— ,; , —- — — — ,, —— — —— — —— —— —— —— — A 5?§JDY OF f‘Av‘J-ééé‘ii EPETERFERESCE ER fithfl'AJ‘ACHEHE fiSEGNMENfl ENTAEURG NGR-UMFQRH‘: EERVECMG DEMANDS Thais hf the Dow d M. S. MICM‘GAH STA‘E'E UNEVERSWY Eéward .i: $9§k i958 This is to certify that the thesis entitled :‘ 7-7TmT—f‘nj‘2T-1‘Q'VHY +1.;e.-n’3‘ 175.1 I'TTLTI- ELISE ASSIQEE‘CVFTS FIITJXILIIEG IIOET-WIIFORVT SERVICING IT" "”738 A_ ‘14:.u iv; 1.4....JA A STUDY 0;; * r133; ., presented by EDI-hif‘iD J . POLE“; has been accepted towards fulfillment of the requirements for [:85th QM ‘0 ' egree “IMF“ 7”"? ' 91 infineorinff dL-acfg, Major/professor Date [august E, 1955 ‘ 0-169 A STUDY OF Iv’ACTiII‘E ILLLRE'E’TEECE IN LULTI-IUXCEEII-L’E 1 H 13'“ \' CIE'JG DEE-T713. C0 A331 GIFT~EITS WTI'AILIZ’IG NOE? -'JII T ' ()3le by Edward J. Polk A TESIS Submitted to the College of Engineering, Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of WSEE‘? OF SCIENCE Department of .‘vzechanical Engineering 1958 U] ”6-9.” ((3 6‘ II. III. VVVII . ’3” ’t x C TABLE OF CCIJ'IE’I‘TI‘S Introduction Direct Measurement of I-Bchine Interference Statistical Methods of Determining Machine Interference Limitations of the Dale Jones Machine Interference Tables Application of the Dale Jones Interference Table‘ Mathematical Basis of the Dale Jones Machine Interference Table The Prdblcm The Literature Survey The Thesis Objective The Experiment Method Use of Random Number Tables Selecting the bhchine to be serviced Determination of Interference Scope of the Experiments Experiment Analysis and Results Standard Deviation. Control Limits Correlation Between Experiment Results and the Dale Jones Interference Table Page 10 11 11 in 11+ 17 l9 19 22 2h VIII. IX. X. TABLE OF cormmrs (cormmrED) V C The Interference Estimation Adjustment Factors -- Interference Prdblem.Example Summary Recommended Further Related Research Appendix Bibliography 11 Page 25 3h 35 36 37 Figure Number 1 2 4r (13wa 10 ll 12 13 1h 15 16 17 18 19 20 21 TABLE OF ILLUSTRATIONS Dale Jones Machine Interference Table Use of Random.Tables Experiment Results -- lO machines @ 9%?) Interference Graph -- lO machines @‘90% bhximum Standard Deviation Values,(71n Machine Interference Graph Machine Interference Graph Machine Interference Graph Standard Deviation Control Limits for Experiment Results Interference Graph Experiment Results Interference Graph Experiment Results Interference Graph . Experiment Results Interference Graph Experiment Results Interference Graph Experiment Results (Maximum Possible), Machine Interference Curves -- h machines @ 80% -— h machines @ 80% -- h machines @‘90% -- h machines @ 90% -- 1} machines @ 100% -- h machines @ 100% -- h machines @2120% -- h machiness amoeawa w mzowwsahiséo m ounchomtewhfi ampew pauses; _ oom>aoc wince mnoHpm>howno so Shoo m OJ '.Ill.l.l.v seas,“ M...” n- V. SCOE’E OF THE BEERII-EIITS One hundred experiments, each involving 250 observations, were conducted. Ten experiments were made for each of ten machine assignments involving a desired total work load. These ten experiments gave enough points to determine if a trend existed between the average interference per machine and the standard deviation of the work loads of the machines comprising the assignment. The ten basic assignments, in reference to number of machines and total work load of all the assigned machines, were as follows: Number of Machines Total Work Load . . . . . . . . . . . . . 80 .......9o . .. . 100 .............120 .............120 10 . . . . . . . . . . . . . 6 lO . . . . . . . . . . . . . 80 10.............9o 1o.............1oo 10.............120 NtF-F'L" As previously mentioned, the results of the experiments shown in Figures 2 and 3 typify all of the experiment results in experiment method and results calculations. The remainder of the experiment results are in the Appendix. The use of the random number tables for the 100 experiments was so extensive that these 600 pages are submitted under separate cover. Because of the enormous amount of work required for the experiments, the experiments had to be limited to those machines and assignments shown 17 18 on page 17. However, as will be shown, the degree of correlation between standard deviation of work loads of individual machines and average inter- ference per machine is so great that the results and conclusions obtained in behalf of these experiments would very likely apply to assignments involving greater numbers of machines than those represented in the experiments. VI. WHEN? ANALYSIS AND RESULTS In addition to this thesis, under separate cover is 500 pages of random table analysis and 100 pages of summary sheets. There is a summary sheet for every five pages of random numbers which constitutes one experiment. Ten summary sheets provide the data that is shown in the Appendix of this report under the title of Experiment Results. A sample of this, Figure 3, has already been discussed and explained. To measure the dispersion of the per cent service load for the machines comprising each assignment, the standard deviation of the per cent service loads was calculated and shown in the top row of each of the Experiment Results sheets. Standard.Deviation To measure the amount of variation of the non-uniform servicing requirements from the uniform servicing requirements, the standard deviation of the per cent service loads was calculated with the following formula: G. (xl--3i)2+(1:2--3'E)2+(x3ux)2+(zen-3?)a N Where: 6' a standard deviation of the per cent servicing loads - per cent service load for machine #1 x1 19 20 x2 3 per cent service load for machine #2 i = average per cent service load N a number of machines tended by the operator If the per cent servicing load is the same for all of the machines in an assignment, then the average per cent service load would be equal to the per cent servicing load of any of the machines. Therefore, the standard deviation of the per cent servicing loads would be zero. All of the values shown in the Dale JOnes Interference Table have a standard deviation of zero, because the Table values assume the per cent servicing load is the same or equal for all of the machines in any given assignment. Referring to the curve shown in Figure h, each of the points on the graph represent the results shown in Figure 3. The per cent average interference per machine is plotted against the standard deviation of the Per cent service loads. Referring again to Figure h, the Dale Jenes Interference Table value of 7.9 per cent can be seen where the line intersects the vertical axis. The Dale Jones Interference Table values, which assume G'of assigned machine work loads is zero, is the starting Point for all of the curves in all of the experiments. The other point that determines the line is the maximum sigma value or standard deviation of the per cent service loads which is the point of intersection with the horizontal axis. The maximum sigma value of 27 was calculated by assigning one of the machines the total service load of 90 per cent, and the remaining machines in the assignment were given zero per cent service loads. This, of course, 1. an extreme and theoretical possibility. This method of determining the curve end points was used in establishing all of the curves for the rest or the experiments. 3 330m « . . . . H38. aquonufig oa. . an .1 . ! ' i q l I p804 ' ‘ l n » —-... H -. _. 53 mm ""'”‘.:.d spews ‘ f As can be seen in Figure b, all of the values fall within the control limits bounding the curve. This is also true of the results of all of the other experiments shown in the Appendix. Control Limits In order to determine if the experimentally determined inter- ference values were significantly different frrnxthe respective curve values, control limits were established with the following formulas: U.C.L. . P + 2‘43,1 _ p2 L.C.L. P - 2Yp’l - £2 n where : p . per cent average interference per machine n . number of observations (250) U.C.L. - upper control limit L.C.L. a lower control limit Referring to Figure h, when the standard deviation of the per cent service loads is zero, the per cent average interference per machine reads 7.9 per cent (where the interference line intercepts the y-axis). Since the number of observations is 250 in every experiment and the per cent . average interference per machine is 7.9 per‘cent, the substitution into the formula is made as follows: U.C.L. = .079 + 2 / .079 (l - .079f .113 or 11.37% 7 250 L.C.L. . .079 - 2V .079 (I - .0793— =- .Oh5 or 14.5% 250 The upper control limit of 11.3 per cent and the lower control limit of h.5 per cent can be read on the Y-axis of Figure h. The formula provides 95 per cent confidence interval, i.e., results of the experiments will fall within the upper and lower control limits 95 times out of 100. In addition to the sample of results shown in Figure h, the other experiment results are shown in the Appendix. . V“. n“..-‘F “—123“. . VII. CORRELATION BETWEEN EXPERIMENT RESULTS AND THE DALE JONES INIERFERENCE TABLE In order to make use of the Dale Jones Interference Table values as a determining point for the lines that were established in determining the per cent average interference per machine, it must also be proven that the Table values are correct. As stated before, the Dale Jones Interference Table value is shown at the point of intersection of the machine interference curve with the Y-axis, where the standard deviation of the total service load per cent is zero. Upon examination of the_ results of the experiments shown on the graphs where the standard deviation of the total service load per cent is zero, it can be found that all of the points fall within the control limits. The experiment values can be checked on the Interference Graphs shown in the Appendix and on the sample graph in Figure h. Considering the points that were established from the experiments, the line of best fit would closely approximate the line between the two points (the Dale Jones Interference value point and the maximum standard deviation point). Figure b shows the Dale Jones machine interference value of 7.9 per cent (at zero standard deviation) and an interference value of 0% at the maximum possible standard deviation of 27. On the basis of all of. the experiment results, typified in Figure u, it can be definitely stated that there is close correlation between the results of the experiments (when the servicing demands are equal) and the Dale JOnes flhchine Interference Table values. 2h VIII. TEE WNCE ESTIMATION ADJUSTI‘vfiE'NI' FACTORS The interference estimation adJustment factors can easily be determined, because a straight line relationship exists between the standard deviation of the per cent work loads of the individual machines and the average per cent interference per machine. Since the striight line relationship exists, the straight line formula can be applied to determine the average per cent interference per machine when non-uniform servicing demands exist. The straight line formula is: y :- mx + b where: y .- the unknown value on the line m a the slope of the line x a the value along the X-axis b - the intercept on the Y-axis It now seems suitable to convert the terms used in the straight line formula to those terms that have been used consistently when discussing Ptoblems dealing with machine interference. Referring again to Figure 14, and considering the straight line formula, the following symbols can be . used in the development of the formula for determining machine interference when non-uniform servicing requirements are necessary. 37 - represents "1", the per cent average interference per machine m - represents the slope which is always negative x - represents "0' ", the standard deviation of the per cent service loads 25 26 b - represents “J”, the Dale Jenes Machine Interference Table value By substituting the preceding code letters into the straight line formula, the formula becomes: 1 . J - mCT Since the slope is always negative and can be represented by __£__, where 0" (Tm is the maximum standard deviation where the interference lige intercepts the X-axis, the formula then becomes: iaJ- JG (7m iIJ l- 6 Wm The formula is now in its finalized form where, i a the per cent average interference per machine to be calculated J u the Dale Jones Interference Table value of the per cent average interference per machine (5 . the calculated standard deviation of the non-uniform per cent service loads 6h a the maximum standard deviation of the non-uniform per cent service load where the machine interference line intercepts the X-axis. Interference Prdblem Example In calculating the average per cent interference per machine, the following simple method is used. Assume that the following assignment exists: 27 Machine Number 1 2 3 h _ Per Cent Service Load 17 5 33 25 The total service load for the four machines is 80 per cent, so when the 80 per cent total service load is divided by the four machines, the average per cent service load, i, is 20 per cent. The standard deviation of the total service load per cent is calculated first as follows: C; :\( (xl - E02 +’(x2 -'i)2 + (x3 -‘§)2 + (xh - §)2 7. L‘ 6 'Y (17 - 220)2 + (5 - 20);); (33 - 20)2 + (25 - 201? 6 a 10.3 per cent units of the service loads The maximum standard deviation, (Tm, for four machines with a total service load per cent of 80 is already known to be 3h.6 from the maximum standard deviation table in Figure 5. Various values were calculated to establish the graph for easy reference when maximum standard deviation values were needed for four, seven, or ten machines. Referring to Figure l, the J'value from.the Dale Jones Interference Table for four machines with a total service load of 80 per cent on an individual attention basis is 9.h per cent. The values are now ready for substitution into the formula. 1 a J 1 - 6 a 9th 1 - 10.3 a 6.7% Uh) ( 3 ' > -o-n—vo. 1.4.. (W l .14. 411.411-»- - .1 :17 Til-1.: . . . i . n W .- - I, M d i V _ _ h i i n . _. . f-:-:fi.:- .12- i4..--u.::- .--;-e---:w Lita . __ propane. meow mu- to... Hence an. . .l L - . Olll’t’i ‘9. L 11.... ..« v .... a “.“n “01‘ .‘t Wu; ts l-LIVF.» J\¢MW(C3U - I.) mincorw .u .t¢ . v -i .x , .1 . .- w:-- fl _ x a l ._ N a on i er ..I .u 4 ‘I: .1 . a - _- I .L— -..-~_.. & »—_—7 - ., 1 l IIW‘iOs-’fi’ I.. | I I n' I . - .. . . .l. . . . V‘ 'I 'Il‘ I It . . .Y a i _ . l . , H H lav: . --- - - . I It- 1i-- ..1 . macaw-30m“- 2 . ~v--- —--,, . .s . L a..- All" t y H ‘ a I ' It. i. Cw." . “ 1o . -. vi , O ..A‘.- - a: . .- .. vii. {Ltiilii .4.‘ .. .L . ., - . oi .. a y a .. -h L v. ~— ..., o A o . .. . . a. .«i ...I If ldv ’1 L... a ., u -‘E .8390 ’i _ 73.19.. 7.-.- i- am ~~+~-~-~g inoamppeoq. 3:) _ .. 1i i _ b! .alibltalL . .i "0' .IIiIIA . . . . L . . h Eur}-.- The average per cent interference per machine would then be 6.7 per cent by making use of the formula method. The steps in Obtaining the solution were: 1. Calculate the standard deviation of the total per cent work load,67. 2. Obtain the maximum standard deviation of the total service f} load per cent, cm, from the graph in Figure 5. I 1 3. Cbtain the J'value from the Dale Jones Interference Table i in Figure l. h. Calculate the average per cent interference per machine 5 using the formula, ' ’ l=J(—6) O’m There is a second method (a graphical method) for determining the average per cent interference per machine that is a little simpler than the method Just described. Using the same data in the prdblem Just solved, the standard deviation of the total per cent work loads would have to be determined with the same formula. The answer would again be 10.3 per cent units of the service loads for step one above. Steps two and three would be eliminated in this solution method and the final answer would be determined by referring to Figure 6, where the graphical solution is shown for four machines at various total work loads. Since the 10.3 per cent units of the service loads (standard deviation) has been calculated and the total work load of 80 per cent is known, the intersection of the 10.3 per cent standard deviation of the total work loads with the 80 per cent total work load line, will give the answer of 6.7 per cent average interference per machine. .IIIIIHII 3:41- - -- IIIJII l Ifil: .-lw--a---Il_IIIw. --IJI .511. .I _ M w 4.1... IMI ~ “ _ _ _ ~ ” H m H . . v. _ .. I. - . . . _ L _ . 4 . * ._ M . _ .q _ _ _ . H _ . . m . PI _ . w d . _ . - . . III I IIIII II ,II. I III II IIII I I I I . I III .IIILIIILIIIIILI IIOIQII . -.. « 7 M M mun... Emir .H 9.969. ..vmmnuam . 'u m (\I ('2 7; .6» Q ffiI +1; . . .. * "U..." {HOWE .I....I...nHOP.M DC... HIS ...+..... . wfl..r.nwhb .onflUCgl ) .4 ( ..—.., .. .._..._-a ...'-._._. --. _ in . J J, I! . ...—$4.. ..r .... LII. 9.0 ‘9‘ LA N. v . I . . _ r. 0 ’§ ..- I L IIICIII I . a . g .. .. 1.1.3743. a 301 I ~+ - - .--”..-4.--‘ .-. z“; ._ . . . . . . .. :M L “f : 5w 1 w , .J/.. i k _ h h _ H . H ~ 1 — _ . III IIHIIII‘I III .III’I. .IIIIIII . _ _ . K . . . _ n . _ o o . . . . n w . . * _ .----- I.III II - I - ..I I . IIII - I i I I r I . I I II. I I I‘lfi . a.“ - ...,w...‘ ~ I I I I II III I ... ..III I I I4 I I ...l I I IIIIIIIIJ ” ~ _ ~— ” 4 a . v m - . . w «I . . F _ . . _ . m a _ . w . . . . . . . . «I I. I IIII II II I III | I I? Ila I _v II I“ II I I I I. 'IIWIIA _ f . . , . . . v . . w , _ V I . , _ . . . _ 1 1 J ‘ I I 1 I II I III I I IJ' . _ . I I I II ... L o ._ _ . _ . _ ~ _. , .. . . . h I .. I; 4 11.. . A . I - _ I7 - - I I 4 I I I I I I L‘ I4. .u, . 4 .4 4I . I « I.._I .a M._.. m _ _ * _ m “ fl. ...q fi--.--.mI.i. * - .m .-.. _ ...va ...I- I. _ I; H ‘2 ... _ w W. p . . n . _ _ , _ . - I- W . III..- . "IIIII .. ----I._I. I Lil... . . I «I w _. ,m . n. - -- - . I F H _ - H ~ 4 . _ . . . . ... _. ... -w . - H ._ , h . . .. .I . . . . .. . --Emfiw. - ...Hfi-..w................................_. ..-. I.L.--....:...F . I -FII. --- M . w . ... .. . A. W H W. . _ . , . . «I . . I I I II :‘I ' I --.... "“1 ” ““ "I“” ““ ' I '0 ‘0‘ I I I- I .‘ I . n ‘ ..' I I . .. ...I I I .. , I. l r " I .' . .I I‘ . . ....x._l... I ——‘.‘.—O ¢d—..——.O—o.~.l—_. I I I I8 I I I ? O 33 ff VIII- #IIIII -AI--I- I I-.. III ..- . . ‘I ~ . 0- - v - I - . . ._ .- . J _ . _- H Iv I . . — . o I IIII .II II I I II” . I I III I I. I II II I III I III'IL “ . F . . ~ g H a. + A o . . o . _ b . . I . . . “ .-IMI; . . . . . _ ...I” .‘ A _ ...-....r .‘L- I ...I T. ---._, _ I I f U --q - I L... I 6 O - . I '1.) ‘-l d -I p! ‘h In ‘ I I I ’3- ( \ 3‘ - bVH F . ‘H [—3 I) ’ 1 I , . ...- I .. r / . '. . I . o p O . . _ u . - --...III. ”IIII IuIIIIIII II, . F I . .. . _ . . . . . . . I u . . _ I.-- - - 1 Ir II o q. I . . IA . . . V . . . _ . -. - ...I- II. ..TI I II I II I I I II .I I I I. II I I A . u . . m u . . __ H u . . .. I. , I III; . . _ . _ . . . . . ‘ . I . +I III . . II.. . I I I I I I I .o I I I I . ,I I I I I. I III». I I I. I I IhI III I I. .I . I . . .I. I I I I . II I hI I I I .II III! _ . 1|. . . . . _ . ‘ . _ . _ . A _ . - _ . . , - . . w . . _ . I I II N _ . . ». .. ¢ _ . . _ . m _ . ‘ ~ . III..-I. - II _ IIIIIIIIII I-- . -IILI I-L. I- II II ..-.. - I..II»I-II...IIH I. .I I L. .II I .- .L . ...I - .. IIVIIhIIIIhI H w R . - i: _ I I .I . J. . .. .IL I b- l _ . I . W A..LTQI| 0.1 .. WI OILI I I I ”E" III ‘I I I - ' . ' ' I V j ’ .I ? v ' ‘ I»-.-. ...- . ‘ I ‘ I O . u I. a LT _‘-~:I W I ...; I I t... I I. .I. ._J I I I In?“ ” _ _ . - n . . . . . I_ If.) I. ....mw £qu .IHI... Hugu- uuuuhmmhq.»up mm 3: a: .0 . - < . . . . IVII fI. IJIIII II IIIIII N . I I I I I I -" . . ...... “1’51. ....... .j I ‘I ......H - -...._._..._ I '_ - ' I I I I -...__.~+ -W_+.._—_-o..——I ——I I ..-- ..--I_..._._-.._. I I I I ‘___- I I I I I I - -4 ......-.... I I I l I l I I I I I I I I I I I I I I -- --Lm tI ‘ - I . L‘f‘r‘f‘rfiw ; I. .' ' ‘1‘” I 4 I I I m ~ . _ . . -. . L _. . lama» XII; s Mwficg.oufigc nJIpaflI¢I “pmuIMum ” _ H . fl w . f.) I I AIM“..- I '. . I--,.-. I - 7-.- . a. 0% 7 . .- A ... _- “ , m -. r . .m- L. . y ., I I- II IIII I I J w . I ...I: . . . .- u p _ .v I.“ I JIM.” “I H . w - 4 III-L - _ ~ ~ . ..V- a. .I . q . . . m r I A.H%I.?~p -..—1r . ‘-4 - I ..4_._'- - -...—~.—-....-..... . - . . I . H .— —«—.~———.—o.——-—j I I I D I c I I I ':..I. I I It- 7. am1I-' W7-.. I - I I, J- . I . . -.. . _ - - ~ 1 I I I~ T .I I- ,- Iu w m . 7 I I gI I I I I IkII..III4I *IIIIIIIILVIIIII M. a_ .- h m n - p A W m. . I--- I - I - - - .I --.I -- III-III ' U r ' ‘+-L3'.‘+ Jig I I e I ”MI-.- III-III J ;L LL; 3'3“ 4;) L; | .L I I I H . - g m . . . . _ m . . . . . ._ a. .. - _- . . . . u h I _ . n. .. . _ .. _ . - I n. _~ -- N . _. u m .. I . . . . . . _ _I-I. I III- I IIr IIILII IIFII III I I I_III I III I... I II I. I - II LIIIIILII I I- IIIIIHIII - -I I~II IIIII II. I I I LII.-- .‘IIII .II.I Ir 33 The steps for the graphical method solution for the average per cent interference per machine are: 1. Calculate the standard deviation of the total per cent wark load, 0". 2. Determine the average per cent interference per machine from the machine interference graph. 14 machines - Figure 6 7 machines - Figure 7 lO machines - Figure 8 The family of curves developed for the various total work loads for four, seven and ten machines was easily established. The Dale Jones Machine Interference Table value is used for determining one point at the Y—axis, and the maxim standard deviation, o’m, determines the other point to establish each line for the various total work loads. Even though the servicing time for the machines vary, the machine interference time can be easily determined by following through the two simple steps above . . -. :——_.——.—-— :‘T—I? _. , .9- .. __.. ...,,,, IX. SUMMARY The problem involved in this thesis was to find a simple method of determining machine interference times when different machines in an assignment have different work loads and where the servicing was of a random nature. Various solutions are available where the work loads do not vary, and the statistical method was used for the solutions. An example is the Dale Jenes Fbehine Interference Table shown in Figure 1. This is the onLy proposed solution to the prdblem of estimating inter- ference where machines have uniform servicing demands which is accompanied by proof of the solution. Because of this, and because of the agreement of the experiments of this thesis and the Jenes values for assignments entailing uniform machine servicing demands, the Jones Interference Table was the foundation or starting point of these experiments. The research conducted for this thesis has yielded a tool for expanding the Dale Jones Machine Interference Table to include estimates of machine interference for assignments where different machines have significantly different operator work loads. The methods of determining the machine interference when the work loads are non-uniform can be found on pages 29 and 33 of this thesis. 3h X. RECOI‘fl‘IEI‘IDED FURTHER REIATED RESEARCH The experiments conducted for this research considered only four, seven and tan machines; therefore, further experiments are necessary to confirm the straight line relationship for any number of machines. Since the same relationship is expected to exist for any number of machines, it is recommended that experiments be conducted to include four through one hundred machines. Due to the enormous amount of worh that is necessary to conduct GXperiments where many machines are involved, it is further recommended that the experiments be set up so that they can be programmed into a canputer. After sane investigation, it is firmly believed that this tYDe Of experiment can be programmed into a computer. After further investigation, it seems likely that these experiments can be done at the Buick Motor Division or at the General Motors Technical Center where these computers are available. 35 APPENDIX E IBLI OGRAPH‘Y Benson, F. Machine Interference, Textile World, Dec. 1953. Bernstein, P. How Marv Automatics Should a Man Run, Factory Management and Maintenance, March 1913f. Brunnschweiler, D. Machine Interference, Textile World, Dec. 1951+. Denholm, D. H . , How Many Machines per Operator, Factory Management and Mainteance, July 1951;. Field, J. W. Machine Utilization and Economical Assignment, Factory Management and Maintenance, August 1915. Heard, J. H. Machine Interference Problem, Michigan State University, 1955. Holmes, H. Iviachine Interference, Time and Motion Study, Sawell Publications Limited, London, February 1958. Jones, D. Cuick Way to Figure Machine Interference, Factory Management and Maintenance, July 1951+. Wage Incentive Payment forgiultiple Machine Assignments, Georgia Institute of Technology, 1939. Maynard, H. B. Industrial Engineering Handbook, McGraw Hill Book Company. New York, 1956. O'Connor, T. F. Allocation of Machines to Operators, Inst. MeChanical Engineering Process, 1952. Easy Way to Allow for Machine Interference, Textile World, Dec. 1952. __ gov Four Factors Affect Ashcroft Interference Tables, Textile World, Dec.“1955. Palm. The Assignment 0f Workers in Servicing AutomaticI Machines, Journal of Industrialfngineering, January» .‘ebruary 195B. Vaughn, W. B. Report on Random Number Machine Interference ExPeriment, Michigan State University, I955. Wright, W. R. Machine Interference, Mechanical Engineering, August 1936. 37 _< ___——.._..—-_—--=—s ._ ...“... PROOF OF THE DALE JONES INTERFERENCE TABLE The accuracy of the average machine interference values shown in the Table can be proved as follows: 1. Assume one operator randomly tends 6 machines, each of which would randomly require 20 per cent servicing if individually tended. Assume the durations of the servicing are equal. The total work load on an individual attention basis (i.e., in absence of machine interference) for the assignment is 6 x 20% or 120%. Referring to the Dale Jones Interference Table, Figure l, the average per cent interference per machine for 6 machines having a 120 per cent total work load is 21.7 per cent of elapsed time. When all 6 machines are tended together the per cent servicing time per machine is 20% (1 - i) or 20% x (1 - .217) or 15.66%. When all 6 machines are tended together, the per cent down time per machine is this 15.66 per cent servicing plus 21.7 per cent interference, or 37.36 per cent. The probability of any given machine running at any given moment when the 6 machines are tended-together is 100% - 37'3“ a 06261;. The prdbab%lity of all 6 machines running at any given moment is (.626h) , according to the general law of compound probability. Therefore, the prdbability of one more machines being down at any given manent is l - (.62616) or .9396. This is the portion of elapsed time the operator is servicing the machines. The per cent servicing time per machine is therefore, 93.96% 9 6 or 15.66%. An interference value of 21.70 per cent shown in the Table is the only value which will cause the values in Step 3 and Step 7 to agree. This checking procedure applies to all interference values shown in the Table. 38 73 _.___i_— ___'i Total Machine Number of Machines Load Per Cent h 7 16 60 26.0 21.0 18.0 80 3t.6 28.0 2u.0 90 39.0 31.6 27.0 100 h3.3 35.1 30.0 120 52.0 u1.6 36.0 Figure 9. Standard Deviation Maximum Possible)(0;) 39 into}; ...-..«a Total Per Cent lechine Load h 7 lO 60 U.C.L. .075 .056 .0u6 L.C.L. .021 .010 .006 80 U.".L. .131 .10h .085 L. .L. .057 .039 .027 90 U.C.L .167 .13t .113 L.C.L .083 .060 .ous 100 U.C.L. .205 .173 .1u8 L.C.L. 113 0087 m0 120 U.C.L. .291 .260 .2hu L.C.L. .183 .158 .1hh Figure 10. Control Limits for Machine Interference Curves flow @ «cannons : munrdmem vegewhmowmm 23” ea. 8309c hem monamfiofiaw m.H H.m H.m m.m H.a H.m o.m a.m m.m 0.0 messm>s ccmosma Qpaapstomno we mm Hm on H» Hm om am mm on aoemtoehopcn Hence pnmuhom. w.n_ m.mo m.ma n.o> m.ma w.aa .m.aa m.na 4.:a m.mm manages Hausa «no H pee/means 2.M man Mme was mma mas one ems ema mas compass Hanan m om a m mm mm me am om cm x o as 0 am a Mm mm we on om m o H mm m »m m an ma om om m ma a om as ea as mm om om cm a m.om m.sm m.ma m.ma m.ma o.m m.w s.m o o sonny: season; (x 1+1 “—_T""°“ .q. -1. ...m I I I l i f -_ Li -- - ----»4 .5- V b ...-o-o-f -—n-‘ -o— . H38. § 6 338s: a 7-0—.- “0"“--— ‘u —r—.—.',. .4— —. fi’P-‘V" . . . nhl1’lillil‘o'tl . I» .-.7.... LulLI-.!L. - at--- "T .1”.-. . ;> '. . _._, 4H,, ._‘-.-- . _ i J- _ ~ ~ . '11--.. u _ ..rl . . . -..!i -I' u I .-.. . Tom © mugged... x 13.3QO geghonmnm ..MHJHe sewage,“ Mom mesmerMHopsfi ”in.” .m ....s. m w...» v.9 5m wfi mam mt: mtg manage gonna. meoHHEQAno mu. :m on... me. me... .5 ma: om NZ mg 66...... onwanopfi H309 12- -.- - 11 m pflmohoc. To... ex...» 9mg. one... Mn.» m6» gt. 9.2. o... 0.2. monies 3.0m. _ uh... W -‘ ! 1".-‘Arl‘w '. .. *:.T‘t.I .... "7r..._'l' QHOHpQZQmDo can own ems one Han was (me and and and eon>ssm Hesse ‘1 II. .I. Illll'llrn '1. II. lull-Y! ma .oa as x on m as mm as am a 1+3 ‘I‘I'DII"-9-ATI ir" ‘vl’.-s.- 'I’nlll'l. --.‘IELII! '1‘ 0.... m: .53 OM OM mo 0;) KC) ON m C -‘J\ CU L.’\ C m r"! ‘1 91 s.wu H.mm m.om o.aa s.me a.m o.» a.a senses seamen, _ 1 .Lu . --uq-. I4 33 820m l n.7hw . . l _ . i. - l _ l . of. -I 1 71 O . O . . I) I. a. _ _ . . _ .uxl; .r.\ I,pv . .7 . 1 . _ Q 3 - m House #5 a menace: : _ . n l _ . .....m -.--..fli- “Mun“ _. - . hr -IrfkgllrlLklrln Milli}? - 1. L -I r u , .I9 Oil ‘lr‘:l0llllAu -yi.---c. . . o e F I'II‘IIIA, AI’O‘. lv"‘l'1)} .IIII I . t A-Il v.3‘ ‘ I . O . . . ‘ o ._ . ‘ . .--I! v'll'itl 9 L ,. o . l4 ' t. . V _ l . {I ...I O In. I. L ' H - ...—...-h- _ m.>m (V) r :4 >m [-1 @.OH U\ m 0: 4.6m was >.mw mom OH 3 n: 2. OH 40H >8 pan 0m Cm OH Om mooH e essence; a b.0a voa m.sm endomom pomeauvmxm .ma .mna m.ma o.ma m.mm nma Oma mus 3.0m w.mw w.am Hem pom :om mm ma mm ma cm on on mm mm .04 om em m.ma mm.» m.m UN mom om mm ON gene can o.mm mom unanodfi hem ooc mammuonwna mmwho>w envohma neo~pn>homno : somehmwhovna Havom pcoohwa moa>hwm Hence macaue>homgo ooe>hmm Hence 4 H “5 : g . _ «-_.- ‘7 WM V F n x o ..J-.-” 1 l I ‘ "”“l . a . A . . . Pct...” ‘ a Q J; I f 7 t‘ffi‘". 33 wagon 186.82 6 .833: a i I .1 - I i J. L—.._.1_._. l Arllx a V I . . ._. l- ’_- H.— fi---- . ‘ , I . v 1 i ~i 3. 44f e 9.5 ! “i , M an ._.,o / / 7" am {sad— cotangent; JN . ”1.: -... ”-1‘l.1r ... v ‘ . -_.Iil -- .3 L71- _. _, . Hi tILII -..I: ll IO'.V1.|L . 1 u ....1 'DIIOI'IJIII . .. _M.ialvlv‘.iv u‘lli III. r. tub; madamom peomwhmmxm flows 0 meanness in N M W _ W mswnodfi W w M m sea oomouomuepea W m.m m m.a m.oa Ms.aa $.4H m.aa o.aa m.om a.am >.Hm W omsn6>s cassava _ n . r w . mewvn>hwmeo u _ mm mos sea was mad owe mom paw aam monoumcnssna Hence 1 . . fl . . l. 1 A . , . essence 0.8.... .83 T8 .125 . m3 2m 0.5. .mqm {om m3 1 83mm. #30... W meopr>komno RmP amm mmm emu“ mom .wam mam mmm wow mmm oonssou annoy W w - m 1 OH on m M on a: :m ma mm cm s W o ..., S 2 R H mm mm a em mm om m _ c anew on om m w .0: as m mm mm cm m l M . o m om m om W m m we mm em om . H l i 1 _- _. ._ s.os w a.sm H.Hm m.mm m s.mm H.ma s.ma H.a a.m o w unease season: h? O . ,_ . o ‘Oe-v J . ...- 1114.. ##g ....omH e amigos.“ N 336...... 5238.me .mH .mE _ «genome you mommhthv0QH m.H e.w m.m m.m m.HH m.MH m.mH m.mH m.om m.Hm l msaoss phantom l . l : 9 accepm>homeo 1 Am CHH med de HON mmm New 0mm wmm mhm oozmnohnmwnw Hence m vacuumm H.ooH wtmm Him {Hm wow Nom 9mm 35 mam 0.3 63.66..“ H.305 . moOHuo>hompo 3m :mm mmm mmm «mm 1 Now 4mm mHm mmm 0mm. 1 confine. H38. 1 . , c l . . , m N m m m m. on «H NH NH N l . - c . . . l m m on m cm m m 4H NH NH l m . . A .: . l n i. m M m m m on m. mm m NH NH _ m i A. c . , i m om w m H 0H OH on NH NH a fl . a . T A 0 a . - w m H m m mH mm 5 NH NH NH m m w l . i c- - l , M on H N .3 s 3 H mm NH NH m m - 1 . - -. w. . L - . m m 3 N 8 HH om 0H mm NH NH H H.Nm 9mm mam 9mm m.wH m.mH m.MH Tm o o fi/aaefiz sensual , u /, . _ k 2‘. . M ~ . ../ ll9 .0 Ft! - 1.1.-I m N i ' 3 *. ..t -. L- mom.© ameHsosz oH 333m pemeHAQHKm .HN .mHm o a H a H 04 Nd _ ms“... H.m N.N om w use 086393an _ 1 emanate unoouom I 4 _ 1 J" a m ado ._.. pmahflmrno _ H . f _r mm 111 mm mm 1 Hm N .2. s t. mm ._ i. 1 so...Hm.Ho.H.Hoan H.309 1 H .31 1.1 .11 1 w 11 1.1 -..H .H mi men 6.1 The“ 6.? 3.3 Mods “11mm 0.3 3.3 826m mute _ w a _ H .1 H 503E030 NoH NsH mMHW msH mmH_ mHHl osH1 meH osH1 mmH 601>som Hence H a. _ 3 , H H m _ oH H m 1 a 1 m w 1 m 6H s w o H m m m 1 m N 1 m m m w m . T 1 1.. 1 c 1g. H N 1 H Nm m w m 1 m 1 e w m 1 m . _ 1 1.. 111- 1+1 . 1 mm H H W. H H m m m M m w w o 1 N _ H 1 H m 1 n m 1 OH m 1 w o 14, m m 1 .11 - H L 1 W o H H A. H m m m a m m w w w m o m H n m T 0H m CH 0 M m a _ H H o: m s M H l NH s m M m m m1 6 on H. H m 1 w M H 11: HH 0 w 1 m m 1 1.1 1 1 a 1 H H 1 H Hm 3 _ a a e H . - -111 111uH ”HWJ N V HeH N..HH 1 m.HH _ mam _ o o in ~32 828: 51 1- H H 1 1.1 11111.1 1 1 1 1 - 1 JHI 1 .1- 1 1 1 .1 1 1 1 1 1 . 1 _ 1 1 1 1. 1 1 1 111-- . 1 1 . . . 1 _ 1. 1 -.1- ...1 - 1 1 - -.-1 -1. 111: _11 11.211.11.111:- 1 ..... - - 1H1 - 1 1 1 1 1 1 1 r- - .1 1. 1 1 1H m .1 1 __ 11 1 *1 11- H- 1 1 M _ 1 1 1 H ”121-1... - .1111. 1 H 1.1 1H111--.r.1 - - .1- 1-11- ._ r .r. 1. 11111711111 1H W 111111-1- 1- 1 1 1 - ...-4+1.- 71.1w11 1 1 _ 1 11. 1 1 1.. f 1 L1- ..111. - - 1. 1 _. 1 - .1 . 1 -. 1 1 .1 . 12.1- ~ 1 - 1 1 111 11....11-1u11k11 -. . 1 .H . _ 1 1 . a. 1 .. . 1 1 1 1 1 . 1 .. 1 H --.-H..H...-1-1r H 1P H fl M 1 . w 1 ~ 1 ~ H r . ..H-LL“ .fl. 1 .01 Illlll [F1111 O10 11T1 11 111 I 11111! 1.111 L111 . 1 » .11.|9111.1 Illcl1 1. 111: 1 _ . 1'11- 411 f L 1 p 11.14 1h 1.1_1 . 1 1 1 HfiESfiawRfiSMméuggH . 1 1. 1 1 .1mwm , . 1 . . 1 .-1 11.. .- - 1 -11-11- 111 an! «m. w n . __ . . 1 1 . u v 1 1 1 1 1t- . .-....1-.......11 1.11.1 ..--1111-1 -1 1 u 1 ON w.” 1? Wu” 1 m 11 a 1 w A11. L1 11111 #11 . .-1-M1 1&v-r1.”1 . - 11 11.11 1 1114 .11. 1 H _ . 1 . U 11..“ . .1 . 1 1 1/ 1 1 H - - 1- 1 1; .71 ..... ’1- 1 11 1.11.111 i - 111 , - 1 | 0 111 1 . ..--r,_.. I .1 1 1‘5-“ 4 1 1 H 11- 1 1 «1- 111! f 1 1 T 1 11- 1 1 1 111111 1 1 l f, | ‘ - Irkl; L adv was. 1- ('1' l I ‘.1I‘n--lc ‘1'." -.-~_.‘—....--.‘....,. -.. —.—-‘..-—~.~ ‘ 1 -1 .11-- :1 - 1 /. .H 1 1 1 _ _ . n m _ / _ . . u . . 1. .ol / . a . 1 I. ~‘91 L . 1 H . . H 1 . 1 1 _ . . H 11 o 111 - 11.111111..- - - - - 1 - - 1. - -. 21-1.1-1 - .1 . 1 .1 -. 1T1 1. .1 1L 1 ~ 1 1“ ...—... ---, 1 ‘1_ l. 1111 1.1.1111. 11111.1 .1 1 1 {1.1-11 98H 82.3». H38. m8 @aunHHHoaz 0H tum «lad acumnmnf has; —~--.TH--1_1..._...T-. ! ' l‘ _1’ 1 l 1 11111-- . .1--11..11-. - . - . 1 1 . - .1 1411111 1 u . ‘m .. . . . q 1 .1 1.?! 1 1 1. . . . .. 1 1 _ . 1 1.1-. -11 -11. - - - -. 1 -.- ..- . .. - 1.. .1 - -1 - ; -- 1.1- - - -. 5 1H1 -1 1111.1 " 1 . 1 . " . . 1 q . _ . w . . . . ... 1 ... . . . H . . . . . . . . H q . . . _ 1 .. 1 1 1 -1- 1. 1 . 1.7.... ..1; 1-- -1 -1 111 11 . 1. .. 1 1r: 1111111111. 11.11.2111 11.111111- 1111111111111-.. - .1 1 1 1 11-1-1111 H 1 1.. ...1.1.1 - -1.1 -11 - 1 111111- mom @ mocfinoua oa 333m usfiflomxm ..mm ma "I. ” H u W {W w £30.3— hum m . . a M # 0820.333 :4 mim M 9m We; _" ed 9: LE; wad mi m6 cmungm 2893 w M H M W ‘5 30395390 1m 8 m an ~ m3 _ :fi _ ~ «mi m3 _ m3 «S. 8:29235 H38. . m, a w _ . _ +1 4 m.m~ m.~o W m.om w m.mm ,xON :.m> Mm m» % ;.mm mo.o> :.mo a oofi>uom Hopes _ .v j m . 9632030 m3 $1 R1 29 H m: 5H h :2 m3 _ m5 at, .M medium H38. .m o:.nm.oamom.flmfioflwm mw S w, m m z a m n ma 0H m 4 Ha m 0H L, m m a m 4 .m 3 S _ ma W a 2 3 * m m m m4 a m 3 _ m m B m z _ mm W 2 M m r p p w LI % v 4.. 4J1 w M 4.- M u n P N. H 8 r, m M m w W a m u m m o w m m ”a c 21w : m : m ma m m m m w m r w J. 4 1 Mr w M H w m 2 .4 m H d n W m m ._ N. w w .. J V 1.1 w 1 . .U z a , 4 cm W J m H 4 o n N; H m .r m WIN H J 4 z m m w m ma w P M m, wfi m T w _ 1 M w M . a _. N 4 _ +~ M 0m M A N. _ NH b m M ”a fill! _ 4 r _. .13 w v.3 m.» n We W m.m 4.: 9m wxw Wm a we w7 /.H.oe§z aiaJfllflnogL 53 a. .H a._,% _ _ M; 77.4.. ”[4. . M , m ¢ m o .. w ._. . ,..4 . _ .. a . . . .._ .. . h . ._ _ fl ‘ . H m m m...... . . .. .H. k ,r1.. .p . . b "Fl . .. H.. 1.8.4.4.. J~ .-.“.T * TJiqu M LI-1Ii ‘ . \r' 4f - . _ . fl . A, I _ - , _ .. . : .m - .._ $ _ w a- ., w n‘ _ ‘ - _ _ .- W i .3“ ‘ m _ _ H .. .. H H . . w . A“ H , i d. P . "f... . . A . _ . -Al ‘ «.I .--ull.’ . 1 .1~\ltl|..u|' - I?! 4!-..) Suit, r .ngiuwwjrall: .-M-JIs:.L; 1:1”; {quwfiw‘fiiuzifi ‘ ‘ .1 r w w .. . . . _ r w w u * H 4:.“ . . . .- 2.; f 4 U: Tvy- lvTWe t - h . . - _ .. ,r. ,H.p.--... T -. l t . M. 3.1-- .f. .wH:.. d. -.b. -.T. -4; $.71--- , . . . . . .. .. ...)“- t .8. . ..~ g... ' V V I 1.-“ ---“-4}._...-..._.. . I | u . .34 “a. . '..'. #4.}... . .. " L‘ ¢ 1 A r—‘>-"H“ O " ‘ _.V 1;} P '1"? f ...—...a-JLo~ 1 "[ ’1 m. t v2.2a !\ 1" t“ .. In- ‘ hwy ‘JL . ‘r., . ‘Ju \l . ‘MV,I.O..1 Y.’ L lg} II..-. . «WWA 1:” L *7 / . /1 / / / "\ U v‘tlt"n.'l.., II O..|J.Illlf' OVII I.... ‘ . - A I; _ V. _ _ _ I 7?.--” . - 33. 820m 3%. ,. Baoediflflwofiod . ., r.. : a 4 . f F a I no obnaiafiazfil‘ - x l I. , _.....-.J- - , v “" ' I v I U i I E -- I l *# l \ I \ l I ‘ t moms-£08 I .I Y‘- b ..- ...- - . o | I I -.v... 4- - A - .-- weed mvauaanoa: oa muasmmm pcosauogxm .mm.m«m w . ._ . _ 5 . i - .aa _ mg a fl 0.“ E 3 .2 ad 3‘ 3. «.3 uwmwwwmuuwfiwwm w , 30350qu Hm mm M wma mm on mwa apa mma mma wmm. oogvuouuoana anpoe _ . "500.3%. cum u. «5..an 025 0 mm. m .wa Omw 025 m.m,m v.2. 06m woaiam ._..dpom. _ ncoavdauupo 0mm zom new mom Pom mom mom mom mma :Hm ooa>uow Hanna m m m 4 m m g m OH OH . 0H- m m a a m m 4 m >m oa m mm m m m m w m n w 0H m ‘14 - V w W a pm m m p m m m oa p I . t a m m m m m m & m 0H m m m a m m m o m w oa m m g A m a m w m 0H m 0H - -. , -- W - a m P a M w w: m 0H p oa . fl , w Y m m@ m em w mm s OH OH > oH H a m cm W m: o a: o: m ca 0.:m M a.ma >.ma ~.ma w m.ma H.ma m.aa .n.o+ H.m_ .o M . 55 . a: . I ” M-II I “IIIIwIm M H.Iw A. I - H,am WI“! ..... .m -. I I I .--I“-.I,I-‘. ..... I“ W 1“. fi ..w , -1 ~ III”: * -.I W- I_. W I ...~ d ..m I .. ...-H AJIINLLIulIM.I.W..... ”firifltkl . I .III IIII-I _ 4 I . . _v L TIIILIwwfi -. 2- . J I. . .. . __ . a . i . - . ,fl .. ” .-... 2.3.1.-- . w ;_ I“. I H H .. ., M5232: . h , d. 55..- - ~ g“ a w . , 1.333... _ W_ , _ III - 4 55 rIIun. I .. M m. - H _ * ,- .- L. . _ u . _ . . 4 wm am an m ..o« v." 4—.' I I ‘ ... --—.- L .. ..._‘ . I I . g. ‘ . .. . I. ' I I I I I I I I I I I I K I .III-.-;-4.I-I I I I II II -.I I -,,....- . -.I- _ * O—P'".C—..— “ O I I “WA“..- -_ I ‘ I I I — I..- I I I I I I .. _. | , I I I II III’? 1+ -3. 33- 8§gam8a9§1 AS - I I _ -_ --fun- I I. D I I V ..I ’l I I - _. - d— _ . --I»~-——d‘-——o A ... » v \ . L L... I i , . l ..-- . ‘ u ~- I ...—o - - -~-.— -¢ “._. . c .-.—._- I I . . . . I . . . . — . L . . ~ . II I'll! I I I III I'D - . v n I' ' -l' I'I‘L'tl 'Ll-‘ I." I I '|‘|l I a I l'. I ltl"- ' ".t.‘l aOmH @_uucHnuaz OH mpgmvm pcgfinvmxm .Nm .wE _ ___ _ m «canons w _ . M H w .. .m- uom nonammhofi: O. tum WHHH OHH ES RAH 2.: .EH 6.2 98 w $83 €8qu __ w W N m _ M N 8832026 . :H w mHH _ OOm _ mmm mmm _ mmm u Hm: . :4: m OOH Ham: oouuuouuopaH Haney I “- I I I .H H m.mm NH.mm _O.Hm I:.Hm. m.Hm «m.mmIIWm.mm -m.mm ».mm Aflma m a ooH>nom Hague w _ _ ._ 3032030 _ u Omm-w, mum . Hmm Omm mam pHmH Hmm , mmm O mmm _ OmmL OOH>nom Haves m w u I h _ IH III I m H M r H _ H m O _ OH H OH H Om _ OH OH HH M NH w OH . a H a H m m m Om m m _ om _ H H OH _ HH W NH 3, O H H W 4. H O, _ .H I I H I U . H _ OO O m M OH O m H m m O OH HH , NH 3 m M m 4 IHI _ I. I IW 4% H IN H m om H H O OH H m mH m OH HH M NH O p . H III_I III IHI I- “ w: H H H m om m OH H OH W OH M OH M OH w HH M «H w m HI 4 x M H OI m .H wI A, NH m Iflw H I H ,- O O u ILI Om r, OH -M O -w OH Iv. HH -O t - U _ w H. m _H fl ‘ HI H H - O H. H O OH O m .- Om . OH Hm M NH 3 H .7 , “ I_II I. Im H. Ifl I“ m H w H O OO _ m M. m a H OH M OH m HH w «H H m m w H I IM H- _ H IO Ia W H w Om W O _ OH O H OH M m ON W HH H «H H m H I I I I I - IHI . WI- HHH m m IW OH Om OH * ON fl OH “I Om H HH % NH H ,H _ n n n “A M :.Hm ”O.Hm “m.>H H.MH H.OH w H.m wmxm m >.H Ham O O m umgasz ocHnouz H I_r _ _ T _ . . . v I . . . If ‘- ~ I .‘ I.II .I _ . O . . . H . yv—r‘ . .I - I -. I —- *1 I I I I ...—0.. - ~ I -. I. -.. I' I "I’ O t I -HI- H- . _ _ ~I r .. u . OI. v... . VII I {Ate}. I. «I / . _ “._., MICHIGAN STAYE UNIVERSITY LIBRARIES IIII IIIII III IIII || IIIIIII I I