A DESIGN OF A RENFORCED
 CONCRETE BUILDING FOR A SOY BEAN PROCESSING PLANT

Thiosis for tha Dagrea of B. S.
NCAGAN STATE COLLECZ
W, R, Radoliff
1947

THESIS
C. 1

A Design of a Reinforced Concrete Building
 for a Soy Bean Processing Plant

A Thesis Submitted to
The Faculty of
MICFIGAN STATE COLLEGE
of
AGRICULTUFE AND APPLIED SCIENCE
By

Robert Radcliff

Candidate for the Degree of
Bachelor of Science

June 1947

THESIS

2.1

ACKNOMLEDGERENTS

I wish to thank the members of the Civil Engineering Staff for their assistance in the preparation of this thesis. In particular, Professor C. A. Willer, for the time and effort spent with me to perfect the design both structurally and practicably.

BIBLIOGRIPHY

```
Underwriter's Laboratories, Inc. - Report on 8 in. Bearing Wolls.
Engineering News Record", May 1, 1947.
Pulver - "Construction Estimetes and Costs."
Parker - "Simplified Design of Reinforced Concrete"
Sutherland and Reese - "Reinforced Concrete Design"
O'Rourke - "General Engineering Handbook"
A.I.S.C. - "Menual of Steel Construction"
A.C.I. Building Code
T.E.C.O. Truss hianual
Joint Committee Report. 1940
Portland Cement Association - "Reinforced Concrete Design Hendbook"
Merriman and Wiggin - "Americen Civil Engineers' Hendbook" - 5th Edition.
National Lumber Manufacturers Association - "National Design Specifications
    for Stress - Grade Lumber and its Fastenings"
Bateman - "Highway Engineering
Portland Cement Association - "Design and Control of Concrete Mixtures"
```


CONTENTS

I. Purpose and Scope of Thesis
II. Computations and Sketches

PART I

PURPOSE AND SCOPE OF THESIS

The purpose of this thesis is to present a practical and economicel design of a building for use by the owner. The property is located in the Central Ohio farm area. The objective of the owner is to have a building large enough and strong enough to house a Soy Bean Processing Plant. Most of the construction work will be done by the owner's organization. The building will be constructed with materials available in that area, and a cost of materials estimate will be included. The project offers several practical design problems for the author. The methods used ere those set forth in the respective design courses as taught at Michigan State College. Nuch more labor was applied to this problem than would have been necessary if it had been handled by on experienced design enginecr. Despite this fact, it is a worthwhile project because it employs design fundamentals necessery to a good designer as a basis for the tricks and short cuts of the trade.

The author will design the building in accordance with specifications supplied by the owner. The design and materials estimate will constitute the object of the thesis.

The owner plans to design and fabricate all plant equipment. While this is being done the building vill be used for farm machinery repair and as a farm locker agency. By means of these operations the owner hopes to establish himself in the area.

The scope of the thesis will include the following 8
A. The design of a fireproof, durable building to perform the following functions 1. Provide suitable space for operating a

Soy Bean Processing Plant.
2. Provide suitable space for repairing farm
machinery.
3. Provide suitable space for operating a farm
locker agency.
4. House the following equipments
a. Metal working tools.
b. Wielding equipment.
c. Overhead crane.
d. Work benches.
e. Woodworking machines.
f. Lubrication facilities.
B. To locate and designs

1. A concrete driveway from the rear of the build-
ing, running parallel to the side of the build-
ing and connecting to the existing road.
2. A three-ton overhead crane system to be located
on the ground floor.
C. Estimate the cost of materials for construction.
The scope of the thesis is limited to the structural design of units
heretofore described. No attempt has been made to perform the functions
of an architect in that architectural fatures and details of the allied
trades such as plumbing, heating, or wiring have not been mentioned or treated.

BUILDING DETAILS
Drawing 1-2-3-4.
The building will be 120.0^{\prime} long and 80.0^{\prime} wide and will be located on the property as shown in Drawing 1. Because the author was unable to visit the building site, the data for the site map was obtained from the owner and from U.S. Geological Survey topographic maps of the area. The ground floor walls will be concrete blocks. The roof system will be constructed of wood with wood sheeting and asphalt roofing. The remainder of the building will be constructed of reinforced concrete. The driveway will be poured concrete with no tensile reinforcement. The drive will be widened at the curve to facilitate entrance into the building. Due to the heavy floor loads expected, the floor system will be designed for a live load of 400 p.s.f.; column spacing taken as $20.0^{\prime} c . c$. with T-Beams interesting the girders ε.t the $1 / 3$ points.

SOUTH SIDE

Dwg.-2

ALLOWABLE UNIT STRESSES USED
Taken from A.C.I Building Code 1946 .
Concrete
Using a concrete with fc' $=3000$ p.s.i.

$$
n=10
$$

Compression $\mathrm{fc}=1350 \mathrm{p} . \mathrm{s} . \mathrm{i}$.

Shear ∇
Beams
W/O Web Reinforcement
W/o SA - 60 p.s.i.
W/ SA - 90 p.s.i.
ii/ Web Reinforcement
W/o SA - 180 p.s.i.
W/ SA - 360 p.s.i.
Footings - 75 p.s.i.
Bond u
Beams
Plain bars - 120 p.s.i.
Deformed bars - 150 p.s.i.
Two-way footings
Plain bars (hooked) - 135 p.s.i.
Deformed bars (hooked) - 168 p.s.i.
Bearing fc
On full area - 750 p.s.i.
On one-third area - 1125 p.s.i.
Steel
Billet, hard grade fs $=20,000$ p.s.i.
Lumber - Pine Southern Shortleaf (Dense Structural)
Extreme fiber in bending - 1900 p.s.i.
Horizontal shear - 120 p.s.i.
Compression perpendicular to grain - 455 p.s.i.Compression parallel to grain -1450 p.s.i.Yodulus of elasticity -l,600,000 p.s.i.Soil Pressure - "Arerican Civil Engineers' Handbook."
Dry Silt-Loam -3 Tons/ sq. ft.
Bearing on Liasonry Wall
Portland Cement Associrtion -800 p.s.i.

ROOF DESIGN

Sketch 1
This truss was selected from Timber Engineering Company Truss Manual. Fink Truss

$$
\begin{aligned}
& 80^{\prime}-00^{n} \text { Span } \\
& 16^{\prime}-00^{\prime \prime} \text { Rise } \\
& 16^{\prime}-00^{\prime \prime} \text { Spacing C.C. } \\
& 1^{\prime}-00^{\prime \prime} \text { Eaves }
\end{aligned}
$$

Dead Load $\varepsilon 2470$ (3000 FBM $=7410$ \# Truss Weight $\frac{1}{2}$ Roof Area $=44.0 \times 16=704 \mathrm{~s} . \mathrm{f} . /$ truss

Wind Load $=20$ p.s.f. of vertical surface
P normal $=\frac{\left.(2(0.372))^{2}\right)}{\left(17(.372)^{2}\right)} 20=13.1$
Snow Load $=20 \mathrm{p} . \mathrm{s} . \mathrm{f}$. vertical
Maximum Expected Load
Dead $\not \subset$ Wind $\not \subset \frac{1}{2}$ Snow
Dead $f \frac{1}{2}$ Wind $\not \subset$ Snow
Wooden sheathing $1.0^{\prime \prime}$ thick - 3 p.s.f.
Asphalt covering -2p.s.f.
Roof covering 5 p.s.f.
Truss $=7410=5.8$
(2)704
10.8 Total D.L.

Dead $\not \subset$ Wind $\not \subset \frac{1}{2}$ Snow
$10.8 \not \subset 13.1 \nmid 10=33.9$ p.s.f.
Dead $f \frac{1}{2}$ Wind f Snow
$10.8 \not \subset 6.6 \not \subset 20=37.4$ p.s.f.
Therefore 40 p.s.f. is a safe value to use.

$$
\therefore \therefore-\cdots \cdots, \quad \cdots
$$

$$
\begin{aligned}
s_{1}+\therefore & -\quad \therefore \\
E=0 & =-
\end{aligned}
$$

DESIGN OF MENBERS

Sketch 2

Top Chord
Longth $=10^{\prime} 9 \frac{1}{4}^{\prime \prime}=129.25^{\prime \prime}$
Try 4.0" member
$\frac{L}{d}=\frac{129.25}{3.625}=35.7$
Working stress $=C\left(1-1 / 3\left(\frac{L}{K_{2} \mathrm{~d}}\right)^{4}\right)$
$K=0.64\left(\frac{2.5 E}{C}\right)^{\frac{1}{2}}=0.64\left(\frac{2.5 \times 1,600,000}{1450}\right)^{\frac{1}{2}}=33.7$
Working Stress $=1450\left(1-1 / 3\left(\frac{129.25}{(35.7)(3.625)}\right)^{4}\right)=845 \mathrm{p.s.1}$.
Area required $=\frac{60300}{845}=71.5 \mathrm{sq}$. in.
Two $4 \times 12^{\prime \prime}$ timbers with a cross sectional area of $2(41.69)=$ 83.38 sq . in. will satisfy requirements.

Bottom Chord - Lo - $L_{1}-L_{2}$
Area required $=\frac{56000}{1900}=29.6$
Two $4 \times 5^{\prime \prime}$ timbers with a cross sectional area of $2(16.77)=$ 33.54 sq . in. will satisfy requirements, but further investigation shows that the joint between L_{1} and L_{2} requires a larger width.

Therefore two $4 \times 8^{\prime \prime}$ timbers are used.
Web Members - Compression
Select a $4.0^{\prime \prime}$ timber for web members in compression.
V_{2} length $=8^{\prime}-73 / 8^{\prime \prime}=103.375^{n}$
$\frac{L}{d}=\frac{103.375}{3.625}=28.5$
$K=0.64\left(\frac{1,600,000}{1450}\right)^{\frac{1}{2}}=21.3$
$\frac{P}{A}=\frac{0.274 \mathrm{E}}{\left(\frac{L}{d}\right)^{2}}=\frac{0.274 \times 1,600,000}{(28.5)^{2}}=543$ p.s.i.
Area required $=\frac{11,900}{543}=22.0 \mathrm{sq} \cdot$ in.

A $4 \times 8^{\prime \prime}$ member with a cross sectional area of 2719 sq . in. will satisfy the requirements, but further investigation shows thet joint C requires a $12^{\prime \prime}$ vidth. Therefore a $4 \times 12^{\prime \prime}$ member is used.
V_{1} and V_{3} length $=4.0^{\prime} 311 / 16^{\prime \prime}=51.688^{\prime \prime}$
Use 4.0^{n} member
$\frac{L}{d}=\frac{51.688}{3.625}=14.25$
K greater then $\frac{L}{d}$ greater than 11.0 , therefore the intermediate cclumn formula is used.
$\frac{P}{A}=1450\left(1-1 / 3\left(\frac{14.25}{21.3}\right)^{4}\right)=966$ p.s.i.
Area required $=\frac{5950}{966}=6.16 \mathrm{sq}$. in.
A $4 \times 2 \frac{1}{2}$ " member with a cross sectional area of 7.70 will satisfy the requirement. Four inch split rings are to be used at the joints and a minimum of $5 \frac{1}{2}$ " width is required. Therefore a $4 \times 6^{\prime \prime}$ member is used.

Web Nembers - Tension
Maximun tension load on D_{4}
Area required $=\frac{24000}{1900}=12.6 \mathrm{sq}$. in.
Two $2 \times 6^{\text {n }}$ members with a cross sectional area of $2(9.14)=18.28$ will satisfy this requirement but in order to eliminate fillers and to provide enough thickness for split rings, two $3 \times 8^{\prime \prime}$ members are used for D_{3} and D_{4}.
D_{1} and D_{2}
Area required $=\frac{8000}{1900}=4.22 \mathrm{sq}$. in.
At least $6.0^{\prime \prime}$ members are required for $4.0^{\prime \prime}$ split rings, therefore two $2 \times 6^{\prime \prime}$ members are used for D_{1} and D_{2}.

Sketch 3

```
Joint "A"
```

The load on D_{1} and D_{2} acts at an ancle of 20.2° with the chord U_{1} -

$\frac{8000}{4400}=1.8$
Therefore two rings are reouired, one in esch menber.
The standerd edge distrince $=37 / 16^{\prime \prime}$.
$\frac{8000}{2 x 440}=91 \%$ of full load deve oped.
Therefore tile edje distanca can be reduced to $23 / 4$ ".
The edge distance furnished by a $6.0^{\prime \prime}$ members $=213 / 16^{\prime \prime}$.
The lo: d on V_{2} acts an angle of 90° to $U_{1}-U_{2}$ -
The allowable load on one ring $=$ 2750\%.
$\frac{11900}{4700}=2.54$
Therefore three rines are required.
There is not enough room for three rings, so two rings end four
$3 / 4 \times 15_{?}^{1}$ " machine bolts are used.
The allowable load on bolts $=700 \times 4=2800$.t.
$2800 \neq 2(4700)=12200 \#$.
Therefore four bolts end two rings are sufficient.
Xinimum bolt soacing $=4 \mathrm{~d}=3.0^{\prime \prime}$
Spacing between rows $=5 \mathrm{~d}=33 / 4^{\prime \prime}$.
Joint "B"
$\mathrm{D}_{4}-\mathrm{U}_{3}$
Angle of losd to grain $=22^{\circ}$
Allowable loed on one ring $=6200$ 算
$\frac{24000}{6200}=3.87$ rings \&re required -6.0 rings used.
$\%$ of ca acity developed $=\frac{24000}{6 \times 6200}=64.5 \%$
Standard suacing parallel to grain in $D_{4}=9.0^{\prime \prime}$
Reduced soacing = 5.0"

Spacing used $=7.0^{\prime \prime}$
Edge distance recuired $=23 / 4^{\prime \prime}-33 / 4^{\prime \prime}$ used
End distance required $=33 / 4^{\prime \prime}-5^{\prime \prime}{ }^{\prime \prime}$ used
U_{3} to splice plates
Angle of lord to grain $=22^{\circ}$
Allowable load on one ring $=620$ 井
$\frac{32000}{6 \% 00}=5.2$ rings required -8.0 rings used
$\%$ of capacity developed $=\frac{32000}{8 \times 6200}=64.5 \%$
Standard spacing parallel to grain in $D_{4}=9.0^{\prime \prime}$
Reduced spacing $=\frac{64.5 \times 2-100}{2}=36 \% / 0$ of canecity for one group.
50 \%/0 reduction allows $47 / 8^{\prime \prime}$ minimum
Use $7.0^{\prime \prime}$ specing
Edge distance required $=23 / 4^{\prime \prime}-23 / 4^{\prime \prime}$ used.
End distance required $=33 / 4^{\prime \prime}-52^{\prime \prime \prime}$ used.
Joint "C"
∇_{2} to $L_{1}-L_{2}$
Angle of lo: d to grain $=67.5^{\circ}$
Allowable losd on one ring $=4900$ \#
$\frac{11900}{4900}=2.43$ rings required -4 rings used
$\%$ of capacity developed $=\frac{11900}{4(4900)}=61 \% / 0$
Reduced edge distance $=23 / 4^{\prime \prime}$
Spacing required parallel to grain $=5 \frac{1}{2} 11$
End distance required $=3 \frac{1}{2}{ }^{n}$
D_{3} to $L_{1}-L_{2}$
Angle of loed to grain $=45^{\circ}$
Allowable load on one ring $=5050 \#$
$\frac{16000}{5550}=2.98$ rings required -4 rings used
$0 / 0$ of cepecity developed $=\frac{16000}{4(5350)}=75 \% / 0$

T

.
*

Reduced edge distance $=23 / 4^{\prime \prime}$
Spacing required parellel to grain $=5 \frac{1}{2}$ "
End distence required $=3 \frac{1}{2} n$
Length of Ne bers

$$
\begin{aligned}
U_{0}, U_{1}, U_{2}, U_{3} & =10^{\prime}-9 \frac{1}{4} \\
& =11^{\prime \prime}-73 / 16^{\prime \prime} \\
L_{0}, L_{1} & =16^{\prime}-95 / 8^{\prime \prime} \\
L_{2} & =4^{\prime}-311 / 16^{n} \\
\nabla_{1} & =8^{\prime}-73 / 8^{\prime \prime} \\
V_{2} & =4^{\prime}-17 / 8^{n} \\
V_{3} & =11^{\prime}-73 / 16^{\prime \prime} \\
D_{1} & =10^{\prime}-77 / 16^{n} \\
D_{2} & =11^{\prime}-77 / 8^{n} \\
D_{3} & =10^{\prime}-103 / 16^{\prime \prime} \\
D_{4} &
\end{aligned}
$$

MTEKI:LS REQUIRED FCR TRUSSES
Building 1:0.0' long
Nine trusses (1) 16.0^{\prime} C.C. required
Lumber
36 pieces $2^{n} \times 6^{n} \times 12$ '
26 pieces $2^{n} \times 6^{\prime \prime} \times 14^{\prime}$
36 pieces $2^{\prime \prime} \times 6^{\prime \prime} \times 16^{\prime}$
72 pieces $3^{\prime \prime} \times 8^{\prime \prime} \times 14^{\prime}$
18 picces $3^{\prime \prime} \times 8^{\prime \prime} \times 20^{\prime}$
9 pieces $4^{\prime \prime} \times 8^{\prime \prime} \times 12{ }^{\prime}$
18 pieces $4^{\prime \prime} \times 6^{\prime \prime} \times 16^{\prime}$
54 pieces $4^{\prime \prime} \times 8^{\prime \prime} \times 14^{\prime}$
45 pieces $4^{\prime \prime} \times 8^{\prime \prime} \times 18^{\prime}$
18 pieces $3^{\prime \prime} \times 12^{\prime \prime} \times 161$
9 pieces $3^{\prime \prime} \times$ ' $^{\prime \prime} \times 10^{\prime}$

18 pieces $4^{\prime \prime} \times 12^{\prime \prime} \times 14$ '
81 pieces $4^{\prime \prime} \times 1{ }^{\prime \prime} \times 161$
27 pieces $4^{\prime \prime} \times 1 \mathbf{z}^{\prime \prime} \times 18^{\prime}$
18 pieces $10^{\prime \prime} \times 12^{\prime \prime} \times 18^{\prime}$
18 pieces $4^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime}$
Total $=22,230$ FBin

Hardware

2736 Teco split rings $4^{\prime \prime}$
144 Teco shear plates $31 / 8^{\prime \prime}$
72 Nachine bolts $\frac{2}{2 n} \times 12^{n}$
72 Machine bolts $3 / 4^{\prime \prime} \times 6 \frac{1}{2} "$
216 Nachine bolts $3 / 4^{\prime \prime} \times 12{ }_{3}^{2}$
126 Machine bolts $3 / 4^{\prime \prime} \times 15{ }^{11}{ }^{n}$
396 Machine bolts $3 / 4^{\prime \prime} \times 17 \frac{1}{2}{ }^{\prime \prime}$
144 Mecchine bolts $3 / 4^{\prime \prime} \times 18^{\prime \prime}$
36 Machine bolts $3 / 4^{\prime \prime} \times 23^{\prime \prime}$
36 Machine bolts $3 / 4^{\prime \prime} \times 24^{\prime \prime}$
144 Dachine bolts $3 / 4^{n} \times 10^{n}$
9 Steel plates $\frac{1}{2} n \times 3^{n} \times 107 / 8^{n}$
9 Steel plates $\frac{1}{2}{ }^{\prime \prime} \times 3^{\prime \prime} \times 12^{\prime \prime}$
36 Steel plates $\frac{1}{\sum_{i}^{\prime \prime}} \times 20^{\prime \prime} \times 16^{\prime \prime}$
36 Steel plates $3 / 8^{\prime \prime} \times 10^{\prime \prime} \times 12^{\prime \prime}$
36 Angles $4^{\prime \prime} \times 7^{n} \times 3 / 8^{n}, 12^{n}$ long
9 Thresded rods 171-3" long
144 Weshers 2^{n}
$21 \approx 4$ Plate washers $3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 16^{n}$
Check bearing on wall
Total roof load $=80 \times 120 \times 40=384,00 \#$
Well load $=192,000 \#$

18 pieces $4^{\prime \prime} \times 1$ "' $^{\prime \prime}$ x 14 '
81 pieces $4^{\prime \prime} \times 1$ " $^{\prime \prime} \times 161$
27 pieces $4^{\prime \prime} \times 1 氵^{\prime \prime} \times 18^{\prime}$
18 pieces $10^{\prime \prime} \times 12^{\prime \prime} \times 18^{\prime}$
18 pieces $4^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime}$
Total $=2,230$ FBM

Hardware

2736 Teco split rings $4^{\prime \prime}$

144 Teco shear plates $31 / 8^{n}$
72 Nachine bolts $\frac{2 n}{n} \times 12^{n}$
72 Machine bolts $3 / 4^{\prime \prime} \times 6 \frac{1}{2}$ "
216 Vachine bolts $3 / 4^{\prime \prime} \times 12 \frac{7}{2}$ "
126 Machine bolts $3 / 4^{n} \times 15^{7}{ }^{n}$
396 Wachine bolts $3 / 4^{\prime \prime} \times 17 \frac{1}{2}{ }^{\prime \prime}$
144 Machine bolts $3 / 4^{\prime \prime} \times 18^{\prime \prime}$
36 Machine bolts $3 / 4^{\prime \prime} \times 23^{\prime \prime}$
36 Machine bolts $3 / 4^{\prime \prime} \times 24^{\prime \prime}$
144 Nachine bolts $3 / 4^{n} \times 10^{\text {n }}$
9 Steel plates $\frac{1}{2}{ }^{n} \times 3^{n \prime} \times 107 / 8^{n}$
9 Steel plates $\frac{1}{2}{ }^{n} \times 3^{n} \times 12^{n}$
36 Steel pletes $\frac{12}{\text { N }^{n}} \times 20^{n} \times 16^{n}$
36 Steel plates $3 / 8^{\prime \prime} \times 10^{\prime \prime} \times 12^{\prime \prime}$
36 Angles $4^{\text {" }} \times 7^{\text {n }} \times 3 / 8^{n}, 12^{n}$ long
9 Thresded rods $17^{\prime}-3^{\prime \prime}$ long
144 Weshers $2^{\prime \prime}$
2124 Plate washers $3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 16^{\prime \prime}$

Check bearing on wall

Total roof load $=80 \times 120 \times 40=384,000$
Wall loed $=192,000 \#$

18 pieces $4^{\prime \prime} \times 1$ '" $^{\prime \prime} \times 14^{\prime}$
81 pieces $4^{\prime \prime}$ x 1 " $"$ x 16^{\prime}
27 pieces $4^{\prime \prime} \times 1 z^{\prime \prime} \times 18^{\prime}$
18 pieces $10^{\prime \prime} \times 12^{\prime \prime} \times 18^{\prime}$
18 pieces $4^{\prime \prime} \times 12^{n} \times 6^{\prime}$
Total $=2,230 \mathrm{FBM}$

Hardware

2736 Teco split rings $4^{\prime \prime}$

144 Teco shear plates $31 / 8^{\prime \prime}$
72 Nachine bolts $\frac{2}{2 n} \times 12^{n}$
72 Machine bolts $3 / 4^{\prime \prime} \times 6 \frac{1}{2}$ "
216 Nachine bolts $3 / 4^{\prime \prime} \times 12 \frac{1}{2}{ }^{\prime \prime}$
126 Machine bolts $3 / 4^{\prime \prime} \times 15_{i_{2}^{2}}^{n}$
396 Machine bolts $3 / 4^{\prime \prime} \times 17 \frac{1}{2}$ "
144 Machine bolts $3 / 4^{\prime \prime} \times 18^{\prime \prime}$
36 Machine bolts $3 / 4^{\prime \prime} \times 23^{\prime \prime}$
36 Machine bolts $3 / 4^{n} \times 24^{n}$
144 Machine bolts $3 / 4^{n} \times 10^{\text {n }}$
9 Steel plates $\frac{1}{2}{ }^{n} \times 3^{n} \times 107 / 8^{n}$
9 Steel plates $\frac{1}{2}$ " $\times 3^{\prime \prime} \times 12^{\prime \prime}$
36 Steel plates $\frac{1}{2}{ }^{n} \times 20^{\prime \prime} \times 16^{n}$
36 Steel plates $3 / 8^{\prime \prime} \times 10^{\text {H }} \times 12^{\text {" }}$
36 Angles $4^{\prime \prime} \times 7^{\text {n }} \times 3 / 8^{n}, 12^{n}$ long
9 Thresded rods $17^{\prime}-3^{\prime \prime} 1 \mathrm{ng}$
144 Washers 2^{n}
2124 Plate washers $3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 16^{\prime \prime}$
Check bearing on wall
Total roof load $=80 \times 120 \times 40=384,000 \#$
Wall load $=192,000 \#$

Load per lineal foot $=\frac{192,000}{120}=1000$ p.f.
Gross area of $8^{\prime \prime} \times 8^{\prime \prime} \times 16^{\prime \prime}$ concrete block $=15.75 \times 7.75=$
122 sq. in.
$122 \times \frac{12}{16}=91.5 \mathrm{sq}$. in. per lineal foot
$\frac{1600}{91.5}=17.5$ p.s.i.
Therefore, the bearing on the top course is within the alloweble.
Use $3 / 4^{\prime \prime}$ bearing plate over top course on E and W wells to distribute truss load.

UPPER WALL DESIGN
Weight of $8^{\prime \prime} \times 8^{\prime \prime} \times 16^{\text {" }}$ heavy bearing blocks $\not \subset \frac{11}{4}$ joints $=50 \#$
14.0^{\prime} wall height $=168^{\prime \prime}$
$\frac{168}{8}=21$ courses
120.0^{\prime} wall length $=1440^{\prime \prime}$
$\frac{1440}{16}=90$ blocks
Wall area $=1680 \mathrm{sq} . f t$. requires 1890 blocks
1.125 blocks required per squere foot of wall

North Wall

$$
\begin{array}{ll}
80.0^{\prime} \text { long } & 1-12^{\prime} \times 14^{\prime} \text { door } \\
& 2-10^{\prime} \times 20^{\prime} \text { windows }
\end{array}
$$

South Wall
80.0' long $\quad 1-12^{\prime} \times 14^{\prime}$ door

East Wall
120.0' $1 \mathrm{ng} \quad 3-8^{\prime} \times 10^{\prime}$ windovis

West Wall
120.0' long $\quad 3-8^{\prime} \times 10^{\prime}$ windows

	N.W.	S.W.	E.W.	W.W.
Area sq. ft.	552	952	1440	1440
No. Blocks	620	1080	1620	1620

Total Wt．IT
63,000
63,000
94,500
94， 500
（Assumines solid well）
Unit int．$\# /$／Lin．＇
78
787
787
787
Check for bearing on bottom course－Es st ind hest irills．
Live locd－ 1600
Dead lord－$\quad 787$
Totel load－ 2 z 7 7 ／Lin．ft．
$\frac{2387 \mathrm{H} / \text { Lin．ft．}}{91.5 \mathrm{sq} \cdot \mathrm{in} \cdot / \mathrm{ft} .}=20.2 \mathrm{p} \cdot \mathrm{s.i} . \quad \underline{K}$
․INDOir LINTEL DESIGN
East end West Walls
Sketch 15
3 courses on top $=3 \times 50=150$ 并
$150 \times \frac{12}{16}=11$ 洋／lin．ft。
Live load l600\＃／lin．ft．
Dead loud $113 \# / 1 \mathrm{in}$ ．ft．
Totul losd $1713 \# / 1$ in．ft．
Maximum B．N．$=\frac{\mathrm{w} 1^{2}}{12}=\frac{1713 \times 100}{12}=14,300^{1 / i /}$
Section modulus $=\frac{\mathrm{N}}{\mathrm{f}}=\frac{14,300 \times 12}{2(, 000}=8.6 \mathrm{in} .^{3}$
Use 2 angles $6 \times 4 \times 7 / 8^{\prime \prime}$
Section modulus $=2 \times 7.2=1 \leq .4 \mathrm{in}^{3}$
North wall
Sketch 16
3 courses on top
$150 \times \frac{12}{16}=113 \# / \mathrm{ft}$ ．
Nax B．M．$=\frac{\mathrm{w} 1^{2}}{12}=\frac{113 \times(20)^{2}}{12}=3770^{17}$
Section modulus $=\frac{3710 \times 12}{20,000}=2.27 \mathrm{in} .^{3}$
Use 2 oncles $4 \times 4 \times \frac{1}{2} n$

Section modulus $=2(2.0)=4.0$ in. ${ }^{3}$

Doors

Use $4 \times 4 \times \frac{1}{2}$ " angles for door lintels.
DESIGN UPYER FLOOR SL/B
Sketches 4 and 5
Live lead assumed 400 p.s.f. This figure used in order to satisfy
future requirements to which building may be put.
As sume an $8,0^{\prime \prime}$ slab
wt. $=1.0 \times \frac{8}{1} 2 \times 1 \times 150=100 \mathrm{p} . \mathrm{s} . \mathrm{f}$.
L. L. $=400$ p.s.f.
D. L. $=100$ p.s.f.
T. L. $=500$ p.s.f. or for a 1.0^{\prime} section 500 $\mathrm{F} / \mathrm{lin}$. ft.

Considering this a simply supported beam with a uniformly distributed
lozd, B. M. $=\frac{\mathrm{w} l^{2}}{8}$
Max B.M. $=\frac{w 1^{2}}{8}=\frac{500 \times 64}{8}=4000^{1 \#}$
$\mathrm{V}=\frac{\mathrm{w} \mathrm{1}}{2}=\frac{500 \times 8}{2}=2000 \mathrm{~F}$
From table \#2 RCDH
$d=4 \frac{1}{4}$
Chenge slib thickness to 6.0"
$T L=475$ p.s.f.
$B M=3800^{1 ; \#} \quad d=4 \frac{7.2}{3 \prime} \quad V=1900$ 井
From table \#l kCDH
$a=1.45 \quad A s=\frac{M}{a d}=\frac{3800}{(1.4 i)(4.5)}=0.587 \mathrm{sq}$. in. $/ \mathrm{ft}$. required
Use $\frac{1}{2}$ " circular 4.0 " soecing
Check shear

$$
v=\frac{V}{b j d}=\frac{1900}{12 \times 7 / 8 \times 4.5}=41 \mathrm{p} . \mathrm{s.i} . \quad \underline{o} \cdot \underline{K} .
$$

Check Bond

$$
u=\frac{\nabla}{\sum 0 j d}=\frac{1900}{4.7 \times 7 / 8 \times 4.5}=10 . \mathrm{p.s.i} \quad \underline{0} \cdot \underline{K}
$$

Pl\&cement of negative moment steel.

Sketch 6

Reinforcing steel of the same size and plecing as that used
for tension will be placed over supports; the length to be
$\frac{i}{4}$ clear span each side of support.
$80.0^{\prime \prime}-10.0^{\prime \prime}=.70 .0^{\prime \prime}$
$\frac{70.0}{4}=17.5 \quad$ Use $18.0^{\prime \prime}$ each side.
T - Beam Design
Sketch 7
Span 20.0° cc
Assume clear span 19.0^{\prime}
$L=475 \times 6.67=3170 \#$
$D L=$ Weight of stem as sumed $=\underline{230 \#}$
$T L=$
$34004 / 1$
$V=\frac{W 1}{2}=\frac{3400 \times 19}{2}=32,300 \#$
v allowable with web reinforcement $=180$ p.s.i.
$v=\frac{V}{\text { bjd }} \quad b d=\frac{32,300}{180 \times 7 / 8}=205 \mathrm{sq} . \mathrm{in}$.
Let $b=10.0^{\prime \prime}$
$d=23.0^{\prime \prime}$
$d \neq 3=26.0^{n}$
$26-t=20.0^{n}$
Check weight of stem
$\frac{9.5 \times 20}{144} \times 150=198 \#$

Assume $\mathbf{j}=0.875$
$B M=\frac{w 1^{2}}{10}=\frac{3400 \times(19)^{2} \times 12}{10}=1,470,000^{\prime \prime} \#$
$B M=T j d$
$T=\frac{1,470,000}{0.875 \times 23}=72,900 \#$
$A s=\frac{72,900}{20,000}=3.65 \mathrm{sq}$. in./ft. required
Use 4 - $l^{\text {" }}$ square bars
Area $=4.0 \mathrm{sq}$ in. two rows
Check bond

$$
u=\frac{\nabla}{\Sigma 0 j d} \quad \frac{32,300}{16(.875) 23}=101 \text { p.s.i. }
$$

Check fiber stresses
Sketch 8

$$
\begin{aligned}
& \frac{1}{4} \text { of } \operatorname{span}=\frac{20 \times 12}{4}=60.0^{\prime \prime} \quad \text { Least } \\
& (8 \times 6) 2 \neq 10=106.0^{\prime \prime} \\
& \left(80.0^{\prime \prime}-10^{\prime \prime}\right) \times \frac{1}{2}=35^{\prime \prime} \\
& 35 \times 2 \neq 10=80^{\prime \prime} \\
& \text { Moment } \mathrm{NA}=(60 \times 6)(x-3)=40(23-x)
\end{aligned}
$$

$$
x=6.25^{\prime \prime}
$$

$$
\frac{.25}{6.25} \mathrm{fc}=0.04 \mathrm{fc}=\mathrm{z}
$$

$$
f c-z=0.96 f c
$$

$$
23.0-\frac{6.25}{3}=20.92^{\prime \prime}
$$

$$
\begin{array}{lll}
\text { Compression } & \text { C } \quad \text { Arm Moment }
\end{array}
$$

$$
c_{1}=0.04 \mathrm{fc} \times 6 \times 60=\quad 14.4 \mathrm{fc} \times 20=288 \mathrm{fc}
$$

$$
C_{2}=\frac{1}{2} \times 0.96 f \mathrm{c} \times 6 \times 60=172.8 \mathrm{fc} \times 20.92=\underline{3620 f \mathrm{c}}
$$

$$
c_{1} \neq c_{2}=c \quad=187.2 \mathrm{fc} \quad 3908 \mathrm{fc}
$$

$$
3908 \mathrm{fc}=1,470,000
$$

$$
f c=377 \text { p.s.i. }
$$

$$
C=T=377 \times 187.2=70,500 \#
$$

$$
T=A s f s
$$

$$
f s=\frac{70,500}{4.0}=17,600 \text { p.s.i. }
$$

Check T beams at support

Sketch 9

$$
\begin{aligned}
& \text { (} \mathrm{N}-1 \text {) } \mathrm{As}=36 \mathrm{sq} . \text { in. } \\
& \text { NAs }=40 \mathrm{sq} . \mathrm{in} \text {. } \\
& 10 \mathrm{X}=10 \mathrm{x} \mathrm{sq} . \mathrm{in} \text {. } \\
& 36(x-3) \not f 10 x\left(\frac{x}{2}\right)=40(23-x) \\
& 36 \mathrm{X}-108 \not f 5 \mathrm{X}^{2}=920-40 \mathrm{x} \\
& 5 x^{2}+76 x=1028 \\
& X=8.6^{n} \\
& j d=23.0-\frac{8.6}{3}=20.2 \\
& C c=\frac{f c}{2}(10)(8.6)=43.0 f c \\
& C s=\frac{6.6}{8.6} \mathrm{fc}(36)=37.6 \mathrm{fc} \\
& \text { 43.0fc } x=0.2=876 f c \\
& 37.6 \mathrm{fc} \times 20.0=752 \mathrm{fc} \\
& 80.6 \mathrm{fc}(\mathrm{a})=1628 \mathrm{fc} \\
& a=20.2 \\
& T=C=\frac{1,470,000}{20.2}=72,700 \# \\
& f_{c}=\frac{72,700}{80.6}=901 \text { p.s.i. } \quad \text { O.K. } \\
& f s=\frac{72,700}{4.0}=18,200 \text { p.s.i. } \quad \text { 0.K. }
\end{aligned}
$$

T Beam Web Reinforcement
Sketch 10
The maximum shear occurs at the onds when the entire span is
loaded.
$\operatorname{tax}=\frac{32,300}{10 \times 0.92 \times 23}=153 \mathrm{p} . \mathrm{s} . \mathrm{i}$.
Center shear taken as 25% of maximum.
$\nabla_{c}=153 \times .25=38.3 \mathrm{p} .8 .1$.
Shear taken by stirrups $=\frac{92.5 \times 93}{2} \times 10=43,000 \#$
Use $\frac{1}{2}$ " circuler stirrups.

As $=0.1963 \times 2=.3926 \mathrm{sq} \cdot \mathrm{in}$.
16,000 x $.3926=6280 \neq$ taken by each stirrup
$\frac{43,000}{6280}=6.85 \quad$ Use 7.
$\frac{d}{2}=\frac{23}{2}=11.5^{\prime \prime}$
$\frac{93.0}{11.5}=8.1$
Therefore 9 stirrups will be used from support to center.
2 ($5^{\prime \prime}$
7 © 10"
GIRDER DESIGN

Sketch 11

Span 20.0^{\prime}
Clear span $=18.5^{\prime}$ as sumed simply supported beam.
Assume stem weight $=500 \# / \mathrm{ft}$.
B.M. $=64,600 \times 80 \times 2 / 3 \not 11 / 10 \times 500 \times(18.5)^{2} \nmid 12$
$=3,450,000 \nmid 205,000$
$=3,655,000$ " $\#$
$V \max =64,600 \nmid \frac{500 \times 18.5}{2}$
$=69,225 \#$
issume $\mathrm{j}=0.875$ at support
$\mathrm{bd}=\frac{\nabla}{180 \mathrm{j}}=\frac{69,225}{180 \times \cdot 875}=440 \mathrm{sq} \cdot \mathrm{in}$.
Use $b=15.0^{\prime \prime}$
$\mathrm{d}=32.0^{11}$
$\alpha \neq 3=35.0^{11}$
$35-6=29.0^{11}$
Check stem weight

$$
\frac{29 \times 15}{144} \times 150=45 \text { 井 } / 1
$$

Assume $\mathbf{j}=0.92$ between supports
B. M. $=T j d$
$T=\frac{3,655,000}{0.92 \times 32}=124,000$
$\mathrm{As}=\frac{T}{\mathrm{f}^{\prime} \mathrm{s}}=\frac{124,200}{20,000}=6.21 \mathrm{sp}$. in.
Use 1.0" circular bars
Use 8.0 bars - two rows - $3 \frac{1}{2} n$ spacing.
As $=6.32^{\prime \prime}$
$0=25.1^{\prime \prime}$
Bond

$$
u=\frac{\nabla}{\Sigma 0 j d}=\frac{69,225}{25.1 \times 0.92 \times 32}=93.7 \text { p.s.i. } \quad \text { 0.K. }
$$

Review of Girder Design
Sketch 12

$$
\begin{aligned}
& \frac{1}{4} \operatorname{span}=\frac{20 \times 12}{4}=60.0^{n} \\
& 8 \times \text { thickness } \times 2 \nmid 15=111.0^{\prime \prime} \\
& \text { Clear span }=18.5 \times 12=222.0^{\prime \prime} \\
& \text { Moment NA }=(60 \times 6)(X-3)=63.2(32-X) \\
& x=7.36^{n} \\
& \frac{z}{.36}=\frac{f c}{7.36} \\
& Z=0.0488 f c \\
& \mathrm{fc}-\mathrm{Z}=.95 \mathrm{fc} \\
& C_{1}=(60 \times 6)(.05 \mathrm{fc})=18.0 \mathrm{fc} \times 29=522 \mathrm{fc} \\
& \mathrm{C}_{2}=(60 \times 6)\left(\frac{0.95 \mathrm{fc}}{2}\right)=171 \mathrm{fc} \times 30=5130 \mathrm{fo} \\
& \mathrm{C}=\mathrm{C}_{1} \not \mathrm{C}_{2} \quad=18.9 \mathrm{fc}=5652 \mathrm{fc} \\
& f c=\frac{3,655,000}{5652}=646 \text { p.s.i. } \quad \underline{0 . K} \text {. } \\
& T=C=189.0 \times 646=122,200 \# \\
& f s=\frac{122,200}{6.22}=19,500 \text { p.s.i. }
\end{aligned}
$$

Check girder over support
Sketch 13
Moment NA $=\left(\frac{X}{2}\right)(15 X) \not f(56.9)(X-2)=63.2(32-X)$

$$
\begin{aligned}
& X=10.7^{\prime \prime} \\
& C c=\frac{f c}{2}(15)(10.7)=80.3 \mathrm{fc} \times 28.2=2670 \mathrm{fc} \\
& C_{s}=\frac{8.7}{10.7} \mathrm{fc}(56.9)=\frac{46.4 \mathrm{fc}}{126.7 \mathrm{fc}} \times 80=\frac{1390 \mathrm{fc}}{3660 \mathrm{fc}} \\
& \mathrm{a}=28.9^{\prime \prime} \\
& T=C=\frac{3,655,000}{28.9}=126,500 \# \\
& \mathrm{fc}=\frac{126,500}{126.7}=1000 \mathrm{p} . \mathrm{s.i} . \\
& f_{s}=\frac{126,500}{6.32}=20,000 \text { p.s.i. }
\end{aligned}
$$

Girder Web Reinforcement
Sketch 14
Naximum shear occurs at the end with the entire span lozded.
$\mathrm{v}=\frac{69,225}{15 \times 0.92 \times 32}=157 \mathrm{p} . \mathrm{s} . \mathrm{i}$.
Shear at center taken as 25 o/o of mex.
$157 \times 0.25=39.2 \mathrm{p} . \mathrm{s} . \mathrm{i}$.
Shear taken by stirrups
$15 \times \frac{97 \times 91.5}{2}=66,600 \#$
$\frac{66,600}{6280}=10.6$ stirrups required.
Use 12 stirrups from support to center.
Spacing
4 @ 5.0^{11}
4 © 8.0"
2 © 10"
2 @ 12"
WALL BEAM DESIGN

Sketch 17

North and South wall beams will carry half the floor load of the of the other cross beams and no roof loed. Therefore the floor

beam design will suffice for the North and South wall beams.
East and West Wall Beams

$$
\begin{aligned}
\text { Assumed weight of stem } & =500 \# / 1 \\
\text { Wall loed } & =\frac{1710}{2210 \# / 1}
\end{aligned}
$$

$$
\operatorname{Max} \cdot V=32,300 \not \subset \frac{2210 \times 18.5}{2}
$$

$$
\nabla=52,800 \#
$$

$$
\text { B.M. }=32,300 \times 80 \times 2 / 3 \nmid 1 / 10 \times 2210(18.5)^{2} \times 12
$$

$$
=2,707,000 \mathrm{l} \mathrm{\#}
$$

Since the B.M. and shear for the Eest and West wall beams are less then that used in the design of the interior girders, the previous girder design will be used for the Eest West well beams.

COLUMN DESIGN
Sketches 18 and 19
All columns concentric - Axial losded.
Colums 1, 7, 29, 35.

Sketch 20

Maximum load will be on colums 29 and 35 due to the crene on
the first floor.
Girder load $\quad=69,225 \#$
Floor beam load = 32,300\#
Crane load $=3,000 \#$
Column Wt. (assumed) $=3,000 \#$
$\mathrm{N} \quad=107,525 \#$
From R.C.D.H. table $\# 20$
Use $10^{\prime \prime} \times 14^{\prime \prime}$ column.
Load taken by concrete $=95,000 \#$
Load taken by steel $=15,000 \#$
Nax. allowable load -110,000\#

Use $4-7 / 8^{\prime \prime}$ circuler bars.
Tie spacing - Use the least of the following conditions.

1. 16 bar diameters $=14.0^{\prime \prime}$
2. 48 tie diameters $=24.0^{\prime \prime}$
3. least column dimension $=10.0^{n} \quad$ Ler.st

Use $\frac{1}{2}{ }^{n}$ ties @ 10.0.
Check colurm weight

$$
\frac{10 \times 14}{144} \times 14 \times 150=2100 \% \quad \text { 0.K. }
$$

Columns 2, 3, 4, 5, 6, 30, 31, 32, 33, 34.
Sketch 21
Kaximum load will be on column $30,31,32,33$, and 34 due to
the crane on the first floor.
Girder loed $=2 \times 69,2 \overline{2} 5=138,450 \#$
Floor beam load $=32,300 \#$
Crane load - 3,000\#
Column wt. (assumed) $=3,500$ 哲
N
$=177,250 \#$
Use $14^{n} \times 16^{n}$ column.
Load taken by concrete $=151,000 \#$
Loed taken by steel

- 30,000\#

Max. allowable load
$=181,000 \#$
Use $6-1^{n}$ circular bars.
Use $\frac{1}{2}$ " ties @ 14.0 .
Check colum weight.

$$
\frac{14 \times 16}{144}=14 \times 150=3270 \# \quad \text { O.K. }
$$

Columns 8, 14, 15, 21, 22, 28.
Sketch 22
Maximum losd will be on column 22 and 28 due to the crane on the first floor.

Girder loed =	$=69,225 \#$
Floor beem locd $=2 \times 32,300=$	- 64,600\%
Crane load =	- 3,000#
Colunn wt. (as sumed) =	$=3,000 \#$
N	139,825\#
Use $10^{n} \times 18^{\prime \prime}$ column.	
Load taken by concrete =	$=12 \%, 000 \%$
Load taken by steel =	$=19,000 \#$
Max. allowable load =	$=141,000 \#$
Use 4-1" circular bars.	
Use $\frac{1}{2}{ }^{\prime \prime}$ ties © 10.0'.	
Check column weight.	
$\frac{10 \times 18}{144} \times 14 \times 150=2620 \#$	20\# O.K.

Columns 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27. Sketch 23

Maximum load will be on columns 23, 24, 25, 26 and 27 due to the crane on the first floor.

Girder load $=2 \times 69,225$	$=138,450 \#$
Floor beam load $=2 \times 32,300$	$=64,600 \#$
Crane load	$=3,000 \#$
Column wt. (assumed)	$=\frac{4,000 \# \#}{\#}$
N	$=210,050 \#$

Use $16^{\prime \prime} \times 18^{\prime \prime}$ colum.
Loed taken by concrete
= 194,000\#
Load taken by steel $=\underline{23,000 \#}$
Max. allowable load
$=217,000 \#$
Use $6-7 / 8^{\prime \prime}$ circular bars.
Use $\frac{1}{2}{ }^{n}$ ties © 14.0^{n}.
Check column weight.

$$
\frac{16 \times 18}{144} \times 14 \times 150=4200 \% \quad \text { 0.K. }
$$

$$
\begin{array}{cccc}
0 & 0 & 0 \\
0 & 0 & a \\
\hline
\end{array}
$$

$-:=$
$\therefore \times 1=$

COLUN FOCTING DESIGN
Sketch 24
Column footing 1.
Allowable soil pressure $=6000$ p.s.f.
Footing weight will be assumed 6 \% of live load.
Hooked, deformed bers will be used in all footings.
Column size $10^{\prime \prime} \times 14$ "
L $=107,525_{i f}^{F}$
DL $=6,450 \#$
$T L=113,975^{\circ}$
Area $=\frac{113,975}{6,000}=19.0 \mathrm{sq}$. ft. required.
Use $L=4^{\prime}-6^{\prime \prime} \quad A=20.25 \mathrm{sq} \cdot \mathrm{ft}^{\prime}$.
Net pressure $=\frac{107,525}{20.25}=5320$ p.s.f.
B. K. $=5320\left(\frac{14 \times 22}{144} \times \frac{22}{24}\right) \nsucc 5320\left(\frac{(22)^{2}}{144} \times 0.6 \frac{22}{12}\right)=30,000{ }^{\prime} \#$
$\dot{\alpha}=\frac{M}{K b}=\frac{30,000 \times 12}{236 \times 10}=15.25^{\prime \prime} \quad$ Use $16.0^{\prime \prime}$
$d=16.0^{\prime \prime} \quad h=4.0 \quad h \neq d=20.0^{\prime \prime}$
Check weight. $20.25 \times \frac{20}{12} 2150=5060 \#$
As $=\frac{M}{f s j d}=\frac{30,000 \times 12}{20,000 \times .866 \times 16}=1.30 \mathrm{sq}$. in.
Use $\frac{1}{2}$ " circular bars.
$A=0.2 \mathrm{sq}$. in.
$\frac{1.30}{0.2}=6^{\not t} \quad$ Use 7 bers @ 6.0^{n} c.c.
Check Bond.

$$
\begin{aligned}
& u=\frac{v}{\sum O j d}=\text { Neg pressure } \frac{\left(L^{2}-(a f \cdot 2 d)^{2}\right)}{0 j d} \times \frac{1}{4} \\
& u=\frac{52.20(20.25-12.25)}{11 \times .856 \times 16 \times 4}=70 \text { p.s.i. } \quad \text { 0.K. }
\end{aligned}
$$

Check shear.

$$
v=\frac{v}{b j d}=\frac{V}{4(a \neq 2 d) j d}=\frac{42,560}{168 \times .866 \times 16}=18.3 \mathrm{p} .8 . \mathrm{i} .
$$

Column footing 2.
Column size $14^{\prime \prime} \times 16^{\prime \prime}$
山 = 177,250\#
DL $=10,650 \#$
$\mathrm{TL}=187,900 \#$
Area $=\frac{187,900}{6,000}=31.3 \mathrm{sq} \cdot \mathrm{ft}$. required
Use L = $5^{\prime}-8^{\prime \prime} \quad A=32.2 \mathrm{sq}$. ft.
Net pressure $=\frac{177,250}{32.2}=5000$ p.s.f.
B.M• $=5500\left(\frac{16 \times 27}{144} \times \frac{27}{24}\right) \not f 5500\left({\left.\frac{(27)^{2}}{144} \times 0.6 \times \frac{27}{12}\right)=56,100 \%}^{\prime}\right.$
$d=\frac{56,100 \times 12}{236 \times 14}=20.4^{n} \quad$ Use $21.0^{\prime \prime}$
$d=21.0^{\prime \prime} \quad h=4.0^{\prime \prime} \quad d f h=25.0^{\prime \prime}$
Check weight. $32.2 \times \frac{25}{12} \times 150=10,100_{\#}^{\#} \quad$ 0.K.
As $=\frac{56,100 \times 12}{20,000 \times .866 \times 2 I}=1.85 \mathrm{sq} \cdot \mathrm{in}$.
Use $10-\frac{1}{2}$ " circulur bars $@ 6.0^{\prime \prime}$ c.c.
Check bond.

$$
u=\frac{5500(32.2-21.8)}{15.7 \times .866 \times 21 \times 4}=50 \text { p.s.i. } \quad \text { 0. } \mathrm{K}_{0}
$$

Check shear

$$
v=\frac{5500 \times 10.4}{224 \times .866 \times 2 I}=14.1 \text { p.s.i. } \quad 0 . \mathrm{K} .
$$

Column footing 8 .

$$
\begin{aligned}
& \text { Column size } 10^{\prime \prime} \times 18^{\prime \prime} \\
& \text { LL }=139,825 \# \# \\
& \mathrm{DL}=\frac{8,400 \#}{\#} \\
& \mathrm{TL}=148,225 \#
\end{aligned}
$$

Area $=\frac{148,225}{6,000}=24.7 \mathrm{sq}$. ft. required.
Use $L=5.0^{\prime}$
$A=25.0 \mathrm{sq} \cdot \mathrm{ft}$.

Net pressure $=\frac{139,825}{25}=5590$ p.s.f.
Bo. $=5590\left(\frac{18 \times 25}{144} \times \frac{25}{24}\right) \not f 5590\left(\frac{(25)^{2}}{144} \times 0.6 \times \frac{25}{12}\right)=48,500 \%$
$d=\frac{48,500 \times 12}{236 \times 18}=13.7^{\prime \prime} \quad$ Use $14.0^{\prime \prime}$
$a=14.0 \quad h=4.0^{\prime \prime} \quad h \not f d=18.0^{\prime \prime}$
Check weight $25 \times \frac{18}{12} \times 150=5630$ \# \quad.K.
As $=\frac{48,500 \times 12}{20,000 \times .866 \times 14}=2.40 \mathrm{sq}$. in.
Use 13 - $\frac{1}{2}$ " circular bars © 4.0" c.c.
Check bond.

$$
u=\frac{5590(25-10.1)}{20.4 \times .866 \times 14 \times 4}=84.2 \text { p.s.i. } \quad 0 . K_{-}
$$

Check shear.

$$
v=\frac{5590 \times 14.9}{38 \times 4 \times .866 \times 14}=45.2 \text { p.s.i. } \quad \text { O.K. }
$$

Column footing 9 .
Column size $16^{\prime \prime} \times 18^{\prime \prime}$

$$
\begin{aligned}
& \mathrm{LL}=210,050 \# \\
& \mathrm{DL}=\frac{12,600 \#}{222,650 \#} \\
& \mathrm{TL}=2
\end{aligned}
$$

Area $=\frac{2 ぇ 2,650}{6,000}=37.1 \mathrm{sq} \cdot \mathrm{ft}$. required
Use $L=6^{\prime}-2^{\prime \prime} \quad A=38.0 \mathrm{sq} \cdot \mathrm{ft}^{\prime t}$.
Net pressure $=\frac{210,050}{38.0}=5520$ p.s.f.
B. M. $=5520\left(\frac{18 \times 29}{144} \times \frac{29}{24}\right) \not f 5520\left(\frac{(29)^{2}}{144} \times 0.6 \times \frac{29}{12}\right)=70,800 \cdot \#$
$d=\frac{70,800 \times 12}{256 \times 16}=22.5^{\prime \prime} \quad$ Use $23.0^{\prime \prime}$
$a=23.0^{\prime \prime}$
$h=4.0^{\prime \prime}$
$h \not f d=27.0^{\prime \prime}$

Check weight. $\because 8 \times \frac{27}{12} \times 150=12,800 \#$ 0.K.

$\hat{A} s=\frac{70,800 \times 12}{\angle 0,000 \times .866 \times 23}=2.13 \mathrm{sq}$. in.
Use 11 - "
Check bond.

$$
u=\frac{5520(38-23.6)}{173 \times .806 \times 23 \times 14}=45.7 \text { p.s.i. o.K. }
$$

Check shear

$$
v=\frac{5520 \times 11.4}{248 \times \cdot 66 \times 63}=12.9 \text { p.s.i. } \quad \underline{0 . K_{0}}
$$

BLSEMTT FLOOR EQSIGN
Due to the expected use of the building the basement floor will be designed to cerry heavier loads then the ground floor.
ax. wiecl load expected $=6000$ \#
Bearing area essumed $=10 \mathrm{sq} \cdot$ in.
Unit pressure $=600$ p.s.i. $\quad 0 . K_{0} \quad 1350$ ellowable.
is subgrade of $6.0^{\prime \prime}$ of compacted stone will be prepored to receive the slab. is $6.0^{\prime \prime}$ plain concrete sleb will be poured in elternste sections $20.0^{\prime} \mathrm{x} 20.0^{\prime}$. A ${\underset{Z}{2 \prime \prime}}^{\prime \prime}$ filler will be used at the junction of the floor slab and ell other members such as colums, wells, etce, and betrieen the 20.0^{\prime} sections.

RET:INIGG
Sketches 25, 26 and 27
Since the driveway is to be on the west side of the building the basement wall on thet side will be a retcining wall in order to eliminete damege to the wall from driveway parking snd traffic. The wall will be made 16.0^{\prime} hign, and 2.0^{\prime} of the wall will be below grade as a rrecaution agoinst frost damege. In order to compute the earth pressure egainst the wall, it is necessery to compute the equivalent surcherge for the maximum loeds expected on the driveway. The largest vehicles expected to use the drive-

wey are semi-trailers ε s shown in Sketch 25. The maximum condition expected is shown and the axle loads of 20,000 are considered to act uniformly on an area of 240 sq . ft.

Area $=40 \times 6=240 \mathrm{sq} \cdot \mathrm{ft}$.
Unit load $=\frac{30,000}{240}=333$ p.s.f.
Weight of earth assumed $120 \frac{1}{f} / \mathrm{cu} . f t$.
$\frac{353}{120}=2.78^{\prime} \quad$ Use 3.0^{1} surcherge.

The megnitude and point of epplication of the earth pressure will be determined by use of Fankine's Theory of Earth Pressure.

Sketch :6

$$
\begin{aligned}
& \text { Angle of repose for clay loam } 36^{\circ} 53^{\prime} \\
& P=\frac{1}{2} \operatorname{wh}\left(h \not h^{\prime}\right) \frac{1-\sin \varnothing}{1 \neq \sin \varnothing} \\
& P=\frac{1}{2} \times 20 \times 16(16 \neq 6) 1-.602=5300 \# \\
& 1 \nmid .602 \\
& Y=\frac{h^{2} \nmid 3 h h^{1}}{3\left(h \neq 2 h^{1}\right)}=\frac{(18)^{2} \neq 3 x 18 x 3}{3(18 \not 66)}=0.75^{1} \text { from base }
\end{aligned}
$$

$\mathrm{Mo}=5300 \times 6.75=35,800 \mathrm{~A} \#$
To determine stem thickness at base
$M=R b d^{2}$
$d=\left(\frac{\mathrm{R}}{\mathrm{Rb}}\right)^{\frac{1}{2}}=\left(\frac{5300 \times 4.75 x .2}{236}\right)^{\frac{1}{2}}=10.5^{n}$ Use $12.0^{\prime \prime}$
$d=\frac{V}{\nabla j d}=\frac{5000}{12 \times .866 \times 60}=8.52^{\prime \prime}$
Stem thickness taken as $15.0^{\prime \prime}$. This will provide sufficient cover for stem steel. No batter will be used on the stem. Design of base slab

The following dimensions will be assumed\&
Toe $=3.0^{\prime}$
Heel $=5.0^{1}$
Thickness $=2.0^{\circ}$

$$
\begin{aligned}
& \because=120(5 \times 16)=9,600 \times 6.75=64,800 \\
& \mathrm{~W}_{1}=1.25 \times 18 \times 150 \\
& =3,580 \times 5.63=12,200 \\
& W_{2}=5 \times 2 \times 150=1,500 \times 6.75=10,150 \\
& W_{3}=3 \times 2 \times 150=900 \times 1.5=1,350 \\
& \text { RO } \quad=15,380_{i=}^{\#} \quad \mathrm{ir}=88,500{ }^{\prime \prime} \\
& 88,500-35,800=52,700 \cdot \# \\
& \frac{52,700}{15,380}=3.431 \text { from toe }
\end{aligned}
$$

Therefore, the Resultant acts vithin the middle third of the base.

$$
\begin{aligned}
\theta=4.63-3.43 & =1.21 \\
S=\frac{P}{A}\left(1 \nsubseteq \frac{6 e}{\sigma}\right) & =\frac{15,380}{9.25}\left(1 \nmid \frac{6 \times 1.2}{9.25}\right) \\
& =2957 \text { p.s.f. mex. } \\
& =367 \text { p.s.f. min. }
\end{aligned}
$$

Eeel slab

Shear A-A			Noment $A-A$	
9600		$\times 2.5$	$=$	24,000
1500		$\times 2.5$	$=$	3,750
$\pm 11,100 \%$			¢ 27,750 $\#$	
367×5	$=1835$	$\times 2.5$	$=$	4,590
1400×2.5	$=3500$	$\times 1.67$	$=$	5,840
	- 5335\#			10,430 ${ }^{\prime}$

Shear A-A $=11,100-5335=5765$ 位
Moment $A-A=27,750-10,530=17,320^{\prime} \#$
$d=\frac{V}{\nabla j b}=\frac{5765}{60 \times .866 \times 12}=9.25^{\prime \prime}$
$\alpha=\left(\frac{M}{R}\right)^{\frac{1}{2}}=\frac{(17,320)^{\frac{1}{2}}}{236}=8.58^{n}$
Base slab thickness chenged to $16^{\prime \prime}$ ($\mathrm{d}=1$ í. $0^{\prime \prime}$). This will
provide sufficient cover for steel.
As $=\frac{17,320}{20,000 \times .866 \times 12}=0.0832 \mathrm{sq} \cdot$ in. $/ \mathrm{in}$.

Use $1^{\prime \prime}$ circuler bers @ $9.0^{\prime \prime}$ c.c. As $=.0872 \mathrm{sq}$. in./in.
Steel pleced in top of heel sleb.

$$
\begin{array}{ll}
v=\frac{5765}{12 \times .866 \times 12}=46.2 \text { p.s.i. } & \text { o.K. } \\
u=\frac{46.2 \times 9}{3.14}=132 \text { p.s.i. } & \text { o.K. }
\end{array}
$$

Toe slab

Shear B-B			Moment B-B
$\not \subset 900$	$\times 1.5$	$=$	$\nrightarrow 1350$ '\#
$2117 \times 3=6351$	$\times 1.5$	$=$	9540
$840 \times 1.5=1260$	$\times 1.0$	$=$	1260
- 7611\#			-10,800 ${ }^{\text {\# }}$
Shear B-B $=7611$	6711\#		
Moment $\mathrm{B}-\mathrm{B}=10,8$	$=945$		
$\mathrm{d}=\frac{6711}{60 \times \cdot 866 \times 1}$			
$d=\left(\frac{9450}{236}\right) \frac{1}{2}=6$			

Toe slab will be mede the some thickness as the heel slab 16.0" ($\mathrm{d}=12^{\mathrm{n}}$) 。

As $=\frac{9450}{20,000 \times .866 \times 12}=0.0454 \mathrm{sq} . \mathrm{in} . / \mathrm{in}$.
Steel should be placed in the bottom of the toe slab. Stem steel will be carried around for reinforcement in the toe slab. This will provide sufficient reinforcement for the toe slab and it will also provide enbedment length for the stem steel.

Stem

The stem will be $15.0^{\prime \prime}$ uniform thickness. Moments are coriputed for every 2.0^{\prime} of stem from which the cut off points for the stem steel are determined.

h'	V\#	M'\#	As sq. in./ft.
2	80	53.5	0.00309
4	320	427	0.0205
6	720	1440	0.083

8	1280	3420	0.197
10	2000	$\epsilon 670$	0.385
12	2880	11,550	0.666
14	3920	18,400	1.06
16	5300	28,600	1.64

Use $4-3 / 4^{\prime \prime}$ circular bars @ 3.0".
From this table the cutoff points can be determined. Sufficient
length will be sdded for embedment.
$L=\frac{f c D}{4 u}=18.0^{\prime \prime}$
For points of cutoff see Sketch 27.
In addition to the reinforcement steel, temperature steel will be placed in the stem, 0.15% of cross section.

As $=15 \times 12 \times .0015=0.27 \mathrm{sq}$. in. $/ \mathrm{ft}$.
Use $\frac{1}{2} "$ circular bars @ $16^{\prime \prime}$ c.c. front $=0.15$
Use $\frac{1}{2}$ " circuler bars @ 16^{n} c.c. back $=\frac{0.15}{0.30} \mathrm{sq}$. in. $/ \mathrm{ft}$.
Factors of safety
Overturning $=\frac{88,500}{35,800}=2.47$
35,800
Sliding $=\frac{15,380 \times \tan 25^{\circ}}{5300}=1.36$
Crushing $=\frac{6000}{2957}=2.03$
The retaining wall will be continuous for 60.0^{\prime} sections. In
order that the wall will frame into the other members, the wall
will be poured flush with the outer face of the columns and wall
beams. This will eliminate modification of the wall beams and
columns along the liest wall.
BASEIENT WALLS
The North, South end East basement wells will be poured concrete wells. Temperature steel wil be pleced in the walls, but no other

0

5
reinforcement will be used．The walls will be independent of the enclosing members such as the upper wall beams and columns．There－ fore，it is safe to assume that there will be no transfer of loads from these members to the walls．The only direct load on the wells will be the earth pressure due to back fill．

The wall height will be $14.0^{\prime}-29^{\prime \prime}=139^{\prime \prime}$ for the East wall and $14.0^{\prime}-20^{\prime \prime}=148^{\prime \prime}$ for the North and South walls．

The wall thickness will be taken as $8.0^{\prime \prime}$ in order to provide a water－tight wall and to resist any stress caused by the back fill．

The only opening in the basement walls will be a door in the South wall．The door will be 14.0^{\prime} high and l2．0＇wide．Wall Beam \＃12 will serve as the top of the door hence no lintel is required．

Wall temperature steel
$8.0 \times 12 \times .0015=0.144 \mathrm{sq} \cdot \mathrm{in} \cdot / \mathrm{ft}$ ．
Use $\frac{1}{2}$＂circular bars＠ $16^{\prime \prime}$ c．c．in inside wall surfece．
BESEMENT WALL FOOTINGS
For a 1.0^{\prime} section of wall
Thickness $=8.0^{\prime \prime}$
Height $=148.0^{\prime \prime}$
Weight $=\frac{8 \times 148}{144} \times 1 \times 150=1235$ 并 $/ \mathrm{ft}$ 。

Wall weight $=1235$ 并／ft．
Footing weight（assumed）$=200 \# / f t$ ．
T．L．$=1435 \# / f t$ ．
Area $=\frac{1435}{6000}=.239 \mathrm{sq.ft}$ ．required．
Since such a small ε rea is required，a practical size footing will be used without further investigation．Use a footing 2．0＇wide and 8．0＂thick．No reinforcement is necessary，but temperature steel
will be used to prevent cracks from opening．
Use $\frac{7}{2}$＂circular bars＠9．0＂c．c．

All columns end wall footings will be completed in one pour. Dowels of the same dismeter as the vertical steel in the joining memoers will be pleced in the foctings. The dowels will extend et least 25 ber diemeters beyond the footings. Leyways will be placed in the wall footings while the concrete is still in the plaster state. This will provide edded enchorege for the wells to the footings.

The basement wells will be poured in two lifts. This is deemed necessary for proper puddling. The first lift willbe 8.0^{\prime} high, and a keyway will be placed on the top surface of the first lift. The second lift will complete the well to grade. Dowels will be used to anchor the wall to the floor sleb. These dowels should extend 25 dianeters into the wall and into the slab. This will necessitate bending the bars 90°. The tempereture steel in the well will extend 25 diameters into the joining colurns in order to provide proper anchorage with these members.

The stem of the West wall, the retaining wall, will be poured in two lifts with the keyways provided in the seme menner as for the other walls. The wall will be poured in two 60.0^{\prime} sections with en expansion joint between the two sections. The expansion joint will be a ke;way, doweled together, and with $\frac{1}{2}$ " filler between the two sections. This type of joint should provide a flexible, water-tight connection. The stem will also be doweled to the West well columns and well beams.

STfIR DESIGN

Stairs located and dimensioned ss shown in Sketch 28.
$L L=100$ p.s.f.
DL $=75$ p.s.f.
$T L=175$ p.s.f.

Use 6.0" slab.
Total rise from top of floor to first landing - 7.0'.
Stairs with $10.0^{\prime \prime}$ run, $6^{\prime \prime}$ rise, and $1.0^{\prime \prime}$ nosing will be used.
Horizontal projection of steirway $=10.0^{\prime}$
Lending platform 4.0' long, 8.0' wide, 6.0" thick.
The stairway sleb and platform sleb will be designed as onc slab,
length $=14.0^{\prime}$.
$\mathrm{V}=\frac{\mathrm{w} 1}{2}=\frac{175 \times 14.0}{2}=1225$ if
B. M. $=\frac{w_{1}^{2}}{10}=\frac{175 \times(14.0)^{2}}{10}=3430 i j$
$\mathrm{d}($ for sherr $)=\frac{1225}{12 \times .866 \times 60}=1.97^{\prime \prime}$
$d($ moment $)=\left(\frac{3430 \times 12}{12 \times 236}\right)^{\frac{1}{2}}=3.82^{\prime \prime}$
Use $d=4.0^{\prime \prime}$
As $=\frac{3430 \times 12}{20,000 \times .866 \times 4.0}=0.594 \mathrm{sq} . \mathrm{in} . / \mathrm{ft}$.
Use $\frac{1}{2}{ }^{n}$ circuler bars © $4.0^{\prime \prime}$ c.c.
Check bond
$u=\frac{12.5}{4.7 \times .866 \times 4}=75.2 \mathrm{p} . \mathrm{s.i} \quad \underline{0 . K_{0}}$
The lower and upper stairway slabs ere fixed to tiie landing slab along the inside edge. The lending slab, 4.0' long, is fixed in the Eqst wall. The stairway slab reinforcement is continued through the landinf; sleb end enchored into the well with hooks. This seme reinforcement will be run slong the 8.0' leagth of the lendints sl:b.

A bean will be designed to supnort the inside edce of the pl:tfor sl. b. This bean will be sup:orted by a short colum et each end. Stairway sl:b reaction $=1225: / 1$

Pletform sl:b reection $=\frac{4 \times 75}{2}=150 / \mathrm{m}$
Totel lood on 1 nding beam $=1.75 \mathrm{f} / 1$
Assume stem weight $=50 \mathrm{~F} / \mathrm{F}$

TiL. = 1405 昔 $/ 1$
$\mathrm{V}=\frac{1405 \times 8}{2}=5620 \frac{1}{\pi}$
"isth web reinforcement
$\mathrm{bd}=\frac{5620}{18 \mathrm{x} \cdot .075}=3.5 .6 \mathrm{sq} \cdot$ in. required
Let $b=6.0^{\prime \prime}$
$d=9.0^{\prime \prime}$
$\mathrm{d} \cdot \underset{6}{ } .0=12.0^{\prime \prime}$
$\mathrm{c}-\mathrm{t}=5.0^{\prime \prime}$
Check stem weight

Use $5-\frac{2}{2}$ " circular bars @ $2.0^{\prime \prime}$ c.c., two rows
Check bond

$$
u=\frac{5620}{7.9 \times 0.92 \times 9}=85.8 \text { p.s.i. } \quad \text { 0.K. }
$$

Check shear
Max. shear at end of beam $=\frac{5020}{6 \times \cdot 92 \times 9}=113 \mathrm{p} \cdot \mathrm{s} \cdot \mathrm{i}$.
Web reinforcement is renuired.
Max. center shear will be taken as 25 oo of mex. shear.
$\mathrm{Vc}=0.25 \times 113=38.3 \mathrm{p} . \mathrm{s.i}$.
Total shear token by stirrups

$$
\begin{aligned}
& 113-38.3=74.7 \text { p.s.i. } \\
& 113-60.0=53.0 \text { p.s.i. } \\
& \frac{74.7}{48}=\frac{53}{X} \quad X=34.0^{\prime \prime}
\end{aligned}
$$

$$
V=\frac{53 \times 34}{2}=900 \#
$$

Using $\frac{1}{4}{ }^{n}$ circular stirrups $A=0.05 \mathrm{sq}$. in.

$$
\begin{aligned}
& \frac{5 \times 4}{144} \times 150=21.0: 7 \quad \underline{O . K .} \\
& \text { B. } . .=\frac{1405 \times 64}{8}=11,250^{\prime} \# \\
& \text { As }=\frac{17,250 \times 12}{20,000 \times .92 \times 9}=0.815 \mathrm{sq} \text {. in. required }
\end{aligned}
$$

$$
\text { - SnET-4 } 2 E
$$

$0.1 \times 16,000=1600 \%$ taken by each stirrup
One stirrup required.
Max. apacing $=\frac{d}{2}=4.5^{\prime \prime}$
Therefore $\frac{34}{4.5}=7 t$
Use 8.0 stirrups © 4.5" c.c. at each end.
Landing Post Design
Two $3^{\prime \prime} \times 23 / 8^{\prime \prime}-5.7$ 丰 standard steel columns will be used.
Allowable concentric load for 7.0' height $=9900 \#$ O.K.
A $3 / 4^{\prime \prime}-4 \times 5$ bearing plate will cap each end of the column.
Maxinam beam reaction $=5620 \#$
Column weight $=7 \times 5.7=\underline{40 \#}$
Total axial load $=5660 \#$
$\frac{5660}{4 \times 5}=283$ p.s.i. compression stress upon floor. O.K.
Allowable compression stress $=1350$ p.s.i.
Therefore no footing is required. The landing beam posts will be encased in concrete in order to provide a fireproof structure.

CRANE SUPPORT DESIGN
Sketch 29
A three ton overhead crane is to be placed on the first floor along the East wall. A four wheel crane will be used, crane to be designed by owner. The crane will operate on two rails which will be supported by steel colums. The columns will be embeded $12^{\prime \prime}$ into the concrete of the floor system, and the top ends of columns will be tied together by lateral bracing.

Six inches clearance will be alloved for the crane wheels and 2.0' clearance will be allowed for the crane mechanism.

Maximum load on the column will occur when one crane wheel is
positioned over the column bracket. Due to insufficient data concerning the crane wheel spacing, the steel columns will be designed for the condition that one wheel is positioned over the bracket and the resulting moment will be computed for the weak axis of the colum. The brackets will be placed so that the actual moment will be about the strong axis of the column.

A $5 \times 5^{\prime \prime}-18.5 \#$ light weight column will be checked for maximum moment about the weak axis.

Crane losd = 1500\#/wheel
Moment $=1.5 \times 6=9.0^{\prime \prime} \mathrm{Kips}$.
Equivalent direct $108 d=9.0 \times 1.56 \not \subset 1.5=15.36$ Kips.
$\frac{f a}{F A} \not \frac{f b}{F B}$ shall not exceed unity.
$\frac{1}{r}=\frac{144}{1.28}=112.5$
$F A=10.81$
$f a=\frac{P}{A}=\frac{15.36}{5.45}=2.82$
$F B=20.0$
$f^{\prime b}=\frac{M}{S}=\frac{9.0}{9.94}=0.91$
$\frac{2.82}{10.81} \times \frac{0.91}{20.0} 0.306$ less than unity $\quad 0 . K_{0}$
Allowable axial load for unsupported length of 12.0^{\prime} equals
49.0 Kips. Therefore the column selected is adequate.

Bracket Design

From A.I.S.C. handbook

$$
\begin{aligned}
& P=1.5^{k} \\
& 1=6.0^{\prime \prime} \\
& 3 / 4^{n} \text { rivets } \\
& 3.0^{\prime \prime} \text { pitch }
\end{aligned}
$$

Allowable stress on one rivet $=15.0 \times .4418=6.63 \mathrm{Kips}$.

$$
ج^{x} \because 1
$$

ษ
1

$\because \because \because-1-A$
$C=\frac{P}{2 \times S}=\frac{1.5}{2 \times 6.63}=0.103$
Use 3 rivets in each of two rows.
Use $\frac{1}{2} "$ plate and $2 \times 2 \times \frac{1}{2}$ " angles for bracket.
The columns will be 15.0^{\prime} long, 1.0^{\prime} embeded in the floor system. The brackets will be placed 2.0' below the tops of the columns. The tops of the columns will be braced as shown in sketch 29. The columns will be tied together with 3×2 (8" 5.7\# standard I bea s, and the top cross bracing will be $2 \times 2 \times$ $3 / 8^{\text {n }}$ angles. Rail size and fastenings will be determined efter the crane has been as signed.

DESIGN OF DFIVE
Sketoh 30
A two lane concrete drive will be placed parallel to the West side of the building. The drive will be 3.0' from the building wall and will extend from the existing city street to the rear entrance of the building. The slab thickess will be determined by the use of Older's Theory.
$S=$ fluxural strength of concrete
$\mathrm{W}=$ wheel load
$\mathrm{d}=$ slab thickness
$d=\left(\frac{1.5 W}{S}\right)^{\frac{1}{2}}=\left(\frac{1.5 \times 10,000}{750}\right)^{\frac{1}{2}}=4.47^{n}$
A $6.0^{\prime \prime}$ slab with thickened edges will be used. No reinforcement willbe placed in the slab. A transverse expansion joint will be placed at a point midway along the drive. Weakened plane contraction joints will be placed at points midway between the expansion joint and the ends of the slab. The total width of the drive will be 16.0^{\prime}, laid in two $8.0^{\prime \prime}$ slabs connected by a doweled longitudenal joint. A gutter will be placed in the outside edge of
the left slab, in order to carry the run off from the slab away from the basement wall. The drive will be widened to 26.0^{\prime} at the curve in order to facilitate entrance into the basement.

The unit prices for the construction materials used in this estimate were obtained from the May 1, 1947 issue of " ${ }_{\text {ng }}$ ineering News Kecord". The unit prices used are those listed therein for the Central Ohio area. Keference was also made to "Uonstruction Estimates and "osts" by H.E. Pulver, published by McGraw-Hill Book Company in 1940.

Concrete Block Wall
4940 blocks $\mathrm{C} \$ 0.17=\$ 839.80$
Cement Mortar. 184 mix used
0.25 cu. yd. $/ 100$ blocks
$49.40 \times 0.25=12.35 \mathrm{cu} \cdot \mathrm{yds}$.
Cement
12.35×6.75 @ $\$ 2.62 / \mathrm{bb} 1=\$ 54.70$
Lime
$12.35 \times 70 @ \$ 30.00 /$ Ton $=\$ 13.00$
Sand

$$
12.35 \times 1.0 \text { @ } \$ 1.15 / \text { Ton }=21.10
$$

Water
12.35 @ $\$ 0.10 / \mathrm{cu} . \mathrm{yd}$.
$=1.30$
Total Wall Cost
$=\$ 929.90$

Concrete
3000\# concrete will be used for all structures. The columns will be poured with a very plastic mix; lis $3 / 482 \frac{1}{2}$ mix by volume, 6.0 gal./sack. The remaining sturctures will be poured with a $1: 283 \mathrm{mix}$ by volume, $6.0 \mathrm{gal} / \mathrm{sack}$.

	$\frac{\text { S.G. }}{}$	Wt.	Absolute $\frac{\text { Wt. }}{}$
Cement	3.10	94\#/sack	$62.4 \times 3.10=194 \#$
Sand	2.65	110\#/cu.ft.	$62.4 \times 2.65=165 \#$
Gravel	2.65	100\#/ou.ft.	$62.4 \times 2.65=165 \#$
Water	1.00	62.4\#/cu.ft.	
		36	

The yield will be computed for a 1.0 sack unit of each mix.
182:3 mix by volume.
Cement $94=0.484 \mathrm{cu} . \mathrm{f}^{\prime} \mathrm{t}$. $\overline{194}$

Sand $\frac{110 \times 2}{165}=1.333 \mathrm{cu} \cdot \mathrm{ft}$.
Gravel $\frac{100 \times 3}{165}=1.818 \mathrm{cu} \cdot f t$.
Water $\frac{6.0}{7.48}=0.80 \%$ cu. ft.
Yield in concrete $=4.437$ cu. ft.
$1813 / 4$ s2 $\frac{1}{2}$ mix by volume. 6.0 gal./sack
Cement $\frac{94}{194}=0.484$ cu.ft.
Sand $\frac{110 \times 1.75}{165}=1.167 \mathrm{cu} \cdot \mathrm{ft}$.
Gravel $\frac{110 \times 2.5}{165}=1.515 \mathrm{cu} . f t$.
Water $\frac{6.0}{7.48}=0.802 \mathrm{cu} . f t$.
Yield in concrete $=3.968 \mathrm{cu}$. ft.
First floor slab $4800 \mathrm{cu} . f$ f.
T-Beams 2200 cu . ft.
Girders 1800 cu. ft.
Column footings $2400 \mathrm{cu} \cdot \mathrm{f}^{\prime} t$.
Basement floor slab $4800 \mathrm{cu} . f \mathrm{f}_{\mathrm{t}}$
Basement walls 2\%00 cu. ft.
Retaining wall $3900 \mathrm{cu} . \mathrm{ft}_{\mathrm{t}}$
Wall footings 400 cu. ft.
Stairway 75 cu. ft.
Driveway 1300 cu. ft.
Volume of 18283 concrete $=23,875 \mathrm{cu}$.ft.

$$
\frac{23,875}{4.437}=5380 \text { units }
$$

Cement $1 \times 5380=5380$ sacks
Sand $\quad 1.333 \times 5380=7170$ cu. ft.
Gravel $1.818 \times 5380=9780 \mathrm{cu} \cdot \mathrm{ft}$.
Colurms 800 cu. ft.
800 cu . ft. of $1 \mathrm{sl} 3 / 482 \frac{1}{2} \mathrm{mix}$ required
$\frac{800}{3.968}=20 \%$ units
Cement 1 x 202 = 202 sacks
Sand $1.167 \times 202=236$ cu. ft.
Gravel $1.515 \times 202=306$ cu. ft.
Total cement $=5582$ sacks $(\$ 2.62 / \mathrm{bbl} \quad=\$ 3660.00$
Total sand $=7406 \mathrm{cu} \cdot \mathrm{ft}$. @ $\$ 1.15 / \mathrm{Ton}=\$ 407.00$
Total grevel $=1 ; 086 \mathrm{cu} . f t . @ \$ 2.50 /$ Ton $=\$ 1260.00$
Total water $=6.0 \times 5582 @ \$ 0.15 / 1000$ gal. $=\$ 6.00$
Total concrete cost $\quad=\$ 5333.00$
Reinforcing Steel

Floor slab and stairs	30,000' - $\frac{1}{2}^{\prime \prime}$ Circular bars
T Beams	7,000' - $1^{\prime \prime}$ Square bars
Stirrups	2,520' - ${ }^{\prime \prime}{ }^{\prime \prime}$ Circular bars
Girders	4,800' - ${ }^{\prime \prime}$ Circular bars
Stirrups	6,000' - $\frac{1}{2}^{\prime \prime}$ Circular bars
Columns	1,800' - 7/8' Circular bars
	1,500' - 1" Circular bars
	2,800' - $\mathbf{1}^{\prime \prime}$ ' Circular bars
Column footings	5,300' - $\mathbf{1}_{2}{ }^{\prime \prime}$ Circular bars
Fetaining wall	1,040' - ${ }^{\prime \prime}$ Circuler bars
	4,560' - 3, $4^{\prime \prime}$ Circular bars
	2,880' - $\frac{1}{2 \prime \prime}$ Circulir bars
Busement well	3,360' - ${ }^{\prime \prime \prime}{ }^{\prime \prime}$ Circuilar bars
Wall footings	560' - ${ }^{\prime \prime}{ }^{\prime \prime}$ Circular bars

$\frac{1}{2}{ }^{\prime \prime}$ Circular straight bars $30,000^{\prime}$
2,800

$$
\text { ' } 880^{\prime}
$$

2,360

$$
560^{\prime}
$$

$$
39,600
$$

$39,600 \times .668=26,500 \#$26,500 @ $3.20 / 100 \#=\$ 850.00$
$\frac{1}{2}$ " Circular bent bars 2520
6000^{\prime}
5300^{\prime}
13,820'
$13,820 \times .668=9250 \#$
9250 @ \$ 3.60/100\# $=\$ 335.00$
3/4" Circular bars 4560'
4560×1.502 © $3.00 / 100 \#=\$ 205.00$
7/8" Circular bars 1800'
1800×2.04 © $3.00 / 100 \#=\$ 110.00$
1" Circular bars $4800^{\prime}$$1500^{\prime}$1040'
7340^{\prime}
$7340 \times 2.67=19,600 \#$
19,600@ $\$ 3.00 / 100 \#=\$ 588.00$
1" squere bars 7000^{\prime}
7000×3.4 @ $\$ 3.00 / \#=\$ 714.00$
Total reinforcing steel cost $=\$ 2802.00$
Filler
$100 \mathrm{sq} . \mathrm{ft}$. © \$ $0.05 / \mathrm{sq} . \mathrm{ft}_{\bullet}=\$ 50.00$

Structurel steel and rivets
Steel 2756\# @ \$ 4.32/100\# = \$120.00
Rivets 300 @ $\$ 5.25 / 100=\$ 15.75$
Total $=\$ 135.75$
Lumber
$22,230 \mathrm{ft}$. B.M. @ $\$ 100.00 / 1000 \mathrm{ft}$. B.M. $=\$ 2 \mathrm{~m} 23.00$
Roofing
$21,120 \#$ @ $\$ 2.26 / 10 c \#=\$ 480.00$
Hardware
$9 \times \$ 10.00 /$ Truss $=\$ 90.00$
Totel Estimate $=\$ 12,043.65$

From this estimate it is believed that all the materials required for construction of the building, with the exception of doors, windows, and miscellaneous fixtures, could be supplied for approximately 12,000 .
noon USE CLL

