elastic constants in

sequence as they are read.

1*3



Card

11

ll

11

11

11

Field

1

2

10

Format

F10.3

F7.l

316

316

316

Ah

Explanation

Inputs density of material in kg/m3.

Inputs the divisor by which the

numbers of fields 3 through 9 are

divided. The result of this division

is the conversion of these numbers into

degrees of angle.

Reads the angles of the prOpagation

vector in spherical coordinates.

Field 3-6 determine the angle 9, with

starting angle, angle limit, and angle

steps listed, respectively.

Angles g'in spherical coordinates are

read in the same way ascthe angle 9.

The angle 6 goes through all its values

before another value is taken of the

angle 9.

The following three numbers (one in

each field) define the reference

axes for the angles 6 and fl.

1 2 3 ....¢ is rotated in the xy-plane

measured from the x-axis toward the

y-axis. 9 is referred from the z-axis.
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Card Field Format Explanation

132 ........¢ is rotated in the

xz-plane measured from the x-axis

toward the z-axis. 9 is referred

from the y-axis.

2 3 1 .....g is rotated in the yz-

plane measured from the y-axis toward

the z axis. 9 is referred from the

x-axis.

ll ll 16 The following code numbers give con-

tinuation instructions:

O....stop the program.

1....repeat card 11 with different

data.

2....read in new set of cards as

cards 1-11 with new data.

OUTPUT

For every set of calculations the direction of the

propagation vector is specified in the heading.

There are three major columns, each containing the

calculated quantities for one mode with its associated eigen-

velocity given in the last line. The abbreviations at the



Cards 1

2 11

3 16

A 15

5 16

6 12

7 1A

8 15

9 1A

10 13

2

16

66

56

66

26

A6

56

A6

36

A6

TABLE I

Fields (F7.h)

3 h 5 6 7 8 9

15 16 12 1A 15 1A 13

56 66 26 A6 56 A6 36

55 56 25 #5 55 1+5 35

56 66 26 A6 56 A6 36

25 26 22 2A 25 2A 23

A5 A6 2A AA A5 AA 3A

55 56 25 A5 55 A5 35

A5 A6 2A AA A5 AA 3A

35 36 23 3h 35 311 33

The numbers in the Table are the subscripts of

the elastic constants, e.g., on card 5, field 6,

1+6 indicates the value of theelastic constant C116

should be inputted. (For details concerning four

to two subscript conversion see Nye
11)

beginning of each line indicate the following quantities:

DVDC.

Dvm. O 0

Displacement vector given in direction

cosines showing the x,y and 2 components

respectively.

.Displacement vector given in spherical

coordinates. ‘The first angle is measured

from the x-axis and the second from thezaxis.
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PVDG....Elastic Poynting vector given in

direction cosines (same order as in

DVDC).

PVDG....Elastic Poynting vector given in sper-

ical coordinates (same order as in

DVDG).

RVDV....Ray velocity and ray deviation in

m/sec and degrees, respectively.

PLWV....Plane wave phase velocity.

As a sample problem, let us calculate the quantities which are

necessary to plot Fig. 12. The material is quartz and, therefore,

we name the program QUARTZ CRYSTAL as shown in sample data card 1.

Nye11 lists the nonzero terms and equivalent values of the elastic

constants for crystal class of symmetry 32 (such as alpha quartz).

The following relationships between the constants were given:

c11 = c22

°33 = c33

°AA = cAA

666 _ 1/2(611-612)

c12 = c12

013 = c23

c1A = c56 ='°2A

All other constants are zero.
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12

The numerical values of the constants as given by Farnell

are

C11 = .869A

c33 = 1.0680

°AA = .5762

c12 = .0696

c13 = .1560

°1A = .17A3 .

These numerical values are shown in sample cards 2 - 10.

Taking symmetry into account, we need only to vary the angle 9

through 90 degrees from the z-axis and the angle 6 through 120 degrees

in the xy-plane in order to obtain the overall power flow behavior

in a sample of quartz. The incremental angle was chosen to be

5 degrees. Sample data card 11 shows these instructions for 9 and

6.

It is recommended that several features of the program

be changed or deleted if other information is required. The refer-

ences in the theory of Appendix A, the cross reference and the flow

chart in Appendix C should enable such changes to be made without

much difficulty. For greater precision in the calculated results,

the program should be changed to double precision. By adding a

plot routine to the program, wave surfaces, angles of deviation

and many other parameters may be plotted.



101 READ 103, INP01,INF02,INP03,INPoA,INP05

APPENDIX C

COMPUTER PROGRAM

ODIMENSION 01(3,3.3),02(3.3.3).C3(3.3.3).D(3).G(3.3).V(3).S(3.3).

1DC(3.3).SN0RM(3).T(3.3).B(3),THETA1(a).FEE1(3).THETA2(3),FEE2(3).

2DIVIDE(3).RAYV(3),DEV(3)

10A DO 10 J=l,3

10

201

3200READ 609,Row,DIv,xNSTRT1,NLIM1.NSTEP1,NSTRT2,NLIM2,NSTEP2,IP,JP,KP,

331

300

111

READ 106, ((c1(J,R,L),L=1,3).K=1.3)

READ 106, ((c2(J,R,L),L=1,3),K=1.3)

READ 106, ((c3(J,K,L),L=1,3),K=1,3)

DO 201 J=1,3

DO 201 K=1, 3

D0 201 L=l,3

C1(J,K,L)=C1(J,K,L)*l.Ell

02(J,K,L)=CZ(J,K,L)*1.E11

C3(J,K,L)=C3(J,K,L)*l.Ell

lNOW

PRINT 610

PRINT 128, INF01,INP02,INF03,INP0A,INP05

PRINT 388,IP,JP,KP

NSTRT1=NSTRT1+1

NSTRT2=NSTRT2+1

NLIM1=NLD11+1

NLIM2=NLIM2+1

D0 300 ID=NSTRTT,.NLIN1,NSTEP1

DO 300 JD=NSTRT2, NLIM2,NSTEP2

DEGl=ID-l

DEG2=JD-l

DEG1=DEGl/DIV

DEG2=DEG2/DIV

RADI=DEGI*.017A5329

RAD2=D262*.017A5329

D(IP)=COSF(RAD2)*SINF(RAD1)

D(JP)=SINF(RAD1)*SINF(RAD2)

D(KP)=COSF(RAD1)

GO To 111

PRINT 7A9,DE62,IP,DE61,KP

PRINT 750:((DC(I:J):J=1)3):I=113)

PRINT 751.((FEE1(I).THEIA1(I)),I=1.3)

PRINT 752.((S(K.L).K=1.3),L=1,3)

PRINT 753,((PEE2(I),THETA2(1))I=1,3)

PRINT 755,((RAYV(I),DEV(I)), I=l.3)

PRINT 75A,v 1),v 2 ,v(3)

IF (Now-1)361,320,101

DO 113 1:1,3

G(l,I)=O.

G(2,I)=O.

G(3,I)=O.

”9

l

10

15

20

25

3O

35

MO

MS

A8
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D0 113 J=l,3 LL9

113 DC(l,J)=O. 50

D011A J=l,3

D011A I=1,3

D011A K=l.3

G(l.J)=Cl(I,J,K)*D(I)*D(K)+G(1,J)

G(2,J)=C2(I,J,K)*D(I)*D(K)+G(2,J) 55

11“ G(3,J)=03(I,J,K)*D(I)*D(K)+G(3,J)

IF (C(1,2)*G(1.3)+G(1,2)*G(2.3)+G(1.3)*G(2,3))107,302.107

107 B(1)=-G(1.1)-G(2,2)-G(3.3)

BlOV3=B(1)/3.0

(03(2)=c(1,1)*c(2,2)+c(1,1)*c(3,3)+c(2,2)*c(3,3)-c(1,2)**2-G(1,3)**2 60

l-G(2,3)**2 61

03(3)=G(1, 3)**2*G(2.2)+G(1,2)**2*G(3. 3)+G(2.3)**2*G(1.1) 62

1 -G(1,1)*G(2,2)*G(3,3)-2-0*:G(1,2)*G(1.3)*G(2,3)

AEF=B(2)-B(l)*BlOV3

BET=2.0*B10V3**3—B(2)*BlOV3+B(3) 65

BETOV2=BET/2.0

ALFOV3=ALF/3.0

CUAOV3=ALFOV3**3

SQBOV2=BETOV2**2

DEL=SQBOV2+CUAOV3 70

IP(DEL)7A0,720,730

720 GAM:SQRTF(-ALFOV3)

IF(BET)722,722,721

721 v(1) = -2.0*GAM-BlOV3

V(2)=GAM-B10V3 75

V(3)=V(2)

GO TO 750

722 V(1)=2.0*GAMrBlOV3

V(2)=-GAM-BlOV3

V(3)=V(2) 80

GO To 750

730 CUAOV3=~SQBOV2

GO TO 720

7A0 QUOT=SQBOV2/CUAOV3

ROOT=SQRTF(-QUOT) 85

11F<BEI)7A2.7A1.7A1

7A1 PHI=(l.5707963+ASINF(RO0T))/3.0

GO TO 7A3

7A2 PHI=ACOSF(ROOT)/3.0

7A3 FACT=2.0*SQRTF(-ALFOV3) 90

V(l)=FACT*COSF(PHI)-B10V3

v(2)=PACT*COSF(PHI+2.09A3951)-BlOV3

V(3)=RACT*COSP(PHI+A.1887902)-BlOV3

750 D0 210 I=1,3

T(1:I)=G(2)3)*(G(1:1)'V(I))'G(112)*G(1:3) 95

I(2,I)=G(1.3)*(G(2.2)-V(I))-G(1.2)*G(2.3)



210

116

302

303

.30A

385

306

307

309

51

T(3)I)=G(1)2)*(G(3:3)'V(I))'G(1:3)*G(253)

DC(1,l)=1.

DC(2,1)=1.

DC(3,1)=1.

DO 116 I=1,3

Dc(1‘,2)=T( 1, I) /T(2. I)

DC(I:3)=T(1)I)/T(3:I)

GO To 108

IF(G(2.3))303,30A,303

I=2

J=3

K=l

GO TO 309

IF(G(1.3))385.306,385

I=1

J=3

K=2

GO To 309

IF(G(1,2))307,308,307'

I=1

J=2

K=3

V(K)=G(K,K)

OV(I)=-5*(G(I:I)+G(J)J))

1+.5*SQRTF((G(I,I)+G(J,J))**2-A.*(G(I,I)*G(J,J)-G(I,J)**2))

OV(J)=.5*(G(I,I)+G(J,J)

308

108

119

1-.5*SQRTF((G(I,I)+G(J,J))**2-A.*(G(I,I)*G(J,J)-G(I,J)**2))

DC(K,K)=1.

DC(I,I)=1.

DC(I,J)=(V(I)-G(I,I))/G(I,J)

DC(J,I)=1.

DC(J,J)=(V(J)-G(I,I))/G(I,J)

GO TO 108

V(1)=G(1.I)

V(2)=G(2,2)

V(3)=G(3,3)

DC(1,1)=1.

DC(2,2)=1.

DC(3)3)=1°

DCNORMl=SQRTF(DC(l,l)**2+DC(1,2)**2+DC(l,3)**2)

DCNORM2=SQRTF(DC(2,l)**2+DC(2,2)**2+DC(2,3)**2)

DCNORM3=SQRTF(DC(3,l)**2+DC(3,2)**2+DC(3,3)**2)

DO 119 I=l.3

Dc(1,I)=Dc(1,I)/DCN0RM1

DC(2.I)=DC(2,I)/DCNORM2

DC(3,I)=DC(3,I)/DCNORM3

no 117 M=1,3

S(1,M)=O.

100

105

110

115

120

125

130

135

1A0

1A5

1A7



117

118

120

121

399

398

A01

A00

825

383

397

396

A03

A02

831

395

3A1
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s(2,m)=0.

S(3,M)=O.

D0118 M=1,3

D0118 I=1,3

D0118 K=l,3

D0118 L=1,3

s(1,M)=s(1,M)+c1(J,K,L)*Dc(M,J)*(DC(M,K)*D(L)+D(K)*DC(M,L))

SGZ.H%£$€25H)+CB(J,K,L)*DC(M,J)*(DC(M,K)*D(L)+D(K)*DC(M,L))

S(3.M)=S(3.M)+C3(J.K.L)*DC(M.J)*(DC(M,K)*D(L)+D(K)*DC(M.L))

D0120 I=1,3

SNORM(I)=SQRTF(S(1,I)**2+S(2,I)**2+S(3,I)**2)

s(1,I)=s(1,I)78N0RM(I)

5(2,I)=s(2,I;/SN0Rm(I)

s(3,1)=s(3,1 /SN0RM(I

DO 121 I=1,3

V(I)=SQRTF(V(I)/ROW)

D0 383 I=1,3

THETA1(I)=ACOSF(DC(I,3))

DIVIDE(I)=SINF(ABSF(THETA1(I)))

THETA1(I)=THETA1(I)*57.29578O

IF(DIVIDE(I))398,399,398

FEE1(I)=O.

GO TO 383

Dc(I,1)=Dc(I,1)/DIVIDE(I)

IF (Dc(I,1)-1.)A00,A00,A01

DC(I,1)=1.

FEE1(I)=ACOSF(DC(I,1»*57.29578O

IF (DC(I.2))825.383.383

FEEl(I)=360.00000-FEE1(I)

CONTINUE

D0 395 K=1-3

THETA2(K)=ACOSF(S(3,K))

DIVIDE(K)=SINF(ABSF(THETA2(K)))

THETA2(K)=THETA2(K)*57.295780

IF(DIVIDE(K))396,397,396

FEE2(K)=O.

GO TO 395

S(l,K)=S(l,K)/DIVIDE(K)

IF (3(1,K)-1.)A02,A02,A03

S(1,K)=l.

FEE2(K)=ACOSF(S(1,K))*57.29578O

IF(S(2.K))831.395,395

FEE2(K)=360.00000-FEE2(K)

CONTINUE

D0 3A0 I=l.3

DEv(I)=s(1.I)*D(1) +s(2 I)*D(2) +S(3,I)*D(3)

IF (DEV(I)-1.)3A2,3A2,3A1

DEV(I)=l.

1A8

1A9

150

155

160

165

I70

175

180

185

186

187

190

195
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3A2 RAYV(I)=V(I)/DEV(I)

3A0 DEv(I)=ACOSF(DEv(I)*57.295780

GO TO 331

103 FORMAT (A8,A8,A8,A8,A8)

106 FORMAT (9F7.A)

128 FORMAT(A8,A8,A8,A8,A8,///)

3880FORMAT (33X,15HROTATED IN THE ,2I3,17H PLANE,ABOUT THE ,I3,

15H-AXIS//) ,

609 FORMAT (F10.3,F7.1,10I6)

610 FORMAT (1H1)

7A90FORMAT (F8.2,lOH DEC.FROM,12,6H-AXIS,,F8.2,10H DEG:FROM,12,

15H-AXIS)

750 FORMAT (8X,5HDVDC ,3(3(E11.A.1x).3x))

751 FORMAT (8X,5HDVDG ,3(F11.A,13X,F11.A,3x))

752 FORMAT (8x,5HPVDC ,3(3(E11.A,1x),3x))

753 FORMAT (8x,5HPVDG ,3(F11.A,13x,F11.A,3x)

75A FORMAT (8X,5HPLWV ,8X,2(El3.6,6H‘M/SEC,19X),E13.6,6H'M/SEC)

755 FORMAT (8x,5HRvov ,3(F11.A,13x,F11.A,3x))

361 CONTINUE

END

SAMPLE DATA.

QUARTZ CRYSTAL

0.869A 0.0696 0.17A3 ;."" 0.17A3 0.1560 '.

o 3999 0.17A3 0.3999 0.17A3

0.17A3 0.5762 0.17A3 0.5762

0-3999 0-1743 0-3999 0.17A3

0.0696 0.869A-0.17A3 -O.17A3 0.1560

0.17A3 -0.17A3 0.5762 0.5762

0.17A3 0.5762 0.17A3 0.5762

0.17A3 -0.17A3 0.5762 0.5762

0.1560 0.1560 1.0680

2650.0 1. 5 90 5 0 120 5 1 2

2650.0 1. 9O 90 90 0 180 5 1 3

2650.0 1. 90 90 90 0 180 5 2 3

2650.0 100. 1 1 1 0 36000 A500 1 22

POTASSIUM BROMIDE

.3A60 .0580 .0580

.0505 .0505

.0505 .0505

.0505 .0505

.0580 .3A63 .0580

.0505 .0505

.0505 .0505

.0505 .0505

.0580 .0580 .3A60

2750.5 1. 90 90 90 O 90 5 1 2
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SYMBOL CROSS-REFERENCE TO COMPUTER NOTATION

ROW

V(I) ((A5 - 162))

V(I)

Cl(J,K,L)

D(I)

G(I,J)

DC(N,I)

s(I,N)

FEE1(N)

THETA1(N)

FEE2(N)

THETA2(N)

RAY V(N)

DEV(N)

5A
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