THE USE OF COAL ASHES AS A SOIL AMENDMENT

$$
\begin{gathered}
\text { Thasis for the Dogres of M. S. } \\
\text { MICHICAN STATE COLLECE } \\
\text { James E. Poo } \\
1947
\end{gathered}
$$

This is to certify that the
thesis entitled
"The Use of Coal Ashes
As A Soil Amendment"
presented by

James E. Poe 1
has been accepted towards fulfillment of the requirements for
M. S. degree in Soil Science

Date October 7, 1947

by
JANES E. PCE

A THESIS

Submitted to the Graduate School of Michigen State College of Agriculture and Applied

THES:S

ACKNOVLEDGEMENT

The priter expresses his sincere gratitude to Dr. C. F. Millar for his guidance in this problem.

Appreciation is also rendered to other members of the Soil Science Depertment for their interest end helpful suggestions throughout the course of the study.

CONTENTS

1. IVTRODUCTION$\frac{\text { Pere }}{1}$2. PROCEDURE \approx
3. DISCUSSICN OF RESULTS 8
4. SUMTARY AND CONCLUSIONS 25
5. PLETES 26-30
6. PETRRNCES 31
7. ADDITIOMAL DATA 32

The literature pertaining to soils revesis very little information on the value of coal eshes as a soil emendment. Cuestions regerding the fertilizing value of coal eshes and the effect of such meterial on the physicsl condition of the soil, as rell as the possibilities of toxicity to plent gronth have greruently been asked. The need for coal eshes as a soil emendment hes erisen as a result of the need for some form of orgenic metter to replace steble menure which is no longer aveilable in meny locelities.

If it is found that coal eshes mey result in improvement of the physical condition of soil and fumish substantiel amounts of avoilable plant rutrients rithout becoming toxic to plants, the meterial will prove to be of value to sgriculture.

This experiment cieals primarily with the ebove ruestions concerning physical and chemical effects of coal sshes on the soil. The yields of the crops grom on soils treated with coal eshes give an indication of the degree of beneficial effect of coal ε shes as a soil emendment.

In review of literature, the writer found no literature bearing directly on this nroblem.

PROCEDURE

In order to study both the chemical and physicel effects of coal eshes, a Miemi Clay loam and an Oshtemo Sandy loam vere selected. The Miami Clay loam was selected to study the effect of coal ashes on structure and tilth as well es on the surnly of evailcible plant nutrients. This soil was neutrel in reaction, end in a low state of fertility. The Oshtemo Sandy loem wes acic in reaction, and wos in a very low state of fertility.

Both the liami and the Oshtemo soils were used in the greenhouse phase of the exneriment. All field plots were located on the Miami Clay loam.

The ashes selected were from a common Pocohontas coal burned in a home furnce. The ashes were screened through a one-cuarter inch sieve and ell coarser meteriel discerded.

Treatments were as follows:

1. Check
2. 1000 lbs. 4-16-8 Fert.
3. In Coal Ashes
4. 2" Cool Ashes
5. 1" Coal Ashes plus 1000 lbs. 4-16-8 Fert.
6. 2^{11} Coal Ashes plus 1000 lbs. s-16-8 Fert.

The ashes edded rere erual to one inch surface cover and two inches surface cover on desirnated plots. Plots 1, ?, and 3 had no fertilizer. Plots 4,5 , and 6 rere fertilized with the ecuivalents of 1000 nounds of 4-16-8 fertilizer ner acre. Fertilizer anplications were doubled in the greenhouse because of the restricted root gronth.

The tro crons grorm vere snap beans for a seed becring vegetable and red beets for a root bearing veretable.

Chemicel Deterrinations:
In orier to study the effect of coal eshes on the evaileble vlant nutrient content of the soil, a particl chemical analysis was mede senarately on the coal ashes, the Miami Clay loam, and the Oshtemo Sandy loam before treatment.

On the Miami Clay loam field plots, samples mere taken from eech treatment efter hervest. The availeble plant nutrient content of the coal ashes, end of each soil and eech mixture of coal eshes and soil, wes determined.

The pH was determined in each case by the glass electrode method. Phosphorus was determined by the method outlined by Bray (2) हnd Kurtz. Potassium mes determined eccording to the nifethods of (z) Soil Analysis For Soil Fertility Investigations," Calcium ras de(5) termined by the methods outlined by Schallerberger end Simon.

Physical Determinations:

Percent total porosity, water holding capacity, and volume reichts were determined of undisturbed samples taken from each plot. Rain hed settled the soil following the previous cultivation before the semples rere taken. The sampler used ras a core sampler similer (1) to the one designed by Bradfield and described by Baver. Samples were taken to a denth of 0 inches to 2 inches and from a depth of 2 inches to 4 inches. The undisturbed samples vere brought into the laboratory, saturated with water in a vacuum, then veighed. The saturated weight in grams, minus the oven-dry veight in grams, divided by the volume in mililiters, gave the percent total porosity.

After the caturated reizht vas obteined, the same undisturbsamnles were pleced on suction eruivalent to pF l.S. Neights rere obtained after 84 hours. This veight minus the oven-dry weight, divided by the oven-dry veight gave the vater holdine capacity at pF l.S.

The samples were then oven-cried at $110^{\circ} \mathrm{C}$. for 84 hours and weighed. This oven-dry weizht divided by volume in mililiters gave the volume weight.

Crushine streneth res obtained by using a method devised by (4)

Fietts and described by Auchinleck, as renorted by Hardy. The soil was lneaded into molds, 3/4 inch in diameter by? inches in length and molds $3^{\frac{1}{2}}$ inches in diancter by 3 inches in length at its upper plastic limit. The brickettes vere oven dried at $110^{\circ} \mathrm{C}$. for 43 hours. A lever rith e nown nressure res uned to cmash the brickettes. The pressure recuired to crush brickettes of the come size gnd shone eave a comprative resistance to crushing of the soil from each treatment.

All physical determinations were made in triplicote.

GPEENHOUSE EXPERIMENTS

The Mismi soil for this problem was collected from the field on the Northenst cormer of Grand River Ave. and Ardson Street in East Lansing. The field showed no signs of recent cultivation. The vegetative cover was composed of timothy, wild carrot, ragweed and cuack gress.

The Oshtemo soil was collected from the field Southeast of the l:ichigan Stete College treiler camp. The vecetotive cover was mostly sheen correl.

Both soils rere air-dried end nassed through a one-ruerter inch sieve. Samnles mere teren for chemical determinations.

As previously stater, sufficient ashes reere used to be eruivalent to one inch and tmo inches surface cover resnectively. To the appronriate cuantity of aches, enough soil vas added to bring the total reicht of soil ond ashes to eicht and one-half kilograms. The soil plus ashes and fertilizer for the desicneted treatments rere thoroughly mixed, broucht to 10% moisture and nlaced in two gallon glazed jars. There were four renlications of six treatments for two crops on each soil for a totel of ninety-six jars. Twenty beet seeds or ten beans were nlanted in each jar.

All plents were thinned to 4 per jar after 4 weeks of grovth. The red beets showed definite nitrogen starvation on both soils after the first six weeks of growth. The eruivalent of 200 nounds NaNO_{3} per acre was added to all jars growing red beets.

The snap beans were picked after 8 weeks of growth and again after 10 weeks of growth. The snan bean vines were harvested after
\square
-
-
-
-
\qquad
-

Diagram 1. Scheme of Field Plots and Ereatments

ARDSON STREET
(c)

(c)

WEST GRAND RIVER AVENUE

(A)

10 weeks of growth. The red beets were harvested after 11 weeks of growth. The snap beans and red beets fere weighed immediately after harvest. The bean vines and beet tops were meighed after being thoroughly air dried.

FIELD PLOTS

The field plots rere plowed vith a moldboerd plow and worked dorn with a spring tooth harrow. The ashes and fertilizer were applied to the surface at the stated rates on desigrated plots and worked in with a disc.

The plots vere 6 feet suucre rith tro foot elleyways between plots. There rere trio six foot rows of snap beens and tro six foot rows of red beets with eighteen inches betreen rows on each plot. The plots rere replicated three times for eech treatment. There was complete randomizetion within each block. (Diegram 1). A heavy seecing rate was used for both crons to insure a good stand. Both crops were thinned to twenty-four plants per row and three inches betveen plents. The plots rere cultivated uniformly with a hand cultivator and hoe throughout the groving season.

The snap beans were picked after eight weeks and again after 10 weeks of growth. The snep bean vines were harvested after 10 weeks of growth.

Due to a hot ciry period in the middle of the growing seeson, the red beets vere ellored to grow for 13 weeks tefore hervesting.

The snap beans and red beets rere reighed immediately after harvest. The snap bean vines and the red beet tops were allowed to air-dry before reighing.

DISCUSGION OF RESULTS

Greenhouse:
Oshtemo Soil:
Both snan beans and red beets shored a mrked increase in yield due to the aprlication of coal ashes. The beets nere more responsive, but the beans follored the same trend in each treatnert. Of narticuler interest was the fact thet the yield of beets wrs higher on the plots which received 2 inches of arhes without fertilizer then rhere 9000 pounds of 4-16-8 fertilizer res applied. In the case of berns, the rields resulting from the application of ashes, either 1 inch or ? inches, reve greater then were the yields where the treatment vas 2000 pounds of 1-16-8 fertilizer.

The yield of air-dried bean vines vas merkedy increased by the coal eshes, as show in Table 1. The heavier application of ashes ceused a greeter increase in yield then did the light enpliestion. The arylicetion of fertilizer incrersed the yield more than did the ashes but the greatest incresse resulted from the combination of 2 inches of ashes plus 2000 pounds of the 4-16-8. The yield of eir-ciried beet tops was increased by 1 inch of coel eshes but was not further incressed by the ? inch anrlication. Fertilizer alone resulted in lover rields of beet tons then did the eshes, either 1 inch or $?$ inches, but the arertest yields resulted from the conbinction of fertilizer snd arhes.

It is interesting to note thet, both crons consiciered, the best treatment pos the one which included 1 inch of eshes and 9000 rounds of 4-1E-3 fertilizer. Thile the vields resulting from eches

| Table l. | Results From Greonhouse Cultures |
| :--- | :--- | :--- | :--- |
| | |

alone were crater where the cuantity applied was $?$ inches than where it wos 1 inch, the same relationship did not hold vhere fertilizer was applied. The vields of fresh beet roots wore siichtly lower where the heavier application of arhes wes made wjeth fertilizer than where the ash application wes at the lighter rate. In the case of beens, the same relationshin was even more striking. Miami Soil:

The yields of both beets and beans from the Miami soil in the greenhouse were a little more erratic than the yields from Oshtemo soil. The yields of beets, as shown in Table l, were depressed by the application of coal ashes at either rate and were not affected by the application of fertilizer alone but were increased by applications of both materials.

The yields from the snap beans were more uniform. One inch of ashes did not increase the yields but there was a slight increase as a result of the 2 inch apilication. The application of frrtilizer increased the yields more then did the eshes but the greatest yields were obtained on pots w hich received both fertilizer and eshes. There fertilizer vies anplied, the lerger cuantity of aches did not nrove more valucble then the smeller cuentity.

Ashes alone did not appreciably increase the dry veight of the bean vines, but fertilizer did cause an increase and where ashes vere erplied in acdition to fertilizer, the vields were merkecily greater then where the treatrient included only ashes.

The yield of dry beet tops vas not increased by any of the treatments. In fact, ashes alone merkedly denressed the jields. Fertilizer alone resulted in yields lover then those obtained from

Figure 2. Results from Greenhouse cultures with Miami clay loam (weights of plant tissue in grams)

Fresh beet roots
Snap beans

Air-dried beet tops
Air- dried bean vines

400

vith Wiani Clay Loom						
Feights of Plant Tissue in Grams						
BEETS						
TRELTMEIT	Fresh Roots	Air-Dried Tops	$\begin{aligned} & \text { lst } \\ & \text { Picking } \end{aligned}$	2nd Picking	Total Snap Beans	$\begin{aligned} & \text { Air-Dried } \\ & \text { Vines } \end{aligned}$
1. (Check)	273.5	53.0	149.5	21.0	170.5	53.0
$\text { 2. }\left(\begin{array}{l} 1 \text { inch } \\ \text { Coal Ashes) } \end{array}\right.$	218.5	32.0	132.0	35.5	167.5	45.0
$\text { 3. }\binom{2 \text { inches }}{\text { Coal Ashes }}$	232.0	39.0	154.0	33.7	187.7	58.0
$\begin{aligned} & \text { 4. }(2000 \text { lbs. }) \\ & (4-16-3 \\ & \text { (Fertilizer }) \\ & \text { (per acre }) \end{aligned}$	$\text {) } 272.0$	43.0	156.0	51.0	207.0	67.0
$\begin{aligned} & \text { 5. (1 inch } \\ & \text { (Coal Ashes) } \\ & \text { (plus 2000 }) \\ & \text { (1bs. 4-16-8) } \\ & \text { (Fertilizer) } \\ & \text { (per acre }) \end{aligned}$	$\left\{\begin{array}{l} 350.0 \\ \{ \end{array}\right.$	38.5	200.0	21.5	221.5	68.0
	$\left\{\begin{array}{l} 370.5 \\ \{ \end{array}\right.$	46.0	161.5	55.3	216.8	77.5

untreated pots but grenter then those from pots rhich received eshes without fertilizer. Where fertilizer and ashes vere both epplied the top rields did not increase es cid the root jieles. This means, of course, thet the root-ton ratio ras increnseci, another indication thet the moct cesireble treatment for the beet croo on this soil vas the combinetion of fertilizer and ashes. Field Plots:

On the Niani clay loam field plots, there vere very definite increases in vield due to conl eshes on the unfertilized plots. The yiclds of both crons, as shom by Table 3, were higher where the treatment vas? inches of aches than where the rate of application wes l inch or vhere the ashes vere omitted. In all ceses, the vields $e s$ a result of 1 inch of ashes vere grecter than rere those from untreated plots.

There coal cshes, plus fertilizer vere used, the yields were less consistont. Tith beets, fertilizer caused shout the come incresse in yield as did ? inches of ashes but where 1 inch of ε sh ves annlied in eddition to the $4-1 \in-8$ fertilizer, the greatest yield of all was obtained. An increase in the rate of esh epnlication, in addition to the fertilizer, did not cause a further increase in yield. In fect, the heavier aprlication of ash, in addition to fertilizer, seemed ecturlly to be toxic to the beets.

The bean yielas from these plots indicated that there was ε definite toricity from coal ashes where fertilizer hed also been applied, but none where there was no fertilizer. There vas ecturlly a consistent increase in yield as a result of the ashes apolied vithout fertilizer. The lergect bean yields were obtrined where ferti-

Figure 3. Results from Field Plot cultures with Miami clay loam
 (weights of plant tissue in grams)

Fresh beet roots
Snap beans
Air-dried beet tops
Air-dried bean vines
18

Table 3.
Results From Field Plot
on
Miami Clay Loam

Weights of Plant Tissue in Grams
BEETS

BEETS				BEANS			
TRFITMENT		Fresh Roots	$\begin{aligned} & \text { Air-Dried } \\ & \text { Tops } \end{aligned}$	$\begin{aligned} & \text { lst } \\ & \text { Picking } \end{aligned}$	2nd Picking	Totel Snap Beans	$\begin{gathered} \text { Air-Dried } \\ \text { Vines } \end{gathered}$
1. ($\mathrm{O}_{\text {ceck }}$)	A	479.0	100.0	570.0	46.5	622.5	210.0
	B	494.0	114.0	950.0	27.0	977.0	355.0
	C	742.0	145.0	561.0	29.0	590.0	217.0
Average		571.7	119.7			729.8	261.0
$\begin{aligned} & \text { 2. (1 inch } \\ & \text { (Coal Ashes } \end{aligned}$) A	104.5 .0	168.0	914.0	72.0	986.0	387.0
) B	910.0	151.0	752.0	8.0	760.0	277.5
	C	558.0	115.0	555.0	55.5	610.5	243.0
Average		837.7	144.7			785.3	302.5
3. (2 inches (Coal Ashes) A	1825.0	214.0	1004.0	56.5	1060.5	364.0
)B	769.0	158.0	751.0	26.0	777.0	275.0
	C	1301.0	178.5	773.0	35.0	808.0	329.0
Average ___ 1298.3			183.5			881.3	393.0
$\begin{aligned} & \text { 4. (1000 lbs. } \\ & \text { (4-16-8 } \\ & \text { (Fertilize } \\ & \text { (per acre } \end{aligned}$) A	1694.0	196.0	1111.0	108.0	1219.0	615.0
) B	1511.0	206.0	999.0	60.0	1059.0	500.0
	c	742.0	118.5	858.0	75.0	933.0	475.0

(Fertilizer)
(per acre)
Hyerage 7576.7 2107 10080 . 421.0
lizer, rithout ashes, was apnlied. There seems to be no explanation for the apperent toxicity of the ashes in the presence of fertilizer. The rir-dried reicht of beon vine vields followed the seme pattern of increases and decreases es did the yield of snap beens.

The yields of eir-dried bect tops followed a slichtly different pettern then did the rields of fresh beet roots. Coal ashes, anplied rithout fertilirer, et the rate of 1 inch of cover increased the yields, on an everage, from 219.7 greas per pot to 144.7 grons per pot while the 2 inches applicstion incressed the rields still further to 103.5 grans. The average yield where fertilizer ves applied vithout eshes res a sliehtly lover yield then thet obtained as a result of the 2 inches of eshes. The grentest yield of tons resulted from the treatment \mathfrak{i} ith 2000 pouncs of 4-16-8 fertilizer per ecre and 2 inches of ashes. That yield was 210.7 groms per pot. Soil Studies:

Results from deteminations of percent total porosity, rater holding conacity, volume reieht, and chushine strengti mere compiled for each treatment on the Miani Clay loan field plots. There mas a definite increase in percent totel porosity due to the addition of corl ashes to the coil. This increase vas confined to the ton tro inches of soil rith the second tro inches of soil choring a decrease in percent total porosity, es a result of the epplication of coal eshes. Results indiceted, thet the decrease in percent total porosity in the second tro inches of soil where cosl ε shes rere annlied, was broucht shout by the leck of cultivetion disturbence to the second tro inches of soil where the top tro inches of soil res in good tilth. Even though the plots rere thoroughly disced after the ashes

poos Fifure 48 Rosults from Fater Holding Capacity determinations at pr 1.6

4
5

Table 4. Results From Physical Determinations

Table 5.
RELATIVE CRUBHITG GRRETGTH
MIIAT SOIL

Kneaded Ovendried Cylinder

3/4" Diameter by 2^{n} Long $\quad 3^{1}{ }^{\prime \prime}$ Diameter by 3" Long

TRTMTIMT	Average weicht to Crush Brickette

1. Check 9.4 Kilogram Teight 341.0 Kilogrom 「eight
2. 1 inch Ashes 7.2 " 295.0 n

3. 2 inches Asties	5.2	"	"	219.0	"	"
4. Fertilizer	9.1	"	"	352.0	"	n
5. 1 inch Lshes Fertilizer	7.4	n	n	289.0	n	n

rere applied, it was evident thet most of the ashes remaned in the top tro inches of soil. There ashes were applied, there was practicelly no disturbance due to cultivation beneath the top two inches of soil, even though the cultivetor was set e.t the seme centh in ell plots.

The water holcinc cancity of the roil at pr l. 6 res effected in the scme menner as res the porosity where coal sches rere epplied.

The volume reight varied inversely to percent total norosity end to water holdinc capecity.

Crusling strength, or the resistance to crushing, decreased where coil ashes rere apried. The cohesion between soil perticles of a Mima Cley lom is grecter then the conerion between the soil norticles and coal eshes.

Chemicrl Deterninetions:
The evoiloble plent nutrient content of corl eshes wos found to be muci hicher then the cvailoble nlent nutrient content of the nveroce soil. The soils rhich rere treated with conl oshes showed en increrse in yield end yet mointained e hicher level of plent nutrients then those soils not trented with cool oshes. The hich pH and the high colcium content of the cool aches were effectm ive in raising the pH of the soil. The increases in yields from the plots receiving cool eshes corresponded to the increased iveiloble plent nutrient content of these soils. The irreguler yielis on plots trerted rith coal eshes plus fertilizer cennot be explained since no definite toxicity symytoms were evident.

* Exressed in lbs. of P, K, or Ca per 2,000,000 lbs. of Cocl Aches.

This experiment incicated thet coal oshes could be used as a soil omendment. From the results of the determinctions of the chemicel and the physical effects of corl sches on the soil, end the effects of corl eshes on the vields of beets and beens, the following conclusions rere draw:
(1) The andication of coal ashes to the soil increased the yields of beets and beans.
(2) Cosl eshes contioin more rvailoble plent nutrients then the soils studied.
(3) The pH of acid and neutrol soils was raised by the addition of cosl ashes.
(1) Cosl rches incressed the percent total porosity of the heavy soil.
(5) Cocl eshes increesed the water holding cenceity at pF 1.6 of the hervy soil.
(6) The heavy soil was more easily tilled there cocl ashes hod been amlied.

Plates 1-10. The effect of coal eshes as a soil amendment as illustrated after seven weeks of growth.

Plate 1. Red beets on Oshtemo Sandy Loam

Plate 2. Snap beans on Oshtemo Sandy Loam

Plate 3. Red beets on Miami Clay Loam

Plate 4. Snap beans on Miami Clay Loam

Plates 5-10. Beets and beans on Miami Clay Loam field plots

Plate 5. Red beets and Snap beans on Treatnents 1 \& 2

Plate 6. Red beets and Snap beans on Treatments 1 \& 3

Plate 7. Red beets and Snap beans on Treatments 1 \& 4

Plate 8. Red beets and Snap beans on Treatments 4 \& 5

Plate 10. Red beets and Snaj beans on Block C Treatments 1, 2, 3, 4, 5, 6.
(1) Bever, L. D. Methods of Evalueting Soil Structure. Soil Physics, 1940.
(2) Brey, R. II. and Kurtz, L. T. Determinetions of Totel, Orgonic, end Availeble Forms of Phosphorus in Soils. Soil. Science, 59; 39-46. 1045.
(3) A Committee, Peech, M. (Chairmen)
I.etior's of Soil Analysis for Soil Fertility Investigetions, hirrch, 1045.
(4) Herdy, F. J. Cohesion in Colloidal Soils. Journel of tericultural Science, 15; 1f?. 1925.
(5) Schollenbercer, C. J. and Simon, R. H. Determinetions of Exchange Conccity and Frehenceable Eoces in SoilLmmonium lectate letiod. Soil Science, 59; 13$24,1245$.

The Use of Srrduct As A Soil Imendment 1
Other investicators heve shom thet the decrease in crop yields due to the epplication of sardust to the soil may be overcome by tile adiition of nitrogen. The main purnose of this problem was to compre yields between unfertilized, fertilized, and fortilized plus nitrogen serdust treatments on e Miemi Clay loem. Treatments were os follows:

1. Check
2. 1000 nounds per ecre, 4-16-8 fertilizer
3. 2 inches sa::dust
4. 2 inches scxiust plus 1000 pounds per ocre, 4-169 fertilizer
5. 2 inches sowdust plus 1000 pounds per cre, 4-163 fertilizer plus tro increments of 200 nounds ner acre Ammonium Sulohete.

This problen ress run in conjunction rith the coal ashes problem. The same chemical and physical nroperties rere determined. rethocis of preperation, seeding, end hervesting rere the same as on the coel sshes plots. Tro difforences in trotment should be noted; one being that the rate of the savelust andicrtion ras erual to two inches of surfece cover on all sardust treated nlots, the other being the eddition of nitrogen to one fertilized serclust treatment. There rere only tro renlicetions on the sewdust rlots. The first increment of 200 pounds Lminonium Sulfate per acre was applied beside the

1. Turk, L. M. Wich. AEric. Em. Sta. Uerterly Bulletin Vol. 26 , No. 1, pp. 10-22, fug., 1943.

Scr：dust Plots

TRESTETT	\％Total Porosity	Nater Holding Canacity	Volume Feight	$\%$ Total Porosity	Fater Holding Capacity	Volume Teight
1．（Check）	54.2	32.7	1.05	61．2	33.1	1.24
	59.8	35.7	1.03	57.3	35．2	1.30
	56.3	32.3	1.06	56.0	31.3	1.36
Average	56.9	33.6	1.05	53.3	33.2	1.27
4． $\begin{aligned} & (1000 \mathrm{lbs} . \\ & (4-16-8 \\ & (\text { Fertilizer })\end{aligned}$	59.7	31.8	1.08	62． 7	35.7	1.31
	51.0	32.9	1.10	61.2	34.4	1.25
	55.8	Z3．9	1.05	54.4	35.2	1.29
lyersse	55.5	\％2． 9	1.08	59.4	35.1	1.28
7. (2 inches)	57.8	34.8	1.05	51.0	30.3	1.27
	58.2	43．2	． 97	50.1	23.8	1.13
Averige	58.0	39.0	1.01	50.5	29.3	1，25
$\text { 3. (2 inches)A } \begin{aligned} & \text { (Serdust nlus)B } \\ & (1000 \text { 4-16-8) } \\ & \text { (Fertilizer) } \end{aligned}$	62.9	45.0	． 88	57.1	32.9	1.25
	61.1	≤ 5.4	． 37	43.3	29.6	1.43
lverage	62.0	45.2	． 92	53.0	31.2	1.34
	57.6	38.2	． 97	46.9	28.1	1.38
	59.6	41.3	1.00	49.1	28.9	1.40
lveroge	58，6	39.7	． 98	48.0	28.5	1.39

Table 8．Results From Relative Crushing Strength

		$\begin{gathered} \text { Brickettes } \\ 3 . n \times \mathbf{n n}^{n} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Brickettes } \\ 3 \frac{1}{\frac{1}{2}} \mathrm{n} \times 3 \mathrm{n} \\ \hline \end{gathered}$
Treatment if	Avercige	9.4 Kg 。	34.10 Kg ．
n \quad i＂ 4	n	9.1 Kg 。	352.0 Kg 。
Average of All	ots	5.0 Kg ．	203.0 Kg ．

row four weeks ofter planting. The nitrogen was epolied when the first signs of nitrogen struction apperred on the foliage. Since the response to the nitrogen was slor, enother increment of 200 pounds Ammonium Sulfete wes aplied tro weens leter.

In the ton tro inches of soil, the nercent totel porosity rins incressed about 3% due to the addition of sorduct. The mater holding conecity wis increased about 8%. The volume veight mas decrecsed about .99N. The crushing strengtin, or the resistence to crushing, vas reduced almost 50 ${ }^{\circ}$.

There vas very little chenge in the chemicel comosition of the soil due to the rddition of sawlust. The one big difference beine the amount of nitrocen essimilcted by the increased microorgenism cotivity. This ras in evidence even on Ammonium Sulfete trented plots. During the hot, dry wenticr, the beans rece stunted due to the leck of nitrogen.

Sowiust did not eprecicbly effect the yields of beets. In fect, this meterisl ilone slichtly reduced yields. Mhere fertilizer was ruplied, yields rere mereedly grenter then where nothing was applied, but agcin the aplicotion of sardust, in addition to fertilizer caused a ronction in fiold. The greatest yields rere obtained where the treatment included 4-16-3 fertilizer, 2 inches of sawdust, हnd Amoniun Sulfate fertilizer.

The snap beans fere more sensitive then the beets and yields vere ereatly decrensed rhere sardust ves applied to the soil. The beans failed to respond to the addition of nitrogen due to the hot, dry period which follored the onplication of the Amonium Sulfate. Bean yields on all sevduct nlots were much lower then on the untrented plots. Figure 9. Results from Sawdust Field Plots with Miami
(weights of plant tissue in grams)

Table 9. Results From Serdust Field Plots
on
Miami Clay Loem

Fieights of Plant Tissue in Groms

BELTS

The extreme dry wecther was detrimental to the formation of available nitrogen for the growth of beans. The ample moisture for the later meturing beets mede possible good results from the application of sewdust plus nitrogen.

The folloring conclusions vere dravm:
(1) Serrdust plus nitrogen is beneficisl to crop production.
(2) fvoileble nitrates were decreased through their increcsed assimilation by microorcanisms where sawdust hod been amplied.
(3) Beans were starved for nitrogen on sawdust treated plots.
(4) Noisture was on importent fector in nitrate formation on savdust treated soil.
(5) The physicel condition of a heavy soil was made more desirable for plent grov.th by the application of samdust.
(6) Sawdust increased the norosity and w.ter holding copacity of Miami Clay loam.
(7) Sevdust hed very little fertilizing volue.
(3) Sewdust plus ample nitrogen gave en increase in the yield of beets.

Plates 11 \& 12. The effect of sawdust on fertilized and unfertilized Miami Clay loam.

Plate II. Red beets and Snap beans on Treatments $7 \& 8$.

Plete 12. Red beets and Snap beans on Treatments $7 \& 9$.

