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ABSTRACT
CALCULATIONS OF ELASTIC AND INELASTIC
ELECTRON SCATTERING IN LIGHT NUCLEI WITH

SHELL-MODEL WAVE FUNCTIONS

By
Raad Abdul-Karim Radhi

Shell-model wave functions calculated within the
complete space of Op3/2- Opi,/2 and 0ds/2- 1lsj/2- 043/2
configurations are used to calculate elastic and inelastic
form factors of electron scattering from p-shell and
sd-shell nuclei. We analyze the magnetic elastic scattering
data for p-shell and sd-shell nuclei and both the electric
and magnetic inelastic electroexcitation of the even-parity
states of 27al., Effective operators for the different
multipoles are used to normalize the magnetic elastic form
factors to the experimental data. Different effective
charges are used for E2 and E4 transitions. The longitudinal
form factors and the B(E2) values are well reproduced using
these effective charges. Comparisons are made for the
single-particle wave functions of the harmonic oscillator

and the wOods-Saxon radial wave functions.
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CHAPTER 1

INTRODUCTION

Electron scattering has been widely used as a probe of
nuclear structure. Theoretical work on electron scattering
dates from 1929, when Mott (Ref 1) derived the cross section
for the relativistic scattering of Dirac particles by
spinless point nuclei of charge Ze where Z/137 << 1. For the
scattering of high energy electrons from the nucleus, the
de Broglie wavelength becomes equal to or smaller than the
radius of the nucleus, and the interaction of the electron
with the nucleus will be sensitive to the details of the
nuclear charge distribution. The éffects of finite nuclear
size on electron scattering were first considered by Guth
(Ref 2) and later independently by Rose (Ref 3).
Corresponding to the Mott formula for the scattering of
electrons from point nuclei, the finite nuclear size can be
taken into account by multiplying the Mott cross section by
a factor which depends on the charge, current and
magnetization distribution of the target nucleus. This
coefficient of the Mott cross section is called the form
factor of the nucleus. Experimentally, the form factor can
be determined as a function of the momentum transfered (q)

to the nucleus, a quantity which is determined by the



energies of the incident and scattered electron and the
scattering angle.

The effects of nuclear size were first detected
experimentally by Lyman et al. (Ref 4), who measured the
scattering cross section of 15.7 MeV electrons by nuclei.
Good agreement was obtained between the experimental data
and calculations which assumed a uniformly distributed
nuclear charge.

The scattering of electrons from a target nucleus can
occur in two ways. In one, the nucleus is left in its ground
state after the scattering and the energy of the electrons
is unchanged. In the other, the scattered electron leaves
the nucleus in different excited state and has a final
energy reduced from the initial just by the amount taken up
by the nucleus in its excited state. These two kinds of
processes are refered to as elastic and inelastic electron
scattering.

Excitation of nuclear levels by electrons was first
discussed theoretically by Mamasachlisov (Ref 5) in 1943.
The first experiment on electron excitation of nuclei to
discrete levels was done in 1940 by Collins and Waldman
(Ref 6). Since that time, electron scattering has become
a major technique for studying the structure of the nucleus
and many experiments have been performed at different
laboratories. The work of Hofstadter et al. (Ref 7) at the
Stanford university linear accelator in 1953 is considered

as the pioneering experimental study of this subject.



Several review articles have been published discussing the
development of this topic and one can find a detailed
summary of what has been done in this field and lists of
review articles since the early stages of scattering theory
in Ref 8, Ref 9 and Ref 10.

Electron scattering is not the only way to probe
nuclear structure with electromagnetic interactions. An
alternate is photo-excitation. The momentum transfered to
the nucleus in this case equal to the excitation energy (w)

since the mass of the photon is zero,
qﬁng_w2=0 (1)

The three-momentum transfer g in this case cannot be
varied for a given energy level, and the nuclear structure
cannot be studied as a function of momentum transfer. In
the case of charged-particle excitation of nuclear levels,

one can vary q for a fixed w

(2)

]
Q
|
€
v

=

and study the form factor of the nucleus as a function of q.
This gives detailed information about the charge and
current distributions in the nucleus, and at g= w , the
results are in principle exactly the same as those of the
photo excitation. Coulomb excitation by heavy charged

particles is one such tool for probing nuclear structure,



but for light nuclei and high energy, the incident particle
may penetrate the Coulomb barrier and the structure effects
of the target cannot be isolated from the strong
interaction, where both of them are not known well. The
electron, on the other hand can penetrate deeply inside the
nucleus with only the electromagnetic force acting between
the electron and the nucleus.

The nucleus interacts with the electromagnetic field via
its charge and current densities. The interaction of the
electron with the charge distributions of the nucleus can be
considered in the first Born approximation as an exchange of
a virtual photon of angular momentum zero along the
direction of q. In this case the electron does not flip
spin, due to the conservation of angular momentum. This kind
of interaction is called Coulomb or longitudinal scattering.
The interaction of the electron with the spin and current
distributions of the nucleus gives rise to the transverse
part of the cross section, where the process can be
considered in the first Born approximation as an exchange of
a virtual photon of angular momentum :1 along the direction
of g. In the limit q - 0 the transition probabilities are
exactly the same as for real photons. The spin of the
electron in this case should flip to conserve angular
momentum. From parity and time reversal invariance one can
see that only electric multipoles can have longitudinal
components, while both electric and magnetic multipoies can

have transverse components. Transverse multipoles must have



angular momentum greater than zero, while longitudinal
multipoles can have angular momentum equal to or greater
than zero.

Longitudinal scattering gives information about the
charge distribution of the nuclear system, while transverse
scattering gives information about the current and
magnetization distributions of the nucleus. The transverse
part can be separated by doing experiments at 180° (Ref 11)
where the transverse form factors dominate the scattering
(equations (14), (15) and (17)). For data at other angles,
the longitudinal and transverse parts can be separated by
making a plot of the cross section against tan2(6/2) at
fixed momentum transfer and energy loss of the electron. The
slope of this plot gives rise to the transverse part, while
the intercept gives rise to the longitudinal part. Such
plots are called Rosenbluth plots.

Our aim in this work is to analyze the electron
scattering data for different nuclei in the p-shell and
sd-shell with a microscopic theory which is not restricted
just to the discription of electron scattering, but has also
been widely used for explaining other static and kinematic
properties of nuclear structure.

We test the validity of the nuclear multi-particle
configuration-mixing shell model in two domains. We analyze
the magnetic elastic electron scattering data for p-shell
and sd-shell nuclei and both the electric and magnetic

inelastic electroexcitation of the even-parity states of



27p1. This nucleus is one of the most interesting systems
in this mass region, because it represents the point at
which nuclear deformations change from prolate ( positive
quadrapole moment for 25Mg, or negative spectroscopic
quadrapole moment for the 2% 26Mg state) to oblate
( negative quadrapole moment for 2881, or positive
spectroscopic quadrapole moment for the 2% 285i state)
(Ref 12). Recent measurements (Ref 13) of the many
even-parity states below 7 MeV have been carried out to high
momentum transfers. This allows the comparison of the
shell-model calculations for different states over a large
region of q.

A brief description of the shell-model calculations
is presented in Chapter II. The theoretical formulations of
the longitudinal and transverse form factors are presented
in Chapter III. Results of the elastic magnetic electron
scattering from p-shell and sd-shell nuclei and the
electroexcitation of the even-parity states of 2721 are

presented and discussed in Chapters IV and V respectively.



CHAPTER 11

THE NUCLEAR SHELL MODEL

II.1. Introduction

The configuration-mixing nuclear shell model used here
is a generalization of the classical shell model of Mayer
and Jensen (Ref 14). In the M-J model the nucleons occupy
the lowest available orbits of a spherical potential (which
parallels the nuclear matter distribution) according to
Pauli principle. The properties of the nucleus are
determined by the last unpaired nucleon. Only a few details
of nuclear spectroscopy can be explained by this simple
model. The configuration-mixing shell model (Ref 15) uses a
mixing of different orbits to create the eigenstates. In
this extended model it is still asumed that the nucleus
contains an inert core and active orbits in which the
valence nucleons are distributed according to Pauli
principle. For the sd-shell nuclei, 160 is assumed as an
inert core and no excitations are allowed out of these
filled orbits. The remaining orbits are nlj= 0ds/2, lsj/2
and 0d3/2 with the valence (A-16) nucleons distributed over
them within the limits of Pauli principle. In the p-shell
4He is assumed as an inert core, and the valence (A-4)

nucleons are distributed over the Op3/2 -Opj/2 orbits within



the limits of Pauli principle. The problem of shell-model
calculations lies in the specification of the one-body and
residual two-body interactions (Ref 16). The eigenstates of
these interactions are obtained by diagonalization of the
matrices of many-nucleon energy matrix elements. A new
empirical Hamiltonian has been formulated (Ref 17) for the
complete A= 17-39 region. The wave functions obtained from
the diagonalization of this new Hamiltonian are used to
calculate the matrix elements of the sd-shell one-body
operators corresponding to the M1, M3 and M5 moments and
elastic magnetic electron scattering form factors of the
odd-mass nuclei from A= 17-39, and for the inelastic
electromagnetic multipole excitations of 27a1. In the p-shell
we use the eigenstates of the UP " Universal P" interaction
of Chitwood and Wildenthal (Ref 18) and of the Cohen-Kurath
interaction (Ref 19). Single-nucleon wave functions obtained
from either the harmonic oscillator (HO) potential or
Woods-Saxon (WS) potential are combined with these matrix
elements of one-body operators to create "model-space"
transition densities.

As mentioned before, excitations out of the model space
are excluded from the wave functions we use. However, from
the physical point of view, such excitations must occur at
some level. Nuclear properties such as transition rates
cannot be reproduced properly by the model-space wave

functions if the properties of neutrons and protons are the



same as in free space. The shell-model wave functions have
to be renormalized in order to include such
"core-polarization" effects in describing different nuclear
properties. Renormalizations of the model-space wave
functions can be achieved by introducing effective operators
(Ref 20). For the electric multipole operators additional
charge can be added to the charges of the model space
neutrons and protons to form effective charges. Effective
charges for the protons and neutrons can be justified from
the first-order perturbation theory in terms of 1lp-1h
transitions (Ref 21 Section 16.7 and Ref 20) to the giant
electric resonances. With effective charges, shell-model
wave functions can explain the observed values of electric
transition rates. Adding these ingredients to the
model-space transition densities give total transition
densities that can be used in describing different electron
scattering processes. Similar renormalizations for the
magnetic multipole operators involve the introduction of
effective g factors.

The details of the calculations of the matrix elements
of one-body opertors are presented in Section II.2. Two
different models for the single-nucleon wave functions are

described in Section II.3.
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II1.2. Matrix elements of one-body operators

The one-body operator matrix elements are obtained by
taking the matrix elements of a one-body tensor operator of
rank L between the eigenstates | vJT > of the interaction
used. These one-body tensor operators of rank L are
expressed in second quantization notation in terms of the
reduced matrix elements between the single-nucleon states
(Ref 21, p. 318)

(L,p/n)
[ a*(j) ® 3(3")]

O(L,p/n)=jz SNME(O,L,3,j',p/n) Vﬁa__IT ( 3)
L+

33’

The entire set of quantum numbers (n,l,j) are abbreviated by
j. The operators a+(j)(3(j')) are the creation
(annihilation) operators of a neutron or proton in the
single state j (j').

The reduced matrix elements of the tensor operator ok

are obtained according to

<fll o(L,p/n)IIi>=§SOBDM(i,f.L,j.j',p/n) SNME(O.L,j,j',p{n))
4
i3’

where the one-body density matrix (OBDM) is given by

<fl1la*(j) ® F(3" (Le/ny
j) @ 3a(3')] I 1i>

oBDM(i,f,L,j,j',p/n)= (5)
ﬂ2L+1)

and
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SNME(O,L,j,j',p/n)= <jllo(L,p/n)|lj'> ( 6)

We abbreviate the initial/final states (Ai/f, Zi/f, vi/f,
Ji/f, Ti/f) by i/f.

Since the isospin associated with the shell-model wave
functions is a good quantum number, it is convenient to
calculate the OBDM in terms of the isospin-reduced matrix

elements (see the Appendix)

T¢g- T/ T¢ 0 Ti
OBDM(p/n)=(-1) xV2Z  OBDM (AT=0)/2
—Tz 0 Tz

Tg- Tzf Tg 1 Ty
(+/-) (-1) xV¥6  OBDM (AT=1)/2
—Tz 0 Tz
(7)

where OBDM(AT) is given by

<fll1la*(3) @ 3(5") IL/ATh 1>
oBDM(i,f,L,j,j',AT)= ( 8)
V(2AaT+1)y(2L+1)

The triple bars mean that the matrix elements are reduced in
both spin and isospin spaces. The values OBDM(AT) are given
in Tables 1V.1l and 1IV.2 for the ground states of stable
sd-shell and p-shell nuclei, respectively, and in Table V.1
for all the excited states of 27Al considered in this

work. The occupation probabilities for 27p1 are given in

Table V.2.
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I1.3. Radial components of single-nucleon wave functions
The radial components of the single-nucleon wave
functions used here are obtained from two different
potentials, the harmonic oscillator (HO) potential,
characterized by the size parameter b (b2= 41.65/hw), and
the Woods-Saxon (WS) potential. The size parameters of the
HO potentials are set to the values bpypg which reproduce
the root-mean-square (rms) charge radii of the sd-shell
nuclei (Ref 22) and the p-shell nuclei. The radial
components of the single-nucleon wave functions of the WS

potential are obtained by solving the equations (Ref 23)

n2 a2 h2o(e+1)

[ - + + U(r) 1 R(j,r)= € R(j,r)
21 dr? 2 hr2

' ( 9)

where K= m(p/n)(A-1)/A is the reduced mass. The potential

U(r) contains central, spin-orbit and Coulomb parts (Ref 24)
U(I‘)= V(r) + VsO(r) < ?o ;> + 6pn vc°u1(r) (10)

where dpn is equal to 1 for protons and 0 for neutrons.

These three components of the potential are

v(r)=v(p/n) [1 + exp(r-R(p/n)/a(p/n)]1~1 (11)
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Ze2

{3 - (r/R¢)?], r < R¢
2Rc

VCoul(r)= 2 (12)
Ze

r

Vgol(r)= Vso-i—- —9— (1 + exp(r-Rgg)/agol (13)
r dr

where V(p/n), R(p/n) and a(p/n) are the well depth, radius

and diffuseness respectively. Their values and the values

for Rc=\ﬁ73-x the experimental rms charge radius,

Vso= 12 MeV, Rgo= 1.1A1/3 and agy= 0.65 fm are taken from

Ref 25.



CHAPTER III

ELECTRON SCATTERING

III.1. Introduction

The differential cross section for the scattering of an
electron of initial energy Ej through an angle ¢, from a
nucleus of mass M and charge Z and angular momentum Jj, is
given in the one-photon exchange approximation by

(Ref 9, Ref 10, Ref 26)

do do
s (— ot 1D FA(L,@), (12)
daQ de L
doe
where ¢ JMott 1is the Mott scattering cross section of a

relativistic electron from a spinless point charge,

do Z a cos0/2 )
( IMott= [ 2 14, (15)
aq 2Ejsin“6/2
a is the fine structure constant and n 1is the nuclear
recoil factor,
n=1[1+ (2E;/M) sin?( /2)171 (16)

14
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The form factor F2 is the sum of "longitudinal” FLz and
2

"transverse" Fp©, terms:
4 2
q q
F2(L,q)= ——:— Fp,2 +[ “2 + tan2(6/2) | Fpl
q 2q
(17)
where the four-momentum transfer q, is given by
where
2_ . 02 . 2
q= 4E;iEf sin‘(6/2) + ( Ej - Ef) (19)

and E; and Ef denote, respectively the initial and final
total energies of the incident énd scattered electron. In
the above equations we use h= c= 1.

The single-nucleon form factors for the longitudinal
electric and the transverse magnetic and electric scattering
are presented in Sections III.2, III.3 and III.4
respectiVely. The multi-particle form factors are discussed
in Section III.5. Calculations of the p-shell and sd-shell
transition densities are presented in Section III.6.
Corrections to the electron scattering form factors are
given in Section III.7. A derivation of a conversion factor
by which a simultaneous display can be obtained from both
the form factor and matrix elements at zero momentum

transfer is presented in Section III.8.
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III.2. Single-nucleon form factor for the longitudinal
operator

The interaction of the electron with the charge
distribution of the nucleus gives rise to the longitudinal
or Coulomb scattering. The Coulomb multipole operator is

defined (Ref 9) by

-

LLMC(q)= [d; jular) ypm( Q) p(r) (20)

where P(F) is the charge density operator, which is
considered in the single-particle model as a sum of the

charges of all the nucleons,

A(p/n)
pp/n(B)= D 8(F - Ty (21)
k=1

A(p/n)= Z/N, the number of protons/neutrons in the nucleus.

In the single-particle model, equation (20) reduces to

jz LLMC(p/n,q,?k)=:z jLlark) Yol @) (22)
k k

The reduced single-particle form factor of the Coulomb

operator is given by

fc,p/n(L,@)= <jl L S(p/n,q,B)115">
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=./~dr r2 1 C(35,5'.r) jplqr) (23)

The radial function hLC is given by

heC(3,3',r)= (llypLl1§i") R(j,r) R(F',r), (24)

with
(311¥113")= PL(E, 2, #) CL(3,3") (25)

where the brackets (||) mean that the integration is taken
over the angles only. The coefficient PL(E, ¢, ¢') is the
electric parity-selection-rule operator which guarantees the
correct parity for the Coulomb operator (Appendix A.3e5 of

Ref 21)

1 £+ 0'+L
Pr(E, ¢, #')= — [1 + (=)t ] , (26)
2

- (23+1) (2L+1) (25 '+1) 11/2
cL(i,j')= (-1)3+172 [ ]

4n
j L 3'

X (27)
1/2 0 -1/2

and R(j,r) is the radial component of the single-nucleon wave

functions.
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II1.3. Single-nucleon form factor for the transverse

magnetic operator

The transverse form factors arise from the interaction
of the scattering electron with the current and
magnetization distributions of the nucleus. The transverse
form factor is composed of electric and magnetic terms. The

multipole magnetic operator is given (Ref 9) by

Tmmag(q)=]d? Mpom(q, ) . J(r) (28)

The operator ﬁL-LM(q,?) is defined by
M ml(q,t)= jpr(qr) ¥prpm( Qp) (29)

where Y111 ( Q.) is the vector spherical harmonic

QLle( Qr)=zz <L'M'1qlLM> Y[, 't ( Qp) éq (30)
M',qg
1
&41=7 (x + i éy) (31)
2
eo= ez (32)

- - —
The factor J(r) is the sum of the convection current, J., and

-
the magnetization current, Jp, of the nucleus, given by
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= Jo(F) + Jp(v)

<l
2R}
!

= Jc(F) + 9 x B (F) (33)

where the subscripts ¢ and m stand for the convection and
magnetization parts of the current respectively, and ¥ (7)
is the magnetization density operator.

In the single-particle model, the convection current

and magnetization densities are given (Ref 26) by

A(p/n)
2 - eh fe (2 > s |
Jc,p/n(F)=— glp/n :zlé(r - rg) Vg | (34)
21mp symm.
k=1
A(p/n)
N eh - > ->
2o /n(F)= ——— (1/2)ggP/M > 62 - B0 % (35)
Zmp c

k=1

where mp is the proton mass and ;k are the Pauli matrices.
Using equations (34) and (35), the multipole magnetic

operator in the single-particle model reduces to (Ref 9)

1

ZETLMmag(p/n,q,Fk)= q(ieh/2mpc) -2 glp/iszLM(q,?k) — Yk
q
k k
L+1 -> -> L - =
¢ (172 gP/MY | ) Fppoim(a, TR0~ f— ) Mppeiw(a )| -7
2L+1 2L+1 k
k (36).

where g, and gg are the orbital and spin g factors of the
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nucleons.

The single-nucleon form factor of the magnetic operator
can be reduced to a radial function using relationships
between spherical Bessel functions (Ref 10 Appendix A, for

example) and integration by parts,

fT'p/nmag(L,q)= <j I lTLmag(p/n,q,?) | Ij.>
= iefh/2mpc
xulér rz[glp/n h™9(c,j,j3',r) jplqr)
+ ggP/™ n™9(m,j,j',r) jL(qr)]
(37)
where the radial functions of the convection part (c) and
magnetization part (m) are given (Ref 27 and Ref 28) by
hy™9(c,5,j',r)= cL(j,3') PL(M, 2, ¢') Ap(§,j') [L(L+1)]"1/2
x (1/r) R(j,r)R(j',r) (38)

1
h™@9(m,§,5", r)= —[L(L+1)171/2 ¢c(5,5') PL(M,2, 2")
2

d

X B(j,j") [ R(j,r)R(j',r)

dr

+ B(j,j')-L(L+l)] (1/r) R(j,r)R(j',r) (39)
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where R(j,r) are the single-particle radial wave functions,

and Ap, and B are numerical coefficients given by

A(j,3')= [ 1 + B(j,3')/L]1[1-B(F,3')/(L+1)] (40)

B(j,j")= 2+ D(j,¢)+ D(j',¢") (41)

The numerical coefficient C;, is given in equation (27) above,

and the coefficients Py, and D are given by

l 1
PL(M,I,I')=——2-— 1+ (-1)f+07+L+l (42)
D(i,k)= i(i+1)- k(k+1l)- 3/4 (43)

II1.4. Single-nucleon form factor for the transverse
electric operator

The transverse electric operator is given (Ref 9) by

1 nd nd -> - =i
TLMel(q)='———— dr [Vx Mpm(g,r)|. J(r) (44)
q

Using the definition of the vector spherical harmonics
Yom( ©r) with the vector identities (Appendix A.5 of
Ref 21)
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g - - - - -> a -
vV x (L Mpy(r))= iq? r Mpy(r) + i W(— r Mpy(T) ) (45)
or

-

> - - -
v. (aA)=av.A+vVa. A , (46)
the transverse electric operator becomes

rimel(q)= Tmell(@) + Tm®l2(q) (47)

where

i —> - - =g
rmeil(q) = (L(L+1)]'1/2fdr (-2~ r Mpm(D)]} V. T (48)

q or
and
i - - =g
Tem®12(q)=— [L<L+1)r1/2/dr { q? ¢ Mpm(r). I
q
+ qz?MLM(?). (6 x:' )} (49)
and where
Mem(T) = jrlar) Yom( @p) (50)

The nuclear current is conserved, and the continuity
equation can be used to determine the single-nucleon matrix

elements of the transverse electric operator (Ref 26)



aJ“ ap —> g - -
= + V., (Jc+ Vx H ) =0 (51)
ax" ot
> - ie .
V. Jc =- ';:‘ ( €5- <€) P(r) (52)

where ¢€; and ¢f are the single-particle energies of the
initial and final states respectively and P (F¥) is the
charge transition density.

In the single-particle model, where the charge, current
and magnetization densities are defined in equations (21),
(34) and (35), respectively, the reduced single-nucleon
matrix elements of the transverse electric operator can be

written as

fT’p/nel(L,q)= fT,p/nell(L,q) + fT'p/nelz(L,q),

where

1
fTrp/nell(L’q)= — |[dr 1'2 hLEIl(crjrj'rr) JL(qr)

q

(53)

and

eh
f 912(L'q)= q dr r2 g p/n h e12(c’j’j.'r) J (qr)
Trp/n 2 ? L L

mpC

1Y

+ ggP/M hp®12(m,3,3',r) jplqr)

(54)

ell

and where the radial functions hg, are given by
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( - ¢f)
nell(c,j,j",r)= 7P L(e1)1-1/2
hc
d
x [2 nC(5,5',r) + ¢ hC(i,3',0)1,
dr
(55)
d
h®12(c,j,j', )= [L(L+1)17Y/2 ¢ {R(j,r)— R(5',r)
dr
d
- [—R(j,r)] R(j',r)] }(56)
dr
and
eh 1
hLelz(m'j’j"r)= —PL(E,"f')[ D(j’l) - D(j"ﬂ') ]
2mpc 2

x[ L(L+1)171/2 ¢c1(5,3") R(3,r) R(3',r) (57)
The radial function hLC is given by equation (24) above,

and the coefficients Pp, D(j,f) and Cr(j,j') are

defined in equations (42), (43) and (27) respectively.

I111.5. Multi-nucleon form factors

The multi-nucleon form factor for Coulomb scattering

is
Fc,p/n(L,@)= [dr r? Hy p/n(i,f,1) jp(ar), (58)
with the nuclear matrix elements HLC given by

Hy,,p/nC(i,f,r)= ZOBDM(i,f,L,j,j',p/n) h (3,3, r), (59)
ij
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where the one-body density matrix (OBDM) is given by
equation ( 7) and the single-particle matrix elements hLC
are given by equation (24).

The multi-nucleon form factor for the transverse

magnetic scattering is

ieh

FT'p/nmag(L,q)= [ glp/n jdr r2 HL'p/nmag(C,j,j',r) jL(qr)

2mpc
+ ggP/m J{dr rl Hy,p/n"29(m,3j,3',r) jr(qr) (60)
where the multi-particle matrix elements H ™39 are given by

Hy,p/n"9(c/m,i,f,r)= ZOBDM(i,f,L,j,j' ,p/n) h™9(c/m,j,j',r)
3" (61)

The one-body density matrix (OBDM) is given by equation ( 7)
and the single-particle matrix elements h;™29 are given by
equations (38) and (39) for the convection and magnetization
currents, respectively. The sums in this case extend over
all the valence orbits.

The multi-nucleon form factor for the transverse

electric scattering are

Fp,p/n®l(L,@)= Fp,p/mn®(L,q) + Fp,p/m®l2(L,q), (62)

where
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1
FT.p/nen(L'q)= '—q—/dr r? HL,p/nell<c,i.f,r) jr(qr) (63)
and
eh
FTvp/nelz(L'q)=2 q gfp/n jdr 1'2 HL:p/n(Cri:f,f) jL(Qr)
mnC
P

+gP/n [ar 12 mel2m,i,8,0) jrlan)

(64)

ell

and where the nuclear matrix elements Hf, are given by

(E; - Ef )
Lt L(Le1)]71/2

Hell(c,i,f,r)=
hc

d
HC(i,f,r)])

x [2 HLC(i,f,r) +r
dr
(65)

and E; and Ef are the initial and final energies of the
nuclear states respectively. The multi-nucleon matrix
elements HLC are given in equation (59). The matrix elements

H 812 are given by

H 12 (c/m,i,f,r)= ZOBDM(i,f,j,j',p/n) h,12(c/m,j,3',r) (66)
ii’

el?

where the radial functions hp, are given by equations (56)

and (57) for the convection and magnetization currents
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respectively. The sums extend over all the valence orbits.

IIT.6. p-shell and sd-shell transition densities

The multi-particle form factor of the Coulomb operator
depends on the transition densities HLC(i,f,r). The
transition density can be divided into two parts, one
depending on the model-space transition density and the
other depends on the core-polarization transition density.

The model spaces for the p-shell and sd-shell are
defined by the complete set of states contructed from the
orbits Op3/2 -Op1/2 and the orbits 0ds/2 -1s3/2- 0d3/2
respectively. The model-space one-body operator matrix
elements are obtained by taking the matrix elements of a
one-body tensor operator between the eigenstates of the

interaction used

GL,p/n(i,f,r)= ESOBDM(i,f,L,j,j',p/n) hLC(j,j',r) (67)
i3’

where the OBDM are given by equation ( 7) and the hLC are

given by equation (24). The sums extend over all the

valence orbits for L>0. For L=0, the sums includes all the

orbits in the core.

The model-space transition densities G deal with
nucleons in the active orbits only and exclude any effects
from the core. Many nuclear properties cannot be
quantitatively described by using just the model-space

transition density, and the effects from outside the model
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space must be taken into consideration. The contribution of
the core to the transition rates can be explained
(Ref 29 p. 334) as a deformation of the core when the active
nucleons make a transition from one state to another. The
protons in the closed shell are polarized and their orbits
are slightly distorted which contributes to the total
transition rates by an amount that corresponds to the
observed values. Mass and state-independent effective
charges have been introduced empirically (Ref 30 and
Ref 25) for the model-space protons and neutrons which are
able to reproduce the observed B(E2) values in the sd-shell.
Two models for the effective charge are considered here
for the core-polarization transition densities. One can
assume the transition density to be proportional to the
model-space transition density. We will call this the

"valence" (V) model

CL’p/nv(r)= GL’p/n(r) (68)

The other model is based on a multipole-multipole
interaction which connects the ground state to the
L-multipole nhw giant resonance. The shape of the
core-polarization transition density in this case is given
by the Tassie (T) model (Ref 31)

L-1 d
CL,p/nT(r)= r -? GL:O'p/n(r) (69)
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where Gp=g(r) is the ground state density given in equation
(67).

The total transition densities are obtained by
combining the model-space transition densities with each of
the two models for the radial distribution for the core
polarization. The total transition density corresponding to

first-order perturbation theory is given by
HL'p/nc(i,f,r)= GL'p/n(i,f,r)+ Nc'p/n CL’p/n(i,f,r) (70)

where G(r) is the model-space transition density given in
equation (67) above, and C(r) is the core-polarization
transition density given by equations (68) and (69) for
the valence and the Tassie models, respectively, and N¢ is
a normalization constant to be determined from the matrix

elements of the L-multipole gamma-ray-transition operator

M1,
ML=-/.rL HC (r) r? ar (71)

The rl radial integrals of model-space and core-polarization

transition densities are given by

GL=[rL GL(r) r? dr (72)

CL=f rl Cr(r) r? dr (73)
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The gamma-ray-transition matrix elements defined at
g= Ef-Ej, expressed in terms of the effective charges, are

given (Ref 22) by

ML'p= GL’p(1+6pp)+ GL'nﬁpn (74)

ML, n= GL,n(1+6nn)+ GL,pSnp (75)

where 6cy is the polarization charge that arises from the
interaction of the valence nucleons (v) with the core
nucleons (c). Their relations to the conventional effective

charges ep and ep are given by

5pn= 6np= en (77)

It has been found (Ref 30 and Ref 22), that for the
complete sd-shell model space, average values of the
effective charges for E2 and E4 are close to ep+ep= l.7e
and epten= 2.0e respectively. These values are used
throughout the calculations considered in this work,
together with the isovector effective-charge defined by
ep - ep= le (Ref 25).

The normalization constants of equation (70) are
obtained by comparing the integrals of both sides of

equations (74) and (75),
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Nc'p= (6ppGp + 6pnGn)/Cp (78)
Nc,n= (6nnGn + 6npGp)/Cn (79)

The electromagnetic transition strength B(L,Jij,Jf)

is given by
1
B(L,Ji,Jf)= — IML,pIZ (80)
2J3+1

III.7. Corrections to the electron scattering

The shell-model wave functions used in describing
transition densities give rise to additional non-physical
excited states called spurious states, due to the fact that
the interaction potential represents an average potential
with respect to a fixed origin. The Hamiltonian in this
case is in general not translational invariant, and the
motion of the center of mass is responsible for these
spurious states. These states can be isolated from the exact
observed states of the intrinsic motion of the nucleons in
the case of the HO potential (Ref 10), where the Hamiltonian
can be separated into two parts, one representing the motion
of the center of mass, and the other representing the
intrinsic motion of the nucleus. This is done by including a
factor Gcp given by the HO in the nuclear form factor.

The center of mass correction factor Gcp is (Ref 32)

Gem(q)= exp(g? b2 /4a) (81)
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where b is the oscillator length parameter. We use b= by

obtained from a global formula for the oscillator length

h wg= 41.46/bg? = 45 a"1/3 - 25 a72/3 | (82)

where A is the total number of nucleons in the nucleus.

The form factor discussed in the previous sections
assumed the nucleons as point particles. A correction due to
the finite nucleon size should be considered. For
longitudinal scattering, the form factor becomes

(Ref 33)

Fc(L,q)= Np Fc,p(L,q) Gfs,p(a)+ Fc,n(L,q) Ggg,nlq)
lp lp ’ r

where Fc p/n(L,q) is given by equation (58), and the
free-nucleon form factors Gfg,p and Gfg,n are taken

from Ref 34, including the small Darwin-Foldy relativistic
correction in Gfg (Ref 35). The normalization factor Ng

is given by

1 4 172
Np = — [—————————— (84)
z 273 + 1
For inelastic scattering we use the approximation
FC' Fc’n )
P . (85)
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where the number of protons and neutrons in the nucleus are
denoted by Z and N respectively. The Coulomb form factor

reduces to

Fc(L,@)= Np Fc,p(L,q)  [Gfs,p(a)+ N/Z Gfs,n(q)]| Gem(q)
L>0 (86)

For the transverse form factor, the correction for the
finite nucleon size Gfg described in Ref 36 is used

for both protons and neutrons. The transverse form factors

are

FTmag,el(L’q)= Np [FT,pmag'EI(L,q) + FT'nmag'el(L.q)]

X Gcm(q) Gfs'p(Q)
(87)

where FT,p/nmag'el(L,q) is given by equation (60) and (62),
respectively and Gcp(g) is the center of mass correction

given in equation (81).
The total form factor is obtained from the sum over all

form-factor multipoles F2(L,q) given in equation (17),
F2(q)=y F2(L,q) (88)
L

where L is determined from the parity selection rule

amel = (-1)L (89)

An™agd= (-1)L+1 (90)
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From the parity and time reversal invariance one can see
that only electric multipoles can have longitudinal
components, while both electric and magnetic multipoles can
have transverse components. Transverse multipoles must have
angular momentum greater than zero, while longitudinal
multipoles can have angular momentum equal to or greater
than zero. For elastic scattering, only even multipoles
contribute to the longitudinal scattering, while only odd
multipoles contribute to the magnetic scattering. There are
no contributions from the transverse electric elastic
scattering.

The form factors discussed in the previous sections are
formulated in terms of the first Born approximation, in
which the initial and final states of the electron are pure
plane waves. This type of approximation is called the plane
wave Born approximation (PWBA). For nuclei in which Z << 1,
the PWBA is expected to describe the electron scattering
data very well, except in the region of the diffraction
minima where the PWBA goes to zero. An improvement to the
first Born approximation can be obtained by including the
effects of the distortion of the plane wave by the Coulomb
field. This higher-order effect is. incorporated into the
distorted wave Born approximation (DWBA). To first order,
the effect of the Coulomb field is to increase the momentum
transfered to the nucleus and an effective momentum transfer
can be used to include these effects. The effective momentum

transfer geff is related to q (Ref 10) by
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[ v(r)
Qeff=q| 1 - —— (91)
Ej (MeV)
fc 2 e?
Qeff=q| 1+ (92)
| Ej(MeV) Rc (fm)

where R¢ =VE73-<r2>1/2 , e2= ahc= 1.44 MeV fm and «a is the
fine structure constant. The value of f. is determined
from the Coulomb potential energy
-z e?
V(r)= ——— [ 3R:Z - r? ] (93)
2 RS
where f-.= 3/2 if the scattering occurs at the center of the
nucleus, and 1.0 if the scattering occurs at the surface. An
excellent overlap between DWBA and PWBA is obtained (Ref 37)
if the experimental data are plotted as a function of geff
for the elastic magnetic scattering with f.= 1.2 and the
theoretical form factors calculated in PWBA are plotted
against g. In Figure III.1 we show the difference between
the DWBA, calculated with the code Duels (Ref 38), and the
PWBA for the elastic magnetic scattering of 27p1. The DWBA
and the experimental data are plotted versus geff with
fc= 1.2, while the PWBA are plotted vs. g. No significant
differences appear between the DWBA and the PWBA
calculations. All the magnetic elastic scattering form
factors presented in this work are calculated in PWBA and

plotted vs. q with the data plotted vs. geff with
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Figure 111.57 DWBA form factor for the elastic magnetic
scattering from €‘/Al (solid line) in comparison with the PWBA
(dashed line). The calculations incorporate the
single-nucleon wave functions of the HO potential of b=bppg.
The data are taken from Ref 40 (circles), Ref 41 (triangles)
and Ref 42 (squares).
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Figu57 II1.2. DWBA form factor for the 0.844 Mev,1/2"

state of

Al (solid line) in comparison with the PWBA for

the same state (dashed line). The calculations incorporate
the single-nucleon wave functions of the HO potential of
b=brms. The data are taken from Ref 13.
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fe=1.2.

The value of f-=3/2 has been widely used for the elastic
and inelastic electric scattering. In Figure III.2 we show
the difference between the DWBA calculated with the code
Duels (Ref 38) for the 1/2* state (0.844 Mev) of 27Al and
the PWBA. The DWBA and the experimental data are plotted
versus geff With f.= 3/2, while the PWBA are plotted vs.

g. The difference between these two calculations are
significant only in the region of the first diffraction
minimum, where the PWBA goes to zero, and no significant
differences appear at other values of the momentum transfer.
All the excited states of 27Al are calculated also in PWBA
and plotted vs. g with the data plotted vs. Qeff Qith fc= 3/2.
The Coulomb elastic scattering of 2731 is calculated in

DWBA of the MIT elastic phase-shift code (Ref 39).

III1.8. Conversion of form factors to g-dependent matrix
elements M(q)

We present here a representation for form factors in
which we can display simultaneously both the form factor and
matrix elements at zero momentum transfer. Formally, we wish
to utilyze coversion functions D(L,q) such that
M(q)= F(L,q)/D(L,q).

In the limit of small momentum transfer, the PWBA
longitudinal form factor is related to the gamma-transition

matrix element ML,p defined in equation (74),
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. 1 4m qL
lim Fc(L,q)= ML,p (94)
q-0 z 273 +1 (2L+1) !

To remove some of the trivial q dependence at larger q

values, the form factor can be divided by the exponential
dependence exp(-b2 q2/4) which is contained in the HO
radial wave functions. The gq- and L-dependent conversion

factor for the Coulomb scattering is written as

1 4m 2 2
Dc(L,q)= qk exp(-bp“ g“/4) (2L+1)!!

Dcm(q,bo ) DfS(Q) (95)

where Dcm and Dfg are the center of mass and finite proton

size corrections, given by

Dem(Q,bg)= exp(bg? q2/4A), (96)

and
Dfs(q)= exp(-0.43 q2/4), (97)

where by is the harmonic oscillator length parameter
obtained from the oscillator length given in equation (82).
For the transverse magnetic scattering, the form factor

in the small momentum transfer limit can be written as

1 an
lim FpMa9(q)-= / c(L) M(L) gq& (98)
q-0 Z V233 +1
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where M(L) is the magnetic multipole moment and C(L) is

given by

L -1
(2L+1)!! X (99)

c(L)= [ 2mc/h
L+1

where
4m Jji L Jji

X= (100)
2L+1 Ji 0 -Ji

for the elastic magnetic scattering and X=1 for the
inelastic magnetic scattering.

In the region of small momentum transfer, the lowest M
multipole dominates the scattering, and a q- and L- dependent
conversion factor is chosen such that division of the
inelastic magnetic form factor by this conversion factor
with L set equal to the lowest multipole gives the matrix
elements at q-0.

Hence,

1 4m
D™39(L,q)= ’ qt exp(-bo2 q2/4) c(L)
z 2J; +1

where Dcp and Dfg are the center of mass and finite proton
size corrections given in equations (96) and (97),
respectively.

For the elastic magnetic scattering, we have chosen a



41

function which is proportional to g at low-q values and
proportional to gq max at high-q values. Division of the
form factors by this function yields results which clearly
display the individual contributions of the different
multipoles and which have a slower variation with change in
q at region of high momentum transfer. For this function we

have chosen the expression

Lmax+1 Lmax +1

1 -(gq/a ) 1 -(q/a )
H(Lpax,.q)s—e + — (1- e )
q qmax
(102)

where a is a numerical constant chosen to be 1 and Lpax is
the highest multipole in the shell, Lpzx= 1, 3 and 5 in the
0s, Op and 1s-0d4 shells respectively. The complete g- and L-

dependent conversion factor is written as

1 am

Dr™9(Lpax,q)= — |————  exp(-bg? q?/4) H(Lpax,q) C(L=1)
z 273 +1

where Dcy and Dfg are the center of mass and finite proton
size corrections given in equations (96) and (97).

The new representation for the form factor is

IF(q) |
M(q)s —m8 —, (104)

D(L,q)
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where D(L,q) is given in equations (95), (101) and (103)
with L=2 for the Coulomb, L=1 for transverse magnetic and
L= Lpax for magnetic elastic scattering. For the magnetic
elastic scattering, the form factor M(q) is plotted vs. q,
and for the longitudinal scattering and transverse inelastic
scattering, the form factor M(q) is plotted vs. q2.

The two representations of the form factors Fz(q)
and M(q) are shown in Figure III.3 and III.4 for the elastic
magnetic scattering and longitudinal E2 transition of

1/2* state in 27al, respectively.



43

MSU-83-334

v v v Al

L, 0.84 Mev, I1/2*

'69 S—Y — i

alfm-1)
Ll T T LA T v .4 v LN & T LA T T

L, 0.84 Mev, 172*

ot

22.5F
20.0} ]

17.5

T

|50*~ «
oI5k ;

10.0

N T A2 2 A A A A 1

(0] | 2 3 4 S 6 7 8 9
q2(fm-2)

Figure III.3. Magnetic elastic electron scattering for
2771 ca%culated with the HO potential, presented in the two
forms F“(L,q) and M(q) as explained in section III.B. The
magnetic multipoles contributing to the scattering are Ml
(dotted line), M3 (dashed line) and M5 (dashed-dotted line).
The solid line represents the total incoherent sum of these
three multiploles. The magnetic dipole moment is displayed
in the M(q) representation. The data are taken from
Ref 40 (circles), Ref 41 (triangles) and Ref 42 (squares)..
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Figure III.4. Longitudigal E2 form factor for the
0.844 MeVv, 1/2% state for <’al calculatsd with the HO
potential, presented in the two forms F4(L,q) and M(q) as
explained in section III.8. The measured B(E2) value is.
displayed in the M(q) plot at g=0. The data are taken from

Ref 13.



CHAPTER IV

MAGNETIC ELASTIC ELECTRON SCATTERING

IV.1l. Introduction

The configuration-mixing shell model used here allows
the mixing of different orbits to give the full basis
eigenstate. In this case, all the model-space valence
nucleons share in the scattering process, rather than just
the one unpaired nucleon as in the simple shell model. In
the calculation of the one-body density matrix (OBDM), we
assume that the core is inert and only the motion of the
valence nucleons need to be considered. However, it<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>