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ABSTRACT

DIRECT ANALYSIS OF IMPLIED VOLATILITY FOR EUROPEAN
OPTIONS

By

Yan Wei

We show existence and uniqueness of a strong solution to a linear non-uniformly parabolic

equation, which gives the fair price of a normalized European call option. We then provide

a direct link between local and implied volatilities in the form of a quasilinear degenerate

parabolic partial differential equation. We also establish closed-form asymptotic formulae

for the implied volatility near expiry as well as for deep in and out of the money options,

using a generalized comparison principle on bounded domains.
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Chapter 1

Introduction

A European call option on an underlying security (or underlying) X, with strike price K

and exercise date (or expiry) T is a financial contract between two parties, the buyer (or

“ holder”) and the seller (or “writer”), written at time t with the following properties: i)

The holder of the contract has, exactly at the time t = T , has the right to buy X at the

price K, ii) The holder of the option has no obligation to buy the security. However, The

seller is obligated to sell the underlying should the buyer so decide. The buyer pays a fee

(called a premium) for this right. The underlying security (or underlying) is the commodity

or financial instrument that can be sold or bought when an option holder decides to exercise

his contract.

The Black-Scholes model [10], [35] of a call option on a stock has gained wide recognition

in both academia and industry. It makes the following explicit assumptions:

• There is no arbitrage opportunity (i.e., there is no way to make a riskless profit).

• It is possible to borrow and lend cash at a known constant risk-free interest rate.

• It is possible to buy and sell any amount, even fractional, of stock (this includes short
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selling).

• The above transactions do not incur any fees or costs (i.e., frictionless market).

• The stock price St follows a geometric Brownian motion with constant drift and volatil-

ity:

dSt = St(µdt+ ΣdWt),

where t is time, µ and Σ are constants and Wt is a standard Brownian motion. The

parameter σ is called the volatility of the stock St. It is the relative rate at which the

price of a security moves up and down.

• The underlying security does not pay a dividend. 1

The price C(St, t;K,T ) of a European call option written on St with strike K and maturity

T satisfies the linear backward parabolic partial differential equation

Ct +
Σ2

2
S2CSS + rSCS − rC = 0 in (0,+∞)× (0, T ) (1.1a)

C(S, T ) = (S −K)+, (1.1b)

where r is the risk-free short-term interest rate. It is well known that, the solution to equation

(1.1) is:

C(S, t) = SN(d1)−Ke−r(T−t)N(d2), (1.2)

1Although the original model assumed no dividends, trivial extensions to the model can
accommodate a continuous dividend yield factor.
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where

d1 =
ln( SK ) + (r + Σ2

2 )(T − t)
Σ
√
T − t

, (1.3)

d2 =
ln( SK ) + (r − Σ2

2 )(T − t)
Σ
√
T − t

= d1 − Σ
√
T − t, (1.4)

N(x) =
1√
2π

∫ ∞
−∞

e−y
2/2dy. (1.5)

The expression (1.2) is known as the Black-Scholes formula

Once we have a measure of the (statistical) volatility for any underlying, we can plug the

value into a standard options pricing model2 and calculate the fair market value of an option.

A model’s fair market value3, however, is often out of line with the actual market value for

that same option. This is known as option mispricing. To understand the reason, we need

to look closer at the role implied volatility plays in the equation. The implied volatility of

the option is the volatility that, when used in a particular pricing model, yields a theoretical

value for the option equal to the current market price of that option. It is the expected

volatility the market is pricing into the option.

Often, the implied volatility of an option is a more useful measure of the option’s relative

value to other options than is its price. The reason is that the price of an option depends

most directly on the price of its underlying asset. If an option is held as part of a delta

neutral4 portfolio (that is, a portfolio that is hedged against small moves in the underlying’s

2for example, the Black-Scholes Formula
3for example, (1.2)
4In finance, delta neutral describes a portfolio of related financial securities, in which

the portfolio value remains unchanged due to small changes in the value of the underlying
security, i.e. ∆ = ∂V

∂S . Such a portfolio typically contains options and their corresponding
underlying securities such that positive and negative delta components offset, resulting in
the portfolio’s value being relatively insensitive to changes in the value of the underlying

3



price), then the next most important factor in determining the value of the option will be

its implied volatility.

Another way to look at implied volatility is to think of it as a price, not as a measure

of future stock moves. In this view it simply is a more convenient way to communicate

option prices than currency. Prices are different in nature from statistical quantities: one

can estimate volatility of future underlying returns using any of a large number of estimation

methods, however the number one gets is not a price. A price requires two counterparties,

a buyer and a seller. Prices are determined by supply and demand. Statistical estimates

depend on the time-series and the mathematical structure of the model used. It is a mistake

to confuse a price, which implies a transaction, with the result of a statistical estimation,

which is merely what comes out of a calculation. Implied volatilities are prices: they have

been derived from actual transactions. Seen in this light, it should not be surprising that

implied volatilities might not conform to what a particular statistical model would predict.

[Wikipedia]

In general, the value of an option depends on an estimate of the future realized price

volatility, Σ, of the underlying. Or, mathematically: C = f(·,Σ)5. The function f is

monotonically increasing in Σ, 6 meaning that a higher value for volatility results in a higher

theoretical value of the option. Conversely, by the inverse function theorem [1], there can be

at most one value for ϕ that, when applied as an input to f(·, ϕ), will result in a particular

value for C.

I.) In principle, by regarding σ as constant, the implied volatility can be inferred by

security.
5where · represents S, K, T , t, and r.
6We give a proof for such property based on the Black-Scholes model, using the generalized

Maximum Principle we derive.
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inverting the closed form of the solution to (1.1), the option price equation. However,

this is known to be computationally difficult, especially near expiry or far from the

money.

II.) Another shortcoming is that the Black-Scholes model assumes the volatility of the

underlying asset S price as constant. However, options based on the same underlying

asset but with different strike value and expiration times will yield different implied

volatilities. The volatility smile7 or smirk8 is a well-known manifestation of this phe-

nomenon. This is generally viewed as evidence that the security’s volatility is not

constant.

There have been various attempts to extend the Black-Scholes theory to account for

the volatility smile and the term structure. One class of models introduces a none-traded

source of risk such as jumps [36] or stochastic volatility, including those given by Hull and

White [29], and Heston [26]. Rubinstein [39], Derman and Kani [20] have independently

constructed a discrete approximation to the risk-neutral process for the underlying asset in

the form of a bi/trinomial tree, which are extensions of the original Cox et al. [18] binomial

trees. Bouchouev and Isakov [12, 31] reduce the identification of volatility to an inverse

parabolic problem with the final observation and establish uniqueness and stability results

under certain assumptions. Then, they obtain a non-linear Fredholm integral equation for

unknown volatility after dropping terms of higher orders in time to maturity and solve the

equation iteratively. Deng, Yu, and Yang [19] use an optimal control framework to discuss

an inverse problem of determining the implied volatility when the average option premium,

7In markets such as FX options or equity index options
8such as for longer term equity options
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namely the average value of option premium corresponding with a fixed strike price and all

possible maturities from the current time to a chosen future time, is known.

Furthermore, the difficulty regarding inverting the extended BS formula is asserted by

the impossibility of obtaining volatility as a closed form function of the option value and the

remaining variables (see [28, 43, 9]; a similar assertion can also be found in the introduc-

tion of the forthcoming paper by Teichmann and Schachermayer [41]). Most works on this

problem assume such impossibility and proceed in two broad directions: one theoretical, that

attempts to obtain abstract mathematical properties of the implied volatility, such as partial

differential equations governing it or similar approaches (see [22, 11, 5]), and the other re-

search direction somewhat more practical, centering on obtaining approximate formulas and

testing them against market data [14, 17, 27]. We list a few approximations of the inversion

of the Black-Scholes formula. In the following, τ = T − t is the time to maturity.

• Li [37] developed a closed-form method for the implied volatility based on rational

approximation. Rational approximation has been used extensively in both physical

and social sciences but his paper is among the first to apply this approximation to the

problem of inverting the Black-Scholes formula. His approximation scheme is much

faster than typical solver methods and very accurate for both at-the-money and away-

from-the-money options.

• Chargoy-Coronaa and Ibarra-Valdez [32] use elementary arithmetic operations and

functions, together with the normal distribution function and its inverse, to obtain

the asymptotic and approximate formulas for the option value, and an approximate

formula for the implied volatility. Define the log-moneyness as α = log(X/Ke−rτ ) =
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log(X/K) + rτ , θ = Σ
√
τ . The authors have the approximating option value:

ua(θ, α,X) = Xe−α[2N(θ/2)− 1],

and an approximation formula for the volatility:

Σa =
2√
τ
ϕ

(
uae

rτ +K

2K

)
,

where ϕ is the inverse of N , the standard normal cumulative distribution function.

They also showed an error estimate in Theorem 3: There are a, b > 0, with b small

enough, such that for all θ > 0, |α| < a, and s > (1 + b)u0 it holds

|Σ− Σa| ≤
2
√

2π√
τ
|α|e|α| exp

1

2
ϕ

(1 + e|α|
1+a + |α|e|α|)2

2

 .

• Brenner and Subrahmanyam [14] provided an elegant formula to compute an implied

volatility that is accurate when a stock price is exactly equal to a discounted strike

price:

Σ ≈
√

2π

τ

C

S
.

Feinstein [23] independently derived an essentially identical formula.

• Corrado and Miller [17] provided an improved quadratic formula which is valid when

stock prices deviate from discounted strike prices:

Σ ≈
√

2π

τ

1

S +K

[
C − S −K

2
+

√
(C − S −K

2
)2 − (S −K)2

π

]
.
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• Bharadia et al. [7] derive a highly simplified but less accurate volatility approximation:

Σ ≈
√

2π

τ

C − (S −K)/2

S − (S −K)/2
.

• Chance [16] provides a direct method of obtaining an accurate estimate of the implied

volatility of a call option. His estimate is based on the formula for at-the-money

options developed by Brenner and Subrahmanyam [14]. The adjusted formula by

Chance [16] is quite accurate for options no more than 20% in- or out-of-the-money

and is simple to program and compute. Later, Chambers and Nawalkha [15] developed

a simplified extension of the Chance [16] model. The approach taken in these two

papers uses the first and second derivatives of the call price with respect to volatility.

In addition, they need a reasonable estimate of volatility to serve as a starting point

to the approximation. More recently, S. Li [40] used the Taylor series expansion to

the third order for the standard normal cumulative distribution function N(x) and

obtained new approximations that are valid for a wide band of option moneyness and

time to expiration:

– At-the-money calls: (S = K)

Σ ≈ 2
√

2√
T
Z − 1√

τ

√
8Z2 − 6α√

2Z
,

where α =

√
2πC

S
, and Z = cos

[
1

3
arccos

(
3α√
32

)]
. In this case, Li’s formula is

significantly more accurate than Brenner-Subrahmanyam’s [14].

– In- or out-of-the-money calls: (Define η =
K

S
that measures the moneyness of an
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option: η = 1 represents at-the-money, η > 1 represents out-of-the-money, and

η < 1 represents in-the-money.)

Σ ≈


2
√

2√
τ
Z̃ − 1√

τ

√
8Z̃2 − 6α̃√

2Z̃
if ρ ≤ 1.4

α̃+

√
α̃2−4(η−1)2

1+η
2
√
τ

if ρ > 1.4,

where α̃ =

√
2π

1 + η

[
2C

S
+ η − 1

]
, Z̃ = cos

[
1

3
arccos(

3α̃√
32

)

]
,

and ρ =
|η − 1|
(C/S)2

=
|X − S|S

C2

Our goal is to overcome the challenges I.) and II.), and hence, to directly analyze the

implied volatility. Indeed, this approach allows us to shed light on qualitative properties

that would otherwise be more difficult to establish[6]. To accomplish these goals, we take

the following steps:

1. we assume that the volatility Σ depends on the variables t (time) and St (stock price

at time t), giving rise to the so-called local volatility model. The dynamics of the

underlying asset is then governed by the stochastic differential equation:

dSt
St

= µdt+ Σ(St, t)dWt, (1.6)

where µ, the expected rate of return of the stock, is constant; the local volatility Σ(x, t)

satisfies certain smoothness and growth/decay conditions which we will state in the

following section; and Wt is a standard Brownian motion. Since in this model Σ is

a function of time and stock price, the stock price is no longer a geometric Brownian

motion and the Black-Scholes-Merton formula would no longer apply. However, one

9



can still use a Feynman-Kač-like representation formula to derive a parabolic partial

differential equation for the price C(St = S, t;K,T ) of a call option:

Ct(S, t) +
Σ2(S, t)

2
S2CSS(S, t) + rSCS − rC(S, t) = 0

in (0,+∞)× (0, T ) (1.7a)

C(S, T ) = (S −K)+. (1.7b)

We will derive equation (1.7) in the appendix.

To simplify the analysis, we transform the equation through the change of variables

throughout the paper:

τ = T − t, x = ln(S/K) + rτ, .

From now on, T and K are fixed.

Even though in equation (1.7) we consider only one underlying, many of our results

can be extended into higher dimensions, say d ≥ 1. We denote, unless specify, ΩT :=

Rd × (0, T ), Ω := Rd × [0, T ], and Ω0 := Rd × [0, T ), where T can be any positive

number, and d can be one or larger, depending on the contents. Then, the normalized

price

v(x, τ) = erτC(S, T − τ ;K,T )/K

10



satisfies

vτ =
1

2
σ2(x, τ)(vxx − vx) in ΩT , (1.8a)

v(x, 0) = (ex − 1)+. (1.8b)

Some fundamental questions such as the existence, uniqueness, and positivity of the

solution to equation (1.8) under various assumptions are discussed in detail in Chapter

2. The main result of that chapter involves removing the assumption of the uniform

bounds on the local volatility previous made in [5].

We do so by first freeze σ whenever it is greater than m or less than 1/n. We de-

note such functions σmn . Then we take a sequence of mollified version of each σmn , i.e.

σmn
ε. Replacing σ by σmn

ε in equation (1.8) yields a sequence of uniform parabolic

differential equations with Hölder continuous coefficients. Hence, the existence of the

solution to the corresponding uniform parabolic equations and their properties are

known from classical theorems pertaining to parabolic differential equations. We then

show convergence of the solutions to these equations of the form (1.8), using a gen-

eralized Maximum Principle, uniform Schauder interior estimates, Sobolev embedding

theorem and the Arzelà-Ascoli theorem. Next, we prove the limit of the solutions

lies in C(Ω) ∩W 2,1,p
Loc (ΩT ), and is the solution of the limiting equation, (1.8) almost

everywhere. We conclude this section by showing the positivity, monotonicity, and

uniqueness of the solution to (1.8).

2. In Chapter 3, we view the implied volatility, ϕ, as a suitable such that v := u(x, τϕ2)

satisfies (1.8). The function u has explicitly definition, and is monotonically increasing

11



in the time variable. Consequently, we give the implied volatility, ϕ, as the unique

solution to a well-posed degenerate9 initial value quasilinear parabolic problem:

(τϕ2)τ − σ2(x, τ)(1− xϕx
ϕ

)2 + τϕϕxx −
1

4
τ2ϕ2ϕ2

x = 0

in Ω.

We also introduce the “associated local volatility”, σ[ψ], of any suitable given function

ψ. This concept, together with the generalized comparison and maximum principle, as

well as the monotonicity of u in time variable allow us to compare the implied volatility

with any suitable function ψ – a key property for establishing the asymptotics in the

following chapters.

3. The next step is to find the asymptotics of the solution for options near expiry(τ = 0)

and for deep in the money10/far out of the money11 options. Deriving and proving

those asymptotics are main results for Chapter 4 and 5, respectively.

In Chapter 4, we solve the formal limiting equation of (3.7) at the expire and use

its solution as benchmark for sequences of sub and super solutions to (3.7) in ΩT .

Then we prove that actual convergence takes place through a generalized comparison

principle. This theorem allows us to compare the solutions to parabolic equations on a

bounded domain of ΩT . The proof of this Comparison Principle is a main mathematical

contribution in this section. It is done through exhaustive applications of fundamental

solutions for parabolic equations, with bounded and unbounded coefficients.

9at τ = 0
10ST /K >> 1
11ST /K << 1
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4. The methodology for proving the asymptotics in Chapter 5 is similar to the one in sec-

tion 4. However, we are more focused on finding the right auxiliary functions through

which the comparisons are carried over.

5. Chapter 6 is dedicated to the numerical simulation of the implied volatility. The

obstacle remains that this equation is degenerate at its initial time. To circumvent

this difficulty, we numerically solve for another variable that is one-to-one to ϕ, using

finite difference method and the asymptotics we derived in the previous two chapters.

In addition, we give one-term and two-term approximation formula for the implied

volatility.

Our numerical results illustrate the “volatility smile”, a long-observed pattern in which

at-the-money options tend to have lower implied volatilities than in- or out-of-the-

money options. Additionally, the comparison between the asymptotic formula and the

numerically computed smile shows a satisfactory agreement.
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Chapter 2

Existence of the Solution to Equation

(1.8)

We want to understand the behavior of the implied volatility near expiry in a more general

setting than has previously been done. Instead of assuming the local volatility σ(x, τ) satisfies

0 < σ
¯
≤ σ ≤ σ̄ <∞ as in [5], we allow the more realistic situation:

Condition H0:

1. σ2 is positive and uniformly continuous in Ω.

2. It follows from 1. that for any compact set C ⊂ Ω, there exists n(C) ∈ N, such that

1/n(C) ≤ σ ≤ n(C). However, as |x| → ∞, σ may grow to infinity, or decay to zero

at a rate that is less than linear, uniformly in τ . Furthermore, there are step function

−1 < p(x) < 1, which may only have discontinuity at zero, and constant κ1 > 1 such

that

1

κ1
(1 + x2)p(x)/2 ≤ 1

2
σ2(x, τ) ≤ κ1(1 + x2)p(x)/2

14



in Ω.

From now on, we denote p+ = max
x∈R
{p(x), 0}, and p− = max

x∈R
{−p(x), 0}.

2.1 Auxiliary Notions, and Function Spaces

In order to make precise statements, let us specify the technical conditions that we impose,

and state some notations, terminologies, and functional spaces that we shall need.

2.1.1 Auxiliary Notation

The parabolic distance between P = (xP , tP ) to Q = (xQ, tQ) ∈ Ω is defined by

Definition 2.1.

d(P,Q) = ( ‖xP − xQ‖2 + |tP − tQ| )1/2, (2.1)

where ‖x‖ is the Euclidean norm
∑d
i=1(x2

i )
1/2. The concept of Hölder continuity in this

paper will always be defined with respect to the metric (2.1).

We define the round cubes in Rd+1:

Qr = (−r, r)× (−r2, 0], (2.2a)

Qr(x, t) = Qr + (x, t). (2.2b)

2.1.2 Function Spaces

As is classical when studying parabolic problems, we make use of the following anisotropic

Sobolev spaces:

15



Definition 2.2.

W 2,1,p(ΩT ) =

{
w

∣∣∣∣ ∫
ΩT

|wxx|p + |wτ |p + |w|p <∞

}
, (2.3a)

W 2,0,∞(ΩT ) = {w| |wxx|∞ + |w|∞ <∞}, (2.3b)

endowed with their natural norms. Similarly, we define W
2,1,p
loc (ΩT ) and W

2,0,∞
loc (ΩT ) as

W
2,1,p
loc (ΩT ) =

{
w

∣∣∣∣ ∫
D
|wxx|p + |wτ |p + |w|p <∞, ∀D̄ ⊂

◦
ΩT

}
, (2.4a)

W
2,0,∞
loc (ΩT ) = {w| |wxx|∞(D) + |w|∞(D) <∞, ∀D̄ ⊂

◦
ΩT }. (2.4b)

Definition 2.3. Given D ⊆ Ω.

1. C(D) is the set of all real-valued, continuous functions v(x, t) defined on D such that

the norm

‖v‖C(D) = sup
(x,t)∈D

|v(x, t)| (2.5)

is finite.

2. Given α ∈ (0, 1).

(a) Define Cα(D) as the subspace of C(D) consisting of all functions v such that the

norms

‖v‖Cα(D) = ‖v‖C(D) + sup
P,Q∈D
P 6=Q

|v(P )− v(Q)|
d(P,Q)α

(2.6)

are finite.
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(b) Moreover, we say v is in C2+α(D) whenever the norm

‖v‖
C2+α(D)

= ‖v‖Cα(D) + ‖vx‖Cα(D) + ‖vxx‖Cα(D) + ‖vt‖Cα(D) (2.7)

is finite.

3. As convention, C2,1(D) is the set of all functions in D having continuous second space-

derivative and first time-derivative.

Some results concern Hölder continuity in x but not in t. We therefore define ‖ ‖C∗,α(D),

C∗,α(D), ‖ ‖
C∗,2+α(D)

, and C∗,2+α(D) as above.

Now, we give notations and spaces relating interior Schaulder estimates. These estimates

were first introduced by Brandt [13]. Knerr [33] then extended Brandt’s result to give an

estimate on the time derivative of the solutions. Their results show that if the coefficients

of L is locally Hölder, and bounded below, then the Hölder norms of derivatives of the

solution to Lu = f can be bounded above by the norms of f and the initial condition of u.

Consequently, as we will show in the proof of our existence theorem, if σ were locally Hölder,

then the solution to (1.8) would be in the Hölder space, which we define next.

Definition 2.4. Let D̃ be a bounded domain in Ω := R × R+. For any point P = (x, t) in

D̃ we denote by T (P ) the set of points Q on the boundary of D̃ which can be connected to P

by a simple continuous arc along which the t coordinate is nondecreasing from Q to P . For

all P , Q in D̃, we introduce the metric

|P −Q| = max{|xP − xQ|, 4
√

2 |tP − tQ|1/2}.
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Consequently, let

dP = inf{|P −Q| : Q ∈ T (P )},

and

dPQ = min{dP , dQ}.

1. Given D ⊆ D̃, C(D) is the set of all real-valued, continuous functions v(x, t) defined

on D such that the norm

‖v‖C(D) = sup
(x,t)∈D

|v(x, t)|

is finite.

2. Given α ∈ (0, 1).

(a) Let Cα(D) be the space of functions in C(D) consisting of all functions v such that

the norms

‖v‖Cα(D) = ‖v‖C(D) + sup
P,Q∈D
P 6=Q

|v(P )− v(Q)|
|P −Q|α

are finite.

(b) For m = 0, 1, 2 and 0 < α < 1 and for any sufficiently smooth function v : D→ R

we define

‖v‖0,m
D

= sup
P∈D
|dmP v(P )|, (2.8)

H
α,m
D

(v) = sup
P,Q∈D

dm+α
P,Q

|v(P )− v(Q)|
|P −Q|α

, (2.9)

‖v‖α,m
D

= ‖v‖0,m
D

+H
α,m
D

(v). (2.10)
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3. The the space H2+α
D

is the collection of functions such that

‖v‖2+α
D

= ‖v‖αD + ‖vx‖α,1D
+ ‖vxx‖α,2D

+ ‖vt‖α,2D
(2.11)

are finite.

Some results concern Hölder continuity in x but not in t. We therefore define H
∗,α,m
D

,

‖ · ‖∗,α,m
D

, and ‖ · ‖∗,2+α
D

as above except in (2.9) we further restrict P and Q so that

P = Q+ ηe for some scalar η, where e = (1, 0).

Furthermore, we say v is in H2+α(Ω) if v ∈ H2+α
D

for any bounded domain D ∈ Ω.

Note: D = D̃ is allowed here but later we will require D̄ ⊂
◦
D̃ so that dP is bounded

below for P ∈ D.

Remark 2.5. The estimates using norms of type C2+α(D) are called boundary estimates,

and the ones that are using norms of H2+α
D

type are called interior estimates [24].

Definition 2.6. Let

[u]p,α(x, t) = sup
r

1

rα

(∫
Qr(x,t)

|u− u(x, t)|p
)1
p

. (2.12)

As in [42], we say a function is Cp,α at (x, t) if [u]p,α(x, t) <∞.

We shall show, in both cases, our solution to (1.8) has the following bounds in ΩT , and

it is the only solution in this class.

Definition 2.7. We define the set of functions defined in ΩT that has no more than expo-
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nential growth in the pace variable as

ET := {w|,∃C, β > 0,∀(x, τ) ∈ ΩT , |w(x, τ)| ≤ Ceβ|x|}. (2.13)

2.1.3 Parabolic Terminology

Consider the operator

Lu ≡∂u
∂t
−


d∑

i,j=1

ai,j(x, t)
∂2u

∂xi∂xj
+

d∑
i=1

bi(x, t)
∂u

∂xi
+ c(x, t)u

 (2.14)

:=
∂u

∂t
− F

(
∂2u

∂xi∂xj
,
∂u

∂xi
, u, x, τ

)
(2.15)

in a (d+1)-dimensional domain Ω := Rd × [0, T ], where T can be any positive number.

The coefficients aij , bi, c are defined in Ω. We always take (aij(x, t)) to be a symmetric

matrix, i.e. aij = aji. If the matrix (aij(x, t)) is positive definite, i.e, if for every real vector

ξ = (ξ1, · · · , ξn) 6= 0,
∑
aij(x, t)ξiξj > 0, then we say that the operator L is of parabolic

type (or that L is parabolic) at point (x, t). If L is parabolic at all the points of Ω then we

say that L is parabolic in Ω. If there exist positive constants λ̄0, λ̄1 such that, for any real

vector ξ,

λ̄0|ξ|2 ≤
d∑

i,j=1

aij(x, t)ξiξj ≤ λ̄1|ξ|2 (2.16)

for all (x, t) ∈ Ω then we say that L is uniformly parabolic in Ω. We refer λ̄0 and λ̄1 as

parabolic constants.

Besides the parabolic constants, we also make use of the following bounds on (ai,j(x, t)),
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the inverse matrix to ai,j . From the above inequalities, it follows that

λ0|ξ|2 ≤
d∑

i,j=1

aij(x, t)ξiξj ≤ λ1|ξ|2, (2.17)

for some 0 < λ0, λ1 <∞.

2.2 Primary Results on the Fundamental Solution, Green’s

Function, and Properties of Solutions to Parabolic

Equations

Let us review some concepts concerning parabolic operators and associated Cauchy problems.

Given a function f(x, t) in Ω and a function ϕ(x) in Rd, the problem of finding a function

u(x, t) satisfying the following parabolic equation, and the initial condition

Lu(x, t) = f(x, t) in Ω0 ≡ Rd × (0, T ] (2.18a)

u(x, 0) = ϕ(x) on Rd (2.18b)

is called a Cauchy problem (in the strip 0 ≤ t ≤ T ). The solution is always required to be

continuous in Ω.

The functions f(x, t) and ϕ(x) will be assumed to satisfy the boundedness conditions

|f(x, t)| ≤ const. exp[h|x|2], (2.19)

|ϕ(x)| ≤ const. exp[h|x|2] (2.20)
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where h is any positive constant satisfying

h <
λ0

4T
. (2.21)

Let us now mention the following assumptions, as they are critical conditions in classical

existence theorems for equations of parabolic type.

(A 1) L is uniformly parabolic in Ω;

(A 2) aij ∈ Cα(Ω), bi, c ∈ C∗,α(Ω) for some 0 < α < 1.

In the following, we recall

i.) the definition of the fundamental solution to parabolic operator of form (2.14);

ii.) sufficient conditions for the existence of a fundamental solution;

iii.) the expression of solution to the Cauchy problem (2.18), which is closely related to the

fundamental solution of the corresponding parabolic equation.

Definition 2.8. [24] A fundamental solution of Lu = 0 is a function Γ(x, τ ; ξ, s) defined

for all (x, τ) ∈ Ω, (ξ, s) ∈ Ω, τ > s, which satisfies the following conditions:

i) for each fixed (ξ, s) ∈ Ω, it satisfies, as a function of (x, τ) (x ∈ Rd, s < τ < T ), the

equation LΓ = 0.

ii) Given any continuous function f = f(x) in Ω, such that

|f | ≤ const · exp[h|x|2]
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for some positive constant h <
λ0

4T
, one has, for all x0 ∈ Rd,

lim
τ→s+

∫
Rd

Γ(x0, τ ; ξ, s)f(ξ)dξ = f(x0). (2.22)

Theorem 2.9. (Existence of the Fundamental Solution to operator (2.14))[24], [30] Consider

operator L defined in (2.14), and assume (A 1), and (A 2) hold. Then the fundamental

solution Γ(x, t; ξ, τ) of Lu = 0 exists.

Theorem 2.10. (Existence of the solution to the Cauchy problem (2.18))[24] Suppose that

L satisfies (A 1), and (A 2) and let f(x, t), ϕ(x) be continuous functions in Ω and Rd

respectively, satisfying (2.19). Assume also that f(x, t) is locally Hölder continuous (exponent

α) in x ∈ Rd, uniformly with respect to t. Then the function

u(x, t) =

∫
Rd

Γ(x, t; ξ, 0)ϕ(ξ)dξ −
∫ t

0

∫
Rd

Γ(x, t; ξ, τ)f(ξ, τ)dξdτ (2.23)

is a solution of the Cauchy problem (2.18) and

|u(x, t)| ≤ const. exp[κ|x|2] for (x, t) ∈ Ω, (2.24)

where κ is a constant depending only on h, λ0, and T .

Next, we give an extension of Friedman’s [24] Maximum Principle of solutions to parabolic

inequalities on unbounded domains:

Theorem 2.11. Let L be a parabolic operator with continuous coefficients in ΩT , and let

ai,j(x, y), |bi(x, y)| ≤M(|x|ε + 1), |c(x, y)| ≤M |x|2−ε, (2.25)
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be satisfied for some M > 0, and 0 ≤ ε ≤ 1. Assume Lu ≥ 0 in ΩT and that

u(x, t) ≥ −B exp[β|x|2−ε] in Ω (2.26)

for some positive constants B and β. If u(x, 0) ≥ 0 in Rd, then u(x, t) ≥ 0 in Ω. Similarly,

if u(x, 0) ≤ 0 in Rd then u(x, t) ≤ 0 in Ω. 1

Proof. For the moment, fix µ, ν > 0, and κ > β. Consider the auxiliary function

H(x, t) = exp[
κ

1− µt
γ(|x|) + νt]

(
0 ≤ t ≤ 1

2µ

)
(2.27)

where γ(|z|) is a C2 function defined on Rd such that

γ(r) =


r2−ε for r > 1

r2 for r ≤ 1/2.

2 We shall see, fix κ, by properly choosing µ and ν, LH/H is non-negative on R× [0, 1/(2µ)].

1Recall ΩT := Rd × (0, T ), Ω := Rd × [0, T ], and Ω0 := Rd × (0, T ].
2We make C2 connection at for r = 1 and r = 1/2.
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• First, let us consider |x| > 1,

LH

H

=

[
µ
κγ(|x|)

(1− µt)2
+ ν

]
− κ

1− µt
(2− ε)|x|−ε(

d∑
i=1

ai,i)

−

[(
κ

1− µt
(2− ε)

)2

|x|−2ε − κ

1− µt
(2− ε) ε|x|−2−ε

]
(

d∑
i,j=1

ai,jxixj)

− κ

1− µt
(2− ε)|x|−ε(

d∑
i=1

bixi)− c

≥
[
µ

κ

(1− µt)2
|x|2−ε + ν

]
− κ

1− µt
(2− ε)|x|−ε [dM(|x|ε + 1)]

−

[(
κ

1− µt
(2− ε)

)2

|x|−2ε +
κ

1− µt
(2− ε) ε|x|−2−ε

]
[d2M(|x|ε + 1)|x|2]

− κ

1− µt
(2− ε)|x|−ε [dM(|x|ε + 1)|x|]− c

• Next, consider |x| ≤ 1,

LH

H

=

[
µ
κγ(|x|)

(1− µt)2
+ ν

]
− 2κ

1− µt
(
d∑
i=1

ai,i)−
(

2κ

1− µt

)2

(
d∑

i,j=1

ai,jxixj)

− 2κ

1− µt
(
d∑
i=1

bixi)− c

=

[
µ

κ|x|2

(1− µt)2
+ ν

]
− 2κ

1− µt
(
d∑
i=1

ai,i)−
(

2κ

1− µt

)2

(
d∑

i,j=1

ai,jxixj)

− 2κ

1− µt
(
d∑
i=1

bixi)− c.
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Since ai,j , bi, and c are continuous, and since the set 0 ≤ |x| ≤ 1 is compact and 1 ≤ 1

1− µt
≤ 2

for 0 ≤ t ≤ 1

2µ
, one can find both upper and lower bounds for

LH − ∂H
∂t

H
on |x| ≤ 1, i.e.,

the terms after the first one.

Thus, given any κ > 0 we can choose sufficiently large positive numbers µ, ν such that

LH

H
≥ 0 for all x ∈ Rd, t ∈

[
0,

1

2µ

]
. (2.28)

Let v = u/H, where H is defined by (2.27) with a fixed κ > β and with µ, ν such that (2.28)

holds. From (2.26) it follows that

lim inf
|x|→∞

v(x, t) ≥ 0,

uniformly with respect to t ∈ [0, 1/(2µ)].

Since Lu = L(Hv), v satisfies the equation

L̄v ≡ ∂v

∂t
−


d∑

i,j=1

ai,j
∂2v

∂xi∂xj
+

d∑
i=1

b̄i
∂v

∂xi
+ c̄v

 = f̄ ,

where f̄ = (Lu)/H ≥ 0 and

b̄i = bi + 2
d∑
j=1

ai,j
∂H/∂xj

H
, c̄ = −LH

H
.

Now, for any δ > 0, v(x, t) + δ > 0 on t = 0 and on |x| = R, 0 ≤ t ≤ 1/2µ provided R

is sufficiently large. Since L̄(v + δ) = f̄ − c̄δ ≥ 0, by the classical maximum principle [24],

v(x, t) + δ > 0 if |x| < R, 0 ≤ t ≤ 1/2µ. Taking (x, t) to be fixed and δ → 0, it follows
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that v(x, t) ≥ 0 on Rd × [0, 1/(2µ)]. The same is true for u(x, t) = H(x, t)v(x, t). We can

now proceed step by step in time to prove the positivity of u in Ω0, since the choice of µ is

uniform in Ω0, i.e., only depends on M , ε, κ.

Remark 2.12. Theorem 2.11 can be extended to the case where u ∈ C(Ω) ∩ W 2,1,p
loc (ΩT )

satisfies Lu ≥ 0 a.e. in ΩT . [5]

2.3 The Existence of the Solution to the Non-uniform

Parabolic Equation (1.8)

The difficulty in proving the existence and uniqueness of the solution to (1.8) are (i) this is

a non-uniformly parabolic equation on an unbounded domain; (ii) the coefficient σ is only

assumed to be uniformly continuous. Our strategy is to first replace σ by its mollified cut-off

versions σmn
ε, as shown in (2.29)–(2.31). Then show the convergence of the corresponding

solutions as m,n → ∞ and ε → 0. Last, but not least, we show the limit satisfies the

limiting equation. We would also like to point out, throughout our proof, we work with

w = v − (ex − 1), if v exists. Notice that w satisfies the same differential equation, and it

has the same smoothness as v, but it has bounded initial value (ex − 1)−. This additional

boundedness allows us to show convergence in several places that might otherwise be difficult.

Once we established the properties of w, we will add ex − 1 to w and get back to v.

Now, we introduce the following “cut-off” volatility functions, which will be used below:

27



For all n,m ∈ N, define

σmn (x, τ) =



m σ(x, τ) ≥ m,

σ(x, τ) 1/n < σ(x, τ) < m,

1/n σ(x, τ) ≤ 1/n.

(2.29)

Similarly, for each m,n ∈ N, we define σm(x, τ) and σn(x, τ) as the cut-off version of σ from

above and below, respectively.

Next, we take a standard mollifier ρε(x, τ), which satisfies

ρε ≥ 0, ρε ∈ C∞0 (R2), supp(ρε) ⊂ Bε(0), (2.30a)∫
ρε = 1. (2.30b)

Consequently, ρε(x, τ)→ δ(x, τ) as ε→ 0 in distribution sense. (2.30c)

Fix m,n, and define σ̃mn (x,−τ) = σmn (x, τ) for all τ ≥ 0, and set for all ε > 0

σmn
ε(x, t) = ρε ∗ σ̃mn (x, t), (2.31)

where ∗ denotes the convolution in R2.

Remark 2.13. Given continuous functions hi, i = 1, 2, in Ω, and ρε. If both ρε ∗ hi are

locally integrable, and h1 ≥ h2 in Ω, then ρε ∗ h1 ≥ ρε ∗ h2 in ΩT . To see why, we take
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(x, t) ∈ ΩT , and the difference

ρε ∗ h1(x, t)− ρε(x, t) ∗ h2

=

∫ T

0

∫
R
ρε(x− ξ, t− τ) · (h1 − h2)(ξ, τ)dξdτ

≥0.

In particular, given (m,n), 1/n ≤ σmn
ε ≤ m in Ω, uniformly in ε. Moreover, given ε, σmn

ε

is non-increasing in n and non-decreasing in m in Ω.

Note that σmn
ε ∈ C∞(Ω), but this, a priori, does not imply that it is uniform Hölder

continuous. To that end, we need to show

Lemma 2.14. Fix m, n, and ε, (σmn
ε)2 ∈ Cα(Ω) for all α ∈ (0, 1).

Proof. We only need to show, for fixed m, n, and ε,

sup
(x0,τ0),(x,τ)∈Ω

|(σmn ε)2(x, τ)− (σmn
ε)2(x0, τ0)|

(|x− x0|2 + |τ − τ0|)α/2
<∞ for all α ∈ (0, 1).

Take (x0, τ0), (x, τ) ∈ Ω

i) |x− x0| ≥ 1 or |τ − τ0| ≥ 1:

|(σmn ε)2(x, τ)− (σmn
ε)2(x0, τ0)|

(|x− x0|2 + |τ − τ0|)α/2

≤|(σmn
ε)2(x, τ)− (σmn

ε)2(x0, τ0)|

≤
(
m− 1

n

)(
m+

1

n

)

for all α ∈ (0, 1).
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ii) |x− x0| < 1 and |τ − τ0| < 1:

|(σmn ε)2(x, τ)− (σmn
ε)2(x0, τ0)|

(|x− x0|2 + |τ − τ0|)α/2

≤max

{
|(σmn ε)2(x, τ)− (σmn

ε)2(x0, τ0)|
|x− x0|

,
|(σmn ε)2(x, τ)− (σmn

ε)2(x0, τ0)|
|τ − τ0|

}

for all α ∈ (0, 1).

By the mean value theorem, it is sufficient to show sup
Ω

(σmn
ε)2
x, and sup

Ω
(σmn

ε)2
τ are

finite. In fact, since σmn
ε is bounded above in Ω, it boils down to show sup

Ω
|(σmn ε)x|, and

sup
Ω
|(σmn ε)τ | are finite. It is straight forward that

|(σmn
ε)x|(x, τ) = |

∫
R

∫
R
ρεx(ξ − x, η − τ)σmn (ξ, η)dξdη|

= |
∫ τ+ε

τ−ε

∫ x+ε

x−ε
ρεx(ξ − x, η − τ)σmn (ξ, η)dξdη|

≤ m

∫ τ+ε

τ−ε

∫ x+ε

x−ε
|ρεx(ξ − x, η − τ)| dξdη, for all (x, τ) ∈ ΩT .

Therefore, sup
Ω
|(σmn ε)x| <∞. Similarly, sup

Ω
|(σmn ε)τ | <∞.

Given m, n, and ε, define

Lmn
ε :=

∂

∂t
− 1

2
(σmn

ε)2
(
∂2

∂x2
− ∂

∂x

)
.
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We now show the existence, uniqueness, and monotonicity of solution to

Lmn
εwmn

ε = 0 in ΩT (2.32a)

wmn
ε(x, 0) = (ex − 1)−, (2.32b)

where

(ex − 1)− =


1− ex if x ≤ 0

0 if x > 0.

Lemma 2.15. The solution, wmn
ε(x, τ) to (2.32) exists and has the following properties

i) Smoothness: wmn
ε ∈ C(Ω) ∩ C2,1(ΩT ).

ii) Positivity: wmn
ε(x, τ) ≥ (ex − 1)− in Ω, and 0 < wmn

ε(x, τ) < 1 in ΩT .

iii) Monotonicity: (wmn
ε)τ (x, τ) > 0 in ΩT . Hence, wmn

ε(x, τ) > (ex − 1)− in ΩT .

iv) Uniqueness: wmn is the only solution to (1.8) in the class ET .

Proof. i) Smoothness.

By [24], the solution to equation (2.32) exists, and can be written as:

wmn
ε(x, τ) =

∫
R

Γ(x, τ ; ξ, 0)(eξ − 1)− dξ, (2.33)

where Γ is the fundamental solution to equation (2.32a), defined in Definition 2.8. Con-

sequently, we have wmn
ε ∈ C2,1(ΩT ) from the smoothness of Γ and the boundedness of

the initial value. By Definition 2.8, we know that wmn
ε is continuous at τ = 0.

ii) 0 < wmn
ε < 1 in ΩT .
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Equation (2.33) implies |wmn ε| ≤ 1. This estimate combined with Condition H0 allows

us to use Theorem 2.11. Notice wmn
ε has nonnegative initial value, and wmn

ε − 1 has

non-positive initial value, we conclude 0 ≤ wmn
ε ≤ 1 in Ω. One then applies the strong

maximum principle [24] and gets 0 < wmn
ε < 1 in ΩT .

iii) We now show (wmn
ε)τ > 0, for τ > 0.

Denote (wmn
ε)τ by zmn

ε, equation (2.32a) can be rewritten as

1

2
(σmn

ε)2[ (wmn
ε)xx − (wmn

ε)x ] = zmn
ε in ΩT . (2.34)

Furthermore, differentiating (2.32a) w.r.t. τ , one gets

(wmn
ε)ττ −

1

2
2σmn

ε(σmn
ε)τ ((wmn

ε)xx − (wmn
ε)x)

− 1

2
(σmn

ε)2[(wmn
ε)τxx − (wmn

ε)τx] = 0 in ΩT ,

i.e.,

(zmn
ε)τ −

1

2
(σmn

ε)2[(zmn
ε)xx − (zmn

ε)x]− 2
(σmn

ε)τ
σmn

ε zmn
ε = 0 in ΩT . (2.35)

From (2.34), the facts Dx(ex − 1)− = Dxx(ex − 1)− in R\{0}, Dx(ex − 1)−|0+ = 1,

Dx(ex − 1)−|0− = 0, one sees Dxx(ex − 1)−|x=0 = δ0(x), the Dirac mass at x = 0, in

the distribution sense. One then defines

zmn
ε(x, 0) =

1

2
(σmn

ε(0, 0))2δ0(x), (2.36)
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in the distributional sense. Plugging (2.36) into (2.23), one realizes zmn
ε(x, τ) is the fun-

damental solution to the uniform parabolic equation (2.35) multiplied by
1

2
(σmn

ε(0, 0))2.

Therefore, by [25], 0 ≤ zmn
ε in Ω, and zmn

ε > 0 in ΩT .

iv) Uniqueness. See [24] and (2.33).

For the rest of this section, we send m,n → ∞, and then ε → 0. We aim to show

convergence of wmn
ε to a solution to the limiting equation. The first stage is to send m,n→

∞, and show convergence of wmn
ε to a classical solution to the limiting equation. In this

stage, we use monotonicity of (wmn
ε) in m and n, and a interior Schauder estimates by [33].

Let us start with the following lemma.

Lemma 2.16. wmn
ε, the solution to (2.32) increases as σmn

ε increases. In particular, given

(ni,mi, εi), i = 1, 2. If σ
m1
n1

ε1 ≥ σ
m2
n2

ε2 in Ω, then for the corresponding solutions, w
m1
n1

ε1 ≥

w
m2
n2

ε2 in Ω0.

Proof. Suppose wi(x, t) := w
mi
ni

εi , i = 1, 2 are solutions to the equation (2.32) with corre-

sponding parameters σi := σ
mi
ni

εi in Ω.

Let ∆ := w1(x, τ)− w2(x, τ), then ∆ satisfies

∆τ −
1

2
(σ1)2(∆xx −∆x) =

[(
σ1

σ2

)2

− 1

]
(w2)τ in ΩT

∆(x, 0) = 0 on R.

By Lemma 2.15, (w2)τ > 0 in ΩT . From our assumption,

[(
σ1
σ2

)2
− 1

]
≥ 0 in Ω, the right

hand side of the above equation is non-negative in Ω. Now, one can employ Theorem 2.11,

to the above equation and conclude ∆ ≥ 0 in Ω0. That is, w1 ≥ w2 in Ω0.
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Remark 2.17. By Lemma 2.16, given m, ε, the sequence wmn
ε is non-increasing with respect

to n. Similarly, for fixed n, ε, wmn
ε is non-decreasing with respect to m. Moreover, wmn

ε is

bounded above by 1, and bounded below by 0, uniformly for all m,n, ε. Therefore, the sequence

wmn
ε converges to wmε, say, as n→∞. Similarly, if one lets m→∞, then wmn

ε converges

on Ω0 to wεn, say.

Next, we show convergence of various derivatives of wmn
ε(x, τ) as m → ∞, or n → ∞.

Let us first mention the following interior estimates ([13] and [33]) on solutions.

Proposition 2.18. Suppose v : D→ R is a classical solution to (1.8) on a bounded domain

D ⊂ Rd × R+ and there exist constants κ, ν > 0, and α, 0 < α < 1, such that

‖σ2‖C∗,α(D) ≤ κ (2.37)

and

σ2(x, t) ≥ ν (2.38)

hold. Then there exists a constant C > 0, depending only on κ, ν, α, and d, such that:

‖v‖2+α
D
≤ C‖v‖0D. (2.39)

We shall provide local estimates on the derivatives of wmn
ε, which are needed in several

places.

Lemma 2.19. Let D ⊂ D̄ ⊂
◦
ΩT . For each fixed ε and n the sequence {wmn ε} is uni-

formly bounded in Cα(D) and converges to a function wεn. Furthermore, the derivatives

{(wmn ε)x}, {(wmn ε)xx}, and {(wmn ε)τ} are also uniformly bounded in Cα(D) and converges

34



to the respective derivatives of wεn.

Proof. Fix any domain D ⊂ D̄ ⊂
◦
ΩT , let D̂ ⊂ ΩT be a bounded domain such that D̄ ⊂

◦
D̂ .

Define the norms and distance functions given at the start of Section 2.1 in terms of D̂ . For

instance, for P ∈ D , T (P ) is the set of points Q in ∂D̂ which can be connected to P by a

simple continuous arc along which the time coordinate is nondecreasing from Q to P . Now,

define dP = inf{|P −Q| : Q ∈ T (P )}. Since inf
P∈D
{dP } > 0, ‖ ·‖2+α

D is equivalent to the usual

norm on C2+α(D̄) which is compactly embedded in C2(D̄). This, with Proposition 2.18

and the monotonicity of wmn
ε as m→∞ implies wmn

ε converge to wεn ∈ C2+α uniformly as

m→∞. This establishes the lemma.

The second stage is to let ε→ 0. Note that by doing so, we will lose local uniform Hölder

constant on σε, a key assumption in Proposition 2.18. As in [5], here we make use of the

following W
2,1,p
loc estimates for the solutions to uniform parabolic equations [42].

Proposition 2.20. ([42] Theorem 5.9) Let u be a continuous solution of

ut − F
(

∂2

∂xi∂xj
u, x, t

)
= g(x, t)

for some continuous function g, with ‖u‖L∞(Q1) <∞, and let

θ(x, t; y, τ) = sup
M

|F (M,x, t)− F (M, y, τ)|
|M |+ 1

,

where the supremum is taken over the set of symmetric matrices. If

vt − F (
∂2

∂xi∂xj
v, x, t) = 0
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has interior C1,1 estimates and

lim
r→0
‖θ(·, · ; y, τ)‖L∞(Qr(y,τ)) ≤ δ0(p, λ̄0, λ̄1)

for all (y, τ) ∈ Q1, then for p > d+ 1,

∫
Q1/2

|uτ |p + |uxx|p ≤ C

(∫
Q1

|g|p + ‖u‖L∞(Q1)

)
, (2.40)

where C only defends on the dimension d and the parabolic constants.

We now give the main theorem of this section.

Theorem 2.21. Given σ satisfies Condition H0, a strong solution, v(x, τ) to (1.8) exists

almost everywhere and

1. Smoothness: v ∈ C(Ω) ∩W 2,1,p
loc (ΩT ) for any 1 < p <∞.

2. Positivity: v(x, τ) ≥ (ex − 1)+ in Ω,

3. Monotonicity: vτ (x, τ) ≥ 0 in ΩT , and v(x, τ) is strictly greater than v(x, 0) for τ > 0,

i.e., v(x, τ) > (ex − 1)+ in ΩT .

4. Growth rate and uniqueness: v(x, τ) < ex in Ω, and it is the only solution to (1.8) in

the class ET .

Proof. 1) Our strategy to show the existence and smoothness of the solution to (1.8) is

to use a two-stage approximation then show the convergence as σmn
ε → σ.

Stage I.

Step 1. Fix n > 0, ε > 0, and let m→∞.
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For given domain D in Ω, by Lemma 2.19, wmn
ε converges to wεn uniformly on D̄

as m → ∞. Moreover, Lεnw
ε
n = 0 on D̄ . Because D is arbitrary, wεn ∈ C2,1(ΩT )

and Lεnw
ε
n = 0 in ΩT everywhere. Furthermore, wεn has all the properties in Lemma

2.15, except (wεn)τ is only non-negative.

Step 2. Fix ε, let n→∞.

Because of monotonicity in n, the same analysis as in Lemma 2.16 and Remark 2.17

shows that σεn → σε as n → ∞. Note that wεn is a classical solution to Lεnv = 0 in

ΩT , we apply the same procedures as in Step 1. and conclude that wε is a classical

solution to Lεv = 0 in ΩT everywhere. In addition, it has all properties as wmn
ε

listed in Lemma 2.15, expect it is only non-decreasing in τ .

Remark 2.22. If σ were locally Hölder continuous, then we would have no need

to use mollifiers and we would have the existence of the unique classical solution to

(1.8) in H2+α(ΩT ).

Stage II. Now, letting ε→ 0, we shall derive the existence of the solution v to (1.8).

On any bounded domain D = (−R,R) × (τ1, τ2), the σε are uniformly continuous,

uniformly bounded, and bounded away from 0, uniformly in ε. Hence we have

a family of uniformly parabolic operators with common upper and positive lower

bounds on the ellipticity constants. Instead of solving a Cauchy problem, we treat

(1.8) as a boundary problem, using wε restricted to the parabolic boundary to obtain

interior estimates. Hence, we are in the same situation as [5]. By Proposition 2.20

and the uniform bounds on wε in Ω, we have uniform W 2,1,p(D) estimates on wε

for all p > 1. By the Sobolev embedding theorem and the Arzelà-Ascoli theorem,

there is a subsequence w
εj which converges locally uniformly to w in D , a viscosity
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solution to the limiting equation. By [42] (Theorem 4.21) again, w ∈ W 2,1,p
loc and

has second derivatives in x almost everywhere. Therefore, w satisfies the limiting

equation point wise a.e. in D .

Additionally, the whole family wε converges to the same limit, since uniqueness

follows from the Maximum Principle.

Adding ex − 1 to w, we get the existence and smoothness of v in the theorem.

2) The positivity of the solution follows Lemma 2.15 that the sequence {vmn ε} is non

negative in Ω.

3) monotonicity

Since each vmn
ε
τ = wmn

ε
τ > 0 in ΩT , their limit, vτ must be non-negative in ΩT .

We are left to show v(x, τ) > v(x, 0) in ΩT . Suppose there is (x0, τ0) ∈ Ω such that

v(x0, τ0) = v(x0, 0). Since vτ ≥ 0, we conclude that v(x0, τ) ≡ v(x0, 0) for 0 ≤ τ ≤ τ0,

and vτ (x0, τ) ≡ 0 on [0, τ0]. Recall the initial value of v:

v(x, 0) = (ex − 1)+ ≥ 0 on Ω.

If x0 ≤ 0 then v(x0, τ0) ≡ v(x0, 0) = 0, so v has a minimum in
◦
Ω, a contradiction to

the maximum principle, which holds for all parabolic equations. So, x0 > 0. As before,

with w(x, τ) = v(x, τ)− (ex − 1) then w(x0, τ) ≡ w(x0, 0) = 0 for τ ∈ [0, τ0]. So w has a

minimum in
◦
Ω, which contradicts to the maximum principle. So, x0 < 0.

In conclusion, there is no (x0, τ0) ∈ Ω such that v(x0, τ0) = v(xo, 0), i.e., v(x, τ) > v(x0, 0)

in ΩT .
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4) The growth rate of v follows from the fact that each wmn
ε values in [0, 1) in Ω.

5) The uniqueness of v(x, τ) as discussed in the first part of this proof, follows the Strong

Maximum Principle (Theorem 2.11).
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Chapter 3

Directly Computing the Implied

Volatility

3.1 The Implied Volatility ϕ

Let u be the solution to

ut =
1

2
(uxx − ux) in ΩT , and u(x, 0) = (ex − 1)+. (3.1)

The explicit solution to (3.1) is readily seen to be

u(x, t) = exN

(
x√
t

+
1

2

√
t

)
−N

(
x√
t
− 1

2

√
t

)
, (3.2)

where

N(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy.
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Then the derivatives of u are,

ux(x, t) = exN

(
x√
t

+

√
t

2

)
> 0, (3.3a)

uxx(x, t) = exN

(
x√
t

+

√
t

2

)
− 1√

2π

1√
t
e
−( x√

t
−
√
t

2 )2

, (3.3b)

ut(x, t) =
1√
2π

1

2
√
t
e
−
(
x√
t
−
√
t

2

)2

> 0 in ΩT . (3.3c)

Additionally, we will make use of the following identities:

uxt
ut

(x, t) =
1

2
− x

t
, (3.4a)

utt
ut

(x, t) = − 1

2t
+
x2

2t2
− 1

8
. (3.4b)

Given constant ϕ > 0, one sees that v(x, τ) ≡ u(x, τϕ2) satisfies

vτ =
ϕ2

2
(vxx − vx).

So, v is a solution to equation (1.8) if and only if σ ≡ ϕ. Thus, for constant volatility, ϕ

may be determined by inverting u with respect to the time variable. More generally, if one

can find ϕ(x, τ) ≥ 0, so that

v(x, τ) = u(x, τϕ2(x, τ)) (3.5)

satisfies equation (1.8) for all (x, τ) ∈ Ω, then ϕ(x, τ) is called the implied volatility. One

main result in this chapter is to find an equation which ϕ(x, τ) satisfies. In the next chap-

ter, we will study its asymptotics as τ → 0 (near expiry) and x → ±∞ (far out-of-the-

money/deep in-the-money option).
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We now state an existence, uniqueness lemma for the implied volatility.

Lemma 3.1. Given v(x, τ), the solution to (1.8), the choice of ϕ as described in (3.5) exists,

is unique, and positive in ΩT .

Proof. To find ϕ(x, τ), one just inverts u(x, t) with respect to the time variable. Since

v exists, (e+ − 1)+ ≤ v(x, τ) < ex and is unique (Theorem 2.21). On the other hand,

u(x, 0) = (ex − 1)+, lim
τ→∞

u(x, τ) = ex, and ut > 0 (equation (3.3) ) in Ω, the inverse

function theorem [1] assures us the existence and uniqueness of such inverse.

The positivity of ϕ in ΩT = R×(0, T ) follows from the monotonicity of v in time. If there

is (x0, τ0) ∈ ΩT such that ϕ(x0, τ0) = 0, then, v(x0, τ0) = v(x0, τ0ϕ
2(x0, τ0)) = v(x0, 0), a

contradiction to Theorem 2.21.

However, as stated in the introduction section, our strategy is not to invert u(x, τϕ2).

Instead, we see the implied volatility as the unique solution to a well-posed degenerate

quasilinear parabolic problem.

For any ψ ∈ W 2,1,p
loc (ΩT ), denote by H the quasilinear operator [5]

H[ψ] ≡ H(x, τ, ψ,Dψ,D2ψ) = (1− xψx
ψ

)2 + τψψxx −
1

4
τ2ψ2ψ2

x. (3.6)

Theorem 3.2. Under Condition H0, suppose that the implied volatility ϕ is defined by (3.5)

where v and u are solutions to (1.8) and (3.1), respectively. Then, ϕ ∈ W 2,1,p
loc (ΩT ) for all

p > 1, and it satisfies

(τϕ2)τ − σ2(x, τ)H[ϕ] = 0 a.e. in ΩT . (3.7)

42



Proof. We first show that ϕ ∈ W 2,1,p
loc (ΩT ). Therefore, we need estimates on ϕ and its various

(weak) derivatives. We do so by the following two steps.

1. We express ϕ, and its derivatives in terms of u, v and their derivatives.

Denote u−1(y;x) : R+ → R+ the inverse of u(x, τ) with respect to the time variable,

i.e., u(x, u−1(y;x)) = y for any y ∈ R+. Then given (x, τ) ∈ ΩT ,

ϕ2(x, τ) = u−1(v(x, τ);x)/τ. (3.8)

By formally taking the derivative of v(x, τ) = u(x, τϕ2(x, τ)) with respect to x, and

using (3.4), one obtains

vx = ux + 2τϕϕxuτ . (3.9)

Hence,

ϕx(x, τ) =
vx − ux
2τϕuτ

(x, τ). (3.10)

Taking a second derivative of v with respect to x yields

vxx = uxx + 4τϕϕxuxτ + 2τ(ϕ2
x + ϕxxϕ)uτ + (2τϕϕx)2uττ .

The above equality and identities (3.4) imply

ϕxx(x, τ) =
vxx − uxx

2τuτϕ
−
[

2ϕϕxuxτ
uxτ

+
2τ(ϕϕx)2uττ

uτϕ
+
ϕ2
x

ϕ

]
,

=
vxx − uxx

2tϕuτ
(x, τ)−

[
ϕx +

xϕx(xϕx − 2ϕ)

tϕ3
− tϕϕ2

x

4

]
(x, τ). (3.11)
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Similarly, differentiating v with respect to the time variable gives

vτ = uτ (ϕ2 + 2τϕϕτ ).

Solving for ϕτ :

ϕτ (x, τ) =
vτ

2τuτϕ
(x, τ)− ϕ

2τ
(x, τ). (3.12)

2. Since v ∈ W
2,1,p
loc (ΩT ) (Theorem 2.21), u ∈ C∞(ΩT ), uτ > 0 and ϕ > 0 in ΩT , it

follows that ϕ and all its (weak) derivatives stated above are locally p−integrable for

any p > 1. This implies a finite W
2,1,p
loc bound on ϕ.

Next, we show how to derive equation (3.7). Define w(x, τ) = u(x, τϕ2(x, τ)).

Since ϕ ∈ W 2,1,p
loc , differentiating w with respect to x and τ yields:

wx(x, τ) = ux + uτ2τϕϕx, (3.13a)

wxx(x, τ) = uxx + uxτ4τϕϕx + uττ (2τϕϕx)2 + uτ2τ(ϕ2
x + ϕϕxx), (3.13b)

wτ (x, τ) = uτ (ϕ2 + 2τϕϕτ ). (3.13c)
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From (3.13), (3.3), and (3.4),

wτ −
1

2
σ2(wxx − wx)

(3.13)
= uτ (ϕ2 + 2τϕϕτ )− 1

2
σ2

[uxx + uxτ4τϕϕx + uττ (2τϕxϕxx)2 + uτ2ϕ(ϕ2
x + ϕϕxx − ϕϕx)]

(3.3)
= uτ (x, τϕ2){2τϕϕτ + ϕ2 − σ2

2
[2− 2τϕϕx

+ 2τ(ϕ2
x + ϕϕxx) + 4τϕϕx

uττ
uτ

(x, τϕ2) + 4τ2ϕ2ϕ2
x
uττ
uτ

(x, τϕ2)]}

(3.4)
= uτ (x, τϕ2){2τϕϕτ + ϕ2 − σ2

[(
1− xϕx

ϕ

)2

+ τ

(
ϕϕxx −

ϕ2ϕ2
x

4

)]
}.

Let

F (x, τ, ψ,Dψ,D2ψ) = 2τψψτ + ψ2 − σ2

[(
1− xψx

ψ

)2

+ τ

(
ψψxx −

ψ2ψ2
x

4

)]

= (τψ2)τ − σ2H(x, τ, ψ,Dψ,D2ψ).

Then, w(x, τ) satisfies (1.8) if

wτ −
1

2
σ2(wxx − wx) = uτ (x, τϕ2)F (x, τ, ϕ,Dϕ,D2ϕ) = 0.

Because uτ (x, τϕ2) > 0 on R× (0,∞), this is equivalent to

F (x, τ, ϕ,Dϕ,D2ϕ) = (τϕ2)τ − σ2(x, τ)H[ϕ] = 0.
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A very closely related concept is the so called

3.2 Associated Local Volatility σ[ϕ]

Definition 3.3. Let I (0, ξ) be the class of nonnegative functions ψ ∈ W 2,1,p
loc (ΩT ) for which

the “associated local volatility”

σ[ψ](x, τ) =

(
(τψ2)τ

H(x, τ, ψ,Dψ,D2ψ)

)1/2

(3.14)

is well defined, continuous in Ωξ, and satisfies Condition H0. Furthermore, we require the

growth condition at zero:

τψ2(x, τ)→ 0 as τ → 0, (3.15)

since u(x, τψ2) has to replicate the behavior of u(x, τ) as τ → 0.

Remark 3.4. We call σ[ψ] the “associated local volatility” of ψ ∈ I (0, ξ) because, for

ω(x, τ) = u(x, τψ2),

ωτ −
1

2
σ[ψ]2(ωxx − ωx) = 0 on Ωξ, (3.16a)

ω(x, 0) = (ex − 1)+. (3.16b)

Note that v(x, τ) = u(x, τϕ2) satisfies both

vτ −
1

2
σ[ϕ]2(vxx − vx) = 0 on ΩT ,

v(x, 0) = (ex − 1)+,

46



and equation (1.8). Therefore,

σ2[ϕ] =
2vτ

vxx − vx
= σ2 on ΩT .

As we will see later, the “associated local volatility” provides a way to back out the local

volatility from the solution to equation (3.7). In the next chapter, where we are looking for

the asymptotics of the implied volatility, it becomes an essential tool to form super and sub

solutions, on which variance comparison theorems are performed.
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Chapter 4

The Asymptotic of ϕ as τ → 0

Condition H1

In this chapter, we assume, in addition to Condition H0, σ is uniformly Lipschitz in Ω.

4.1 The Fundamental Solutions, Green’s Functions, etc.

4.1.1 Uniform Parabolic Equations

We dedicate this subsection to giving an estimate on the fundamental solution (Proposition

4.5), starting with the following notations and conditions.

Definition 4.1. Let Σ denote an open domain in Rd. It is not necessary that Σ be bounded

and Σ = Rd is not excluded. Let I denote an interval included in [0, T ]. A function w =

w(x, t) defined and measurable on D = Σ × I is said to belong to the class Lp,q(D) with

1 ≤ p, q <∞ if

‖w‖p,q =

∫
I

(∫
∑ |w|pdx

)q/p1/q

<∞.
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In case either p or q is infinite, ‖w‖p,q is defined in a similar fashion using L∞ norms rather

than integrals.

Recall the operator L (2.14):

L ≡ ∂

∂t
−


d∑

i,j=1

ai,j(x, t)
∂2

∂xi∂xj
+

d∑
i=1

bi(x, t)
∂

∂xi
+ c(x, t)


in a (d+1)-dimensional domain Ω.

The following conditions are collectively referred to as Condition H2: (To show the

bounds of the fundamental solutions and the Green’s Functions to uniform parabolic equa-

tions.)

There exist ν, M , M0 and R0 such that ν > 0, M <∞, 0 ≤M0 <∞ and 0 ≤ R0 ≤ ∞,

and such that the coefficients of L satisfy the following conditions:

1. For all ξ ∈ Rd and for almost all (x, t)

ai,j(x, t)ξiξj ≥ ν|ξ|2 and |ai,j(x, t)| ≤M.

2. (a) Let Q0 = {|x| < R0} × (0, T ]. Each of the coefficients

bi(x, t)−
d∑
j=1

(ai,j)xj (x, t) is contained in some space Lp,q(Q0), where p, q are

such that

(∗) 2 < p, q ≤ ∞ and
d

2p
+

1

q
<

1

2
;

and

(b)

∣∣∣∣bi(x, t)− d∑
j=1

(ai,j)xj (x, t)

∣∣∣∣ ≤M0 for all |x| ≥ R0 and t ∈ (0, T ].
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3. (a) ‖c(x, t)‖p,q < ∞, where the norms are taken over for all cylinders of the form

R(%) × (0, T ], contained in Rd × I. R(%) denotes an open cube in Rd of edge

length % and % = min{1,
√
T}. p and q are such that

(∗∗) 1 < p, q ≤ ∞ and
d

2p
+

1

q
< 1.

and

(b) c(x, t) ≤M0 for almost all |x| ≥ R0 and t ∈ (0, T ].

All (strong) derivatives are defined and measurable in ΩT .

Remark 4.2. Consider the operator L defined as

L ≡ ∂

∂τ
− 1

2
σ2(x, τ)

(
∂2

∂x2
− ∂

∂x

)
. (4.1)

Since d = 1, its coefficients satisfies Condition H2 if there exists ν, M , M0 and R0 such that

0 < ν, M <∞, 0 ≤M0 <∞ and 0 ≤ R0 ≤ ∞, and such that

1. For almost all (x, t)

1

2
σ2(x, t) ≥ ν and

∣∣∣∣12σ2(x, t)

∣∣∣∣ ≤M.

2. Let Q0 = (−R0, R0) × (0, T ], then (1
2σ

2(x, t))x is contained in some space Lp,q(Q0),

where p, q are such that

(∗) 2 < p, q ≤ ∞ and
1

2p
+

1

q
<

1

2
;
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and |(1
2σ

2)x| ≤M0 for all |x| ≥ R0 and t ∈ (0, T ].

Remark 4.3. The statement “C depends on the structure of L” means that C is determined

by the quantities ν, M , d, ‖(1
2σ

2)x‖p,q(Q0) and p, q, d occurring in Condition H2.

The following lemma says if σ satisfies Condition H1, and it has upper and lower bounds,

then if one defines σε as in (2.31), then (σε)2 satisfies Condition H2, with p, q any integers

satisfying (∗).

Lemma 4.4. Suppose f ∈ R is Lipschitz continuous with Lipschitz constant K. Let ρε(x)

be a standard mollifier, that is, a function satisfying (2.30). Denote

fε(x) = (f ∗ ρε)(x) =

∫
R
f(x− ξ)ρε(ξ)dξ =

∫
R
f(ξ)ρε(x− ξ)dξ.

Then |(fε)′(x)| ≤ K on R, uniformly in ε.

Proof. Note that

∣∣∣∣fε(x+ h)− fε(x)

h

∣∣∣∣
=

∣∣∣∣ ∫R f(x+ h− ξ)− f(x− ξ)
h

ρε(ξ) dξ

∣∣∣∣
≤
∫
R

|f(x+ h− ξ)− f(x− ξ)|
h

ρε(ξ) dξ

≤
∫
R
K · ρε(ξ)dξ

=K

uniformly in x ∈ R, ε > 0, and h > 0. Therefore,

|(fε)′(x)| = lim
h→0

∣∣∣∣fε(x+ h)− fε(x)

h

∣∣∣∣ ≤ L,
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for all x ∈ R, ε > 0.

Proposition 4.5. ( Bounds on Fundamental Solutions )([3] Theorem 71) Consider

operator L defined in (4.1). If σ2 satisfies Condition H2, then the fundamental solution to

L exists. Moreover, there exists positive α1, C1, C2 depending only on T and the structure

of L, and positive α2 depending only on the structure of L such that

C1(t− τ)−1/2e
−α1|x−ξ|2

t−τ ≤ Γ(x, t; ξ, τ) ≤ C2(t− τ)−1/2e
−α2|x−ξ|2

t−τ , (4.2)

for all x, ξ ∈ R, 0 ≤ ξ < t ≤ T .

Remark 4.6. The purpose of this remark is to provide exact formulas for C1, C2, α1 and

α2. For the reader’s convince, we keep the notation consistent with original papers [3], [4]

whenever we can. To this end, let us first define a few constants that will appear in different

parts of this remark. As a reminder, p, q, M , M0, and ν are defined in Condition H2. For

d ∈ N, define

ωd =



πd/2

(d/2)!
d even

2
d+1

2 π
d−1

2
d!! d odd

,

ι = 16/T , θ̃ = 1 − 1
q −

d
2p

2 , σ̃ = 1 + 2θ̃/d > 1, and r0 = 1/(1 + σ̃). Let µ, λ, and K be

constants depend only on the dimension d.

1It is a generation of Harnack Inequality for Parabolic Equations.[38]
2In our case, p, q can be any numbers satisfying (∗), d = 1, and we have θ̃ ∈ [1/2, 1].
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Define the function g as g(x) =
x

(x2 − 1)2
. Furthermore, denote

α =
1

8
·
[(

1 +
4d2M2

ν

)
+ min(1, ν)

]−1

, and

β = M0

(
1 + 2dM0 +

4dM0

ν

)
.

1. We introduce the following constants:

c11 = ν−1M2
0 + 16ν−1M2 + 12,

c12 = [144K(2 + 4c11 + ν−1c11)]
σ̃

2(σ̃−1) · σ̃g(σ̃),

B = 2−d
{

(
ν

ωd
d1+d

2 )−1 + 2−d +

√
2−d[c11 + 64(1 + 2ν−1M2)]

}
,

γ = µB
2/λ · c1/r012 ,

C̃1 = ln γ ·max

{
32,

9

8
+
T

8
+

9d

32

T

δ2

}
, (4.3a)

and C1 = ln γ ·max{32, d}. (4.3b)

3 The value of C1 is

C1 =
1

ωd ι
d/2

exp{−2C̃1(ι+ 1)} · exp{−C1(T + 1)}. (4.4)

2. (a) Let θ denote the minimum value of 1−d/(2p)−1/q for all pairs of (p, q) involved.

3Note that for each fixed δ, when d < 32 and T is small enough, C̃1 = C1 = 32 ln γ.
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4 Now, let

σ̂ = min

1,

 min{1, ν}

8K
[
2
(

1 + 2
ν

)
(M2

0 +M2) + 1
2

]


1/θ
 ,

c211 = 21+T/σ̂,

c212 =

(
c211

∫
Rd

exp{−‖z‖2}dz α−d/2
)1/2

,

and c213 = c212 · exp

(
9α

4
+ βT

)
.

Define, 5

C21 =
√

27 + (c213)2. (4.5)

(b) Define

c221 = ν−1M2
0 + 1,

µ̃ =

{
min(ν, 1)

8
Kc221

}1/θ̃

,

c222 = 9 + 16ν−1M2,

c223 = c221 + 2c222,

c224 = 2K
[
5 + (ν−1 + 4)c223

]
,

c225 = (36c224)σ̃/(σ̃−1)(2σ̃)2g(σ̃),

and c226 = 210+1/µ̃K(1 + ν−1)(1 + c222).

4In our case, p, q can be any number satisfying (∗), and d = 1, we have θ > 1/2.
5α, β are defined earlier in the remark.
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We then let 6

C22 =
√
c225 c226. (4.6)

(c) Define

c232 = 4K(2 + 4c11 + ν−1c11),

c233 = 4c232(1 + σ̃2)(σ̃ − 1)−2,

and c234 = (9c233)
1+2θ̃

4θ̃ · σ̃g(σ̃).

Denote 7

C23 = µ̃B
2/λ(c234)2/r0 . (4.7)

We finally arrive

C2 = C21C22C23e
α/2. (4.8)

3.

α1 = 2C̃1 (4.9)

4.

α2 = α/8, (4.10)

where α is defined at the beginning of this remark. C̃1 is defined in (4.3).

It is worth noting

6K, θ̃, σ̃, and g(x) are defined at the beginning of this remark.
7c11, and B were defined before in case 1.
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• Keeping the other parameters fixed, C1 ∼ O(T d/2), as T → 0.

• Keeping the other parameters fixed and fixing T̄ <∞, C21 has uniform upper and lower

bounds for 0 ≤ T ≤ T̄ ; C22, C23, and α depend only on the structure of L. Therefore,

C2 has uniform upper and lower bounds for all 0 ≤ T ≤ T̄ .

• Since γ depends only on the structure of L, α1 = 2 ln γ ·max{32, 9
8 + T

8 + 9dT
32δ2
} depends

only on the structure of L for T small enough. More precisely,

α1 ∼ O

(
max

{
1

ν2
,
M2

0 +M2

ν

})
, and α2 ∼ O

( ν

M2

)
,

when T is small enough.

4.1.2 Parabolic Equations with unbounded Coefficients

The goal of this part is to show wετ > 0 in ΩT , where wε satisfies

wετ =
1

2
(σε)2(wεxx − wεx)

wε(x, 0) = (ex − 1)−.

Let us recall some properties relating to the Green’s Functions.

Proposition 4.7. ( Ch3, Sec 7 [24], Theorem 16) Given M , Tα > 0, denote
∑M
α =

(−M,M) × (0, Tα]. Let LMα in the form of (2.14) be a parabolic operator in
∑M
α . If LMα

satisfies
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(A) the coefficients of LMα are uniformly Hölder continuous (exponent α) 8 in
∑M
α and

‖a11‖Cα(
∑M
α )

, ‖b1‖Cα(
∑M
α )

, ‖c‖
Cα(

∑M
α )
≤ K1,

(B) for any (x, t) ∈
∑M
α ,

a1,1(x, t) ≥ K2 > 0,

then the Green’s function γMα (x, t; ξ, τ) for LMα with zero Dirichlet initial data exists, and

has the following properties:

a) For any 0 ≤ τ < Tα, and for any continuous, compactly supported function f on Bτ :=

{|x| < M} × {t = τ}, the function

u(x, t) =

∫
Bτ

γMα (x, t; ξ, τ)f(ξ)dξ

is a solution to LMα v = 0 in {|x| < M} × {τ < t ≤ Tα}, and it satisfies the initial and

boundary conditions

lim
t→τ+

u(x, t) = f(x) for x ∈ B̄τ ,

u(x, t) = 0 on {|x| = M} × {τ < t ≤ Tα}.

b) (Ch3, Sec 7 [24], Corollary 1) As a function of (x, t) ∈
∑M
α , LMα γmα = 0. Furthermore,

for (ξ, τ) ∈
∑M
α ∪[−M,M ] × {0}, γMα (x, t; ξ, τ) = 0 on {|x| = M} × {τ < t ≤ Tα} and

8Recall a function f(x, τ) defined on a bonded closed set S of R2 is said to be Hölder
continuous of exponent α in S [24] if there exists a constant A such that for all (x, τ),
(x0, τ0) ∈ S,

|f(x, τ)− f(x0, τ0)| ≤ A(|x− x0|2 + |τ − τ0|)α/2.
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γMα (x, t; ξ, τ) > 0 on {|x| < M} × {τ < t ≤ Tα}.

c) (Bounds on Green’s Functions)([3] Theorem 8)

Suppose furthermore that, if we restrict σ2 on a bounded domain, then it satisfies Con-

dition H2. Let (ΩM )′ be a subinterval of (−M,M), and let δ > 0 be the distance from

(ΩM )′ to (−M,M). Then,

(a) There exist positive constants C2 depending on Tα and the structure of L, and α2

depending on the structure of L, such that for all (x, t) and (ξ, τ) in
∑M
α with t > τ ,

γMα (x, t; ξ, τ) ≤ C2(t− τ)−1/2 exp

{
−α2

|x− ξ|2

8(t− τ)

}
. (4.11)

(b) There exist positive constants C1 and α1, depending on δ, Tα and the structure of

L, such that

γMα (x, t; ξ, τ) ≥ C1(t− τ)−1/2 exp

{
−α1
|x− ξ|2

t− τ

}
. (4.12)

holds for all x, ξ ∈ (ΩM )′ and either

τ < t ≤ min

{
Tα, τ +

Tα
8
d2(ξ, ∂(ΩM )′)

}

for arbitrary τ ∈ [0, Tα) or

max

{
0, t− Tα

8
d2(x, ∂(ΩM )′)

}
≤ τ < t

for arbitrary t ∈ (0, Tα].
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Remark 4.8. The structures and values of C1, C2, α1 and α2 are similar to those bounds

on Fundamental Solution, i.e., in Remark 4.6.

We are interested in the properties of the operator LMα on
∑M
α as M → ∞, i.e., the

properties of the operator Lα in Ω̄Tα .

Let x = (x1, · · · , xd) ∈ Rd, S = Rd × (0, t] and S = Rd × [0, T ] for some fixed T > 0.

Consider the differential operator L given in the form (2.14). We collectively refer the

following conditions as Condition H3: (To show the bounds of vετ .)

Assume that ai,j, (ai,j)xi, bi −
∑d
j=1 ai,j, [bi −

∑d
j=1 ai,j ]xi are Hölder continuous, and

ai,j is twice differentiable in x on every compact subset of S. We further assume there exist

constants ν, κ̃2 > 0 such that

1.

ν|ξ|2 ≤ ai,j(x, t)ξiξj ≤ κ̃2

√
|x|2 + 1|ξ|2;

2.

|(ai,j)x|,
∣∣∣∣bi(x, t)− d∑

j=1

(ai,j)xj (x, t)

∣∣∣∣ ≤ κ̃2

√
|x|2 + 1; and

3.

c(x, t), c(x, t)−

bi(x, t)− d∑
j=1

(ai,j)xj (x, t)


xi

≤ κ̃2

√
|x|2 + 1

for all (x, t) ∈ S, and ξ ∈ Rd.

Remark 4.9. Consider operators of the form

L ≡ ∂

∂τ
− 1

2
σ2
[
∂2

∂x2
− ∂

∂x

]
− 2

στ
σ
. (4.13)
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They satisfy Condition H3 if σ2, (σ2)x, and (σ2)xx are Hölder continuous on every compact

subset of Ω, and if there exist constants ν, κ2, κ3 > 0 such that

1.

ν ≤ 1

2
σ2(x, t) ≤ κ2

√
x2 + 1,

2. ∣∣∣∣(1

2
σ2)x

∣∣∣∣, 2
σt
σ
≤ κ2

√
x2 + 1, and

3.

σσxx ≤ κ3

√
x2 + 1

for all (x, t) ∈ Ω.

Similar as discussed before, suppose σ satisfies Condition H1, and it is bounded below,

then σε satisfies Condition H3. By Lemma 4.4, The constants ν and κ2 are uniform in ε.

But κ3(ε) may approach to infinity as ε→ 0. This is because ρε ∈ C∞0 , when differentiating

σε, the derivatives are passed onto ρε, the upper bounds of which depend on ε. See the proof

for Lemma 2.14 for a detailed calculation. By Condition H0, σ2 has no more than linear

growth. Therefore, κ3(ε) really is the upper bound for ∂2

∂x2ρ
ε.

For operators of form 4.13, we start our analysis with a sufficiently smooth, bounded

below σ2. To this end, let us take σ̃(x,−τ) = σ(x, τ) for all τ ≤ 0 as an extension of σ, and

define for any ε > 0, ρε a standard mollifier. Define σε by

σε = ρε ∗ σ̃.
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Given n ∈ N, σεn(x, τ ; η) is a smooth function in ΩT such that

σεn(x, τ) =


σε(x, τ) σε(x, τ) ≥ 2

n

1
n σε(x, τ) ≤ 1

n .

Clearly, if σ2 ≥ ν2 > 0 in ΩT , then σεn(x, τ) ≡ σε(x, τ) in ΩT for all n > 1/(2ν).

Lemma 4.10. ([2]) Given T , ε, n, and α > 0, there exists 0 < Tα(n, ε) < T such that the

Cauchy problem

(zεn,α)t =
1

2
(σεn)2[(zεn,α)xx − (zεn,α)x] + 2

(σεn)t
σεn

zεn,α in ΩTα := R× (0, Tα], (4.14a)

zεn,α(x, 0) =
1

2
(σεn(0, 0))2δ0(x) (4.14b)

has a solution for 0 < t ≤ Tα(n,ε). It is strictly positive in ΩTα.

Proof. As argued in Lemma 2.15, the solution to (4.14) is the fundamental solution to the

corresponding operator multiplied by 1
2(σεn(0, 0))2 > 0. Hence, it is equivalent to show the

existence and strict positivity of the fundamental solution to the corresponding operator. We

further provide the expression of the corresponding fundamental solution through our proof.

Further estimates on the fundamental solution will be discussed in the following remark.

• Notations and definitions

Throughout the proof for this lemma, we define the operator Lεn associated with equa-

tion (4.14) on T as:

Lεn ≡
∂

∂t
− 1

2
(σεn)2

(
∂2

∂x2
− ∂

∂x

)
− 2

(σεn)τ
σεn

, (x, t) ∈ ΩT . (4.15)

61



Given parameter α > 0, we introduce the following definitions and notations ([2]):

i) β(ε, α) = max{κ2, κ3(ε)}(α + 2)2 > 0, where κ2, κ3 are defined in Remark 4.9.

ii) Tα(ε) = min

{
T,

1

2β

}
> 0 is a non-increasing function of α such that

lim
α→∞

Tα(ε) = 0 and lim
α→0

Tα(ε) = T0(ε) ≤ T.

Thus, in particular,

0 < Tα(ε) < T0(ε) for α ∈ (0,∞).

To simplify notation, for the rest of the proof, we use β, κ2, and Tα.

iii) Define

gα(x, t) = (α + βt)
√
x2 + 1. (4.16)

iv) For any u(x, t) defined on ΩTα , we define

uα(x, t) = e−gα(x,t)u(x, t); (4.17)

Lεn,α =
∂

∂t
− 1

2
(σεn)2 ∂

2

∂x2
− aεn,α

∂

∂x
− cεn,α, (4.18)

where

aεn,α = −1

2
(σεn)2 + (σεn)2(gα)x,
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and

cεn,α = 2
(σεn)t
σεn

+
1

2
(σεn)2(gα)2

x −
1

2
(σεn)2(gα)x +

1

2
(σεn)2(gα)xx − (gα)t

= 2
(σεn)t
σεn

+
1

2
(σεn)2(α + βt)

[
(α + βt)

x2

x2 + 1
− x√

x2 + 1
+

1

(x2 + 1)3/2

]
− β

√
x2 + 1.

≤ (|x|2 + 1)1/2{κ3 + κ2(α + βt)2 + 2κ2(α + βt)− β}.

The last inequality holds because (σεn)2 satisfies Condition H1. Hence, cα < 0 on ΩTα

for β = max{κ2, κ3}(α + 2)2, and Tα = min

{
T,

1

2β

}
.

Clearly,

Lεn,αu = egαLεn,αuα,

and Lεn,αu = 0 in ΩTα if and only if Lεn,αuα = 0 in ΩTα . Moreover, if γεn,α(x, t; ξ, τ) is

a fundamental solution of Lεn,αv = 0 then

Γεn,α(x, t; ξ, τ) = egα(x,t)−gα(ξ,τ)γεn,α(x, t; ξ, τ) (4.19)

is a fundamental solution of Lεnu = 0.

• The increasing sequence of Green’s Functions

Let
∑M
Tα

= (−M,M)× (0, Tα] for M = 1, 2, · · · . We use the superscript “M” to indi-

cate the operator, and the corresponding Green’s Function are restricted on (−M,M)

for the space variable. In each
∑M
Tα

, the leading coefficient of LMα is bounded away from
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zero, and uniformly Hölder continuous. Hence, the Green’s function γ
ε,M
n,α (x, t; ξ, τ) for

L
ε,M
n,α with zero Dirichlet data in each

∑M
Tα

exists, and has the properties in Proposi-

tion 4.7. Let 0 < η << 1, and let ϕMη be a smooth function such that ϕMη ≡ 1 for

|x| ≤ M − 2η, ϕMη ≡ 0 for |x| ≥ M − η and 0 ≤ ϕMη ≤ 1. Consider the boundary

value problem

L
ε,M
n,α v = 0 in (−M,M)× (τ, Tα],

v(x, τ) = ϕMη for |x| ≤M,

v = 0 on {|x| = M} × [τ, Tα].

The solution is given by

vMη(x, t) =

∫
|ξ|<M

γ
ε,M
n,α (x, t;xi, τ)ϕMη(ξ)dξ.

Since cεn,α < 0 it follows from the maximum principle for parabolic equations [24] that

0 ≤ vMη(x, t) ≤ 1. Thus, letting η → 0, we obtain

∫
|ξ|<M

γ
ε,M
n,α (x, t; ξ, τ)dξ ≤ 1 for |x| ≤M and 0 ≤ τ < t ≤ Tα. (4.20)

The operator adjoint to Lεn,α is

L̃εn,α = − ∂

∂t
− 1

2
(σεn)2 ∂

2

∂x2
− ãεn,α

∂

∂x
− c̃εn,α,
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where

ãεn,α =
1

2
(σεn)2 + (σεn)2 x√

x2 + 1
(α + βt) + 2σε(σεn)x,

and

c̃εn,α =2
(σεn)t
σεn

+
1

2
(σεn)2

[
x2

x2 + 1
(α + βt)2 − x√

x2 + 1
(α + βt)− (x2 + 1)−3/2(α + βt)

]
− (gα)t + σεn(σεn)x[1− 2x√

x2 + 1
(α + βt)] + (σεn)2

x + σεn(σεn)xx.

Clearly we have c̃εn,α < 0 in ΩTα . As a function of (ξ, τ), γ
ε,M
n,α is the Green’s Function

for L̃εn,α in ΣMTα , [24]. By an argument similar to the one employed above we have

∫
|x|<M

γ
ε,M
n,α (x, t; ξ, τ)dx ≤ 1 for |ξ| ≤M and 0 ≤ τ < t ≤ Tα. (4.21)

Let ξ ∈ R be fixed and let ψ(x) be a smooth, non-negative, compactly supported

function such that ξ is in the interior of the support of ψ. Consider the functions

wj(x, t) =

∫
|ζ|<j

γ
ε,j
n,α(x, t; ζ, 0)ψ(ζ)dζ

for j = M and M +1, where M is chosen so large that the support of ψ is contained in

|x| < M . Clearly L
ε,j
n,αwj = 0, j = M,M + 1 in

∑M
Tα

; wj = ψ, j = M,M + 1 for t = τ ;

and wM+1 ≥ 0 = wM , on |x| = M , t ≥ 0. Since L
ε,j
n,α is parabolic and cα ≤ 0, by

the maximum principle, wM+1 ≥ wM , in
∑M
Tα

. We now replace ψ(ζ) by a sequence

of distribution functions which have compact support and approximate δξ, the Dirac

measure concentrated at ξ. Since γ
ε,M
n,α (x, t; ζ, 0) is bounded and continuous on

∑M
Tα

,

wM
p.w.→ γ

ε,M
n,α in

∑M
Tα

, and it follows that γ
ε,M+1
n,α ≥ γ

ε,M
n,α in

∑M
Tα

. Thus, if we extend
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the definition of γ
ε,M
n,α (x, t; ξ, τ) by setting γ

ε,M
n,α = 0 for |x| or |ξ| ≥ m, we have

0 ≤ γ
ε,1
n,α(x, t; ξ, τ) ≤ · · · ≤ γ

ε,M
n,α (x, t; ξ, τ) ≤ γ

ε,M+1
n,α (x, t; ξ, τ) ≤ · · · (4.22)

for all x, ξ ∈ R and 0 ≤ τ < t ≤ Tα. From the properties (4.20), (4.21), (4.22) it

follows that the sequence {γε,Mn,α } has a finite limit almost everywhere.

• The properties of γεn,α = lim
M→∞

γ
ε,M
n,α . In fact, from inequality (2.13) in [2]:

γ
ε,M
n,α (x, t; ξ, τ) ≤ κ(t− τ)−

1
2 ,

where κ is a constant depending on the dimension of the domain, and ν(n). But

independent of α. Given x ∈ R, t > 0, {γε,Mn,α }M is monotone nondecreasing in M and

has a uniform upper bound, therefore, it has a limit γεn,α as M → ∞. It is shown in

[2] that γεn,α is the fundamental solution to Lεn,α in ΩTα . Furthermore,

Proposition 4.11. i) [2] Theorem II: Given α > 0, a fundamental solution of

Lu = 0 is given by

Γεn,α(x, t; ξ, τ) = exp{gα(x, t)− gα(ξ, τ)}γεn,α(x, t; ξ, τ) (4.23)

for x, ξ ∈ R and 0 ≤ τ < t ≤ Tα.

ii) [2] 0 ≤ γεn,α(x, t; ξ, τ) ≤ κ(n)(t− τ)−1/2 for x ∈ R and τ ≤ t ≤ Tα.

iii) [24] γεn,α(x, t; ξ, τ) > 0 for x ∈ R and τ < t ≤ Tα.
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• The existence and positivity of the solution, zεn,α ∈ ΩTα, to (4.14).

zεn,α(x, t) =
1

2
(σεn(0, 0))2Γεn,α(x, t; 0, 0+)

=
1

2
(σεn(0, 0))2 exp{(α + β)

√
x2 + 1− α} · γεn,α(x, t; 0, 0+), (4.24)

Remark 4.12. We further derive upper and lower bounds of zεn,α(x, t)

Recall that σ satisfies Condition H1. Lemma 4.4 and remark 4.9 imply σεn satisfies

Condition H3. Therefore, given M ∈ N, n and α, we have the following estimates for

γεn,α(x, t; ξ, τ).

1. By Proposition 4.11, there exists positive constant κ such that

γεn,α(x, t; ξ, τ) ≤ κ(n)(t− τ)−1/2 in ΩTα . (4.25)

2. There exist positive constants C1(M), and α1(M), depending on the structure of L
ε,M+1
n,α ,
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and Tα, such that 9

γεn,α(x, t; ξ, τ)

= lim
K→∞

γ
ε,K
n,α (x, t; ξ, τ)

≥ γ
ε,M+1
n,α (x, t; ξ, τ) (4.26)

≥ C1(t− τ)−1/2 exp

{
−α1

(x− ξ)2

t− τ

}
(4.27)

in
M∑
Tα

where the first inequality is from equation (4.22), and the second is an application of Propo-

sition 4.7.

By equations (4.19) and (4.24), given α > 0,

zεn,α(x, t) =
1

2
(σεn(0, 0))2Γεn,α(x, t; 0, 0+),

where

Γεn,α(x, t; ξ, τ) = egα(x,t)−gα(ξ,τ)γεn,α(x, t; ξ, τ),

and

gα(x, t) = (α + βt)
√
x2 + 1.

9Note that for fixed M , the structure of L
ε,M
n,α is uniform for all ε, n, and Tα(ε). Moreover,

as discussed in Remark 4.6, α1 depends only on the structure of L
ε,M
n,α when Tα is small

enough, which happens when ε is small enough. Therefore, C1 is a function of M , and α1 is
a function of M and α when ε is small enough.
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Therefore, given M ∈ N, when ε is sufficiently small,

zεn,α(x, t) ≤ 1

2
(σεn(0, 0))2 · egα(x,t)−α · κ(n)t−1/2 in ΩTα , (4.28)

zεn,α(x, t) ≥ 1

2
(σεn(0, 0))2 · egα(x,t)−α · C1(M)t−1/2 exp

{
−α1(M,α)

x2

t

}
in

M∑
Tα

. (4.29)

Remark 4.13. 1. If further we have σ2 ≥ ν > 0 in ΩT , then zεα = zεn,α for all n > 1/ν.

2. One can push the final time Tα up to T0 := min

{
T,

1

4k1

}
by sending α→ 0.

4.2 The Asymptotics of ϕ as τ → 0

As in [5], the essential idea for finding the asymptotics of ϕ as τ → 0 is to define suitable

sub and super solutions of (1.8) from the formal limiting solution of (3.7) and prove that

actual convergence takes place through the comparison principle. Hence, let us first find the

formal limiting solution to (3.7).

Claim 4.14. The unique positive solution of

F (x, 0, ϕ0, Dϕ0, D2ϕ0) = 0,

i.e.,

(ϕ0)2 − σ2(x, 0)(1− xϕ
0
x

ϕ0
)2 = 0 (4.30)

is

ϕ0(x) =
x∫ x

0
ds

σ(s,0)

. (4.31)
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Solution 4.15. Our first observation is

(
x

ϕ0

)′
=
ϕ0 − xϕ0

x

ϕ02

=
1

ϕ0

(
1− xϕ

0
x

ϕ0

)
.

This implies ϕ0
(
x

ϕ0

)′
= 1− xϕ

0
x

ϕ0
. Therefore, (4.30) is equivalent to ϕ0 = ±σ(x, 0)ϕ0

(
x

ϕ0

)′
.

Since ϕ0(x) is non-zero, one can further rewrite equation (4.30) as

1

σ(x, 0)
= ±(

x

ϕ0
)′.

Integrate both sides from on [0, x], we get

∫ x

0

ds

σ(s, 0)
= ±

∫ x

0

s

ϕ0(s)
ds

= ±(
x

ϕ0(x)
− 0

ϕ(0)
)

=
x

ϕ0(x)
.

In the last equation, we choose the “+” sign. It is because both σ(x, 0) and ϕ0(x) are strictly

positive, so

∫ x

0

ds

σ(s, 0)
and

x

ϕ0(x)
should have the same sign. Finally, we rearrange terms

and get (4.31), the solution to (4.30).

The upper and lower solutions that we are comparing ϕ with have the form

ϕ̄(x, τ) = ϕ0(x)(1 + κτ), and (4.32)

ϕ(x, τ) = ϕ0(x)(1− κτ) (4.33)
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in ΩTκ, for some given κ > 0, and T (κ) << 1/κ.

Clearly, ϕ̄ ≥ ϕ0 ≥ ϕ in ΩT . We shall further show, under some additional regularity con-

ditions, σ[ϕ̄] ≥ σ[ϕ] ≥ σ[ϕ] in some domain of ΩT . To motivate our generalized comparison

principle, let us start with the following estimates.

Claim 4.16. Assume additional regularity conditions on σ:

σ ∈ C2,1(Ω) and σxx ∈ L∞(ΩT ); (4.34)

and the Additional Decay Rate of σ(x, 0) as x→ 0:

σx(x, 0)→ 0, (4.35a)

σxx(x, 0)→ 0. (4.35b)

Given R > 0, there are σ(R), σ̄(R), such that 0 < σ(R) ≤ σ ≤ σ̄(R) <∞ on [−R,R]×[0, T ],

and

i)

σ[ϕ̄](x, τ) = σ(x, τ)× [1 + τ(2κ− σ2ϕ
0
xx

2ϕ0
− στ

σ
(x, 0)) ] +O(τ2), on ΩRT ; (4.36)

ii)

σ[ϕ](x, τ) = σ(x, τ)× [1− τ(2κ− σ2ϕ
0
xx

2ϕ0
− στ

σ
(x, 0)) ] +O(τ2), on ΩRT . (4.37)

Where O(τ2) = O(σ(R), σ̄(R), ‖σ‖
W2,0,∞([−R,R]×[0,T ])

) · τ2.

Proof. We only provide the proof for equation (4.36). The proof for equation (4.37) is similar.

Besides equations (3.14), (4.31), (4.32), and (4.41), we will also use the following equa-
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tions:

ϕ̄x(x, τ) = ϕ0
x(x)(1 + κτ); (4.38a)

ϕ̄xx(x, τ) = ϕ0
xx(x)(1 + κτ); and (4.38b)

ϕ̄τ (x, τ) = κϕ0(x). (4.38c)

Denote

d(x) =

∫ x

0

dy

σ(y, 0)
. (4.39)

Note that

ϕ0
x(x) =

ϕ0(x)

x

[
1− ϕ0(x)

σ(x, 0)

]
=
d(x)− x

σ(x,0)

d2(x)
, and (4.40a)

ϕ0
xx(x) =

ϕ0
xx− ϕ0

x

[
1− ϕ0

σ(x, 0)

]
+
ϕ0

x

−ϕ0
xσ(x, 0) + σx(x, 0)ϕ0

σ2(x, 0)

=
xσx(x, 0) + 2[ϕ0(x)− σ(x, 0)]

σ2(x, 0)d2(x)
. (4.40b)

We also need the following two higher order derivatives:

d3

dx3
ϕ0(x) =

{σx(x, 0) + xσxx(x, 0) + 2[ϕ0(x)− σx(x, 0)]}σ2(x, 0)d2(x)

σ4(x, 0)d4(x)

− {xσx(x, 0) + 2[ϕ0(x)− σ(x, 0)]}2σ(x, 0)d(x)[σx(x, 0)d(x) + 1]

σ4(x, 0)d4(x)
. (4.40c)
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It is then straight forward from (3.6):

H[ϕ̄] =

(
1− xϕ

0
x

ϕ0

)2

+ τϕ0ϕ0
xx(1 + κτ)2 − 1

4
τ2ϕ02

ϕ0
x

2
(1 + κτ)4

=

(
1− xϕ

0
x

ϕ0

)2

+ τϕ0ϕ0
xx +O(τ2), (4.41)

where O(τ2) = τ2(2κ+ κ2τ)ϕ0ϕ0
xx −

1

4
τ2(1 + κτ)4(ϕ0ϕ0

x)2. (4.42)

In order to derive equation (4.36), we fix x then find a polynomial approximation of

σ[ϕ̄](τ) for τ > 0. Suppose

σ[ϕ̄](τ) = a0 + a1τ + a2τ
2 +O(τ3). (4.43)

So,

σ2[ϕ̄](τ) = a2
0 + 2a0a1τ + (a2

1 + 2a0a2)τ2 +O(τ3). (4.44)

Meanwhile, we Taylor expand σ(x, τ) and στ (x, τ) at (x, 0). Then rearrange terms so we

have expressions for σ(x, 0) and στ (x, 0):

σ(x, 0) = σ(x, τ)− τστ (x, 0)− τ2

2
σττ (x, 0) +O(τ3), (4.45)

στ (x, 0) = στ (x, τ)− τσττ (x, 0)− τ2

2

∂3σ

∂τ3
(x, 0) +O(τ3), and (4.46)

σ2(x, 0) = σ2(x, τ)− 2τσ(x, τ)στ (x, 0) +O(τ2). (4.47)
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Collecting the above results:

σ2[ϕ̄]H[ϕ̄] = (τϕ̄2)τ ,

⇒σ2[ϕ̄]H[ϕ̄] = ϕ0(x)2(1 + 4κτ + 3κ2τ2),

⇒[a2
0 + 2a0a1τ +O(τ2)]

[(
ϕ0(x)

σ(x, 0)

)2

+ ϕ0ϕ0
xxτ +O(τ2)

]

=ϕ0(x)2(1 + 4κτ + 3κ2τ2),

⇒[a2
0 + 2a0a1τ︸ ︷︷ ︸

1

+O(τ2)][ϕ0(x)2 + σ2(x, 0)ϕ0ϕ0
xxτ︸ ︷︷ ︸

2

+O(τ2)]

=ϕ0(x)2σ2(x, 0)(1 + 4κτ + 3κ2τ2)︸ ︷︷ ︸
3

.

We further expand O(τ2) terms and get

[(1) + (a2
1 + 2a0a2)τ2 +O(τ3)][(2) + σ2(x, 0)(2κϕ0ϕ0

xx −
1

4
ϕ02

(ϕ0
xx)2)τ2 +O(τ3)]

=(3).

Plug (4.45), (4.47) to the last equality, then compare coefficients, we have

τ0 : a2
0ϕ

0(x)2 = σ2(x, 0)ϕ0(x)2,

τ1 : a2
0ϕ

0ϕ0
xxσ

2(x, 0) + 2a0a1ϕ
0(x)2 = 4κσ2(x, 0)ϕ0(x)2, and

τ2 : a2
0

[
2κϕ0ϕ0

xx −
1

4
(ϕ0ϕ0

x)2
]

+ 2a0a1ϕ
0ϕ0

xx + (a2
1 + 2a0a2)

(
ϕ0

σ(x, 0)

)2

= 3κ2(ϕ0)2.
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This means

a0 = σ(x, 0), (4.48)

a1 =
4κϕ0(x)2σ2(x, 0)− σ4(x, 0)ϕ0ϕ0

xx

2σ(x, 0)ϕ0(x)2

= 2κσ(x, 0)− σ3(x, 0)ϕ0
xx

2ϕ0(x)
, and (4.49)

a2 =
3

2
κ2σ(x, 0)− σ3(x, 0)

2

[
2κ
ϕ0
xx

ϕ0
− 1

4
ϕ0
x

2
]
. (4.50)

Hence,

σ[ϕ̄](x, τ) = σ(x, 0) +

[
2κσ(x, 0)− σ3(x, 0)ϕ0

xx

2ϕ0(x)

]
τ + a2τ

2 +O(τ3).

Replace σ(x, 0) by (4.45),

σ[ϕ̄](x, τ) = σ(x, τ) +

[
2κσ(x, τ)− στ (x, 0)− σ(x, τ)σ2(x, 0)ϕ0

xx

2ϕ0(x)

]
τ +O(τ2), (4.51)

= σ(x, τ)

{
1 + τ

[
2κ− σ2(x, 0)

ϕ0
xx

2ϕ0(x)
− στ (x, 0)

σ(x, τ)

]}
+O(τ2) (4.52)

Replace
1

σ(x, τ)
by

1

σ(x, 0)

[
1− σt

σ
(x, 0)τ +

1

2

(
−σττ

σ
+ 2

σ2
τ

σ3

)
(x, 0)τ2

]
+O(τ2),

= σ(x, τ)

{
1 + τ

[
2κ− σ2(x, 0)

ϕ0
xx

2ϕ0(x)
− στ

σ
(x, 0)

]}
︸ ︷︷ ︸

4

+O(τ2) (4.53)

= (4) + τ2[−1

2
σττ (x, 0)− 2κστ (x, 0) +

στ (x, 0)σ2(x, 0)ϕ0
xx

2ϕ0︸ ︷︷ ︸
5

+
σ2
τ (x, 0)

σ(x, 0)︸ ︷︷ ︸
6

+ a2(σ(x, 0), ϕ0, ϕ0
xx)︸ ︷︷ ︸

7

] +O(τ3), (4.54)

10 where O(τ2) = 5 + 6 + 7 + O(τ3) = O(σ(R), σ̄(R), ‖σ‖
W1,2,∞([−R,R]×[0,T ])

)τ2. Under

10Here (5) comes from the Taylor expansion for σ(x, t), (6) is the Taylor expansion for
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additional regularity condition (4.34), we will show all terms in (5), (6), and (7) are bounded

when x ∈ [−R,R]. So, we can write

σ[ϕ̄](x, t) = a0 + a1τ +O(τ2), where O = O(σ, σ̄, ‖σ‖
W2,0,∞)τ2,

where a0 and a1 are as in (4.48) and (4.49).

• Some estimates and bounds on ϕ0, ϕ0
x , ϕ0

xx, D
3ϕ0(x) as x→ 0.

1. From (4.31)

lim
x→0

ϕ0(x) = σ(0, 0).

This implies d(x) ∼ x

σ(x, 0)
as x→ 0.

2. From (4.40a)

ϕ0
x(x)→

x
σ(x,0)

− x
σ(x,0)

( x
σ(x,0)

)2
=

0

0
as x→ 0.

So,

lim
x→0

ϕ0
x(x)

L.P.
= lim

x→0

d′(x)− d′(x) + xσx
σ2 (x, 0)

2d(x)σ−1(x, 0)

=
σx
2σ

(0, 0) · lim
x→0

x

d(x)

L.P.
=

σx
2σ

(0, 0) · σ(0, 0)

=
σx(0, 0)

2

Since σx(x, τ) is continuous in ΩT , σx(x, 0) is bounded for all x ∈ [−R,R].

σ−1(x, t), and (7) is a function of (σ(x, 0), ϕ0, ϕ0
xx) .
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3. Similarly, by (4.40b)

ϕ0
xx(x)→ xσx(x, 0) + (2σ(x, 0)− 2σ(x, 0))

x2
=

0

0
as x→ 0,

we need to apply ĹHôpital′s rule. First, let us evaluate lim
x→0

ϕ0
xx(x):

lim
x→0

ϕ0
xx(x)

= lim
x→0

xσx(x, 0) + 2[ϕ0(x)− σ(x, 0)]

σ2(x, 0) · d2(x)

(1)
=

1

σ2(0, 0)
lim
x→0

[
xσx(x, 0)

d2(x)
+ 2

x− σ(x, 0)d(x)

d3(x)

]
(2)
=

1

σ2(0, 0)

· lim
x→0

{
[σx(x, 0) + xσxx(x, 0)]σ(x, 0)

2d(x)
− 2

[1− d′(x)σ(x, 0) + d(x)σx(x, 0)]σ(x, 0)

3d2(x)

}
(3)
=

1

σ2(0, 0)

·
{

1

2
· lim
x→0

σ(x, 0)

[
σx(x, 0)

d(x)
+ ϕ0(x)σxx(x, 0)

]
− 2

3
lim
x→0

σxσ(x, 0)

d(x)

}
(4)
=

1

σ2(0, 0)
· lim
x→0

[
−1

6

σ(x, 0)σx(x, 0)

d(x)
+
σ(x, 0)σxx(x, 0)ϕ0(x)

2

]
(5)
=

1

σ2(0, 0)
·
[
−σ(0, 0)

6
lim
x→0

σx(x, 0)

d(x)
+
σ2(0, 0)

2
σxx(0, 0)

]

Equality (1) holds because ϕ0(x) = x/d(x). Equation (2) is valid because σx(x)→

0 as x → 0. So, we can apply ĹHôpital′s rule and continue our estimate. (3)

comes from d′(x)σ(x, 0) = 1
σ(x,0)

σ(x, 0) = 1, and x/d(x) = ϕ0(x). Simplifying

and rearranging terms of (3), we get (4). Equation (5) follows lim
x→0

ϕ0(x) = σ(0, 0).

Note that σx(x, 0) and d(x) both approaches to zero as x→ 0, apply ĹHôpital′s
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rule one more time and we get

lim
x→0

ϕ0
xx(x) = − 1

6σ(0, 0)
· lim
x→0

σxx(x, 0)

σ−1(x, 0)
+
σxx(0, 0)

2

=
1

3
σxx(0, 0).

4. By (4.40c)

lim
x→0

D3ϕ0(x)

= lim
x→0

(3σx + xσxx)σ2d2 + 6σ2d− 6xσ − 2xσσ2d2 − 6xσσxd

σ4(x, 0)d4(x)

= lim
x→0

[
6σ

σ4

(
σd− x
d4

)
+

3σx + xσxx
σ2d2

− 2xσ2
x

σ3d2
− 6

xσx
σ3d3

]
.

Next, we calculate each of the three limits. Under additional assumption σ is

smooth, σx, σxx approach to zero as x → 0, we repeatedly applying ĹHôpital′s

rule, and arrive at the following conclusions.

(a)

lim
x→0

σ(x, 0)d(x)− x
d4(x)

= lim
x→0

σ(x, 0)(σx(x, 0)d(x) + 1− 1)

4d3(x)

= lim
x→0

σ(x, 0)
σ2
x(x, 0) + σσxx(x, 0) + σx(x, 0)/d(x)

12d(x)

=
σ(0, 0)

12
lim
x→0

σ(x, 0)[2σxσxx(x, 0) + σxσxx(x, 0) + σσxxx(x, 0)]

+
σ(0, 0)

12
lim
x→0

σ(x, 0)σxx(x, 0)

2d(x)

=
σ2(0, 0)

12

[
7

2
σxσxx(0, 0) +

3

2
σσxxx(0, 0)

]
.
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(b)

lim
x→0

3σx + xσxx
d2(x)

= lim
x→0

σ(x, 0)(3σxx + σxx + x ∂3

∂x3σ)

2d(x)

=
σ(0, 0)

2
lim
x→0

σ(4 ∂3

∂x3σ + ∂3

∂x3σ + x ∂4

∂x4σ)

2

=
σ2(0, 0) · 5 ∂3

∂x3σ(0, 0)

4
.

(c)

lim
x→0

xσx
d3

= lim
x→0

σ(σx + xσxx)

3d2

=
σ(0, 0)

3
lim
x→0

σ(σxx + σxx + x ∂3

∂x3σ)

2d

=
σ2(0, 0)

3 · 2
lim
x→0

2
∂3

∂x3
σ +

∂3

∂x3
σ + x

∂4

∂x4
σ

=
σ2(0, 0) ∂

3

∂x3σ(0, 0)

2
.

Some estimates and bounds on ϕ0, ϕ0
x, ϕ

0
xx , and D3ϕ0(x) as x→ ±R.

Recall equations (4.31), (4.40a), and (4.40b), lim
x→±R

ϕ0(x), lim
x→±R

ϕ0
x(x), and lim

x→±R
ϕ0
xx(x),

they are obviously bounded.

Some estimates and bounds relating ϕ0, ϕ0
x, and ϕ0

xx as x→ ±∞, and x→ 0.

1. σ(x, τ)d(x) = O(|x|) as |x| → ∞, uniformly in τ . Therefore, ϕ0
xx = O( 1

|x|) as

x→ ±∞.
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2.
(ϕ0)x
ϕ0

≤ O(
1

|x|
) as |x| → 0. Therefore,

(ϕ0)x
ϕ0

· x ≤ O(1) as |x| → 0.

In summary, ϕ0, ϕ0
x and ϕ0

xx are all of O(σ
¯
, σ̄, ‖σ‖

W2,0,∞([−R,R]×[0,T ])
) for |x| ≤ R. ϕ0

x

and ϕ0
xx are bounded in R.

Next, we remove the additional regularity assumption in Claim 4.16 by an approximation

procedure.

Definition 4.17. Take σ̃(x,−τ) = σ(x, τ) for all τ ≤ 0 as an extension of σ and define for

any ε > 0, ρε a standard mollifier. Define σε by

σε = ρε ∗ σ̃.

Given R >> 1, and 0 < η << 1, σεR(x, τ ; η) is a smooth function in ΩT such that

σεR(x, τ) =



σε(R + η, τ) [R + η,∞)× [0, T ]

σε(x, τ) [−R,R]× [0, T ]

σε(−R− η, τ) (−∞,−R− η]× [0, T ].

(4.55)

In the following, ϕεR
0 is defined by equation (4.31), with σ replaced by σεR, and ϕ̄εR is

given by equation (4.32), with ϕ0 replaced by ϕεR
0. We also denote dεR :=

∫ x
0 σεR(s, 0)ds.

The associated volatility, σ[ϕ̄εR] of ϕ̄εR is given by (3.14), with ψ been replaced by ϕ̄εR. As

mentioned before, if σ satisfies Condition H1, then (σεR)2 satisfies both Condition H2, and

Condition H3. Moreover, we have estimates of the bounds appear in these conditions. 11

11M0, and κ2 are constants for all (R, ε). ν(R), M(R) depend on R, uniformly in ε, and
κ3(R, ε) depends on both R and ε.
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The following claim, gives bounds relating σ[ϕ̄εR].

Claim 4.18. Given (R, ε),

LεR :=
∂

∂τ
− 1

2
σ2[ϕ̄εR](

∂2

∂x2
− ∂

∂x
)

satisfies Condition H2.

Proof. Let us first estimate the components of σ[ϕ̄εR]. Recall

σ[ϕ̄εR]2(x, τ) =
∂
∂τ (τϕ̄εR)2

H[ϕ̄εR]
.

where,

∂

∂τ
τ(ϕ̄εR)2 = (ϕ̄εR)2 + 2ϕ̄εR(ϕ̄εR)τ τ

= (ϕεR
0)2(1 + κτ)(1 + 3κτ),

H[ϕ̄εR] =

(
1− x

(ϕεR
0)x

ϕεR
0

)2

+ τ(1 + 2κτ + κ2τ2)ϕεR
0(ϕεR

0)xx −
1

4
τ2(1 + κτ)4[ϕεR

0(ϕεR
0)x ]2,

and

1− x
(ϕεR

0)x

ϕεR
0

=
ϕεR

0

σεR
.

We hence have

σ[ϕ̄εR]2(x, τ)

=
(1 + κτ)3 (1 + 3κτ)

[σεR(x, 0)]−2 + τ(1 + 2κτ + κ2τ2)
(ϕεR

0)xx

ϕεR
0 − 1

4τ
2(1 + κτ)4[(ϕεR

0)x]2
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Note that fix R, σεR and (ϕεR
0) are bounded above and below by positive constants in Ω.

The bounds are of order O(|R|p(±R)). In addition, by Condition H0, ϕεR
0/σεR is bounded

below and above in R by positive constants, uniformly in all (R, ε). Therefore, by choosing

κ(R) big enough, and then choose Tδ(R) small enough, we have H[ϕ̄εR] bounded below and

above on ΩTδ(R). In conclusion, we have σ[ϕ̄εR] be smooth, strictly positive(away from zero),

and bounded12 above in Ω, uniformly in ε.

Next, we estimate the derivatives of σ[ϕ̄εR]2.

∂

∂x
σ[ϕ̄εR]2

=
(1 + κτ)(1 + 3κτ)

H[ϕ̄εR]2

{
2ϕεR

0ϕεR
0
xH[ϕ̄εR]− ∂

∂x
H[ϕ̄εR](ϕεR

0)2
}
,

and

∂

∂τ
σ[ϕ̄εR]2

=
1

2

(ϕεR
0)2

H[ϕ̄εR]2

·
{[

∂

∂τ
(1 + κτ)(1 + 3κτ)

]
H[ϕ̄εR]− ∂

∂τ
H[ϕ̄εR](1 + κτ)(1 + 3κτ)

}
.

where

∂

∂x
H[ϕ̄εR]

=2

(
1− x

ϕεR
0
x

ϕεR
0

)−ϕεR0
x

ϕεR
0
− x

ϕεR
0
xxϕ

ε
R

0 − ϕεR
0
x

2

ϕεR
02

+ (τ + 2τ2κ+ κ2τ3)

·(ϕεR
0
xϕ

ε
R

0
xx + ϕεR

0
x(D3ϕεR

0) )− 1

2
τ2(1 + κτ)4ϕεR

0ϕεR
0
x(ϕεR

0
x

2
+ ϕεR

0ϕεR
0
xx),

12The bounds are of order Rp(±R).
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and

∂

∂τ
H[ϕ̄εR]

=(ϕεR
0ϕεR

0
xx)(1 + 4κτ + 3κ2τ2)− (ϕεR

0ϕεR
0
xx)2

[
1

2
τ(1 + κτ)4 + τ2κ(1 + κτ)3

]
.

From Claim 4.16, the first factor of the first term of ∂
∂xH[ϕ̄εR] is bounded below and above

by constants for all (R, ε). The second factor of the first term of ∂
∂xH[ϕ̄εR] is O(1/|x|) as

|x| → ∞, uniformly for all (R, ε). Moreover, for given R > 0, on can choose Tδ(R, ε) small

enough so that τD3ϕεR
0 is also bounded on ΩTδ(R,ε), and the bounds are uniform for all ε

if one chooses the appropriate Tδ(R, ε). In addition, we notice that ϕεR
0ϕεR

0
x is uniformly13

bounded by constants on R. This means ∂
∂xH[ϕ̄εR] has uniform14 bounds on ΩTδ(R,ε). For

the same reason, we have the same conclusion for ∂
∂τH[ϕ̄εR]. Therefore, both

∂

∂x
σ[ϕ̄εR]2 and

∂

∂τ
σ[ϕ̄εR]2 are bounded on ΩTδ(R,ε), and the bounds are uniform for all (R, ε).

To summarize, fixing (R, ε), σ[ϕ̄εR]2 has the following properties:

• σ[ϕ̄εR]2 is bounded below and above by positive numbers in Ω. Moreover, the bounds

in ΩTδ(R) are of order Rp(R), and are uniform in ε.

• σ[ϕ̄εR]2 is uniformly Lipschitz on ΩTδ(R,ε), with uniform Lipschitz constants for all

(R, ε).

Now, let us further motivate our generalized Comparison Principle by estimating

(
σ[ϕ̄εR]

σε

)2

− 1.

13for all (R, ε)
14for all (R, ε)
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Corollary 4.19. Given R, by choosing κ(R) > 1 big enough and Tδ(R) small enough, one

can construct σ[ϕ̄εR] such that

(
σ[ϕ̄εR]

σε

)2

− 1 = 2τ

(
2κ− σεR

2 (ϕεR
0)xx

2ϕεR
0
−

(σεR)τ

σε

)
+O(τ2) > 0

for (x, τ) ∈ [−R,R]× (0, Tδ]; and (4.56a)(
σ[ϕ̄εR]

σε

)2

− 1 =

(
σεR
σε

)2

· 2τ

(
2κ− σεR

2 (ϕεR
0)xx

2ϕεR
0
−

(σεR)τ

σε

)
+

[(
σεR
σε

)2

− 1

]
+O(τ2)

for (x, τ) ∈ [−R− η,R + η]C × (0, Tδ]. (4.56b)

Moreover, if one choses Tδ ≤
1

6κ
, then

2τκ ≤ 2τ

(
2κ− σεR

2 (ϕεR
0)xx

2ϕεR
0
−

(σεR)τ

σε

)
≤ 1 in |x| ≤ R, (4.56c)

for all ε > 0. We have similar estimates for

(
σ[ϕε

R
]

σε

)2

− 1.

Proof. Since σ satisfies Condition H1, for given R, the bounds of σεR and (σεR)x in ΩT are

uniform for all ε. Consequently, fix R, x, we have uniform bounds for ϕεR
0, (ϕεR

0)x and

(ϕεR
0)xx (for all ε). However, for any pair of R, and x, D3(ϕεR

0) may approach to ±∞ as

ε→ 0.

Claim 4.16 says

σ[ϕ̄εR]

σε
(x, τ)

=
σεR
σε
·
σ[ϕ̄εR]

σεR
(x, τ)

=
σεR
σε
·

{
1 + τ

(
2κ− σεR

2 (ϕεR
0)xx

2ϕεR
0
−

(σεR)τ

σεR

)
(x, 0) +O(τ2)

}
.
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We now give estimates on
σεR
σε

and 2κ− σεR
2 (ϕεR

0)xx

2ϕεR
0
−

(σεR)τ

σε
.

1.
σεR
σε

= 1 for |x| ≤ R, and

1

κ2
1

(
1 +R2

1 + x2

)−p(x)/4

≤
σεR
σε
≤ κ2

1

(
1 +R2

1 + x2

)−p(x)/4

for |x| ≥ R + η 15 . We have

σεR
σε
≤


κ2

1(1 + x2)−p(x)/4 if p(x) < 0

κ2
1 if p(x) > 0.

(4.57)

2. (a) The definition of σεR shows that (σεR)x, (σεR)xx, and (σεR)τ are bounded on
∑R
T ,

and they all vanish on (
∑R+η
T )C . Hence, for |x| ≥ R + 1,

ϕεR
0(x) =

x

dεR(x)
,

(ϕεR
0)x(x) =

dεR(x)− x
σεR(x,0)

(dεR(x))2
,

(ϕεR
0)xx(x) =

2[ϕεR
0(x)− σεR(x, 0)]

(σεR(x, 0)dεR(x))2
.

15The constant κ1 and the function −1 < p(x) < 1 are defined in Condition H0.
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Similar method as in Claim 4.16 shows

lim
x→±∞

ϕεR
0(x) = lim

x→±∞
σεR(x, 0) = σεR(±R, 0);

lim
x→±∞

(ϕεR
0)x(x) =

1

2
lim

x→±∞
(σεR)x(x, 0)

= 0;

lim
x→±∞

(ϕεR
0)xx(x) = lim

x→±∞
x(σεR(x, 0))x + 2[ϕεR

0(x)− σεR(x, 0)]

(σεR(x, 0)dεR(x))2

= lim
x→±∞

2[ϕεR
0(x)− σεR(±R, 0)]

(σεR(±R, 0)dεR(x))2

= 0;

lim
x→±∞

x(ϕεR
0)x(x) = lim

x→±∞
x(σεR)x(x, 0)

= lim
x→±∞

x · 0

= 0;

lim
x→±∞

x(ϕεR
0)xx(x) = lim

x→±∞
x
x(σεR(x, 0))x + 2[ϕεR

0(x)− σεR(x, 0)]

(σεR(x, 0)dεR(x))2

= lim
x→±∞

x2 · 0
(σεR(x, 0)dεR(x))2

+ lim
x→±∞

2x[ϕεR
0(x)− σεR(x, 0)]

(σεR(x, 0)dεR(x))2

= 0 + lim
x→±∞

2x

(dεR(x))2
· lim
x→±∞

[ϕεR
0(x)− σεR(x, 0)]

(σεR(x, 0))2

= 0.

The definitions of σεR, and dεR imply that |xdεR| is bounded away from zero when

|x| ≥ R + η. Therefore,

i. the magnitude of (ϕεR)2 (σεR
0)xx

2ϕεR
0

=
ϕεR

0 − σεR
xdεR

is bounded above for |x| ≥

R + η.
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ii. The magnitude of
(σεR)τ

σεR
is bounded for |x| ≥ R + η.

iii. The magnitude of x(ϕεR
0)x and x(ϕεR

0)xx are also bounded for |x| ≥ R + η.

(b) The estimates in Claim 4.16 show that |(ϕεR
0)xx| has uniform bounds on

∑R
T ;

The definitions of σεR, ϕεR
0 show that the magnitudes of both (σεR)2 (ϕεR

0)xx

2ϕεR
0

and

(σεR)τ

σεR
are bounded above for |x| ≤ R.

Hence, given (R, ε), there exists κ(R) > 1 such that

∣∣∣∣(σεR)2 (ϕεR
0)xx

2ϕεR
0

∣∣∣∣+

∣∣∣∣(σεR)τ

σεR

∣∣∣∣ ≤ κ on R.

Consequently,

κ ≤ 2κ− σεR
2 (ϕεR

0)xx

2ϕεR
0
−

(σεR)τ

σε
≤ 3κ

for given (R, ε) and proper κ(R) and Tδ(R).

Summing up, by choosing κ(R) > 1 big enough and Tδ(R) small enough16, one can construct

σ[ϕ̄εR] such that (4.56) are satisfied.

When finding the asymptotics of a function, we find two sequences of functions with

known asymptotics that converge to the target function from below and above. The fol-

lowing generalized comparison principle [5] allows us to transfer the comparison between

implied volatilities, which are solutions to two different PDEs, into the comparison between

“associated local volatilities”, which are straightforward functions in class I (0, ξ) of our

choice. Let us now state and prove the following critical result.

16for example, Tδ ≤ 1/(6κ)
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Lemma 4.20. (Comparison Principle) Assume σ satisfies Condition H1 and is bounded

below in Ω. Given R >> 1, ε > 0, define σε, ϕ̄εR, and σ[ϕ̄εR] as in Corollary 4.19. We also

define σε, ϕ
ε
R

, and σ[ϕε
R

] in a similar way.

From Theorem 2.21, there are v̄εR, vεR, and vε ∈ C(Ω) ∩W 2,1,p(ΩT ) such that

(v̄εR)τ =
1

2
(σ[ϕ̄εR])2((v̄εR)xx − (v̄εR)x), (v̄εR)(x, 0) = (ex − 1)+;

(vεR)τ =
1

2
(σ[ϕε

R
])2((vεR)xx − (vεR)x), (vεR)(x, 0) = (ex − 1)+;

(vε)τ =
1

2
(σε)2(vεxx − vεx), vε(x, 0) = (ex − 1)+.

Moreover, we have the following comparison between the corresponding implied volatilities

17 , ϕ̄εR, ϕε
R

, and ϕεR on a bounded domain.

i) There exist N(R) > 1, κ(R, ε) sufficiently large, and Tδ(R, ε) sufficiently small such

that

ϕ̄εR ≥ ϕε in

R/N∑
Tδ

. (4.58)

ii) Similarly, for the same N(R) > 1, κ(R, ε) and Tδ(R, ε),

ϕε
R
≤ ϕε in

R/N∑
Tδ

, (4.59)

Proof. We only give the proof for inequality (4.58). Inequality (4.59) can be proved similarly.

Given (R, ε). Since v̄εR = u(x, (ϕ̄εR)2τ), vε = u(x, τ(ϕε)2), and uτ (·, τ) > 1 in ΩT , instead

17Recall from previous sections: Given v, the solution to (1.8), the function ϕ such that
u(x, τϕ2) = v(x, τ) is the implied volatility associated with σ2. Here u is the solution to
(3.1), and is explicitly given in (3.2).
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of (4.58), it is equivalent to show the difference function

∆(x, τ) := v̄εR(x, τ)− vε(x, τ) ≥ 0 in Σ
R/N(R)
Tδ(R,ε)

, (4.60)

for some N(R) > 0. In fact, ∆ satisfies the following equation:

∆τ −
1

2
(σ[ϕ̄εR])2(∆xx −∆x) =

[(
σ[ϕ̄εR]

σε

)2

− 1

]
vετ in ΩTδ

(4.61)

∆(x, 0) = 0 in R. (4.62)

We formally write the solution to equation (4.61) as the following double integral, and

show positivity in
∑R/N
Tδ

, where the value of N > 1 will be specified in the proof. The

integrability of this double integral will become clear as we proceed.

∆(x, τ)

=

∫ τ

0
ds

∫
R

Γ0(x, τ ; ξ, s)

[(
σ[ϕ̄εR]

σε

)2

− 1

]
vετ (ξ, s)dξ, (4.63)

=
1

2
(σε(0, 0))2

∫ τ

0
ds

∫
[−R,R]

Γ0

[(
σ[ϕ̄εR]

σε

)2

− 1

]
e
(α+βs)

√
ξ2+1−α

γε(ξ, s; 0, 0)dξ

+
1

2
(σε(0, 0))2

∫ τ

0
ds

∫
[−R−η,−R]∪[R,R+η]

Γ0

[(
σ[ϕ̄εR]

σε

)2

− 1

]
e
(α+βs)

√
ξ2+1−α

γε(ξ, s; 0, 0)dξ

+
1

2
(σε(0, 0))2

∫ τ

0
ds

∫
[−R−η,R+η]C

Γ0

[(
σ[ϕ̄εR]

σε

)2

− 1

]
e
(α+βs)

√
ξ2+1−α

γε(ξ, s; 0, 0)dξ

:= I1 + I2 + I3. (4.64)

The goal is to show I1 > |I3| on a bounded domain of ΩT . But first, let us review a few

estimates on terms appear in the last equation.
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Define the operator for this proof :

L0 :=
∂

∂τ
− 1

2
(σ[ϕ̄εR])2(

∂2

∂ x2
− ∂

∂x
).

And,

L1 :=
∂

∂τ
− 1

2
(σε)2(

∂2

∂ x2
− ∂

∂x
)− 2

σετ
σε
.

1. Recall Claim 4.18, 1
2(σ[ϕ̄εR])2 is smooth and satisfies Condition H2. Based on our

assumption on σ2, the constants ν > 0, R0 = 0, and ‖ · ‖p,q = 0 are uniform in (R, ε).

The constants µ, M , and M0 depend only on R. By Proposition 4.5 and Remark 4.6,

the fundamental solution Γ0 to L0 exists and there exist positive constants C1, α1, α2,

depending only on the structure of L, i.e., R, such that

1

C1
(τ − s)−1/2e

−α1|x−ξ|2
τ−s ≤ Γ0(x, τ ; ξ, s) ≤ C1(τ − s)−1/2e

−α2|x−ξ|2
τ−s . (4.65)

2. Recall Lemma 4.10, there exist positive constants C2, and α3, depending on the struc-

ture of L1 and Tδ, such that

vετ (ξ, s; 0, 0) =
1

2
(σε(0, 0))2 · exp{(α + βs)

√
ξ2 + 1− α} · γε(ξ, s; 0, 0),

where constants α > 0, β(α) = max{κ2, κ3}(α + 2)2 are fixed for all (R, ε). 18 By

Remark 4.12,

(a)

γε(ξ, s; 0, 0) ≤ C2s
−1/2 in ΩTδ

, (4.66)

18κ2 and κ3 are defined in Condition H3.
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and

(b)

γε(ξ, s; 0, 0) ≥ 1

C2
s−1/2 exp

{
−α3

ξ2

s

}
in

R∑
Tδ

. (4.67)

3. Recall equations (4.56), and (4.57) in Remark 4.19

(
σ[ϕ̄εR]

σε

)2

− 1

=2τ

(
2κ− σεR

2 (ϕεR
0)xx

2ϕεR
0
−

(σεR)τ

σε

)
+O(τ2)

≥2τκ+O(τ2) > 0

for (x, τ) ∈ [−R,R]× (0, Tδ];

and

(
σ[ϕ̄εR]

σε

)2

− 1

=

(
σεR
σε

)2

· 2τ

(
2κ− σεR

2 (ϕεR
0)xx

2ϕεR
0
−

(σεR)τ

σε

)
+

[(
σεR
σε

)2

− 1

]
+O(τ2)

≤
(
σεR
σε

)2

· 2τ · 3κ+

[(
σεR
σε

)2

− 1

]
+O(τ2)

for (x, τ) ∈ [−R− η,R + η]C × (0, Tδ],

where

σεR
σε
≤


κ2

1(1 + x2)−p(x)/4 if p(x) < 0

κ2
1 if p(x) > 0.

Now, we are readily estimating I1 and I3.
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1. Lower bound for I1:

I1

:=
1

2
(σε(0, 0))2

∫ τ

0
ds

∫
[−R,R]

Γ0

[(
σ[ϕ̄εR]

σε

)2

− 1

]
e
(α+βs)

√
ξ2+1−α

γε(ξ, s; 0, 0)dξ

≥1

2
(σε(0, 0))2 1

C1C2
e−α

∫
[−R,R]

(τ − s)−1/2

· exp

{
−α1

(x− ξ)2

τ − s

}
· s · exp

{
(α + βs)

√
ξ2 + 1

}
· s−1/2 exp

{
−α3

ξ2

s

}
dξ

=
1

2
(σε(0, 0))2 1

C1C2
e−α

∫ τ

0
ds

∫
[−R,R]

(τ − s)−1/2

· exp

{
−α1

(x− ξ)2

τ − s

}
· s · exp

{
(α + βs)

√
ξ2 + 1

}
· s−1/2 exp

{
−α3

ξ2

s

}
dξ

=
1

2
(σε(0, 0))2 1

C1C2
e−α

∫ τ

0

(
s

τ − s

)1/2

ds

·
∫

[−R,R]
exp

{
−α1

(x− ξ)2

τ − s
+ (α + βs)

√
ξ2 + 1− α3

ξ2

s

}
dξ.

The first inequality holds because when |ξ| ≤ R,

(
σ[ϕ̄εR]

σε

)2

(ξ, s)− 1

= 2s

(
2κ− σεR

2 (ϕεR
0)xx

2ϕεR
0
−

(σεR)τ

σε

)
(ξ) +O(s2) > 0

≥ 2s on
R∑
Tδ

,

holds for appropriate κ and Tδ, uniformly in (R, ε).

Now, fix τ ≤ Tδ, we show a lower bound of

∫
[−R,R]

exp

{
−α1

(x− ξ)2

τ − s
+ (α + βs)

√
ξ2 + 1− α3

ξ2

s

}
dξ
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for all 0 ≤ s < τ .

(a) The first step is to complete the following square:

− α1
(x− ξ)2

τ − s
+ (α + βs)

√
ξ2 + 1− α3

ξ2

s

=−


√
α1s+ α3(τ − s)ξ +

α1s√
α1s+α3(τ−s)

x√
(τ − s)s

2

− α1α3

α1s+ α3(τ − s)
x2.

(b) Now we have

∫
[−R,R]

exp

{
−α1

(x− ξ)2

τ − s
+ (α + βs)

√
ξ2 + 1− α3

ξ2

s

}
dξ

=
√

2π exp

{
− α1α3

α1s+ α3(τ − s)
x2
}

·
∫

[−R,R]

1√
2π

exp

−1

2
·


√
α1s+ α3(τ − s)ξ +

α1s√
α1s+α3(τ−s)

x√
(τ − s)s/2

2
 dξ.

Again, denote

N(x) =
1√
2π

∫ x

−∞
e−

ξ2

2 dξ.

Changing variables, one have the last integral equals to

√
(τ − s)s

2[α1s+ α3(τ − s)]

·[N


√
α1s+ α3(τ − s)R +

α1s√
α1s+α3(τ−s)

x√
(τ − s)s/2


−N

−
√
α1s+ α3(τ − s)R +

α1s√
α1s+α3(τ−s)

x√
(τ − s)s/2

]

for |x|, |ξ| ≤ R.
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(c) Next, we show the interval


√
α1s+ α3(τ − s)(±R) +

α1s√
α1s+α3(τ−s)

x√
(τ − s)s/2


=

[
±

√
2
α1s+ α3(τ − s)

(τ − s)s
R +

√
2αx√

α1s+ α3(τ − s)
·
√

s

τ − s

]

• Covers the origin. We simply take the ratio of between half of the length of

the interval and the magnitude of the center of that interval.

√
2
α1s+ α3(τ − s)

(τ − s)s
R/

√
2α|x|√

α1s+ α3(τ − s)
·
√

s

τ − s

=
R

α|x|
α1s+ α3(τ − s)

s

=
R

α|x|

[
α1 + α3

(τ
s
− 1
)]

>
R

α|x|
α1, since 0 ≤ s < τ

>1.

The last inequality holds uniformly for all (R, ε), if we choose α ≥ 1 19 . This

is because α1 > 1 for anyR sufficiently large and any ε > 0.

• Furthermore, the length of the above interval has a uniform lower bound for

19Recall the summery of Remark 4.6,

α1 ∼ O

(
max

{
1

ν2
,
M2

0 +M2

ν

})
,

where ν, M are lower and upper bounds of σ[ϕ̄εR], respectively, M0 is the upper bound for

| ∂∂xσ[ϕ̄εR]|.
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all 0 ≤ s < τ . The minimum length occurs when

∂

∂s
2 ·

√
2
α1s+ α3(τ − s)

(τ − s)s
=
√

2[(τ − s)s]−3/2α1s
2 − α3(τ − s)2√
α1s+ α3(τ − s)

= 0.

Therefore, the minimal length of the interval is at s =

√
α3√

α1 +
√
α3
t, and

that length is 2R
√

2(
√
α1 +

√
α3)2/τ , which increases as R increases, or as

τ decreases. That means, the length of the above interval is bounded below.

• In conclusion, there exists constant ϑ, such that N(+)−N(−) ≥ ϑ for all R,

whenever κ(R, ε) big enough, and ε, Tδ(R, ε) small enough.

(d) Plugging the result to part (b), we have

∫
[−R,R]

exp

{
−α1

(x− ξ)2

τ − s
+ (α + βs)

√
ξ2 + 1− α3

ξ2

s

}
dξ

≥
√

2π exp

{
− α1α3

α1s+ α3(τ − s)
x2
}
·

√
(τ − s)s

2[α1s+ α3(τ − s)]
· ϑ.
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Hence

I1

≥1

2
(σε(0, 0))2 1

C1C2
e−α

∫ τ

0
2

(
s

τ − s

)1/2

ds

·
∫

[−R,R]
exp

{
−α1

(x− ξ)2

τ − s
+ (α + βs)

√
ξ2 + 1− α3

ξ2

s

}
dξ

≥
√

2π(σε(0, 0))2 1

C1C2
e−α · ϑ

·
∫ τ

0

(
s

τ − s

)1/2

exp

{
− α1α3

α1s+ α3(τ − s)
x2
}
·

√
(τ − s)s

2[α1s+ α3(τ − s)]
ds

=
√

2π(σε(0, 0))2 1

C1C2
e−α · ϑ

·
∫ τ

0
exp

{
− α1α3

α1s+ α3(τ − s)
x2
}
· s√

2[α1s+ α3(τ − s)]
ds

≥
√

2π(σε(0, 0))2 1

C1C2
e−α · ϑ

·
∫ τ

0
exp

{
− α1α3

min{α1, α3}τ
x2
}
· s√

2 max{α1, α3}τ
ds

=

√
π

2
(σε(0, 0))2 1

C1C2
e−α · ϑ

·τ3/2 exp

{
− α1α3

min{α1, α3}τ
x2
}

(max{α1, α3})−1/2.
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2. Upper bound for |I3|:

|I3|

≤1

2
(σε(0, 0))2e−α

∫ τ

0
ds

∫
[−R−η,R+η]C

Γ0 e
(α+βs)

√
ξ2+1

γε(ξ, s; 0, 0)

∣∣∣∣ (σ[ϕ̄εR]

σε

)2

− 1

∣∣∣∣dξ
≤1

2
(σε(0, 0))2e−αC1C2

∫ τ

0
ds

∫
[−R−η,R+η]C

(τ − s)−1/2e
−α2

(x−ξ)2
τ−s e

(α+βs)

√
ξ2+1

s−1/2

·
∣∣∣∣ (σ[ϕ̄εR]

σε

)2

− 1

∣∣∣∣dξ
=

1

2
(σε(0, 0))2e−αC1C2

∫ τ

0
ds

∫
[−R−η,R+η]C

[(τ − s)s]−1/2

· exp

{
−α2

(x− ξ)2

τ − s
+ (α + βs)

√
ξ2 + 1

}
·
∣∣∣∣ (σ[ϕ̄εR]

σε

)2

− 1

∣∣∣∣dξ.
Next, we estimate each term of the integrand.

•

− α2
(x− ξ)2

τ − s
+ (α + βs)

√
ξ2 + 1

=
−α2ξ

2 + 2α2xξ + (α + βs)(τ − s)
√
ξ2 + 1− α2x

2

τ − s
(1)
≤ −α2ξ

2 + 2α2xξ + ατ
√
ξ2 + 1− α2x

2

τ − s
(2)
≤
−α2ξ

2 + 2
N α2ξ

2 + ατ
√
ξ2 + 1− α2x

2

τ − s
(3)
≤
−
(

3
4 −

2
N

)
α2ξ

2 − α2x
2

τ − s
.

Here, inequalities (1), (2), (3) hold for the following reasons:

(1) (α+ βs)(τ − s), 0 ≤ s < τ ≤ Tδ takes its maximum value when s = βτ−α
2β =
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τ
2 −

α
2 max{κ2,κ3}(α+1)2

, which is negative when Tδ is very small. So, if we

make Tδ small enough, then (α+βs)(τ−s) takes its maximum value at s = 0.

Therefore, (α + βs)(τ − s) ≤ ατ for 0 ≤ s < τ ≤ Tδ << 1.

(2) For |x| ≤ R/N , and |ξ| ≥ R + η > R, |xξ| < R
N |ξ| <

1
N ξ

2.

(3) When Tδ <
α2
4α and R is sufficiently large,

ατ

√
ξ2 + 1 ≤ αTδ

√
ξ2 + 1 ≤ α

α2

4α
ξ2 =

1

4
α2ξ

2.

So, −α2ξ
2 + ατ

√
ξ2 + 1 ≤ −3

4α2ξ
2.

•

∣∣∣∣ (σ[ϕ̄εR]

σε

)2

(ξ, s)− 1

∣∣∣∣
≤
(
σεR
σε

)2

· 2τ

(
2κ− σεR

2 (ϕεR
0)xx

2ϕεR
0
−

(σεR)τ

σε

)
+

∣∣∣∣ (σεRσε
)2

− 1

∣∣∣∣+O(τ2)

≤κ4
1(1 + ξ2)2 · 2 1

3κ
3κ+ κ4

1(1 + ξ2)2 + 1 + 1

=5κ4
1(1 + ξ2)2 + 2, if one chooses τ ≤ Tδ ≤

1

6κ
.

The validation of the first inequality is discussed in Remark 4.19. The second

inequality holds uniformly for all (R, ε) when we choose κ(R, ε) > 1 large enough

and Tδ(R, ε) ≤ 1/κ(R, ε).

Therefore, for R big enough, one can choose Tδ so small that

5κ4
1(1 + ξ2)2 + 2 ≤ exp

{
1
4α2ξ

2

τ − s

}
for all 0 ≤ s < τ ≤ Tδ, |ξ| ≤ R + η,
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uniformly for all ε > 0.

Therefore

exp

{
−α2

(x− ξ)2

τ − s
+ (α + βs)

√
ξ2 + 1

}
·
∣∣∣∣ (σ[ϕ̄εR]

σε

)2

− 1

∣∣∣∣
≤ exp

−
(

1
2 −

2
N

)
α2ξ

2 − α2x
2

τ − s


:= exp

{
−α̃2

ξ2

τ − s

}
exp

{
−α2

x2

τ − s

}
for all 0 ≤ s < τ ≤ Tδ, |ξ| ≤ R + η,

uniformly for all ε > 0,

where α̃2(N,α2) =

(
1

2
− 2

N

)
α2(R).

So

|I3|

≤1

2
(σε(0, 0))2e−αC1C2

∫ τ

0
ds

∫
[−R−η,R+η]C

(τ − s)−1/2 s−1/2

· exp

{
−α2

(x− ξ)2

τ − s
+ (α + βs)

√
ξ2 + 1

}
·
∣∣∣∣ (σ[ϕ̄εR]

σε

)2

− 1

∣∣∣∣dξ
≤1

2
(σε(0, 0))2e−αC1C2

∫ τ

0
(τ − s)−1/2 s−1/2 exp

{
−α2

x2

τ − s

}
ds

·
∫

[−R−η,R+η]C
exp

{
−α̃2

ξ2

τ − s

}
dξ

≤1

2
(σε(0, 0))2e−αC1C2

∫ τ

0
(τ − s)−1/2 s−1/2

· exp

{
−α2

x2

τ − s

}
· τ − s

2α̃2
· 2 exp

{
−α̃2

(R + η)2

τ − s

}
ds.
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The last inequality holds because

d

dξ
exp

{
−α̃2

ξ2

τ − s

}
= exp

{
−α̃2

ξ2

τ − s

}
·
(
− 2α̃2

τ − s
ξ

)
dξ,

and consequently,

exp

{
−α̃2

ξ2

τ − s

}
dξ

=
τ − s
2α̃2ξ

·
∣∣∣∣ ddξ exp

{
−α̃2

ξ2

τ − s

} ∣∣∣∣
≤τ − s

2α̃2
·
∣∣∣∣ ddξ exp

{
−α̃2

ξ2

τ − s

} ∣∣∣∣ since |ξ| > R + η >> 1.

Now, we have

|I3|

≤1

2
(σε(0, 0))2e−αC1C2α̃2

−1

·
∫ τ

0

(
τ − s
s

)1/2

· exp

{
−α2

x2

τ − s

}
· exp

{
−α̃2

(R + η)2

τ − s

}
ds

≤1

2
(σε(0, 0))2e−αC1C2α̃2

−1

·
∫ τ

0

(τ
s

)1/2
· exp

{
−α2

x2

τ

}
· exp

{
−α̃2

(R + η)2

τ

}
ds

=
1

2
(σε(0, 0))2e−αC1C2α̃2

−1τ · 2 · exp

{
−α2

x2

τ

}
· exp

{
−α̃2

(R + η)2

τ

}
=(σε(0, 0))2e−αC1C2α̃2

−1τ · exp

{
−α2

x2

τ

}
· exp

{
−α̃2

(R + η)2

τ

}
,

where α̃2(N,α2) =

(
1

2
− 2

N

)
α2(R).
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3. We shall show, I1 > |I3| in
∑R/N(R)
Tδ

, and the difference is independent of η. Recall

I1

≥
√
π

2
(σε(0, 0))2 1

C1C2
e−α · ϑ

·τ3/2 exp

{
− α1α3

min{α1, α3}τ
x2
}

(max{α1, α3})−1/2.

And

|I3|

≤(σε(0, 0))2e−αC1C2α̃2
−1τ · exp

{
−α2

x2

τ

}
· exp

{
−α̃2

(R + η)2

τ

}
,

where α̃2(N,α2) =

(
1

2
− 2

N

)
α2(R).

For fixed R, ε, and Tδ(R, ε), α1, α2, C1 and C2 are constants. We are interested in the

comparison between I1 and |I3| as τ → 0, in which case both bounds will be dominated

by the exponential factor. Therefore, it is sufficient to show

α2x
2 + α̃2(R + η)2 >

α1α3

min{α1, α3}
x2, i.e.,[(

1

2
− 2

N

)
α2

]
(R + η)2 > (max{α1, α3} − α2)x2.
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Note x2 ≤ R2/N2, and (R + η)2 > R2, so the last inequality holds if

[(
1

2
− 2

N

)
α2

]
> (max{α1, α3} − α2) /N2, i.e.

1

2
N2 − 2N >

max{α1, α2} − α2

α2
,

therefore, we need N > 2 +
√

2

√
1 +

max{α1, α3}
α2

.

Recall Remark 4.6, and the summary in Claim 4.18,

α1, α3 ∼ max{ 1

ν2(R)
,
M2(R) +M2

0

ν(R)
}, and α2 ∼

ν(R)

M2(R)
, uniformly in ε. Here M(R),

and ν(R) are the upper and lower bound for σ2[ϕ̄εR] on ΩTδ
, respectively. M0 is the

upper bound 20 for
∂

∂x
σ2[ϕ̄εR] on ΩTδ(R,ε). Thus,

N ∼

(
max

{
1

ν2(R)
,
M2(R) +M2

0

ν(R)

}
· M

2(R)

ν(R)

)1/2

only depends on R.

Our next main result in this section is:

Theorem 4.21. Suppose p+ < 1/2, and p− = 0.

i) In the limit τ → 0, the implied volatility ϕ is the harmonic-mean of the local volatility,

namely, given x ∈ R,

lim
τ→0

1

ϕ(x, τ)
=

∫ 1

0

ds

σ(sx, 0)
. (4.68)

ii) Conversely, if ϕ̃ ∈ W 2,1,p
loc (Ω) (for any p > 1), satisfies (3.7) and (4.68), then ϕ̃ ≡ ϕ.

20uniformly for all (R, ε)
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Proof. i) Given (R, ε) > 0. Applying the comparison Lemma 4.20, we get

ϕ̄εR ≥ ϕε in

R/N(R)∑
Tδ

(4.69)

for some N(R) > 1, and 0 < Tδ(R, ε) << min{T, 1}.

Similarly, from Lemma 4.20

ϕ
ε,R
≤ ϕε in

R/N∑
Tδ

, (4.70)

without lost of generality, for the same N(R) > 1, and 0 < Tδ(R, ε) << min{T, 1}.

Therefore, for all (R, ε), there exists (κ, Tδ)(R, ε), and N(R) such that

x

(∫ x

0

ds

σεR(s, 0)

)−1

(1− κτ)

≤ϕε(x, τ)

≤x
(∫ x

0

ds

σεR(s, 0)

)−1

(1 + κτ) (4.71)

for all (x, τ) ∈
∑R/N(R)
Tδ(R,ε)

. This yields

x

(∫ x

0

ds

σεR(s, 0)

)−1

≤lim inf
τ→0

ϕε(x, τ)

≤lim sup
τ→0

ϕε(x, τ)

≤x
(∫ x

0

ds

σεR(s, 0)

)−1

(4.72)

for all ε > 0.
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Now, let ε→ 0, then σεR(x, 0)→ σR(x, 0), which equals to σ in
∑R/N(R)
Tδ(R,ε)

. On the other

hand, by theorem 2.21, ϕε → ϕ as ε→ 0. Equation (4.72) hence implies

lim
τ→0

ϕ(x, τ) = x

(∫ x

0

ds

σR(s, 0)

)−1

= x

(∫ x

0

ds

σ(s, 0)

)−1

in

R/N(R)∑
Tδ(R,ε)

. (4.73)

To show the above equality holds on ΩTδ(R,ε), it is sufficient to show N(R) ∼ M3/2(R)

ν(R)
= o(R)

as R → ∞, uniformly in ε. Recall p+ = max
x∈R
{p(x), 0}, and p− = max

x∈R
{−p(x), 0}, then

α1 ∼ O(R2p++p−), and α2 ∼ O(R−p−−2p+), uniformly in ε21. Therefore,

√
max{α1, α3}

α2
= O(R2p++p−) = o(R) if 2p+ + p− < 1.

Since R is an arbitrary large number, N(R) = o(R) as R → ∞ for p+ < 1/2, and

p− = 0. Equation (4.73) gives the point-wise convergence of ϕ as τ → 0.

ii) We now show the uniqueness part of Theorem 4.21.

Suppose ϕ̃ ∈ W 2,1,p
Loc (ΩT ), also satisfies (3.7) and (4.68). Let

∆(x, τ) = u(x, τϕ2(x, τ))− u(x, τ ϕ̃2(x, τ)).

From part i),

∆τ =
1

2
σ2(∆xx −∆x) in ΩT .

21for εsufficientlysmall
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Furthermore, one can extend ∆(x, τ) to a continuous function in Ω, which gives

∆(x, 0) = 0 ∀x ∈ R.

To see how, we take any x ∈ R, then compute the limit of ∆ as τ goes to zero:

lim
τ→0

∆(x, τ) = lim
τ→0

u(x, τϕ2(x, τ))− lim
τ→0

u(x, τ ϕ̃2(x, τ))

u∈C(Ω)
= u(x, lim

τ→0
τϕ2(x, τ))− u(x, lim

τ→0
τϕ̃2(x, τ))

(1)
= u(x, 0)− u(x, 0)

= 0.

Equality (1) holds since 0 < lim
τ→0

1
ϕ(x,τ)

= lim
τ→0

1
ϕ̃(x,τ)

=
∫ 1

0
ds

σ(sx,0)
< ∞. Notice that

|∆(x, τ)| ≤ |u(x, τϕ2(x, τ))| + |u(x, τ ϕ̃2(x, τ))| < 2ex, one may apply the generalized

Maximum Principle, Theorem 2.11 and conclude ∆ ≥ 0 and ∆ ≤ 0 in Ω, i.e., ϕ̃ ≡ ϕ.
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Chapter 5

The Asymptotic of ϕ as x→ ±∞

Throughout this section, assume σ satisfies Condition H0. Furthermore, we assume lim
x→+∞

σ(x, τ) =

σ+(τ) (respectively x→ −∞, σ−(τ)), locally uniformly in τ , with σ± continuous. The main

theorem in this section says:

Theorem 5.1. I. If σ+/− =∞ and p− ∈ [0, 1/2), then lim
x→±∞

ϕ(x, τ) =∞, uniformly in

t ∈ (0, T ] .

II. If σ+/− = 0 and p+ = 0, then lim
x→±∞

ϕ(x, τ) = 0, uniformly in t ∈ (0, T ] .

III. If p+ = p− = 0, then

lim
x→±∞

ϕ(x, τ) =

(
1

τ

∫ τ

0
σ2
±(s)ds

)2

. (5.1)

Remark 5.2. The cases where σ± is positive and finite are proved in [5]. We provide the

prove for the case involving σ+/− =∞, or σ+/− = 0.

Recall the following “cut-off volatilities” functions, which will be used in the proof of
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Theorem 5.1. For each m,n ∈ N, define

σmn (x, τ) =



m σ(x, τ) ≥ m

σ(x, τ) 1/n < σ(x, τ) < m

1/n σ(x, τ) ≤ 1/n.

Similarly, for each m,n ∈ N, we define σm(x, τ) and σn(x, τ) as the cut-off version of σ

from the above and below, respectively. By Theorem 2.21, σ, σm, σn, and σmn each has a

corresponding implied volatility: ϕ, ϕm, ϕn, and ϕmn respectively.

The proof of Theorem 5.1 takes the following steps:

I. The asymptotic of ϕ if σ+/− =∞

The case where σ+ = ∞ is equivalent to: lim inf
x→+∞

ϕ(x, τ) ≥ m uniformly in τ , for all

m ∈ N. To this end, we need the following auxiliary function.

Lemma 5.3. Given p ∈ (0, 1/2), define: M =
2

(1− p)2
, z0 = −

(
13p+ 3

3 + 3p

)1/p

, and

z1 =

(
1− 4

1 + p

)
z0. Take any η ∈ (0, 0.1), and κ ≥ 1.1 For 0 < εp < min

{
2√
2πp

, 1

}
,

let Y =
p

2

√
2πεp√

Mκ− εp
< 1. A > z1 > 2,2 then there exists ψ ∈ C2(R) satisfying the

following properties:

(i) ψ ∈ W 2,0,∞(R). In addition, ‖ψ‖
W2,0,∞(R)

= |ψ|∞ + |ψ
xx
|∞ is independent of

A, and ε

(ii) ψ(z) ≤ 1
1+η = lim

z→+∞
ψ(z) ∀z ∈ R

1Later, we will use the inequalities
1 + η√
M

<
1 + 0.1

2
< 1 and κ >

1 + η√
M

.

2for p ∈ (0, 1/2), z1(p) has the smallest value when p = 9/31, and this value is bigger
than 2.848125
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(iii) ψ(z) ≤ min

{
εp√
Mκ

,
εp√

Mκ|z|p

}
∀z ∈ (−∞, 0), and

ψ(z) ≤ εp√
Mκ

∀z ∈ [0, z1 + A)

(iv)

∣∣∣∣zψ′(z)

ψ(z)

∣∣∣∣ ≤ p ∀z ∈ R

(v)
zψ′(z)

ψ(z)
→ 0, ψ′(z)→ 0, ψ′′(z)→ 0 as z → +∞.

Proof. We prove this lemma in the Appendix.

We also make use of the following Lemma when prove item II, the case σ− = ∞ in

Theorem 5.1.

Lemma 5.4. Given p ∈ (0, 1/2), define: M =
2

(1− p)2
, z0 = −

(
13p+ 3

3 + 3p

)1/p

, and

z1 =

(
1− 4

1 + p

)
z0. Now take any η ∈ (0, 0.1), and κ ≥ 1. For 0 < εp < min

{
2√
2πp

, 1

}
,

let Y =
p

2

√
2πεp√

Mκ− εp
< 1.

Take any A > z1 > 1, then there exists ψ̃ ∈ C2(R) satisfying the following properties:

(i) ψ̃ ∈ W 2,0,∞(R), with ‖ψ̃‖
W2,0,∞, independent of A, and ε

(ii) ψ̃(z) ≤ 1
1+η = lim

z→−∞
ψ̃(z) ∀z ∈ R

(iii) ψ̃(z) ≤ min

{
εp√
Mκ

,
εp√

Mκ|z|p

}
∀z ∈ (0,∞), and

ψ̃(z) ≤ εp√
Mκ

∀z ∈ (−z1 − A, 0]

(iv)

∣∣∣∣zψ̃′(z)

ψ̃(z)

∣∣∣∣ ≤ p ∀z ∈ R

(v)
zψ̃
′
(z)

ψ̃(z)
→ 0, ψ̃

′
(z)→ 0, ψ̃

′′
(z)→ 0 as z → −∞.

Proof. If ψ(x) satisfies Lemma 5.3, then ψ̃(x) = ψ(−x) satisfies Lemma 5.4.
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Proof for item I, σ+ =∞.

step 1: Comparison between local volatilities.

We fix an m ∈ N, and show that lim
x→+∞

ϕ(x, τ) ≥ m, uniformly in τ .

Note σm(x, τ) → m as x → +∞, uniformly in τ ∈ [0, T ]. Hence, given η ∈ (0, 0.1),

there exists Ã such that

m

σm(x, τ)
≤
√

1 + η ∀(x, τ) ∈ [Ã,+∞)× [0, T ]. (5.2)

We denote the decay rate of σ as p = −min{0, lim
x→−∞

p(x)/2}, where p(x) is defined in

Condition H0. We now denote M := 2/(1− p)2. Also, by Condition H0,

min

{
1

κ1|x|p
,

1

κ1

}
≤σ

m

m
≤ κ1 for (x, τ) ∈ (−∞, 0)× [0, T ], m, n ≥ 1, (5.3a)

1

κ1
≤σ

m

m
≤ κ1 for (x, τ) ∈ [0,+∞)× [0, T ], m, n ≥ 1. (5.3b)

Now, we set

ϕm(x, τ) = mψ(εx) (5.4)

where ψ is given in Lemma 5.3, the values of η, κ = κ1 being defined as above, and A,

ε to be found. A simple computation yields

H[ϕm](x, τ) =

(
1− εx

ψ′

ψ
(εx)

)2

+ τm2ε2ψ ψ′′(εx)− 1

4
ε2τ2m4ψ2ψ′2(εx). (5.5)

Clearly, by (i) and (iv) in Lemma 5.3, we can choose
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0 < ε = ε(‖ψ‖
W2,∞ , T,m, p) < 1, independent of A such that

0 <
(1− p)2

2
:=

1

M
≤ H[ϕm](x, τ) ≤ 4

M
<∞ on Ω. (5.6)

By (v) in Lemma 5.3, there is B > 0, for which εx ≥ B implies

H[ϕm] ≥ 1

1 + η
for τ ∈ [0, T ]. (5.7)

Setting A = max{B, εÃ, 2}, we see that (5.6) holds for all z = εx ∈ R, τ ∈ (0, T );

(5.7) holds for z = εx ≥ A, τ ∈ [0, T ].

Next, we compute the local volatility (3.14) associated with ϕ, that is

σ[ϕm]2(x, τ) = m2 ψ2(εx)

H[ϕm](x, τ)
. (5.8)

We now estimate σ[ϕm]2(x, τ) in the following cases:

• z = εx ∈ (−∞, 0). So x ∈ (−∞, 0):

m2 ψ2(εx)

H[ϕm](x, τ)

(1)
≤m2 ·

(
min

{
εp√

Mκ1|εx|p
,

εp√
Mκ1

})2

·M

(2)
≤
(
σm/min

{
1

κ1|x|p
,

1

κ1

})2

·
(

min

{
εp√

Mκ1|εx|p
,

εp√
Mκ1

})2

·M

=(σm)2(x, τ) · 1(
1
κ1

)2 (
min

{
1
|x|p , 1

})2
· 1

Mκ2
1

(
min

{
1

|x|p
, εp
})2

·M

(3)
≤ (σm)2(x, τ).

110



Inequalities (1) holds by (iii) in Lemma 5.3, and (5.6); (2) is from (5.3a); (3) holds

due to 0 < εp < 1.

• z = εx ∈ [0, A+ z1). So x ≥ 0:

m2 ψ2(εx)

H[ϕm](x, τ)

(1)
≤m2ψ2(εx) ·M

(2)
≤m2

(
εp√
Mκ1

)2

·M

(3)
≤ (σmκ1)2 ε2p

Mκ2
1

·M

=(σm)2ε2p

(4)
≤ (σm)2.

Inequalities (1) golds by (5.6); (2) holds by (iii) in Lemma 5.3, and (5.6) ; (3) holds

by (5.3b); (4) holds since 0 < εp < 1.

• z = εx ∈ [A+ z1,∞). So x ≥ max{B/ε, Ã}:

m2(τ)
ψ2(εx)

H[ϕm](x, τ)

(1)
≤m2(τ)

(
1

1 + η

)2

(1 + η)

=m2(τ)
1

1 + η

(2)
≤ (σm)2

κ1

1

1 + η

(3)
≤ (σm)2(x, τ).
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Inequalities (1) holds by (ii) in Lemma 5.3, and (5.7); (2) holds by (5.2); (3) holds

because both κ and 1 + η are greater than one.

In summary,

σ[ϕm](x, τ) ≤ σm(x, τ) ≤ σ(x, τ) in ΩT for all m ∈ N. (5.9)

Step 2: Comparison between implied volatilities.

Let vm(x, τ) = u(x, (ϕm)2τ), where u is the solution to (3.1). One easily verifies, vm

satisfied equation (1.8) with σ2 replaced by σ2[ϕm]. Moreover, 0 < vm(x, τ) < ex on

ΩT . On the other hand, Theorem 2.21 says v = u(x, τϕ2) is the unique solution to

equation (1.8), which has no more than exponential growth. Let ∆ = vm − v, then ∆

satisfies

∆τ −
1

2
σ[ϕm]2(x, τ)(∆xx −∆x) =

[(
σ[ϕm]

σ

)2

− 1

]
vτ in ΩT (5.10a)

∆(x, 0) = 0 in R. (5.10b)

Since

1. σ[ϕm]2(x, τ) is continuous and non-negative on Ω;

2. σ2[ϕm](x, τ) ≤ m2 · M4 ·
1

1+η in Ω.3

3.

[(
σ[ϕm]

σ

)2

− 1

]
vτ < 0 in Ω .

3Because

(a) equation (5.8),

σ[ϕm]2(x, τ) = m2 ψ2(εx)

H[ϕm](x, τ)
,
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We can apply the Maximum Principle ([24] or Theorem 2.11) to ∆, and conclude

∆ = vm − v ≤ 0 in ΩT .

Furthermore, note that vm = u(x, τ(ϕm)2), v = u(x, τϕ2), and uτ (x, ·) > 0 in ΩT , we

have

ϕm ≤ ϕ in ΩT .

This implies

1

1 + η
m = lim

x→+∞
ϕm(x, τ) ≤ lim inf

x→+∞
ϕ(x, τ).

Sending η → 0, we get

lim inf
x→+∞

ϕ(x, τ) ≥ m for all m ∈ N. (5.11)

The proof for the case σ− = ∞ follows the same argument, using Lemma 5.4 and

auxiliary function ψ̃(z) = ψ(−z).

�

II. The asymptotic of ϕ if σ+ = 0, σ− <∞, or vise-versa.

(b) equation (5.6)

0 <
(1− p)2

2
:=

1

M
≤ H[ϕm](x, τ) ≤ 4

M
<∞ in Ω,

and

(c) item (ii) in Lemma 5.3, ψ(z) ≤ 1
1+η = lim

z→+∞
ψ(z) ∀z ∈ R.
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Without loss of generality, we give the proof for the case where σ+ = 0. It is sufficient

to show lim inf
x→+∞

ϕ(x, τ) ≤ 1/n uniformly in τ , for all n ∈ N. To this end, we need the

following auxiliary function[5]. The other case can be proved using the same symmetric

argument as we did for item I.

Lemma 5.5. Given A > 1, η ∈ (0, 0.1), and κ > 1/(1 − η), there exists ψ ∈ C2(R)

satisfying the following properties:

(i) ψ ∈ W 2,0,∞(R) with ‖ψ‖
W2,0,∞ independent of A.

(ii) ψ(z) ≥ 1
1−η = lim

z→+∞
ψ(z) ∀z ∈ R,

(iii) ψ(z) ≥ 2κ ∀z ∈ (−∞, A).

(iv)

∣∣∣∣zψ′(z)

ψ(z)

∣∣∣∣ ≤ 1/2 ∀z ∈ R,

(v)
zψ
′
(z)

ψ(z)
→ 0, ψ

′
(z)→ 0, ψ

′′
(z)→ 0 as z → +∞.

Proof for item II:

We fix an n ∈ N, and show that lim
x→+∞

ϕ(x, τ) ≤ 1/n, uniformly in τ . By assumption

in Condition H0, σn(x, τ)→ 1/n as x→ +∞, uniformly in τ ∈ [0, T ]. Therefore, given

η ∈ (0, 0.1), there exists Ã such that

1

n
σn(x, τ) ≥

√
1− η ∀(x, τ) ∈ [Ã,+∞)× [0, T ]. (5.12)

In addition, from Condition H0,

1

κ1
≤ 1/n

σn
≤ κ1 for (x, τ) ∈ ΩT . (5.13)
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Now, we set

ϕn(x, τ) =
1

n
ψ(εx) (5.14)

where ψ is given in Lemma 5.5, the values of η, κ = κ1 being defined as above, and A,

ε to be found. A simple computation yields

H[ϕn](x, τ) =

(
1− εxψ

′

ψ
(εx)

)2

+ τ
1

n2
ε2ψ ψ

′′
(εx)− 1

4
ε2τ2 1

n4
ψ

2
ψ
′2

(εx) (5.15)

Clearly, by (i) and (iv) in Lemma 5.5, we can choose

0 < ε = ε(‖ψ‖
W2,∞ , T, 1/n) < 1, independent of A such that

1

4
≤ H[ϕn](x, τ) ≤ 2 <∞ in Ω. (5.16)

By (v) in Lemma 5.5, there is B > 0, for which εx ≥ B implies

H[ϕn] ≤ 1

1− η
for τ ∈ [0, T ]. (5.17)

Setting A = max{B, εÃ}, we see that (5.16) holds for all z = εx ∈ R, τ ∈ (0, T ), and

(5.17) holds for z = εx ≥ A, τ ∈ [0, T ].

Next, we compute the local volatility (3.14) associated with ϕ, i.e.,

σ[ϕn]2(x, τ) =
1

n2

ψ
2
(εx)

H[ψn](x, τ)
. (5.18)
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Similar, but much simpler than the estimates for item I, we have

σ[ϕn](x, τ) ≤ σn(x, τ) ≤ σ(x, τ) in ΩT for all n > 0. (5.19)

Step 2: Comparison between implied volatilities.

Similar as item I, we have

ϕn ≥ ϕ in ΩT , foralln ∈ N.

This implies

1

1− η
1

n
= lim
x→+∞

ϕn(x, τ) ≥ lim sup
x→+∞

ϕ(x, τ).

Sending η → 0,

lim sup
x→+∞

ϕ(x, τ) ≤ 1

n
for all n. (5.20)

Proof for item III: See [5].
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Chapter 6

Numerical Implementation

6.1 The Finite Difference Method

Recall, for any ψ ∈ W 2,1,p
Loc (ΩT ), denote by H the quasilinear operator

H[ψ] ≡ H(x, τ, ψ,Dψ,D2ψ) = (1− xψx
ψ

)2 + τψψxx −
1

4
τ2ψ2ψ2

x.

The equation which the implied volatility ϕ satisfies in Ω is

(τϕ2)τ − σ2(x, τ)H[ϕ] = 0,

with its asymptotic

lim
τ→0

1

ϕ(x, τ)
=

∫ 1

0

ds

σ(sx, 0)
.

Note that equation (3.7) is singular at τ = 0. To overcome this obstacle, we numerically

solve for another variable that is one-to-one w.r.t. ϕ > 0, and has no singularity in Ω. This
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intermediate variable we are considering is R = τϕ2, which satisfies the Cauchy problem

Rτ −
σ2

2
Rxx = σ2(1− x

2

Rx
R

)2 − σ2

4

R2
x

R
− σ2

16
R2
x (6.1a)

R(x, 0) = 0. (6.1b)

We claim it is not singular in Ω, for the following reasons.

i) R > 0 on ΩT .

ii) When τ = 0, R = 0. However, (6.1) is non-sigular if
Rx
R

has a finite limit. To this end,

we need to find the limit of
Rx
R

as τ → 0.

lim
τ→0

Rx
R

= 2 lim
τ→0

ϕx
ϕ

= 2

d(x)−x/σ(x,0)

d2(x)

x/d(x)

= 2

∫ x
0

ds
σ(s,0)

− x
σ(x,0)

x
∫ x

0
ds

σ(s,0)

,

where d(x) =

∫ x

0

ds

σ(s, 0)
. Since σ(x, 0) is strictly positive and finite on R, we have

(a) 0 < |x
∫ x

0
ds

σ(s,0)
| <∞, and

(b) |
∫ x

0
ds

σ(s,0)
− x

σ(x,0)
| <∞
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for x ∈ R\{0}. Our task now boils down to show lim
x→0

∫ x
0

ds
σ(s,0)

− x
σ(x,0)

x
∫ x

0
ds

σ(s,0)

<∞. In fact,

lim
x→0

∫ x
0

ds
σ(s,0)

− x
σ(x,0)

x
∫ x

0
ds

σ(s,0)

= lim
x→0

d(x)− x
σ(x,0)

xd(x)

= lim
x→0

1
σ(x,0)

−
(

1
σ(x,0)

− xσ′(x,0)

σ2(x,0)

)
d(x) + xd′(x)

= lim
x→0

σ′(x,0)

σ2(x,0)

d(x)
x + 1

σ(x,0)

=

σ′(0,0)

σ2(0,0)(
lim
x→0

d(x)
x

)
+ 1
σ(x,0)

=

σ′(0,0)

σ2(0,0)
1

σ(x,0)
+ 1
σ(x,0)

=
1

2

σ′(0, 0)

σ(0, 0)
<∞.

Hence, equation (6.1) is well-defined and has no singularity in Ω.

Next, we solve equation (6.1) on [xL, xU ] × [0, T ] using finite-difference method. Let

Ri,j be the approximation of R(xi, τj), where xL = x0 < x1 < · · · < xn = xU , and

0 = τ0 << τ1 · · · < τm = T . We approximate the derivatives R(xi, τj+1)τ , and R(xi, τj+1)xx

at (x0, τj+1) by

(Rτ )0,j+1 =
R0,j+1 −R0,j

∆τ
,

(Rxx)0,j+1 =
R0,j+1 − 2R1,j+1 +R2,j+1

∆x2
.
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The derivatives at (xn, τj+1) are handled in the same way. Now, we are readily writing down

our scheme

Rτ −
σ2

2
Rxx = σ2

(
1− x

2

Rx
R

)2

− σ2

16
R2
x −

σ4

4

Rx
R
, (6.2a)

i.e., LRi,j+1 = G(Ri,j). (6.2b)

In matrix form, it is



(∆x)2

∆τσ2
0,j
− 1

2 1 −1
2 · · · 0

−1
2

(∆x)2

∆τσ2
1,j
− 1

2 −1
2 · · · 0

. . . . . . . . . . . .
...

. . . −1
2

(∆x)2

∆τσ2
i,j
− 1

2 −1
2

−1
2 1

(∆x)2

∆τσ2
n,j
− 1

2





R0,j+1

...

Ri,j+1

...

Rn,j+1



=



(
∆x
σ0,j

)2 [R0,j
∆τ +G(R0,j)

]
...(

∆x
σi,j

)2 [Ri,j
∆τ +G(Ri,j)

]
...(

∆x
σn,j

)2 [Rn,j
∆τ +G(Rn,j)

]


. (6.3)

6.2 Approximations to the Implied Volatility ϕ

Once we found the asymptotic of ϕ as τ → 0, we can get further terms of ϕ by Taylor

expanding ϕ in powers of τ . This gives simple approximations to ϕ. The goal for this
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section is to find functions ϕ0(x) and ϕ1(x), so that

ϕ(x, τ) = ϕ0(x, τ)[1 + ϕ1(x, τ)τ +O(τ2)] (6.4)

satisfies (3.7), i.e.,

(τϕ2)τ =

(
1− xϕx

ϕ

)2

+ σ2τϕϕxx +O(τ2) in ΩT , and

ϕ(x, 0) = ϕ0(x).

Recall

ϕ0(x) =
x

d(x)
, where d(x) =

∫ x

0

ds

σ(s, 0)
. (6.6)

So, we only have ϕ1 to solve. Matching terms involving τ , we have

O(τ1) : 6(ϕ0)4ϕ1 = 2σ2[ϕ0 − x(ϕ0)′][ϕ0ϕ1 − x(ϕ0)′ϕ1 − xϕ0(ϕ1)′]

+ (ϕ0)3σ2(ϕ0(x))′′. (6.7)

Plug

d′(x) =
1

σ(x, 0)
,

ϕ0(x) =
x

d(x)
,

(ϕ0)′(x) =
1

d(x)
− xd′(x)

d2(x)
, and

(ϕ0)′′(x) = −2d′(x)

d2(x)
+
xσ′(x, 0)d′2(x)

d2(x)
+

2xd′2(x)

d3(x)
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into (6.7), we get an equivalent equation that ϕ1 satisfies

2ϕ1(x) + σ(x, 0)d(x)(ϕ1)′(x) = −σ(x, 0)

xd(x)
+
σ′(x, 0)

2d(x)
+

1

d2(x)
. (6.8)

Claim 6.1. The solution to (6.8) is:

ϕ1(x) = − 1

d2(x)

[
ln

(
x

d(x)
√
σ(x, 0)

)
− ln

√
σ(x, 0)

]
.

Solution: Multiplying both sides of (6.8) by
1

σ(x, 0)d(x)
= ln(d(x))′, we get

2d′(x)

d(x)
ϕ1(x) + (ϕ1(x))′ = − 1

d2(x)

(
1

x
− σ′(x, 0)

2σ(x, 0)
− d′(x)

d(x)

)
, i.e.,

2d′(x)

d(x)
ϕ1(x) + (ϕ1(x))′ = − 1

d2(x)

[
(lnx)′ − 1

2
(lnσ(x, 0))′ − (ln d(x))′

]
, i.e.,

2d′(x)

d(x)
ϕ1 + (ϕ1)′ = − 1

d2

[
ln

(
x

d
√
σ(x, 0)

)]′
.

Now, multiply both sides of the above equation by d2(x) = exp

{
2

∫
(ln d)′dξ

}
, we can

further simplify (6.8) to

2d(x)d′(x)ϕ1(x) + d2(x)(ϕ1(x))′ = −

(
ln

x

d(x)
√
σ(x, 0)

)′
.

Hence,

(d(x)2ϕ(x)1)′ = −

(
ln

x

d(x)
√
σ(x, 0)

)′
.
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Therefore

ϕ1(x) = − 1

d2(x)

[
ln(

x

d(x)
√
σ(x, 0)

) + C

]

= − 1

d2(x)

[
ln(

x

d(x)
√
σ(x, 0)

)− ln
√
σ(x, 0)

]
. (6.9)

We chose the constant C to be − ln
√
σ(x, 0), so that ϕ1(x) does not blow up as x approaches

to zero.

�

To summarize this subsection, we have the following approximation to the implied volatility

ϕ(x, τ) when time to expire is small:

ϕ(x, τ) =
x

d

{
1− τ 1

d2

[
ln

(
x

d
√
σ(x, 0)

)
− ln

√
σ(x, 0)

]
+O(τ2)

}
, (6.10)

where d(x) =

∫ x

0

ds

σ(s, 0)
.

6.3 Numerical Example

We examine the accuracy of the asymptotic formula in (6.6) and (6.10) by comparing it to

benchmark prices computed by solving (6.1) on a refined finite difference grid. Moreover,

we illustrate the gain in accuracy provided by the two-term expansion (6.10) in Figures

6.1 and 6.2. We observe a satisfactory agreement between the asymptotic formula and the

numerically computed smile.
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Figure 6.1: Implied Volatility (For interpretation of the references to color in this and other
figures, the reader is referred to the electronic version of this dissertation.)
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Figure 6.2: Implied Volatility CEV
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Chapter 7

The Calibration Problem

In this section, we follow the ideas in [5]. One problem relevant in practice is the calibration

problem–one wants to recover the value of the parameters of the model from market data.

The asymptotics in Theorem 4.21 ii) exhibits a linear relation between the inverses of the

local and implied volatilities. This leads us to propose the following penalized functional for

the calibration problem:

Jε(σ) = ε

∫ ∣∣∣∣O( 1

σ

) ∣∣∣∣2dx+
∑
i,j

[(
1

ϕ
− 1

ϕ∗

)
(xi, τj)

]2

. (7.1)

where ϕ∗ are market implied volatilities 1, to be minimized over a suitable functional space.

We suspect that this minimization problem is well posed, at least for short time-to-maturities

τj . Indeed in this case Jε is close to a convex functional. As a matter of fact we shall

prove this property in the limiting case, that is, τj ≡ τ → 0. Specifically, we denote by

ξ(x) = σ(x, 0)−1 the inverse of the local volatility and ζ(x) =

∫ x

0
ξ(y)dy/x the inverse of

1by inverting the BlackScholes formula for σ
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the implied volatility2 in the limit τ → 0. We can consider the functional in terms of ξ, ζ

and write (abusing the notation)

Jε(ξ) = ε

∫
ξ′2 dx+

∑
i

(ζ(xi)− ζ∗(xi))2, (7.2)

where ζ∗ =
1

ϕ∗
.

We assume that these volatilities are consistent, i.e., that there exists σ0(x, 0) for which

the solution to (3.6) and (3.7) with σ(x) ≡ σ0(x, 0) asymptotically replicates market prices,

i.e., such that

lim
τ→0

ϕ(xi, τ) = ϕ∗(xi) ≡
1

ζ∗(xi)
.

It follows that Jε(ξ0)|ε=0 = 0, with ξ0 = σ−1
0 . This means that, by assumption, we have

a solution to the exact asymptotic calibration problem. As a consequence, there are in fact

infinitely many of them, as can easily be seen from the argument in the proof of Theorem

7.1 below. The whole point is to choose one of these solutions in a stable way. This is the

question that the following result addresses.

Theorem 7.1. i) For any ε > 0, there exists a unique solution of the minimization prob-

lem

inf
ξ∈H1(R)

Jε(ξ), (7.3)

denoted by ξε.

ii) When ε → 0, ξε converges uniformly in R to a solution ξ̂ of the exact asymptotic

2Theorem 4.21
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calibration problem, i.e.,

ζ̂(xi, 0) ≡
∫ 1

0
ξ̂(sxi) ds = ζ∗(xi). (7.4)

Proof. i) The existence of the infinium of Jε follows from the best approximation property

[21] of a Hilbert space: “If C is a non-empty closed convex subset of a Hilbert space H

and x a point in H, there exists a unique point y ∈ C which minimizes the distance

between x and points in C.”

For the uniqueness of the minimizer, let us first compute the Euler equation. Note that

ξε being a solution for the minimizing problem (7.3) implies

∂Jε(ξε + hv)

∂h

∣∣∣∣
h=0

= 0 ∀v ∈ H1(R).

That is

∂Jε(ξε + hv)

∂h

∣∣∣∣
h=0

=2ε

∫
R

(ξε + hv)′v′ + 2
∑
i

(
1

xi

∫ xi

0
ξε + hvdy − ζ∗(xi)

)(
1

xi

∫ xi

0
vdy

) ∣∣∣∣
h=0

(1)
= 2ε

(
ξ′εv|∞−∞ −

∫
ξ′′ε vdy

)
+ 2
∑
i

(ζε(xi)− ζ∗(xi))
(

1

xi

∫ xi

0
vds

)
(2)
= 2

[
−ε
∫
ξ′′ε vdy +

∑
i

(ζε(xi)− ζ∗(xi))
(

1

xi

∫ xi

0
vdy

)]

=2

∫ [
−εξ′′ε +

∑
i

(ζε(xi)− ζ∗(xi))
1

xi
1(0,xi)

]
vdy

=0 ∀v ∈ H1(R).
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Equalities (1) holds because ζ(x) = 1
x

∫ x
0 ξ(y)dy, (2) holds since ξε ∈ H1(R).

Therefore, the Euler equation turns out to be:

−εξ
′′
ε +

∑
i

1

xi
1(0,xi)

(ζε(xi)− ζ∗i ) = 0. (7.5)

Next, we show uniqueness of the solution to (7.5). Take ξε and ξ̃ε as two solutions to

(7.5), with corresponding quantities ζε , ζ̃ε ,respectively. We first take the difference of

two corresponding Euler equations. Then multiply both sides by ξε − ξ̃ε and integrate

over R, we get

−ε(ξ
′′
ε − ξ̃

′′
ε ) +

∑
i

(ζ(xi)ε − ζ̃ε(xi))
1

xi
1(0,xi)

= 0

⇒
∫
R
−ε(ξ

′′
ε − ξ̃

′′
ε )(ξε − ξ̃ε)dy +

∑
i

∫
R

(ξε − ξ̃ε)(ζεi − ζ̃εi)
1

xi
1(0,xi)

dy = 0

⇒ ε

∫
R

(ξ′ε − ξ̃′ε)2dy +
∑
i

(ζεi − ζ̃εi)
2 = 0.

This implies ξ′ε = ξ̃′ε a.e. and ζεi = ζ̃εi . Therefore, ξ(x) = ξ̃(x) ∀x ∈ R.

ii) We now show the convergence of ξε as ε → 0. Multiply both sides of (7.5) by ξε, then

integrate over R. This gives us ε
∫
R ξ
′
ε
2

+
∑
i

(ζε(xi)− ζ∗i )ζε(xi) = 0, i.e.,

ε

∫
R
ξ′ε

2
+
∑
i

ζ2
ε (xi) =

∑
i

ζε(xi)ζ
∗
i . (7.6)
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Therefore,
∑
i
ζ2
ε (xi)

(∗)
≤
∑
i
ζε(xi)ζ

∗
i . On the other hand,

∑
i

(ζε(xi)− ζ∗i )2 =
∑
i

ζ2
ε (xi) +

∑
i

ζ∗i
2 − 2

∑
i

ζε(xi)ζ
∗
i

(∗)
≤
∑
i

ζ∗i
2 −

∑
i

ζε(xi)ζ
∗
i . (7.7)

Hence,

inf
ξ∈H1(R)

Jε(ξ) = ε

∫
R
ξ
′2
ε +

∑
i

(ζε(xi)− ζ∗(xi))2

=
∑
i

ζε(xi)ζ
∗
i −

∑
i

ζ2
ε (xi)︸ ︷︷ ︸

(7.6)

+
∑
i

(ζε(xi)− ζ∗(xi))2

≤
∑
i

ζε(xi)ζ
∗
i +

∑
i

ζ∗i
2 −

∑
i

ζε(xi)ζ
∗
i︸ ︷︷ ︸

(7.7)

=
∑
i

ζ∗i
2.

Passing to the limit as ε→ 0 in (7.2), one sees the limit of ξε solves the exact asymptotic

calibration problem.
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Chapter 8

Comparing Relative Pricing of

Options with Stochastic Volatility

Ledoit, Santa-Clara and Yan molded the implied volatilities of call options of all maturities

and strike prices as a joint diffusion with the stock price S(t). They assumed the stock price

follows:

dS(t)

S(t)
= µs(t)dt+ σS1

dW1(t).

The implied volatilities V of any fixed time to maturity and moneyness X ≡ S(t)/K, where

K is the strike price have dynamics given by

dV (t, T,X) = µV (t, T,X)dt+ σV1
(t, T,X)dW1(t) + σV2

(t, T,X)dW2(t),

where W2 is a Brownian motion orthogonal to W1.

In order for no arbitrage opportunities to exist in trading the stock and its options, the

drift of the processes followed by the implied volatilities is constrained in such a way that
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it is fully characterized by the volatilities of the implied volatilities. The authors equated

the drift of the options that we obtain in this manner with the short term interest rate

and obtain a constraint on the drift of the implied volatilities. In conclusion, the authors

derived the risk-adjusted dynamics of the implied volatilities. They also showed that the

Black-Scholes implied volatilities of at-the-money options converge to the underlying asset’s

instantaneous (stochastic) volatility as the time to maturity goes to zero. This asymptotic

agrees with ours if ∫ x

0

dy

σ(y, 0)
=

x

σ(x, 0)
∀x ∈ R.

One possibility is that σ(y, 0) ≡ σ for y ∈ (0, x).
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Appendix A

Derivation of Equation (1.7)

Proof. We notice under the risk-neutral measure P̃, the underlying security satisfies

dSt
St

= rdt+ Σ(t, St)dW̃t,

where W̃ is a Brownian motion under P̃. Furthermore, at time t, the value of a call option

is the discounted conditional expectation of the pay-off function (ST −K)+, i.e., C(St, t) =

e−r(T−t) ẼSt,t[(ST −K)+]. Differentiating er(T−t)C(St, t), and let τ = T − t, one gets:

d(er(T−t)C(St, t))

=erτ [−rC(St, t) + Ct(St, t)]dt+ erτCS(St, t)dSt +
1

2
erτCSS(St, t)dStdSt

=erτ
[
−rC(St, t) + Ct(St, t) + rStCS(St, t) +

1

2
Σ2(St, t)S

2
t CSS(St, t)

]
dt

+ erτCS(St, t)StΣ(St, t)dW̃t.
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Since er(T−t)C(St, t) is a martingale, the drift is zero. That is,

erτ
[
−rC(St, t) + Ct(St, t) + rStCS(St, t) +

1

2
Σ2(St, t)S

2
t CSS(St, t)

]
= 0.

Notice that erτ > 0, and the above equation holds for every possible path of St. Therefore,

one can replace (St, t) by (S, t) ∈ R+ × (0, T ), and get equation (1.7).
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Appendix B

Proof for Lemma 5.3.

Given p ∈ (0, 1/2), η ∈ (0, 0.1), let M =
2

(1− p)2
, z0 = −

(
13p+ 3

3 + 3p

)1/p

, and

z1 =

(
1− 4

1 + p

)
z0. For any κ ≥ 1 >

1 + η√
M

, and 0 < εp < min

{
2√
2πp

, 1

}
,

define Y =
p

2

√
2πεp√

Mκ− εp
, c =

εp

(1 + η)
√
Mκ

, and Z0 < 0 such that N(Z0) ≤ εpη√
Mκ

.

The function ψ(z) is defined as:

ψ(z) =



c · 1
|z|p z < z0

c · g(z)/|z0|p+3 z0 ≤ z ≤ z1

ψ̃(z − z1) z1 < z,

(B.1)

where

g(z) =


g1(z) =

p(p+1)
2 (z − z0)2|z0| −

p(p+1)2

6 (z − z0)3 + p(z − z0)|z0|2 + |z0|3z0 ≤ z <
z0+z1

2

g2(z) =
p(p+1)2(z−z1)3

12 + |z0|p+3,
z0+z1

2 ≤ z ≤ z1

(B.2)
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and

ψ̃(z) =
1

1 + η

{(
1− εp√

Mκ

)
N
[
Y ln(

z

A
) + Z0

]
+

εp√
Mκ

}
,

N(d) =
1√
2π

∫ d

−∞
e−y

2/2dy.

Note that M ≥ 2, z0 < 0, z1 > 0 and 0 < Y < 1 for all ε defined above.

Before we check all five conditions in lemma 5.3, we need to show:

Proposition B.1. 1.) ψ(z) ∈ C2(R).

2.) It is non-decreasing on R, and

3.) ψ(z) ≤ 1

1 + η
= lim
z→∞

ψ(z).

Proof. 1.) Notice ψ(z) is piece wise defined, and smooth in each piece. To show ψ(z) ∈

C2(R), we only need to check the smoothness at points where different pieces connect.

Simple calculations give:

ψ′(z) = c · p|z|−p−1 z < z0

ψ′′(z) = c · p(p+ 1)|z|−p−2 z < z0;

g′(z) =


g′1(z) = p(p+ 1)(z − z0)|z0| −

p(p+1)2

2 (z − z0)2 + p|z0|2, z0 ≤ z <
z0+z1

2

g′2(z) =
p(p+1)2(z−z1)2

4 ,
z0+z1

2 ≤ z ≤ z1;
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g′′(z) =


g′′1 (z) = p(p+ 1)|z0| − p(p+ 1)2(z − z0), z0 ≤ z <

z0+z1
2

g′′2 (z) =
p(p+1)2

2 (z − z1),
z0+z1

2 ≤ z ≤ z1;

and

ψ′(z) = 1
1+η

1√
2π

(
1− εp√

Mκ

)
exp{−Λ2/2}Y 1

z−z1
z > z1

ψ′′(z) = −C1 exp{−Λ2/2}(1 + Y Λ)Y 1
(z−z1)2

z > z1,

where

C1 =
1

1 + η

1√
2π

(
1− εp√

Mκ

)
and Λ(z) = Y ln

z − z1

A
+ Z0.

Note that the constant C1 is between 0 and 1, for all A and ε. To show ψ is C2 at z0

and (z0 + z1)/2, one simply computes left and right limits of ψ and its derivatives up to

order two, and show they agree at z0 and (z0 + z1)/2. To see ψ is C2 at z1, one needs

to show

lim
z→0+

ψ̃
′
(z) = 0 and lim

z→0+
ψ̃
′′
(z) = 0. (B.3)
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The key is to show exp

{
−Λ2

2

}
= o(zN ) for any N ∈ N as z → 0+. Indeed,

exp{−(Y ln
z

A
+ Z0)2/2}

= exp

{
−Y 2

(
ln
z

A

)2
/2−

Z2
0

2
− Y ln

z

A
Z0

}

< exp

{
−Y 2

(
ln
z

A

)2
/2− Y ln

z

A
Z0

}

= exp

ln
z

A
· ln
(
A

z

)Y 2
2

 · exp

{
ln

(
A

z

)Y Z0
}

=
( z
A

)ln
(
A
z

)Y 2
2

·
(
A

z

)Y Z0

=
( z
A

)ln
(
A
z

)Y 2
2 −Y Z0

,

and lim
z→0+

ln

(
A

z

)Y 2
2

= +∞. Therefore, lim
z→0+

exp{−(Y ln
z

A
+ Z0)2/2} · 1

zN
= 0 for

any given large N .

These complete the proof for the smoothness of ψ.

2.) The non-decreasing property of ψ is a simple evaluation of its first derivative. For

z < z0, or z ≥ (z0 + z1)/2, it is clear, ψ′(z) ≥ 0. It is left to show g′1(z) ≥ 0 for
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z0 ≤ z < (z0 + z1)/2. Recall

g′1(z)

=p(p+ 1)(z − z0)|z0| −
p(p+ 1)2

2
(z − z0)2 + p |z0|2

=p

(
(p+ 1)(z − z0)

2
+ |z0|

)2

− 3

4
p(p+ 1)2(z − z0)2

=
p

4

[
(1 +

√
3)(p+ 1)(z − z0) + 2 |z0|

] [
(1−

√
3)(p+ 1)(z − z0) + 2 |z0|

]

for z0 ≤ z <
z0+z1

2 . Moreover, |z − z0| ≤ 2
1+p |z0| implies

(1−
√

3)(p+ 1)(z − z0) ≥ −|1−
√

3|(p+ 1)
2

p+ 1
|z0| = −2(

√
3− 1) |z0|.

Therefore, both factors of the last equality are positive and consequently, g′1(z) ≥ 0 for

z0 ≤ z < (z0 + z1)/2.

3.) Consequently, ψ ≤ lim
z→∞

ψ = 1
1+η .

Proposition B.2.

ψ(z) ∈
(

0,
1

1 + η

)
in R (B.4)

Proof. It is simply because of the non-decreasing property of ψ and the facts lim
z→−∞

ψ(z) = 0,

lim
z→+∞

and ψ(z) = 1
1+η .

Proposition B.3. |ψ′(z)| has uniform upper bound on R for all A, ε1.

1defined in Lemma 5.3
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Proof. 1. or z < z0 < 0

ψ′(z) =c · p · |z|−p−1

≤c · p · |z0|−p−1,

where c = εp

(1+η)
√
Mκ

< 1
(1+η)

√
Mκ

, and z0 = −
(

13p+ 3

3 + 3p

)1/p

both have bounds in-

dependent of A and ε.

2. For z0 ≤ z ≤ z1

ψ′(z) = c · P2(z),

where c = εp

(1+η)
√
Mκ

< 1
(1+η)

√
Mκ

and P2(z) is a quadratic polynomial of which

the coefficients depend only on p and z0. Hence, the bounds for ψ′(z) are finite and

independent of A and ε.

3. For z > z1

ψ′(z) = C1 exp{−Λ2/2} Y

z − z1
,

where C1 =
1

1 + η

(
1− εp√

Mκ

)
1√
2π

, and Λ = Y ln

(
z − z1

A

)
+ Z0.

(a) 0 < z − z1 ≤ A
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We first find an upper bound for exp[−Λ2/2].

exp[−Λ2/2]

= exp

{[
Y ln

(
A

z − z1

)
− Z0

]
·
[
Y

2
ln

(
z − z1

A

)
+
Z0

2

]}

=

[(
A

z − z1

)Y
· e−Z0

]Y
2 ln

(
z−z0
A

)
+
Z0
2

=

(
A

z − z1

)Y 2
2 ln

(z−z1
A

)
+
Y Z0

2
· e
−Z0

[
Y
2 ln

(z−z1
A

)
+
Z0
2

]

≤
(

A

z − z1

)Y 2
2 ln

(
z−z1
A

)
+
Y Z0

2
.

The last inequality holds because of
Y

2
ln

(
z − z1

A

)
+
Z0

2
< 0 and consequently,

e
−Z0

[
Y
2 ln

(
z−z1
A

)
+
Z0
2

]
≤ 1 when 0 < Y < 1, 0 <

z − z1

A
≤ 1, and Z0 < 0.

Therefore, for 0 < z − z1 ≤ A,

ψ′(z) ≤ C1 ·
Y

A
·
(

A

z − z1

)Y 2
2 ln

(z−z1
A

)
+
Y Z0

2 −1

,

where C1 =
1

1 + η

1√
2π

(
1− εp√

Mκ

)
.

Note that

(
A

z − z1

)Y 2
2 ln

(z−z1
A

)
+
Y Z0

2 −1

= exp

{
−
[
Y 2

2
ln

(
z − z1

A

)
+
Y

2
Z0 − 1

]
· ln
(
z − z1

A

)}
↓ 0

as z− z1 → 0, or z− z1 →∞. So it would have an interior maximum on R when
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its derivative with respect to z equals to zero. That is,

when
Y 2

2
ln

(
z̃ − z1

A

)
+
Y Z0

2
− 1 = 0. However, this point,

z̃ − z1

A
= exp

{
2

Y 2

(
1− Y

2
Z0

)}
> exp

{
2

Y 2

}
> 1 is outside of the interval

z − z1

A
∈ (0, 1], so

(
A

z − z1

)Y 2
2 ln

(
z−z1
A

)
+
Y Z0

2 −1

∈ (0, 1] for
z − z1

A
∈ (0, 1].2

Consequently,

|ψ′(z)|

(1)
≤C1 ·

Y

A
· 1

(2)
≤ 1

1 + η

1√
2π
· p

2

√
2πεp√
Mκ/2

· 1

A

(3)
≤ p

1 + η
· εp√

Mκ
· 1

2

≤ p

1 + η
· 1

2
√
Mκ

.

Note inequality (1) is from the last estimate on

(
A

z − z1

)Y 2
2 ln

(
z−z1
A

)
+
Y Z0

2 −1

.

(2) holds because C1 < 1
1+η

1√
2π

, and Y < p
2

√
2πεp√
Mκ/2

when εp < 1. (3) holds

because A ≥ 2.

2The range of
(

A
z−z1

)Y 2
2 ln

(z−z1
A

)
+
Y Z0

2 −1
is between the value at z− z1 = A and when

z − z1 → 0+.
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(b) z − z1 > A:

|ψ′(z)| = C1 ·
Y

A
· A

z − z1
exp{−Λ2/2}

≤ C1 ·
Y

A
· 1 · 1

=
1

1 + η

1√
2π

√
Mκ− εp√
Mκ

· p
2

√
2πεp√

Mκ− εp
· 1

A

≤ 1

1 + η
· εp√

Mκ
· p

2
· 1

2

<
p

1 + η
· 1

4
√
Mκ

Proposition B.4. |ψ′′(z)| is finite and the maximum value is independent of A.

Proof. We estimate |ψ′′| in the following intervals separately.

1. z < z0 < 0:

ψ′′ =
εp

(1 + η)
√
Mκ
· p(p+ 1)|z|−p−2.

Since

(a) εp

(1+η)
√
Mκ

< 1
(1+η)2

√
2

for all ε and A3, and

(b) z0 depends only on on p, the decay rate of σ2.

|ψ|′′ is finite and the maximum value independent of A and ε.

2. z0 ≤ z ≤ z1:

In this case, ψ′′ is a polynomial on [z0, z1]. Since all coefficients and the end points z0,

z1 of this polynomial are finite and depending only on p, the maximum and minimum

3satisfies Lemma 5.3
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values of ψ′′ are finite and only depending on p.

3. z > z1

|ψ′′(z)| = C1

∣∣∣∣ 1 + Y Λ

(z − z1)2exp
{

Λ2
2

}∣∣∣∣ · Y
= C1 ·

(
A

z − z1

)2

· exp

{
−Λ2

2

}
·
∣∣∣∣1 + Y Λ

A2

∣∣∣∣ · Y
where Λ = Y ln

z − z1

A
+ Z0, and 0 < C1 =

1

1 + η

1√
2π

(1− εp√
Mκ

) < 1. Next, we show

|ψ′′(z)| ≤ 1 + e−1/2 for z > z1

in the following subintervals.

(a) 0 < z − z1 ≤ A

(
A

z − z1

)2

· exp

{
−Λ2

2

}
·
∣∣∣∣1 + Y Λ

A2

∣∣∣∣ · Y
=

(
A

z − z1

)2

· exp


ln

(
z − z1

A

)−Y2
− Z0

2

 · Λ
 ·

∣∣∣∣1 + Y Λ

A2

∣∣∣∣ · Y
=

(
z − z1

A

)−Y2 Λ−2

· e−
Z0
2 Λ ·

∣∣∣∣1 + Y Λ

A2

∣∣∣∣ · Y
(1)
≤
(
z − z1

A

)−Y2 Λ−2

· e−
Z0
2 Λ · |1 + Y Λ| · Y

≤
(
z − z1

A

)−Y2 Λ−2

e−
Z0
2 ΛY +

(
z − z1

A

)−Y2 Λ−2

e−
Z0
2 Λ|Λ|Y 2

(2)
≤
(
z − z1

A

)−Y2 Λ−2

e−
Z0
2 Λ +

(
z − z1

A

)−Y2 Λ−2

e−
Z0
2 Λ|Λ|,

where inequalities (1) holds because A > 2, and (2) holds since 0 < Y < 1.
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Next, we find an upper bound for

(
z − z1

A

)−Y2 Λ−2

· e−
Z0
2 Λ

and

(
z − z1

A

)−Y2 Λ−2

· e−
Z0
2 Λ · |Λ|.

i. (
z − z1

A

)−Y2 Λ−2

· e−
Z0
2 Λ = exp

{
−Λ2

2

}
≤ 1 in R.

ii. (
z − z1

A

)−Y2 Λ−2

· e−
Z0
2 Λ · |Λ| = −Λ · exp

{
−Λ2

2

}
.

The last quality has maximum when its derivative,

Λ′ exp

{
−Λ2

2

}
(−1 + Λ2),

equals to zero, or when z → z+
1 , i.e., when Λ = −1 4 , or z → z+

1 . Since

1 · exp

{
−(−1)2

2

}
= e−1/2, and −Λ exp{−Λ2

2
} → 0 as z → z+

1 , we get

(
z − z1

A

)−Y2 Λ−2

· e−
Z0
2 · |Λ| ≤ e−1/2.

4Since 0 < z − z1 ≤ A, Y > 0 and Z0 < 0, the only feasible solution to −1 + Λ2 = 0 is
Λ = −1.
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In conclusion, when 0 < z − z1 ≤ A,

|ψ′′(z)|

=C1 ·
(

A

z − z1

)2

· exp

{
−Λ2

2

}
·
∣∣∣∣1 + Y Λ

A2

∣∣∣∣ · Y
≤
(

A

z − z1

)2

· exp

{
−Λ2

2

}
·
∣∣∣∣1 + Y Λ

A2

∣∣∣∣ · Y
≤
(
z − z1

A

)−Y2 Λ−2

e−
Z0
2 Λ · Y +

(
z − z1

A

)−Y2 Λ−2

e−
Z0
2 Λ|Λ| · Y 2

(1)
≤1 · Y + e−1/2 · Y 2

(2)
≤1 + e−1/2.

Inequality (1) is from the estimates on
(
z−z1
A

)−Y2 Λ−2
·e−

Z0
2 Λ and

(
z−z1
A

)−Y2 Λ−2
·

e−
Z0
2 Λ·|Λ|. Inequality (2) holds because 0 < Y < 1 when εp < min{1, 2/(

√
2πp)}.

(b) z − z1 > A:

|ψ′′(z)|

≤
∣∣∣∣ 1 + Y Λ

(z − z1)2 exp
{

Λ2
2

}∣∣∣∣ · Y
≤
[

1

(z − z1)2
+

|Y Λ|
(z − z1)2

]
Y

exp{Λ2/2}
(1)
≤1 +

Y 2

(z − z1)2
· |Λ|

exp{Λ2/2}

=1 +

(
A

z − z1

)2

· Y
2

A2
· |Λ|

exp{Λ2/2}
(2)
≤1 + Y 2 · 1 · 1 · |Λ|

exp{Λ2/2}
(2)
≤1 + 1 · e−1/2,
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where inequalities (1) holds because |z−z1| ≥ A ≥ 2, and
Y

exp Λ2/2
≤ Y < 1; (2)

holds because z−z1 > A ≥ 2 and 0 < Y < 1; (3) holds because
|Λ|

exp{Λ2/2}
< e−1/2

as discussed in the previous case, and 0 < Y < 1.

In summary, when z − z1 > A,

|ψ′′(z)| ≤ 1 + e−1/2.

If one exam the proof for Proposition B.1, it is clear that zψ̃
′
(z) → 0, ψ̃

′
(z) → 0,

ψ̃
′′
(z)→ 0 as z → +∞, and lim

z→+∞
ψ̃(z) = 1

1+η . These implies (ii), and (v) in Lemma 5.3.

Now, we left to show (iii) and (iv) in Lemma 5.3.

(iii): It is equivalent to show

ψ ≤ εp√
Mκ|z|p

z ∈ (−∞,−1), and

ψ ≤ εp√
Mκ

z ∈ [−1, z1 + A).

As usual, we estimate ψ in different intervals. A critical property is that ψ is non-decreasing

in R.
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1. z < z0 < −1:

ψ ≤ ψ(z0)

=
1

1 + η

εp√
Mκ

1

|z0|p

<
εp√
Mκ

,

since 0 <
1

1 + η
,

1

|z0|p
< 1.

2. z0 ≤ z ≤ z1:

ψ ≤ ψ(z1)

=
1

1 + η

εp√
Mκ

|z0|p

|z0|p

<
εp√
Mκ

,

3. z1 < z ≤ z1 + A:

ψ ≤ ψ(z1 + A)

=
1

1 + η

{(
1− εp√

Mκ

)
N(Z0) +

εp√
Mκ

}
=

εp√
Mκ

1

1 + η

{(√
Mκ

εp
− 1

)
N(Z0) + 1

}
(1)
≤ εp√

Mκ

1

1 + η

{(√
Mκ

εp
− 1

)
· ηεp√

Mκ− εp
+ 1

}
,

=
εp√
Mκ

1

1 + η
·

{√
Mκ− εp

εp
· ηεp√

Mκ− εp
+ 1

}

=
εp√
Mκ
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Inequality (1) holds because we choose Z0 so that N(Z0) ≤ ηεp√
Mκ− εp

.

(iv):

1. z < z0: ∣∣∣∣zψ′ψ
∣∣∣∣ =

∣∣∣∣zpzp−1

zp

∣∣∣∣ = p.

2. z0 ≤ z ≤ 0: ∣∣∣∣zψ′ψ
∣∣∣∣ ≤ ∣∣∣∣z0ψ

′(z0)

ψ(z0)

∣∣∣∣ = p.

The first inequality holds because when z0 < z < 0, ψ > 0, ψ′ > 0, and ψ′′ < 0.

Therefore, |z|, |ψ′(z)|, and 1/|ψ(z)| are decreasing as z ↑ 0.

3. 0 < z ≤ z1: since z, ψ > 0, and ψ′ > 0, it is equivalent to show
zψ′

ψ
≤ p, i.e.,

W (z) := zψ′ − pψ ≤ 0 for 0 < z ≤ z1.

We now exam the inequality over the following two sub-intervals5.

(a) For 0 < z ≤ z0 + z1

2
,

W (z) = zg′1(z)− g1(z).

• Endpoints

W

(
z0 + z1

2

)
=

14/3p2

1 + p
z3
0 ,

<0.

5We frequently use the equalities
z0+z1

2 = p−1
p+1z0, and

z1−z0
2 = − 2

p+1z0.
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• Exam the interior extreme points. Since

W ′(z) = (1− p)g′1(z) + zg”1(z)

=
p− 3

2
p(p+ 1)2(z − z0)2 + p(p+ 1)(−3)z0(z − z0)− 2p2z2

0 ,

W ′(z̃) = 0 when

p− 3

2
(p+ 1)2(z − z0)2 − 3(p+ 1)z0(z − z0)− 2pz2

0 = 0 i.e.,

z̃ − z0 =
3z0 ± (2p− 3)

(p− 3)(p+ 1)
z0, i.e.,

z̃ =

(
2p

(p− 3)(p+ 1)
+ 1

)
z0 < 0, or

z̃ =

(
−2

p+ 1
+ 1

)
z0 =

z0 + z1

2
.

We see that the two extreme points are either unfeasible, or an end point.

Therefore, we conclude W (z) < 0 for 0 < z ≤ z0+z1
2 .

(b) When
z0 + z1

2
< z ≤ z1,

W (z) = zg′2(z)− pg2(z)

= z
p(p+ 1)2(z − z1)2

4
− p

[
p(p+ 1)2(z − z1)3

12
+ |z0|p+3

]
.

• Check endpoints:

W

(
z0 + z1

2

)
= − 14p2

3(1 + p)
|z0|3 < 0

W (z1) = −p|z0|p+3 < 0.
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• Let us now check interior extreme points. Since

W ′(z)

=
p(p+ 1)2(z − z1)2

4
+
z

4
p(p+ 1)2 · 2(z − z1)− p2(p+ 1)2

12
· 3 · (z − z1)2

=
p(p+ 1)2

4
(z − z1) [(3− p)(z − z1) + 2z1],

W ′(z̃) = 0 if z̃ = z1, or z̃ =
1− p
3− p

z1. Furthermore,

W (
1− p
3− p

z1)

=
1− p
3− p

z1 ·
p(p+ 1)2( −2

3−pz1)2

4
− p

[
p(p+ 1)2( −2

3−pz1)3

12
+ |z0|p+3

]

=
p(p+ 1)2

(3− p)3
(1− 1

3
p)z3

1 − p|z0|p+3

=− 14p2

3(p+ 1)
|z0|3

<0.

4. When z > z1,

∣∣∣∣zψ′ψ
∣∣∣∣ =

z · 1
1+η · (1−

εp√
Mκ

) · 1√
2π
· e−Λ2/2 · Y · 1

z−z1
1

1+η

{
(1− εp√

Mκ
)N [Λ] + εp√

Mκ

} ,

where Λ = Y ln(
z − z1

A
) + Z0.

• For 0 < z − z1 ≤ A, we have z1 < z < 2A 6. By Proposition B.3,

6Recall, in Lemma 5.3, we assume A > z1 > 2.
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ψ′(z) ≤ 1

2A
· p

1 + η
· εp√

Mκ
. So

∣∣∣∣zψ′ψ
∣∣∣∣ ≤ 2A · 1

2A ·
p

1+η ·
εp√
Mκ

1
1+η ·

εp√
Mκ

= p.

• For z − z1 > A ≥ z1, we have 1 <
z

z − z1
< 2, and consequently,

∣∣∣∣zψ′ψ
∣∣∣∣

≤
z

z−z1
· 1

1+η ·
(

1− εp√
Mκ

)
1√
2π
· e−Λ2/2 · Y

1
1+η ·

εp√
Mκ

≤
2 ·
(

1− εp√
Mκ

)
1√
2π
· 1 · Y

εp√
Mκ

(1)
=

2 ·
(√

Mκ−εp√
Mκ

)
· 1√

2π
·
√

2π
2 · pεp√

Mκ−εp
εp√
Mκ

=p,

(1) holds since Y =
√

2π
2

pεp√
Mκ−εp

.

This completes the proof for (iii), hence the proof for Lemma 5.3.

�

153



BIBLIOGRAPHY

154



BIBLIOGRAPHY

[1] Tom M. Apostol 1965 Mathematical Analysis Addison-Wesley Publishing Company,
Inc. Second Print

[2] D. G. Aronson, P. Besala, 1967 Journal of Differential Equations Parabolic Equations
with Unbounded Coefficients 3 1-14.

[3] D. G. Aronson 1968 Annali Della Scuola Normale Superiore di Pisa, Classes di Scienze
Non-negative Solutions of Linear Parabolic Equations 4 607-694.

[4] D. G. Aronson, James Serrin 1967 Arch. Rational Mech. Anal Local Behavior of
Solutions of Quasilinear Parabolic Equations 25 81-122.

[5] H Berestycki, J Busca, and I Florent, 2002 Asymptotics and calibration of local volatility
models Quantitative Finance Vol. 2 61-69

[6] H Berestycki, J Busca, and I Florent, 2004 Computing the Implied Volatility in Stochas-
tic Volatility Models Communications on Pure and Applied Mathematics Vol. LVII
1352-1373

[7] M.A. Bharadia, N. Christofides and G.R. Salkin, 1996 Advances in Futures and Options
Research, JAI Press, London Computing the black Scholes implied volatility, vol. 8,
15-29.

[8] Tomas Björk 1998 Oxford University Press Arbitrage Theory in Continuous Time

[9] T. Björk, 2004 World Scientific, Singapore Arbitrage in Continuous Time

[10] Black F, and Scholes M, 1973 J. Political Economy The pricing of corporate liabilities
81, No.3, 637-54.

155



[11] I. Bouchouev and V. Isakov, 1999 Inverse Problems Uniqueness, stability and numerical
method for the inverse problem that arises in financial markets Vol. 15, 95-116

[12] I. Bouchouev and V. Isakov, 1997 Inverse Problems The inverse problem of option
pricing 13, 7-11

[13] A. Brandt, 1969 Israel journal of mathematics Interior Schauder Estimates for Parabolic
Differential (or Difference) Equations via the Maximum Principle Vol. III 254-263.

[14] M. Brenner and M.G. Subrahmanyam, 1988 Financial Anal. J. A simple formula to
compute the implied standard deviation 44, 80-83.

[15] D.R. Chambers and S.K. Nawalkha, 2001 The Financial Review An improved approach
to computing implied volatility, 38, 89-100.

[16] D.M. Chance, 1996 The Financial Review A generalized simple formula to compute the
implied volatility, Vol. 31 4, 859-867.

[17] C.J. Corrado and T.W. Miller, 1996 J. Banking Finance A note on a simple, accurate
formula to compute implied standard deviations 20 595-603

[18] J. Cox, S. Ross, and M. Rubinstein, 1979 J. Finance Economics Option pricing: A
simplified approach 7, 63-229

[19] Zui-Cha Deng, Jian-Ning Yu, and Liu Yang, 1 April 2008, Journal of Mathematical
Analysis and Applications An inverse problem of determining the implied volatility in
option pricing, Vol. 340, issue 1, 16-31

[20] E. Derman and I. Kani, 1944 Risk Riding on a smile Vol. 2, 9-32.

[21] Dunford, N., and Schwartz, J.T. 1958 Wiley-Interscience Linear operators, Parts I and
II

[22] B. Dupuire, 1994 Risk Pricing with a smile Vol. 7 18-20

[23] S. Feinstein, December, 1988 Federal Reserve Bank of Atlanta A source of unbiased
implied volatility Working paper 88-9.

[24] Friedman A, 1964 Partial Differential Equations of Parabolic Type Englewood Cliffs,
NJ: Prentice-Hall

156



[25] Ronald Guenther, Nov, 1966 Some Elementary Properties of the Fundamental Solution
of Parabolic Equations Mathematics Magazine Vol. 39 No.5 294-298

[26] S.L. Heston, 1993 Rev. Financial Studies A closed-form solution for option with stochas-
tic volatility with applications to bond and currency option 6, 43-327

[27] E. Hofstetter, and M.J.P. Selby, 2001 Online The Logistic Function and Implied Volatil-
ity Quadratic Approximation and Beyond

[28] J. Hull, 1997 Prentice-Hall, Englewood Cliffs, NJ Options, Futures and other Deriva-
tives

[29] J.C. Hull and A. White, 1988 Advances in Futures and Options Research An analysis
of the bias in option pricing caused by by a stochastic volatility 3, 29-61.

[30] A. M. Il’yin, A. S. Kalashnikov, and O. A. Oleynik 2002 Second-order linear equations
of parabolic type Journal of Mathematical Sciences Vol. 108, No. 4 435-542

[31] V. Isakov and I. Bouchouev, 1999 Inverse Problems Uniqueness, stability and numerical
methods for the inverse problem that arises in financial markets 15, 95-116
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