
AN EXPERIMENTAL INVESTIGATION OF SOIL-CEMENT AS A BUILDING MATERIAL

Thesis for the Degree of B. S. MICHIGAN STATE COLLEGE G. A. Prusi
1942

An Experimental Investigation of Soil-Cement as a Building Material

A Thesis Submitted

to

The Faculty of MICHIGAN STATE COLLEGE

of

AGRICULTURE AND APPLIED SCIENCE

by

G. A. Prusi
Candidate for the Degree of
Bachelor of Science

June 1942

THESIS

Cap. 1

.

.

ACKNOWLEDGMENT

The author desires to express appreciation to C. A. Allen, professor and head of the Civil Engineering Division, and to D. J. Hall, formerly a member of the Michigan State Highway Department's Soil Research Division and at the present an instructor in Civil Engineering at Michigan State College, for their helpful suggestions and criticisms offered during the running of this investigation.

The study of soil-cement durability when subjected to alternate freezing and thawing was made possible in this investigation by the use of the refrigerator owned by the Fichigan State Highway Department.

G. A. Prusi

TAPLE OF CONTENTS

	Prge
INTRODUCTION	_ 1
LAPORATORY INVESTIGATION, DUTA, AND RESULTS	_ 4
Test to Determine Apparent Specific Gravity	_ 4
Mechanical Analysis of the Soil	_ 5
Plending of Soil Samples	- 55
Apparent Specific Gravity of the Soil Wix	_ 23
Liquid Limit of Soil hix	_ 23
Plastic Limit of Soil Mix	_ 24
Flesticity Index of Soil Mixture	_ 25
Shrinkage Ratio and Shrinkage Limit of	
Soil Mix	_ 25
Optimum Moisture Density Relations of	
Soil Mix	_ 27
Determining of Moisture Density Relations	
of Spil-Coment	_ 31
DURABILITY TESTS AND RESULTS	_ 43
Freezing and Thewing Test	_ 43
Wetting and Drying	_ 149
Compression Test	55
Wash Test	_ 57
Hesting and Cooling Test	59
Outdoor Test	<u>6</u> 0
congruero:	61

INDEX OF TABLES

								<u> 2999</u>
Table	I	Data and	Results	for	Determ	ining th	ı e	
		Appare	nt Speci:	fic C	ravity			. 5
Table	II	Maximum	Diameter	s of	Grain :	Size in		
		Suspen	sion Und	er As	sumed (Conditio	n s	8
Table	III	Proprtio	nality F	actor	, a, a	nd Speci	ific	
		Gravit	y Correc	tion	Factor	K _G		_ 9
Table	IV	Viscosit	y Correc	tion	Factor	K _n		10
Table	v	Hydromet	er Corre	ction	K _L	,		12
Table	VI	Hydromet	er and S	1eve	Analys	is Data	(A)_	13
Table	VII	Я	ч	*	4	A	(B)_	14
Table	IIIV	Ħ	Ħ	11	*	и	(c)_	15
Table	IX	n	n	#	W	n	Mix_	16
Table	X	Grading	Curves _					17
Table	XI	Triaxial	. Chart _					18
Table	IIX	Optimum	Moisture	Dens	ity Re	lations	Data _	30
Table	XIII	Optimum	Moisture	Dens	ity Cu	tae		30 A
Table	VIX	Optimum	Moisture	Dens	ity Re	lations		
		Data f	or 6% So	il•Ce	ment _			35
Table	XV	Optimum	Voisture	Dens	ty Rel	atios		
		Data f	or 12% S	oil - 0	ement .			36
Table	IVX	Optimum	Density	Moist	ure Cu	rves		
		for 6	and 12%	So il-	Cement			37

INDEX TO TABLES (cont.)

					Page
DATA ON E	HEEZING AN	O THAWING	FEETS		
Table XVIIA	6% Cemer	it Content	Specimen	. A	45 A
BIIVX sideT	и и	4	Ħ	B	453
Table XVIIIA	8% #	я	ч	A	46A
Table XVIIIB	18 #	н	ч	5	46B
Table XIXA	10%	11	*	A	47%
Table XIXB	H H	¥	а	B	47B
Table XXA	12% "	14	•	A	48 A
Table XXB	11	н	Н	В	489
DATA ON V	ETTING AND	THAVING	rests		
Table XXIA	6% Cement	Content	Specimen	A	514
Table XXIB	4 #	18	Ħ	B	51B
Table XXII4	8∜ મ	w	н	A	.52A
Table XXIIB	19 4	#	Ħ	B	52B
Table XXIIIA	10% "	4	14	A	. 5 3A
Table XXIIIB	H H	Ħ	ı	B	. 53B
Table XXIVA	12%	Ħ	11	A	54a
Table XXIVB	и н	H	Ħ	B	5413
Table XXV	Comparati	ive Compre	ssion Dat	8	. 56
Table XXVI	Wash Test	Data			. 58
Table XXVII	Hesting a	and Cooling	g Test Da	ta	60

AN EXPERIMENTAL INVESTIGATION OF SOIL+CEMENT

A3 A

BUILDING MATERIAL

An Experimental Investigation of Soil-Cement as a Building Material

In recent years much attention has been given to soilcement as an improvement to secondary roads. This increased
interest in soil-cement as an all weather surfacing for
highways has primarily been stimulated by the fact that
soil-cement is proving itself economical. Now if a low
cost, stable, all weather surface for highways can satisfactorily be constructed from soil-cement; ,why is it not
possible to use soil-cement as a building material?

with priorities bearing down on a lot of the materials used in the construction of homes, and with the increased demand for inexpensive homes that can be constructed quickly has lead me to this investigation on the properties of the various soil-cement mixes made from locally obtained soils, and through the following expriments and test draw some conclusions as to the advisability of using soil-cement as a building material.

Three samples of soil where obtained from the college properties. Samples A and B were taken from the college field south of the Pere Marquette Railroad and west of Farm Lane Road. Sample A was a representative sample of soil from the base of the sod to a depth of 1.5 feet. Soil B

was also a representative sample taken from the same place as sample A, but since the grain size of the soil particals seemed to change at the depth of 1.5 feet sample B was taken from 1.5 to 3.0 feet below the surface. These two samples, although taken from the same spot, were kept apart so that an accurate analysis for grain size of the soil particals could be made on each of the samples.

Sample C was obtained from the college clay pit. The intention being to blend sample C with samples A and B if the grading curves of samples A and B fall very far from the ideal grading curves designed by "eymouths Theory. However it was not intended to make a perfect blend or to approach the ideal curves too closely, becausethat would have been to defeat the purpose of this test. If the ideal curves, determined by Weymouths Theory of partical interference, were to be followed completly many more soil smples would be needed, and the cost would be increased.

The raw soil samples obtained in the field were air dried in the labratory. When the samples where dry they were screened. Samples A and B being sandy soils passed the Mo. 10 sieve 100% upon drying. Sample C, the clay, was quite lumpy upon drying, so it was placed into the Ball Mill pulverizer where the lumps were broken down, and then upon screening through a NO. 10 sieve it was found 100% passing.

"ith all the soil samples air dry and passing the NO. 10 sieve the follwing tests were for each sample.

1. The apparent specific gravity of each sample was

determined.

2. By the mechanical analysis of the partical sizes the grain sizes contained in each sample was determined and with the aid of the Triaxial Chart the soils were placed into their proper groups.

with the above facts abtained for each of the soil samples the blend or mix of raw soils was determined from the grading curves. Blending completed the above two tests were repeated upon the mix, and in addition the following tests were performed.

- 3. Plastic Limit Test
- 4. Liquid limit Test
- 5. Plasticity Index Test
- 6. Shrinkage Ratio Test
- 7. Shrinkage Limit Test
- 8. Optimum Moisture Density Relation Test

when all the previously mentioned tests are known the next step was to determine the soil cemnt optimum moisture density relations for the various cement percentages by volume these percentages being arbitrarily choosen.

knowing the soil-cements optimum moisture-density relations for the various cement contents that shall be taken the test samples can be molded. A total of nine (9) samples will be used for each of the chosen cement contents. These nine samples shall be tested in a manner that will be similar to the actual conditions that the material would have to take if it were a part of a wall.

-3-

LABORATORY INVESTIGATION INCLUDING DATA, RESULTS, AND SAMPLE CALCULATIONS.

The purpose of this project is to take samples of easily obtainable local soils and through accurate laboratory tests design soil-cement test cylinders containing varying percent off cement by volume. To take these cylinders and subject them to tests similar to the actual conditions that a exterior wall of a building and similar structures would have to undergo. From these tests a determination of the practibility of using soil-cement as a building material shall be made.

Test of raw soil to determine the apparent specific gravity.

Approximately 40 gms of oven-dried soil shall be ground in a mortar with a pestle to a fine floury texture, being careful not to break the actual grain structure, only loosening each partical from the next. Place about 30 gms of this material into a volumetric flask the weight of which is known and weigh on an analytical balance. Fill a burette with kerosene; draining excess kerosene off at the bottom so that the kerosene level is exactly at the 100cc mark. Introduce about 40cc of kerosene from burette into Flask twirled between the hands until the powdery material is completly in suspension. Subject the flask and contents to a vacuum to remove all entrained air. Rotate flask gently while vacuum is being applied this further assuring that each partical of material is in suspension. When all entrained air has been removed

fill the flask to the 100cc mark from the burette. The volof the remaining kerosene is recorded as the volume of the
contained soil.

	Soil Sample		۸	I	3	(
	Flask No.	3	14	5	6	1	2
w ₃	"t of powdered soil & flask	78.09	78.22	75.53	77•75	72.79	74.49
T T	Wt of flask	48.40	48.35	45.81	47.98	42.80	44.51
We	"t of potdered soil	29.69	29.87	29.72	29.77	29.99	29.98
٧a	Vol of soil particles	11.6	11.6	11.4	11.38	10.4	10.48
GA	Apparent Specific Gravity	2.58	2.582	2.61	2.62-	2.88	2.86
G A	Mean App. Sp. Gr.	5.	.58	۶.	.61	کَ '	. 88

TABLE I

All the items in the above table are self explanatory. \P_3 and \P_f are the values obtained by weighing the respective items, and V_8 is the amount of kerosene remaining in the burette after the flask has been filled to the 100cc mark. The mean specific gravity G_A is equal to $\frac{W_8}{V_8}$.

Mechanical Analysis Of The Soil Samples

This is to determine the grading or the per centage of the various particle sizes contained in the soil samples.

A representative soil sample was selected from ovendried material pasting the No. 18 sieve. The weight of the sample shall be 100gms for sandy soils and 50 gms for silt and clay soils.

The soil was placed in a glass beaker and covered with about 700cc of distilled water to which was added 20cc of sodium silicate solution by means of a pipette. The sodium silicate is to act as a defloculating agent. The soil solution was then allowed to stand for 18 hours to assure that each particle is loosened from the next and also at the end of this period the clay will have softened enough to be easily broken down in the dispersion apparatus.

After tempering the soil was poured into the dispersion cup all material was carefully washed from the teaker into the cup. The dispresion cup was filled to within 2 inches of the top with distilled water and placed into position on the milk shaker which was used as a mixer. The mixing time was 5 minutes for sandy soils and 9 minutes for clay and silt soils.

At the conclusion of the mixing time the contents of the dispersion cup was poured into a 1000cc glass graduate again carefully washing all the soil particles from the cup into the graduate, then the graduate was filled with additional distilled water until the 1000cc mark was reached. Covering the open end of the graduate with the palm of one hand, the graduate was then vigorously shaken for a period of one minute, quickly setting down graduate into a position where it wwill not be disturbed for the remainder of the test.

Place the hydrometer and thermometer into the solution and begin taking readings at the end of 1, 2, 5, 10, 15, 30, 60, 120 minutes. Will not be necessary to run the 1440 minute test. Due to the large particles settling on the hydrometer bulb the first few minutes; these readings are frequently low and may be discovered from the final grading curves. After the first two readings have been taken remove the hydrometer from the solution and rinse the bulb; placing back into the solution about 20 seconds previous to the next reading.

Upon completion of all the readings through the 120 min reading pour the content of the graduate upon a No. 200 sieve washing all the material from the graduate on to the sieve. Tash the material upon the sieve and then set sieve into an oven and allow to dry. When the material is dry place it upon a No. 10 sieve of a nest of sieves that are arranged in the following order, Nos. 10, 20, 40, 60, 140, 200, and the pan. Place the nest and materials into a Ro-Tap and shake for 20 minutes. Record the reight of the material retained upon each sieve.

Corrections must be applied in the hydrometer analysis for temperature of solution and the specific gravity of the soil since the hydrometers have been graduated or calibrated at 67 and 19.4 degrees fahrenheit and centigrade respectively, and for an apparent specific gravity G_A of the soil as being 2.65.

Table II gives the maximum grain diameters in suspension under assumed conditions.

- 1. That the apparent specific gravity of the soil is 2.65.
- P. That the specific gravity of the suspending medium is constant and equal to 0.9984 at 67°F or 19.4°C.
- 3. That the coefficient of viscosity, n is equal to that of water 0.0102 at 67°F or 19.4°C.
- 4. That the distance, L, through which the particles in a given time period is constant and equal to 32.5 cm.

The above listed standard conditions were not the conditions of the test, so corrections must be applied.

Table II

Maximum Diameters Of Grain Size in Suspension Under

Assumed Conditions

Time Vinutes	Maximum Grain Size in
	Suspension in Millimeters
1	০.০7৪
2	0.055
5	0.035
15	0.050
30	0.014
60	0.010
120	0.007
1440	0.002

The temperature correction of the hydrometer designated as $\triangle R$ is taken 0.2 per degree change in Fabrenheit and as 0.36 per degree change in Centigrade. The correction is added to the original reading when the temperature of the solution is above the standard 67°F or 19.4°C and subtracted from the original hydrometer reading for temperatures below the above mentioned standard.

When the specific gravity of the soil varies from 2.65 the specific gravity of the solution will vary likewise so a soil with an apparent specific gravity of more than 2.65 will cause the hydrometer to float higher than if under s standard conditions, and will register a higher percentage which must be reduced by a proportionality factor, a, as given in Table III.

Apparent Specific Gravity G ₄	Correction	Factors KG
2.45	1.05	1.07
2.50	1.04	1.05
2.55	1.02	1.03
2.60	1.01	1.62
2.65	1.00	1.00
2.70	0.99	0.98
2•75	0.9ಕ	0.97
2.80	0.97	0.96
2.85	0.96	0.95
2.90	0.95	0.93

The correction factor for the variation in specific gravity of the soil is designated as K_G and it depends upon the net density of the suspended soil. The values of K_G are computed by the formula $K_G = \sqrt{\frac{1.65}{G_A}}$ where G_A is the soparent specific gravity of the soil being tested. Values of K_G

specific gravity of the soil being tested. Values of $K_{\widehat{G}}$ have been tabulated in Table III.

The correction factor for the coefficient of viscosity of water is designated as \mathbb{Z}_n and may be expressed in the following form.

The	values	of	Kn	have	been	tabulated	into	Table	IV
-----	--------	----	----	------	------	-----------	------	-------	----

Temperat	ure	17	Tempe:	rature	•
Degree F	Degree C	^K n	negree F	Degree C	^K n
ర∩. క	16	1.04	77.0	25	0.93
62.6	17	1.03	75.5	ა ც	0.92
64.4	18	1.02	გ ე.6	27	0.91
66.2	19	1.00	82.4	28	0.30
63.0	20	0.99	84.2	29	0.89
69.8	21	0.98	85.0	30	೧.೮ಕ
71.6	22	0.97	87 . 8	31	0.83
73.4	23	ი.96	39.6	35	ე. 87
75.2	24	0.95	91.4	33	0.86

Table IV

The correction to correlate the particle size with the distance that the particle falls within a given sedimentation period is designated as K_L . L' is the distance from the surface of the suspension to the bottom of the hydrometer. By experiment the equivalent distance of fall has been established as 0.42L. The correction K_L is given by the formula

$$x_{L} = \sqrt{\frac{0.42L!}{32.5}}$$

In testing soil samples A, B, and C three hydrometers were used and table V giving the correction $K_{\rm L}$ for each hydrometer was compiled.

The product of the three corrections K_G , K_L , and K_n times the nominal size of the particles will give the actual particle size at the given period.

The combination of the sieve and hydrometer analysis shall be plotted on a graph having an arithmetic ordinate of total per cent passing and a logarithmetic abscissa of particle size.

Tables VI, VII, and VIII are the mechanical analysis data sheets tabulated in full for soil samples A, B, and C respectively. The grading curves are all plotted on one graph as shown in table X, which also contains the grading curve for the blend or mix.

Rdg.	Hydro- meter 344253	Hydro- meter 344272	Hydro- meter 381032	Adg.	Hydro- meter 344253	Hydro- meter 344272	Hydro- meter 381032
	KL	$K^{\mathbf{\Gamma}}$	K _I ,		KL	KT	KL
-2	0.568	0.553	0.568	30	0.500	0.483	0.500
0	0.565	0.548	0.564	32	0.496	0.478	0.496
5	0.561	0.545	0.560	34	0.492	0.473	0.491
4	0.557	0.540	0.556	36	0.488	0.469	0.487
6	0.554	0.536	0.552	38	0.484	0.465	0.483
8	0.549	0.532	0.548	40	0.479	0.460	0.478
10	0.545	0.528	0.543	42	0.475	0.456	0.473
12	0.541	0.523	0.539	44	0.471	0.452	0.469
14	0.536	0.519	0.535	46	0.467	0.448	0.464
16	0.531	0.514	0.531	48	0.463	0.443	0.459
18	0.527	0.510	0.526	50	0.458	0.438	0.455
50	0.523	0.505	0.522	52	0.454	0.434	0.450
52	0.519	0.501	0.518	54	0.450	0.430	0.445
24	0.513	0.496	0.514	56	0.445	0.425	0.441
26	0.509	0.492	0.510	58	0.441	0.420	0.436
28	0.505	0.488	0.505	60	0.436	0.415	0.431

Values of K_L

Sieve Ps Number S					
	(beatates.	ned	Gumulative	tive
	Particle Size	Weight	Percent & Ret.	% Ret.	Pase
10	1.98	0.00	00.0	1)	0.00 100.0
20	0.833	1.21	1 21	1 21	0.4 7.0
lμΩ	0.417	11.59	11.59	. "	87.20
60	0.246	26.82	26.82	26.82 39.62	60,38
140	0.104	20° 50	30.50	30.50 70.12	29.88
200	0.074	5,77	5,77	5.77 75.89	ונישק
Pass No	No. 200	24.11	24.11	סט סטרן דר 42	0 0
To	Total	100.00	100.00		

Hydrometer Analysis of Material Passing Wo. 10 Sieve "t of Sample 100gms. (Sample A) Sp. Gr. Corr a 1.02 TAPIE VI Tyurometer No. 344279

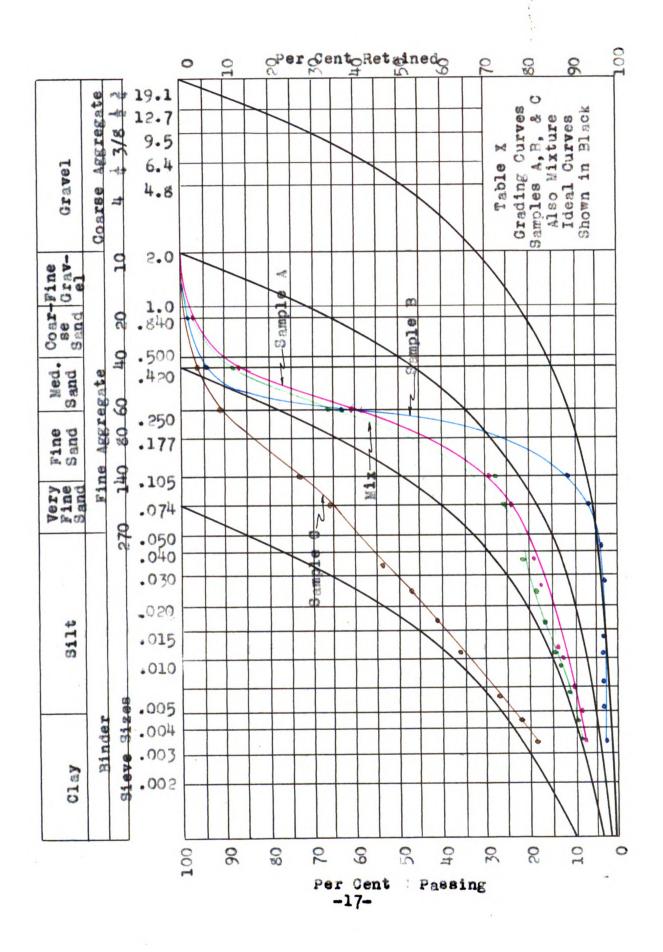
Time Temp. Hydrometer Rag. & Pags Corr. Min. G. Orig. R R 10031 W Kr. 1 27 16.0 2.7 18.7 19.1 .508	Hydrometer Rdg.	Hydrometer Rag.	er Rage & Pass R R 10031 W			Corr K1.		Corr: Coeff. K ₁ K _G K _n .508 1.03 .3	, K	Corr: Coeff. Dlameter K ₁ K _G K _n mm. 508 1.03 .31 0.078	Corrected Passiblemeter Fast o.0372 19.	72.88 19.1
		יין טיקנ	٦	17	16.7		512	1.03	.91	512 1.03 .91 0.055	0.0264	17.0
5 27 12.0 2.7	12.0 2.	C.	2.7		14.7	7 14.7 15.0	516	1.03	.91	.516 1.03 .91 0.035	0.0169	15.0
10.5 2.7 10.5	10.5	- 4	- 4	٦	7	7 13.2 13.5	521	1.03	31	521 1.03 (91 0.025	0.0122	135
15 27 9.0 2.7 1	9.0	0	2.7		1.7	7 11.7 11.9	.523	1.03	.91	.523 1.03 .91 0.020	5,00.0	11.3
30 27 7.1 2.7	7.1 2.	7.2 2.7	2-7		8	7 9.8 10.0	5.28	1.03	رق.	.528 1.03 .91 0.014	6900.0	10.2
60 27 5.5 2.7	5.5 2.	2	2.7	ł	8.2	7 8.2 8.36 .532 1.03 .91 0.010	532	1.03	.91	0.000	0.0050	8.36
120 27 4.5 2.7	- u	1 5 7 7	7		7.0	700 0 10 20 1 123 35 7 6.7 7	E 23	20 -	5		2000	7 75

Sieve		DIOTY S	SIGVE ANSLYSIS From HVGrometer anglysis	T ADS V	318
14	Derticle	Retained	ned	Cumu]	Cumulative
	Size	14 c	Percent % Ret.	رو He t.	P888
01	1.38	0.03	0.00	0.00	100.00
20	0.8.27	0 12	אנס	מר ני	G 00
Ct1	0.417	16.4	4.91	5.09	94.91
09	0.246	36.0₹	30.93	36.07	63.93
041	0.104	53.45	53.45	89.52	10.48
500	0.074	06.4	4.90	ठेंग गेर्ट	5.58
Page No. 200	200	5.58	5.68	5.58 100.00	0 0
	Total	100.00	100.00		

Hydrometer Analysis of Material Passing to 10 Sieve (Sample B) Hydrometer No.351032 Sp. Gr. Corr a 1.01 "Wt of Sample (T) 100 Gms TABLE VII

		Hydro	Janau	FCC -0%	, ()	nyulometer No. 71075 Sir dr. Oli i 1.01 / U. Jamiere 1.1 100 dina	7 % 11	TO.	10	() atcure	TOO 01112	
	e E	Ę	Hadroweter		Rds	00 00 00 00 00 00 00 00 00 00 00 00 00	Cor	Corr. Coeff	3	4	4 4 5 5	Bi
Time		C, C			o re	1,0133÷ W	Х	K, K	Ϋ́,	DIBECTO	Diameter	Pass
0x + 6	-	27	ם נ	2 7	7 7	יוור ב ר ב	557	EE7 1 00	ſ	 0.0.0	20110-0	4
2:31	u.	25	0.9	2.7	3.6	3.64	557	557 1.02		0.055		3.64
#£ : ¿	5	22	0.8	2.7	3.5	3.53	.557	.557 1.02	16.	0.035	0.0181	3.53
2:39	10	27	0.5	2.7	3.2	3.23	.553	.553 1.02	.91	.91 0.025	0.013	3.23
रंगः ८	15	25	0.5	2.7	3.2	3.23	. 553	.553 1.02		91 0.020	0.0104	3.23
5:59	30	27	0.3	. 2.7	3.0	3.0 3.03	553	55% 1.02	91	91 0.01½	0.00725	3.03
3:29	99	26	0.0	2.7	2.7	2.72	.559	.559 1.02	.91	.91 0.010	0.00518	2.72
62: ₁₁	120	26	-0.5	2.7	ر ، ر	2.22	1560 1.02	1.02	.91	0.007	0.00364	2.22

S.1e	Sieve Analysis From Hydrometer Analysis	H WOLE	ydrometel	. Analys	8
Sieve	Particle	Reta	Retained	Cumulative	tive
Number	S.2.	Weight gms.	Percent	% Ret.	% Pass
10	1.98	0.00	0.00	00.0	100.00
8	0.833	0.08	0.16	0.16	48.66
7:0	0.417	1,11	2.12	2.28	97.72
60	942.0	3.30	6.60	8.88	91.12
140	ψC1.0	8.62	17.20	26.08	73.92
200	0.074	3.76	7.53	33.61	66,39
2888	Pass No. 200	33,13	66, 39	66.39 100.00	00.0
	fot al	50.00	00,001		


Nydrometer Analysis of Asterial Passing No. 10 Sieve (Sample C) Hydrometer No. 344253 Sp. Gr. Corr a 0.95 Nt of Sample (W) 50 gms Table VIII

7777 07001							3		,		2	
	£	•	Hydromet	ne ter	er Rdg.	β. 0.00	Cor	Corr: Coeff.	ff.	D4 cmc + C	Corrected	3%
Time	Lime Ein.	G G.	Orig.	A R	æ	1003a÷#	KL	KG	Кn	mm.	Diameter	Pass.
2:46	٦	56	25.5	क ट	672	53.0	505	110	-92	0.078	0.034	53.0
2:47	0	26	22.0	2.4	म मट	46.4	.513	46.	92	0.055	0.0244	46.4
2:50	5	96	19.0	ħ°2	ή•12	40.6	.523	η6*	.92		0.0158	40.6
2:55	10	92	16.5	₽. 0	18.9	35.9	.525	η6*	-92	£20°0	0.0114	35.9
3:00	15	56	15.0	⊅° ∂	17.4	33.1	.529	η6°	-92	020.0	0.00915	33.1
3:15	30	56	12.0	2.4	14.41	27.4	.536	η6·	.92	0.014	0.0065	27.4
3:45	69	56	9.1	2,4	11.3	21.5	.543	46.	ĕ6•	0.010	0.0047	21.5
061 54:4	120	92	7.5	2.4	6.6	18.8	.545	46 .	.92	2000	0.0033	18.8

Steve	Particle	Retained	þ	Cumulative	tive
Number	Size am.	Welght Ems	Percent	Percent % Ret.	% Pass
10	1,98	00.0	00.00	00.0	0.00 100.00
8	0.833	0.85	0.85	2.85	99.15
710	0.417	7, 30	7.30	8,15	91.85
09	0.246	24.91	2419	33,06	46.39
140	401.0	₹9.14	39.14	72,50	27.50
200	0.074	5,62	5.62	72.12 21.88	21.83
Pass	Wo. 200	21.88	21.83 100.00	100.00	0.00
	T. +0.F	00 001 60 001	00.		

Hydrometer Analysis of Material Passing No. 10 (Mixture of samples) Hydrometer No. 344272 Sp. Gr. Corr a 1.00 Tt of sample (T) 100gms

i		-	mam Hydrometer	eter	Rdø.		Cox	Corr: Coeff.		Dismeter	Corrected	Ŗŝ
T 1 7 7 9	Win.	0	orig.	A R) 6 4	100Ra + W	ı	K.G	ä	mum.	Diameter	79.98.8 ₩
2:01	1	28.5	17.8	3.28	3.28 21.08	21.08	.503	10.1	68.	0.078	0.035	21.08
20:2	Q	28.5	15.5	3.28	18.78	3.28 18.78 18.78	.508	1.01	.89	0.055	0.025	18.78
50:2	5	28.5	13.5	3.28	3.28 16.78	16.78	.516	1.01	.8 9	0.035	0.0163	16.78
2:10	10	28.5	11.2	3.28	8h.41 85.	14.48	.518	1.01	68.	0.025	0.0116	14.48
2:15	15	28.5	9.5	3.28	12.78	3.28 12.78 12.78	.521	1.01	.89	0.020	4600.0	12.78
2:30	30	28.0	7.9	3.10	00.11 0.	11.00	.526	1.01	68.	0.014	0.0066	11.00
3:00	9	27.5	0.9	2.93	8.92	8.92	.530	1.01	.89	0.010	0.004g	6.95
4:00 120	120	27.0	5.0	2.	7,74	14 7.74 7.74	.534	1,01	.89	0.007	0.00344	7.74

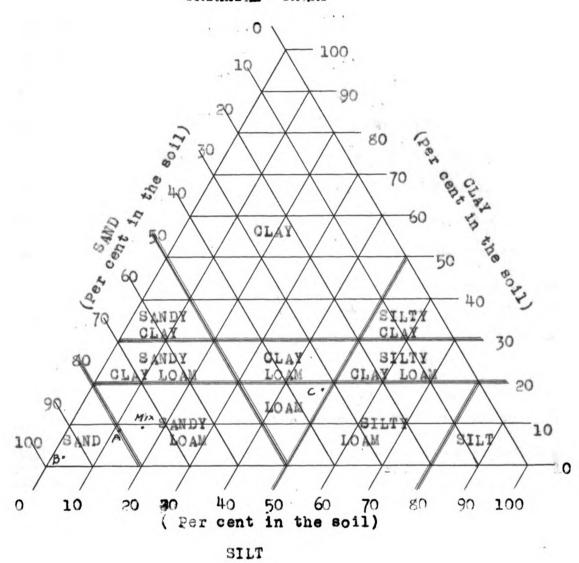


Table XI

S ample Calculations for the Hydrometer Analysis

From Table VII giving the observed data and information taken on sample A in the test the temperature of the solution when the one minute reading was recorded was 27°C and the hydrometer reading was 16 (using hydrometer No. 344272) the apparent specific gravity as found previously was 2.57.

The first correction to be applied to the hydrometer reading will be AR and since the temperature readings are centigrade the correction shall be 0.36 per degree change in temperature from the standard (19.4). With the temperature of the solution above the standard the correction is to be added.

The per cent of material passing at this point is equal to one hundred times the corrected hydrometer reading times the proportionality factor (obtained from Table III) divided by the weight of the sample being analyzed.

The correction factors to correct the particle diameter at this point are obtained as follows:

 K_L is had form Table V. The corrected hydrometer reading was found to be 18.7 then for hydrometer No. $3^{44}272$ the correction K_L for a hydrometer reading of

18.0 is 0.510 and for a hydrometer reading of twenty (20) the correction is 0.505. The correction for a hydrometer reading of 18.7 is found by straight line interpolation and is equal to 0.508.

The correction K_G may be had from Table III. The apparent specific gravity of the soil being 2.57 and from the compiled table a correction of 1.03 is found for an apparent specific gravity of 2.55 and a correction factor of 1.02 for an apparent specific gravity of 2.60. Again the correction factor wanted can be had by straight line interpolation between the above mentioned points, and is found to be equal to 1.03.

Correction K_n , the viscosity correction is obtained from Table IV. K_n is equal to 0.91 when the temperature of the suspending solution is equal to 27° C.

The corrected particle diameter is acquired by multiply ing the maximum in suspension at the time of the reading by the correction factors K_G , K_L , and K_n .

Corrected Diameter = $(0.078) \times K_G \times K_L \times K_n$ = $0.078 \times 0.508 \times 1.03 \times 0.91$ = 0.0372 mm

The material retained on the No. 200 sieve after the fines have been washed out through the sieve is broken up into groups that are retained on the nest of sieve by sieve analysis. The weight retained on each sieve being recorded, and the per cent retained of the total weight was computed.

Knowing the weight of the material retained on any of the sieves and also knowing the total weight of the sample the per cent retained on any sieve is equal to the weight of material retained upon that sieve divided by the total weight of the sample and multiplied by 100. Then 1.21 gms of a total of 100 gms are retained by a sieve the per cent retained by that sieve is equal to 1.21 ÷ 100 x 100 = 1.21%.

The column head as Cumulative is the cumulated per cent passing or retained up to that point. It is the addition of all per cents of material retained up to that point. To get the cumulative per cent passing at any point just take the cumulative retained to that point and subtract from one.

From the data and results compiled in Tables VI, VII, and VIII can be drawn as shown in Table X. The grading curves can used to determine the percentage of clay, silt, and sand in the samples A, B, and C. Referring to TableX studying the grading curve for sample A it can readily be seen that 8% of the sample passed 0.005 mm mark or the division point between clay and silt. Likewise it can be seen that 20% of the sample passed the division point between silt and sand giving 20% - 8% = 12% silt, also since 100% passed the No. 10 sieve the remainder of the sample is 100% - 20% = 80% sand.

So.

Sample A is 8% clay 12% silt 80% sand
Sample B is 2% clay 2.5% silt 95.5% sand.

Sample C is 18% clay 49% silt 37% sand

Locating these samples on the Triaxial Chart given in Table XI the classification of the samples can be secured.

Sample A falls on the division point between sand and a sandy loam. Soil sample B is unquestionably a sand.

Soil sample C into a group known as loam.

Mixture or Blend of Soil A. B. and C

To start of with an assumption was made that in practice the sample A and B would not be seperated. So equal amounts of soils A and B were combined. With the aid of the Ideal grading curves as given in Table XI a mixture was designed to bring the grading curve closer to the Ideal curve. are many ways in which a theoretical grading curve can be entablished. In designing the rixture used in this test the per cent of sand and silt and clay contained in the Ideal curve was determined from the graphs, and by combining sample A and B on the 50-50 basis the per cent of clay. silt, and sand contained in this part of the mix can readily be determined. This mixture wil contain 5% clay, 7.25% silt and 87.75% sand, whereas the Ideal curve contains 12% clay. 23% silt, and 65% sand. By combining the above mixture with 20% of sample 6 will give a final theoretical mixture of 7.6% clay, 15.6% silt, and 76.8% sand. This does not compare very closly with the Ideal grading, but as stated previously by try to approach the Ideal curve too much would

prove to be impractical because in pratice such minute blending could not be maintained without complete laboratory
supervision.

after the mix had been established the previous two tests were repeated on the blend or mixture. The apparent specific gravity was found to be 2.64 determined in the manner previously described. Below is given the data and results of the specific gravity determination.

F1	rsk No.	4	5
¹⁵ 3	Wt of powdery soil & flask	78.25	89.99
Wf	Wt of flask	48.38	45.79
¹⁷ 8	wt of powdery soil	29.87	44.20
v _a	Vol of soil particles	11.30	16.80
$G_{\mathbf{A}}$	Apparent Specific Gravity	2.64	2.64
	Mean App. Sp. Gr.	5.	64

Apparent Specific Gravity of Mixture

Then the mechanical analysis test of the mixture was carried out and the data and results are compiled into Table IX. From this data the grading curve of the mix was plotted was actually found to be 9% clay, 14.5% silt, and 76.5% sand, which compares favorably with the theoretical values 7.6% clay, 15.6% silt, and 76.5% sand. Plotting the actual values on the Triaxial Chart Table XI the soil mix is found to fall into the sandy loam group.

Liquid Limit of the Soil Mix

This test is to determine the liquid limit of the soil

nixture, which is the moisture content, expressed as a percentage of oven-dried weight, at which the soil will just begin to flow when jarred lightly ten times.

A sample of about 30 gms shall be taken from a thoroughly mixed portion of dried soil passing a No. 40 sieve. Place this soil into the brass dish of the liquid limit machine, and mix adding small amounts of water until it becomes a thick paste. Level wet soil into dish with a sapatula, leaving a thickness of about 3/8 in the middle of the dish.

The layer thus formed shall be seperated into two parts by means of a grooving tool, and the machine cranked, so that the dish will be jarred lightly ten times. The rate of cranking shall be two turns per second.

If the two sections of the soil pat fail to flow together on the tenth jar, more water must be added.

Recent process until a point is reached where on the tenth jar the soil put just flows together for a distance of approximately in on the tenth jar.

Immediately after the soil has been found to be at the liquid limit place a quantity of the soil put into a low form and cover securely and weigh. Remove cover and place low form and wet soil into the oven and allow to dry then reweigh.

Data and Results on the next page.

Lata and Recults for the Liquid Limit Test

	Low Form No.	74	94
W ₁	Wt Wet Soil & Low Form	40.8192	33.8860
₩S	Wt of Low Form	18.8368	17.1354
W	Wt of Wet Soil	21.9324	16.7506
73	Wt Dry Soil & Low Form	38.1213	31.7726
	wt of water is w1 - w3	2.6979	2.1134
70	Wt of Dry Soil	19.2345	14.6372
	Liquid Limit	14.0	13.8

Liquid Limit =
$$\frac{w - w_0}{w_0}$$
 = $\frac{2.6979}{19.2345}$ = 14.0

Plastic Limit Test of Mix

This test is to determine the plastic limit of the soil mixture, which is the soils lowest moisture content, expressed as per cent of weightof oven-dried soil, at which the soil can be rolled into a thread 1/8 " in diameter without breaking up.

The soil mixture being tested could not be rolled into a 1/8" diameter without breaking regardless of the amount of water used, so the mixture has no plastic limit. Granu-lar material generally does not have a plastic limit.

Plasticity Index

The plasticity index of a soil is the difference between the liquid limit and the plastic limit. Plasticity index is one measure of the capacity of a soil to absorb moisture without becoming fluid and is one of the approximate indexes to the potential cohesion which may be developed under certain conditions. But since the soil had no plastic limit no plasticity index for the same could be obtained.

Shrinkage Ratio and Shrinkage Limit of Soil Wixture

Approximately 30 gms of air dried material passing the No. 40 sieve shall be mixed with enough water to form a semifluid paste. This paste shall be placed into a small dish, which has previously been coated with a thin layer of vaseline or other grease, in three equal layers, tapping the dish on a firm surface after each layer has been saided. Filldish with paste level full.

Determine the weight of dish and material contained immediately on an analytical balance, and place dish and content into an oven and allow to dry to a constant weight. Reweigh after drying, and remove soil pat from dish, and weigh dish alone. The volume of the dish shall be determined by filling it with mercury and pressing a glass plate firmly over its top to remove the mercury meniscus. The volume of the mercury may be computed from the weight, assuming the specific gravity of mercury as 13.6.

ment of mercury by the soil pat may be found by the displacement of mercury by the soil pat. Hercury shall be poured into a large glass dish nested within a larger dish. A glass plate with prongs shall be pressed over the top of the dish containing the mercury to squeeze out all the excess mercury. Tipe both dishes so that no excess mercury remains on either of the dishes. Place put on the mercury surface and press down with the glass plate having the prongs forcing out all excess mercury that is displaced by the soil pat this excess mercury is caught in the outer dish. Beigh the mercury that is forced out and using specific gravity of mercury as 13.6 the volume of the soil pat can be computed.

Data and Results of the Shrinkage Test

	Dish No.	16	<u>\$1</u>
Ϋ́η	Wt of Dish & wet soil	37.5628	35.9420
77.2	下t of dish	11.2200	12.2478
¥	Wt of wet soil W1 - W2	26.0560	23.6942
73	Wt of dish & dry soil	34.0180	32.6683
W _O	Wt of dry soil "3 - W2	22.7980	20.4205
C.M.	% water in soil paste, dry basis	14.9	15.9
V	Volume of dish	12.86	11.89
Vo	Volume of soil pat (dry)	12.25	11.01
	Volume of shrinkage V - Vo	0.61	೧.ಕಕ
	Shrinkage in % weight of dry soil	2.68	4.30
	Gnrinkage Limit	12.2	11.70
	Shrinkage Ratio	1.86	1.86

Sample Calculations

Shrinkage in % weight of dry soil=
$$\frac{V-V_0}{V_0}$$
 x 100
Shrinkage Limit= $\frac{V-V_0}{V_0}$ x 100
Shrinkage Ratio= $\frac{W}{V_0}$

Optimum Moisture Density Relations of Soil Mixture

This test is to determine the relationship in cohesive soil mixture between the moisture content, dry density, and and theoretical maximum density at a given moisture content. The procedure is intended to duplicate the standard compaction method, which by other test has been shown to give the best results.

A 4000 gm representative sample of the soil mixture was selected. This sample shall be air-dried and prepared for compaction by pulverizing all lumps taking care not to break down the individual particles.

water shall be added to the sample in varying amounts over a range of sufficient expanse to include the optimum moisture content which will produce a maximum density. The moisture content is expressed in per cent of oven-dry weight of the mixture and the usual range may be taken from 5 to 20%. The water must be thoroughly mixed into the sample by vigorous troweling or by suitable clay mixer. When it is possible the water should be applied by means of an air spray similar to a regular paint spraying machine this method

Finough of the moist soil shall be placed into the tamping mold to fill it a little more that one-third full when the soil is compacted. Compaction shall be obtained by dropping a standard tamper (5½ pounds) 25 times through a distance of 12% using care in directing blows so that they will be evenly distributed over the complete surface of the sample. Two more layers shall be added and compacted in the same manner, so that the mold will be filled slightly above the top of the mold and into the collar after compaction.

Remove the collar and strike off the top even with the top of the temping mold; remove the base plate and weigh to the nearest gram. By use of a counter weight equal to the actual weight of the empty mold the weight of the compacted soil in the mold can be arrived at quickly. Record the net weight of the compacted specimen.

The moist soil mix shall be immediately removed from the mold and a sample taken for moisture determination. Place this sample into a sample can and cover to prevent loss of moisture. The weight of the can must be known; weigh the can and sample to the nearest 0.1 gm and record this weight.

The sample and can shall then be placed into the ovenand dried, reweigh and record the weight.

The same procedure shall be followed for each succeeding trial; adding water equal to about % of the original oven-

dried soil sample.

Table XII gives a complete tabulation of Data and Results for the test.

Sample Calculations in Determination of Optimum Moisture Density Relations.

Determination of Moisture Content

 W_1 is the weight of wet soil and sample can.

Wo is the weight of the can.

 W_3 is the weight of dry soil and can.

 \mathbb{X}_0^* is equal to $\mathbb{X}_3 - \mathbb{Y}_2$ and is the weight of dry soil.

The loss in weight is equal to the weight of the water contained in the sample at this point and is equal to $W_1 - W_3$

wo is the per cent of water in the sample based on weight of oven-dried soil, and is equal to the following:

$$\frac{x_0}{x_1} = \frac{x_1}{x_1} \times 100$$

Determination of dry density in pounds per cubic foot.

W is the weight of wet soil in mold.

Wo is the weight of dry soil in mold.

 v_0 is equal to $\frac{v_0}{100}$ x 100

V is the volume of the mold and was determined to be equal to 1100cc.

 G_{o} is the dry bulk specific gravity of the soil and is equal to $\frac{\Psi_{o}}{V}$

Original Moisture Content 0.24 Apparent %p. Gr. 2.64
With of Air Dry Soil 4000 gms. Volume of Mold 1100 cc

Trial No.	1	5	3	4	5
u "t "ater em	500	150	120	120	120
m % %ater *Dry Soil	5	3	3	3	3
Wt wet Mold gm W	1486	2137	2272	2272	2250
warea sq in	.1	.1	.1	• 25	•5
myerage m/sq in	1480	1350	1070	760	610
Can No	1	2	3	4	5
San Wt gm Wo	4162	40,80	41,40	40.65	4225
Get Soil Ge Can gm 71	125.6	151,7	1765	1634	1665
Dry Soil		1441	1645	1501	1503
mg secl tim	4.4	7.6	12.0	13.3	15.7
Ary Soil gm 7	79.6	1033	1931	109,4	1085
"ater of Dry Soil To	553	7.35	9,74	12,26	1447
Dry Soil gm To	1408	1991	2070	2024	1966
Dry Bulk Sp. Gr.	1.28	1.61	1.88	1.84	1.79
gry Den. Do	79.87	1129	117.3	1148	1117
Voids Cc	51.5	31.5	23.3	30.3	32.1
Sater gm	78	146	505	248	284
th Water by Vol.	7.1	13.3	18.4	22.5	25.8
% Air Voids	##*#	18.2	10.4	7.8	7.3

TABLE XII

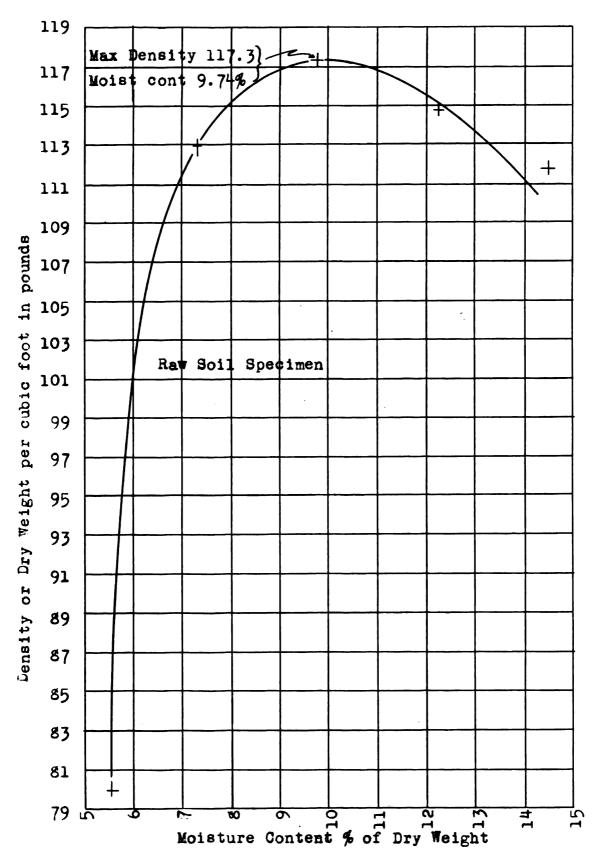


TABLE XIII

 D_o is the dry density in pounds per cubic foot and is equal to $C_o \propto 62.4$

Determination of Per Cent of Voids

 $O_{\rm c}$ is the designation applied to the total per cent of voids in the compacted state and is equal to $(1 - \frac{G_{\rm c}}{G_{\rm A}}) \times 100$

Per cent of water by volume is equal to the weight of water per specimen divided by the volume of of the specimen.

Per cent of air voids is equal to the total per cent of voids minus the per cent of mater by volume.

From the data obtained thus far in this test a curve can be drawn showing the relationship of Moisture Content by per cent of dry weight to the Density or dry weight per cubic foot (pounds). Pable XIII shows the Optimum Moisture Density Curve for the soil sample tested.

Before determining the moisture-density relations of soil-cement mixtures it is first necessary to choose cement contents by volume to be used with the soil at maximum density to give satisfactory durability. By arbitrary means the cement content to be used mere taken as 6%, 8%, 10%, and 1% by volume

It is first necessary to estimate, by comparison with previous work, what the densities of the soil-cement mixtures

will be at optimum moisture content. Basing the judgment of these densities on the moisture-density relations for the raw soil. estimate the maximum density which will be obtained with the raw soil-cement mixture containing the cement content to be used and investigated. This estimate will provide the oven-dry weight, in pounds per cubic foot, for the mixture or soil and cement compacted at optimum moisture content. The cement content by volume at maximum density and optimum moisture content must be converted to a weight basis to permit the design of the mixtures in the laboratory with ease and accuracy. Knowing the cement content by volume, this is converted to pounds of cement to be used per cubic foot of oven-dry soil by considering that a cubic foot of cement weighs 94 counds. By dividing the number of counds of cement per cubic foot by the munber of nounds of ovenary soil in a cubic foot of compacted mixture, the per cent of cement by weight of the oven-dry soil is obtained.

From previous experiments it is known that the maximum density of a sandy soil-cement is usually two to four pounds greater than the raw sand maximum density; whereas the maximum density of silty and clayey soil-cement mixtures is about equal to the raw soil density. The optimum moisture content will usually very only about 1 or % on either side of the raw soil optimum. It now becomes necessary to estimate by comparison with previous work, what the densities of the soil-cement mixtures shall be at optimum moisture content. The above information as a basis base estimate of

the moisture-density relations of soil-cement upon the moisture-density relations of the raw soil. The raw soil in this test fell into the group known as loam so no increase in the maximum density shall be allowed for in the calculations.

Moisture-density relations are usually obtained for two cement contents. In this test shall determine the moist ure-density relations for soil-cement mixes containing 6 and 1% cement by volume.

Design of a mixture of soil-cement containing 6% cement by volume converted into terms of weight is shown in the following calculations.

6% cerent by volume is equal to 0.06 x 94 = 5.64 pounds per cubic foot.

Assuming that oven-dry soil dement weighs 117.0 pounds per cubic fact. (6% dement by valume)

Weight of oven-dry soil in a one cubic foot volume is 117.0 - 5.64 = 111.36 pounds per cutic foot.

Per cent of cement by weight of oven-ary soil is

$$\frac{5.64}{111.36} \times 100 = 5.07\%$$

Assuming from previous test that about 4000 gms of material is needed for determining moisture density relation.

Material needed for the test are:

3500 gms of oven-dry soil

193 gms of cement or 5.07%

The design of the soil-cement mixture containing 12% cement by volume is carried on in the above manner but in this design the assumption was made that the oven-dry weight of the soil cement mixture would be 118.0 pounds per cubic foot.

12% cement by volume is equal to 11.28 bounds of cement per cubic foot of mix.

Weight of the oven-dry soil per cubic foot is 106.72 pounds.

% of cement by oven-dry soil is 10.57%.

The amounts needed to run the test ere:

3600 gms of sven-dry soil

350 gms of cement

Using the above two mixes the optimum moisture-density relations shall be determined in the manner previously described. The results of the test have been tabulated into Tables XIV and XV, and also in Table XVI the moisture density relationship curves have been plotted for the 6 and 12% cenent content soil-cements.

From the curves given in fable XVI the following information was established:

1. The soil-cement that was designed to contain 6% cement by volume or 5.07% by weight has a maximum density, Po, equal to 117.4 pounds per cubic foot and a moisture content of 10.6% calculated on oven-dry basis.

Compaction Characteristics of a 6% Cement Soil-Cement
Original Moisture Content 0.2% Apparent Specific Cr. 2.67
Weight of Air Dry Soil 3800 gms Volume of Vold 1026 cc
Weight of Cement 193 gms.

Tr	lal No.		1	5	3	4	5	6	7	ક
I.	Wt Water gm		440	160	රිරි	80	కర	රෙ	80	80
Wate	∮ Water Dry Goil		11	4	2	5	5	ક	શ	2
•		771	2027	2067	2 132	2199	2252	8535	2593	2270
st.	Area Sq In		0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.5
Resi	Average #/ sq in		1380	1210	1165	1140	1000	740	412	370
	Can No.		S	4	5	6	7	દ	9	10
ent	Can Wt gm	MS	40.8	40.7	42.3	41.1	41.6	41.3	41.5	42.1
Cont	Wet soil & Can gm	W ₁	1737	158.2	1745	1530	179,2	172,2	211,4	21 63
sture	There 0 - 43	₩3	167.4	1511	165.6	144.3	167,2	159.6	1931	1953
ist	Tt Loss gm		6.3	7.1	8.9	8.7	12.0	12.6	18.3	21.0
N	Dry Soil gr	49	126,6	1104	1233	1732	1256	1183	1513	1532
	Water % Dry Soil	⁷⁷ 0	5.0	6.4	7.3	g.4	9.6	10.6	12.1	13.7
	Ory Soil gm	To.	1931	1943	1989	5059	2055	2072	2045	1997
ple	Dry Bulk Sp. Gr.	Go		1.77	1.81	1.84	1.87	1.88	1.26	1.82
Sam	Dry Den.	Do	110,0	1105	1130	1150	1170	117,4	1160	11 35
tal 8	Total % Voids	Oc	34.1	34.5	33.7	32.2	31.0	29.9	29•5	30.3
Tol	Water gm		96	124	143	170	197	550	247	273
	% Water by Volume		8.7	11.3	13.0	15.5	17.9	20.0	?2.5	54.8
G/k	Air Voids		?5.4	22.4	19.2	155	12.0	9.5	7.8	7.0

Table XIV

Compaction Characteristics of a 12% (ement Soil-Gement Original Moist. Content 0.21 Apparent Sp. Gr. 2.70 Meight of Air Dry Soil 3600 gm. Volume of Mold 1026 oc Teight of Gement 380 gm.

T	rial No.		1	5	3	4	5	6	7	g
	Wt Water gm		400	120	120	120	120	80	60	క0
Wate	Nater Dry Soil		10	3	3	3	۶	Š	5	2
чt		W	2005	2025	2075	2159	2215	2265	2312	559 5
at.	Area sq in		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Resis	Average #/ sq in		1260	1050	910	870	840	310	730	630
	Jan Yo.		11	12	13	14	15	ló	17	18
int	Can Wt gm	ik S	40.1	41.1	41.2	41.3	41.9	40.3	40.8	41.5
Content	Wet Soil & Can gm	·v ₁	175,4	1615	167,6	1793	137.7	1985	1932	2136
	Dry Soil & Can gm Wt Loss gm Dry Soil gm	*3	1694	1549	1598	1627	177.3	1244	1781	1952
8 t	Wt Loss gm		6.0	6.5	7.3	9.5	12.4	14.1	15.1	15.4
Moj	Ory Soil gm	将 1 〇	129,3	1135	1136	1214	135,4	1435	1373	1537
	Weter % Dry Soil	**o	4.6	5.8	6,6	7.8	9.8	10.3	11.0	15.0
	Dry Soil gm	·¶0	1917	1014	1947	2003	3052	2054	೨೦೪3	2046
ample	Dry Bulk Sp. Gr.	Go	1.74	1.74	1.77	1.8?	1.84	1.87	1.89	1.85
San	Dry Den.	Do	1085	1045	1105	1135	1150	1170	1150	1160
tal	Total // Voids	၀င	35.5	35.5	34.5	32.6	31.9	30.7	30.0	31.2
T O			88	111	128	156	187	211	559	c46
	% Water by Volume		್. ೧	10.1	11.6	14.2	17.0	13.2	20.8	22.4
7/2	air Voids		27.5	25.4	22.9	18.4	14.9	11.5	9.2	8.8

Table XV

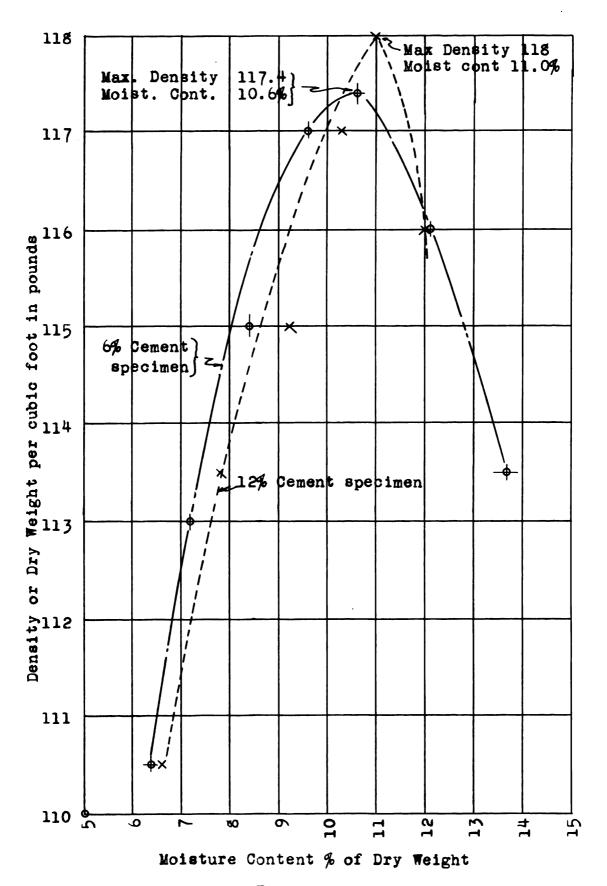


TABLE XVI

3. The soil-cerent mix that was designed to contain 12% dement by volume or 10.57% by weight has a maximum density, Ω, equal to 118.0 bounds per cubic foot and a moisture content of 11.0% calculated on ovendry basis.

Since the actual figures vary slightly from the assumed values taken for the maximum density, the dement content by volume will vary a small amount and can be corrected in the following manner.

Per cent of cement by volume is equal to $\frac{D-\frac{D}{C}}{94} \times 100$

- D is equal to oven-dry density of the soilcement in pounds per cubic foot.
- C is equal to 100 plus the per cent of cement by weight of oven-dry soil.aivided by a 100.
- $D = \frac{L}{C}$ is the pounds of cement used per cubic foot of compacted soil-cement with 94 pounds equaling the weight per cubic foot of loose cement.

In what was designed to be a 6% mix the maximum density D_0 was 117.4 pounds per cubic foot.

so:

D==
$$117.4 \# / \text{cu. ft.}$$
C = $100 + 5.07 \div 100 = -1.0507$

$$\frac{D}{C} = \frac{117.4}{1.0507} = 111.73 \%/cu. \text{ ft. weight of oven-ary}$$
soil in the mix.

$$\frac{D}{C} = \frac{D}{C} = 117.4 - 111.73 = 5.67 \%/cu. \text{ ft. weight of coment in the mix.}$$

$$\frac{3 - \frac{D}{C}}{94} = \frac{5.67}{94} = 6.03 \% \text{ cement in the mixture by}$$
volume.

In the design of the 1% mixture the assumption that the maximum density would be equal to 118.0 pounds per cubic foot was correct so no changes need be made in the cement content.

When the cement content at the maximum densities has been calculated for the two mixes and the moisture-density curves established the data thus obtained will be used for calculating the densities for soil-cement mixtures containing the cement contents to be investigated. The maximum-moisture density rolations for the S and 10 \$\infty\$ mixes may be had by straight line interpolation between the points given by the actual investigation just concluded for the 6 and 12 per cent mixes.

The moisture-density relations for the dement contents to be investigated in this report are:

5 % cement by volume - density 117.4 optimum moist. 10.6

12 % Cement by vol.- density 118.0 optimum moist.11.0%

The soil-cement mixture can be most accurately controlled in the laboratory by mixing by weight and therefore the
volumeteric cement content will be converted to an equivalent
weight of cement. The conversion of cement by volume to
cement content by weight of oven-dried soil at optimum moisture content of the soil-cement mixture is as follows.

It is desired to mold test specimens containing 60 cement by volume. From the moisture-density tests the following data is available for a soil-cement mixture containing 60 cement by volume at maximum density.

Maximum density of compacted soil-cement equals 117.4 lb./ cu. ft. ovendry weight.

Optimum moisture of compacted soil-cement equals 10.6% by oven any weight.

Cement per cubic foot of compacted soil-cement containing 6% cement by volume equals 94 x 0.06 or 5.64 bounds.

Soil per cubic foot of compacted soil-cement equals 117.4 - 5.64 or 111.76 pounds.

Per cent cement by meight oven dry soil equals

Oven dry weight of soil per specimen (Volume of mold approximately 1/30 of a cu. ft.) equals $\frac{111.76}{30}$ or 3.73 pounds. Use 3.8 pounds of oven dry r m soil for one specimen as the widitional amount will be needed

.

for manipulation and for moisture determination.

Weights of Materials Needed for Molding One Test Spec. Cement equals 3.8 x $\frac{5.05}{100}$ or 0.1919 pounds.

One pound is equal to 454 grams.

0.1919 x 454 or 87.12 gm.

Soil (oven dry) is equal to 3.8 pounds or 1725 gm.

Water equals (3.8 0.19) $x = \frac{10.6}{100} \times 454$ or 192 gm.

In like manner the weights of the materials needed per specimen for the other cement contents may be calculated. Belowis listed the materials needed per test specimen.

- 6% Cement by vol. 27.12 gms cement- 1725 gm of soil and 192 gms of water.
- 8% Cement by vol. 115.0 gms cement 16%0 gms of soil and 192.5 gms or colof water.
- 10% Cement by vol. 146.0 gms cement 1680 gms of soil and 198.4 gms of water.
- 12% Cement by vol. 173.0 gms cement 1635 gms of soil and 199.0 gms or cc. of water.

The number of specimens needed for a complete investigation of the properties of the soil-cement mixtures designed in previous tests shall be nine (9).

2 samples or specimens shall be used in running of the Freezing and Thaming Test.

2 samples or specimens shall be used in running of the metting and Drying Test.

2 samples or specimens shall be used in the determination of the compressive strenght of the material.

One specimen shall be used in running of the wash or sprinkling test which will be fully described later in the report. The test was designed to determine the loss of soil-cement caused by continued action of water.

One specimen shall be used in running of the heat test.

This test was designed to determine the behavior of soil
cement when it is subjected to heat.

One specimen shall be placed out-of-doors to determine the weathering properties of the soil-cement mixture. This test should be carried on over a long length of time for accurate results.

After the required number specimens have been molded and properly identified they shall be placed into the moist room for a seven day curing period. The molding of the specimens shall be carried out as has been previously described.

Durability Tests and Results

Freezing and Thawing Test

This test is designed for determining the soil-cement losses, moisture changes, and volume changes (swell and shrinkage) produced by repeated freezing and thawing of compacted specimens of soil-cement mixtures of known composition and of known uniform density and moisture content.

Two samples of each trial mix shall be used in this test, specimens shall be designated as A and P. After the 7 day curing period the A and B specimen of each trial mix shall be subjected to cycles of alternate freezing and thawing. The specimens and carriers shall be placed into a refrigerator having a constant temperature of 20° F below zero for a period of 22 hours and removed. The A specimen (volume and moisture change specimen) shall be weighed and measured and both A and B specimens placed into the moist room. Free water shall be available to the obsorbent pads under the specimens to permit absorbtion of water by the specimens by capillarity.

After 22 hyours in the moist room, both specimens shall be weighed and A specimen measured. Specimen B shall then be given two firm strokes on all areas with a wire scratch brush to remove all material loosened during freezing and thawing. The specimens shall again be weighed after brushing. The moisture content of the material brushed from the

specimens shall be determined or it may be assumed equal to the moisture content of the corresponding A specimen. The oven-ary (110° C., 230° F.) weight of material brushed from the specimen shall be calculated.

The procedure described above constitutes one cycle (48 hrs.) of freezing and thaming. The specimens shall then be placed back into the refrigerator and the process repeated.

This test varies from the standard A. 3. T. M. method in that the standard test calls for a constant temperature of 23° C. or a minus 10° F. for a period of 22 hours, and a series of 12 cycles to the test. This test shall only be carried through a series of 7 cycles.

<u>Calculations</u>

The moisture content of specimen A at the time of molding and subsequent moisture contents shall be calculated as a percentage of the original oven-dry weight of the specimen.

The soil-cement loss of specimen B shall be calculated as a percentage of the original oven-dry weight of the specimen.

See Tables XVII, XVIII, XIX, and XX for complete data and tabulated results.

FREEZING STE TRAILING DOR STELLTY THEFT

est Teight 1998 gms Dry Telght of Sample 1807 gms 6% Soil-Sewent

Bulk Specific Gravity 1.81

Ory Sensity 113.0 lbs. / cu. ft.

3 A. P. P. B.

			After	er Freeze	ze				after Tham	128
	6 (0%)	seczn	ernasi og	ture			Gross	70.	Poisture	
3 • •	34060	્ર કુ	ž Š	ક	Volume	•	42 60 17 61	, c	`.g	
	•	rt fm	2	ř	.00	1,00	TE Em	(5ff.85	.	°00
5/12/42	1	2020	160	8.6	8.6 1014.89	5/13/45	2037	177	9.52	1014.89
5/14/45	3	2027	167	9.0	9.0 1014.89	5/15/42	2902	202	10.8	1014.89
5/16/42	3	2053	193	10.4	10.4 1016.89	21/11/9	2080	220	11.8	1014.89
5/18/45	71	2070	210	11.3	11.3 1014.89	24/61/9	2103	243	13.1	1014.89
2/50/45	37	9602	236	12.7	12.7 1018.89	5/21/42	2123	263	14.1	1016.89
5/25/42	Ģ	4113	1 62	13.7	1016.89	13.7 1016.89 5/23/42	2136	276	3.41	1014.89
5/54/45	7	2126	566	14.3	1014.89	14.3 1014.89 5/25/42	2143	283	15.2	1014.89

THER XVII A

FREEZING AND THAWING DURABILITY TEST

Wet Weight 1998 gms Dry Weight of Sample 1860 gms 6% Soil-Cement

Bulk Specific Gravity 1.81

Dry Density 113.0 lbs. / cu. ft.

SAMPLE B

	Moist.	After	Thawing			Soil Loss		
	cont.	Weight	Weight	Calculated	Wet,	Accı	Accumulative	
Date	PE	before	after	oven dry	per	From	Dry	
	from	brushing,	brushing,	weight,	cycle,	Previous	Corrected	<i>'</i> 8
	Cyl.#4	gma.	gms.	gm8.	gms.	Col. gms.	gms.	
2/13/hs	9.52	₩202	₩861	1795.2	011	017	36.19	56• τ
5/15/45	10.8	5019	1993	1777.7	92	99	86.65	3.20
5/17/42	11.8	2025	1977	1743.6	54	111	91.1	5.33
24/61/9	13.1	2033	1962	1704.8	17	182	153.8	8.70
5/21/42	14.1	1981	1947	1672.8	34	216	182.9	10.26
5/53/45	14.8	1959	1922	1637.7	25	253	ተ• ቱሪሪ	11.96
5/52/ ₄ 2	15.2	1929	1855	1573.0	₩2	327	288.1	15.38

TABLE XVII B

FREEZING AND THAMING DURABILITY TEST

Wet weight 2071 gms Dry Weight of Sample 1906 gms 8% Soil-Cment

Bulk Specific Gravity 1.86

Dry Density 116.1 lbs. / cu. ft.

SAMPLE A

			After 1	ter Freezing				After Thawing	nawing	
	Cycle	Gross	Moisture	ture			Gross	Moisture	ıre	Volume
Date	No.	& Net	SmB.	Be	Volume	D_ate	& Net	8	Be	00
3		Wt gm		٤.	00.	ec.	Wt gm		2.	
5/12/#2	1	2086	180	9.45	1018.89	5/13/42	2012	196	10.3	1018.89
5/14/45 \$\frac{4}{5}	2	2093	187	9.8	1018.89	5/15/42	2119	213	11.2	1018.89
2/16/42	3	2113	207	10.9	1020.89	5/17/42	2149	243	12.2	1018.89
5/18/42	#	2141	235	12.4	1018.89	5/19/42	2165	259	13.6	1018.89
5/50/42	5	2157	241	12.7.	1020.89	5/51/42	2174	268	14.1	1018.89
5/25/42	9	2169	253	13.3	1018.89	5/23/42	2181	275	14.41	1020.89
5/54/45	2	2173	257,	13.5	1018.89	5/52/45	2185	279	14.6	1018.89

TABLE XVIII A

FREEZING AND THAWING DURABILITY TEST

Wet Weight 2071 gms Dry Weight of Sample 1906 gms 8% Soil-Cement Dry Density 116.1 lbs. / cu. ft.

SAMPLE B

Bulk Specific Gravity 1.86

	Moist.	After Thawing	hawing			Soil Loss	30	
	cont.	Weight	Weight	Calculated	Wet,	V CC	Accumulative	
Date	86	Before	after	oven dry	per	From	Dry	
	from	brushing,	brushing,	weight,	cycle,	Previous	Corrected	₽€
	Cyl. A	GmB.	gm8.	gms.	gm8.	gm8.	gm8.	
5/13/42	10.3	5080	290 2	η•6η8ι	22	22	19.73	1.03
5/15/42	11.2	2082	2072	1850.0	10	32	28.63	1.50
21/1/5	12.2	2091	2078	1824.7	13	64	39.9	2.09
24/6T/5	13.6	2100	2089	1804.9	11	99	ħ.64	2.59
5/51/45	14.1	2103	2093	1797.8	10	99	58.0	3.04
5/53/45	14.4	2104	1802	1783.8	50	92	75.1	3.94
24/52/5	14.6	2091	1202	1768.8	20	106	92.2	48.4

TABLE XVIII B

FREEZING AND THAWING DURABLILITY TEST

Wet Weight 2070 gms Dry Density 116.1 lbs. / cu. ft. Dry Weight of Sample 1906 gms Bulk Specific Gravity 1.86 10% Soil- Cement

SAMPLE A

			After f	freezing				After Thawing	nawing	
	Cycle	Gross	Mois	Moisture	Volume		Gross	Moisture	ante	Volume
Date	No.	& Net		В	00.	Date	& Net	2	8	.00
		Wt gms	0	0			Wt gm	· a	2	
5/12/45	٦	2000	46	4.93	1014.89	5/13/45	2015	109	5.71	1014.89
2/14/45	a	5009	103	5.41	1014.89	5/15/45	2028	122	4.9	1014.89
5/16/42	3	2020	114	5.98	1016.89	5/11/45	2065	159	8.35	1014.89
5/18/45	4	2058	152	7.98	1014.89	5/19/45	2088	182	9.55	1016.89
5/20/42	5	2082	176	9.25	1014.89	5/21/42	2108	202	9.01	1014.89
5/25/42	9	2100	194	10.2	1018.89	5/23/42	2120	21 ¹ 4	11.2	1016.89
5/54/45	7	2112	506	10.8	1014.89	5/55/45	2131	225	11.8	1014.89

TABLE XIX A

FREEZING AND THAWING DURABILITY TEST

Wet Weight 2070 gms Dry Weight of Sample 1906 gms 10% Soil-Cement

Bulk Specific Gravity 1.86

Dry Density 116.1 lbs./ cu. ft.

SAMPLE B

	Moist.	After Th	hawing			Soil Loss	988	
	cont.	Weight	Weight	Calculated	₩et,	Acci	Accumulative	
Date	₽€	before	after	oven dry	per	From	Dry	
	from	Brushing,	brushing,	weight,	cycle,	Previous	Corrected	PE
	Cyl. A	gms.	gm8.	gm8.	gm8.	gm8.	gm8.	
5/13/45	12.5	2038	202	0.1161	6	6	8.49	0.45
5/15/45	4.9	2 th02	2035	1904.8	7	16	15.04	0.79
5/17/42	8.35	2054	17th02	1873.1	10	92	24.21	1.27
5/16/45	9.55	2067	5060	1863.2	7	33	30.54	1.60
5/51/45	10.6	1084	2079	1859.0	5	38	35.01	1.83
5/53/45	11.2	5066	2095	1856.3	1	2 tı	38.56	20.5
5/25/42	11.8	2108	2012	1853.9	9	84	43.85	2.30

TABLE XIX B

FREEZING AND THAMING DURABILITY TEST

Dry Weight of Sample 1927 gms 12% Soi-Cement

Bulk Specific Gravity 1.88

1927 gms Wet Weight 2152 gms Dry Density 117.3 lbs. /cu. ft.

SAMPLE A

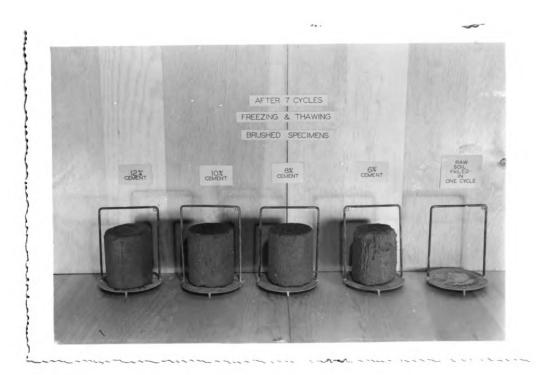
			After F	ter Freezing				After Thawing	hawing	
	Cycle	Gross	Moisture	ture	Volume		Gross	Moisture	ure	Volume
Date	No.	& Net	ز	В	00	Date	& Net	6	В	00
		Wt gm	n 5	æ			Wt gm	• n = 5	.	
21/31/9	-	2154	227	11.8	1011.25	1011.25 5/13/42	5164	237	12.3	1011.25
5/14/45	۵	2156	229	11.9	1011.25	1011.25 5/15/42	23.67	0 1 78	12.5	1011.25
5/16/42	~	2159	232	12.0	1008.88	1008.88 5/17/42	1713	१११८	12.7	1011.25
5/18/45	#	2163	236	12.3	1011.25	1011.25 5/19/42	2712	5 η ∂	12.7	1008.88
5/20/42	5	2166	239	12.4	1011.25	1011.25 5/21/42	21.73	942	12.8	1011.25
5/25/42	9	2166	239	12.4	1011.25	1011.25 5/23/42	21.74	242	12.8	1011.25
5/54/45	7	2166	239	12.4	1008.88	1008.88 5/25/42	21.74	247	12.8	1011.25

TABLE XX A

FREEZING AND THAWING DURABILITY TEST

Dry Weight of Sample 1927 gms Wet weight 2152 gms 12% Soil-Cement

Bulk Specific Gravity 1.88


Dry Density 117.3 lbs. / cu. ft.

SAMPLE B

	Moist.	After	Thawing			Soil Loss	80 80	
	cont.	Weight	Weight	Calculated	Wet,	V C	Accumulative	
Date	<i>b</i> e	before	after	oven dry	per	From	Dry	
	form	brushing,	brushing,	weight	cycle,	Previous	Corrected	PE
	Cyl. A	50 80 80 80 80 80 80 80 80 80 80 80 80 80	gmg.	gms.	gms.	gms.	ems.	
5/13/45	12.3	2182	2177	1.6061	5	5	6£°†	0.23
5/15/45	12.5	2181	21.79	1907.0	8	7	41.9	0.32
5/11/45	12.7	2182	2175	1898.9	7	17	12.25	19.0
24/61/5	12.7	2179	2174	1897.9	5	19	16.61	0.87
2/s1/#2	12.8	2177	2165	1889.0	12	31	27.08	1.41
5/53/45	12.8	2170	5166	1888.9	π	35	30.57	1.59
5/52/45	12.8	2167	216H	1887.8	3	38	33.19	1.73

TABLE XX B

Wetting and Drying Test

This test is intended to determine the soil-cement losses, moisture changes, and volume changes (swell and shrinkage) produced by repeated wetting and drying of the compacted specimens of soil-cement mixtures of known uniform density and moisture content.

Two samples of each trial cement content shall be used in carrying out of this test. One specimen shall be designated as the A series and shall be used obtain data on moisture and volume changes during the test. The second specimen shall be identified as the B series, and shall be used to obtain data on soil-cement losses during the test.

After the seven (7) any curing period the specimens shall be suprerged in water at room temperature for a period of five hours and removed. The A specimens shall be weighed and measured.

Both specimens shall then be placed in an oven with a constant temperature of 71° C. (160° F.) for a period of 42 hours and removed. Then, both specimens A and F of each cement content shall be weighed and the A specimens measured. The B specimens shall then be given two firm strokes on all areas with a wire scratch brush to remove all material loosened during the wetting and drying process. The specimens shall again be weighed after brushing. The moisture content of the material brushed from the specimen may be taken as equal to the moisture content of the corresponding

A specimen. The oven-dry (110° C., 230° F.) weight of the material brushed from the specimen shall be calculated.

The procedure described above constitutes one cycle (45 hours) of wetting and drying. The standard A. S. T. W. specifications call for the running of 12 cycles for a complete test, but since the report must be turned in before the total of 12 cycles could be completed shall base conclusions on a 7 cycle test. In all other respects the test was as specified by A. S. T. W.

The volume and moisture changes and the soil-cement losses of the specimens shall be calculated as follows:

The moisture content of the a specimens at the time of molding and subsequent moisture contents shall be calculated as a percentage of the original oven-dry weight of the specimen.

The spil-cement losses of specimens P shull be calculated as percentage of the original oven-ary weight of the specimen.

See Tables XXI, XXII, XXIII, and XIV for complete data and tabulated results.

WETTING AND DRYING DURABILITY TEST

6% Soil-Cement Dry Weight of Sample 1860 gms

Wet Weight 1998 gms

Bulk Specific Gravity 1.81

Dry Density 113.0 lbs. / cu. ft.

SAMPLE A

			After	Saturation	ion			After	After Drying	
	Cycle	Gross	Moisture	ture	₩olume		Gross	Noisture	ıre	Volume
Date	No.	& Net	5	В	.00	Date	& Net	2	В	. oo
		Wt gm	a a a a a a a a a a a a a a a a a a a	٩			Wt 8m		2	
5/15/45	1.	2117	252	13.8	1018.87	5/13/42	1887	27	1.45	1018.87
5/14/45	N	2125	592	14.2	1018.87	5/15/42	1886	92	1.40	1018.87
5/16/42	3	2118	258	13.9	1020.88	5/11/45	1892	32	1.72	1018.87
5/18/45	77	2119	259	13.9	1018.87	5/19/45	1888	28	1:51	1016.86
5/50/45	2	2118	258	13.9	1018.87	5/21/42	1889	59	1.56	1018.87
5/25/45	9	2113	253	13.6	1016.86	5/23/42	1888	200	1.51	1018.87
5/54/45	7	2111	251	13.5	1018.87	1018.87 5/25/42 1891	1891	31	1.67	1.67 1018.87

TABLE XXI A

WETTING AND LAYING DURABILITY TEST

6% Soil-Gement Dry Wei

Dry Weight of sample 1800 gms Wet Weight 1998 gms

Bulk Specific Gravity 1.81

Dry Density 113.0 lbs / cu. ft.

SAMPLE B

	Moist.	After Drying	rying			Soil Loss		
	cont.	Weight	Weight	Calculated	Wet,	ACC	Accumulative	
Date	88	before	after	oven dry	per	From	Dry	
	from	brushing,	brushing,	weight,	cycle,	Previous	Corrected,	80
	Cyl. A	gms	gms.	Sm8	gmg	Col. gms	SmS	
5/13/42 1.45	1.45	1883	1835	1808.4	48	153	47.30	2.49
5/15/42 1.40	1.40	1835	1822	1796.5	13	61	60.28	3.18
5/17/42 1.72	1.72	1824	1811	1779.8	13	4/2	72.88	3.87
5/19/42 1.51	1.51	1810	1800	1772.8	10	48	82.73	4.40
5/21/42 1.56	1.56	1800	1789	1761.1	11	95	93.56	4.98
5/23/42 1.51	1.51	1790	1781	1754.1	6	104	102.42	5.46
5/25/42 1.67	1.67	1782	1772	1742.4	10	114	112.25	5.99

TABLE XXI B

WETTING AND DRYING DURABILITY TEST

8% Soil-Cement Dry Weight

Dry Weight of Sample 1906 gms Wet Weight 2071 gms

Bulk Specific Gravity 1.86

Dry Density 116.1 lbs / cu. ft.

SAMPLE A

			After S	After Saturation	uc			After Drying	:ying	
	Cycle	Gross	Mois	Moisture	Volume		Gross	Moisture	ıre	Volume
Date	· cN	& Net		В	.00	Date	& Net	5	В	00.
		Wt 8m	a E 5	Q.			Wt gm	o III o	Q	
5/15/45	7	2147	241	12.6	12.6 1016.89	5/13/45	1947	41	2.15	1016.89
2/14/45	α	2155	648	13.1	1014.89	5/15/45	9461	040	2.10	1016.89
2/16/42	2	2151	545	12.9	12.9 1012.89	5/17/48	1946	710	2.10	1014.89
5/18/45	#	2154	2 48	13.0	13.0 1014.89	5/19/45	1939	33	1.73	1016.89
5/50/45	5	2151	245	12.9	12.9 1.014.89	5/21/42	1940	34	1.78	1014.89
5/25/45	9	2140	235	12.3	1016.89	12.3 1016.89 5/23/42	1942	36	1.89	1014.89
5/24/45	7	2120	215	11.3	11.3 1014.89	5/25/42	1947	41	2.15	1014.89

TABLE XXII A

WETTING AND DRYING DURABILITY TEST

8% Soil-Cennet

Dry Weight of Sample 1906 gms. Wet Weight 2071 gms.

Bulk Specific Gravity 1.86

Dry Density 116.1 lbs / cu. ft.

SAMPLE B

	Moist.	After	Drying			Soil Loss	8	
	cont.	Weight	Weight	Calculated	200	Accum	Accumulative	
Date	800	before	after	oven dry	cycle,	From	Dry	
	from	brushing	brushing	weight	8 m 3	previous	corrected	B.5
	Cyl. A	Sms	Smg	Sms		20 20	Sms	
5/13/45	2.15	1893	1869	1828.9	42	770	23.48	1.23
5/15/42	2.10	1869	1861	1821.9	160	32	31.30	1.64
5/17/42	2.10	1864	1856	1817.1	760	40	39.16	2.05
5/19/42 1.73	1.73	1854	1849	1817.0	5	45	44.08	2.31
5/51/42	1.78	1849	1844	1811.2	12	50	48.99	2.57
5/23/42	1.89	1844	1538	1803.3	9	56	54.88	2.88
5/25/42	2.15	1838	1835	1795.6	К	59	57.82	3.03

TANBLE XXII B

WETTING AND DRYING DURABILITY TEST

10% Soil-Cement Dry W

Dry Weight of Sample 1906 gms Wet Weight 2070 gms

Bulk Specific Gravity 1.86

Dry Density 116.1 lbs / cu. ft.

SAMPLE A

			4	After Sa	er Saturation	-			After Drying	Orying	
		Cycle	Gross	Moisture	ure	Volume		Gross	Moisture	ture	Volume
	Date	No.	& Net	ا ا	8	.00	Date	& Net	3	В	000
			Wt gm	D	2			Wt gm	9 5	0/	
41	5/15/45	1	2154	248	13.0	1014.77	5/13/45	1937	31	1.63	1014.77
4,	5/14/45	a	2151	5472	12.9	1012.90	5/15/45	1937	31	1.63	1014.77
",	5/16/42	2	2147	241	12.7	10.0101	5/11/45	1945	39	2.05	1012.90
",	5/18/42	#	5096	190	9.95	1014.77	5/16/45	1941	35	1.84	1014.77
7,	5/20/42	5	2089	183	9.61	1012.90	5/51/45	1941	35	1.84	1014.77
11	5/22/42	٥	2087	181	9.50	1012,90	5/23/42	1944	39	2.05	1014.77
71	5/24/42	7	2091	185	9.71	1010.91	1010.91 5/25/42 1942	1942	36	1.89	1.89 1012.90

TABLE XXIII A

MANTING AND DRYING DURABILITY TEST

wet weight 2070 gas Dry Weight of Sample 1906 gms 10% Soil-Cement

Bulk Specific Gravity 1.86

Dry Density 116.1 lbs / cu. ft.

SAN LE B

	Roist.	After	Drying			Soil Loss		
	cont.	relent	Weight	Calculated		Accui	Accumulative	
Date	,,Q	before	after	oven dry	Per	From	0ry	
	from	brushing	brushing	weight	cycle,	previous	corrected	7 3%
	Cy1. A	8	8 m 20	о ш м	Col. Km	gw g	8 W 3	
5/13/45	1.63	1940	1932	1900.5	80	25	7.87	0.41
5/15/42	1.63	1933	1931	189).6	Q.	10	क्ष\$*6	0.51
5/17/42	2.35	1930	1928	18'8.5	ą.	12	11.84	0.61
5/19/42	1.84	1924	1992	1585.6	Q.	17	17.80	17.0
5/51/45	1.84	1922	1920	1584.7	C	16	15.76	1.00
5/23/42	2.05	1923	1920	1831.6	3	61	15.70	
5/25/42 1.89	1.89	1921	1918	1850.8	3	6.	21.64	1.11

TABLE AXIII B

WETTING AND DRYING DURABILITY TEST

12% Soil-Cement Dry W

Wet Weight 2152 gms Dry Weight of Sample 1927 gms

Bulk Specific Gravity 1.38

Dry Density 117.3 lbs / cu. ft.

SAMPLE A

		A	After Sa	Saturation				After Drying	rying	
	Cycle	Gross	Moisture	ure	Volume		Gross	Moisture	ure	Volume
Date	No.	& Net		В	00.	Date	& Net		B	.00
		Wt gm	0	0/			Wt gm	n E 5	2	
5/15/45	1	2145	218	11.3	11.3 1016.89	2/13/#2	1965	38	1.99	1016.89
5/14/45	α	2134	207	10.8	1016.89	5/15/45	1965	30%	1.99	1016.89
5/16/42	3	2125	198	10.3	10.3 1016.89	21/1/45	1961	34	1.76	1016.89
5/18/42	tı	2118	191	9.95	9.92 1014.89	5/19/45	1976	641	2.54	1016.89
5/50/45	5	2118	191	9.92	9.92 1016.89	5/21/42	1975	148	2.49	1016.89
5/25/42	9	2112	185	9.60	9.60 1016.89	5/23/42	1978	51	5.64	1016.89
5/54/45	7	2113	186	9.66	9.66 1016.89	5/55/42	1975	48	2.49	2.49 1016.89

TABLE XXIV A

WEITING AND DAYING DURABILITY TEST

12% Soil-Cement Dry Weight o

Dry weight of Sample 1927 gms wet weight 2152 gms

Bulk Specific Gravity 1.88

Dry Density 117.3 1bs. / cu. ft.

SAMPLE B

	Moist.	After	Drying	•		3011 LOSS	880	
	cont.	Teight	Weight	Caloulated		AGO	Accumulative	
ψ ψ t	₹ 3 *.	before	after	oven dry	Hed	ECT E	Dry	
	from	brushing	brushing	weight	oyale	previous	corrected	પ ્રેટ
	Cyl. A	gms	95 E	803	888	K	800	
5/13/42 1.99	1.99	2025	2022	1981.9	3	3	ηό·2	0.15
5/15/42 1.97	1.97	2015	2014	1974.3	H	#	3.92	0.20
5/11/45	1.76	9008	5002	1.6961	н	5	n.90	0.25
24/6 1/ 9	2.54	2000	1999	1948.3	н	9	5.87	0,30
5/21/48	64.0	1998	1661	1947.2	7	7	6.87	0.35
5/23/42	₹ •	2000	1999	1946.2	-	160	7.84	0.40
5/55/45	5,49	1999	1938	1945.2	H	6	8.82	0.45

TIMLE XXIV B

 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)
 (*)

Compression Test

The intention of this test is to measure the compressive strength of the soil-cement specimens compacted to a specific density and with a controlled moisture content.

No lateral support shall be given to the specimen.

The compressive strength test may be run immediately after the specimens have been cured. The results of this compression test shall be used in comparing the relative compressive strengths of specimens before and after they have past through other durability tests such as the freezing and thawing test, and the wetting and drying test.

One compression test shall be made by loading the entire bearing surface of the specimen, and one compression test shall be made by loading only I square inch of the entire bearing surface. The compressive strength shall be recorded at the point at which the balance beam of the testing machine can no longer be kept in a level position. In general, only the ultimate strength of the specimens need to be observed.

The unit compressive strength of each specimen shall shall be calculated in pounds per square inch based on the average diameter of the specimen. In the second compressive test, or the plunger test the load at the time of failure is all that need be recorded.

See Table XXV for record of complete data and tabulated results.

COMPRESSION TESTS

		Specimens	mens		30g	Specimens		Spe	Specimens		9dg 	Specimens	
		after	£ı		after	after 7 cycles	89	after	after 7 cycles	8		after	
88	22 ds	22 days in moist room	moist	room	Freezing & Tnawing	ıg & Tn	awing	Wetti	Wetting & Drying	ying	4 88	wash test	
Cement	Plung	Load	on total	tal	Load	on total	'a1	Load	Load on total	8.1	Load	on total	ал
	test	cros	cross-section	10n	Cross	cross-section	uoı	Cross	cross-section	uo	Cross	Cross-section	ទ
	per	Area	Load	1,08	Area	Load.	168	Area	Load. 1bs	168	Area	Load.	108
	sq in	sq in	108	per	sq in	108	per	so in	108	per	sq in	108	per
				8q in			sq in			sq in			sq in
9	632	12.44	1985	160	12.34	1,705	139	12.34	. 5500	4#1			
50	646	12.44	3805	311	12.41	2645	216	12.54	4682	950	12.34	4666	808
97	1/20	12.34	20/5	104	12.34	3450	280	12.36	12445.1000	1000	12.40	-60511	832
12	25.70	14.51	6455	517	12.44	5200	419	12.41	13975 1123		12.46	12135	926

TABLE XXV

The Tash or Sprinkling Test

Most reports dealing with the properties of soil-cement state that the surface of soil-cement exposed to the elements should be water-proofed. This waterproofing is to be applied to prevent the penetration of moisture into the soil-cement. Also these reports state that the action of rain upon a soil-cement surface tenus to wash some of the material loose from the surface. The amount of this loss (water action loss) has not clearly been studied. No standard test exists by which this loss due to water action could be studied and the amount of loss determined.

The method outlined in this test is entirely original and may prove of no value, but its intention was to determine the amount of soil-cement lost by specimens during a continuous period of water action upon the specimen. In this test the specimens were subjected to continuous water for a period of ten (10) days.

The equipment used in this test was a one gellon can that was designed to act as a central distribution and pressure regulating point. This central unit had 3 outlets in its side at one inch from the bottom and 120° apart on the circumference of the container, and one large orifice was located 4 inches above the 3 previously mentioned outlets. This large outlet was designed to act as an overflow and pressure regulator of the unit. The container was open at the top, so only 4 inches of water was the total pressure

at the lower outlets. The connection to the line and top was adjusted so that the mater coming into the container rould at no time rice above nor settle below the overflow. The stream of mater from the 3 lower outlets was conducted into a shallow metal container that was set upon the somele cylinders of apil-carent to be tested. The top of this shallow metal dish noted as a circular weir and prevented the water from coming into contact with the surface of the soil-capent succircus with any appreciable force. Once the mater was in contact with the mith the surface being tested for mean the water two allowed to trickle over the sample doing what damage it could.

Previous to testing the oven-ary weights of the 5, 10, and 12, test specimens was determined. Then the shaples were placed into position for running the test. The specimens were allowed to remain in the test continuously for 10 days, and the the specimens were randed and dried in an oven. Upon drying to a constant weight the samples were reweighed and the loss in soil-cement taken as a percentage of the original oven-ary weight.

%	oven Dr	y weight	3011	Loss
Cement	Before	After	Weight	ď
б	1948	1928	20	1.03
10	1950	1939	11	0.57
12	1363	1956	7	0.36

Table XXVI

Heating and Cooling Test

This test is intended to study the behavior of soilcement upon being heated to a temperature between 260° to 270° C. and the cooled suddenly by submerging the heated specimens into a container of water at room temperature.

The specimens were molded in the same fashion as the others; only now a cylinder of material was removed from the center of the molded specimen to allow the insertion of a thermometer for recording of the internal temperature of the specimens. No 6% sample shall be used in the running of this test. The 8 and 10% specimens were 5* high, but the 12% specimen was only 45 high because this sample was defective in the upper 3" of the specimen and this portion was removed before testing.

The heating of the specimens was done with a bunsen burner. The heat was applied for a period of 24 hours to warrant that the specimen was thoroughly and uniformily of the same heat. The weight of the sample after the 24 hour heating period mas determined, and then the specimens were submerged into the waterbath. The samples were allowed to remain in the bath until all the heat from the specimens was completely dispersed into the water bath. When cooled the specimens were removed from the water bath and placed into an oven and allowed to dry to a constant weight in a temperature of 120° C.

After drying the loose material was brushed off the

specimens and the loss of soil-cement shall be taken as a percentage of the original dry weight of the sample.

TEST DRIJOCO CMA DRITASH

	Oven dr	y weights	Soil I	JOS 8
Z	Before	After	Weight	%
Cement	heet	quick	gms	
	gms	cooling		
8	1895	1728	176	9.29
10	1871	1759	131	7.01
12	1726	1602	124	7.19

TABLE XXVII

Outdoor Durability Test

The purpose of this test was to study the characteristics of soil-cement exposed to the actual out-of-doors weathering conditions.

This is a long run test and in the 17 days that the samples were outside no effects were to be noted. The dry weight of the samples remained the same.

The samples of this test will be watched from time to time and a record of weathering shall be made.

Conclusions

The intention of this investigation was to determine the adviability of using soil-cement as a quick, economical, easy to obtain building material. As the work progressed on the investigation many new phases for further examination were encountered; due to lack of time to carry on these new examinations conclusions will be drawn from the material derived from test carried out thus far.

From the freezing and thawing test it is evident that the addition of a small quantity of cement to a soil makes the resulting product much more stable than it was in the original form.

The volume measurements taken after freezing and then upon thawing show that the material does not shrink or swell enough so that the difference could be registered on a vernier caliper. The variation that does appear in the tabulated data sheets is mostlikely caused by variation in the actual diameter of the specimen; in taking these volume measurements it was not possible to take readings at the same points each time.

The soil-cement loss per cycle decreased as the per centage of cement increased. The specimens upon being brushed lost material down to a depth of 1/8" and then the core seemed to resist brushing more fullyafter each cycle. This variation may be caused by the fact that it is very difficult to fully compact next to the sides of the mold

thus leaving a less compacted shell around the specimen which was lost rapidly.

The 6% specimen lost 3 times as much material as the 8% sample, about 5 times as much as the 10%, and about 9 times as much as the 12% specimen.

Upon testing the freeze and thaw specimens for compession after 7 cycles it was seen that the load bearing power of each specimen was noticably reduced from the load carrying capacity of compresion specimens that were only cured for a period of 22 days before loading.

From the wetting and drying test it is again evident that the resistance against soil-cement loss in wetting and drying increased as the cement content increased.

What was said under freezing and thawing about the variation in volume is also true in this test.

The soil*cement loss in this test was in the following order; the 6% specimen lost 2 times as much material as did the 8% sample, 6 times as much as the 10%, and 13 times as much as did the 12% specimen.

From the comparative compression test it can readily be seen that the compressive strength of the specimens after 7 cycles of wetting and drying is much more than the strength of the 22 day compression specimens. This variation may be due to the fact that the wetting and drying specimens where even dry at the time of testing for compressive

strength. If the fact that the material receives this added strength upon being dry a waterproofing applied to an exterior wall will help to increase the strength of that wall. An investigation should be conducted to dermine the effect of varying amounts of water upon the compressive strength of soil-cement.

Compression Specimens

The compressive strength increased as the cement content increased.

When the plunger was used, that is when a one square inch area of the bearing surface was loaded the load on that square inch was larger than when the entire bearing area was loaded and the load per square inch was solved by

PA. The variation in this respect may have been cause by the spreading out of the load to the full cross-section.

It was also noted that the specimens upon being loaded would begin to show fracture and signs of failure, but still upon further loading would resist that load. In one case the first cracks or fractures began to show, but still the beam of the testing machine did remain horizontal and the specimen took an additional 3000 pounds of load. The possibilities are that since the material was rammed into shape the particles may have interlocked, and also the cohesion of the material may have effected this extra load carrying ablity. This phases should also be studied

further to determine why soil-cements act in that way when in compression.

The government's specification as to compressive strength of soil-cement going into airport construction is that
it must be able to take 400 pounds per square inch. The
10 and 12% specimens of this investigation would meet that
requirement.

Wash Test Specimens

The loss of soil-cement caused by continuous (10 day) washing effect of the flow of water, decreased as the cement content increased in the specimen. In ten days the running time of this test the loss in terms of original dry weight was small x and could further be reduced by a water-proofing agent.

The compressive strength of the specimens proved to be favorable when compared with the compressive strength of the 22 day specimens.

Heating And Cooling

The soil-cement loss caused by heating and rapid cooling of the specimens showed that under fire conditions soil-cement does not prove to be very satisfactory.

Summing up the complete investigation it seems soilcement could be used in making building block to be used in the construction of moderate size family homes. The soil taken from the basement excavation could be used to in making of the soil-cement block. This soil can be analyzed and the required fines can be added in the form of silt and clay.

The amount of cement per cubic yard of concrete in a 6 sack mix is 25.6% by volume of the aggregate in the soil-cement specimens used only 6, 5, 10, and 12% of cement by volume was used. In the soil-cements of 10 and 12% cement content by volume a saving of 3 and 2 times the amount of will be made.

Further investigation should be carried out on the possible methods of forming the proposed blocks. The cost of manufacturing may off-set any savings that could be made in materials, and thereby defeating the original intent, which was the production of an economical building material.

Also the different possible methods of waterproofing the soil-cement surfaces should be studied. It may be possible that a wall of soil-cement could be constructed, and then after curing and setting a small amount of heat applied to the surface of the wall; then while the surface is abit warm if liquid paraffin is applied it will penetrate into the soil-cement and seal all its pores leading into the wall.

Too many uncertain facts still remain in the development of soils, and soil-cements, and these uncertain features can only be surmounted by consistent study and further

investigation.

From what has been gathered it seems more than likely that with a few small changes in the frame design of homes soil-sement will become the building material of the future.

BIBLIOGRAPHY

BIBLIOGRAPHY

Hogentogler, C. A. Engineering Properties of Soil

New York: McGraw - Hill. First Edition 1927

The American Association of State Highway Officials.

Standard Specifications for Highway Materials and Methods
of Sampling and Testing. Washington, D. C. Published by
the Association 1938.

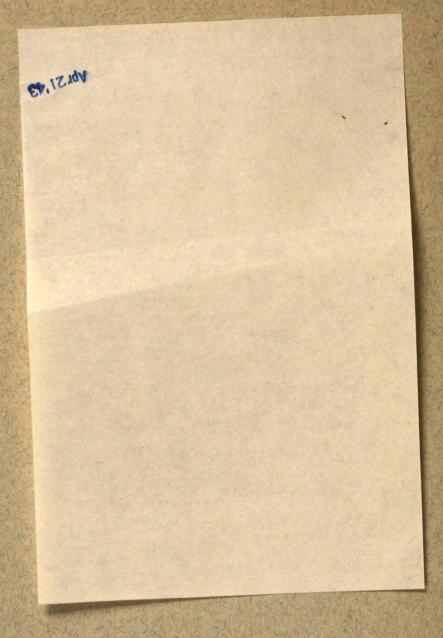
The Portland Cement Association. <u>Progress Report on</u>

<u>Exploratory Laboratory Investigation of Soil-Cement Mixtures</u>.

Chicago, Illinois. Puplished by the Association 1936.

The Portland Cement Association. <u>Detailed Laboratory</u>
<u>Procedures for Investigation on Soil-Cement</u>. Chicago, Ill.
Published by the Association 1940.

Crum, Roy W. A Symposium on Soil-Cement Mixtures for Hoads. Washington, D. C. Published by the Highway Research Board 1937.


Housel, William S. Apolied Soil Mechanics. Ann Arbor, Michigan. Lithoprinted by Edwards Brothers Inc., 1939.

The Portland Cement Association. Soil-Sement Roads. Chicago, Illinois. Published by the Association. Second Edition 1941.

of Soil and Soil Cement Mixtures. Reprinted from Proceedings of the Twentieth Annual Meeting of the Highway Research
Board December 1940 by the Portland Cement Association.

American Society for Testing Materials. A. S. T. M. Methods of Test for Soil-Cement Mixtures. Philadelphia, Pa. Published by the Society 1940.

ROOM USE ONLY

