

GENETIC VARIATION IN RESISTANCE OF SCOTCH PINE TO THE EASTERN PINESHOOT BORER

Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY KIM CARLYLE STEINER 1971

44.75

.

ABSTRACT

GENETIC VARIATION IN RESISTANCE OF SCOTCH PINE TO THE EASTERN PINESHOOT BORER

By

Kim C. Steiner

Larvae of the Eucosma gloriola moth kill young twigs on Scotch pine, causing unsightly damage. To determine if some varieties of this tree are genetically resistant to Eucosma, attack was measured on 110 seedlots of Scotch pine belonging to 19 varieties. The trees were planted at three locations in southern Michigan: Allegan County (70 seedlots), Shiawassee County (76 seedlots), and Kalamazoo County (106 seedlots). Each plantation was measured in either one or two different years. Most results were consistent from plantation to plantation and year to year.

There were highly significant differences in attack among seedlots in all plantations and years, indicating that there are genetic differences in resistance. Most of the variation was due to differences among varieties. At the most heavily-attacked plantation, the short northern varieties had from 1 to 4 attacks per tree, the tall central European varieties had from 2 to 6 attacks per tree, and the medium-height southern and western varieties had from 6 to 10 attacks per tree.

Some variation was due to differences among seedlots within varieties, but no seedlots were significantly better or worse than their varietal means at every plantation.

Of the characters studied in searching for a possible mechanism of resistance, winter foliage color was most highly correlated with resistance. Yellow varieties were least-attacked and green varieties were most-attacked. Height, mineral nutrients, and resistance patterns to other insects were not related with susceptibility to attack. There was a very limited correlation between two cortical monoterpenes and resistance to eucosma.

The varieties which are most preferred for Christmas tree planting are also most susceptible to eucosma, but variety *aquitana* was the least-attacked member of this group.

GENETIC VARIATION IN RESISTANCE OF SCOTCH PINE TO THE EASTERN PINESHOOT BORER

By

Kim Carlyle Steiner

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Forestry

ACKNOWLEDGMENTS

I wish to extend my sincere gratitude to Dr. J. W. Wright. His guidance and patience were an invaluable aid to this study. I am also indebted to George Howe, Warren Nance, and Fred Hain for the use of certain data which they collected in 1968 and 1969. Finally, I wish to thank my wife, Susie, for the considerable time she spent typing the manuscript and aiding me in the collection of data. My financial support during the course of this study was provided by the National Science Foundation through its Graduate Traineeship Program.

TABLE OF CONTENTS

																						Page
LIST	OF	TABLI	ES.	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v
LIST	OF	FIGUI	RES	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vii
INTRO	DDUC	TION	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
	A B	RIEF	HIS	TOI	RY	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	THE	TRE	Ξ.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
	THE	INSI	ECT	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
	OBJ	ECTIV	JES	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
MATE	RIAL	AND	MET	ноі	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11
	THE	PLA	TAT	101	1S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11
	MEA	SURE	1ENT	OI	? A	TT	ACK	ζ	•	•	•	•	•	•	•	•	•	•	•	•	•	14
	STA	TIST	ICAL	A	IAL	YS	IS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
		Ana Ana Eva	alys alys alua	is is tic	of of on	V Se of	ari eed Va	ar 110 ari	nce ot Let	X al	Ye L I	ear Dif	:] [fe	int ere	enc	ac ces	cti S	lor	ı			
GENE	FIC	DIFFI	EREN	CES	5 I	N	RES	SIS	STA	ANC	ĊΕ	•	•	•	•	•	•	•	•	•	•	18
	DIF	FERE	ICES	W	TH	IN	AN	JD	AM	101	IG	VÆ	AR]	EJ	II	ES	•	•	•	•	•	18
	CON	SIST	ENCY	II	1 T	ΉE	RE	est	JLI	S	•	•	•	•	•	•	•	•	•	•	•	25
POSSI	IBLE	MECH	IANI	SMS	5 0	F I	RES	SIS	STA	ANC	ĊΕ	•	•	•	•	•	•	•	•	•	•	35
	GEN	ERAL	MEC	HAI	IS	MS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	35
	DIS	TINC	FIVE SCEP	FH TIH	EAT BLE		ES ARI	OH E 7	7 F CIE	RES ES	SIS •	STF •	N7	: <i>I</i>	ANI •		•	•	•	•	•	37

Page

1 (1 1	Height Color Minera Monote	l Nut	rie s	ent	s													
COMPA	RISON W	VITH	RES	SIS	TA	NCE	PA	ATI	CEF	RNS	r 3	0	OJ	THE	ER			
:	INSECTS	5	•	•	•	••	•	•	•	•	•	•	•	•	•	•	•	43
PRACTICAL	APPLIC	ATION	•	•	•	••	•	•	•	•	•	•	•	•	•	•	•	45
SUMMARY .	• • •	• • •	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	47
LIST OF REI	FERENCI	es .	•	•	•	••	•	•	•	•	•	•	•	•	•	•	•	49
APPENDIX	• • •		•	•	•	••	•	•	•	•	•	•	•	•	•	•	•	53

LIST OF TABLES

TABLE		Page
1.	Varietal differences in number of eucosma attacks per tree at each of three plantations in 1970	19
2.	Analyses of variance for number of eucosma attacks per tree at each of three plantations in 1970	20
3.	Percentage of trees attacked by eucosma in each variety in all plantations and years	21
4.	Analyses of variance for percentage of trees attacked by eucosma at each of three plantations in different years .	22
5.	Analyses of variance for percentage of trees attacked by eucosma combined over two years at each of two plantations .	27
6.	Varietal differences in percentage of trees attacked by eucosma averaged for three plantations in years of moderate infestation, with 1971 relative height averaged for four plantations	29
7.	Varietal differences in susceptibility to attack by five insect pests, as reported by Wright et al. (1966) and Wright and Wilson (1971)	44
Al.	Varietal differences in percentage of trees attacked by eucosma at Allegan and Rose Lake in 1970, a year of heavy infestation at those plantations	53

TABLE

A2.	Number of attacks by eucosma in each seedlot at all plantations in 1970, and average color grade of each seedlot at Allegan in 1970	54
A3.	Number of trees attacked by eucosma in each seedlot at all plantations and in all years	58

.

LIST OF FIGURES

FIGURE		Page
1.	Relation between percentage of trees attacked by eucosma and number of attacks per plot	. 31
2.	Relation between percentage of trees attacked by eucosma and winter foliage color	. 39

INTRODUCTION

In Michigan and other northeastern states, Scotch pine is one of the most common ornamental and Christmas trees. Its short, blue-green foliage and its excellent adaptability are two of the many features of this tree species which make it popular. Unfortunately, however, it is afflicted with several damaging insect pests. One of these insects is the eastern pineshoot borer (Eucosma gloriola Heinrich).

Although a plant species may be characterized as being susceptible to an insect pest, it is sometimes possible to find individuals of that species which are inherently resis-These resistant individuals can be bred, if desired, tant. to produce a strain that is not subject to damage by the insect. However, if the plants that are resistant come from a certain part of the species range, one need only collect seed there to get plants which are less susceptible to insect damage. This study was intended to explore the possiblity that some of the Scotch pine varieties are inherently resistant to Eucosma. Known examples of genetic differences within plant species in resistance to insects are common in crop plants, but they are relatively rare in forest trees.

A BRIEF HISTORY

The study of insect resistance in plants is quite old. As early as 1831 one apple variety was known to be more resistant than other varieties to the woolly apple aphid, Eriosoma lanigerum (Hausm.). Later in the 19th century several varieties of winter wheat were found to be resistant to the Hessian fly, Mayetiola destructor (Say). But not until the early part of this century were concentrated efforts begun in breeding for resistance. These studies were mainly on economically important food plants and their more destructive pests. In his classic book, Painter (1951) reviewed these early studies and described the theory and application of breeding for insect resistance in crop plants.

Although research in agriculture preceded that in forestry, several possible cases of genetic insect resistance in forest tree species have been reported. Unfortunately, most of these studies do not present conclusive evidence because they suffered from a lack of replication.

Some of the research was fairly early. Hall (1942) reported that he thought several races of black locust (Robinia pseudoacacia) were resistant to the locust borer (Megacyllene robiniae). Austin et al. (1945) felt that they had found possible resistance to the resin midge (Retinodiplosis sp.) in ponderosa pine (Pinus ponderosa). Those trees with glaucous or glabrous shoots were less attacked than those with viscid shoots. Miller (1950) reported that the backcross

hybrid {Pinus jeffreyi x (P. jeffreyi x P. coulteri)} was resistant to the pine reproduction weevil (Cylindrocopturus eatoni). This insect is a serious pest on Jeffrey pine, and a large-scale breeding program based on his results has been initiated (Libby, 1958).

Good evidence of insect resistance in forest trees was shown in a replicated test by Schreiner (1949). He found differences among full-sib clones of poplar (*Populus* sp.) seedlings in resistance to the Japanese beetle (*Popillia japonica*). Among the second-generation hybrid progeny of the same two species, some clones suffered no attack and others 100% attack. His paper is the earliest statistically adequate proof of genetic variability in insect resistance in forest trees.

Two recent studies in forestry show good statistical evidence of intraspecific differences in genetic resistance. Batzer (1962) demonstrated in a well-replicated experiment in Minnesota that some origins of jack pine (*Pinus banksiana*) were more susceptible than others to white pine weevil (*Pissodes strobi*). Wright et al. (1966 and 1967) studied European pine sawfly (*Neodiprion sertifer*) on Scotch pine at four replicated plantations in Michigan. In general, the resistance of a variety was correlated with its growth rate; the tallest varieties were attacked most. However, variety *uralensis* was much more resistant than expected for its height. They found that larval development was slower on that variety than on others. They also found possible differences in resistance to three other insects: white pine weevil, jack pine budworm,

and pine webworm. For a more complete review of the literature on insect resistance in forest trees, see Gerhold et al. (1966). THE TREE

Scotch pine (*Pinus sylvestris* L.) is the most widely distributed conifer in the world. It is also one of the most genetically variable forest trees. In northern Europe, where it is native, Scotch pine is the most important commercial timber species. In the United States, where it has been introduced, it is our most important plantation Christmas tree.

Its importance and variability have led to considerable study of insect resistance in Scotch pine. Much of the research has been in comparing this and other species in relative resistance to certain insects. Information on such differences is valuable in determining which species to plant on a site. Other research has been in investigating the possibilities of intraspecific differences in resistance to insects.

Scotch pine has been compared to other pines in relative susceptibility to European pine shoot moth (*Rhyacionia* buoliana) by Neugebauer (1952), Miller and Heikkenen (1959), Harris (1960), Haynes and Butcher (1962), Holst (1963), and Schönborn (1966). Bennett (1954) demonstrated that Scotch pine is more resistant to *Exoteleia pinifoliella* than lodgepole pine (*Pinus contorta*) or jack pine, possibly due to its larger number of resin canals. In an early study involving *Rhyacionia frustrana*, Graham and Baumhofer (1930) reported Scotch pine to be one of the most resistant of the five pines

studied. These authors were ahead of their time in characterizing resistance as genetic variation in two factors -preference for oviposition and ability to recover after attack.

Several possible examples of intraspecific differences in resistance have been cited for Scotch pine. In one of the earliest studies, MacAloney and Johnston (1933) reported that the "Riga strain" appeared to be most resistant to the white pine weevil; however, their report has not been substantiated by later studies. Rudolf and Patton (1966) also reported apparent genetic differences in resistance of Scotch pine to this insect.

Voûte (1940) observed that adults of *Pissodes piniphilus* seemed to prefer certain individual trees for oviposition. These trees were not diseased or weakened, and no other reason could be found for this preference. Skuhravý and Hochmut (1969) reported that certain geographic origins of Scotch pine were attacked more than others by *Thecodiplosis brachyntera*.

In the only replicated experiment to date, Wright et al. (1966 and 1967) found that resistance to European pine sawfly differed significantly among varieties of Scotch pine at four plantations. In smaller experiments they also found significant differences among varieties in attack by three other insects.

THE INSECT

The eastern pineshoot borer (Eucosma gloriola Heinrich, Lepidoptera, Olethreutidae), commonly called eucosma, is a pest of Scotch pine. This insect occurs east of the Rocky Mountains in Canada and the northern United States. In addition to Scotch pine, it has been reported to attack eastern white pine (Pinus strobus), red pine (P. resinosa), Austrian pine (P. nigra), pitch pine (P. rigida), jack pine, mugho pine (P. mugho), Norway spruce (Picea abies) and Douglas-fir (Pseudotsuga menziesii). However, its favorite hosts are eastern white pine and Scotch pine (Drooz, 1960).

Adults of eucosma are coppery-red moths with wing spans of about one-half inch. In late April or early May the females deposit their eggs on the needle sheaths of the trees' new growth. After a period of two to four weeks the larvae hatch and bore directly into the twigs. Usually only one larva per brood will survive to reach the pith of the twig. Once inside it mines up and down the pith from just above the node to near the tip.

The larvae become 1/2 to 1 inch in length. They feed until July when they bore exit holes, drop to the ground, and pupate. The damage to the trees occurs when the larvae girdle the stems from the inside shortly before exiting. This is considered to be an adaptive mechanism that prevents the insects from becoming entrapped in pitch as they leave the shoots. The attacked shoots die by late summer. For a more

complete description of the insect and its damage, see Drooz (1960) and Newman (1968).

Damage caused by *E. gloriola* is similar to that of *Rhyacionia frustrana*, the Nantucket pine tip moth. Drooz (1960) stated that the importance of *E. gloriola* has gone unrecognized because of its confusion in the past with this other, better-known species.

Another similar species is Eucosma sonomana Kearfott. The life history of this insect is the same as that of E. gloriola. In fact, Heinrich, (1931) in his original description of E. gloriola, stated that it may be a race of E. sonomana. The hosts of these two species are similar; however, the latter has also been reported on ponderosa pine and Engelmann spruce (Picea engelmannii). DeBoo (1967) examined specimens referred to as E. sonomana on jack pine in Minnesota and concluded that the insect was actually E. gloriola and that E. sonomana is restricted to the western states where ponderosa pine grows. According to Butcher and Hodson (1949), damage from E. sonomana has also been often attributed to Rhyacionia frustrana.

Damage from *Eucosma* sp. is sometimes important. Drooz (1960) reported that high incidence of leader attack by *E. gloriola* on Scotch pine is a serious problem to Christmas tree growers. Butcher and Hodson (1949) and Shenefelt and Benjamin (1955) observed, respectively, up to 70% and 90% of the leaders on jack pine to be destroyed by *E. sonomana* (or *E. gloriola*). Repeated attacks reduced growth and

resulted in a bushy appearance characterized by the absence of a dominant leader.

Genetic studies on resistance to either *E. gloriola* or *E. sonomana* are inconclusive and have been performed only on jack pine. In a study of eight geographic origins in a 9year old plantation of this tree species, Butcher and Hodson (1949) reported possible differences in susceptibility to *E. sonomana* (or *E. gloriola*). However, they were cautious in attaching significance to the results since diversity with respect to site and age had not been considered in the analysis. These results were contradicted by those of Schantz-Hansen and Jensen (1952) from a study done on jack pine in the same area (in Minnesota). They found no relation between source of seed and the amount of infestation. In their analysis, they included 32 origins, from New Brunswick and Maine to Alberta and Minnesota.

More recently, King (1971) reported a study of *E*. *gloriola* attack on 11 replicated plantations of jack pine in Minnesota, Wisconsin, and Michigan. The plantations included 26 geographic origins from these three states. None of the 8 plantations which were attacked five years after planting showed significant differences among seed sources in amount of attack. However, three of the four plantations which were heavily attacked 10 years after planting showed significant differences among seed sources. Seed source x plantation interaction was also significant. Most of the variation was explained by a negative correlation between attack incidence and 10-year height.

OBJECTIVES

The principal objective of the present study was to determine if there are genetic differences among varieties and among seedlots (seed sources) within varieties of Scotch pine in resistance to attack by *Eucosma gloriola*. A secondary objective was to determine the possible mechanism of resistance by attempting to correlate attack with other genetically-controlled and variable characteristics of this tree species.

MATERIAL AND METHODS

THE PLANTATIONS

In 1961, Michigan Agricultural Experiment Station, in cooperation with other states, established several plantations of Scotch pine as part of the NC-51 range-wide provenance test of this species. These plantations were established with 2-0 seedlings grown from seed obtained in 110 native stands of Scotch pine, although every stand is not necessarily represented in each plantation. In the present study the offspring of a single stand are referred to as a seedlot. These 110 seedlots represent the entire range of this species in Europe and Asia.

The plantations are arranged in a randomized complete block design, with an 8 x 8 foot spacing between trees. Each seedlot is represented once in each block by a 4-tree plot. Further details of the history and design of these plantations can be found in Wright and Bull (1963).

This experiment has been the basis of many studies on Scotch pine. Wright and Bull (1963) studied geographic variation on the basis of seedling performance. Steinbeck (1965) examined trees in some of the plantations for differences among the seedlots in foliar mineral accumulation. Wright et al. (1966) analyzed variation in mortality, growth

rate, winter color, needle length, winter injury, flower production, and susceptibility to four insects at 31 plantations in eight north-central states. Ruby (1964) used the material for part of his work on the taxonomy of Scotch pine. He recognized 21 varieties of this species. Wright et al. (1967) detected differences among the varieties in resistance to European pine sawfly. Tobolski (1968) used the plantations for part of his study on the variation in monoterpene composition among varieties and half-sib families of Scotch pine.

The location and size of the three plantations used in my study are given in the following tabulation. Further descriptions are contained in the succeeding paragraphs.

Plantation	County	North Lat. 0	West Long. 0	No. of Seedlots	No. of Blocks
Allegan	Allegan	42.5	86.0	70	10
Rose Lake	Shiawassee	42.8	84.3	76	7
Kellogg	Kalamazoo	42.3	85.3	106	6

Allegan Recreation Area is located near the town of Allegan, Michigan. The Scotch pine plantation here was nearly perfect for this study. The trees were well-formed, mortality had been negligible, and damage from winter injury and other insects was very slight. The plantation occupies a level site and is well-separated from other tall trees. Average height was the lowest of any plantation, probably due

to the sandy, infertile soil. The canopy was still open at the time of this study. Eucosma infestation was heavy in 1970.

Rose Lake Wildlife Experiment Station is located 10 miles northeast of Michigan State University, East Lansing, Michigan. The Scotch pine plantation, located on a gentle slope, is bordered by a gravel road, a small grassy field, a hedge of multiflora rose, and a tall Scotch pine windbreak. Some trees were more than 20 feet tall at the time of this study, and the canopy was beginning to close. Eucosma infestation was heavy in 1970.

W. K. Kellogg Experimental Forest is located 15 miles from Battle Creek, Michigan. The site is rolling, and the Scotch pine plantation occupies the middle and both sides of a large draw. In places the slope is as much as 30%. This plantation is surrounded by other plantations, but it is separated from them by fire lanes. Many trees exceeded 20 feet in height at the time of this study, and the canopy was beginning to close. Some slower-growing seedlots were less than knee height, but this was true at all plantations. Eucosma infestation was light at this plantation in 1970.

MEASUREMENT OF ATTACK

As early as 1968, Eucosma gloriola began to invade these plantations. In the autumn of that year, George Howe and Warren Nance, graduate students at Michigan State University, counted the number of trees attacked in each plot at Allegan. In the autumn of 1969, Fred Hain, another graduate student, counted the number of trees attacked by this insect at Rose Lake.

This was the situation when, at the suggestion of Dr. J. W. Wright, I elected to look for possible variation in resistance to this insect. In the autumn of 1970, I counted the number of trees attacked at the Kellogg plantation and made new counts at the Allegan and Rose Lake plantations. Measurements were also made of the total number of attacks in each plot (4 trees).

The measurements to be statistically analyzed comprised eight sets of data: the number of attacks per plot at Allegan (1970), Rose Lake (1970), and Kellogg (1970); and the number of trees attacked per plot at Allegan (1968), Allegan (1970), Rose Lake (1969), Rose Lake (1970), and Kellogg (1970).

STATISTICAL ANALYSIS

Analysis of Variance

An analysis of variance was performed on each of the 8 sets of data using the plot totals as items. When there were one or two trees dead on a plot, the plot totals were adjusted to a 4-tree basis. If there were more than two trees dead on a plot, that plot was not considered in the analysis. For missing plots I substituted the seedlot mean, and subtracted an appropriate number of degrees of freedom from the error term.

The total variation in attack for each set of data was separated into the variances due to blocks, error, and seedlots. The seedlot variance was then separated into that due to variety differences (using varieties recognized by Ruby, 1964) and that due to seedlot-within-variety differences. In order to determine the levels of significance, the seedlot-within-variety variance term was tested against the error variance of seedlots within varieties.

Analysis of Seedlot X Year Interaction

Seedlot x year interaction is an estimate of the differences between years in the relative incidence of attack among seedlots in the same plantation. I calculated the 1968 versus 1970 interaction for Allegan and the 1969 versus 1970 interaction for Rose Lake, using data on percentage of

trees attacked. The interaction variance term for each plantation was tested over its pooled error variance to determine significance.

There was one important problem associated with testing the seedlot x year interaction terms. At each plantation the error variances for the two years were unequal. Cochran and Cox (1957) give a conservative procedure to follow in such cases. I applied both their procedure and the normal procedure to the analyses and obtained the same significance levels.

Evaluation of Varietal Differences

Number of attacks per tree. To determine the significance of individual varietal differences for these data, I used the Student-Newman-Keuls least significant range procedure (Sokal and Rohlf, 1969), which is one of the more conservative multiple range tests. I applied the test separately to the data for each plantation. In this method the significance of the difference between two varieties is based upon their distance apart in rank, their sample sizes, and the error variance. Because the varieties often had unequal sample sizes, it was necessary to employ weighted averages.

Number of trees attacked per plot. To analyze these data, I chose to use one of the tests for proportions which approximate the Chi-Square distribution. For this purpose

the data were converted into percentage of trees attacked in each variety.

A preliminary test using the "chi-square" test of differences showed that Allegan (1970) and Rose Lake (1970) were so highly attacked that very few differences could be found. For this reason these plantations were ignored for those years, and the results for the remaining plantations and years were combined to obtain an overall percentage of attack for each variety.

These proportions were analyzed by the G-statistic of Sokal and Rohlf (1969). Each variety was compared to every other variety. A significant difference in this test is based upon the magnitude of difference between the observed proportion of trees attacked and the expected proportion. The expected proportion is calculated on the assumption that there exists no real difference between the varieties.

GENETIC DIFFERENCES IN RESISTANCE

DIFFERENCES WITHIN AND AMONG VARIETIES

There were highly significant differences in attack among seedlots, indicating that there are genetic differences in resistance. This was true at all plantations and in all years (Tables 1 to 4). Most of the variation among seedlots was due to differences among varieties rather than differences among seedlots within varieties -- as indicated by the smaller F-values of the latter. This tends to support Ruby's (1964) method of grouping the seedlots into varieties.

Consequently, the differences within varieties were less consistent. At Rose Lake (1970) this variance term was significant for both number of attacks per tree and percentage of trees attacked, and at Allegan (1970) it was significant for number of attacks per tree (Tables 2 and 4). But all other plantations and years did not show significant differences among seedlots within varieties. No particular seedlots departed significantly from the varietal averages in all plantations or in all years.

Wright et al. (1966) stated that the within-variety variation in the traits they measured was best considered to be geographically at random. This seems to be true for

piantat differe	nt at th	тэ/0. е 5% lev	/arieties /el.		па битл	ם אמוונים	Tercet	מולדמ שונה	דדדכמוורדל
					Rank				
Variety				1=fev	rest att	acks		Signific	ance
of Scotch	Atta	cks per	tree	19 = mc	ost atta	cks	0	f differ	ences
pine	Alle-	Rose	Kell-	Alle-	Rose	Kell-	Alle-	Rose	Kell-
	gan	Lake	ogg	gan	Lake	ogg	gan	Lake	ogg
		Scandina	avian and	Siberia	ın Varie	ties			
lapponica	1.0	1.4	•1	7	2	Ч	ർ	ab	b
mongolica	۳ .	°.	.2	г	Ч	2	ъ	Q	ab
altaica	2.7	2.0	۳ .	ო	ო	4	д	ab	ab
septentrionalis	4.0	3.1	ო •	8	6	ഗ	cđ	ab	ab
rigensis	4.1	3 . 9	.4	ი	11	9	cq	ab	ab
uralensis	4.7	2.5	• 2	13	ഹ	m	q	ab	ab
		Cer	itral Eur	opean Va	irieties				
polonica	3.0	2.0	1.1	۵	4	17	рc	ab	bcd
рогиввіса	3.2	2.7	.6	9	7	ი	рc	ab	abc
hercynica	3.6	3.7	.7	7	10	11	bcd	ab	abc
haguenensis	2.8	2.6	• 6	4	9	8	q	ab	abc
'East Anglia'	1 1	3.1	°.	I	ω	7	 	ab	abc
pannonica	5.0	5.5	8.	14	13	12	de	abc	abcd
illyrica	4.5	4.7	1.0	11	12	15	cđ	abc	bcd
		West a	and South	Europea	ın Varie	ties			
'North Italy'	1 1	9.1	1.0	ı	17	16	1	ק	bcd
scotica	1 1	10.1	• 0	I	19	10		ש	abc
iberica	4.4	9.3	1.3	10	18	19	cđ	ק	ש
aquitana	4.7	7.4	1.0	12	15	13	ק	cq	bcd
rhodopaea	۰ م	9°0	1.2	15	14	18	e e	bc	cd t
armena	0.0	0.1	л•т	QT	٥T	L 4	D	J.	nca

Table 1.--Varietal differences in number of eucosma attacks per tree at each of three

Plantation and year	Block	Variety	Seedlot within variety	Error
		Degrees	of Freedom	
Allegan (1970)	9	16	53	603
Rose Lake (1970)	6	19	56	419
Kellogg (1970)	5	19	86	508
		Mean S	quares	
Allegan (1970)	229.5522 ^a	820.2825	122.7362	35.0977
Rose Lake (1970)	1551.1550	2581.9478	226.6273	167.3841
Kellogg (1970)	13.8080	54.9373	6.2298	5.8371
		F - Va	alues	
Allegan (1970)	6.54***	6.68***	3.50***	
Rose Lake (1970)	9.27***	11.39***	1.35*	
Kellogg (1970)	2.37*	8.82***	1.07	

Table 2.--Analyses of variance for number of eucosma attacks per tree at each of three plantations in 1970.

a) Analyses were computed using 4-tree plot totals. Divide mean squares by 16 to convert to a per-tree basis.

*, ***) Indicates significance at the 5 and 0.1% levels, respectively.

Variety	Perc	ent o	f trees a	attack	ed at	
of Scotch			_			Weighted
pine	<u>_AIIe</u> 1968	gan 1970	<u></u>	1970	<u>Kellogg</u> 1970	average
					1370	
Scand	linavian	and	Siberian	Varie	ties	
lapponica	2	49	25	79	5	24
mongolica		18	0	32	15	16
altaica	11	88	30	75	18	48
septentrionalis	15	94	25	80	22	50
rigensis	25	98	38	81	33	59
uralensis	14	98	24	73	15	48
	Central	Euroj	pean Vari	ieties		
polonica	27	96	29	79	58	61
borussica	32	98	38	73	33	59
hercynica	37	95	42	82	47	63
haguenensis	40	94	37	76	38	59
'East Anglia'			32	75	38	46
pannonica	36	100	54	89	46	69
illyrica	25	100	46	86	63	67
Wes	t and S	outh 1	European	Varie	ties	
'North Italy'			58	92	54	69
s cotica			36	100	43	52
iberica	52	98	61	94	59	75
aquitana	45	99	49	94	50	68
rhodopaea	52	99	49	95	56	72
armena	42	99	60	95	49	68
Plantation mean	32	93	40	83	39	59

Table 3.--Percentage of trees attacked by eucosma in each variety in all plantations and years.

Plantation and year	Block	Variety	Seedlot within variety	Error
		Degrees d	of Freedom	
Allegan (1968) Allegan (1970) Rose Lake (1969) Rose Lake (1970) Kellogg (1970)	6 9 6 5	15 16 19 19 19	53 53 56 56 86	393 605 431 419 508
		Mean So	quares	
Allegan (1968) Allegan (1970) Rose Lake (1969) Rose Lake (1970) Kellogg (1970)	6.2750ª .3911 34.7183 8.5450 2.7220	9.7500 10.6043 7.2179 4.0463 12.0742	1.4989 .3384 1.2291 1.1084 1.1331	1.2143 .2479 .9477 .6986 1.1257
		F - Va	alues	
Allegan (1968) Allegan (1970) Rose Lake (1969) Rose Lake (1970) Kellogg (1970)	5.17*** 1.58 36.63*** 12.23*** 2.42*	6.50*** 31.34*** 5.87*** 3.65*** 10.66***	1.23 1.36 1.30 1.59** 1.01	

Table 4.--Analyses of variance for percentage of trees attacked by eucosma at each of three plantations in different years.

a) Analyses were computed using numbers of trees attacked per plot.

*, **, ***) Indicates significance at the 5, 1, and 0.1% levels, respectively.

resistance to eucosma attack, also. In any particular variety, northern seedlots performed the same, on the average, as southern seedlots. However, considering the means of all varieties, there was a noticeable north to south trend in number of attacks per tree (Table 1). Northern varieties were attacked least and southern varieties were attacked most. This is in agreement with the results of studies on other genetically variable traits in Scotch pine. Most characters which vary do so in a north to south manner (Wright and Bull, 1963).

There was one striking departure from the latitudinal trend. This occurred at Allegan. The northern Asian variety *uralensis* had significantly more attacks per tree than some of the central European varieties. This was also true to a lesser extent for the northern European varieties *septentrionalis* and *rigensis*.

Table 1 shows which varieties differed from one another in average number of attacks per tree. At Rose Lake all northern and central European varieties were not significantly different. The western European variety *scotica* was most highly attacked and tended to group with the southern European varieties. Of the southern varieties, *rhodopaea*, with the fewest attacks in this group, was most unlike the others. At Kellogg all varieties except for three were not significantly different. This was because of the overall low degree of infestation. Variety *lapponica* had significantly

fewer attacks per tree than varieties *rhodopaea* and *iberica*, but the latter were not significantly different from one another.

Among the varieties which performed most consistently, mongolica and lapponica warrant special comment. At all plantations (Tables 1 and 3) these varieties were least attacked. This was probably because they are by far the shortest of all the varieties and offer only small targets for attack. This was especially true at Allegan, where occasional individuals in these varieties were less than one foot tall at age 11.

CONSISTENCY IN THE RESULTS

In Tables 1 and 3 I list the number of attacks per tree and the percentage of trees attacked in each variety for all plantations and years. These tables show good consistency in the results from different plantations and years. Nevertheless, there were a few apparent variety x plantation interactions. Some can be explained as probable artifacts. For example, in Table 1 the unusually high (relative to other plantations) number of attacks on variety *uralensis* at Allegan is largely due to two exceptional plots. The other 18 plots in that variety were much less attacked.

Several inconsistencies, however, cannot be explained in this manner. In Table 1, variety *scotica* had relatively many more attacks per tree at Rose Lake than at Kellogg; and variety *iberica* had relatively fewer attacks per tree at Allegan than at Rose Lake and Kellogg. In Table 3, variety *polonica* had a relatively larger percentage of trees attacked at Kellogg than at Allegan (1968) and Rose Lake (1969); and variety *illyrica* had a relatively smaller percentage of trees attacked at Allegan (1968) than at Rose Lake (1969), and a relatively larger percentage of trees attacked at Kellogg than at Rose Lake (1969).

The data offer no clues to the reasons for these apparent interactions. However, interaction of insect
resistance with site is not unusual. According to Painter (1951) edaphic factors can influence insect resistance in a plant. Thus, differences in the responses of varieties to an edaphic factor can indirectly affect their relative insect resistance.

Two plantations were statistically analyzed for consistency in the results from different years (Table 5). Seedlot x year interaction was highly significant at Allegan (1968 and 1970), but not significant at Rose Lake (1969 and 1970). Inspection of Table 3 reveals the source of the inconsistency in results between years at Allegan. The interaction may be considered an artifact due to differences in insect population levels in different years rather than differences in the relative resistance of some varieties. Many varieties which were significantly different in 1968 were virtually the same in 1970, causing the interaction term in Table 5 to be significant.

The fact that differences among varieties in percentage of trees attacked decreased under high levels of insect population does not necessarily mean there are no genetic differences in resistance. Insect resistance in plants usually exhibits continuous variation. It is rarely an absolute, all or none, character. Under high population levels the chances become proportionately smaller of a tree escaping attack entirely.

				
Plantation and year	Year	Seedlot	Seedlot x year	Pooled error
		Degrees o	f Freedom	
Allegan (1968 and 1970)	1	69	69	998
Ro se Lake (1969 and 1970)	1	75	75	850
		Mean S	quares	
Allegan (1968 and 1970)	1779.48 ^a	4.2499	1.8662	.6458
Rose Lake (1969 and 1970)	783.43	3.6385	.9604	.8232
		F - V	alues	
Allegan (1968 and 1970)	953.63***	2.16**	2.89***	
Rose Lake (1969 and 1970)	816.07***	3.79***	1.17	
a) Analyses were per plot.	computed usi	.ng numbers	of trees a	ttacked

Table 5.--Analyses of variance for percentage of trees attacked by eucosma combined over two years at each of two plantations. Seedlot variation is principally due to varietal differences.

, *) Indicates significance at the 1 and 0.1% levels, respectively. Although high population levels can increase the absolute number of attacks per tree, the relative number of attacks per tree should not be affected if differences are due to genetic resistance. So it is that Allegan (1970) showed few differences in percentage of trees attacked (Table 3) but many in number of attacks per tree (Table 1). For example, haguenensis and septentrionalis both had 94% of their trees attacked at Allegan in 1970, but the former averaged 2.8 attacks per tree and the latter averaged 4.0 attacks per tree, a difference which is significant. The conclusion that there are genetic differences in resistance to eucosma is not weakened by the lack of differences in percentage of trees attacked at Allegan (1970).

It is interesting to note that although the attack level was high at Allegan in 1970, there were a few individual trees that escaped attack entirely, even in the varieties which had many attacks per tree. This was emphasized in the field where I occasionally observed a single unattacked tree in an otherwise highly-attacked 4-tree plot.

Almost all trees were attacked in years of heavy infestation. Therefore, to look at differences among varieties in percentage of trees attacked, I used only the data from years of moderate infestation: Allegan (1968), Rose Lake (1969), and Kellogg (1970). Table 6

Table 6.--Varietal differences in percentage of trees attacked by eucosma averaged for three plantations in years of moderate infestation¹, with 1971 relative height averaged for four plantations². Varieties not sharing the same letter are significantly different at the 5% level.

Variety of Trees attacked		Significance	Relative height
Scotch pine (% of total)		of differences	(% of mean) ³
Sca	andinavian and Si	berian Varietie s	
lapponica	7	a	55
mongolica	9	ab	93
altaica	18	abc	76
septentrionalis	21	bcde	82
rigensis	31	cdef	96
uralensis	19 Central Europea	abcd n Varieties	92
polonica	37	fgh	112
borussica	34	defg	112
hercynica	42	fghij	119
haguenensis	38	fgh	124
'East Anglia'	36	efgh	111
pannonica	47	fghijk	114
illyrica	44	fghijk	110
We	est and South Eur	opean Varieties	
'North Italy'	56	jk	101
scotica	41	fghi	99
iberica	58	k	86
aquitana	49	ghijk	106
rhodopaea	53	ijk	104
armena	51	hijk	94

¹) Allegan (1968), Rose Lake (1969), and Kellogg (1970).

²) Kellogg and three similar plantations in Cass, Newaygo, and Crawford counties in southern Michigan.

³) Mean height of the four plantations was 12.1 feet.

shows specifically which varieties differed significantly from one another at these combined plantations using the G-statistic of Sokal and Rohlf (1969).

This made it possible to look at consistency in results between number of attacks per tree and percentage of trees attacked. In general the results presented in Table 6 agree well with those presented in Table 1. To be more certain of this consistency, I regressed mean number of attacks per plot (a function of mean number of attacks per tree) for those seedlots common to all plantations on the percentages of trees attacked in those seedlots at Allegan (1968), Rose Lake (1969), and Kellogg (1970):

Source	df	Mean Squares	F
Regression	1	584.11	47.72***
Residual	56	12.24	
Total	57		

***) Indicates significance at the 0.1% level.

The significance of the regression shows that the two measurements agreed well in their results (r = .68).

In Figure 1, I have plotted mean number of attacks per tree and percentage of trees attacked for each variety. Most varieties fall close to the regression, with the exceptions that varieties *polonica* and *haguenensis* had

Figure 1.--Relation between percentage of trees attacked by eucosma and number of attacks per plot. (Averaged over three plantations using only seedlots common to those plantations.)

more trees attacked than varieties *uralensis* and *septentrionalis*, but the former varieties sustained fewer attacks per tree than the latter. However, only *haguenensis* was significantly ($\alpha = 1$ %) off the regression line and this may have occurred by chance.

However, if these incongruities are real and not due to error, then they may mean that the two measurements reflect different resistance mechanisms in those varieties, or that interactions in the insect-host relationship are occurring in those varieties. For example, if the presence of one insect influenced the presence of others, the two counts would be affected differently. Nevertheless, there is not sufficient reason at present to conclude that the two measurements are not equivalent at low and moderate levels of attack.

Table 6 shows even more clearly than Table 1 a latitudinal trend in amount of attack. Northern varieties had the fewest trees attacked, southern varieties the most. It is noteworthy that the western European variety *scotica* is more similar to the central European varieties in percentage of trees attacked but to the southern European varieties in number of attacks per tree. This variety is usually grouped with the southern European varieties in other traits: growth rate, color, needle length, and resistance to European pine sawfly (Wright et al., 1966).

The general consistency in results between the two measurements reinforces the conclusion that there are genetic differences in resistance to eucosma in Scotch pine. The next problem to be considered is what causes resistance.

POSSIBLE MECHANISMS OF RESISTANCE

GENERAL MECHANISMS

Painter (1951) listed three major mechanisms of resistance. They are as follow.

(1) Nonpreference is the tendency of a plant to be unattractive or repulsive to an insect. Plants are nonpreferred if they do not present stimuli to which the insect has a positive response, or if they do present stimuli to which the insect has a negative response. These stimuli may be visual, tactile, or by taste or smell. Lack of a color attractant normally present would be an example of nonpreference resistance.

(2) Antibiosis is the adverse effect of a plant on the biology of an insect. This resistance mechanism in plants is usually chemical. For example, a monoterpene may be present which is toxic to insects of a certain species. Some plants may be preferred for oviposition by the adults and yet have antibiotic effects on the larvae.

(3) Tolerance is the ability of the plant to recover after an insect attack, or the ability to incur attack without detrimental effects. If an attacked plant were able to quickly form wound tissue, its resistance would be

classed as tolerance.

The present evidence is insufficient to definitely eliminate any of these three general mechanisms from consideration. However, it seems improbable that the young Scotch pine twigs can exhibit tolerance to invasion by the large eucosma larvae. Some adverse effects on the tree undoubtedly result from any successful attack. Therefore, the two most likely manners in which resistance to eucosma may operate are (1) nonpreference by the adult for oviposition and (2) antibiotic effects on the larvae. Resistance could be due to one or both of these general mechanisms.

DISTINCTIVE FEATURES OF RESISTANT AND SUSCEPTIBLE VARIETIES

There was a general latitudinal trend in resistance -southern varieties were attacked much more than northern ones. Therefore, I examined other traits which varied with latitude in a search for a possible mechanism of resistance. The among-variety differences in amount of attack were much greater than the within-variety differences, so I devoted most of my attention to varietal means.

Height

Height or growth rate is sometimes suggested as being a factor in insect resistance. For example, Wright et al. (1967) found that susceptibility to European pine sawfly generally increased with increasing height of Scotch pine, and King (1971) reported that incidence of attack by eucosma on jack pine generally decreased with increasing height.

Height measurements made in 1971 were available for the Kellogg and three other southern Michigan plantations. They are summarized in Table 6. It is apparent from this table that eucosma attack was not related to height. For example, varieties *rigensis* and *armena* were virtually the same height but had significantly different amounts of attack. The heavily attacked southern varieties were only of medium height and the fastest-growing variety, *haguenensis*, suffered only moderate attack (Tables 1 and 6).

Color

The character which varies most consistently with latitude and eucosma resistance is winter foliage color. The southern-most varieties remain blue-green throughout the year. But in the autumn, trees from progressively more northern localities retain less green in the needles and develop a conspicuous yellow foliage color. In the spring, the color change reverses and the trees become green. This happens when there are three successive days above 60° F (White and Wright, 1967). In Michigan, this usually occurs in April. Eucosma oviposit in late April or early May.

In the winter of 1970-71, I measured color at the Allegan plantation, using color grades of 0 = yellow to 9 = green, as used previously by Wright et al. (1966). The results I obtained were very similar to those and other previous measurements. My color data were compared with the percentages of trees attacked at the same plantation in 1968 (Figure 2). There was a strong correlation between amount of attack and winter color. The varieties which remained greenest during the winter were attacked most heavily.

I calculated the regression of number of trees attacked per plot on color, using seedlot means. The results are as follow:

Figure 2.--Relation between percentage of trees attacked by eucosma and winter foliage color. (Measured at Allegan in 1968 and 1970, respectively.)

Source	df	Mean Squares	F
Regression	1	10,879.9	91.74***
Residual	67	118.6	
Total	68		

***) Indicates significance at the 0.1% level.

This regression accounted for 58% of the variation in attack $(r = .76; number of trees attacked per plot = -10.1 + {6.9}{color grade}).$

If color is a factor in resistance, it may operate on female eucosma moths as they select trees for oviposition. Painter (1951) quoted a study by Weiss on the response of 50 species of insects in several orders to different wavelengths of light. Weiss found that ultraviolet and blueblue-green light were most attractive to the insects and that red and yellow light were least attractive. Thus, it is possible that eucosma can differentiate foliage color and be attracted most to the trees which are greenest at the time of oviposition.

Mineral Nutrients

Steinbeck's (1965) foliar mineral nutrient accumulation data were re-examined. None of the 12 elements studied by him were correlated with resistance to eucosma.

Monoterpenes

Amount of eucosma attack was also compared to Tobolski's (1968) data on percent composition of 11 cortical monoterpenes. A relationship of some of these with resistance would be reasonable since eucosma bores through the cortex on its way to the pith. Terpenes have been suggested as factors in insect resistance by previous investigators (Smith, 1965; Gilbert and Norris, 1968).

However, upon comparing the varietal means for his data with those for my data there appeared no trends between resistance and any of the 11 monoterpenes, with two obscure exceptions. Among the southern and western varieties, *scotica* had the smallest percentage of attacked trees, the least α -pinene, and the most 3-carene; and *iberica* had the greatest percentage of attacked trees, the most α -pinene, and the least 3-carene. However, this relationship did not hold for all the varieties.

COMPARISON WITH RESISTANCE PATTERNS TO OTHER INSECTS

Wright et al. (1966) and Wright and Wilson (1971) found five other insects (European pine sawfly, white pine weevil, jack pine budworm, pine webworm, and pine root collar weevil) whose attack differed significantly among varieties of Scotch pine (Table 7). These studies were performed on the same seedlots and some of the same plantations as the present study. Comparison of Tables 1 and 6 with Table 7 indicates no common trends in resistance. Scotch pine resistance to eucosma is apparently unrelated to its resistance to these other five insects.

Variatu	Percent of trees attacked by							
of Scotch	Furonean	White	Jack		Pine			
	pine	pine	pine	Pine	collar			
pine	sawfly	weevil	budworm	webworm	weevil			
Scandi	navian and	Siberia	n Variet:	ies				
lapponica	0.2	12	39		14			
mongolica	1.1	20	52	0.0	53			
altaica	.9	45	21		30			
septentrionalis	2.4	57	43	.0	3/			
rigensis	0.1 2.2	76	40	1.2	45			
uralensis	3.2	80	54	•0	40			
Cer	ntral Europ	ean Var	ieties					
polonica	19.1	77	80	.0	67			
borussica	20.6	41	55	.0	68			
nercynica Laguardig	19.5	80	54	1.9	43			
IFast Anglia!	25.7	65	42	1.1	20			
nannonica	20.1	97	25	10.0	52			
illyrica	18.7	68	54	10.0	10			
West	and South H	European	Varieti	es				
'North Italy'	11.6			3.8	10			
scotica	6.5			7.5	18			
iberica	10.6	15	22	7.0	17			
aquitana	9.6	72	23	2.0	12			
rnodopaea	9.3	72	38 25	10.0	12 T8			
armena 	v./	46	35	TO . O	12			
Significance, varie	ty **	**	**	* *	**			
Significance, withis variety	n ns	*	*	ns	ns			

Table 7.--Varietal differences in susceptibility to attack by five insect pests, as reported by Wright et al. (1966) and Wright and Wilson (1971).

*, **) Indicates significance at the 5 and 1% levels, respectively.

PRACTICAL APPLICATION

Differences among varieties were much greater than differences within varieties. So the most gain in resistance can be made by selecting among the varieties. Variety uralensis, which is intermediate in growth rate, averaged fairly low in amount of attack. Variety haguenensis, the fastest-growing variety, was intermediate in percentage of trees attacked and below average in number of attacks per tree. However, neither of these varieties are preferred for Christmas tree planting. The southern and western varieties are most commonly planted for this purpose. These varieties were least resistant to eucosma. Of the varieties suitable for Christmas-tree use, variety aquitana had by a small margin the fewest attacks per tree. It also has good color, short needles, modest growth rate, high resistance to pine root collar weevil, and moderate resistance to European pine sawfly.

Differences among seedlots within varieties were significant at two plantations, but no particular seedlots were exceptional in resistance at both. The within-variety variation seemed to be at random geographically. Growers who wish to procure quality seed of a particular variety

can only expect seed of average quality for that variety, regardless of what part of the range it comes from.

I was not able to determine the cause of resistance, but it is not necessary to know this for breeding purposes. Color was highly correlated with resistance, but probably not enough to warrant selection on the basis of color, especially if there is a moderate level of insect attack with which to distinguish resistant trees.

SUMMARY

Larvae of the Eucosma gloriola moth kill young twigs on Scotch pine, causing unsightly damage. To determine if some varieties of this tree are genetically resistant to eucosma, attack was measured on 110 seedlots of Scotch pine belonging to 19 varieties. The trees were planted at three locations in southern Michigan: Allegan County (70 seedlots), Shiawassee County (76 seedlots), and Kalamazoo County (106 seedlots). Each plantation was measured in either one or two different years. Most results were consistent from plantation to plantation and year to year.

There were highly significant differences in attack among seedlots in all plantations and years, indicating that there are genetic differences in resistance. Most of the variation was due to differences among varieties. At the most heavily-attacked plantation, the short northern varieties had from 1 to 4 attacks per tree, the tall central European varieties had from 2 to 6 attacks per tree, and the medium-height southern and western varieties had from 6 to 10 attacks per tree.

Some variation was due to differences among seedlots

within varieties, but no seedlots were significantly better or worse than their varietal means at every plantation.

Of the characters studied in searching for a possible mechanism of resistance, winter foliage color was most highly correlated with resistance. Yellow varieties were least-attacked and green varieties were most-attacked. Height, mineral nutrients, and resistance patterns to other insects were not related with susceptibility to attack. There was a very limited correlation between two cortical monoterpenes and resistance to eucosma.

The varieties which are most preferred for Christmas tree planting are also most susceptible to eucosma, but variety *aquitana* was the least-attacked member of this group.

LIST OF REFERENCES

LIST OF REFERENCES

- Austin, L., J. S. Yuill, and K. G. Brecheen. 1945. Use of shoot characters in selecting ponderosa pines resistant to resin midge. Ecol. 26: 288-296.
- Batzer, H. O. 1962. White-pine weevil damage differs significantly by seed source on two northern Minnesota jack pine plantations. U. S. Forest Serv., Lake States Forest Expt. Sta. Tech. Note 618. 2 pp.
- Bennett, W. H. 1954. The effect of needle structure on the susceptibility of hosts to the pine needle miner *Exoteleia pinifoliella* (Chamb.) (Lepidoptera: Gelechiidae). Canadian Ent. 86: 49-54.
- Butcher, J. W. and A. C. Hodson. 1949. Biological and ecological studies on some Lepidopterous bud and shoot insects of jack pine (Lepidoptera-Olethreutidae). Canadian Ent. 81: 161-173.
- Cochran, W. G. and G. M. Cox. 1957. Experimental designs, 2nd edition. John Wiley and Sons, Inc. 611 pp.
- DeBoo, R. F. 1967. Investigations of the importance, biology, and control of Eucosma gloriola Heinrich (Lepidoptera: Olethreutidae) and other shoot and tip moths of conifers in New York. Dissert. Abstr. 28B (1): 220-221.
- Drooz, A. T. 1960. White-pine shoot borer (Eucosma gloriola Heinrich). Econ. Ent. 53: 248-251.
- Gerhold, H. D., E. J. Schreiner, R. E. McDermott, J. A. Winieski (eds.). 1966. Breeding pest-resistant trees. Pergamon Press, Ltd. 505 pp.
- Gilbert, B. L. and D. M. Norris. 1968. A chemical basis for bark beetle (*Scolytus*) distinction between host and non-host trees. Insect Physiol. 14: 1063-1068.

- Graham, S. A. and L. G. Baumhofer. 1930. Susceptibility of young pines to tip-moth injury. J. For. 28: 54-65.
- Hall, R. C. 1942. Control of the locust borer. U.S.D.A. Circ. 626: 19 pp.
- Harris, P. 1960. Production of pine resin and its effect on survival of *Rhyacionia buoliana* (Schiff.) (Lepidoptera: Olethreutidae). Canadian J. Zool. 38: 121-131.
- Haynes, D. L. and J. W. Butcher. 1962. Studies on host preference and its influence on European pine shoot moth success and development. Canadian Ent. 94: 690-706.
- Heinrich, C. 1931. A new pine moth from Connecticut. Ent. Soc. Wash. Proc. 33: 196-197.
- Holst, M. 1963. Breeding resistance in pines to *Rhyaci*onia moths. World Consult. Forest Genet. Tree Improve. Proc. (Stockholm) 2: 17 pp.
- King, J. P. 1971. Pest susceptibility variation in Lake States jack pine seed sources. U.S.D.A. Forest Serv. Res. Pap. NC-53: 10 pp.
- Libby, W. J. 1958. The backcross hybrid Jeffrey X (Jeffrey X Coulter) pine. J. For. 56: 840-842.
- MacAloney, H. J. and J. W. Johnston. 1933. White-pine weevil attack on Scotch pine. J. For. 31: 26.
- Miller, J. M. 1950. Resistance of pine hybrids to the pine reproduction weevil. U. S. Forest Serv., Calif. Forest and Range Exper. Sta. Res. Note 68: 17 pp.
- Miller, W. E. and H. J. Heikkenen. 1959. The relative susceptibility of eight pine species to European pine shoot moth attack in Michigan. J. For. 57: 912-914.
- Neugebauer, W. 1954. (The control of *Rhyacionia buoliana*.) Forest. Abstr. 15: 471.
- Newman, J. H. 1968. First records of the white pine shoot borer, Eucosma gloriola (Lepidoptera: Olethreutidae) in Michigan. Mich. Ent. 1: 267-270.

- Painter, R. H. 1951. Insect resistance in crop plants. Macmillan and Co. 520 pp.
- Ruby, J. L. 1964. The correspondence between genetic, morphological, and climatic variation patterns in Scotch pine. Mich. State Univ., Ph.D. Thesis.
- Rudolf, P. O. and R. F. Patton. 1966. Genetic improvement of forest trees for disease and insect resistance in the Lake States, pp. 63-68. In Gerhold et al. (eds.), Breeding pest-resistant trees. Pergamon Press, Ltd. 505 pp.
- Schantz-Hansen, T. and R. A. Jensen. 1952. The effect of source of seed on growth of jack pine. J. For. 50: 539-544.
- Schönborn, A. von. 1966. The breeding of insect-resistant forest trees in central and northwestern Europe, pp. 25-27. In Gerhold et al. (eds.), Breeding pest-resistant trees. Pergamon Press, Ltd. 505 pp.
- Schreiner, E. J. 1949. Poplars can be bred to order. U.S.D.A., Yearbook of Agriculture, 1949: 153-157.
- Shenefelt, R. D. and D. M. Benjamin. 1955. Insects of Wisconsin forests. Univ. Wisc. Exten. Circ. 500: 110 pp.
- Skuhravý, V. and R. Hochmut. 1970. (Density of infestations of Thecodiplosis brachyntera on Pinus sylvestris of varying provenance.) Forest. Abstr. 31: 359-360.
- Smith, R. 1965. Effect of monoterpene vapors on the western pine beetle. J. Econ. Ent. 58: 509-510.
- Sokal, R. R. and F. J. Rohlf. 1969. Biometry. W. H. Freeman and Co. 776 pp.
- Steinbeck, K. 1965. Foliar mineral accumulation be several Scotch pine (Pinus sylvestris L.) provenances. Mich. State Univ., Ph.D. Thesis.
- Tobolski, J. J. 1968. Variations in monoterpenes in Scotch pine (*Pinus sylvestris* L.). Mich. State Univ., Ph.D. Thesis.

- Voûte, A. D. 1946. (*Pissodes piniphilus* in the 'De Hoge Veluwe' National Park.) Forest. Abstr. 8: 442-443.
- White, D. P. and J. W. Wright. 1967. Pigment changes in Scotch pine (*Pinus sylvestris* L.) induced by controlled environment. Mich. Acad. Sci., Arts, and Letters Papers 52: 55-62.
- Wright, J. W. and I. W. Bull. 1963. Geographic variation in Scotch pine. Results of a 3-year Michigan study. Silvae Genetica 12: 1-25.
- Wright, J. W., S. S. Pauley, R. B. Polk, J. J. Jokela, and R. A. Read. 1966. Performance of Scotch pine varieties in the North Central region. Silvae Genetica 15: 101-140.
- Wright, J. W. and L. F. Wilson. 1971. Dramatic differences in resistance of Scotch pine varieties to the pine root collar weevil. In press.
- Wright, J. W., L. F. Wilson, and W. K. Randall. 1967. Differences among Scotch pine varieties in susceptibility to European pine sawfly. For. Sci. 13: 175-181.

APPENDIX

•

Table Al.--Varietal differences in percentage of trees attacked by eucosma at Allegan and Rose Lake in 1970, a year of heavy infestation at those plantations. The data were analyzed by the "chi-square" test of proportions. Varieties not sharing the same letter are significantly different at the 5% level.

.

Variety of Scotch	Trees at (% of t	ttacked total)	Signi of dif	Significance of differences			
pine	Allegan H	Rose Lake	Allegan	Rose Lake			
Scan	dinavian and	l Siberian	Varietie	5			
lapponica	49	79	b	b			
mongolica	18	32	a	a			
altaica	88	75	С	b			
<i>septentrionalis</i>	94	80	С	b			
rigensis	98	81	С	b			
uralensis	98	73	С	b			
	Central Euro	opean Vari	eties				
polonica	96	79	С	b			
borussica	98	73	С	b			
hercynica	95	82	С	b			
haguenensis	94	76	С	b			
'East Anglia'		75	С	b			
pannonica	100	89	С	b			
illyrica	100	86	С	b			
Wes	t and South	European	Varieties				
'North Italy'		92	с	b			
scotica ⁻		100	С	b			
iberica	98	94	С	b			
aquitana	99	94	С	b			
rĥodopaea	99	95	С	b			
armena	99	95	С	b			

Variety, MSFG	and num	Plant ber of	ation n	ame a er se	nd number edlot (plo	ots x 4)
seedlot number,	Alle-	Rose	Kell-			Alle-
and country	gan	Lake	ogg	_	All	gan
of origin'	$\frac{11-61}{40}$	$\frac{12-61}{28}$	$\frac{2-61}{24}$	<u>pla</u> 92	Per tree	$\frac{11-61}{\text{Per tree}}$
		Numbor		acke		Average Color
		Number	OI ALL	acks		Grade
lapponica						
229 FIN	30		1			2.3
546 SWE	54	39	1	94	1.0	3.5
54/ SWE 549 GWE			2			
548 SWE			2			
mongolica						
234 SIB 254 SIB	13	13	0	26	0.3	1.5
altaica						
227 SIB	122		7			3.1
255 SIB	131	56	10	197	2.1	2.5
256 SIB	76	55	2	133	1.4	2.0
septentrionalis						
201 NOR	230	169	8	407	4.4	5.3
222 SWE	155	101	7	263	2.9	4.2
228 FIN 230 FIN	151		2	250	28	3 2
232 FIN	 T)4	93	5	255		J.2
233 FIN			6			
273 NOR	139	110	5	254	2.8	5.0
274 NOR	172	79	4	255	2.8	4.0
521 SWE	135	105	18	258	2.8	4.7
522 SWE	194	86	4	284	3.⊥ 1 0	4.0
523 SWE 524 CWF	110	53	כ 10	1/3 22/	1.9 2 <i>1</i>	3.9 4 7
543 SWE	180	03 47	8	235	2.6	4.6
544 SWE	154	78	9	241	2.6	4.2
545 SWE	129	72	7	208	2.3	3.9

.

Table A2.--Number of attacks by eucosma in each seedlot at all plantations in 1970, and average color grade of each seedlot at Allegan in 1970.

Table A2 (cont'd.).

rigensi	8						
22	3 T.AT	168	155	13	336	3.7	4.0
22	4 T.AT	173	116	-3	296	3.2	5.0
54	1 SWE	167	79	19	265	2.9	4.9
54	2 SWE	149	87	5	241	2.6	3.1
55	0 SWE	175		11			5.3
uralens	is						
25	7 URA		84	10			
25	8 URA	152	79	6	237	2.6	2.6
25	9 URA	227	61				3.2
26	0 URA		56	1			
polonic	a						
- 21	1 POL	134	65	23	222	2.4	5.8
31	7 POL	106	48	28	182	2.0	6.2
borussi	ca						
20	2 GER	155	113	18	286	3.1	7.4
21	0 GER	100	40	12	152	1.7	7.0
hercyni	ca						
ັ 20	3 GER	208	115	13	336	3.7	7.3
20	4 GER	145		17			6.3
20	7 GER	97	74	14	185	2.0	7.7
20	8 GER	125	123	25	273	3.0	7.4
20	9 GER			14			
24	8 GER		73	_ _			
30	5 CZE	168	108	16	292	3.2	7.1
30	6 CZE	170	115	13	298	3.2	6.8
30	7 CZE	116		12			6.9
30	8 CZE	137	116	16	269	2.9	6.7
30	9 CZE	180	170	23	373	4.1	6.6
31	0 CZE	125	108	19	252	2.7	7.0
31	l CZE	168	107	16	291	3.2	7.1
31	2 CZE	114	47	19	180	2.0	6.7
31	3 CZE		_ ,_	19			
31	4 CZE			13			
31	5 CZE			11			
31	9 AUS	114	71				7.0
52	5 GER	152	82	16	250	2.7	6.7
52	6 GER			28			
52	7 GER	147	T38	20	305	3.3	6.7
52	8 GER	117		13			6.6
52	9 GER			20			

Table A2 (cont'd.).

· · · · · · · · · · · · · · · · · · ·	_	Plant	ation n	ame an	d number	
Variety, MSFG	and num	ber of	trees p	er see	dlot (pl	ots x 4)
seedlot number,	Alle-	Rose	Kell-		רוג	AITe-
and country	gan	Lake	ogg		ALL	gan
of origin ⁻	11-61	12-61	2-61		Lations	$\frac{11-61}{2}$
	40	28	24	92	Per tree	Per tree
	<u></u>					Average
						Color
		Number	of Att	acks		Grade ²
haquenensis						
206 GER	122	51	10	183	2.0	7.5
250 GER		68	17			
251 GER	93	87	17	197	2.1	8.1
252 GER	113	99	20	232	2.5	7.4
253 GER	112	91	11	214	2.3	7.5
236 FRA			16			
237 FRA			9			
241 FRA	132	80	12	224	2.4	7.9
318 BEL	108	44	10	162	1.8	7.6
530 BEL	97	54	17	168	1.8	7.6
'East Anglia'						
269 ⁻ ENG		86	11			
270 ENG			14			
pannonica						
552 HUN		230				
553 HUN	200	76	18	294	3.2	6.7
• •						
illyrica	1 70	131	24	334	36	6 8
242 100	175	TJT	27	334	5.0	0.0
'North Italy'						
554 ITA		270				
555 ITA			27			
556 ITA		258	20			
557 ITA		232	26			
scotica						
265 SCO			17			
266 SCO			12			
267 SCO		283	13			
268 SCO			17			

Table A2 (cont'd.).

iberica							
218	SPA	203	198	30	431	4.7	8.8
219	SPA	172	199	28	399	4.3	8.7
245	SPA	141	325	14	480	5.2	8.6
246	SPA	200	318	52	570	6.2	7.5
247	SPA	165	261	32	458	5.0	8.3
							0.0
aquitana							
. 212	FRA			14			
238	FRA	219	261	15	495	5.4	8.4
239	FRA	191	275	17	483	5.3	8.4
240	FRA			40			
316	FRA			26			
320	FRA		219	24			
249	AUS		183				
235	FRA	151	96	20	267	2.9	7.6
rhodop.ea							
243	GRE	248	174	32	454	4.9	6.6
244	GRE	195	178	16	389	4.2	7.1
271	GRE	156		39			7.2
272	GRE		118	13			
551	GRE	344		38			6.5
armena							
213	TUR	282	251	13	546	5.9	7.4
214	TUR			19			
220	TUR	171	179	33	383	4.2	7.8
221	TUR	271	198	21	490	5.3	7.2
261	GEO		248	22			
262	GEO			29			
263	GEO			22			
264	GEO			19			
-							
other ³							
205	AUS			27			
225	N.Y.	147	107	23	277	3.0	8.1
Overall a	verage	153.3	126.0	15.8	286.0	3.1	6.4

¹) AUStria, BELgium, CZEchoslovakia, ENGland, FINland, FRAnce, GEOrgian SSR, GERmany, GREece, HUNgary, ITAly, LATvian SSR, NORway, POLand, SCOtland, SIBeria, SPAin, SWEden, YUGoslavia, URAl Mountains.

²) Trees were graded for color on the basis of 0 = yellow to 9 = blue-green.

³) These two seedlots were not considered in the results because of their questionable origin.

Variety, MSFG	Plantati and numbe	on name a r of tree	nd numbe s per se	r, year edlot (p	of count, lots x 4)
seedlot number,	Alle-	Rose	Kell-	Alle-	Rose
and country	gan	Lake	oqq	gan	Lake
of origin ^{1⁻}	11-61	12-61	2-61	11-61	12-61
	1968	1969	<u>1970</u>	<u>1970</u>	<u>1970</u>
	28	28	24	40	28
		Number of	Attacke	d Trees	
lapponica					
229 FIN	1		1	17	
546 SWE	0	7	1	22	22
547 SWE			2		
548 SWE			0		
549 SWE			2		
mongolica			-		
234 SIB			/		
254 SIB		0	U	. /	9
altaica	4		5	40	
227 SIB	4		5	40	22
255 SIB	5	0	2	33	20
200 SIB	U	9	2	JT	20
septentrionalis		10		40	20
201 NOR	11	10	4	40	20
222 SWE	0		2		
228 FIN 220 FIN	1	3	10	38	23
230 FIN 232 FIN			5		
232 FIN			6		
273 NOR	3	11	4	34	24
274 NOR	3	6	2	38	23
521 SWE	8	9	11	37	26
522 SWE	ī	8	2	40	21
523 SWE	Ō	2	3	37	18
524 SWE	3	8	7	37	20
543 SWE	4	6	7	38	14
544 SWE	8	6	6	37	25
545 SWE	2	3	4	34	23

Table	A3Number	of	trees	attacked	by	euco	osma	i in	each
	seedlot	: at	all p	plantation	າຣ້ອ	and :	in a	11	years.

Table A3 (cont'd.).

the second se					
rigensis					
223 LAT	6	13	10	39	24
224 T.AT	12	10		39	22
541 SWE		10	12	38	23
542 SWE	6	Ğ	1	40	23
550 GWE	0	5		20	22
220 2MF	0		0	23	
uralensis		-			
257 URA		5	6		21
258 URA	4	7	4	39	22
259 URA	4	5		39	20
260 URA		10	1		19
polonica					
211 POL	6	7	12	38	25
317 POL	9	9	16	39	19
honussica					
202 GER	11	14	8	40	22
210 CFP			0	30	10
ZIO GER	,	,	0	20	19
hercynica			-		
203 GER	10	10	9	40	26
204 GER	14		12	38	
207 GER	5	15	8	35	18
208 GER	8	9	13	38	22
209 GER			8		
248 GER		10			20
305 CZE	7	10	11	39	27
306 CZE	10	13	10	40	24
307 CZE	13		8	37	
308 CZE	11	10	10	37	25
309 CZE	11	12	15	40	27
310 CZE	17	14	13	36	24
311 CZE	10	16	9	40	23
312 CZE	9	8	13	39	19
313 CZE			14		
314 CZE			 Q		
			10		
	11	 1 /	10	31	22
572 AOD 273 AOD	10	19 19	11	24	22
JZJ GEK	TO	ΤZ	17	لاد	21
526 GEK			10		
52/ GER	8	ΤŢ	12	40	22
528 GER	TO	~ ~	9	38	
529 GER			⊥4		
Table A3 (cont'd.).

Plantation name and number, year of count									
vallety, MSFG	and hump	er of tree	s per se	earor (p.	$\frac{1015 \times 4}{2}$				
seedlot number,	Alle-	Rose	Kell-	Alle-	Rose				
and country	gan	Lake	ogg	gan	Lake				
of origin'	11-61	12-61	2 - 61	<u>11-61</u>	12-61				
	1968	1969	1970	1970	1970				
	28	28	24	40	28				
		Number of	Attacke	d Trees					
haguenensis									
206 GER	12	10	6	39	15				
250 GER		13	11		26				
251 GER	15	9	13	35	24				
252 GER	15	15	13	39	24				
252 CER 253 CEP	10	11	10	30	23				
233 GER 236 EDA	10	1 1	11	50	25				
230 FRA 227 EDA			11						
237 FRA 241 EDA	10		0 6	27	24				
241 FRA	10	0	0	57	24				
318 BEL	6	9		30	19				
530 BEL	10	10	6	39	15				
'East Anglia'									
269 ENG		9	8		21				
270 ENG			10						
pannonica									
552 HUN	· — —	17			26				
553 HUN	10	13	11	40	24				
illyrica									
242 YUG	7	13	15	40	24				
'North Italy'									
554 ITA		17			25				
555 ITA			14						
556 ITA		16	12		27				
557 ITA		16	13		25				
scotica									
265 SCO			10						
266 SCO			8						
267 SCO		10	11		28				
268 SCO			12						

Table A3 (cont'd.).

iberica						
218	SPA	12	12	12	40	26
219	SPA	21	16	14	40	27
245	SPA		18	11	39	26
246	SPA	16	20	17	39	27
247	SPA	15	20	17	38	26
		10		- /	50	
aquitana						
212	FRA			11		
238	FRA	13	14	11	40	26
239	FRA	11	13	10	39	25
240	FRA			16		
316	FRA			10		
320	FRA		19	15		27
249	AUS		14			26
235	FRA	14	9	11	40	27
rhodopaed	z					
243	GRE	15	14	14	40	26
244	GRE	14	17	11	40	28
271	GRE	9		16	40	
272	GRE		10	8		26
551	GRE	20		18	38	
armena						
213	TUR	14	18	9	39	27
214	TUR			9		
220	TUR	7	17	16	40	27
221	TUR	14	14	11	40	25
261	GEO		18	13		27
262	GEO			11		
263	GEO			13		
264	GEO			12		
_						
other ²	*					
205	AUS			15		
225	N.Y.	13	15	14	40	26
Overall a	average	8.9	11.2	9.4	37.4	23.2

¹) AUStria, BELgium, CZEchoslovakia, ENGland, FINland, FRAnce, GEOrgian SSR, GERmany, GREece, HUNgary, ITAly, LATvian SSR, NORway, POLand, SCOtland, SIBeria, SPAin, SWEden, YUGoslavia, URAL Mountains.

²)These two seedlots were not considered in the results because of their questionable origin.

