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ABSTRACT

THEORY, SYNTHESIS AND IMPLEMENTATION OF CURRENT-MODE CMOS
PIECEWISE-LINEAR CIRCUITS USING MARGIN PROPAGATION

By

Ming Gu

Achieving high energy-efficiency is a key requirement for many emerging smart sensors and

portable computing systems. While digital signal processing (DSP) has been the de-facto technique

for implementing ultra-low power systems, analog signal processing (ASP) provides an attractive

and alternate approach that can not only achieve high energy efficiency but also high computa-

tional density. Conventional ASP techniques are based on a top-down design approach, where

proven mathematical principles and related algorithms are mapped and emulated using computa-

tional primitives inherent in the device physics. An example being the translinear principle, which

is the state-of-the-art ASP technique, that uses the exponential current-to-voltage characteristics

for designing ultra-low-power analog processors. However, elegant formulations could result from

a bottom-up approach where device and bias independent computational primitives (e.g. current

and charge conservation principles) are used for designing ”approximate” analog signal proces-

sors. The hypothesis of this proposal is that many signal processing algorithms exhibit an inherent

calibration ability due to which their performance remains unaffected by the use of ”approximate”

analog computing techniques.

In this research, we investigate the theory, synthesis and implementation of high performance

analog processors using a novel piecewise-linear (PWL) approximation algorithm called margin

propagation (MP). MP principle utilizes only basic conservation laws of physical quantities (cur-

rent, charge, mass, energy) for computing and therefore is scalable across devices (silicon, MEMS,

microfluidics). However, there are additional advantages of MP-based processors when imple-



mented using CMOS current-mode circuits, which includes: 1) bias-scalability and robust to vari-

ations in environmental conditions (e.g. temperature); and 2) improved dynamic range and faster

convergence as compared to the translinear implementations. We verify our hypothesis using two

ASP applications: (a) design of high-performance analog low-density parity check (LDPC) de-

coders for applications in sensor networks; and (b) design of ultra-low-power analog support vec-

tor machines (SVM) for smart sensors. Our results demonstrate that an algorithmic framework

for designing margin propagation (MP) based LDPC decoders can be used to trade-off its BER

performance with its energy efficiency, making the design attractive for applications with adaptive

energy-BER constraints. We have verified this trade-off using an analog current-mode implemen-

tation of an MP-based (32,8) LDPC decoder. Measured results from prototypes fabricated in a

0.5 µm CMOS process show that the BER performance of the MP-based decoder outperforms a

benchmark state-of-the-art min-sum decoder at SNR levels greater than 3.5 dB and can achieve

energy efficiencies greater than 100pJ /bit at a throughput of 12.8 Mbps.

In the second part of this study, MP principle is used for designing an energy-scalable SVM

whose power and speed requirements can be configured dynamically without any degradation in

performance. We have verified the energy-scaling property using a current-mode implementation

of an SVM operating with 8 dimensional feature vectors and 18 support vectors. The prototype

fabricated in a 0.5 µm CMOS process has integrated an array of floating gate transistors that serve

as storage for up to 740 SVM parameters as well as novel circuits that have been designed for inter-

facing with an external digital processor. These include a novel current-input current-output log-

arithmic amplifier circuit that can achieve a dynamic range of 120dB while consuming nanowatts

of power and a novel varactor based temperature compensated floating-gate memory that demon-

strates a superior programming range than other competitors.
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Chapter 1

Introduction

Digital signal processing (DSP) has been prevalent in all computing systems for the past five

decades. Since its beginnings in early 1950’s, the progress in the field of DSP has paralleled

the growth of digital computers, as signified by the celebrated Moore’s law [9]. The key mile-

stones in the area of DSP include the development of the Fast Fourier Transform (FFT) in 1965

[10] followed by the implementation of DSP algorithms on integrated circuit (IC) technology in

1980’s. The use of analog signal processing (ASP) can be traced back to an earlier time than its

digital counterpart, primarily driven by the need to process naturally occurring signals (image,

speech) which are inherently “analog”. However, due to rapid progress in digital IC technology

and due to the limitations imposed by analog artifacts, in 1970’s analog computers were gradually

superseded by digital computers. Many experts even predicted the demise of ASP in early 1980s.

However, the interest in ASP was renewed a decade ago, primarily due to the need for more energy

efficient and high-density signal processing systems. The inspiration for achieving this using ASP

techniques came from biological computing systems which are inherently “analog”. Biological

neural processors excel at solving hard problems in sensory signal processing (video and speech)
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by sustaining high computational throughput while keeping energy dissipation at a minimal level.

At the core of these neural processors and similarly analog signal processors are massively parallel

circuits which exploit computational primitives inherent in device physics to achieve high energy-

efficiency and high computational density. In this dissertation, we will follow the ASP principle as

a guideline to investigate energy efficient computing systems.

From a practical point-of-view there are additional advantages of ASP over DSP techniques

which are listed below:

(a) Practical limitations in the analog-to-digital converters (ADC) design.

Since all the naturally occurring signals are analog, ADC is the essential element attached to

DSP systems. Many DSP applications are required to recover signals over a wide dynamic

range or from a noisy background, which necessitate high speed and high resolution ADC.

However, the design of ADC for high resolution/high performance and low power dissipation

is one of the challenges nowadays. It seems that the scaling factor is not affecting ADC as

much as DSP efficiency. Resolution of ADCs has been increased at 1.5 bits/5 years [11]. As

a consequence, the long design time of ADC has become an increasingly severe constraint

for the system design as well.

One efficient solution is the cooperative analog/digital signal processing (CADSP), proposed

by Hasler in [2, 3]. By utilizing ASP at the front-end, the ADC complexity is reduced

significantly, and hence the overall system complexity [2, 3]. Fig. 1.1 shows the tradeoff

between CADSP and DSP.

(b) The limited power consumption.

Nowadays, an increasing desire for portability has been posed on electronic devices. A

low power dissipation is attractive and crucial in these applications to obtain a long battery

2
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Converter
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Figure 1.1: Illustration of the tradeoffs in (a)DSP and (b)CADSP systems [2, 3]. For interpretation
of the references to color in this and all other figures, the reader is referred to the electronic version
of this dissertation.

life. Power consumption of DSP, measured in mW/MIPS, reduces by half around every

18 months [4]. This has been keeping pace with Moore’s law [9]. Even so, a fixed power

budget still constrains the increasing proliferation of portable electronics.

In contrast, ASP tends to be more power efficient. Since ASP block lacks ADC as shown in

Fig. 1.1, which has been proved to be a major energy consumer, especially for the scaled-

down system. Table 1.1 lists all the key elements power consumption of a state-of-the-art

0.6-µm CMOS image sensor with mixed-signal processor array [1]. It can be seen that the

power consumption of ADC is a major factor amongst all and occupies more than one-third

of the total amount.

Furthermore, the arithmetic unit of DSP, which consists of digital multipliers and adders,

also consumes more energy than ASP. The main cause is less number of transistors used in

the case of ASP than DSP. As a consequence, even custom digital solutions are inadequate

for ultralow-power applications [12].

In Fig. 1.2 the power consumption of DSP and ASP are compared. The black square rep-

3



Table 1.1: Power dissipation of major components for a 0.6 µm mixed-signal CMOS image sen-
sor [1]

Supply voltage 5 V

Processor unit 0.25 mW
Sensor, readout and biasing 2.25 mW

ADC 21 mW
FIFO memory 83 mW

resents the power consumption of a state-of-the-art DSP core [5]. It seems the power con-

sumption of the DSP core follows Gene’s law. The star represents the power consumption of

an analog, floating-gate integrated chip [6]. And the circuit represents the power consump-

tion of a CMOS analog processor that can be used for long-term, self-powered mechanical

usage monitoring [7].

1980 1990 2000 2010 2020 2030

100pW

10nW

1uW

0.1mW

10mW

1W Gene’s law

ASP

PO
W

ER

YEAR

DSP
[5]

[6]
[7]

Figure 1.2: Power consumption comparison for DSP [4, 5] and ASP [6, 7].

(c) Size constraints.

Circuit size constraints also favor analog VLSI circuits. It is often possible to perform com-

plex operations on device physics with only a few transistors. Fig. 1.3 shows the comparison

4



of basic circuit schematics for digital/analog adders, and digital/analog multipliers imple-

mented in metal-oxide-semiconductor field-effect transistors (MOSFET’s). It is obvious that

the number of transistors in digital implementation surpasses that in analog implementation.

A
B

Sum

Carry

N1

P1P2

N2

AB

A

B

P1

N1

(a)

C0

Half Adder
IN1
IN2

SUM
C

B0

A0 A1

B1

Half Adder
IN1
IN2

SUM
C

C1

C2

C3

(b)

AI
BI

SUMI
(c)

N1

+
2V +

2V
−

2V

+
1V −

1V

+
outI

N2 N3

N4 N5 N6 N7

BiasV

−
outI+

2I −
2I +

3I
−
3I

+
1I

−
1I

bI
(d)

Figure 1.3: Basic CMOS circuits for (a) digital half adder based on NAND and NOT gates; (b)
digital multiplier based on (a); (c) analog adder; (d) analog multiplier (Gilbert cell).
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(d) Speed requirements.

In recent years great effort has been put in real-time computation, which is applied through-

out three-dimensional (3D) graphic systems, high-speed communication system, image sen-

sors, etc.. For these applications, the defect of DSP arise largely from the fact that all the

operations in a single arithmetic unit have to be carried out in sequence. In contrast, ASP has

a simpler implementation and an inherent parallel architecture for computation. Thus when

the signal processing has to be executed under the condition of high speed or high frequency,

ASP outperforms DSP on almost all the metrics.

Although there are some crucial reasons for that ASP remains indispensable for scientific com-

putations, there are still some problems existing for ASP. One primary disadvantage is the lack

of flexibility. By directly exploiting the computational primitives inherent in the device physics,

complicated non-linear functions can be implemented in analog using significantly lower number

of transistors compared to its digital counterpart. However, this methodology only works for spe-

cific computations. For instance, the subthreshold translinear characteristic of MOS transistor can

only be used to solve log-domain computations. Whereas DSP can be used to solve almost any

computation by programming.

Another disadvantage lies in the high noise sensitivity for analog implementation. As is known,

analog circuits is more vulnerable to noise than digital circuits. It can be explained as that the

number in analog computation is represented by continuous voltages or currents, which will be

deteriorated by noise easily. Digital system, however, due to the quantization and bi-value logic

representation (either one or zero) of discrete signals, is more robust to noise. Only when the noise

levels are high enough to flip logical bit, otherwise it works without any effect on precision of the

result.
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Also the effective resolution of the computing system is a major concern for signal processors.

To evaluate the input effort to obtain a designated resolution, in [2, 13], a comprehensive metric

“cost” is proposed. It is calculated based on a variety of metrics ranging from the circuit perfor-

mance metrics like size, power dissipation, etc. to the human effort and other resources involved in

the design or fabrication. The comparison of cost versus resolution is described as Fig. 1.4 shows.

It can be seen that a “threshold” exists. When the required computation resolution is beyond the

threshold, it is less “expensive” to use digital implementation, otherwise, it is more “worthy” to

use analog implementation instead of digital.
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Figure 1.4: Resolution versus “cost” on using ASP or DSP [2].

In summary, ASP is suitable for applications where

• precision/resolution of computation is not required strictly;

• a stringent budget for power, area, or number of transistors is imposed on the system design

(e.g. image sensors);
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• high-speed or fully-parallel computation is required (e.g. analog decoders);

1.1 Motivation for the proposed research

The underlying principle of analog computation is to represent numbers as physical quantities

such as current, voltage, charge, time, etc. and then use the physics of the device for computing

(e.g. addition, subtraction, multiplication, etc.). Amongst all the analog computation techniques,

translinear analog signal processing (TASP) is the most widely used and the most intensively re-

searched method. Since TASP technique was introduced by Gilbert in 1975 [14], the method has

been applied for synthesis of neural, filter and radio-frequency circuits. TASP utilizes the linear re-

lation between the transconductance and the current of the device, and can be readily implemented

on MOSFETs and bipolar transistors. In Table 1.2 we summarize different variants and application

of the TASP principle that has been reported in the literature:

Table 1.2: Milestones in TASP

Year Device Characteristic Operation Region Analog Computation
Utilized Circuits Synthesized

Static TASP

1975 [14] I ∝ eV weak inversion multiplier, divider [15],
maximum [16]

1991 [17] I ∝ V 2 strong inversion square, square-root, polynomial,
multiplier-divider [18]

2001 [19] I ∝ e(w1V1+···+wNVN ) weak inversion square, square-root,
divider, magnitude of vector

Dynamic TASP
1979 [20] CUT

˙IDS = IcapIDS weak inversion first-order filter
1997 [21] CUT

˙IDS = IcapIDS weak inversion RMS-DC converting
1998 [22] CUT

˙IDS = IcapIDS weak inversion second-order filter
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The advantages of TASP circuits are as follows:

• A high functional density, which explains the extensive application of translinear circuits in

neural networks.

• Insensitivity to temperature due to UT cancelation inside the translinear loop.

• Low-power consumption due to the absence of passive components. In translinear filters

implementation, only transistors and capacitors are required.

• A large dynamic range. The trend toward low supply voltages causes a decrease of the

dynamic range for filters implemented with conventional circuit techniques, for which com-

panding may be a possible solution. Whereas companding is implicitly performed in translin-

ear filters as a consequence of the exponential behavior of the translinear devices.

• High controllability. Most parameters can be controlled by tuning the current, which is

doomed by the translinear principles.

However, there are some disadvantages of TASP circuits when implemented in CMOS. To un-

derstand these disadvantages, we first briefly describe the operating regions of a MOS transistor.

Fig. 1.5 shows the current-vs-gate voltage response of a typical n-type MOSFET. The characteristic

consists of three different operating regions namely: (a) weak inversion: where the current is ex-

ponentially dependent on the gate voltage; (b) strong inversion: where the current is quadratically

dependent on the gate voltage; and (c) moderate inversion: is the intermediate region between the

strong and the weak inversion. Operating in each of these regions have specific advantages which

are summarized below:

• In weak inversion region, the minimum power consumption is achieved (low ID).
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• In strong inversion region, the higher operational speed can be obtained (high ID, high gm).

• In moderate inversion region, an optimal compromise between power consumption and

speed can be achieved.

The power consumption (energy-efficiency), speed trade-off can also be expressed using the

“gm/ID” metric [8], where gm is the input transconductance of the MOS transistor and ID is the

drain current flowing through the transistor. The parameter gm effectively determines the speed

of the transistor and the parameter ID determines its power consumption. gm/ID is chosen as a

metric since it reflects the efficiency to translate current (i.e. power) into transconductance. The

greater the gm/ID value is, the greater the transconductance we obtain at a constant current value

[8]. Fig. 1.5 displays the gm/ID versus the drain current ID for MOS transistors under the three

operating regions. Fig. 1.5 shows that in weak inversion region, we obtain the highest gm/ID,

thus the best power efficiency.

As can be observed from table 1.2, TASP circuits are designed to operate in only one specific

operating region. Thus it lacks flexibility, or the trade-off capability across the operation regions,

which is a severe problem when a high dynamic range is required. This limits the application of

TASP circuits in designing more complex and flexible analog signal processors.

To solve this problem, we propose ASP circuits that only depend on the universal conservation

principles like the Kirchhoff’s current law, as illustrated in Fig. 1.3 (c). By construction, ASP

circuits based on universal conservation principles will have several advantages over their TASP

counterparts which are:

• Independence on transistor operation regions since its underlying principle follows physical

laws (e.g. universal conservation law).

• Wide dynamic range due to the unlimited operation region.
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• Diverse ways of implementation (e.g. charge-mode, voltage-mode, time-mode, etc.). For

instance, Fig. 1.6 illustrates how reverse water-filling can naturally be implemented us-

ing a charge-coupled device. Initially, a fixed amount of charge (shown by shaded area in

Fig. 1.6a) is introduced into the charge-coupled device (CCD). As potential barriers (wells)

are increased adiabatically charge re-distributes itself (Fig. 1.6b) amongst the wells. At

equilibrium (Fig. 1.6c) total charge accumulated in the potential wells (residue) and the

normalization level is determined by charge conservation principles. Even though potential

wells have been used in the above example the procedure is applicable to other physical

quantities (current, mass, energy) implemented by different analog structures (MEMS, mi-

crofluidic devices). However, since current-mode circuits is the most easy and mature way

of implementation, in this dissertation, we adhere to current-mode implementation.

• Insensitivity to the outside variations (e.g. temperature).

However, the using universal conservation laws restricts the choice of computations that can

be precisely implemented. That leads to the main hypothesis of this dissertation: many signal

processing algorithms exhibit an inherent calibration ability, and hence their performance remains

unaffected by the use of “approximate” analog computing techniques which is proposed in this

study. Also, approximations at a circuit level would require a bottom-up and top-down synthesis

of signal processing algorithms as is illustrated in Fig. 1.7 and is compared with the conventional

top-down design flow for a TASP based synthesis. The chart in Fig. 1.7 shows that many of

the approximation techniques have be simulated, verified and calibrated at the algorithmic and

system level before prototyping on hardware. However, algorithmic and system levels of the design

flow offers more flexibility in implementing a given system and hence can overcome performance

limitations due to low-level approximations. In this dissertation, we plan to illustrate this using two
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specific applications: (a) designing high-performance analog LDPC decoders; and (b) designing

ultra energy-efficient analog SVM.

1.2 Scientific contributions

This dissertation is motivated by improving the energy efficiency of computation implementation

with ASP while resorting to the physical law to ensure bias-scalability. The major scientific con-

tributions are listed below:

(a) An analog signal processing (ASP) algorithm named margin propagation (MP) as an efficient

piece-wise linear (PWL) approximation technique to a “log-sum-exp” function along with its

current-mode analog circuit implementation is proposed. Due to its underlying principle of

conservative law, MP algorithm can be mapped to various hardware easily. The current-mode

MP circuit implementation is designed to be bias-scalable. This characteristic is beneficial

for computational circuit since it enables the design adaptive to various applications with

different specification requirements.

(b) A wide-range of mathematical functions are synthesized with MP-based bias-scalable ana-

log computational circuits. The synthesized functions include addition, subtraction, mul-

tiplication, division, power and polynomial computation, etc.. MP circuits operate in the

log-likelihood domain where complex functions such as multiplication, division, square-root

operations are mapped into simpler operations like addition, subtraction or scaling, making

circuit design less complex. The circuits can operate over a wider dynamic range as the

transistors can span different biasing regions.

(c) A 100pJ/bit, (32,8) CMOS analog low-density parity-check (LDPC) decoder based on MP
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is designed and implemented. One fascinating property is its capability of trading off BER

performance with energy efficiency due to the tunable hyper parameter γ in MP algorithm.

The prototyped MP-based LDPC decoder can achieve an energy efficiency of 100nJ/bit while

an optimal configuration can also deliver up to 3 dB improvement in BER compared to the

benchmark min-sum LDPC decoder. This design is helpful for high energy-efficiency high

error-correcting performance analog LDPC decoder design.

(d) An analog energy-scalable MP-based support vector machine (SVM) is designed and imple-

mented. The prototype stores 2052 SVM parameters into floating-gate memory array and is

fully programmable. Due to the using of MP computation circuit, the prototyped SVM is

energy-scalable.

(e) A novel current-input current-output logarithmic amplifier circuit is designed and imple-

mented. This design based on translinear Ohm’s law directly generates currents as a loga-

rithmic function of the input current, which exhibits a dynamic range of 120dB and a tem-

perature sensitivity of 230 ppm/K, while consuming less than 100nW of power. This design

brings three major benefits for implementing logarithmic amplifier circuit: high dynamic

range, low power consumption, and temperature compensation.

(f) A novel varactor driven temperature compensation circuitry of CMOS floating-gate current

memory is designed and implemented. By adapting the floating-gate capacitance with volt-

age controlled capacitor (varactor), this design enables temperature dependent factors be

effectively canceled. With this design, a temperature sensitivity of 150 ppm/K is achieved.

This design is instructive for implementing high-density, temperature compensated floating-

gate current memories.
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1.3 Dissertation Organization

The dissertation is organized as follows: Other ASP research work is briefly introduced in chapter

2. The MP algorithm related theories and properties are introduced in detail in chapter 3. The

circuit implementation and synthesized analog computation circuits are introduced in chapter 4.

The applications of MP-based PWL circuits are described in chapter 5 and 6.

In chapter 2, the device models of MOS transistor are introduced first as background material.

Then a thorough survey of state-of-the-art research work in ASP is illustrated, i.e. a survey on

translinear analog signal processing circuits.

Chapter 3 presents MP algorithm related theories. Fundamental definitions and mathemati-

cal properties of MP algorithm are illustrated first, followed by the proof that MP algorithm is a

PWL approximation for “log-sum-exp” function. These definitions and properties serves as the

theoretical fundamental for later chapters.

Since MP is a PWL approximation algorithm to “log-sum-exp” function, a wide variety of sci-

entific computation can be synthesized with MP algorithm. In chapter 4, the basic current-mode

circuit implementation for MP algorithm is presented. Based on the basic MP circuit block, a

variety of analog computation circuits are synthesized, which include addition, subtraction, multi-

plication, division, power, inner-product, polynomial, and tanh. The PWL approximation effect of

MP-based circuits are demonstrated by the simulation results.

Chapter 5 presents an LDPC decoder which is implemented based on the MP circuits. This

chapter can be divided into theory sections and implementation sections. The theory sections

starts with the metrics to evaluated the performance of LDPC decoders and a significant property

of LDPC decoder: performance trade-off. Density evolution is introduced as an analytical tool

and utilized to evaluate the message sparsity performance for the MP-based LDPC decoding al-
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gorithm and the other two conventional algorithms. The subsequent simulation results verify the

density evolution analysis results as well as the BER performance. It is also demonstrated that the

trade-off capability of MP-based LDPC decoder can be realized elegantly by just tuning the hyper

parameter γ. The implementation sections start with circuit for basic module. Then the systematic

architecture is introduced. The test setup and the measurement results are presented.

Chapter 6 presents another application of the MP-based PWL circuits: an analog SVM. In this

application, the inner product computation of vector, the addition, multiplication, square of scalar

are all synthesized with MP-based PWL circuit. In this chapter, the core computation, the system

architecture and primary circuits are introduced in sequence. Finally, the simulation results and the

measurement results are demonstrated.

Chapter 7 offers conclusions and outlook.
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Chapter 2

Device Models and Translinear Analog

Signal Processing

2.1 Device Models of MOS Transistor

Fig. 2.1 illustrates the terminals of MOS transistors. Since the model of n-type MOS and that of

p-type MOS only differ in polarity definition of current flow through the devices, their mathematic

models only differs in signs. Thus only NMOS transistors are discussed thereinafter.
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Drain 
(D)

Source
(S)

Drain 
(D)

Source
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Gate
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NMOS PMOS

Body
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Body
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Figure 2.1: MOS symbols

19



The operation of a MOSFET can be separated into three different modes, depending on the

voltages at the terminals. The most frequently used models of MOSFET are for the operation in

strong inversion (or called “above threshold operation”) and weak inversion (or called “subthresh-

old conduction”).

The strong inversion model is described as follows:

IDS =
µnCox

2κ

W

L
[κ(VG − VT )− VS ]2. (2.1)

In equation (2.1), W and L denotes the width and length of transistor respectively. WL is called the

aspect ratio. µn represents the mobility of electrons. And Cox denotes the gate oxide capacitance

per unit area. VT represents the threshold voltage. κ is a parameter reflecting the effectiveness of

the gate potential in controlling the channel current, which is always approximated as κ ' 1 for

strong inversion. According to (2.1), the relationship between the current flow and the voltages

can be described as “square”.

The weak inversion model is described as:

IDS = I0e
(1−κ)VBS/UT eκVGS/UT (1− e−VDS/UT + VDS/V0). (2.2)

In this equation, VGS is the gate-to-source potential, VDS is the drain-to-source potential, VBS

is the bulk-to-source potential (body effect), I0 is the zero-bias current for the given device, V0 is

the early voltage, and UT is the thermodynamic voltage. For devices in subthreshold saturation,

which is determined by VDS ≥ 4UT , neglecting the early effect and the body effect, equation
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(2.2) can be simplified as

IDS = I0e
κVGS/UT . (2.3)

According to (2.3), the current is the exponential of the potential. Also we can deduce the input

transconductance in subthreshold saturation region as:

gm =
∂IDS
∂VGS

=
κIDS
UT

. (2.4)

And the output transconductance in subthreshold saturation region as:

gd =
∂IDS
∂VDS

=
IDS
V0

. (2.5)

It can be seen that gm and gd are linear to the current IDS in this operation region.

There is no uniform model for MOSFET throughout all the operation regions until it was de-

veloped by C. C. Enz, F. Krummenacher and E. A. Vittoz. Enz-Krummenacher-Vittoz in 1995,

named as EKV model. With EKV model, all the currents, transconductance, the intrinsic capaci-

tance, and thermal noise can be expressed in a continuous way in all operation regions, including

weak inversion, moderate inversion, strong inversion, conduction, and saturation. The equation of

EKV model is described as

IDS = ISlog
2
[
1 + e(κ(VG−VT )−VS)/2UT

]
− ISlog

2
[
1 + e(κ(VG−VT )−VD)/2UT

]
.

(2.6)

In this equation, IS is a specific current, which depends essentially on the aspect ratio WL and the
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mobility µn.

2.2 Translinear Analog Signal Processing

Figure 2.2: An alternating translinear loop of NMOS transistors. Here the number of clockwise
facing transistors in junction is the same as the number of counterclockwise facing transistors.

The translinear principle was defined by Gilbert in 1975 [14], originally with bipolar transis-

tors. In translinear circuits, the exponential current-voltage characteristic of bipolar transistor is

exploited. With the emergence of MOSFET circuit, translinear principle is extended into MOS

circuits, since MOS transistors in subthreshold region also have the exponential current-voltage

non-linearity characteristic, as shown in (2.3). The translinear principle states that, in a closed loop

of tranlinear devices comprising an equal number of of clockwise facing and counterclockwise

facing junction devices, their currents follows:

∏
j∈CW

Ij

Sj
=

∏
j∈CCW

Ij

Sj
, (2.7)
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where CW and CCW denote the set of junction transistors clockwise facing and counterclockwise

facing respectively. Ij denotes the IDS of the transistor. S denotes the aspect ratio, i.e. W/L

ratio of the transistor. Fig. 2.2 shows a conceptual alternating translinear loop comprising NMOS

transistors.

Note that the translinear principle is derived by Kirchhoff’s voltage law for the loop, which is:

∑
j∈CW

VGS(j) =
∑

j∈CCW
VGS(j), (2.8)

In 1991, the translinear principle was extended by Seevinck and Wiegerink [17]. They gener-

alized the translinear principle with the statement that the transconductance of a device is linear in

the controlling voltage rather than it being linear in the current, as Gilbert intended originally. In

this generalized translinear principle, the square-law MOS characteristic, as we show in equation

(2.1), is exploited. Correspondingly, the MOS transistors in a translinear loop they presented were

biased in strong inversion. And their translinear principle takes the form as

∑
j∈CW

√
Ij

Sj
=

∑
j∈CCW

√
Ij

Sj
. (2.9)

This generalized translinear principle is suggested to be renamed as voltage-translinear circuits to

prevent possible confusion [23].

However, there is no translinear principle describing the behavior of translinear loops when any

of the transistors enters the moderate inversion region, where the device is in neither weak inversion

nor strong inversion, but in between. In this region, the current-voltage characteristic follows

neither the exponential form as shown in equation (2.3) nor the square-law form as described in

equation (2.1).
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The EKV model, which is described in (2.6), provides a model for the current-voltage char-

acteristics of the MOS transistor at all levels of inversion including moderate inversion. In 2008,

Minch brought out a generalized translinear principle for alternating loops of saturated MOS tran-

sistors that is valid at all levels of inversion based on the EKV model [24]. This generalized

translinear principle reduces to the conventional one when all transistors in a translinear loop are

biased in weak inversion and reduces to the voltage-translinear principle when all transistors in the

loop are biased in strong inversion. They model the current-voltage characteristic of an NMOS

transistor with its bulk tied to ground as:

Isat = SISlog
2(1 + e(κ(VG−VT0)−VS)/2UT ), (2.10)

where S = W/L denotes the aspect ratio, κ = Cox/(Cox+Cdep) denotes the subthreshold slope

factor, VT0 denotes the zero-bias threshold voltage, UT = kT/q denotes the thermal voltage, and

IS = 2µnCoxU
2
T /κ denotes the transistor’s specific current. Based on this equation it is explicitly

to deduce

κ(VG − VT0)− VS = 2UT log(e

√
Isat/SIS − 1). (2.11)

When the transistor is in weak inversion, by expanding e
√
Isat/SIS in a Maclaurin series and

retaining the constant and linear terms, we obtain the approximation as

κ(VG − VT0)− VS ≈ UT log
Isat
SIS

. (2.12)

When the transistor is in strong inversion, −1 is negligible compared to e
√
Isat/SIS , therefore
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we can obtain

κ(VG − VT0)− VS ≈ 2UT

√
Isat
SIS

. (2.13)

Based on equation (2.12) and (2.13), we can derive translinear principle on weak inversion, shown

in (2.9), and voltage-translinear principle on strong inversion, shown in (2.10). And the continuous

moderate inversion model is obtained on equation (2.11) as well.

Based on these aforementioned translinear principles, continuous-time translinear analog sig-

nal processing (TASP) systems are constructed. TASP circuits can be divided into two major

classes: static translinear circuits and dynamic translinear circuits.

Static translinear circuits exploit the exponential relation between voltage and current to realize

static linear and nonlinear transfer functions, such as products, quotients, arbitrary fixed power

laws, etc. [15, 25, 18, 26]. With such operations, we can implement signal-processing algorithms

involving auto-correlation, cross-correlation, signal energy computation, least-mean-square (LMS)

error metric computation, and the like [23, 25]. For instance, the Gilbert multiplier [15] shown in

Fig. 1.3 (d) is a static translinear circuit. For the circuit of Fig. 1.3 (d):

I+
1 =

Ib

1 + e
−(V+

1 −V
−
1 )/UT

, I−1 =
Ib

1 + e
(V+

1 −V
−
1 )/UT

(2.14)

I+
2 =

I+
1

1 + e
−(V+

2 −V
−
2 )/UT

, I−2 =
I+
1

1 + e
(V+

2 −V
−
2 )/UT

(2.15)

I+
3 =

I−1

1 + e
(V+

2 −V
−
2 )/UT

, I−3 =
I−1

1 + e
−(V+

2 −V
−
2 )/UT

(2.16)
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If we denote (V+
1 − V

−
1 )/UT = x, (V+

2 − V
−
2 )/UT = y, we can obtain

I+
out = I+

2 + I+
3 = Ib

exey + 1

(ex + 1)(ey + 1)
(2.17)

I−out = I−2 + I−3 = Ib
ex + ey

(ex + 1)(ey + 1)
(2.18)

Thus,

I+
out − I

−
out = Ibtanh(

x

2
)tanh(

y

2
) (2.19)

By tailor series expression, here we take tanh(z) ≈ z. Then

Iout ≈ Ib ·
x

2
· y

2
(2.20)

∝ x · y. (2.21)

Another example of static translinear circuit is “winner-take-all” circuit, which can be used to

find out the maximum amongst a couple of inputs [16]. A voltage-in-current-out winner-take-all

circuit is shown in Fig. 2.3. In this circuit, current flow through each branch follows:

Ii =
eκVi/UT∑N
j=1 e

κVj/UT
·N · Ib (2.22)

Due to the fast decay of exponential, at equilibrium, the branch with the maximum voltage takes all

the currents and the other branch obtains currents which decays gradually to zero. Consequently,

the winner (maximum) is easy to pick out.

There is also an increasing effort to develop new circuit design techniques in order to build
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Figure 2.3: A voltage-in-current-out winner-take-all circuit.

analog information-processing systems. In 2001, Minch proposed multiple-input translinear ele-

ment (MITE) networks [19], which produces an output current that is exponential in a weighted

sum of its input voltages. MITEs are simply implemented using multiple-input floating gate MOS

(FGMOS) transistors. An MITE is shown in Fig. 2.4. The output current Iout follows:

...

1V
2V

NV

1w
2w

Nw

outI

Figure 2.4: A multiple-input translinear element (MITE).

Iout ∝ e(w1V1+w2V2+···+wNVN ). (2.23)
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From equation (2.23) it can be seen that if these weights are adjusted according to some learning

algorithm, such as the least-mean-square (LMS) algorithm or the recursive least-squares (RLS)

algorithm, these built-in weights can be used to implement a variety of linear adaptive signal-

processing architectures. In this respect, TASP circuits are also applied into neural systems [27,

28, 29, 30]. Furthermore, these weights can be programmed in a digital fashion to realize recon-

figurability in TASP systems. Such reconfigurable analog signal processing systems are called

field-programmable analog arrays (FPAAs) [6]. This kind of TASP FPAA is analogous to an

E2PROM -based field programmable gate arrays (FPGA) in digital domain.

Based on MITEs, a variety of static and dynamic translinear circuits can be synthesized (e.g.

the vector-magnitude circuit, the vector-normalization circuit, the second-order low-pass filter, and

the rms-to-dc converter) [19, 31, 32, 26].

By admitting capacitors in the translinear loops, the dynamic translinear circuits are constructed

to deal with frequency dependent transfer functions. The dynamic translinear principle can be

explained with reference to the circuit shown in Fig.2.5. The expression for Icap is easily found

+ -
Vconst

+

-
Vcap

IDS

Icap

Figure 2.5: Principle of dynamic translinear circuits.
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to be

Icap = CUT

˙IDS
IDS

, (2.24)

which shows that Icap is a nonlinear function of IDS and its time derivative ˙IDS . Equation (2.24)

can be rewritten as

CUT
˙IDS = IcapIDS, (2.25)

which states the dynamic translinear principle: A time derivative of a current can be mapped onto

a product of currents [33].

The first dynamic translinear circuit, or log-domain filter, was originally introduced by Adams

in 1979 [20]. The first-order filter described in [20] is in fact a translinear circuit. Another mile-

stone is a general class of filters, called exponential state-space filters, which comprise a number

of translinear loops, first published by Frey [34]. The exponential state-space filters enables the

design of higher order log-domain filters[35, 36]. Since then the interest of dynamic translinear

filter increases dramatically. More studies were reported in this area [37, 38, 39, 40, 41, 42].

However, the dynamic translinear principle is not limited to filters, or linear differential equa-

tions. It also can be utilized to realize nonlinear differential equations using transistors and capaci-

tors only. In [21], the nonlinear differential equations describing the rms-dc conversion function are

implemented on the dynamic translinear principle. Another example is [22], in which a translinear

second-order oscillator was implemented. Some other example functions described by nonlinear

differential equations and implemented by translinear circuits are phase-locked loops (PLL’s) [43],

translinear sinusoidal frequency tripler [44], etc..
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Chapter 3

Theory of PWL technique based on margin

propagation

3.1 Definition of MP algorithm

At the core of MP algorithm is the reverse water-filling procedure, which has been described in

detail in [45, 46]. Given a set of scores Li ∈ R, i = 1, ..., N, reverse water-filling computes a

normalization factor z according to the constraint:

N∑
i=1

[Li − z]+ = γ (3.1)

where[·]+ = max(·, 0) denotes a rectification operation and γ ≥ 0 represents a parameter of the

algorithm. Computation of z according to constraint (3.1) is summarized in the Algorithm 1. The

algorithm recursively computes the factor z such that the net balance of log-likelihood scores Li

in excess of z equals γ.

The solution to equation (3.1) can also be visualized using Figure 3.1, where the cumulative
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Algorithm 1 Reverse water-filling procedure to compute the parameter z

Require: Set of log-likelihood scores {Li}, i = 1, .., N .
Ensure: z = 0, N = 1, T = 0
a = max{Li}
{s} ← {Li} − {a}
while T < γ & m < N do
b = max{s}
T ← T +M(a− b)
a← b
{s} ← {s} − {b}
m← m+ 1

end while
z ← b+M(γ − T )

score beyond the normalization factor z (shown by the shaded area) equals to γ . To be practical,

we always limit z in the range of z ≤ max
i
Li. The computation of z can be expressed as an

equivalent function M(L, γ) whose inputs are a set of log-likelihood scores L = {Li}, i = 1, .., N

of size N and a hyper-parameter γ:

zmp = M(L, γ). (3.2)

3.2 Properties of MP algorithm

In this section we present some of the key properties of MP function M(L, γ). Since margin

approximation uses thresholds [x]+ = max(x, 0), we first state two lemmas which will be useful

for proving some of the other properties.

Lemma 1 : ∀a, b ∈ R,

[a]+ − [b]+ ≤ [a− b]+.
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z

Li

L1

Li - z +

Figure 3.1: Illustration of reverse water-filling procedure

Lemma 2 : ∀a, b ∈ R,

[a]+ + [b]+ ≤ [a+ b]+.

The proof of Lemma 1 and Lemma 2 is straightforward and can be found in any standard analysis

textbook. For the sake of brevity, only the statement and the illustration of some of the properties

are presented in this section and all the proofs have been presented in detail in the appendix.

Property 1 (Scaling Property): For any α ∈ R, α > 0 and a set of scores L = {Li}, i =

1, .., N

M(αL, αγ) = αM(L, γ). (3.3)

Here αL = {αLi}, i = 1, .., N . The proof of this property is simple since if the condition

N∑
i=1

[Li − z]+ = γ
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is satisfied, then the following condition

N∑
i=1

[αLi − αz]+ = αγ

is also satisfied. Figure3.2 illustrates the scaling property of margin approximation function, where

the threshold z scales with the scaling of the log-likelihood scores and the hyper-parameter γ.

i

1

i

i

1
i

Figure 3.2: Scaling property of margin propagation

Property 2 (Monotonicity): Given a set of scores L = {Li}, i = 1, .., N and if γ1 ≥ γ2 ≥ 0

then

M(L, γ1) ≤ M(L, γ2)

One of the important implications of the monotonicity is the asymptotic property when γ → 0 and

is given by

lim
γ→0

M(L, γ) = max(L). (3.4)

The importance of this asymptotic property is that the min-sum algorithm for LDPC decoding is a

special case of the proposed margin propagation algorithm.
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Proof. Given



N∑
i=1

[Li − z1]+ = γ1,

N∑
i=1

[Li − z2]+ = γ2,

γ1 ≥ γ2 ≥ 0,

(3.5)

what we need to prove is

z1 ≤ z2.

If we subtract the first equation by the second equation in (3.5), we can get

N∑
i=1

([Li − z1]+ − [Li − z2]+) = γ1 − γ2 ≥ 0. (3.6)

Based on Lemma 1,

N∑
i=1

[z2 − z1]+ ≥
N∑
i=1

([Li − z1]+ − [Li − z2]+).

Combined with (3.6), it can be deduced that

N∑
i=1

[z2 − z1]+ ≥ 0.

Consequently,

z2 − z1 ≥ 0.
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In conclusion,

z1 ≤ z2.

Property 3 (Convexity Property): Given a set of coefficients {αk} satisfying 0 ≤ αk ≤ 1

and
∑
k

αk = 1 and given a set of hyper-parameters {γk}

M(L,
∑
k

αkγk) ≥
∑
k

αkM(L, γk).

Proof. Given the same group of Lis, and a set of γk, k = 1, .., n



N∑
i=1

[Li − z1]+ = γ1,

N∑
i=1

[Li − z2]+ = γ2,

...
N∑
i=1

[Li − zn]+ = γn,

(3.7)

Based on Property 1, we can transform the equations in (3.7) as



N∑
i=1

[α1Li − α1z1]+ = α1γ1,

N∑
i=1

[α2Li − α2z2]+ = α2γ2,

...
N∑
i=1

[αnLi − αnzn]+ = αnγn,
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Add the above equations up, based on Lemma 2, we will get

N∑
i=1

Li − n∑
k=1

αkzk


+

≥
n∑
k=1

αkγk.

Denote z
′

satisfies
N∑
i=1

[
Li − z

′]
+

=
n∑
k=1

αkγk.

Based on Property 1, then z
′
≥
∑n
k=1 αkzk .

That is,

M(L,
∑
k

αkγk) ≥
∑
k

αkM(L, γk).

Property 4 (Superposition Property): Given two sets of scores L and G of size N with a well

defined ordering and if L+ G represent an element by element scalar addition then

M(L+ G, γ) ≤ M(L, γ) + M(G, γ).

Proof.



N∑
i=1

[Li − z1]+ = γ,

N∑
i=1

[gi − z2]+ = γ,

(3.8)

what we need to prove is if
N∑
i=1

[Li + gi − z3]+ = γ, (3.9)
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then

z3 ≤ z1 + z2.

All the Lis are sorted and rearranged in a decreasing order so that L
′
1 ≥ L

′
2 ≥ L

′
3... ≥ L

′
N .

We use N1 to represent the number of L
′
is above the threshold z1. The same operations are done

to gis. All the gis are sorted and rearranged decreasingly as g
′
1 ≥ g

′
2 ≥ g

′
3... ≥ g

′
N . And the

number of g
′
is above the threshold z2 is N2.

Rewrite (3.8) as



N1∑
i=1

L
′
i −N1z1 = γ,

N2∑
i=1

g
′
i −N2z2 = γ,

(3.10)

Assume N2≥N1, then from the bottom equation in (3.10), we get

0 ≤
N1∑
i=1

g
′
i −N1z2 ≤ γ. (3.11)

Add both sides of (3.11) to those of the upper equation in (3.10), we can get

γ ≤
N1∑
i=1

L
′
i +

N1∑
i=1

g
′
i −N1z1 −N1z2 ≤ 2γ. (3.12)

(3.12) can be transformed as

N1∑
i=1

[L
′
i + g

′
i − (z1 + z2)] ≥ γ,
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from which we can deduce that

N∑
i=1

[Li + gi − (z1 + z2)]+ ≥ γ, (3.13)

Given (3.9) and (3.13), based on Property 2, it can be deduced that

z3 ≤ z1 + z2.

And vice versa if we assume N1≥N2. If written in MP function,

M(L+ G, γ) ≤ M(L, γ) + M(G, γ).

Under special condition the above property reduces to an equality and is given by Property 5

(Offset Invariance): Given a set of scores L of size N and a scalar g ∈ R then

M(L+ g, γ) = M(L, γ) + g.

Property 5 implies that if a constant offset to all the elements of input set leads to an equivalent

offset in the output of the margin approximation function.

Proof. Based on the proof of Property 4, given

N∑
i=1

[Li − z]+ = γ,
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if G is a scalar set with each gi = g, g ∈ R, 3.9 can be rewritten as

N∑
i=1

[Li + g − (z + g)]+ = γ,

Written in MP function format,

M(L+ g, γ) = M(L, γ) + g.

Property 6 (Invariance Property): Given a set of scores L of sizeN , and given a set of scores

G whose elements satisfy gi ≤M(L, γ), i = 1, ..., N , then

M(L
⋃
G, γ) = M(L, γ).

Proof. Given
N∑
i=1

[Li − z]+ = γ,

∀gj , j ∈ [1, n], since gj � z,
n∑
i=1

[gj − z]+ = 0

which means
N∑
i=1

[Li − z]+ +
n∑
i=1

[gj − z]+ = γ.

Therefore, we can get

M(L
⋃
G, γ) = M(L, γ).
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3.3 PWL approximation based on MP algorithm

The generalized form of a “log-sum-exp” function is described as

zlog = log

 N∑
i=1

eLi

 . (3.14)

The Piecewise-linear (PWL) approximation of “log-sum-exp” function can be achieved with MP

algorithm.

Proof. Assume that (3.14) and (3.2) share the same group of operands L1, . . . , LN , Li ∈ R, i =

1, ..., N . If the operands are sorted and rearranged in a decreasing order as L
′
1 ≥ L

′
2... ≥ L

′
N ,

(3.14) can be rewritten as

zlog = log

 N∑
i=1

e
L
′
i

 , (3.15)

For MP algorithm, (3.2) is rewritten as

z = M(L
′
1, . . . , L

′
N, γ). (3.16)

If the number of L
′
is above threshold z is n, 1 ≤ n ≤ N , according to the definition of MP
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algorithm, (3.1) is rewritten as

n∑
i=1

(
L
′
i − z

)
= γ,

n∑
i=1

L
′
i − nz = γ. (3.17)

And z can be deduced as

z =

n∑
i=1

L
′
i

n
− γ

n
. (3.18)

For (3.18), under the conditions (a) γ and all the other L
′
is are fixed except L

′
n (b) L

′
n is varying

within the range not below the threshold z, we have

∂z

∂L
′
n

=
1

n
. (3.19)

For zlog in (3.15), under the same conditions (a) and (b),

∂zlog

∂L
′
n

=
eL
′
n

N∑
i=1

e
L
′
i

=
1

N∑
i=1

e
(L
′
i−L
′
n)

. (3.20)

Define a function u(L
′
i, L
′
n) to approximate e(L

′
i−L
′
n) as

u(L
′
i, L
′
n) =


1, L

′
i ≥ L

′
n,

0, L
′
i < L

′
n,

1 ≤ n ≤ N.
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Fig. 3.3 shows us the curve of u(L
′
i, L
′
n) and its PWL approximating effect to that of e(L

′
i−L
′
n).
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Figure 3.3: The curve of e(L
′
i−L
′
n) and its PWL approximation curve of u(L

′
i, L
′
n)

Since the number of L
′
is not less than L

′
n is n, then

N∑
i=1

u(L
′
i, L
′
n) =

n∑
i=1

u(L
′
i, L
′
n) = n. (3.21)

Therefore,
∂zlog

∂L
′
n

≈
1

N∑
i=1

u(L
′
i, L
′
n)

=
1

n
. (3.22)

Comparing (3.19) and (3.22), we can find out that

∂zlog

∂L
′
n

≈
1

n
=

∂z

∂L
′
n

. (3.23)

Based on the illustrations above, we can draw the conclusion that z in (3.2) approximates zlog
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in (3.14) under the condition that γ and all the other L
′
is are fixed except L

′
n varying within a

certain range. Since 1 ≤ n ≤ N , by adjusting the value of γ to change the number of operands

above threshold (reflected by n), this conclusion can be extended to the whole group of operands.

Based on the proof, we can write

zmp = M(L, γ) ≈ log

 N∑
i=1

eLi

 . (3.24)

To demonstrate the PWL approximation effect of MP algorithm, a “log-sum-exp” based func-

tion is utilized for reference. It is a transform function φ with two log-likelihood operands L1 and

L2 [47], which is named “sum-product” in the field of factor graph decoding [48]:

φL2
(L1) = log

(
1 + eL1+L2

eL1 + eL2

)
. (3.25)

The two operands are expressed in differential form, i.e., L1 = L+
1 − L

−
1 , L2 = L+

2 − L
−
2 .

Now (5.11) is rewritten and decomposed as

φL2
(L1)=log

eL−1 +L−2 +e
L+

1 +L+
2

e
L−1 +L+

2 +e
L+

1 +L−2

 ,

=log

(
e
L−1 +L−2 +e

L+
1 +L+

2

)
−log

(
e
L−1 +L+

2 +e
L+

1 +L−2
)
, (3.26)

where φL2
(L1) can be represented as a difference of two “log-sum-exp” function. Based on
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equation (3.24), we can approximate (3.26) using two MP units with two operands for each:

φL2
(L1)≈M(L−1 +L−2 , L

+
1 +L+

2 ,γ)−M(L+
1 +L−2 , L

−
1 +L+

2 ,γ). (3.27)

Fig. 3.4 shows us the comparison of PWL approximation effect achieved with a fixed γ and

different schemes of operands in either MP unit: (a) two operands for either MP unit as described

in equation (3.27); (b) four operands for either MP unit and (c) six operands for either MP unit.

The operands for MP units are listed in Table 3.1.

Table 3.1: Operands of MP units in Fig 3.4

Num Operands for MP unit z+ Operands for MP unit z−

2
L−1 + L−2 , L−1 + L+

2 ,

L+
1 + L+

2 L+
1 + L−2

4

L−1 + L−2 , L+
1 + L−2 ,

1

2
(L−1 + L−2 + L+

1 + L+
2 ),

1

2
(L−1 + L−2 + L+

1 + L+
2 ),

3

5
(L−1 + L−2 + L+

1 + L+
2 ),

3

5
(L−1 + L−2 + L+

1 + L+
2 ),

L+
1 + L+

2 L−1 + L+
2

6

L−1 + L−2 , L+
1 + L−2 ,

2

5
(L−1 + L−2 + L+

1 + L+
2 ),

2

5
(L−1 + L−2 + L+

1 + L+
2 ),

1

2
(L−1 + L−2 + L+

1 + L+
2 ),

1

2
(L−1 + L−2 + L+

1 + L+
2 ),

3

5
(L−1 + L−2 + L+

1 + L+
2 ),

3

5
(L−1 + L−2 + L+

1 + L+
2 ),

2

3
(L−1 + L−2 + L+

1 + L+
2 ),

2

3
(L−1 + L−2 + L+

1 + L+
2 ),

L+
1 + L+

2 , L−1 + L+
2

As can be seen from Fig. 3.4, when more intercepted operands are introduced into MP compu-

tation, the approximating curves are becoming more fine and similar to the original “sum-product”
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algorithm. That means, the PWL approximation effect of (3.27) can be improved when more

operands are utilized in the approximating algorithm.
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Sum−product

Figure 3.4: PWL approximation effect of MP algorithm
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Chapter 4

MP-based current-mode PWL circuit and

synthesis

4.1 Log-domain computation

As high-speed computation in signal processing system, graphic systems, communication system,

are receiving increasingly concerns, logarithmic computation, as a specific and effective option in

signal processing area, becomes the central of research.

Logarithmic number system (LNS) has been adopted in many trials of digital signal processor

(DSP) [49, 50, 51, 52, 53]. A list of operations in base-2 LNS in comparison to normal arithmetic

system is shown in table 4.1. As can be seen, log-domain computation can dramatically simplify

various complex ordinary arithmetic computations, such as multiplication, division, reciprocal,

square-root, and so on. Consequently, with LNS, the number of bits needed in the computation

decreases and therefore the power consumption drops [52, 53]. At the same time, lower complex-

ity results in high-speed computation as well [49, 52, 53]. Generally speaking, for the scenarios
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in demand of low dissipated power, high throughput and small gate counts, LNS is more appro-

priate than conventional arithmetic systems. However, a major obstacle of LNS implemented in

digital circuits is the complicated addition and subtraction. Moreover, to simplify the hardware

implementation, PWL schemes are frequently adopted by the digital logarithmic converters in real

number to logarithmic domain data conversion. As a result of PWL, small coefficient lookup ta-

bles are resorted to as the power- and area-efficient implementation [52, 53, 54]. However, the

use of read only memory (ROM) is costly and seriously restricts the word length of the LNS data

system [49, 55].

Table 4.1: Operations in ordinary and logarithmic arithmetic in digital implemented LNS processor

Operation Ordinary Arithmetic Logarithmic Arithmetic

Multiplication x× y, X + Y

Division x÷ y, X − Y

Square Root
√
x, X >> 1

Square x2, X << 1

Addition x+ y, X + log2(1 + 2Y−X )

Subtraction x− y, X + log2(1− 2Y−X )

The proposed MP-based algorithm is capable of approximate a specific log-domain computa-

tion (“log-sum-exp” function) and can be implemented in an analog manner, which circumvents

the problems aforementioned for digital implementation. In later section of this chapter, a diversity

of log-domain computation circuits will be shown synthesized with the a basic MP circuit.
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4.2 Architecture of synthesized system

Let us take an arbitrary function as example:

Y = a1 ∗ b1 + a2 ∗ b2. (4.1)

The operands can be converted into differential forms as

a1 = a+
1 − a

−
1 , a2 = a+

2 − a
−
2 ,

b1 = b+1 − b
−
1 , b2 = b+2 − b

−
2 ,

and the corresponding operands in LNS are

L+
a1

= log a+
1 , L−a1

= log a−1 ,

L+
a2

= log a+
2 , L−a2

= log a−2 ,

L+
b1

= log b+1 , L−
b1

= log b−1 ,

L+
b2

= log b+2 , L−
b2

= log b−2 .

Accordingly, (4.1) can be converted into

Y = ez
+
− ez
−
, (4.2)
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where z+ and z− are expressed as

z+ = log

eL+
a1

+L+
b1 + e

L−a1
+L−

b1 + e
L+
a2

+L+
b2 + e

L−a2
+L−

b2


z− = log

eL+
a1

+L−
b1 + e

L−a1
+L+

b1 + e
L+
a2

+L−
b2 + e

L+
a2

+L−
b2

 (4.3)

From (4.3), it can be seen that the original computation in (4.1) can be transformed into a “log-

sum-exp” function shown in (3.14) when the computation is converted into LNS. Then it can be

approximated with MP algorithm, as equation (3.24) shows.

Based on the illustration above, for any arbitrary function that can be be converted into the form

of (4.2) and (4.3), i.e. expressed in terms of “log-sum-exp” function, its PWL approximation can

be obtained with MP algorithm. Let us generalize such an arbitrary function with all the operands

in real domain as Y = f(a, ..., b). It can be converted into differential form and LNS as

Y = ez
+
− ez
−
.

z+ = F+(L+
a , L
−
a , ..., L

+
b
, L−
b

).

z− = F−(L+
a , L
−
a , ..., L

+
b
, L−
b

). (4.4)

In (4.4), F+ and F− denote the “log-sum-exp” functions of L+
a , L−a , L+

b
, L−
b

, etc.

Fig. 4.1 shows the system level architecture of arbitrary computations. The input signals are

represented by their differential forms a = a+ − a−, b = b+ − b− and are converted into log-

arithms at input stage. Similarly, the logarithms of the output signals are represented by z+ and

z−. With all the logarithm/antilogarithm conversion realized by outer units at input/output stage,

the core computations (within the dashed block) are carried out in log-likelihood domain and im-
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Figure 4.1: Top architecture of the computation unit

plemented by MP based PWL approximation circuit. Here we only focus on the core computation

unit.

4.3 Current-mode circuit implementation for MP algorithm

A current-mode circuit implementing the basic reverse water-filling equation (3.1) is shown in Fig.

4.2. The four operands L1 ∼ L4 in (3.2) are represented by currents IL1
∼ IL4

. The hyper-

parameter γ in (3.2) is implemented by the current Iγ . The circuit in Fig. 4.2 bears similarity

to other parallel current-mode circuits like the winner-take-all circuits. However, as mentioned

in the previous section, the MP implementation is more general and for Iγ → 0 the MP circuit

implements a winner-take-all function. The Kirchoff’s current law (KCL) when applied to node

A, is equivalent to the reverse water-filling condition
∑4
i=1[ILi

− Iz ]+ = Iγ . Iz represents the

MP approximation M(L1, .., L4, γ), and [.]+ denotes a rectify operation which is implemented

by the PMOS diodes P1 ∼ P4. It can be readily verified that the PMOS diodes ensure that

VDS,Ni
= VSG,Pi

+ VDS,sat, where VDS,Ni
is the drain-to-source voltage drop across tran-
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sistor Ni, i = 1, .., 4, VSG,Pi
is the voltage drop across the PMOS diodes and VDS,sat is the

saturation voltage across the current sink Iγ . Thus, transistors N1 ∼ N4 are always maintained

in saturation irrespective of the operation region (weak, moderate and strong inversion). This is

important because the operation of the MP circuit relies on the accuracy of the current mirrors

formed by N0 ∼ N4. Also, to ensure proper operation of the core MP circuit the input currents

have to satisfy the constraint
4∑
i=1

ILi
≥ Iγ and the input current range can be expressed as

1

2
µnCox(

W

L
)(

1

2
Vdd)2 ≥ ILi

≥ 0. (4.5)

In the derivation of the upper-bound of the input current range we have assumed that the ILi
>>

Iγ and the PMOS and the NMOS transistors have similar drain-to-source voltage drops (implying

VB ≈ Vdd/2). It should be noted that the PMOS diodes in circuit shown in Fig. 4.2 introduces a

threshold voltage drop which implies that the supply voltage has to be greater than 2VGS + VDS .

However, a low-voltage implementation of the circuit in Fig. 4.2 is possible by replacing the PMOS

diodes by low-threshold active diodes [56], but at the expense of larger silicon area, higher power

dissipation and degraded speed and stability.

We have prototyped a programmable version of the MP circuit shown in Fig. 4.2 in a 0.5µm

standard CMOS process. The architecture of the prototype is shown in Fig. 4.4 and its micro-

graph is shown in Fig. 4.3. A serial shift-register is used for selectively turning on and off each

of different branches of currents. In this manner, the same MP circuit in Fig. 4.2 can be reconfig-

ured to implement different mathematical functions. The architecture in Fig.4.4 uses an on-chip

first-order Σ∆ modulator as an analog-to-digital converter for measurement and calibration of the

output currents. Because the circuits used for implementing the Σ∆ modulator have been reported
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Figure 4.2: CMOS implementation of the core MP circuit.

μ

Figure 4.3: Die micrograph of the chip.

elsewhere [57] we have omitted its implementation details in this paper. The input currents and

hence the operating region (weak, moderate and strong inversion) of all the transistors are ad-

justed by controlling the gate voltages of the PMOS transistors. For each of the operating regions,

the ADC is re-calibrated to the maximum current and the measured results (presented in the next

sections) are normalized with respect to the maximum current.
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4.4 MP based computational circuits

In previous section, we already illustrate MP is an effective PWL approximation algorithm for a

specific log-domain function. The circuit schematic of a four-operand MP based PWL approxi-

mation circuit is shown in Fig. 4.2. In this section, we illustrate some log-domain fundamental

computations that can be synthesized based on the “log-sum-exp” function and their MP based

PWL approximation circuits. Based on these fundamental computation circuits, arbitrary log-

domain arithmetic operations and their combinations can be implemented, which can be validated

with some classical mathematic functions presented in this section as well. Current-mode signal

representation is exploited so that power dissipation can be controlled adaptively under different

power consumption requirements.

4.4.1 Addition

To compute a+bwith respect to the two input variables a and b, a ∈ R, b ∈ R the operands are first

represented in their differential forms a = a+−a− and b = b+−b− with a+, a−, b+, b− ∈ R+.

Then, the operation is rewritten as in Fig. 4.1

a+ b = a+ − a− + b+ − b− =
(
a+ + b+

)
−
(
a− + b−

)
= e

log
(
a++b+

)
− e

log
(
a−+b−

)
. (4.6)

All the operands are then mapped into a log-likelihood domain according to

L+
a = log a+, L−a = log a−,

L+
b

= log b+, L−
b

= log b−,
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where L+
a ∈ R, L−a ∈ R, L+

b
∈ R, L−

b
∈ R. Since, our circuit implementation uses only

unipolar current sources, we impose additional constraints a+, a−, b+, b− > 1. Due to the dif-

ferential representation, this additional constraint will not affect the final output. Let z+ denote

log
(
a+ + b+

)
and z− denote log

(
a− + b−

)
. Then, (4.6) can be written as

a+ b = ez
+
− ez
−
. (4.7)

and z+ can be expanded as

z+ = log
(
a+ + b+

)
= log

(
elog a+

+ elog b+
)

= log

(
eL

+
a + e

L+
b

)
. (4.8)

We now apply the MP approximation to the log-sum-exp functions to obtain

z+ ≈ M(L+
a , L

+
b
, γ). (4.9)

Similarly,

z− = log
(
a− + b−

)
= log

(
elog a− + elog b−

)
= log

(
eL
−
a + e

L−
b

)

≈ M(L−a , L−b , γ) (4.10)

Since the equation (4.9) and the equation (4.10) uses only two operands, its circuit level imple-

mentation is identical to Fig. 4.2 except that it has only two input branches instead of four. The

single-ended circuit for addition is shown in Fig. 4.5. I
z+ , the current through N0, represents the
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value of z+. I
L+
a

, I
L+
b

and Iγ represents L+
a , L+

b
and γ respectively.
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+z

I

+
aLI +

bLI

Figure 4.5: MP circuit for implementing two operand addition.

Fig. 4.6a (a)-(c) compares the output z+−z− obtained using floating-point implementation of

the “log-sum-exp” functions, the MP approximation and from measurements (normalized currents)

using the fabricated prototype.
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Figure 4.6: Addition: z+ − z− computed according to (a) the original log-sum-exp function; (b)
MP approximations (simulation); and (c) MP circuits (measurement).

Fig. 4.7 (a)-(c) show the measurement results when the transistors are biased in (a) strong

inversion; (b) moderate inversion; and (c) weak inversion. Fig. 4.7 (d)-(f) show the approximation

error between the measured response and the software model. The results validate our claim for

the addition operation that MP approximation is scalable across different biasing regions and the

56



circuit in Fig. 4.5 approximates the ”log-sum-exp” function with a reasonable error. The error

increases when the circuit is biased in the weak inversion and as with any sub-threshold analog

VLSI circuit, which we attribute to transistor mismatch, flicker-noise, and errors introduced in

mapping floating-point operands into analog operands (currents).
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Figure 4.7: Addition: measurement results for z+ − z− with transistors biased in (a)strong inver-
sion; (b)moderate inversion; (c)weak inversion; (d)-(f) computation errors for (a)-(c).

4.4.2 Subtraction

Synthesizing an MP circuit for subtraction a− b, with a and b being the two operands is similar to

the addition operation. The operation can be written in a differential form as a = a+ − a− and

b = b+ − b−, with a+, a−, b+, b− ∈ R+ and satisfying a+, a−, b+, b− > 1. Thus, a − b is
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written as

a− b =
(
a+ − a−

)
−
(
b+ − b−

)
=
(
a+ + b−

)
−
(
a− + b+

)
= e

log
(
a++b−

)
− e

log
(
a−+b+

)
(4.11)

which after conversion into a log-likelihood domain

L+
a = log a+, L−a = log a−,

L+
b

= log b+, L−
b

= log b−,

leads to

z+ = log
(
a+ + b−

)
= log

(
elog a+

+ elog b−
)

= log

(
eL

+
a + e

L−
b

)

≈ M(L+
a , L
−
b
, γ) (4.12)

and

z− = log
(
a− + b+

)
= log

(
elog a− + elog b+

)
= log

(
eL
−
a + e

L+
b

)

≈ M(L−a , L+
b
, γ) (4.13)

where z+ and z− are differential forms of the output log-likelihoods as described in (4.2). The

circuit implementation of subtraction is identical to that of addition, except that the input differ-

ential currents are now permuted. Fig. 4.8 compares the measured response with software based

“log-sum-exp” and MP implementation. Also, Fig. 4.9 (a)-(c) shows the measured results when
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the transistors are biased in the three different operating regimes. Similar to the results obtained

for the addition operation, the measured result show the bias-scalable operation of the MP circuits.
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Figure 4.8: Subtraction: z+ − z− computed by (a) original functions; (b) MP approximations
(simulation); and (c) MP circuits (measurement).
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Figure 4.9: Subtraction: measurement results for z+ − z− with transistors biased in (a)strong
inversion; (b)moderate inversion; (c)weak inversion; and (d)-(f) show respective approximation
errors.
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4.4.3 Four quadrant multiplication

Implementing a single quadrant multiplier using MP circuit is straight-forward because z = a · b in

its logarithmic form can be expressed as a sum of likelihoods Lz = La+Lb, where Lx denotes the

logarithm of the operand x. Thus, a single quadrant multiplier requires only a current summation

and can be implemented using KCL. For an MP-based four-quadrant multiplier the operation a · b

is again expressed in terms of the differential operands as:

a · b =
(
a+ − a−

)
·
(
b+ − b−

)
=
(
a+ · b+ + a− · b−

)
−
(
a− · b+ + a+ · b−

)
= e

log
(
a+·b++a−·b−

)
− e

log
(
a−·b++a+·b−

)
. (4.14)

After log-likelihood mapping, the following differential forms are obtained

z+ = log
(
a+ · b+ + a− · b−

)
= log

(
e
log
(
a+·b+

)
+ e

log
(
a−·b−

))

≈ M
(
L+
a + L+

b
, L−a + L−

b
, γ
)

(4.15)

and

z− = log
(
a− · b+ + a+ · b−

)
= log

(
e
log
(
a−·b+

)
+ e

log
(
a+·b−

))

≈ M
(
L−a + L+

b
, L+
a + L−

b
, γ
)

(4.16)

The circuit implementing an MP based four-quadrant multiplier is shown in Fig. 4.10. I
z+ de-

notes the value of z+. Iγ represents γ. I
L+
a

(I
L−a

), I
L+
b

(I
L+
b

) represent L+
a (L−a ), L+

b
(L−
b

)

respectively.

60



γI

+z
I

+
aLI +

bLI −
aLI −

bLI

Figure 4.10: MP circuit for implementing four quadrant operand multiplication

Fig. 4.11 compares the measured output z+ − z− with the ideal implementation of the

model (4.15) and (4.16). Fig. 4.12 (a)-(c) shows the measurement results when the transistors

are biased in: (a) strong; (b) moderate and (c) weak inversion along with the respective approxi-

mation error. Again, the measured results show the bias-scaling property of MP circuits.

−5

0

5

−5

0

5

−0.5
0

0.5

ba

z+ −
z−

(a)

−5

0

5

−5

0

5

−0.5
0

0.5

ba

z+ −
z−

(b)

−5

0

5

−5

0

5

−0.5
0

0.5

ba

z+ −
z−

(c)

Figure 4.11: Multiplication: z+ − z− computed according to the (a) original function; (b) MP
approximations (simulation); and (c) MP circuits (measurement).
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Figure 4.12: Multiplication: measurement results for z+− z− with transistors biased in (a)strong
inversion; (b)moderate inversion; (c)weak inversion; and (d)-(f) the respective approximation er-
rors .
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4.4.4 Single Quadrant Division

Like the implementation of a single quadrant multiplication, implementing a single quadrant divi-

sion in logarithmic domain is straight-forward. For operands a, b > 0, division in the logarithmic

domain is equivalent to a subtraction operation La−Lb which can be implemented using KCL. To

implement four quadrant division, the operation first requires extracting the sign of the operand as

x = sgn(x) · |x|, where |x| is the absolute value of x. A single quadrant division can now be used

for the absolute values and the sign of the final output can be computed using only comparators.

4.4.5 Power and Polynomial Computation

For positive operands satisfying a ∈ R+, a > 1, computing an, n ∈ Z+ in the logarithmic

domain is equivalent to

log
(
an
)

= n · log (a) = n · La. (4.17)

which can be implemented using a simple current mirror as shown in Fig. 4.13. Thus, in MP-based

synthesis, power functions like square-root or cube-root can be implemented using current mirrors

which significantly simplifies the implementation compared to translinear based synthesis [58].

However, for a four-quadrant implementation of power and polynomial function would require

evaluating a Taylor expansion using multiplication and addition operations.

For a non-positive operand a, a ∈ R, its power function is expressed as an, n ∈ Z+. a is

expressed in its differential form a = a+ − a−, a+(a−)∈ R+ and a+(a−)> 1. For arbitrary n,
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an can be written as

(
a+ − a−

)n
=
∑
i

(−1)iCin

(
a+
)n−i (

a−
)i

=
∑

i is even
Cin

(
a+
)n−i (

a−
)i
−
∑

i is odd
Cin

(
a+
)n−i (

a−
)i

= e
log

(∑
i: evenC

i
n

(
a+
)n−i(

a−
)i)
−e

log

(∑
i: oddC

i
n

(
a+
)n−i(

a−
)i)

. (4.18)

Designate z+ as log

 ∑
i: even

Cin

(
a+
)n−i (

a−
)i and z− to represent

log

 ∑
i: odd

Cin

(
a+
)n−i (

a−
)i in (4.18). Then

z+ ≈ M(L+, γ).

z− ≈ M(L−, γ). (4.19)

L+(L−) is a group of Lis satisfying

Li = logCin + (n− i) log a+ + i log a−, (4.20)

i ∈ [0, n] and i is even(odd).

As an example, a four quadrant square function a2 can be implemented by expressing it as

a product of two differential operands as (a+ − a−) · (a+ − a−) which has an architecture

similar to the four-quadrant multiplier described in above section. The differential output z+ and

z− corresponding to the square operation can be expressed in terms of differential log-likelihood
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Figure 4.13: A current mirror implementing the power function in logarithmic domain.

inputs L+
a , L
−
a as

z+ ≈ M
(

2L+
a , 2L

−
a , γ

)
(4.21)

z− = log 2 + L+
a + L−a (4.22)

Fig.4.14 shows the measured results when the circuit in Fig. 4.10 has been configured to compute

a four-quadrant square function. Again, the circuit is shown to approximate the “log-sum-exp”

function for strong-inversion, moderate-inversion and weak-inversion biasing conditions.

4.5 Scalability analysis of MP circuit

In Fig. 3.4, we showed that the accuracy of the PWL approximation improves when the number

of operands in the margin function increases. In this section, we analyze the effect of hardware

artifacts (noise, mismatch, speed and input/output impedance) on the performance and scalability

of MP circuits.
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4.5.1 Noise and Mismatch Analysis of MP circuit

The noise model for the basic MP circuit in Fig. 4.2 is shown in Fig. 4.15. For the following

analysis we will assume that the number of input current branches in the MP circuit equalsK. Also,

assuming that the noise in K − 1 (due to KCL) of the parallel branches are mutually independent,

the total output noise power I2
n,z can be expressed as:

I2
n,z =

K∑
i=1

I2
n,sourcei
(K − 2)2

+
I2
n,Ni

(K − 2)2
+

I2
n,Pi

g2
mR

2
source(K − 2)2

+
I2
n,sink

K2
+ I2

n,N0
(4.23)

where In,sourcei , In,Ni
, In,Pi

, and In,sink are noise currents as shown in Fig. 4.15 and

Rsource is the output impedance of the current sources. We have simplified the expression

in (4.23) by assumingK to be large and by assuming that the small-signal parameters gm,Rsource

for all the transistors are approximately equal. Equation (4.23) can be written as

I2
n,z,thermal =

[
1 +

2

K
+

1

g2
mR

2
sourceK

]
8

3
kTgm, (4.24)

where we have considered only the effect of thermal noise as given by I2
n = 8/3kTgm [59].

The effect of the flicker-noise has been ignored in equation (4.24), because it exhibits a similar

dependency on K as the thermal-noise.

Equation (4.24) shows that as the number of branches (or operands) K increases, the output

noise reduces and in the limit K →∞, the output noise is just equal to the noise due to transistor

N0. The reduction in the output noise with the increase in K can be attributed to the attenuation

and averaging effect of the K stage current mirrors formed by N1 ∼ NK . Also, it is important

that gmRsource >> 1, not only for reducing the effect of noise but also to ensure that the input
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impedance of the MP circuit is much lower than the output impedance of the current sources (see

Fig. 4.15).

The mismatch analysis for the MP circuit follows a similar procedure as the noise analysis. The

MOS transistor mismatch models used in the analysis are based on the work reported in [60] which

uses two technology dependent constants AVT
and Aβ that determine the mismatch variance as:

σ2(∆VT ) =
A2
VT
WL

(4.25)(
σ(∆β)

β

)2
=

A2
β

WL
(4.26)

VT denotes the threshold voltage, β = µCoxW/L, W and L represent the width and length of the

MOS transistor. It is also claimed in [60] that for MOS transistors the mismatch in VT dominates

the mismatch in β. Therefore, in this paper, our analysis is only be based on the VT mismatch.

The error variance σ2(∆VT ) can be converted into an equivalent noise current source in Fig. 4.15

according to

σ2(I) ' g2
mσ

2(∆VT ) = g2
m

A2
VT
WL

(4.27)

Hence, similar to the noise analysis, the error variance in the output current σ2(Iz) is given by:

σ2(Iz) '

(
1 +

1

K
+

1

g2
mR

2
sourceK

)
g2
m

A2
VT
WL

. (4.28)

Equation (4.28) shows that for a large K the accuracy of the MP circuit is limited by the mismatch

due to the output current mirror stage N0. Thus, all layout and impedance transformation methods

which are used for improving the accuracy of current mirrors, like centroid layout and cascoding
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techniques, can be used to improve the accuracy of MP circuits. The use of cascoding at the output

stage transistor N0 increases the output impedance and makes the core MP module scalable to

implement large networks.

4.5.2 Speed and Bandwidth Analysis

As with other current-mode circuits, the transient response of the MP circuits is determined by its:

(a) slew-rate which determines the large-signal response; and (b) bandwidth which determines the

small-signal response. The node A in Fig. 4.2 has the largest capacitance and is discharged by the

current Iγ . Therefore, the slew-rate of the MP circuit can be expressed as:

SRA =
Iγ

K(CGS,N + CGS,P + CDB,P )
(4.29)

whereCGS,N represents the gate-to-source capacitance of NMOS transistorN1 throughNK , and

CGS,P /CDB,P denotes the gate-to-source/drain-to-body capacitance of the PMOS transistor P1

through PK . Equation (4.29) shows that the slew-rate will reduce when the number of input

branches K increase. However, the small-signal bandwidth of the circuit remains invariant with

respect K and is determined by the frequency of the pole located at node A and is given by

f−3dB,A =
gm,P

2π(CGS,N + CGS,P + CDB,P )
. (4.30)

gm,P represents the small-signal gate referred transconductance for the PMOS transistors P1 ∼

PK . The slew-rate and bandwidth analysis show that scaling of MP circuit is limited by the

application specific speed requirements which is controlled by the current Iγ . However, unlike

translinear synthesis this limitation can be overcome in MP circuit by re-biasing the circuit in
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strong-inversion.

4.5.3 Performance comparison with Translinear synthesis

In this section, we summarize and compare the performance of CMOS circuits designed using MP

based synthesis with circuits designed using translinear synthesis. The comparisons made here are

qualitative in nature because many of the performance metrics (silicon area and power dissipation)

are dependent on the topology and complexity of the translinear circuit.

• Accuracy: MP based synthesis relies on PWL approximations at the algorithmic level.

However, the accuracy of its circuit level implementation using CMOS current-mode circuit

is only limited by mismatch. Our analysis in the previous section showed that the techniques

used for designing precision current-mirrors can also be used to improve the accuracy of

the MP circuits. TL based synthesis, on the other hand, are precise at the algorithmic level.

However, their mapping to CMOS current-mode circuits is approximate due to the effect of

sub-threshold slope (unlike bipolar transistors) and finite drain impedance. These artifacts

also introduce temperature dependency in TL circuits, whereas MP circuits are theoretically

temperature invariant. Also, due to their operation in weak-inversion, CMOS TL circuits are

more prone to errors due to mismatch, whereas the MP circuits can be re-biased in strong-

inversion if higher precision is desired, but at the expense of higher power dissipation.

• Dynamic range: The bias-scalable property of the MP circuit enables it to achieve a larger

dynamic range compared to a TL circuit. Also, MP synthesis uses currents to represent

log-likelihoods which can also achieve a larger dynamic range.

• Speed: For an MP circuit higher speed can be achieved by re-biasing the circuit in strong-

inversion, without changing the circuit topology. For CMOS translinear circuits higher speed
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can be achieved by the use of large currents which implies using large size transistors to

maintain their operation in the weak inversion. This will increase the silicon area when

compared to an equivalent MP circuit.

4.6 Application Example: Pattern Classifier

One of the applications where ultra-low power analog computing is attractive is pattern classifica-

tion [61, 62]. Most pattern classifiers do not require high precision and any analog artifacts (like

mismatch and non-linearity) can be calibrated using an offline training procedure. In this example,

we use the MP circuits to design a bias-scalable linear classifier. A linear classifier implements an

inner-product computation between a weight vector w ∈ Rn and the classifier input x ∈ Rn and

is given by

f = wTx (4.31)

The weight vector w is determined by an offline training procedure [61] using a labeled training

dataset. The two vectors −→w and −→x are expressed in differential form as

−→w = −→w+ −−→w− = [w+
1 , w

+
2 , ..., w

+
N ]T − [w−1 , w

−
2 , ..., w

−
N ]T

−→x = −→x + −−→x− = [x+
1 , x

+
2 , ..., x

+
N ]T − [x−1 , x

−
2 , ..., x

−
N ]T (4.32)
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with all the w+
i (w−i ) and x+

i (x−i ) ∈ R+. Then equation (4.31) can be rewritten as

−→wT · −→x =
N∑
i=1

(
w+
i x

+
i + w−i x

−
i

)
−

N∑
i=1

(
w+
i x
−
i + w−i x

+
i

)

= e
log
∑N
i=1

(
w+
i x

+
i +w−i x

−
i

)
− e

log
∑N
i=1

(
w+
i x
−
i +w−i x

+
i

)
= ez

+
− ez
−
. (4.33)

when z+ and z− are expressed as

z+ = log
N∑
i=1

(
w+
i x

+
i + w−i x

−
i

)
≈ M(Lw1

+ + Lx1
+, Lw1

− + Lx1
−, ...,

LwN
+ + LxN

+, LwN
− + LxN

−, γ)

z− = log
N∑
i=1

(
w+
i x
−
i + w−i x

+
i

)
≈ M(Lw1

+ + Lx1
−, Lw1

− + Lx1
+, ...,

LwN
+ + LxN

−, LwN
− + LxN

+, γ). (4.34)

Lwi
+(Lwi

−) and Lxi
+(Lxi

−) denote the logarithms of w+
i (w−i ) and x+

i (x−i ) in equation

(4.33). For a binary classifier, only the sign of z+−z− is important, implying that the output stage

in the architecture (Fig. 4.1) could be implemented using a comparator (instead of ez
+
− ez
−

).

The system architecture and circuit diagram for the pattern classifier is shown in Fig. 4.16.

In this example, we generated a synthetic linearly separable dataset corresponding to classes:

class I and class II. We used a linear support vector machine training algorithm [63] to determine

weight w. The parameter vector w is then programmed as currents on the prototype chip. Test
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Figure 4.16: System architecture and circuit diagram of the MP-based pattern classifier.
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vectors x were selected randomly and were then applied as input to the chip. For the sake of

visualization, we show only results from a two-dimensional dataset. In this special case, the clas-

sifier equation (4.31) reduces to a two-dimensional inner product formulation as described in the

example in section I. The circuit implementation is therefore identical to that of a full quadrant

multiplier in Fig. 4.10. Fig. 4.17 shows the classification boundary and the classifier scores (neg-

ative values are represented by darker shades, whereas positive values are represented by lighter

shades) obtained from software simulations and from the fabricated prototype under different bi-

asing conditions. Again, the results show that the operation of the prototype is bias-scalable and

the classification performance has been verified to be similar to that of the software model.
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Figure 4.17: Classifier: z+ − z− simulated by (a) log-sum-exp function (simulation); (b) MP ap-
proximation (simulation); and measured z+ − z− when the transistors are biased in (c)strong in-
version (measurement); (d)moderate inversion (measurement); (e)weak inversion (measurement).
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Chapter 5

An analog LDPC decoder implemented on

MP-based PWL circuits

5.1 Performance metrics and trade-off of LDPC decoder

Low-density parity-check codes [64] constitute an important class of capacity approaching error-

correcting codes which has seen widespread acceptance in emerging communication standards

[65, 66, 67]. One of the key factors behind the success of LDPC codes is its iterative decoding

algorithms [68, 69, 70, 71] which are scalable and hence can be easily mapped onto digital [72,

73, 74, 75] and analog [76, 77, 78, 79] hardware.

As applications of LDPC codes expand into new areas like sensor networks [80, 81, 82] it is

becoming more important to understand theoretical foundations that govern and determine the en-

ergy efficiency of LDPC decoders. Even though numerous studies have been reported in literature

that evaluate the performance of LDPC decoding in regards to its bit-error-rate (BER) performance

for different signal-to-noise ratios (SNR) [83, 84], there exists no theoretical basis for understand-
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ing the BER/SNR trade-off with respect to the decoder’s energy efficiency. Understanding this

trade-off is important because:

• Different applications impose different constraints on the energy efficiency of the decoding

algorithm. For instance a decoder used in sensor networks will be more severely constrained

for energy [81, 82] than a decoder which is used in a base-station of a wireless network.

Therefore, decoding algorithms that provide an elegant trade-off between BER, SNR and

power-dissipation is important as superior energy efficiency can be achieved by sacrificing

BER performance.

• Understanding the trade-off could lead to novel class of decoding algorithms that deliver

the similar BER performance as existing state-of-the-art algorithms while demonstrating

superior energy efficiency.

One of the ways to quantify the energy efficiency of a decoding algorithm is to evaluate the

sparsity of the messages being passed between the nodes of the bipartite graph during LDPC decod-

ing. Here we have considered one notion of sparsity: L0 norm of the messages, which is defined

as the percentage of the non-zero messages out of a fixed total. Since zero-message consumes no

energy, it is obvious to see that with the same amount of messages, the higher percentage of the

zero-messages there is, the lower the L0 norm is, and also the lower energy consumption. In this

regard, the overall energy consumption can be characterized by the L0 norm of the messages. This

method of energy analysis is relevant to analog implementations because decoding of large LDPC

codes is communication intensive rather than being computation intensive [77, 78, 79]. Also, it has

been shown that in emerging deep sub-micron and nanoscale integrated circuits, energy dissipated

during communication (through interconnects) will be significantly larger than the energy cost of

local computations [85]. We use density evolution (DE) [86, 87, 84] as a tool to observe and
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analyze the L0 norm of the messages generated during iterative LDPC decoding.

5.2 Density evolution and message sparsity

5.2.1 Density evolution analysis for conventional LDPC decoding algorithms

c1

v1

c24

v32

Figure 5.1: Factor graph corresponding to a 32-bit (3, 4) LDPC code

Density evolution is a well-established technique to determine the asymptotic performance of

any LDPC code for a given channel condition and a code-rate [87]. It provides a way to study

the decoding algorithm by analyzing the evolution of message densities on a hypothetical infinite

tree-like graph with similar local topology as the LDPC code of interest [88]. In this section, we

first provide a brief introduction of density evolution analysis whose details can be found in [87].

Consider an example of a factor graph shown in Fig. 5.1. It consists of variable nodes vk, k =

1, .., N which are connected to check nodes ci, i = 1, ..,M using edges. For the description that

follows, the number of edges associated with each check node and variable node (also known as

the degree of the node) will be denoted by dc and dv .

Let Vi denote the set of check nodes connected to the variable node vi and Vi∼j represent the

set of check nodes other than cj that are connected to variable node vi. Similarly, let Cj denote
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the set of variable nodes connected to the check node cj and Cj∼i represent the set of variable

nodes other than the node vi connected to cj .

In a sum-product based LDPC decoding algorithm [69], each check node cj receives messages

from its set of neighbors Cj (denoted by L(vi → cj)) and computes messages to be sent to the

variable nodes vi ∈ Cj (denoted by L(cj → vi)) according to

L(cj → vi) = 2 tanh−1

 ∏
vk∈Cj∼i

tanh

(
L(vk → cj)

2

) (5.1)

In subsequent iterations, each variable node vi receives messages from its neighboring check nodes

cj ∈ Vi and re-computes messages that will be sent to the check node cj (denoted byL(vi → cj))

according to

L(vi → cj) = L(vi) +
∑

ck∈Vi∼j

L(ck → vi) (5.2)

where L(vi) denotes the initial messages obtained from the communication channel. Messages are

then propagated back and forth between the variable and check nodes for a pre-determined number

of iterations before a decision on the received bits is made [69]. An alternative implementation of

the LDPC decoder is based on the min-sum approximation of the L(cj → vi) in equation (5.1)

according to

L(cj → vi) = L(vk → cj), (5.3)

where k = arg minv
k̂
∈Cj∼i |L(v

k̂
→ cj)|.

Even though min-sum decoders are relatively easy to implement on hardware compared to sum-

product decoders, we will show later in this section and in section 5.3 that message distributions

that the algorithm produces are less sparse and hence its energy efficiency is inferior compared to
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that of sum-product decoders. In this regard, density evolution will serve as an important compu-
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Figure 5.2: A (3,6) LDPC message PDF evolution for: (a) sum-product variable to check messages;
(b) sum-product check to variable messages; (c) min-sum variable to check messages; (d) min-sum
check to variable messages;

tational tool to track distributions of messages that are propagated between the variable and check

nodes and hence visualize its sparsity. The DE procedure computes the probability density of mes-

sages during an iterative decoding algorithm based on a recursive estimation procedure that can

be evaluated analytically or numerically using Monte-Carlo simulations [87, 86, 84]. By observ-

ing the asymptotic message distributions, traditional DE analysis estimates a minimum threshold

80



parameter (e.g. noise-variance of a Gaussian channel) that ensures BER performance less than

some specific tolerance. Even though the asymptotic behavior is of importance in DE, we will use

the formulation for estimating sparsity of messages which will serve as a theoretical estimator for

energy efficiency for a given decoder. The underlying assumption in DE analysis is that the graph

rooted at a variable node, and incident by messages originating at the variable node, is cycle-free

(for a finite number of iterations) which allows presumption of independence between incoming

messages [88]. The independence assumption implies that the summation of message at variable

and check nodes translates to convolution of their probability distributions, making it easier to track

the evolution of the message densities [86]. We now outline equations which concisely capture the

analytical framework for DE analysis. Let the degree distribution function λ(x)(ρ(x)) for variable

(check) nodes be represented as

λ(x) = λ2x+ λ3x
2 + · · ·+ λnx

(n−1) =
n∑
i=2

λix
(i−1) (5.4)

ρ(x) = ρ2x+ ρ3x
2 + · · ·+ ρq+1x

q =

q+1∑
i=2

ρix
(i−1) (5.5)

where,

ρi is the fraction of edges connected to check nodes with degree i.

λi is the fraction of edges connected to variable nodes with degree i.

xi represents convolution of the message density x with itself (i− 1) times.

Note: The two tuples (λ, ρ) are often referred to as the “Code Degree Distribution”

Also let the message distributions corresponding to check and variable nodes after ` message

passing iterations be denoted by R` and P`. Then, DE analysis computes R` and P` recursively
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according to:

R` = Γ−1ρ
(

Γ
(
P0 ⊗ λ(R`−1)

))
(5.6)

P` = P0 ⊗ λ(R`−1) (5.7)

where P0 represents the probability distribution of messages received from the communication

channel, ⊗ represents convolution operation and Γ is the Probability Density Function (PDF)

transformation due to the non-linear operation at each of the check node. For instance, in sum-

product decoding Γ is associated with the variable change operation related to the tanh(.) function

in equation (5.1). Note that for sum-product decoding Γ = Γ−1.

At final step of the DE recursions given by equation (5.7), the fraction of incorrect messages

propagated from the variable nodes to the check nodes, can be determined using:

P`e (λ, ρ) =
∑
x
P`(x) (5.8)

where x is a quantized random variable within a bounded range correspondent to the codeword

transmitted.

The probability distribution functions computed by DE at each iteration step ` can also be

used to compute metrics that quantify sparsity of messages. One metric of sparsity which is

commonly used in signal processing literature [89] is the L0 norm. For a vector θ, ‖θ‖0 is de-

noted as the number of non-zeros of θ. However, most frequently the size of the vector is taken

into account. Thus ‖θ‖0 is normalized as the percentage of the non-zero coefficients [90]. Let

L`(c → v)(L`(v → c)) denote the set of messages propagated from check(variable) nodes to

variable(check) nodes during the `-th iteration. The L0 norm for L`(c → v)(L`(v → c)) can be
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represented by ‖L`(c → v)‖0(‖L`(v → c)‖0). The PDFs computed by DE give out the discrete

message density. Thus it is convenient to calculate the normalized L0 norm with

‖L`(c→ v)‖0 =
∑
x 6=0

R`(x) (5.9)

‖L`(v → c)‖0 =
∑
x 6=0

P`(x) (5.10)

The random variable x in (5.9) and (5.10) is quantized.

In Figure 5.2 we show the mean message PDFs obtained during iterative decoding of a length

2000, (3,6) LDPC code. The decoding algorithms employed are sum-product and min-sum. To ob-

tain the PDFs a zero codeword was transmitted through an additive white gaussian noise (AWGN)

channel with a SNR of 2.5dB, before the decoding was carried out. The figure shows trends similar

to those previously reported for DE analysis in [87] [86]. The distribution P` (Fig. 5.2 (a) and (c))

shifts to the right reducing the area under the curve to the left of the origin. As a result, after several

iterations the probability of error calculated according to equation (5.8) is small. Additionally, we

can infer (by comparing Fig. 5.2 (b) and (d)) that the PDF of the messages propagated from check

nodes to variable nodes in `-th iteration, denoted by L`(c → v), for the sum-product algorithm

is more concentrated around zero than that of the min-sum algorithm. Consequently, the sum-

product algorithm has lower L0 norm for L`(c → v) as against the min-sum algorithm. Overall,

the L0 norm of L`(c→ v) increases with the number of iterations `. And the message distribution

approaches a gaussian distribution with increasing number of iterations. This observation has been

verified by several previous studies [91, 92] and is also the basis of gaussian approximation based

analysis of the sum-product algorithm [91].
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5.2.2 Sparse LDPC decoding with MP

To understand how one can achieve sparsity in LDPC decoding, we analyze the core transforms

that are related with the operator Γ for DE recursions given in equation (5.6). Since the check

node computations in LDPC decoding can be performed pair-wise, we will analyze the properties

of two dimensional transforms related to Γ. For the sum-product decoding the check function is

given by [47]

φ
sp
y (x) = log

(
1 + ex+y

ex + ey

)
(5.11)

where x and y are the two variables of function φ representing the messages in (5.1) and (5.2). (5.11)

represents the result of combining two messages x and y. This can be recursively applied to the

sum-product checking function computation.

For min-sum decoding the equivalent operation φmsy (x) is given by [47]

φmsy (x) = max(0, x+ y)−max(x, y) (5.12)

where we have similar x and y as in (5.11). (5.12) is recursively applicable in checking function

computation as well.

Figure 5.3 compares the functions φspy (x) and φmsy (x) for y = 1.0. The plot shows that around

the origin, the behavior of both functions are linear. As a result, during the first few iterations

of LDPC decoding, when the value of messages propagated from the check to variable nodes are

concentrated around the origin (see Fig. 5.2), the resulting distribution obtained using the transform

Γ is non-sparse. This indicates that if we choose a transform function containing a “dead-zone”

around the origin, and at the same time approximate the sum-product transformation, we could

obtain a sparser LDPC decoding procedure.
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Figure 5.3: Comparison of pair-wise decoding functions for sum-product and min-sum LDPC
decoding algorithms

In the first step of our approximation procedure, the sum-product transform is decomposed as

φ
sp
y (x) = log

(
1 + ex+y

)
− log

(
ex + ey

)
(5.13)

which is a difference of two “log-sum-exp” function whose general form can be expressed as

zlog = log

 N∑
i=1

eLi

 (5.14)

where {Li}, i = 1, .., N denote a set of log-likelihood ratios which are used in DE analysis and

LDPC decoding.
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Equation (5.14) can be re-written equivalently as:

N∑
i=1

e

(
Li−zlog

)
= 1 (5.15)

Next, we lower-bound the equality (5.15) using the inequality [x]+ ≤ e(x) where [x]+ =

max(x, 0) is a threshold function. Equation (5.15) can then be expressed in its piecewise-linear

form as
N∑
i=1

[
Li − zlog

]
+
≤ 1. (5.16)

As is seen from equation (5.16), if zlog in is replaced by z in equation (3.1), and ≤ 1 is changed

into γ in equation (3.1), equation (5.16) is turned out to be MP algorithm.

When the MP-based PWL approximation is applied to the “log-sum-exp” functions in equation

(5.11) the MP-based check function is obtained as:

φ
mp
y (x) = M({0, x+ y}, γ)−M({x, y}, γ) (5.17)

Fig. 5.4 compares the margin propagation check functions to its sum-product and min-sum

equivalent for different values of the hyper-parameter γ. It can be seen that the margin check

function is a PWL approximation to the sum-product check function and the width of the “dead-

zone” around the origin is controlled by the hyper-parameter γ. When γ diminishes to zero, the

“dead-zone” shrinks to zero as well and the margin propagation algorithm converts to min-sum, as

can be seen through figure 5.4. The “dead-zone” can also be clearly seen in the three-dimensional

plot of the check functions illustrated in Figure 5.5. Note that for the sum-product check function
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(Figure 5.5(a)) and min-sum check function (Figure 5.5(b)) the origin is the saddle point and the

gradient at the origin is non-zero.

5.2.3 Density evolution analysis of MP

As shown above, at the core of the margin propagation based decoding is the margin approximation

algorithm. Consequently we first simplify the margin approximation algorithm. If we consider

two likelihood scores with levels `1 and `2, the solution to the algorithm is the level z. Figure 5.6

displays the possible solutions for different values of `1 and `2. Mathematically the solution for
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Figure 5.5: Comparison of 3D LDPC check function for (a) sum-product (b) min-sum and (c)
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M(l1, l2) can be stated as:

z =


max(`1, `2)− γ if |`1 − `2| > γ

`1 + `2 − γ
2

otherwise
(5.18)

= max

{
max(`1, `2)− γ,

`1 + `2 − γ
2

}
(5.19)

If the (recursive) operation at the check side of an LDPC graph is represented as L1 � L2, then:
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Figure 5.6: Possible solutions z for M(`1, `2)

L1 � L2 = M(L+
1 + L+

2 , L
−
1 + L−2 , γ)

−M(L+
1 + L−2 , L

−
1 + L+

2 , γ)

= z1 − z2 (5.20)
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where, L+
1 , L
−
1 , L

+
2 , L
−
2 are the differential forms of L1, L2 given by:

L+
1 = T + L1/2

L−1 = T − L1/2

L+
2 = T + L2/2

L−2 = T − L2/2

(5.21)

where T denotes the common mode signal.

Using equation (5.18) the terms z1 and z2 in equation (5.20) can be rewritten as:

z1 =


max(L+

1 + L+
2 , L
−
1 + L−2 )− γ

if |L+
1 + L+

2 − L
−
1 − L

−
2 | ≥ γ

L+
1 + L+

2 + L−1 + L−2 − γ
2

otherwise

(5.22)

z2 =


max(L+

1 + L−2 , L
−
1 + L+

2 )− γ

if |L−1 + L+
2 − L

+
1 − L

−
2 | ≥ γ

L+
1 + L−2 + L−1 + L+

2 − γ
2

otherwise

(5.23)

The computations outlined in equation (5.20), (5.22) and (5.23) transform the PDFs of the

incoming messages L1, L2 into a new PDF. This PDF transformation can be captured “exactly”

by using the surjective function corresponding to the operation L1 �L2. Let us represent this PDF

transfer function as follows:

MP : PL1
(`1)× PL2

(`2)→ PZ(z), where `1, `2, z ∈ R (5.24)
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More specifically the resulting PDF is calculated as follows:

PZ(z) =
∑
`1∈R

∑
{`2∈R|`1�`2=z}

PL1,L2
(`1, `2)

i
`2

i
`1

=
∑
`1∈R

∑
{`2∈R|`1�`2=z}

PL1
(`1)PL2

(`2)
i

`2
i

`1 (5.25)

In the above equation, the cycle-free assumption [86] for the message incident sub-graph (rooted

at a variable node) allows us to express the joint distribution PL1,L2
(`1, `2) as the product of

marginals PL1
(`1)PL2

(`2). Equivalent to the parity degree distribution function (5.5) used in

density evolution analysis of the sum-product algorithm, we can now define the following parity

degree distribution function for margin propagation:

ρMP (x) = ρ2x+ ρ3x
�2 + · · ·+ ρq+1x

�q

=

q+1∑
i=2

ρix
�(i−1) (5.26)

where,

x�i representsMP · · ·MP(MP︸ ︷︷ ︸
i times

(x, x), x) · · ·x)

Consequently, the density evolution analysis for margin propagation at the check side becomes:

R` = ρMP

(
P0 ⊗ λ(R`−1)

)
(5.27)

Using equations (5.7), (5.25), (5.26) and (5.27) we determine the AWGN noise threshold for a (3,6)

and an irregular LDPC code which we list in table 5.1 (under exact analysis column). Note, the

outer integral over l1 in the PDF equation (5.25) (corresponding to L1 � L2) involves calculation
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over the entire real lineR, which we can restrict to large enough values for practical considerations.

However, determining the domain for the second integral in equation (5.25) involves a search

operation identifying the region where equation `1 � `2 = z is satisfied. This search operation

significantly increases the complexity of density evolution analysis for margin propagation. We

therefore look for simplifications which reduce the complexity involved in computing thresholds

for the margin propagation algorithm without sacrificing too much accuracy. A similar approach

aiming to reduce complexity has been proposed for sum-product threshold calculation and is often

referred to as the gaussian approximation analysis for sum-product [91].

To obtain approximations which simplify the analysis of margin propagation decoding let us

consider the expressions involved in the first part of equation (5.22) in conjunction with equation

(5.21). We get:

L+
1 + L+

2 = T +
L1
2

+ T +
L2
2

= 2T +
1

2
[L1 + L2]

L−1 + L−2 = T −
L1
2

+ T −
L2
2

= 2T − 1

2
[L1 + L2]

To simplify our representation we substitute U =
1

2
[L1 + L2], then:

L+
1 + L+

2 = 2T + U

L−1 + L−2 = 2T − U
(5.28)

Substituting the representation (5.28) in first part of equation (5.22) gives:

max(L+
1 + L+

2 , L
−
1 + L−2 )− γ = 2T + max(U,−U)− γ

= 2T + |U | − γ (5.29)
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Figure 5.7: A (3,6) LDPC message PDF evolution for: (a) margin propagation variable to check
messages; (b) margin propagation check to variable messages;

Table 5.1: Threshold comparison for AWGN channel under margin propagation and sum-product

λ(x) ρ(x)/ρMP (x) Margin Propagation threshold (γ = 1.75) Sum-Product
Exact density Approximate density threshold

evolution analysis evolution analysis

x2 x5/x�5 1.14 dB 1.29 dB 1 1.10 dB [87]
0.4x+ 0.6x2 x4/x�4 1.09 dB 0.95 dB 1.07 dB [93]

Substituting the representation (5.28) in second part of equation (5.22) gives:

L+
1 + L+

2 + L−1 + L−2 − γ
2

=
1

2
[2T + U + 2T − U ]− γ

2

= 2T − γ

2
(5.30)

Using equations (5.19), (5.29) and (5.30) we can rewrite z1 as:

z1 = max
[
2T + |U | − γ, 2T − γ

2

]
= 2T + max

[
|U | − γ,−γ

2

]
(5.31)
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If common mode signal T is set to zero, the term 2T disappears from the above equations.

Using arguments similar to those used for z1 we can derive the following expression for z2:

z2 = max
[
2T + |V | − γ, 2T − γ

2

]
= 2T + max

[
|V | − γ,−γ

2

]
(5.32)

Again, if we choose T = 0, the term 2T disappears from the above equations.

Substituting (5.31) and (5.32) in (5.20) gives:

L1 � L2 = max
[
|U | − γ,−γ

2

]
−max

[
|V | − γ,−γ

2

]
(5.33)

Let us now focus on calculating the evolution of message probability densities. The absolute

value operation just leads to the folding of the probability distribution. Moreover, since L1 and L2

are drawn from independent random variables (due to the cycle-free assumption) the summation

or difference of the two used to obtain U and V just leads to the convolution of the probability

density functions. The calculations associated with U and V are listed below:

U =
1

2
[L1 + L2] (5.34)

V =
1

2
[L1 − L2] (5.35)

The c = max(a, b) operation where a and b are drawn from two independent random variables A

1Check side density evolution is calculated by partitioning x�5 into x�(4)+1. Density evolu-
tion corresponding to the part within the bracket is calculated using approximate analysis followed
by exact analysis for the remaining part.
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and B, gives c with probability distribution function C determined as follows [94]:

P (C = c) = P (A = c)P (B ≤ c) + P (B = c)P (A ≤ c) (5.36)

Using the above arguments we can determine the PDFs of z1 and z2 from the PDFs of L1 and

L2. However, determining the PDF of z1 − z2 is not trivial since in general z1 and z2 are drawn

from dependent random variables. If however the random variables corresponding to L1 and L2

are independent identically distributed (i.i.d.) and gaussian in nature, the PDF of z1−z2 is just the

convolution of PDFs corresponding to z1 and −z2. Due to the i.i.d. and gaussian restriction, the

density evolution computation for the parity side needs to be carried out in a particular order. For

example, if we are interested in determining the PDF of L1 �L2 �L3 �L4, we first determine the

PDFs corresponding to (L1 � L2) and (L3 � L4). This gives two different PDFs which are i.i.d.

however they are not gaussian, so we approximate these PDFs with gaussian distributions before

computing the PDF of (L1�L2)�(L3�L4). Using the approximation approach described above

in conjunction with equation (5.33) allows us to track the evolution of the message densities at the

parity side of an LDPC graph when margin propagation based decoding is employed. However

the i.i.d and gaussian requirements for the input, restricts our ability to track message densities, to

parity degree distribution functions which have the following representation:

ρMP (x) =
∑

i∈{20+1,21+1,22+1··· }
ρix
�(i−1) (5.37)

AWGN noise thresholds are obtained for a (3,6) and an irregular rate one-half LDPC code using

the above approximation and listed in table 5.1. Noise thresholds obtained using exact and approx-

imate analysis are found to be comparable. The approximate analysis noise threshold for margin
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propagation is within 0.16 dB of the actual threshold. The noise threshold for sum-product de-

coding is included to highlight the minimal performance loss for margin propagation. Thresholds

obtained using exact analysis shows that the loss in performance for margin-propagation decoding

is less than 0.04 dB.

Using the setup described in section 5.2, we can track the evolution of message densities for

margin propagation decoding using simulations for a (3,6) LDPC code of length 1000. Figure 5.7

displays the message density evolution for margin propagation in 5 iterations. The left column

corresponds to the messages from variable-side to check-side and right column corresponds to the

message from check-side to variable-side. The message PDF behaves similar to that outlined in

figure 5.2 (sum-product algorithm). As the iterations progress, the message PDF shifts to the right,

reducing the probability of making errors.

5.3 Performance simulation results of MP-based LDPC decoder

This section presents Monte-Carlo simulations for evaluating the performance of LDPC decoding

based on margin propagation. The results are presented in the following order: First, we analyze

the effect of the hyper-parameter γ on the L0 norm of the messages. Next we compare the BER

performance of an optimized margin propagation with an equivalent sum-product and min-sum

decoder. Next (keeping the BER performance the same) we compare the sparsity of LDPC decod-

ing for MP, sum-product and min-sum algorithm by observing the L0 norm of their messages. For

all the simulations described in this section, binary phase shift keying (BPSK) has been assumed

for modulation and the channel is assumed to be an AWGN channel. The experimental parameter
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being varied is the signal-to-noise ratio (SNR) of the AWGN channel which can be expressed as

SNR(dB) = −20 log10 σ (5.38)

where σ denotes the standard deviation of noise.

5.3.1 Effect of γ on L0 norm
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Figure 5.8: : (a)Effect of hyper-parameter γ on the L0 norm of the check to variable messages(for
different AWGN channel conditions) (b)Effect of hyper-tuning parameter γ on BER performance
(for different AWGN channel conditions)

Figure 5.8a shows the L0 norm of messages propagated from check side to variable side for

different values of γ. For this experiment, a (2000,1000) regular LDPC code with a (3× 6) parity

check matrix H was chosen. The maximum number of decoder iterations was set to 20. The

average L0 norm was then computed over all the decoding iterations. The simulation results

presented here consider only the average L0 norm for messages propagating from the check to

variable side. As we will show in the later experiment, the L0 norm for messages propagated from
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variable to check side does not exhibit sparse behavior and hence does not provide any efficiency

improvement over sum-product or min-sum algorithm.

When the parameter γ increases, figure 5.8a shows that the L0 norm of the messages decreases.

This can be attributed to the size of the “dead zone” in the margin transfer function (see Fig. 5.4)

which increases with an increase in γ. Thus γ is a consistent metric to modulate the sparsity (L0

norm) of the LDPC messages. Also for a fixed value of γ the L0 norm increases with an increase

in channel SNR. This is because lower SNR would concentrate the likelihood scores around the

“dead-zone” (due to noise) thus leading to a sparser message distribution (lower L0 norm). An

important consequence of this experiment is that the sparsity of the MP decoding algorithm can be

controlled using γ and can also be adaptively varied depending on the channel conditions.

To understand the trade-off between γ, SNR and the BER performance of the MP algorithm,

we conducted a three parameter experiment for a length 1000 (3,6) LDPC code, whose results are

summarized in Fig. 5.8b. It can be clearly seen that for a fixed channel SNR, there exists an optimal

value of γ (hence sparsity) that yields the best BER performance. This indicates that a correct

choice of γ could provide an optimal performance in terms of sparsity and BER performance.

Also, Figure 5.8b could be used as a calibration curve which can be used for designing different

LDPC decoders with varying specifications of sparsity (energy efficiency).

Figure 5.8b shows that with SNR ranging from 0.5dB to 2dB, when the value of γ increases

from as low as 0 to around 1.75, the BER surface lowers monotonically, however when γ increases

from 1.75 to 3, the trend is reversed. And it can be seen that at the SNR of 2dB, the “waterfall”

phenomenon happens to the BER curve with γ equal to 1.75 ahead of others. Hence when SNR is

ranging from 0.5dB to 2dB, 1.75 is deemed to be the optimal value of γ to achieve the least BER.
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5.3.2 Comparison of BER performance

In the next set of experiments we compare the BER performance of the optimal MP decoding

algorithm to the equivalent sum-product and min-sum algorithms. Three different lengths of the

(3,6) LDPC codes were chosen: 256, 104 and 106. For each of the runs, the optimal parameter

γ was found to be 1.75. Figure 5.9 summarizes the BER performance for different algorithms. It

can be seen from the results that for a 106 length code, min-sum decoding incurs a 0.3dB penalty

in performance compared to its sum-product equivalent, whereas MP decoding incurs less than

0.03dB penalty. The result shows that the performance of MP and sum-product decoding is nearly

identical and is consistent with observations made in table 5.1.

This has been verified to be true also for a rate 1/2 irregular code. Figure 5.10 compares

the BER performance for a (λ(x), ρ(x)) ≡ (0.4x + 0.6x2, x4) irregular LDPC code. We refer

to this LDPC code as a (2.5,5) code. For this experiment, the optimal value of γ was found to

be 1.75. It can also be seen from the figure that with a higher degree at both sides, the regular

code performs better than the irregular code with penalty not less than 0.7dB for all the three

algorithms. This is embodied by the BER “water-fall” which happens at a lower SNR and is more

pronounced. However, the results presented here differ slightly from the BER metrics reported in

the literature [87]. We attribute this difference to the number of decoding iterations used for the

reported experiments.

5.3.3 Comparison of message sparsity

The previous results confirmed that the BER performance of an optimized MP decoding algorithm

is near identical to the BER performance of the sum-product decoding algorithm. However, the MP

decoding algorithm produces more sparse distribution of messages compared to the sum-product
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algorithm as confirmed by the following experiment. A (2000, 1000) regular LDPC code with

a (3 × 6) parity check matrix is used. Figure 5.11 shows the comparison of average L0 norm

for messages propagated between check (variable) and the variable (check) nodes. It can be seen

that the L0 norm (sparsity) of the messages propagated between the variable to check are similar.

For a high SNR, the message convergence is considerably faster and requires only two iterations.

However, the L0 norm of messages propagated between the check-to-variable nodes exhibit a

significant difference between the different algorithms. For the MP algorithm, the achieved sparsity

is the best whereas for the min-sum algorithm the achieved sparsity is the worst. This result shows

that, MP algorithm provides an elegant approach for achieving sparse decoding (hence superior

energy efficiency) without sacrificing the BER performance.

5.4 Basic circuits of MP-based LDPC decoder

All the basic operations of check and variable nodes for this LDPC decoder have been illustrated

in section 5.2. In this section, we present the basic modules of the MP based LDPC decoder. For

check node, we take c1 in Fig.5.1 as an example. Note differential circuits are used for both check

node and variable node implementation.

5.4.1 Implementation of check node

As shown in equation (3.1), MP approximation requires addition, subtraction and rectification.

Each of these operations can be implemented in a CMOS process using basic conservation laws

(e.g. Kirchhoff’s current summation) which scale across transistor operating regimes (weak, mod-

erate and strong inversion). Therefore, the same decoder architecture can be operated at different

decoding speeds by scaling the bias current and hence by scaling its power dissipation. In this sec-
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tion, we describe the current-mode circuits which has been used for implementing the check node

module of the proposed MP-based LDPC decoder. A differential topology has been adopted to

represent the positive and negative log-likelihood ratios and for canceling out any common-mode

interference.

We used the check node c1 in Fig.5.1 as an example to explain the implementation details. c1

is connected to the variable nodes v1, v9, v17, and v24. To avoid long mathematical notations we

will denote the message from c1 to v24 (L(c1 → v24)) as zsp and the messages L(v1 → c1) as

L1, L(v9 → c1) as L2 and L(v17 → c1) as L3. The check function, according to equation (5.1)

can then be written as:

zsp = log

(
eL1 + eL2 + eL3 + eL1+L2+L3

1 + eL1+L2 + eL1+L3 + eL2+L3

)
. (5.39)

If the log-likelihood ratios Lis are represented by their differential forms as Li = L+
i − L

−
i , with

L+
i , L
−
i > 0, and i = 1, . . . , 3, then equation (5.39) can be rewritten as:

z
sp
diff

=

log

eL+
1 +L−2 +L−3 +e

L−1 +L+
2 +L−3 +e

L−1 +L−2 +L+
3 +e

L+
1 +L+

2 +L+
3

e
L+

1 +L+
2 +L−3 +e

L+
1 +L−2 +L+

3 +e
L−1 +L+

2 +L+
3 +e

L−1 +L−2 +L−3

 . (5.40)

Once the check function has been expressed in terms of log-sum-exp functions, we can apply the

MP-based approximation according to the procedure described in section 5.2. The MP approxi-

mate check function (3.2) is written as

z
mp
diff

= z+ − z−. (5.41)
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where z+ and z− are given by

z+ = M(L+
1 + L−2 + L−3 , L

−
1 + L+

2 + L−3 , L
−
1 + L−2 + L+

3 , L
+
1 + L+

2 + L+
3 , γ).

z− = M(L+
1 + L+

2 + L−3 , L
+
1 + L−2 + L+

3 , L
−
1 + L+

2 + L+
3 , L
−
1 + L−2 + L−3 , γ). (5.42)

These equations are also applicable for computing messages L(c1 → v1), L(c1 → v9), and

L(c1 → v17).

Fig. 5.12 shows the architecture of the check node c1 implementing equations (5.42). The

differential messages generated by the variable nodes are selected and the permutations and sum-

mations are carried out according to the equation (5.42). The summation results are then processed

by individual MP units as described in (5.42). The output produced by the respective MP units (z+

and z− in (5.42)) are then propagated to the neighboring variable nodes.

Fig. 5.13a shows the current-mode implementation of the equations (5.42). The currents

I
L

+(−)
i

in Fig. 5.13a represent the differential variables L+(−)
i in equation (5.42), i = 1, 2, 3.

The hyper-parameter γ in equation (5.42) is represented by the current Iγ . The circuit has two

operational modes: (a) when the reset signal RST is set to logic low, transistor N1 pulls the gate

voltage of transistors N2-N6 low and the output current I
z+ is set to zero (implying no message

is conveyed); (b) when the reset signal RST is set to logic high, the gate voltage of N1 set to Vγ

which determines the current Iγ . At equilibrium, the output current I
z+ is determined by the MP

condition (3.1).

The PMOS diodes P1 through P4 ensures a unidirectional flow of current thus implementing

the rectification operation in the equation (3.1). The subtraction operations in equation (3.1) are

implemented by transistors N2-N5 and the summation constraint is implemented using the Kirch-

hoff’s current summation at the node K. However, the diodes introduce a threshold voltage drop
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Figure 5.12: Architecture of the check node c1 in Fig. 5.1
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requiring a larger supply voltage (≥ 2Vth + Vdsat). An alternative low-voltage implementation

is shown in Fig. 5.13b which consists of a cascode PMOS P
′
1 through P

′
4. The implementation

eliminates the threshold voltage drop but potentially suffers from current leakage between neigh-

boring stages as shown in Fig. 5.13b. This situation could occur when one of the branch currents

is much larger than the other. In the proposed implementation, we have chosen the circuit shown

in Fig. 5.13a. Since the operation of the circuit is based on the Kirchhoff’s current law, it is

functional irrespective of the biasing condition of the transistors. Consequently, the magnitude of

current can vary in a wide range from pA to µA, which only effects the operational speed of the

circuit. However, the matching between the transistors N2-N5 is important because it ensures that

the constraint in equation (3.1) is accurately satisfied.

5.4.2 Implementation of the variable node

We will use the variable node v1 to illustrate the basic operation as described by equation (5.2).

The architecture of the variable node is shown in Fig. 5.14 and the circuit implementation for

computing the message propagated from variable node v1 to check node c20 is shown in Fig. 5.15.

The currents I+
v1

represent the positive part of differential message L(v1) (L(v1) = L+(v1) −

L−(v1)). Similarly, I+
c1→v1 and I+

c8→v1 represent the L+(c1 → v1) and L+(c8 → v1). These

currents are summed at node B and mirrored through transistors P0 and P1. Similarly, the current

through P2 equals the sum of all the negative portion of the differential message. For brevity, we
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denote the two summed currents as I+ and I− as shown in Fig. 5.15, where

I+ ⇒ L+(vi) +
∑

ck∈Vi∼j

L+(ck → vi),

I− ⇒ L−(vi) +
∑

ck∈Vi∼j

L−(ck → vi). (5.43)

The two currents I+ and I− are compared at node A and when I+ is greater than I−, the current

through P5 equals to the positive part of the differential message propagated from the variable

node to the check node. A similar circuit computes the negative part of the differential message.

Thus, we realize the differential form of (5.2) as

L+(vi → cj)⇐


I+ − I−, if I+ − I− > 0.

0, otherwise.

L−(vi → cj)⇐


0, if I+ − I− > 0.

I+ − I−, otherwise.
(5.44)

Note, the transistors P3 and P4 in Fig. 5.15 act as current limiters where the common-mode current

and hence the total power dissipation of the decoder can be limited using the voltage VB .

5.5 Measurement Results and Discussions

Fig. 5.16 shows a system level schematic of the (32,8) LDPC decoder corresponding to the Tanner-

graph shown in Fig. 5.1. Besides the variable node and the check node modules, the decoder

also integrates the following modules to facilitate output buffering and testing through an external

digital interface (FPGA in this paper):
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110



ddV ddV ddV

BV

ddV

N0 N1 N2
N3 N4

P0 P1 P2

P3
P4

P5

+
1VI

+
→ 11 VCI

+
→ 18 VCI

+
→ 201 CVI

A

+I −I

Figure 5.15: Circuit to implement variable node

(a) A 6-bit current-mode digital-to-analog converter (DAC), used to digitally programming

initial messages (currents) in equation (5.43). Its MSB of the DAC is denoted by d1 whereas

the LSB is denoted by d6. The architecture of the current DAC (shown in Fig. 5.16 is based

on the popular resistive divider [95] where the current through each branch is twice as large

as its neighbor. The output as determined by the bits d1–d6 is a binary weighted sum of

currents which are mirrored into each of the variable node modules.

(b) Output comparators, which are used to compute the decoded bits by comparing the differ-

ential variable node currents when the decoder has reached equilibrium. For example, if I+
V

is greater than I−V , the output of the comparator Q is logic “high” and indicative of the bit

“0” being decoded. Note that the comparator needs to be reset before each comparison is

made.

(c) Digital sample-and-hold input buffer is a shift register chain which converts the serial

input Din to the decoder IC into parallel bit slices that are processed by the DAC module.

As shown in Fig. 5.16, there are two sets of non-overlapping control signals for the shift
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register chain: Φ1/Φ1 and Φ2/Φ2. Φ1 and Φ2. In one period, when (Φ1 = 1 and Φ2 = 0),

the previous stage data di−1 is sampled; and when (Φ1 = 1 and Φ2 = 0), the sampled data

is held during while the DAC module processes the latched bits.

(d) Digital sample-and-hold output buffer is also a shift register chain which sample the par-

allel decoded bits (from the comparator modules) and convert them into a bit-serial format

Qout.

The microphotograph of a prototype MP-based LDPC decoder fabricated in a 0.5µm standard

CMOS process is shown in Fig. 6.20. Table 6.3 summarizes the main specifications of the chip.

Table 5.2: Specifications of the MP-based analog LDPC decoder

Fabrication Process Standard CMOS 0.5µm

Die Size 3000µm× 3000µm

Number of Transistors 11424 (6336 PMOS, 5088 NMOS)

Number of Variable Nodes 32

Number of Check Nodes 24

The measurement setup used to evaluate the fabricated chip is shown in Fig. 5.18. The decoder

chip is hosted on a daughter board which is then mounted on a test station mother board. A second

mountable daughter board hosts a field-programmable gate array (FPGA) which is responsible for

clock generation and data synchronization. A sample timing diagram for all the digital signals

used by the LDPC chip (shown in Fig. 5.16) and generated by the FPGA are shown in Fig. 5.19.

The FPGA selectively programs the on-chip DACs to emulate data received over an additive white

Gaussian noise (AWGN) channel after which the FPGA enables the analog decoding core. The

output of the decoder is latched on the comparator after a pre-determined decoding time and the

latched bit-stream is serially retrieved by the FPGA. As shown in Fig. 5.18, the experimental setup

is also controlled through a Visual Studio interface on a PC. The C script emulates the AWGN
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Figure 5.16: System level architecture of the (32,8) LDPC decoder
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Figure 5.17: Die microphotograph of the chip

channel and generates 6-bit signal values at different SNR levels. These bit patterns are then

stored on the SDRAM of the FPGA which uses the values to perform real-time decoding. After

each noisy transmission, decoded bits are retrieved from the LDPC chip and stored on the FPGA’s

SDRAM. At the end of each Monte-carlo run, the Visual Studio interface transfers the data logged

on the SDRAM and computes the overall BER. The MATLAB interface is also used to adapt the

bias voltages of the decoder through a National Instruments data acquisition card.

Fig. 5.20 compares the BER performance of a software implementation of the MP-based de-

coder and the measured results obtained from the fabricated prototype. For this experiment the

decoding throughput was set to 320 Kbps and the hyper-parameter γ was optimally chosen based

on iterative experiments as described later. At low SNR, the hardware implementation outperforms

its software counterpart which could be attributed to the continuous-time dynamics of the analog
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decoder. However, at high SNR the software implementation outperforms its hardware counterpart

which could be attributed to the limited dynamic range of the programming DACs and due to the

offset and gain errors introduced by the current mirrors.

Fig. 5.21 shows the measured BER curves which are obtained under the conditions: (a) when

the system is configured to operate as a min-sum decoder (γ ≈ 0) [45] and the decoding throughput

is set to 320 Kbps; and (b) when the MP-based decoder is configured with an optimal setting of the

hyper-parameter γ > 0. For comparison we have included BER results reported for a state-of-the-

art analog min-sum decoder [77]. The results in Fig. 5.21 show that for γ = 0, the performance

of MP-based min-sum LDPC decoder is inferior to the benchmark min-sum decoder [77] at low

SNR, however, at high SNR (> 3.5 dB) the performance of MP min-sum decoder outperforms

the benchmark. When γ > 0, the results show that the MP-based LDPC decoder outperforms the

benchmark min-sum decoder by more than 3dB.

Fig. 5.22 shows the measured BER curves for different values of the hyper-parameter Vγ .

Again, for this experiment the decoding throughput is set to 320 Kbps. As Vγ increases (γ in-

creases), it can be seen that the BER of the MP-based LDPC decoder first improves and then

degrades, which is consistent with the BER-SNR-γ trade-off previously demonstrated only using

simulation results (shown in Fig. 5.8b).

Fig. 5.23 shows the measured BER performance (under different SNRs) when the decoding

time (inverse of decoding speed) is varied. For this experiment, Vγ is held constant at 0.74V

(correspondent to one of the four curves shown in Fig. 5.22). It is seen that as the decoding

time is increased, the BER performance improves, which is consistent with the response of previ-

ously reported analog decoders [77]. When the decoding time is reduced to less than 2.5 µs (data

throughput 12.8 Mb/s), the BER performance starts to decreases rapidly. When decoding time is
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as low as 833 ns (data throughput 38.4Mb/s), the BER (measured at SNR 7dB) could be 13 times

higher than the BER measured at data throughput of 12.8 Mb/s.

Table 5.3 compares the measured specification of the fabricated MP-based LDPC decoder to

the specifications of different digital and analog decoders reported in literature.

The comparison shows that the MP-based LDPC decoder has the second highest throughput

amongst the reported analog decoders. However, the turbo decoder with the highest throughput

[96] has an energy efficiency much lower than the MP-based design. Moreover, the turbo decoder

has a longer codeword length than ours. The benchmark min-sum LDPC decoder [77] has the

same codelength as the proposed MP-based LDPC decoder. However, the former measured the

energy efficiency based on the power consumption for the whole chip, while the latter based on

the core, which makes the comparison difficult. However, it can be seen that the throughput of the

MP-based LDPC decoder is more than twice that of the benchmark min-sum LDPC decoder. In

terms of energy efficiency, the MP-based LDPC decoder has the second highest energy efficiency.

Whereas the (8,4) Hamming Trellis graph decoder, which has the highest energy efficiency, has

a much lower throughput than this implementation. In terms of the silicon area, the proposed

implementation achieves integration density comparable to that of [77], considering the differences

in the respective technology feature size.

The table of comparison also shows that state-of-the-art digital decoders can also enjoy high

energy-efficiencies as the analog decoders. This is because these implementations exploit highly

parallel architecture [72, 73], early termination techniques [97], post-processing methods [98] and

aggressive feature and voltage scaling. However, it should be noted that unlike analog decoders,

digital decoders require an analog-to-digital converter to digitize the analog channel information.

For instance, the digital decoder reported in [98] requires 4 to 6-bit digital inputs and the energy
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efficiency metric (pJ/bit) reported in table 5.3 does not incorporate the power dissipation of the

ADC.
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Table 5.3: CMOS Digital (top 4) and Analog (bottom 6) Decoders

Author Code
CMOS Core Area Power Throu- Energy

Technology (mm2) (mW ) ghput Efficiency
(Mb/s) (nJ/b)

Digital
Blanksby R=1

2 , 0.16 µm,
52.5 690 500 1.4N=1024,

et al. [73] LDPC 1.5 V
Bickerstaff R=1

2 : 14
16 : 1

16 0.18 µm
14.3 787 320 2.46

et al. [72] N=2048,LDPC 1.8 V
R=11

15 0.13 µm,
7.3Darabiha N=660 1.2 V 518@4dB 2440 0.156@4dB

et al. [97] LDPC 0.6 V 398@5.5dB 480 0.12@5.5dB
R=0.84 65 nm

6.67Zhang N=2048 0.7 V 144 6670 0.0215
et al. [98] RS-LDPC 1.2 V 2800 47700 0.0587

Analog
Gaudet R=1

3 ,N=48, 0.35 µm,
1.32 185 13.3 13.9

et al. [96] Turbo 3.3 V
Winstead (8,4) Hamming 0.5 µm,

0.083
1

1 1
et al. [99] Tail-biting 3.3 V (core)

Amat R=1
3 ,N=132, 0.35 µm,

4.1
6.8

2 3.4
et al.[100] Turbo 3.3 V (core)

(8,4) Hamming
Winstead Trellis Graph 0.18 µm, 0.002 0.15 3.7 0.04
et al. [78] Factor Graph 1.8 V 0.02 0.807 3.7 0.22
Hemati (32,8) 0.18 µm, 0.57 5

6 0.83
et al. [77] LDPC 1.8 V (chip)

5.4

1.254

12.8

0.098
(Vγ =0.85V)

Gu et al. (32,8) 0.5 µm, 1.683 0.1315
(Vγ =0.74V)

this work LDPC 3.3 V 1.914 0.1495
(Vγ =0.71V)

7.755 0.6059
(Vγ =0.15V)

(core)
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Chapter 6

An analog SVM implemented on MP-based

PWL circuits

6.1 History of SVM

SVM theory provides a principled approach for designing classifiers (binary and multi-class) by

having a strong foundation in statistical learning theory. Due to their excellent generalization abil-

ity and modest requirements on the size of training data, SVMs have been successfully applied to

numerous real-time recognition tasks [101]. Even though several digital implementations of SVMs

have been reported in literature [102], they have been mapped onto analog VLSI using translin-

ear CMOS circuits [103, 104] only recently. Here, we will re-formulate SVMs to operate in a

log-likelihood domain, and apply MP-based transforms to map the architecture onto CMOS cir-

cuits. The result is a general-purpose micro-power SVM hardware that can be used in applications

ranging from communications to biometrics.
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6.2 An MP-based SVM

In its general setting, a binary SVM computes a decision score F ∈ R for every feature vector

presented −→z ∈ RN and is given by:

F =
N∑
i=1

αiK(−→xi,
−→z ) + b (6.1)

K : RN×RN → R denotes a kernel function computed between an input vector −→z and an array

of templates (support vectors) −→xi ∈ RN. The parameters αi ∈ R and b ∈ R are obtained through

a supervised training procedure [105]. Even though several choices of kernel functions exist, a

second-order polynomial kernel given by K(−→xi,
−→z ) = [(−→xi ·

−→z ) + β]2 has been chosen. All the

parameters of the SVM are represented in a differential form as αi = α+
i −α

−
i and b = b+− b−,

which leads to a differential representation of equation (6.1) as:

F = F+ − F−, (6.2)

where F+ =
∑
i α

+
i K(−→xi,

−→z ) + b+ and F− =
∑
i α
−
i K(−→xi,

−→z ) + b−.

The inner product computation of −→xi and −→z can also be achieved by turning them into differ-

ential forms:

−→xi
T · −→z =

N∑
j=1

(x+
ij − x

−
ij)(z+

j − z
−
j )

=
N∑
j=1

(x+
ijz

+
j + x−ijz

−
j )−

N∑
j=1

(x+
ijz
−
j + x−ijz

+
j ) (6.3)

Here xij and zj are elements of vector −→xi and −→z . (6.3) can be approximated with MP units
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expressed by:

z+ ≈ M(log x+
i1 + log z+

1 , . . . , log x+
iN + log z+

N,

log x−i1 + log z−1 , . . . , log x−iN + log z−N, γ)

z− ≈ M(log x+
i1 + log z−1 , . . . , log x+

iN + log z−N,

log x−i1 + log z+
1 , . . . , log x−iN + log z+

N, γ) (6.4)

For a classification task, only the sign of F is important, and using the monotonic property of

the log(.) implies sign(F ) = sign(log(F+) − log(F−)). Therefore, the decision generated by

the SVM can be expressed as

sign(F ) = sign(z+ − z−). (6.5)

The system architecture and circuit diagram of MP-based SVM are shown in Fig. 6.1.

An MP-based SVM architecture can be partitioned into three major sub-systems as shown in

figure 6.1. It consists of a log-MAP matrix-vector multiplier that computes compressive inner-

product kernels based on margin propagation. The outputs of the matrix-vector multiplier are

scaled in log domain, which is equivalent to a cubic transformation of an inner-product kernel.

The scaled factors are then presented to an output normalization stage that computes the decision

function according to equation (6.5).

A current-mode circuit for implementing a log inner product computation log(xT y) based on

MP circuits is also shown in figure 6.1. At the core of the network is the basic MP cell shown in Fig.

4.2. Currents representing the logarithm of vector elements are summed according to Kirchhoff’s

current law. A constant current sink with magnitude γ constraints the total current at the gate of

124



ZIxI

Input Vector      Output  (F)

S
cale M

odule

iα

γI

+z
I

…...

+
1a

I +
1b

I −
1a

I −
1b

I +
Na

I +
Nb

I −
Na

I −
NbI

zr

ixr

Figure 6.1: The circuit diagram of the MP-based SVM
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output transistor. Thus the reverse water-filling criterion is implemented. For the SVM sub-system

in Fig. 6.1, the circuit is replicated for each template (support vector). The output current from

the first stage is mirrored and scaled to an outer normalization stage that implements another MP

normalization procedure. Consequently, the outer normalization stage is also implemented using

the reverse water-filling circuit in Fig. 4.2.

The SVM parameters αi and xi are stored as currents on floating gate transistors, illustrated

in the highlighted box of figure 4.2. Each of the storage cells are individually addressable via a

serial shift register chain. Programming is achieved by using hot-electron injection in conjunc-

tion will global tunneling [106]. There are 14 reverse water-filling cells per support vector in the

log-MAP matrix-vector multiplier. The number of cells in the output normalization sub-system

is proportional to the total number of support vectors. Since the positive and negative class la-

bels must be split to maintain positive current flow during analog computation, a fully-differential

implementation of the output stage is required to compute the decision score.

6.3 Simulation result

Fig. 6.2 shows the PWL approximation effect of MP-based algorithm on inner product, expressed

by equation (4.34), withN = 2. Fig. 6.2a displays the result computed by “log-sum-exp” function.

Fig. 6.2b displays the result computed by MP-based function simulated in Matlab. Fig. 6.2c

displays the result computed by MP-based function simulated in Cadence.
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Figure 6.2: Multiplication computed by (a) “log-sum-exp” function (b) MP-based function with
γ = 1.2 (in Matlab) (c) MP-based function with γ = 1.2 (in Cadence)

6.4 Circuit Implementation

The prototype fabricated in a 0.5 µm CMOS process has integrated an array of floating gate tran-

sistors that serve as storage for up to 740 SVM parameters as well as novel circuits that have

been designed for interfacing with an external digital processor. These include a novel current-

input current-output logarithmic amplifier circuit that can achieve a dynamic range of 120dB while

consuming nanowatts of power and a novel varactor based temperature compensated floating-gate
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memory that demonstrates a superior programming range than other competitors.

6.4.1 floating-gate memory cells

The prototype uses floating-gate memory array to store SVM parameters. The system architecture

and the basic circuit of the floating-gate memory cells is shown in Fig. 6.3. The prototype has

embedded floating-gate memory array, temperature compensation circuitry, logarithmic amplifier

circuitry (translinear circuitry). It also sets aside connection pin to Keithley for current calibration

and measurement as well as the pin for floating-gate programming. The memory array is composed

of 740 floating-gate memory cells, which are distributed into 18 rows and 114 columns. Each cell

is addressable by their address switches, Row select and Column select1-3. These switches are

set by programming shift registers. As can be seen from Fig. 6.3, the system is also transferable

between two states by setting the signal RUN . Once RUN is set to logic high, the parameters

stored in memory cells in terms of current are flowing into the MP-based computational circuit

and the computation is carried out. However, once RUN is set to low, the stored current is led into

Keithley so that calibration and measurement are executed.

The current through P2 represents the support vectors. As is seen from Fig. 6.3, P2 and P1

are a pair of floating gate transistors. Hence the current through P2 is tunable through charge in-

jection and tunneling. During current injection, the memory cell to be programmed is selected by

the address switches. A negative voltage is applied to Program pin so that charge can be injected

into the gate of P1 and P2. During charge tunneling, a high voltage is applied to Vtunnel. Vc

is a voltage applied to the floating-gate control capacitor Cc, which can be used to tune the gate

voltage of P1 and P2 and hence control the current flow through them. Vx is the voltage applied to

the varactor Cv , which is used to tune the value of Cv . This property is used in temperature com-
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pensation to protect the memory array from the attack of temperature variation. We will talk about

this feature into detail in later sections. The current through P3 represents the input vectors. It is

controlled by Vdd translinear and Vg translinear, which are transmitted from reference circuitry,

i.e. a current-input current-output logarithmic amplifier circuitry.

6.4.2 Current-input current-output logarithmic amplifier circuit

Logarithmic amplifiers are used for generating output signals that are proportional to the logarithm

of the input [107]. Due to the compressive nature of the logarithm function, such an amplifier

is useful for processing wide dynamic range signals like sensory (auditory or visual) signals or

multi-path signals in radio-frequency and radar applications.

The most popular technique for implementing logarithmic amplifiers is a transimpedance based

approach that exploits the exponential dependence between the current and the voltage across a p-n

junction diode, a bipolar transistor [14] or a MOSFET in sub-threshold region [108, 109]. Based on

this approach, amplifiers with input dynamic range greater than 100dB have been reported. How-

ever, there are three disadvantages of using a transimpedance based approach: (a) the output of a

transimpedance logarithmic amplifier is a voltage signal, which implies that the output dynamic

range is limited by the supply voltage; (b) due to the dependence on the current-to-voltage relation-

ship, transimpedance logarithmic amplifiers are sensitive to temperature variations and therefore

requires additional compensation circuitry; and (c) for current-mode analog VLSI computation,

the use of transimpedance logarithmic amplifiers requires a linear transconductor stage to convert

the output voltage into currents.

In our study, we propose the design of a current-input, current-output logarithmic amplifier,

which by construction in insensitive to variations in temperature. At the core of the proposed design
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is a Translinear Ohm’s law principle which exploits floating-voltage sources and linear/non-linear

resistive elements embedded within a translinear loop. By exploing multiple translinear networks,

temperature compensation is achieved through a resistive cancellation technique. We verify the

functionality of the circuit using measured results from fabricated prototypes and justify the results

using mathematical models and analysis. We also extend the design of the logarithmic amplifier

to be fully programmable and digitally addressable, where all the current references have been

made programmable using analog floating-gates and the input to the amplifier is made digitally

programmable using a standard ladder-based digital-to-analog converter DAC.

6.4.2.1 Translinear Ohm’s Law based Logarithm Computation

The concept of translinear Ohm’s law is an extension of the celebrated translinear principle [14]

which exploits the exponential relationship between voltages and currents in certain devices (diodes,

BJTs and sub-threshold MOSFETs). Translinear principle has been successfully used for imple-

menting linear analog computation like matrix-vector multiplication [17] and for implementing

non-linear analog computation like quadratic kernels [61]). Translinear Ohm’s law is first ex-

plained in this section using an example circuit shown in Fig. 6.4 which consists of several diodes

D1–4 acting as translinear elements connected to a floating-voltage source ∆V and a memoryless,

non-linear circuit element N . The non-linear circuit element N is characterized by a function f(.)

which models relationship between the current flowing through N (IN ) and the voltage across N

(VN ) according to

IN = f(VN ). (6.6)
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If the voltage drop across each diode in Fig. 6.4 is denoted by V1–4 then,

V1 + V2 + ∆V = V3 + V4 + VN , (6.7)

which after using the translinear diode equation of I1-4 = Is exp
(
V1-4/UT

)
leads to,

I1 · I2 · exp

(
∆V

UT

)
= I3 · I4 · exp

(
VN
UT

)
, (6.8)

and hence,

VN = ∆V + UT ln

(
I1 · I2
I3 · I4

)
(6.9)

IN = f

(
∆V + UT ln

(
I1 · I2
I3 · I4

))
(6.10)

UT in equations 6.8 and 6.10 refers to the thermal voltage which is a linear function of absolute

temperature and is approximately equal to 26mV at room temperature (25oC).

If currents I1−4 satisfy the relation I1 · I2 = I3 · I4 then,

IN = f (∆V ) . (6.11)

If N is a resistor with resistance R, then f (∆V ) = ∆V/R which when inserted in equation (6.11)

leads to an equivalent Ohm’s law (Note that the current IN is not directly drawn from VN). If N

is a general type of resistor (linear and non-linear) with f(0) = 0, then f can be approximated

using first-order and second-order Taylor series terms as f(∆V ) ≈ f ′(0)∆V + f ′′(0)/2(∆V )2.
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Inserting the approximation in equation (6.11) leads to

IN = f ′(0)∆V + f ′′(0)/2(∆V )2. (6.12)

Note that f ′(0) has units of a transconductance and equation (6.12) is only satisfied when the

translinear condition I1 · I2 = I3 · I4 is satisfied, hence the name “translinear Ohm’s Law”. For

the sake of simplicity and to minimize mathematical clutter we will assume f ′′(0) ≈ 0 for the rest

of the analysis and we will reintroduce the higher-order terms to understand the limitations of the

proposed method. �
V

R

IRI3

I2

I4

I1

V1

V3

V2

V4

Figure 6.4: The basic concept of translinear Ohm’s law.

The translinear Ohm’s Law is now applied towards approximating the logarithm of a current

using the circuit in Fig. 6.5. The circuit is is derived from a translinear circuit which was reported

in [61] where the transistors M1 to M4 are biased in weak-inversion and form the translinear-loop.
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Figure 6.5: Schematic of the translinear logarithmic current-to-current converter.

The drain-to-source voltages for all transistors are larger than 100mV, in which case the transistors

satisfy the following translinear relation [110]:

NMOS : In = SnID0ne

(
VGn−VTn

)
/nnUT e−VSn/UT , (6.13)

PMOS : Ip = SpID0pe

(
−VGp+VTp

)
/npUT e

VSp/UT , (6.14)

where Sn,p, VTn,p, nn,p, UT , VGn,p, and VSn,p are the aspect ratio, the threshold voltage, the

sub-threshold slope, the thermal voltage, gate and source voltage referred to bulk potential (Vdd

or gnd) for nMOS and pMOS transistor respectively. The transistor M5 serves as a feedback

element which reduces the output impedance at the drain of M2. If the sizes of the transistors are

considered to be equal, the current mirror formed by M3 and M4 ensures I1 · I2 = I3 · I4. Then,
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using the translinear Ohm’s law the output current Iout can be expressed as

Iout = f ′(0)V
(
Iin
)
, (6.15)

where the floating-voltage source V
(
Iin
)

equals the difference in gate voltages of transistors M1

and M2, which are mirrored from M6 and M7 and can be expressed as

V
(
Iin
)

= n · UT · log

(
Iin
Ib2

)
. (6.16)

which leads to

I3 = n · f ′(0) · UT · ln
(
I1
I2

)
. (6.17)

Thus, the output current is proportional to the logarithm of the input current under the condition

Iin > Ib2 which is required for the circuit to be operational.

Equation (6.16) consists of several temperature dependent and non-linear parameters which

includes: (a) the thermal voltage UT ; (b) the transconductance parameter f ′(0); and (c) the sub-

threshold slope n. However, all the parameters affect only the gain of the amplifier and hence can

be potentially cancelled.

6.4.2.2 Complete Logarithmic Amplifier Circuit

Fig. 6.6(a) shows a complete implementation of a temperature insensitive logarithmic amplifier

based on the proposed translinear Ohm’s law principle. It consists of an input stage, a reference

stage and a translinear stage. The input stage and the reference stage is formed using the basic

circuit shown in Fig. 6.6. Based on equation (6.16), the output current generated by the input stage
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Figure 6.6: Proposed logarithmic amplifier: (a) basic circuit of translinear stage; (b) basic circuit
of input stage; (c) basic circuit of reference stage.
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Iin is given by

Ix = n · f ′(0) · UT · log

(
Iin
Ib2

)
. (6.18)

For the reference stage the ratio of the currents I1 and I2 are set to be 2 using the current mirrors

M1,M2 and M3. Thus the reference current Iref is given by

Iref = n · f ′(0) · UT · log (2) (6.19)

Iref = 1.44 · n · f ′(0) · UT . (6.20)

The translinear stage forms a translinear loop using the gate-to-source terminals of the pMOS

transistors M1-M4 which leads to Iout · Iref = Igain · Ix. Thus, using equation (6.16) Note that

Ib3 in Fig. 6.6 is an external biasing current to establish the translinear loop which is usually 10

times larger than Ib4. M15 is added at the input of Ib4 to ensure M11 to be in saturation region.

Thus, using equation (6.16) the output current Iout can be expressed as

Iout = Igain ·
Ix
Iref

(6.21)

Iout = 1.44 · Igain · log

(
Iin
Ib2

)
. (6.22)

Thus, if the currents Igain and Ib2 are independent of temperature, Iout is theoretically invariant

with respect to temperature. Also, if the resistancesR1 andR2 are matched all the terms dependent

on the resistance gets potentially cancelled out. The current Igain determines the gain of the

amplifier and the current Ib2 determines the minimum input current of the amplifier.

Circuit in Fig. 6.6 requires current sources Iref and Ib4 that can be programmed to different
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Figure 6.7: Basic circuit of (a) current reference; (b) current DAC.
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amplifier settings. It turns out that the core circuit shown in Fig 6.5 could also be used for designing

programmable current references as shown in Fig. 6.7a. If the gate voltages of M1 and M2 are

given by VG1 and VG2, then the reference current is given by Iout = (VG1 − VG2)/R. If the

resistance R is temperature compensated and the voltage difference VG1 − VG2 are independent

of temperature then Iout will also be temperature compensated. Note that once Iout is generated

on-chip, different values of currents can be generated using a current mirrors. The voltages VG1

and VG2 are generated using programmable floating-gate voltage references which was reported

in [111]. In this section, we briefly describe the operating principle of the voltage reference and

the readers are referred to [111] for additional details. If the floating-gate transistor M4 is matched

to the current source transistor M1, the output voltage VG1 is given by

VG1 = Vdd − nVb1 + n
Q1
CT

, (6.23)

where n is the sub-threshold slope factor, Vdd and Vb1 is the supply and biasing voltages, Q1 the

charge on the floating-gate F and CT is the total capacitance at node F . Thus,

VG1 − VG2 = n
Q1 −Q2
CT

. (6.24)

The chargeQ1 andQ2 are programmed using a linear injection technique [111], where the opamps

A1 and A2 implement an active feedback that maintains the source current, the source and the gate

voltage of M1 and M2 constant. This elements any non-linear factors that affect hot-electron

injection onto the gate, thus achieving a stable and controllable injection rate. Thus the rate and

resolution at which Q1 and Q2 remains constant throughout the programming range which is rail-

to-rail. Programming is achieved by periodically enabling the feedback loop by opening the switch
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S1 (controlled by an FPGA). Again, for the sake of brevity, we have omitted details of hot-electron

injection programming which can be found in [111].

Programming of the input current Iin is achieved using a 10-bit current-mode DAC as shown

in Fig. 6.6. The MSB of the DAC is denoted by d10 whereas the LSB is denoted by d1. The

architecture of the current DAC (shown in Fig. 6.7 (b)) is based on the popular resistive divider [95]

where the current through each branch is twice as large as its neighbor. The output as determined

by the bits d10–d1 is a binary weighted sum of currents which are mirrored into the input stage.

The digital inputs of d10 through d1 are transmitted through a shift register chain, which converts

the serial input Din into parallel bit slices that are processed by the DAC module.

6.4.3 Adaptive, varactor-driven temperature compensation circuitry

Floating-gate transistors serve as an attractive medium for non-volatile storage of analog param-

eters. However, conventional current memories based on floating-gate transistors are sensitive to

variations in temperature, therefore limiting their applications to only controlled environments. In

our research, we propose a temperature compensated floating-gate array that can be programmed

to store currents down to picoampere level. At the core of the proposed architecture is a con-

trol algorithm that uses a varactor to adapt the floating-gate capacitance such that the temperature

dependent factors can be effectively canceled. As a result, the stored current is theoretically a

function of a reference current and the differential charge stored on the floating-gates. We validate

the proof-of-concept using measurement results obtained from prototype current memory cells

fabricated in a 0.5µm CMOS process.
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6.4.3.1 Varactor based Floating-gate Temperature Compensation

The architecture of the proposed varactor-based floating-gate current memory cell is shown in

Fig. 6.8. It consists of a reference cell formed by two floating-gate transistors P1 and P2. Note that

in addition to the usual control-gate capacitor Cc and tunneling capacitor Ctun, all the floating-

gate transistors have a varactor Cv connected to their respective gates. The currents through P1

and P2 (measured using an on-chip analog-to-digital converter) are controlled by a control module

which sets the control-gate voltage Vc and tuning voltage Vx using an off-chip digital-to-analog

converter. If the charge on the floating-gate nodes A and B are denoted by Q1 and Q2, then the

gate voltages for the pMOS transistors P1 and P2 are given by

VA≈
Q1 + Cc · Vc + Cv · Vx + Ctun · Vtunnel + Cb · Vdd

CT
, (6.25)

VB≈
Q2 + Cc · Vc + Cv · Vx + Ctun · Vtunnel + Cb · Vdd

CT
. (6.26)
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Q3

outI

P3

...
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Figure 6.8: Proposed floating-gate based current reference and current memory cells

When P1 and P2 are biased in weak-inversion, the respective ratio of their drain-currents I1
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and I2 is given by

I1
I2

= exp

(
κ
Q2 −Q1
CTUT

)
. (6.27)

The control module in Fig. 6.8 monitors I1 and I2 and ensures that the their ratio remains constant

across temperature variations by tuning the voltage Vx which changes the capacitance CT . Letting

K = I1/I2, then the parameter CTUT is also held constant according to

CTUT = κ
Q2 −Q1
log(K)

(6.28)

which leads to the expression for the output current Iout generated through the memory cell as

I1
Iout

= exp

[
log(K)

Q3 −Q1
Q2 −Q1

]
. (6.29)

Thus, if the current I1 is compensated for temperature, then according to equation (6.29), the

current through the memory cells are also temperature compensated. In principle, I1 could be

generated by a bandgap reference circuit [59]. For this implementation, we tried to maintain I1 to

be constant by co-adapting the control-gate voltage Vc along with the tuning voltage Vx.

6.4.3.2 Varactor Implementation and Second-order Effects

The varactor has been realized using a MOS capacitor which operates in an accumulation mode [112].

The cross-sectional architecture and the layout of the MOS-cap is shown in Fig. 6.9 along with the

floating-gate transistor, the control-gate and the tunneling-node. The use of MOS-cap as a varactor

introduces second-order effects into the equation (6.29):
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• Derivation of equation (6.29) assumed that the floating-gate transistors including the vari-

able capacitors Cv are matched with respect to each other. Unfortunately, each floating-

gate node is programmed to a different potential, which will lead to mismatch in Cv . In

weak-inversion, however, the difference between respective gate-voltages is small (less than

100mV), which reduces the effect of the mismatch.

• The variation of Cv with respect to the tuning voltage Vx is non-linear as shown in the

measured response in Fig. 6.21. Therefore, Vx and Vc has to be biased properly to ensure:

(a) sub-threshold biasing of the transistors; and (b) high-sensitivity of Cv with respect to Vx.

• The MOS-cap Cv also varies with temperature. However, the temperature model of a MOS

varactor is too complex for any closed-form calibration, which motivates adapting Vx in an

online manner.

6.5 Measurement Results

The prototype is still being measured for the SVM computation result.

6.5.1 Measurement results for floating-gate memory

As is seen through Fig. 6.3, the programming of floating-gate cells are controlled by Vcur-

rent starving, Vdd fg, Vc, Vx and the charge injection voltage applied at program pin. In the

first set of experiment, we vary one of the above parameters and keep the others fixed to verify the

functionality of these control parameters.

Fig. 6.10 demonstrates the current through three different floating-gate transistors when differ-

ent gate voltages are applied to the current starving transistor P0 during charge injection. These
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three cells are tunneled until their current is lower than picoampere. As Vcurrent starving is de-

creasing, the charging velocity is increasing. This is because the injection current through the

transistor is increased by lowering the gate voltage of P0.
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Figure 6.10: Floating-gate transistor current with respect to current starving voltage

Fig. 6.11 shows the current through three different floating-gate transistors when different

Vdd fg are applied. It is seen that as Vdd fg is increasing, the charging velocity is increasing as

well. The phenomenon is consistent with the principle that the injection current is increased with

a higher VSG across the floating-gate transistor.

Fig. 6.12 shows the current through three different floating-gate transistors when different Vxs

are applied. It is seen that as Vx is increasing, the charging velocity is decreased. Since increasing

Vx will increase the gate voltage of the floating-gate transistor, the phenomenon is consistent with
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the principle that the injection current is proportional to VSG across the floating-gate transistor.
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Figure 6.12: Floating-gate transistor current with respect to Vx

Fig. 6.13 shows the precise programming procedure by tuning the voltage applied at program

pin, i.e., by tuning the injection current. The methodology is: first charge the cell to some threshold

value that is approaching the desired value, then reduce VPROD to allow a lower injection current,

which ensures a fine step size. For this experiment, the desired value is 6.3 µA, and the threshold

is set at 6.1 µA. It is seen that the current is increasing rapidly as VPROD is as low as as -3.3V;

however, as the current is approaching 6.1 µA, VPROD is switched to -2.8V. As a result, the

current through the floating-gate transistors are programmed to 6.3 µA precisely, as is seen from

Fig. 6.13.
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Figure 6.13: Precise programming procedure for floating-gate transistors
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6.5.2 Measurement results for current-input current-output CMOS loga-

rithmic amplifier

The microphotograph of a prototype current-input current-output CMOS logarithmic amplifier

fabricated in a 0.5µm standard CMOS process is shown in Fig. 6.14. Table 6.3 summarizes the

main specifications of the chip.

Input DAC

Translinear circuit

100µm

Figure 6.14: Die microphotograph of the chip.

6.5.2.1 Measurement results for the current reference

Fig. 6.15 shows the measured output current Iout (Refer to Fig. 6.7 (a)) versus the differential

gate voltage V1-V2 (Refer to Fig. 6.7 (a)). During this experiment, the switches Sps are set to be

off so that both V1 and V2 are determined by the Vref of the opamps. V1 is varied while V2 is
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Table 6.1: Specifications of the current-input current-output CMOS logarithmic amplifier

Fabrication Process Standard CMOS 0.5µm

Die Size 3000µm× 3000µm

M1-4, 6-7 (refer to Fig. 6.5) 10µm/5µm

M5 (refer to Fig. 6.5) 30µm/1.5µm

R (refer to Fig. 6.5) 10MΩ

fixed. It is seen from Fig. 6.15 that Iout is proportional to the differential voltage, which proves

that equation (6.11) holds for this circuit.
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Figure 6.15: (a) Measurement current response and (b) relative error for the current reference.

6.5.2.2 Measurement results for the logarithmic amplifier

The measured result of the circuit is shown in Fig. 6.16. The input current was varied from

100pA to 40nA and for each measurement with different value of Ib4 (Refer to Fig. 6.6). The

results show a close agreement between the measured result and the mathematical model given

by equation (6.22). The results also demonstrate that a larger dynamic range can be achieved by

increasing Ib4.
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Figure 6.16: Measurement results for the logarithmic current conversion.

6.5.2.3 Noise Analysis

When the current memory cell is operating at sub-nA current levels, the thermal noise and flicker

noise (due to sub-threshold MOSFETs and the resistor) effects the accuracy of the current read-out

from the cell. Under DC condition, flicker noise is dominant. The power spectral density (PSD) of

flicker noise for MOS transistors biased in subthreshold region can be expressed by

SID
=

KF ′

WLCox
·
I2
D
f
. (6.30)

Note KF ′ is a process-dependent constant; Cox is the gate oxide capacitance per unit area; W

and L represent the width and length of the transistor respectively; ID is the drain current flowing

through the transistor; and f represents the frequency. Equation (6.30) indicates that the noise

spectral density will increase along with the biasing current.

To verify equation (6.30), a set of experiment is performed in which Iin and Iout are varied

whereas Ib4 and Ib2 are fixed. The noise is obtained based on the standard deviation of the 100
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current samples for each pair of Iin and Iout. Fig. 6.17 (a) shows the noise of Iout is proportional

to the magnitude of Iout, and Fig. 6.17 (b) shows the corresponding SNRs.
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Figure 6.17: (a) Noise of Iout versus Iin; (b) SNR of Iout.

6.5.2.4 Temperature characteristics

The underlying principle of the translinear Ohm’s law intrinsically leads to a temperature compen-

sated operation. According to equation (6.22), the temperature coefficient of Iout is determined by

the temperature characteristics of Ib4, Ib2, and Iin. Assume that Ib4 and Ib2 are not temperature

compensated whereas Iin is temperature compensated. Hence Ib4 and Ib2 are written as functions

of temperature Ib4(T ) and Ib2(T ). Then equation (6.22) is rewritten as:

Iout(T ) = Ib4(T ) ·
ln(Iin)− ln(Ib2(T ))

ln2
. (6.31)
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For a specific temperature T0, three Iout(T0) are sampled as

Iout1
(T0) = Ib4(T0) ·

ln(Iin1
)− ln(Ib2(T0))

ln2
,

Iout2
(T0) = Ib4(T0) ·

ln(Iin2
)− ln(Ib2(T0))

ln2
,

Iout3
(T0) = Ib4(T0) ·

ln(Iin3
)− ln(Ib2(T0))

ln2
. (6.32)

Then it can be deduced that

Iout1
(T0)− Iout2(T0)

Iout1
(T0)− Iout3(T0)

=

Ib4(T0)

ln2
· ln

(
Iin1
Iin2

)
Ib4(T0)

ln2
· ln

(
Iin1
Iin3

) =

ln

(
Iin1
Iin2

)

ln

(
Iin1
Iin3

) (6.33)

As is seen from equation (6.33), the temperature related items are canceled. Hence
Iout1

(T )−Iout2(T )

Iout1
(T )−Iout3(T )

is temperature compensated only if Iin is temperature compensated.

A corresponding experiment with temperature varying from 27oC to 57oC is conducted. The

experimental result is shown in Fig. 6.18. It is seen that in the weak-inversion regime, the current

ratios are approximately invariant with respect to temperature. That validates the relationship

given by equation (6.33). Based on the first order polynomial for the data shown in Fig. 6.18, a

230 ppm/K is achieved over the temperature range of 27oC to 57oC.

6.5.2.5 Speed analysis

The speed of the circuit is limited by current. According to equation (6.22), the speed limit factor

could be Iin, Ib4, and Ib2. The following experiment is conducted to figure out the bandwidth

variation with respect to these factors. In the experiment, Iin and Ib4 are varied whereas Ib2 is

fixed to be 100pA. The result is demonstrated in Fig. 6.19. Against Fig. 6.19 (a), it is seen that
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Figure 6.18: Measured response plotting
Iout1

(T )− Iout2(T )

Iout1
(T )− Iout3(T )

under different temperatures.
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when Ib4 is set to 0.38nA, when Iin varies from 50nA to 110nA, the bandwidth is increased from

0.6kHz to 0.9kHz. However, when Ib4 is set to 0.75nA, when Iin varies from 50nA to 110nA,

the bandwidth is increased from 0.8kHz to 1.2kHz. From Fig. 6.19 (b), it is seen that when

Iin is set to 85nA, bandwidth is monotonically increased from 0.45kHz to 1kHz as Ib4 varies

from 0.25nA to 2.75nA; however, when Iin is set to 110nA, bandwidth increases from 0.73kHz

to 1.1kHz as Ib4 varies in the same range. These phenomena demonstrate that the bandwidth is

increased when bias current are increased.
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Figure 6.19: Measured response plotting bandwidth with respect to current.

Table 6.2 compares this work with some of the references.

6.5.3 Measurement results for varactor-driven temperature compensation

circuitry

An array of varactor-based FG current memory cells has been prototyped in a 0.5µm standard

CMOS process. Table 6.3 summarizes the specification of the fabricated prototype and Fig. 6.20

shows its micrograph. Programming of the FG memory cells is based on the hot-electron injection
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Table 6.2: Comparison of performance

Reference [113] [114] [115] [108] This work

Conversion current-in current-in current-in current-in current-in
voltage-out voltage-out voltage-out voltage-out current-out

Process 1.6µm 1.5µm Discrete 0.5µm 0.5µm

Area - 2.9× 3.7mm2 - 91× 75µm2 290× 140µm2

Supply - ± 6 V - 3.3 V 3.3 V

DR 100dB 114dB 80dB 140dB 120dB

Bandwidth >10Hz 1kHz 25kHz >3.5kHz 1.2kHz

Power 10pA-1µA 30mW - 0.1µW-33µW 1nW-10µW

ppm/K uncompensated uncompensated uncompensated uncompensated 230

and Fowler-Nordheim (FN) tunneling, whose details have been presented elsewhere [61, 116] and

has been omitted here for the sake of brevity.

Table 6.3: Specification of the fabricated prototype

Fabrication Process Standard CMOS 0.5µm

Die Size 3000µm× 3000µm

Size of P1-P3 6µm/3µm

Cc 100fF

In the first set of experiments, the floating-gate voltage VA was measured (using a voltage

buffer shown in Fig 6.8) when Vx was tuned and Vc = 1.2V . The ratio
Cv
Cc

was determined based

on the sensitivity analysis of the current I1 with respect to Vx and Vc. The measurement result in

Fig. 6.21 shows that the capacitance is inversely proportional to Vx and shows the largest change

happens at Vx = 1.25V . The experiment also demonstrates that Cv can be varied over a large

dynamic range with respect to Vx, which should be sufficient to compensate for large temperature

variations.

For the next set of experiment, we measured the current ratios under four different tempera-
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Figure 6.20: Die microphotograph of the chip
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Figure 6.21: The C-V curve of MOS capacitor
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tures, namely, 28◦C, 33◦C, 38◦C, and 43◦C, when the voltages Vc is fixed to be 2V and Vx is

varied. The results shown in Fig. 6.22(a) - (e) demonstrate that with the increase in temperature,

the respective current ratios decrease as indicated by the relationship in equation (6.28). The con-

trol algorithm then varies Vx to ensure that the ratio
I1
I2

is maintained to be constant. The trajectory

of the Vx traversed by the control algorithm is shown in Fig. 6.22(a) - (e) shows the corresponding

value of the ratio
I1
Iout

(Here Iout is represented by I3-I6 from different memory cells). The com-

pensated results with Vx biased at 1.2 V and 1.3V are demonstrated in Fig. 6.23. A 150 ppm/K

is achieved over the temperature range of 28oC to 43oC. It is seen that the current through other

memory cells (I3-I6) can be effectively compensated with respect to temperature once
I1
I2

is con-

stant, no matter how different the current is from I1. This result validates the proof-of-concept

temperature compensation for the proposed floating-gate current memory.
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Figure 6.22: Measured response plotting (a)
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Figure 6.23: Measured response plotting temperature compensated current ratios under Vx of
(a)1.2V (b)1.3V.
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Chapter 7

Conclusions and future work

The major conclusion of this thesis is that it is feasible to use MP algorithm as an effective alter-

native for analog computation. The MP algorithm can be implemented with current-mode analog

VLSI circuit. The basic MP circuit can be utilized to synthesize a variety of static analog computa-

tion circuits. Also MP circuit serves as a fundamental circuit unit in the MP-involved applications.

The proposed MP algorithm is a novel analog computation algorithm with the underlying prin-

ciple of universal conservation law. In contrast with the state-of-the-art transliner circuits de-

pendent on physics of electronic devices, MP algorithm is dependent on the physical law, which

facilitates it independence on transistor operation regions. As a consequence, MP circuit has a

wide dynamic range, and is capable of trade off one performance with another when required due

to its wide operation region. Also the underlying principle of universal conservation law enables

MP algorithm to be implemented in a diversity of devices, not limited to electronic device (e.g.

mass, time, resistance, etc.). Since current-mode circuits is the most easy and mature way of

implementation, in this dissertation, we adhere to current-mode implementation.

One characteristic of MP algorithm is that by using MP algorithm, the PWL approximation of
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“log-sum-exp” function can be achieved. MP algorithm also has a couple of mathematical proper-

ties, which facilitate the MP-based computations. Another characteristic of MP algorithm lies in

the implementation based on reverse water-filling criterion, which enables MP to be implemented

in analog domain easily.

The two characteristics mentioned above entail diverse analog arithmetic computations to be

synthesized on basic MP circuit. In this study, the investigated computations include addition,

subtraction, multiplication, division, power, polynomial, tanh, inner product. These computations

are ubiquitous in applications such as neural network, communications, machine learning, and the

like.

The two MP-based application examples brought out in this research study are an analog LDPC

decoder and an analog SVM. For each application, the mathematic model built upon MP algorithm

is illustrated, the simulation results are presented, the system architecture and circuit implementa-

tion based on MP circuit are demonstrated, and the measurement results are presented as well.

7.1 Summary of contributions

The contributions of this dissertation are summarized here:

• Propose an analog signal processing (ASP) algorithm named margin propagation (MP) as an

efficient piece-wise linear (PWL) approximation technique to a “log-sum-exp” function and

bring out its current-mode analog circuit implementation. Since MP algorithm involves only

addition, subtraction and threshold operations and hence can be implemented using universal

conservation principles like the Kirchoff’s current law. Its analog circuit implementation is

bias-scalable in different operation regions. As a result, the MP circuit can be adaptive to

various application requirements since operating in different biasing condition is beneficial
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for different specifications.

• Synthesize bias-scalable analog computational circuits for a wide-range of linear and non-

linear mathematical functions based on MP principle. We have implemented addition, sub-

traction, multiplication, division, power and polynomial computation, etc. with MP-based

circuits. An important attribute of MP based synthesis is that all computations are performed

in the logarithmic domain, as a result of which multiplications map into additions, divisions

map into subtractions and power computations map into multiplications. This simplifies the

implementation of many complicated non-linear functions. All the computational circuits

can be operated in weak inversion, moderate inversion, and strong inversion regions.

• Design and implement an analog (32,8) MP-based LDPC decoder. One fascinating property

is its capability of trading off BER performance with energy efficiency due to the tunable

hyper parameter γ in MP algorithm, which has been verified by the (32,8) MP-based LDPC

decoder prototype. The prototyped MP-based LDPC decoder can achieve an energy effi-

ciency of 100nJ/bit while an optimal configuration can also deliver up to 3 dB improvement

in BER compared to the benchmark min-sum LDPC decoder.

• Design and implement an analog energy-scalable MP-based support vector machine (SVM).

The prototype stores 2052 SVM parameters into floating-gate memory array and is fully

programmable. Due to the using of MP computation circuit, SVM is bias-scalable.

• Design and implement a novel current-input current-output logarithmic amplifier circuit Un-

like the traditional transimpedance-based logarithmic amplifier circuit, our design based on

translinear Ohm’s law directly generates currents as a logarithmic function of the input cur-

rent, which exhibits a dynamic range of 120dB and a temperature sensitivity of 230 ppm/K,
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while consuming less than 100nW of power.

• Design and implement a varactor based temperature compensation circuitry for floating-gate

memory array By adapting the floating-gate capacitance, this design enables temperature

dependent factors be effectively canceled, which solve the variation of current stored in

floating-gate memory due to the temperature effect. A temperature sensitivity of 150 ppm/K

is achieved.
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Figure 7.1: Improved MP circuit with cascode current mirrors
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7.2 Future directions

Some aspects can be further improved or remain undiscovered for MP algorithm and MP circuits:

• Novel methodologies to implement MP algorithm. MP algorithm is scalable to different

analog structures ranging from silicon transistors to microfluidic devices. This dissertation is

adhered to current-mode since it is the easiest way of implementation. In future research, the

physical parameters to represent value can be time (to improve energy efficiency), charge (to

improve the precision), or any other characteristic parameters dependent on the application

requirements.

• Ultra-low power implementation for MP algorithm. In this thesis, all the prototypes are

capable of operating with current magnitude as low as nano-ampere. However, since MP

algorithm is based on conservation law, it is possible to function even under the current

magnitude of femto-ampere. For this improvement, specific circuit design techniques are

supposed to be developed.

• Precision improvement for MP algorithm. In this thesis, one intuitive solution to improve

the PWL approximation effect of MP to “log-sum-exp” function is proposed based on an

experiment presented in chapter 3: to increase the number of operands involved in the MP

computation. The accurate mathematical design for operands including the optimal number

of operands and the value of the operands, is a promising topic for research.
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7.2.1 Potential solutions for ultra-deep-submicron computational circuits

using margin propagations

7.2.1.1 Cascode current mirrors

As has been discussed in [117], the performance of MP circuit is limited by the accuracy of “current

mirrors” composed of N0 through N4 in Fig. 4.2. However, when MP circuit is scaled down to

nano-scale, the inaccuracy in current replicating, which is caused by systematic mismatch (due to

different VDSs), is getting more pronounced.

Several literature have reported methodologies to improve the precision of ultra-deep-submicron

current mirrors under low-voltage circumstances [118, 119, 120, 121, 122, 123]. Most of them

are focused on cascoding scheme. Based on the cases of low-voltage high-precision current mir-

rors, the simplest method of improving the accuracy of nano-scale MP circuit is to utilize cascode

technique. A basic nano-MP circuit with cascode current mirrors is displayed in Fig. 7.1. To

achieve low-voltage implementation, it is also feasible to introduce other techniques reported in

[118, 119, 120, 121, 122, 123].

7.2.1.2 Gate decoupling

The gate leakage is another concern for nano-scale MP circuits since it may cause the malfunction

for the MP circuit. As we can see through Fig. 7.1, gate leakage is liable to occur at node A, which

would affect the output current mirrored from N1 through N4. To avoid the liability, a possible

solution is proposed, which “decouples” the gates of N1 through N4 from node A. The improved

topology is demonstrated in Fig. 7.2. KCL still holds at node A; the difference lies in that the

gates of transistors N0 through N4 are decoupled from node A and connected to node C. In this

way, the gate voltages of N1 through N4, which used to be driven by currents through P1-P4, is
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self-balanced by the current through themselves. This is made possible due to the hot carrier effect

in nano-scale circuit.
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