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ABSTRACT

CALCULATIONS OF ELASTIC AND INELASTIC

ELECTRON SCATTERING IN LIGHT NUCLEI WITH

SHELL-MODEL WAVE FUNCTIONS

BY

Raad Abdul-Karim Radhi

Shell-model wave functions calculated within the

complete space of Op3/2- Cpl/2 and 0d5/2- 151/2- 0d3/2

configurations are used to calculate elastic and inelastic

form factors of electron scattering from p-shell and

sd-shell nuclei. We analyze the magnetic elastic scattering

data for p—shell and sd-shell nuclei and both the electric

and magnetic inelastic electroexcitation of the even-parity

states of 27Al. Effective operators for the different

multipoles are used to normalize the magnetic elastic form

factors to the experimental data. Different effective

charges are used for £2 and E4 transitions. The longitudinal

form factors and the B(E2) values are well reproduced using

these effective charges. Comparisons are made for the

single-particle wave functions of the harmonic oscillator

and the Woods-Saxon radial wave functions.
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CHAPTER I

INTRODUCTION

Electron scattering has been widely used as a probe of

nuclear structure. Theoretical work on electron scattering

dates from 1929, when Mott (Ref 1) derived the cross section

for the relativistic scattering of Dirac particles by

spinless point nuclei of charge Ze where Z/137 << 1. For the

scattering of high energy electrons from the nucleus, the

de Broglie wavelength becomes equal to or smaller than the

radius of the nucleus, and the interaction of the electron

with the nucleus will be sensitive to the details of the

nuclear charge distribution. The effects of finite nuclear

size on electron scattering were first considered by Guth

(Ref 2) and later independently by Rose (Ref 3).

Corresponding to the Mott formula for the scattering of

electrons from point nuclei, the finite nuclear size can be

taken into account by multiplying the Mott cross section by

a factor which depends on the charge, current and

magnetization distribution of the target nucleus. This

coefficient of the Mott cross section is called the form

factor of the nucleus. Experimentally, the form factor can

be <determined as a function of the momentum transfered (q)

tO"the nucleus, 3 quantity which is determined by the



energies of the incident and scattered electron and the

scattering angle.

The effects of nuclear size were first detected

experimentally by Lyman et a1. (Ref 4), who measured the

scattering cross section of 15.7 Mev electrons by nuclei.

Good agreement was obtained between the experimental data

and calculations which assumed a uniformly distributed

nuclear charge.

The scattering of electrons from a target nucleus can

occur in two ways. In one, the nucleus is left in its ground

state after the scattering and the energy of the electrons

is unchanged. In the other, the scattered electron leaves

the nucleus in different excited state and has a final

energy reduced from the initial just by the amount taken up

by the nucleus in its excited state. These two kinds of

processes are refered to as elastic and inelastic electron

scattering.

Excitation of nuclear levels by electrons was first

discussed theoretically by Mamasachlisov (Ref 5) in 1943.

The first experiment on electron excitation of nuclei to

discrete levels was done in 1940 by Collins and Waldman

(Ref 6). Since that time, electron scattering has become

a major technique for studying the structure of the nucleus

and many experiments have been performed at different

laboratories. The work of Hofstadter et a1. (Ref 7) at the

Stanford university linear accelator in 1953 is considered

as the pioneering experimental study of this subject.



Several review articles have been published discussing the

development of this topic and one can find a detailed

summary of what has been done in this field and lists of

review articles since the early stages of scattering theory

in Ref 8, Ref 9 and Ref 10.

Electron scattering is not the only way to probe

nuclear structure with electromagnetic interactions. An

alternate is photo-excitation. The momentum transfered to

the nucleus in this case equal to the excitation energy (ca)

since the mass of the photon is zero,

qi = q2- wz = 0 ( l)

The three-momentum transfer a in this case cannot be

varied for a given energy level, and the nuclear structure

cannot be studied as a function of momentum transfer. In

the case of charged-particle excitation of nuclear levels,

one can vary q for a fixed w

2 2>0
(2)u

.
0 I

E

and study the form factor of the nucleus as a function of q.

This gives detailed information about the charge and

current distributions in the nucleus, and at q= u), the

results are in principle exactly the same as those of the

photo excitation. Coulomb excitation by heavy charged

particles is one such tool for probing nuclear structure,



but for light nuclei and high energy, the incident particle

may penetrate the Coulomb barrier and the structure effects

of the target cannot be isolated from the strong

interaction, where both of them are not known well. The

electron, on the other hand can penetrate deeply inside the

nucleus with only the electromagnetic force acting between

the electron and the nucleus.

The nucleus interacts with the electromagnetic field via

its charge and current densities. The interaction of the

electron with the charge distributions of the nucleus can be

considered in the first Born approximation as an exchange of

a virtual photon of angular momentum zero along the

direction of q. In this case the electron does not flip

spin, due to the conservation of angular momentum. This kind

of interaction is called Coulomb or longitudinal scattering.

The interaction of the electron with the spin and current

distributions of the nucleus gives rise to the transverse

part of the cross section, where the process can be

considered in the first Born approximation as an exchange of

a virtual photon of angular momentum :1 along the direction

of q. In the limit q —*0 the transition probabilities are

exactly the same as for real photons. The spin of the

electron in this case should flip to conserve angular

momentum. From parity and time reversal invariance one can

see that only electric multipoles can have longitudinal

components, while both electric and magnetic multipoles can

have transverse components. Transverse multipoles must have



angular momentum greater than zero, while longitudinal

multipoles can have angular momentum equal to or greater

than zero.

Longitudinal scattering gives information about the

charge distribution of the nuclear system, while transverse

scattering gives information about the current and

magnetization distributions of the nucleus. The transverse

part can be separated by doing experiments at 180°(Ref 11)

where the transverse form factors dominate the scattering

(equations (14), (15) and (17)). For data at other angles,

the longitudinal and transverse parts can be separated by

making a plot of the cross section against tan2(9/2) at

fixed momentum transfer and energy loss of the electron. The

slope of this plot gives rise to the transverse part, while

the intercept gives rise to the 10ngitudinal part. Such

plots are called Rosenbluth plots.

Our aim in this work is to analyze the electron

scattering data for different nuclei in the p-shell and

sd-shell with a microscopic theory which is not restricted

just to the discription of electron scattering, but has also

been widely used for explaining other static and kinematic

properties of nuclear structure.

We test the validity of the nuclear multi-particle

configuration-mixing shell model in two domains. We analyze

the magnetic elastic electron scattering data for p-shell

and sd-shell nuclei and both the electric and magnetic

inelastic electroexcitation of the even-parity states of



27A1. This nucleus is one of the most interesting systems

in this mass region, because it represents the point at

which nuclear deformations change from prolate ( positive

quadrapole moment for 26M9, or negative spectroscopic

quadrapole moment for the 2+ 26Mg state) to oblate

( negative quadrapole moment for 2881, or positive

spectroscopic quadrapole moment for the 2+ 2881 state)

(Ref 12). Recent measurements (Ref 13) of the many

even-parity states below 7 Mev have been carried out to high

momentum transfers. This allows the comparison of the

shell-model calculations for different states over a large

region of q.

A brief description of the shell-model calculations

is presented in Chapter II. The theoretical formulations of

the longitudinal and transverse form factors are presented

in Chapter III. Results of the elastic magnetic electron

scattering from p-shell and sd-shell nuclei and the

electroexcitation of the even-parity states of 27A1 are

presented and discussed in Chapters IV and V respectively.



CHAPTER II

THE NUCLEAR SHELL MODEL

II.1. Introduction

The configuration-mixing nuclear shell model used here

is a generalization of the classical shell model of Mayer

and Jensen (Ref 14). In the M-J model the nucleons occupy

the lowest available orbits of a spherical potential (which

parallels the nuclear matter distribution) according to

Pauli principle. The properties of the nucleus are

determined by the last unpaired nucleon. Only a few details

of nuclear spectroscopy can be explained by this simple

model. The configuration-mixing shell model (Ref 15) uses a

mixing of different orbits to create the eigenstates. In

this extended model it is still asumed that the nucleus

contains an inert core and active orbits in which the

valence nucleons are distributed according to Pauli

principle. For the sd-shell nuclei, 160 is assumed as an

inert core and no excitations are allowed out of these

filled orbits. The remaining orbits are n1j= Dds/2, 151/2

and 0d3/2 with the valence (A-16) nucleons distributed over

them within the limits of Pauli principle. In the p-shell

4He is assumed as an inert core, and the valence (A-4)

nucleons are distributed over the 0p3/2 -0p1/2 orbits within



the limits of Pauli principle. The problem of shell-model

calculations lies in the specification of the one-body and

residual two-body interactions (Ref 16). The eigenstates of

these interactions are obtained by diagonalization of the

matrices of many-nucleon energy matrix elements. A new

empirical Hamiltonian has been formulated (Ref 17) for the

complete A= 17-39 region. The wave functions obtained from

the diagonalization of this new Hamiltonian are used to

calculate the matrix elements of the sd-shell one—body

operators corresponding to the M1, M3 and M5 moments and

elastic magnetic electron scattering form factors of the

odd-mass nuclei from A= 17-39, and for the inelastic

electromagnetic multipole excitations of 27Al. In the p-shell

we use the eigenstates of the UP " Universal P" interaction

of Chitwood and Wildenthal (Ref 18) and of the Cohen-Kurath

interaction (Ref 19). Single—nucleon wave functions obtained

from either the harmonic oscillator (HO) potential or

Woods-Saxon (WS) potential are combined with these matrix

elements of one-body Operators to create "model-space"

transition densities.

As mentioned before, excitations out of the model space

are excluded from the wave functions we use. However, from

the physical point of view, such excitations must occur at

some level. Nuclear properties such as transition rates

cannot be reproduced properly by the model-space wave

functions if the properties of neutrons and protons are the



same as in free space. The shell-model wave functions have

to be renormalized in order to include such

"core-polarization" effects in describing different nuclear

properties. Renormalizations of the model-space wave

functions can be achieved by introducing effective operators

(Ref 20). For the electric multipole operators additional

charge can be added to the charges of the model space

neutrons and protons to form effective charges. Effective

charges for the protons and neutrons can be justified from

the first-order perturbation theory in terms of 1p-1h

transitions (Ref 21 Section 16.7 and Ref 20) to the giant

electric resonances. With effective charges, shell-model

wave functions can explain the observed values of electric

transition rates. Adding these ingredients to the

model-space transition densities give total transition

densities that can be used in describing different electron

scattering processes. Similar renormalizations for the

magnetic multipole operators involve the introduction of

effective 9 factors.

The details of the calculations of the matrix elements

of one-body opertors are presented in Section 11.2. Two

different models for the single-nucleon wave functions are

described in Section II.3.
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II.2. Matrix elements of one-body operators

The one—body Operator matrix elements are obtained by

taking the matrix elements of a one—body tensor operator of

rank L between the eigenstates linT > of the interaction

used. These one—body tensor operators of rank L are

expressed in second quantization notation in terms of the

reduced matrix elements between the single-nucleon states

(Ref 21, p. 318)

(L,p/n)

[ a+(j) G>§(j')]

0(L,p/n)=: SNME(O,L,j,j',p/n) W

51'

 

( 3)

The entire set of quantum numbers (n,1,j) are abbreviated by

j. The operators a+(j)(§(j')) are the creation

(annihilation) operators of a neutron or proton in the

single state j (j').

The reduced matrix elements of the tensor operator OL

are obtained according to

<f|| O(L,p/n)|li>=:£OBDM(i,f,L,j,j',p/n) SNME(O,L,j,j',p{n))

4

51'

where the one-body density matrix (OBDM) is given by

1 . .. ., “up/n) .
<f||[a (J)®a(3 )] l|1>

OBDM(i,f,L,j,j',p/n)= ( 5)

F2L+l)

and
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SNME(O,L,j,j',p/n)= <j||O(L,p/n)||j'> ( 6)

We abbreviate the initial/final states (Ai/f, Zi/f, vi/f,

Ji/f, Ti/f) by i/f.

Since the isospin associated with the shell-model wave

functions is a good quantum number, it is convenient to

calculate the OBDM in terms of the isospin—reduced matrix

elements (see the Appendix)

OBDM(p/n)=(-l) xVE' OBDM (AT=0)/2

-Tz 0 T2

Tf- Tz Tf 1 Ti

(+/-) (-1) xVE' OBDM (AT=l)/2

-Tz 0 T2

( 7)

where OBDM(AT) is given by

<f| l|[a+(j) at 5(j')](L'AT)I l|i>

OBDM(i,f,L,j,j',AT)= ( 8)

‘V(2AT+1)V(2L+1)

The triple bars mean that the matrix elements are reduced in

 

both spin and isospin spaces. The values OBDM(AT) are given

in Tables IV.1 and IV.2 for the ground states of stable

sd-shell and p-shell nuclei, respectively, and in Table v.1

for all the excited states of 27A1 considered in this

work. The occupation probabilities for 27A1 are given in

Table v.2.
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II.3. Radial components of single-nucleon wave functions

The radial components of the single-nucleon wave

functions used here are obtained from two different

potentials, the harmonic oscillator (HO) potential,

characterized by the size parameter b (b2= 41.65/h40, and

the Woods-Saxon (WS) potential. The size parameters of the

HO potentials are set to the values brms which reproduce

the root-mean-square (rms) charge radii of the sd-shell

nuclei (Ref 22) and the p-shell nuclei. The radial

components of the single-nucleon wave functions of the WS

potential are obtained by solving the equations (Ref 23)

h2 d2 h2!((+1)

[ - + + U(r) I R(j,r)= G R(j,r)

2H dr2 2 Hr2

' ( 9)

 
 

where ll= m(p/n)(A-l)/A is the reduced mass. The potential

U(r) contains central, spin-orbit and Coulomb parts (Ref 24)

U(r)= V(r) + Vso(r) <'?.'3> + Gpn VCou1(r) (10)

where 6pn is equal to 1 for protons and 0 for neutrons.

These three components of the potential are

V(r)=V(p/n) [1 + exp(r—R(p/n)/a(p/n)]_l (11)



VCou1(r)=l

 

l3

Ze2

{3 - (r/Rc)2], r s RC 

212C

Ze2

 

r

1 d

Vso(r)= Vso-——- ——— [1 + exp(r-Rso)/aso]

r dr

(l2)

(13)

where V(p/n), R(p/n) and a(p/n) are the well depth, radius

and diffuseness respectively. Their values and the values

for RC=VE/3 x the experimental rms charge radius,

V50: 12 Mev, R50: 1.1113”3 and 350: 0.65 fm are taken from

Ref 25.



CHAPTER III

ELECTRON SCATTERING

III.1. Introduction

The differential cross section for the scattering of an

electron of initial energy E1 through an angle 9, from a

nucleus of mass M and charge 2 and angular momentum J1, is

given in the one-photon exchange approximation by

(Ref 9, Ref 10, Ref 26)

 

 

d0" do

=( )Mott n E F2(L,q), (14)
dS2 as: L

d0"

 where ( )Mott is the Mott scattering cross section of a

relativistic electron from a spinless point charge,

  

dcr Zacose/Z 2

( )Mott= [ 2 J p (15)

dSZ 2Eisin 8/2

a is the fine structure constant and n is the nuclear

recoil factor,

n = [ 1 + (2E1/M) sin2( /2)]-1 (15)

14
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The form factor F2 is the sum of "longitudinal" FL2 and

"transverse" FTZ, terms:

4 2

 

q q

F2(L,q)=——E- FL2 +[ “ + tan2(8/2) FT?

q 2q

(17)

where the four—momentum transfer q“ is given by

qi = q2 _ (Bi - Ef)2,
(18)

where

2= . - 2 . _ 2
q 4E1Ef S1n (8/2) + ( E1 Ef) (19)

and E1 and Ef denote, respectively the initial and final

total energies of the incident and scattered electron. In

the above equations we use h= c= 1.

The single-nucleon form factors for the longitudinal

electric and the transverse magnetic and electric scattering

are presented in Sections 111.2, 111.3 and 111.4

respectively. The multi-particle form factors are discussed

in Section 111.5. Calculations of the p-shell and sd-shell

transition densities are presented in Section 111.6.

Corrections to the electron scattering form factors are

given in Section 111.7. A derivation of a conversion factor

by which a simultaneous display can be obtained from both

the form factor and matrix elements at zero momentum

transfer is presented in Section 111.8.
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111.2. Single-nucleon form factor for the longitudinal

operator

The interaction of the electron with the charge

distribution of the nucleus gives rise to the longitudinal

or Coulomb scattering. The Coulomb multipole operator is

defined (Ref 9) by

LLMC(CI)= fd? jL(qr) YLM‘ 91-) P(?) (20)

where P(?) is the charge density operator, which is

considered in the single-particle model as a sum of the

charges of all the nucleons,

pp/n(?)= 2M? - Pk) (21)

A(p/n)= Z/N, the number of protons/neutrons in the nucleus.

In the single-particle model, equation (20) reduces to

Z LLMC(p/n,q,?k)=: jL(qu) YLM( or]: (22)

k k

The reduced single-particle form factor of the Coulomb

operator is given by

fC.p/n(L.q)= <j||LLC(p/n,q,F)IIj'
>
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= /~dr r2 hLC(j,j',r) jL(qr) (23)

C
The radial function hL is given by

hLC(j,j',r)= (jllYLllj') R(j,r) R(j',r), (24)

with

(jllYLllj')= PL(E,2,I') CL(j,j') (25)

where the brackets (II) mean that the integration is taken

over the angles only. The coefficient PL(E,I,£') is the

electric parity-selection-rule operator which guarantees the

correct parity for the Coulomb operator (Appendix A.3e5 of

Ref 21)

l I f'

PL(E,F,I')=_ [1 + (-) + +L] ' (26)

2

 

- (2j+l)(2L+l)(2j'+1
) 1/2

ct<j.j'>= <-1)J+1/2 [ 1

4n

3' L J"

x (27)

1/2 0 -l/2

and R(j,r) is the radial component of the single-nucleon wave

functions.
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111.3. Single-nucleon form factor for the transverse

magnetic Operator

The transverse form factors arise from the interaction

Of the scattering electron with the current and

magnetization distributions Of the nucleus. The transverse

form factor is composed Of electric and magnetic terms. The

multipole magnetic Operator is given (Ref 9) by

TLMmagiq)=]aI-’ RLLM<q5> . 363) (23)

The Operator ML'LM(q,?) is defined by

ML'LM(q,?)= jL'(qr) ?L'LM( Gr) (29)

where EL'L1( 9r) is the vector spherical harmonic

 

{Emu 91-h: <L'M'lqlLM> Ymm 9,) eq (30)

M',q

l

éil=; (éx j; i éy) (31)

2

é0= éz (32)

The factor 3(?) is the sum Of the convection current, 3C, and

_+

the magnetization current, Jm, Of the nucleus, given by



= 3,4?) + {7’ x i1 (F) (33)

where the subscripts c and m stand for the convection and

magnetization parts Of the current respectively, and 3(?)

is the magnetization density Operator.

In the single-particle model, the convection current

and magnetization densities are given (Ref 26) by

 

A(p/n)

_. _, eh 1 _. _. —> 1

JCIP/n(r)= . g! p/n Zléh‘ — rk) Vk ‘ (34)

21mp symm.

k=l

A(p/n)

_) Eh -> -) ->

up/n(?)=—— (1/2)gsp/In Z 6(r - rk) 6;. (35)

2mp c

k=l

where mp is the proton mass and 3k are the Pauli matrices.

Using equations (34) and (35), the multipole magnetic

Operator in the single-particle model reduces to (Ref 9)

 

 

—) .1 l —>

:TLMmag(p/n,q,rk)= q(ieh/2mpc) -2 g! p/n MLLM(q,rk) ._ Vk

q

k k

L+1 1 1 L’ 1 a

+ (1/2 gsP/n): ( ) MLL-1M(q,rk)- < ) MLL+1M(q,rk) .3
2L+1 2L+l k

k (36).

where g! and gs are the orbital and spin 9 factors Of the
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nucleons.

The single-nucleon form factor Of the magnetic Operator

can be reduced tO a radial function using relationships

between spherical Bessel functions (Ref 10 Appendix A, for

example) and integration by parts,

fT,p/nm39(L.q) (jllTLmag(p/n,q,?)l|j'>

ieh/Zmpc

xu/dr r2[glp/n hLmag(c,j,j',r) jL(qr)

+ esp/n hLmag(m.j,j'.r) 1L(qr)

(37)

where the radial functions Of the convection part (c) and

magnetization part (m) are given (Ref 27 and Ref 28) by

hLmag(C.j.j',r)= CL(jrj') PL(M.I.I') AL(j.j') [L(L+l)]_l/2

x (l/r) R(j,r)R(j',r) (38)

l

 

hLmag(mfj'j'pr)= —[L(L+l)]-l/2 CL(jrj') PL(Mrlr I.)

2

d

x B(j,j') [ R(j,r)R(j',r1

dr

+ B(j,j')-L(L+l)] (l/r) R(j,r)R(j',r) (39)
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where R(j,r) are the single-particle radial wave functions,

and AL and B are numerical coefficients given by

AL(j,j')= [ 1 + B(j,j')/L][l-B(j,j')/(L+l)] (40)

B(j,j')= 2+ D(j.e)+ D(j'.r') (41)

The numerical coefficient CL is given in equation (27) above,

and the coefficients PL and D are given by

l I ['

PL(M,I,I')=—— 1 + (-1) + HM] (42)

2

D(i,k)= i(i+1)- k(k+1)- 3/4 (43)

111.4. Single-nucleon form factor for the transverse

electric Operator

The transverse electric Operator is given (Ref 9) by

1 —) -> -> —) -> ->

TLMel(q)=-—-— at [w MLLM(q,r) . J(r) (44)

q

Using the definition Of the vector spherical harmonics

§LLMK 9r) with the vector identities (Appendix A.5 Of

Ref 21)
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—> —> —> -> —> -) a -)

Vx (L M1‘M(r))=iq2 t- MLM(r) + iv(——— r Mum) ) (45)

 

8r

3'. (a A )= a 5;. A + E'a. A , (46)

the transverse electric Operator becomes

TLMel(Q)= TLMell(q) + TLMe12(q) (47)

where -

i _. . _, _. ..

Twell<q)= [L<L+1)1'1/2far {-t-d— r Mum-)1} v. JC (48)

q Br

and

i —» —> »

TLM912(q)=—— [L<t+1)1'1/2far { q2 r Mum). Jc

q

+ q2 FMLMQ). (v x (1)} (49)

and where

MLMG) = jL(qr) rm 9,.) (50)

The nuclear current is conserved, and the continuity

equation can be used to determine the single-nucleon matrix

elements Of the transverse electric Operator (Ref 26)



  

all“ 89 —> -+ —> ->

= +V.(JC+VxP)=O (51)

3x“ 8t

_. .. ie ..

V. Jc =- ;— ( ‘i- 6f) 9(1‘) (52)

where 61 and 6f are the single-particle energies Of the

initial and final states respectively and P(?) is the

charge transition density.

In the single-particle model, where the charge, current

and magnetization densities are defined in equations (21),

(34) and (35), respectively, the reduced single-nucleon

matrix elements Of the transverse electric Operator can be

written as

 

fT'p/nel(qu)= fT'p/nell(L,q) + fT'p/nEI2(L,q),

where

l l 2 11
fT'p/ne 1(L,Q)= “ (if r hLe (C,j,j',1‘) jL(qr)

q

(53)

and

2 en 2 12
fT'p/ne1 (L,q)= q jfdr r [gyp/n hLe (c,j,j',r) jL(qr)

2m c
P

+ asp/n ht912<m.j.j'.r) jt<qr)

(54)

e11
and where the radial functions hL are given by
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( ‘°- 6 )

hLe11(c.j.j'.r)= 1 f [L(L+1)]‘1/2

hc

a

x [2 hLC(j,j',r) + r hLC(j,j',r)],

dr

(55)

a

hLelz(c.j.j'.r)= [L(L+1)1‘1/2 r R(j,r)——-R(j',r)

dr

d

- [———R(j,r)] R(j'.r)] (56)

dr

and

eh l

hLelz(m.j,j'.r)= PL(E,I,E')[ D(j.() - D(j',c') 1

2mpc 2

x[ L(L+1)J‘1/2 CL(j,j') R(j,r) R(j'.r) (57)

The radial function hLC is given by equation (24) above,

and the coefficients PL, D(j,£) and CL(j,j') are

defined in equations (42), (43) and (27) respectively.

111.5. Multi-nucleon form factors

The multi-nucleon form factor for Coulomb scattering

is

FC'p/n(L,q)= dr r2 HL'p/nc(i,f,r) jL(qr), (58)

with the nuclear matrix elements HLC given by

HL'p/nc(i,f,r)= :OBDM(i,f,L,j,j',p/n) hLC(j-,j',r), (59)

is"
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where the one-body density matrix (OBDM) is given by

equation ( 7) and the single-particle matrix elements hLC

are given by equation (24).

The multi-nucleon form factor for the transverse

magnetic scattering is

ieh

 

FT’p/nma9(L,q)= [ ng/n [2dr r2 HL'p/nmag(c,j,j',r) jL(qr)

2mpc

+ gsp/n d/Pr r2 HL,p/nmag(m.j.j',r) jL(qr) (60)

where the multi-particle matrix elements HLmag are given by

HL’p/nmag(c/m,i,f,r)= Z OBDM(i,f,L,j,j',p/n) hLmag(c/m,j,j ' ,r)

3'3" (61)

The one-body density matrix (OBDM) is given by equation ( 7)

and the single-particle matrix elements hLmag are given by

equations (38) and (39) for the convection and magnetization

currents, respectively. The sums in this case extend over

all the valence orbits.

The multi-nucleon form factor for the transverse

electric scattering are

FT'p/n81(L,q)= FT'p/n611(L,q) + FT'p/ne12(L,q), (62)

where
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l

FT'p/nell(L,q)= -———:/dr r2 HL,p/n911(c,i,f,r) jL(qr) (63)

q

and

eh

FT'p/nelz(L,q)=2 q gIP/n der r2 HL'p/n(c,i,f,r) jL(qr)

m c
P

+ gsp/n J[dr r2 HLe12(m,i,f,r) jL(qr)

(64)

e11
and where the nuclear matrix elements HL are given by

(E' - Ef )

HL911(c,i,f,r)= 1 [L(L+l)]"1/2

hc

 

d

HLC(i,f,r)]

 

x [2 HLC(i,f,r) + r

dr

(65)

and E1 and Ef are the initial and final energies Of the

nuclear states respectively. The multi—nucleon matrix

elements HLC are given in equation (59). The matrix elements

HLelZ are given by

HL912(c/m,i,f,r)= :OBDM(i,f,j,j',p/n) hL912(c/m,j,j',r) (66)

11'

e12
where the radial functions hL are given by equations (56)

and (57) for the convection and magnetization currents
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respectively. The sums extend over all the valence orbits.

111.6. p-shell and sd-shell transition densities

The multi-particle form factor Of the Coulomb operator

depends on the transition densities HLC(i,f,r). The

transition density can be divided into two parts, one

depending on the model-space transition density and the

other depends on the core-polarization transition density.

The model spaces for the p-shell and sd-shell are

defined by the complete set Of states contructed from the

orbits 0p3/2 -0p1/2 and the orbits 0d5/2 -1s1/2— 0d3/2

respectively. The model-space one-body Operator matrix

elements are Obtained by taking the matrix elements Of a

one-body tensor Operator between the eigenstates Of the

interaction used

GL’p/n(i,f,r)= ZOBDM(i,f,L,j,j',p/n) hLC(j,j',r) (67)

3'3"

where the OBDM are given by equation ( 7) and the hLC are

given by equation (24). The sums extend over all the

valence orbits for L>0. For L=0, the sums includes all the

orbits in the core.

The model-space transition densities G deal with

nucleons in the active orbits only and exclude any effects

from the core. Many nuclear properties cannot be

quantitatively described by using just the model—space

transition density, and the effects from outside the model



28

space must be taken into consideration. The contribution Of

the core tO the transition rates can be explained

(Ref 29 p. 334) as a deformation Of the core when the active

nucleons make a transition from one state to another. The

protons in the closed shell are polarized and their orbits

are slightly distorted which contributes to the total

transition rates by an amount that corresponds to the

Observed values. Mass and state-independent effective

charges have been introduced empirically (Ref 30 and

Ref 25) for the model-space protons and neutrons which are

able tO reproduce the Observed B(E2) values in the sd-shell.

Two models for the effective charge are considered here

for the core-polarization transition densities. One can

assume the transition density tO be proportional tO the

model-space transition density. We will call this the

"valence" (V) model

cL,p/nV(r)= GL,p/n(r) (as)

The Other model is based on a multipole-multipole

interaction which connects the ground state tO the

L—multipole nhu) giant resonance. The shape Of the

core-polarization transition density in this case is given

by the Tassie (T) model (Ref 31)

L-l d

CLIP/nT(r)= r ;— GL=0'p/n(r) (69)
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where GL=o(r) is the ground state density given in equation

(67).

The total transition densities are Obtained by

combining the model-space transition densities with each Of

the twO models for the radial distribution for the core

polarization. The total transition density corresponding to

first-order perturbation theory is given by

HL’p/nc(i,f,r)= GL’p/n(i,f,r)+ NC'p/n CL'p/n(i,f,r) (70)

where G(r) is the model-space transition density given in

equation (67) above, and C(r) is the core-polarization

transition density given by equations (68) and (69) for

the valence and the Tassie models, respectively, and NC is

a normalization constant to be determined from the matrix

elements Of the L-multipole gamma-ray-transition Operator

ML,

ML=~/.rL HLC (r) r2 dr (71)

The rL radial integrals Of model-space and core-polarization

transition densities are given by

GL=./flrL GL(r) r2 dr (72)

cL=f rL CL(r) r?- dr (73)



30

The gamma-ray-transition matrix elements defined at

q= Ef-Ei, expressed in terms Of the effective charges, are

given (Ref 22) by

ML,p= GL,p(l+6pp)+ GL,n5pn (74)

where 5cv is the polarization charge that arises from the

interaction Of the valence nucleons (v) with the core

nucleons (c). Their relations to the conventional effective

charges ep and en are given by

Opp: 6nn= ep‘l (76)

5pn= 6np= en (77)

It has been found (Ref 30 and Ref 22), that for the

complete sd-shell model space, average values Of the

effective charges for E2 and E4 are close tO ep+en= 1.7e

and ep+en= 2.0e respectively. These values are used

throughout the calculations considered in this work,

together with the isovector effective—charge defined by

ep - en= 1e (Ref 25).

The normalization constants Of equation (70) are

Obtained by comparing the integrals Of both sides Of

equations (74) and (75),
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Nc'p= (PppGp + PpnGn)/Cp (78)

Nc,n= (5nnGn + 6anp)/Cn (79)

The electromagnetic transition strength B(L,Ji,Jf)

is given by

1

B(L,J1,Jf)= --—-— lML,p|2 (80)

2Ji+l

111.7. Corrections to the electron scattering

The shell-model wave functions used in describing

transition densities give rise tO additional non-physical

excited states called spurious states, due to the fact that

the interaction potential represents an average potential

with respect tO a fixed origin. The Hamiltonian in this

case is in general not translational invariant, and the

motion Of the center Of mass is responsible for these

spurious states. These states can be isolated from the exact

Observed states Of the intrinsic motion Of the nucleons in

the case Of the HO potential (Ref 10), where the Hamiltonian

can be separated into two parts, one representing the motion

Of the center Of mass, and the Other representing the

intrinsic motion Of the nucleus. This is done by including a

factor Gcm given by the H0 in the nuclear form factor.

The center Of mass correction factor Gcm is (Ref 32)

Gcm(q)= exp(q2 b2 /4A) (81)
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where b is the oscillator length parameter. We use b= be

obtained from a global formula for the oscillator length

h we: 41.46/bo2 = 45 A'l/3 - 25 1‘2/3 , (82)

where A is the total number Of nucleons in the nucleus.

The form factor discussed in the previous sections

assumed the nucleons as point particles. A correction due to

the finite nucleon size should be considered. For

longitudinal scattering, the form factor becomes

(Ref 33)

FC(L,q)= NF Fc'p(L,q) Gfs'p(q)+ Fc'n(L,q) Gfs'n(Q)

where Fc'p/n(L,q) is given by equation (58), and the

free—nucleon form factors Gfs'p and Gfs'n are taken

from Ref 34, including the small Darwin-Foldy relativistic

correction in Gfs (Ref 35). The normalization factor NF

is given by

 

1 4v 1/2

NF =—[ (84)

Z 2J1 + 1

For inelastic scattering we use the approximation

FC, FC,n .

P = L“ (85)
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where the number Of protons and neutrons in the nucleus are

denoted by z and N respectively. The Coulomb form factor

reduces to

FC(L,q)= NF Fc,p(t,q) [cfs,p(q)+ N/Z cfs,n(q)] Gcm(q)

L>0 (86)

For the transverse form factor, the correction for the

finite nucleon size Gfs described in Ref 36 is used

for both protons and neutrons. The transverse form factors

are

FTmag'el(qu)= NF [FTerag'el(qu) + FTrnmag'el(L'q))

X Gcm(q) Gfs'p(q)

(87)

where FT,p/nmag'el(L,q) is given by equation (60) and (62),

respectively and Gcm(q) is the center Of mass correction

given in equation (81).

The total form factor is Obtained from the sum over all

form-factor multipoles F2(L,q) given in equation (17),

F2(q)=:z F2(L,q) (as)

L

where L is determined from the parity selection rule

Mel = (-1)L (89)

Ammag= (-1)L+1 (90)
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From the parity and time reversal invariance one can see

that only electric multipoles can have longitudinal

components, while both electric and magnetic multipoles can

have transverse components. Transverse multipoles must have

angular momentum greater than zerO, while longitudinal

multipoles can have angular momentum equal tO or greater

than zero. For elastic scattering, only even multipoles

contribute to the longitudinal scattering, while only Odd

multipoles contribute tO the magnetic scattering. There are

no contributions from the transverse electric elastic

scattering.

The form factors discussed in the previous sections are

formulated in terms Of the first Born approximation, in

which the initial and final states Of the electron are pure

plane waves. This type Of approximation is called the plane

wave Born approximation (PWBA). For nuclei in which zcr<< 1,

the PWBA is expected tO describe the electron scattering

data very well, except in the region Of the diffraction

minima where the PWBA goes tO zero. An improvement tO the

first Born approximation can be Obtained by including the

effects Of the distortion Of the plane wave by the Coulomb

field. This higher-order effect is.incorporated into the

distorted wave Born approximation (DWBA). TO first order,

the effect Of the Coulomb field is tO increase the momentum

transfered tO the nucleus and an effective momentum transfer

can be used tO include these effects. The effective momentum

transfer qeff is related to q (Ref 10) by
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[ V(r) J

Qeff= q l - -—-—-- (91)

Ei(MeV)

fC Z e2

qeff= q l + (92)

Ei(MeV) RC (fm)

where RC =V573-<r2>1/2 , e2=<rhc= 1.44 MeV fm and a'is the

fine structure constant. The value Of fC is determined

from the Coulomb potential energy

-2 e2

V(r)=-—— [ 3Rc2 - r2 1 (93)

2 RC3

where fc= 3/2 if the scattering occurs at the center Of the

nucleus, and 1.0 if the scattering occurs at the surface. An

excellent overlap between DWBA and PWBA is Obtained (Ref 37)

if the experimental data are plotted as a function Of qeff

for the elastic magnetic scattering with fc= 1.2 and the

theoretical form factors calculated in PWBA are plotted

against q. In Figure 111.1 we show the difference between

the DWBA, calculated with the code Duels (Ref 38), and the

PWBA for the elastic magnetic scattering Of 27A1. The DWBA

and the experimental data are plotted versus qeff with

fc= 1.2, while the PWBA are plotted vs. q. NO significant

differences appear between the DWBA and the PWBA

calculations. All the magnetic elastic scattering form

factors presented in this work are calculated in PWBA and

plotted vs. q with the data plotted vs. qeff with
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Figure 111.17 DWBA form factor for the elastic magnetic

sdattering from A1 (solid line) in comparison with the PWBA

(dashed line). The calculations incorporate the

single-nucleon wave functions Of the HO potential Of b=brms-

The data are taken from Ref 40 (circles), Ref 41 (triangles)

and Ref 42 (squares).



37

 

     

MSU-83337

L,O.84 Mev, I/2+ 27A)

I0'3- _

' O . -(

(0'4

Rio-5

3

“(’1
(0'6

IO’7

lcy8.. |l _

'1

'0'9 4 l 1 i 1 1

o I 1| 2 3

q(fm )

FiguSe 111.2. DWBA form factor for the 0.844 MeV,l/2+

state Of A1 (solid line) in comparison with the PWBA for

*the same state (dashed line). The calculations incorporate

the single—nucleon wave functions Of the HO potential Of

b=brms. The data are taken from Ref 13.
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fc=l.2.

The value Of fc=3/2 has been widely used for the elastic

and inelastic electric scattering. In Figure 111.2 we show

the difference between the DWBA calculated with the code

Duels (Ref 38) for the 1/2+ state (0.844 MeV) Of 27A1 and

the PWBA. The DWBA and the experimental data are plotted

versus qeff with fc= 3/2, while the PWBA are plotted vs.

q. The difference between these twO calculations are

significant only in the region Of the first diffraction

minimum, where the PWBA goes tO zero, and no significant

differences appear at other values Of the momentum transfer.

All the excited states Of 27A1 are calculated also in PWBA

and plotted vs. q with the data plotted vs. qeff with fc= 3/2.

The Coulomb elastic scattering Of 27Al is calculated in

DWBA Of the MIT elastic phase-shift code (Ref 39).

111.8. Conversion Of form factors to q-dependent matrix

elements M(q)

We present here a representation for form factors in

which we can display simultaneously both the form factor and

matrix elements at zero momentum transfer. Formally, we wish

to utilyze coversion functions D(L,q) such that

M(q)= F(L,q)/D(L,q).

1n the limit Of small momentum transfer, the PWBA

longitudinal form factor is related tO the gamma-transition

matrix element ML'p defined in equation (74),
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. 1 4n qL

11m FC(L,q)= -—— ML'p (94)

q-+0 Z 2J1 +1 (2L+l)!!

 
 

TO remove some Of the trivial q dependence at larger q

values, the form factor can be divided by the exponential

dependence exp(-b2 q2/4) which is contained in the HO

radial wave functions. The q- and L-dependent conversion

factor for the Coulomb scattering is written as

l 41T 2

DC(L,q)= qL exp(-bo2 q /4) (2L+1)!!

z 2J1 +1

Dcm(Qrb0 ) Dfs(Q) (95)

  

where Dcm and Dfs are the center Of mass and finite proton

size corrections, given by

Dcm(q,b0)= exp(bo2 q2/4A), (96)

and

nfs(q)= exp(-0.43 q2/4), (97)

where be is the harmonic oscillator length parameter

Obtained from the oscillator length given in equation (82).

For the transverse magnetic scattering, the form factor

in the small momentum transfer limit can be written as

1 4"

lim FTmag(q)= ———- -——————- C(L) M(L) qL (98)

q-+0 Z 2J1 +1
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where M(L) is the magnetic multipole moment and C(L) is

given by

L -1

(2L+1)!! X - (99)
 C(L)= [ 2mc/h

L+l

where

4W J1 1. J1

x= (100)

2L+l J1 0 -J1

 

for the elastic magnetic scattering and X=1 for the

inelastic magnetic scattering.

In the region Of small momentum transfer, the lowest M

multipole dominates the scattering, and a q- and L- dependent

conversion factor is chosen such that division Of the

inelastic magnetic form factor by this conversion factor

with L set equal to the lowest multipole gives the matrix

elements at q-+0.

Hence ,

l 4Tr

DTmag(L,q)= -———- ---qL exp(-b02 q2/4) C(L)

Z 2J1 +1

Dcm(q,b0) Dfs(q ) (101)

where Dcm and Dfs are the center Of mass and finite proton

size corrections given in equations (96) and (97),

respectively.

For the elastic magnetic scattering, we have chosen a
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function which is proportional to q at low-q values and

proportional to quax at high-q values. Division Of the

form factors by this function yields results which clearly

display the individual contributions Of the different

multipoles and which have a slower variation with change in

q at region Of high momentum transfer. For this function we

have chosen the expression

Lmax+1 Lmax +1 -1

l -(q/a ) l -(q/a )

H(Lmax)q) -—-e + -—- (1- e )

q q max

(102)

where a is a numerical constant chosen tO be 1 and Lmax is

the highest multipole in the shell, Lmax‘ l, 3 and 5 in the

Os, 0p and ls-Od shells respectively. The complete q- and L-

dependent conversion factor is written as

 

l 41T

DTmag(Lmaxrq)= _\/ exp<-bo2 012/4) H<Lmax.q) C(L=1)
Z 2J1 +1

 

x Dcm(q,b0) Dfs(Q) (103)

where Dcm and Dfs are the center of mass and finite proton

size corrections given in equations (96) and (97).

The new representation for the form factor is

|F(q)|

M(q)= -——————-, (104)

D(L,q)
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where D(L,q) is given in equations (95), (101) and (103)

with L=2 for the Coulomb, L=l for transverse magnetic and

L= Lmax for magnetic elastic scattering. For the magnetic

elastic scattering, the form factor M(q) is plotted vs. q,

and for the longitudinal scattering and transverse inelastic

scattering, the form factor M(q) is plotted vs. q2.

The two representations Of the form factors F2(q)

and M(q) are shown in Figure 111.3 and 111.4 for the elastic

magnetic scattering and longitudinal E2 transition Of

1/2+ state in 27Al, respectively.
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Figure III.3. Magnetic elastic electron scattering for

27A1 caiculated with the HO potential, presented in the twO

forms F (L,q) and M(q) as explained in section 111.8. The

magnetic multipoles contributing tO the scattering are Ml

(dotted line), M3 (dashed line) and M5 (dashed—dotted line).

The solid line represents the total incoherent sum Of these

three multiploles. The magnetic dipole moment is displayed

in the M(q) representation. The data are taken from

Ref 40 (circles), Ref 41 (triangles) and Ref 42 (squares).-
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Figure III.4. Longitudigal E2 form factor for the

0.844 Mev, 1/2+ state for Al calculated with the HO

potential, presented in the two forms F (L,q) and M(q) as

explained in section 111.8. The measured B(E2) value is-

displayed in the M(q) plot at q=0. The data are taken from

Ref 13.



CHAPTER IV

MAGNETIC ELASTIC ELECTRON SCATTERING

IV.1. Introduction

The configuration-mixing shell model used here allows

the mixing Of different orbits tO give the full basis

eigenstate. In this case, all the model—space valence

nucleons share in the scattering process, rather than just

the one unpaired nucleon as in the simple shell model. In

the calculation Of the one-body density matrix (OBDM), we

assume that the core is inert and only the motion Of the

valence nucleons need to be considered. However, it has been

shown that higher-order effects such as core polarization

and meson-exchange currents are very important and must be

taken into consideration (Ref 43, Ref 44, Ref 45 and Ref 46).

Assuming an effective two-body interaction between the core

and the valence nucleons, one can carry out microscopic

calculations tO include these effects. Such microscopic

calculations lead tO the introduction Of effective

single-nucleon matrix elements which are different from the

free-space values. Renormalization Of the free-space values

Of the single-nucleon matrix elements Of the different

Operators might take care Of the core-polarization effects.

The renormalization Of the single—nucleon matrix elements

45
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might be approximated by introducing L-dependent effective 9

factors. The effects Of the meson-exchange current might be

explained by using radial parameters for the valence

nucleons different from those required tO match the rms

radius.

We compare the shell-model calculations with

experimental data for Odd-A ls-Od-shell and 0p-she11 nuclei.

GOOd data are available for the nuclei 170, 27Al and 39K.

Comprehensive comparisons are made for these nuclei using

different effective 9 factors for the different multipoles.

We plot the new representation Of the form factor M(q) vs. q

for all the cases considered in this study, which permits

display Of the magnetic dipole moment at q=0. We will use

the term " form factor" for the new representation M(q).

IV.2. Magnetic elastic scattering from 1/2+ nuclei

The stable Odd-A nuclei Of spin 1/2+ in the sd-shell

nuclei are 19F, 29Si and 31?. Only the M1 multipole

contributes to the magnetic scattering for these systems.

In Figure IV.1 we show the magnetic elastic form

factors for these nuclei using the HO radial wave functions

Of parameter b=brms~ The crosses, plusses, and solid lines

represent the calculations with the single-particle model,

the configuration-mixing shell model with free-nucleon 9

factors and the configuration-mixing shell model with

effective 9 factors, respectively. We use effective M1 9
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Figure Ivl9' Fqgm factoge for the magnetic elastic

scattering Of Si and P calculated with the HO

radial wave functions Of b= brms- The cross signs

represent the calculations with the single-particle model

with free-nucleon 9 factors. The configuration-mixing

shell model calculations using free-space 9 factors and

effective M1 9 factors are represented by plus signs

and solid lines respectively. Thegvalues for the M1

effective 9 factors are gsp= 59,9 n: -3. 442, g! 9:1. 078

and g, n=-0. 044. The data2 or F gie taken from Ref 47

(circles). The data for Si and P are taken from

Ref 48 (triangles) and Ref 49 (circles).
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factors resulting from a Chi-square fitting to the

magnetic dipole moments of all the stable odd-A sd-shell-

nuclei. These values are [gsp= 5., gs“ = -3.442, glp= 1.028,

gln= -0.044].

The single-particle picture of 19F is one proton in the

51/2 orbit. From Figure IV.1, we notice that with the

single-particle picture (cross signs) neither the magnetic

dipole moment nor the scattering data are reproduced

satisfactorily. The free-nucleon g factors-configuration

mixing shell model does explain the scattering data much

better than the single-particle model. However, the measured

magnetic dipole moment is not reproduced by the free-nucleon

9 factors. The effective 9 factors-configuration mixing

shell model explains the experimental data very well (solid

lines), and the measured magnetic dipole moment is

reproduced properly for 19F, but it slightly underestimated

for 2981 and 31P.

1V.3. Magnetic elastic scattering from other Odd-A sd-shell

nuclei

We calculate the magnetic elastic form factors for all

other stable sd-shell nuclei. We compare the results of the

single-nucleon shell model (cross signs) with the

configuration-mixing shell model. The calculations for 17O
I

25Mg and 27A1 are presented in Figure IV.2, those for 21Ne,

23Na and 33S are presented in in Figure 1V.3 and those for
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35€1,37C1 and 37K are presented in Figure IV.4. The

configuration—mixing shell model form factors are calculated

with two different values Of the 9 factors. The lines

denoted by plusses represent the calculations with the

free-nucleon 9 factors for all the multipoles that

contribute to the scattering, while the solid lines

represent the calculations with effective M1 9 factors

obtained from the Chi-square fitting to the magnetic dipole

moments Of all the nuclei considered in this study. The

values for the effective 9 factors [ gsp= 5., gsn= -3.442,

gpp= 1.078 and g,n = -0.044] are used for the M1 multipole.

Also, the M3 contribution is quenched to 60% of the free-space

value. We use the free M5 9 factors for both cases. The

multipole decompositions M1 (dotted line), M3 (dashed lines)

and M5 (dashed-dotted lines) are those of the empirical 9

factors discussed above.

With the empirical g-factors, the agreement with the

measured magnetic dipole moments becomes worse for some

nuclei and improved for others, like 21Ne, 23Na, 25Mg, 35C1,

37C1 and 39K. A common feature noticed in the regions of

high momentum transfer (q > 2 fm’l) is that the data are

higher than the theory for those states which are dominated

by M3 and M5 multipoles. Also, the free-nucleon M3

contribution is an overestimate in the region where it is

important.

In the case Of 25Mg, good agreement with the measured
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Figure IV12. Fggm factoEs for the magnetic elastic

scattering of 0, Mg and A1 calculated with the HO

radial wave functions of b= brms- The cross signs represent

the calculations with the single-particle model and

free-space 9 factors. The configuration—mixing shell model

calculations using free-space 9 factors are shown by

plus signs and those of effective M1 and M3 9 factors are

shown by solid lines. The values for the effective M1 9

factors are those used in Figure IV.1. The M3 contribution

is quenched to 60% Of the free-space value. We use the free

M5 9 factors for both cases. The decomposition of the

multipoles are M1 (dotted lines), M3 (dashed lines) and M5

(dashed-dotted lines), calculated with the empirical 9

factors discussed above. The dagg for 1 O are taken from

Ref 50 (circles). The data for Mg are taken from Ref 37

(squares) and Ref 51 (circles). The data for 2 A1 are taken

from Ref 40 (circles), Ref 41 (triangles) and Ref 42 (squares).
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Figure 1V2}. F059 factor§3for the magnetic elastic

scattering of Ne, Na and S. The conventions of the

presentation are the same as given in the caption Of Figure

IV.2. The data for 3Na are taken from Ref 52 (circles).
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Figure Ivgg’ F059 factor§9for the magnetic elastic

scattering Of C1, C1 and K. The conventions of the

presentation are the same as given in the caption of Figure

IV.2. The data for 9K are taken from Ref 53 (circles)

and Ref 54 (squares).
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dipole moment is obtained, but the quality of the form

factor data in the region of small- and medium-q values

limits the usefullness of the comparison with theory.

IV.4. Magnetic elastic scattering from 17O

The complete sd-shell space shell-model picture of 17O

is identical to the single-nucleon shell-model picture,

since this nucleus corresponds to only one neutron

outside the 16O inert core. All of the nuclear properties

are determined by this unpaired neutron in the model. The

calculated form factor with this model is shown in

Figure IV.5a and IV.5a' using single-nucleon radial wave

functions of the HO potential and the WS potential,

respectively. The free-space neutron 9 factors are used in

these calculations. From Figures IV.5, it can be concluded

that the M3 contribution is too large and that the

calculated form factor is too small in the region of q > 2

fm'1 .

As mentioned before, the core-polarization effects will

alter the results both of simple-single particle and full

sd-shell model calculations. We will assume that these

effects can be introduced in the form of L-dependent

effective 9 factors. The form factor calculated with

effective 9 factors for the M3 multipole of the neutron

equal to 60% of their free-space values are shown in Figure

IV.5b and IV.5b'. Quenching the M3 multipole to 60% of the
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free-space value gives better agreement with the

experimental data in the region where M3 is important but

does not improve agreement between experiment and theory in

the region of high momentum transfer (q > 2.0 fm-l). The

discrepancy between theory and experimental data at high

momentum transfers has been discussed for medium-heavy

nuclei (Ref 55). Meson-exchange corrections (MEC)

effects are found to be important in this momentum transfers

region. Simple quenching of the M5 form factors

(dashed-dotted lines) will not help in resolving this

discrepancy.

In Figures IV.5c and IV.5c' we plot the form factors

calculated with the M3 multipole quenched to 60% of the

free-nucleon values and the rms radii of the valence orbit

reduced by 5% from those required to fit the rms charge

radii in the respective model for the single-nucleon wave

functions. With these reductions, enhancements of the form

factor are obtained at high-q values. Reduction of the rms

radius of the valence orbit also has small effects in the

region of small—q values. Best overall agreement between

theory and experiment is obtained with the 0.6 quenching of

the 9 factors for the M3 multipole and the smaller radial

size parameters.

It was found in studies of beta-decay (Ref 56) that the

spin 9 factor of the Gammotheller matrix elements should be

quenched 80% from the free-nucleon value have explored the
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Figure IV.5. Form factor for magnetic elastic

electron scattering for O. The single-nucleon radial

wave functions used here are those of the HO potential of

b= brms (Figure IV.5a) and of the WS potential discused in

Section II.3 (Figure IV.5a'). Free-space values for the

neutron-g factors are used in both calculations. The

corresponding calculations with quenching the 9 factor of

the M3 contributions to 60% are shown in Figure IV.5b and

Figure IV.b'. Figure IV.5c and Figure IV.5c' are the same

as Figure IV.5b and IV.5b' except that the rms radius of

the valence orbit is reduced by 5%. The same conventions

are used for the different multipoles as in Figure IV.2.

The data are taken from Ref 50 (circles).
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Figure Ivié. Form factors for the magnetic elastic

scattering of O. The conentions of the

presentation are the same as given in the caption of Figure

IV.5c' except effective 9 factors for the M1 contributions

are used (gsn(eff)= 0.8xgsn, gln(eff) = g!n -.182).
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consequences of imposing this same quenching

upon the magnetic dipole gs . With this effective gs

for the M1 multipole, the measured magnetic dipole moment

cannot be reproduced without also reducing 9,. In Figure

Iv.6, we show the form factor calculated with the same WS

radial wave functions that used in Figure IV.5c'. Effective

9 factors for the M1 multipole [gsn(eff)= 0.8xgsn, g[n(eff)=

gin-.182] are used, which exactly reproduce the dipole

magnetic moment. It is seen that even with the magnetic

dipole moment reproduced exactly, the agreement with the

form factor data at small momentum transfer data is not as

good as was obtained with the free-space M1 9 factors,

(Figure IV.5c').

No major differences appear between the HO and the WS

potentials in describing the data except in the region of

high-q values, where the WS potential gives better agreement

with the experimental data than the H0 potential (Figure

IV.5c' and IV.5c).

IV.5 Magnetic elastic scattering from 27A1

In the single-particle model, 28Si is considered as a

closed shell, and 27A1 as one proton hole in the d5/2 orbit.

The form factor calculated with this model is shown in

Figure IV.7a using the HO radial wave functions with the

value of the "b" parameter fixed to reproduce the rms charge

radius. This model overestimates the magnetic dipole moment
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Figure IV.7. Form fastors for magnetic elastic

electron scattering for Al. Calculations with the HO

potential of b= brms: assuming only one proton hole in the

d5/2 orbit are shown in Figure IV.7a. The

configuration-mixing contributions of the HO potential of

b=brms and of b reduced 9% from brms are shown in Figure

IV.7b and Figure IV.7c respectively. Free-nucleon values

for the 9 factor are used in these calculations. The

effect of reducing b-value of the HO potential by 5% is

shown in Figure IV.7d using different values for 9 factors

for M1 contributions to get the exact ma netic dipole

moments (gsp(eff)= 0.8xgsp, g,p(eff)= g, xl.25). Figure IV.7e

is the same as Figure IV.7d except the proton 9 factor of

M3 contributions is quenched to 60% of the free-space value.

Figure IV.9f is the same as Figure IV.7e except the wave

functions of the WS potential whose valence orbits rms radius

reduced 5% are used in place of the HO wave functions. The

same conventions are used for the different multipoles as in

Figure IV.2. The data are taken from Ref 40 (circles),

Ref 41 (triangles) and Ref 42 (squares).
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by a factor of 1.2. The form factor data are also not

explained satisfactorily. In Figure IV.7b, we present the

form factor calculated with the multi-particle shell model

using the HO radial wave functions whose b parameter is

fixed to reproduce the rms charge radius. The

configuration-mixing shell model reduces the M1 form factor

in the region of small-q values by a factor of 1.4 from that

of the single-particle picture. It similarly reduces the M3

form factor by a factor of 2. It yields good agreement with

the measured magnetic dipole moment. Overall, the

configuration-mixing shell model gives much better agreement

with the experimental data than the single-particle model

discussed above. However, in the region of low momentum

transfer, the theoretical form factor falls below the values

of the data. It would seem that the M1 multipole needs to be

renormalized to get agreement with those data but this would

tend to destroy the agreement with the measured magnetic

dipole moment. The agreement with the low-q data can be

improved by reducing the radial size of the valence nucleons

from that required by the rms radius, as shown in Figure

IV.7c.

In Figure IV.7d, we use effective M1 9 factors

((gsp(eff)= 0.8xgsp, g£n(eff)=g£n+0.247) to reproduce the

measured magnetic dipole moment. We use HO radial wave

functions of radial size 5% smaller than that required by

the rms radius. An enhancement of the M1 form factor at the
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region of low-q values is thereby obtained, such that the

experimental data at this region of q are well decribed.

Also, an enhancement of the M5 multipole is obtained at

high-q values. The corresponding calculation in which the M3

form factor is quenched to 60% of the free-space value is

shown in Figure IV.7e. In Figure IV.7f we show the

calculation in which the quenching factors are the same as

in Figure IV.7e, but in which single-nucleon wave functions

of the WS potential whose valence nucleons radial size

parameter reduced 5% from that required by the rms radius

are used in place of the HO wave functions. From Figures IVe

and IVf one can see that an overall agreement can be

obtained between theory and the experimental data and that

there are no significant differences between the results of

HO and the WS potentials throughout the momentum-transfer

regions studied.

Even though both protons and neutrons are active

outside the closed 160 core in the multi-particle

configuration-mixing model of 27Al, the magnetic scattering

is dominated by protons (Figure IV.8a). The contribution of

the neutrons is small (Figure IV.8b). The valence protons

contribute to the magnetic scattering both through their

spin and orbital angular momentum. In the region of high

momentum transfer, only the spin part is important, the

orbital part having very small effects, as shown in Figure

IV.8c and IV.8d respectively.
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Figure IV.8. Form factors for magnetic elastic

electron scattering for Al calculated with

single-nucleon radial wave functions of HO potential of

b= brms using free—space values for the 9 factors. Protons

contributions only are shown in Figure IV.8a. The

neutrons contributions only are shown in Figure IV.8b.

Figure IV.8c and Figure IV.8d show the proton gs and 9,

contributions respectively. The same conventions are used for

the different multipoles as in Figure IV.1. The data are

taken from Ref 40 (circles), Ref 41 (triangles) and

Ref 42 (squares).



69

MSUX¢83~OZO

 

27m. HO

l‘exp. " ;.kl l-‘exp. , d

' neutronsprotons

4.0   
   

3.0

° W)

2.0

LOI-

 

 

M
(
q
)

k

J
£
\
\
\
\ \

5
I

4
)
-

I
,

in
;

F.

   
 

 
Figure IV.8



70

IV.6. Magnetic elastic scattering from 39K

In Figures IV.9 and IV.10 we show form factors for

magnetic elastic electron scattering in 39K. One proton hole

in the d5/2 orbit is responsible for the scattering. The

single-nucleon shell model and the configuration-mixing

shell model are identical in this case. The form factor

calculated with HO radial wave functions of b=brms and the

free-proton value for the 9 factor is shown in Figure IV.9a.

The calculated magnetic dipole moment disagrees with the

measured value. In the region of medium-q values, where the

M3 multipole is important, the predicted form factor is too

large. This is the same behaviour noticed in 17O at this

region of q. This suggests that the need to quench the M3

strength is a common feature for the electron scattering

process in this mass region.

Quenching the proton 9 factor of the M3 multipole to

60% of its free space value improves the agreement between

theory and experiment at low and medium momentum transfers

values (Figure IV.9b). At the region of high-q values (q > 2

fm'l), the agreement is still poor and the data are

increasing as function of q, while the theory varies

smoothly and approximately steadily as function of q.

In Figure IV.10a we show the calculation which uses the

same quenching factor as those used in Figure IV.9b, and a

radial size parameter reduced 5% from that required to fit

the rms radius. The agreement at high-q values is improved
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Figure IV.9. Form fggtors for the magnetic elastic

electron scattering for K calculated with single-nucleon

radial wave functions of the HO potential of b=brms~

Free-space values for the 9 factors of the M1 and M3

contributions are shown in Figure IV.9a. Figure IV.9b is

the same as Figure IV.9a except the proton 9 factor of the

M3 contributions is quenched to 60% of the free-nucleon

value. The orbital angular momentum contributions alone

are shown in Figure IV.9c. Figure IV.9d shows only

the spin contributions. The same conventions are used for the

different multipoles as in Figure IV.2. The data are taken

from Ref 53 (circles) and Ref 54 (squares).
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by this reduction.

To reproduce the measured magnetic dipole moment, we-

choose an effective Ml orbital 9 factor for the proton of

g[p(eff)= gpp+0.15. These calculations are shown in Figure

IV.10b. The M1 form factor is increased throughout the

momentum transfer regions except at the high-q values. The

fact that the high-q values do not change is because the

orbital contribution is important only at low—q values as

shown in Figure IV.9c. Figure IV.9d shows the spin

contribution to the elastic magnetic scattering. The form

factors decrease as a function of q at small-q values, while

the high-q values are dominated by the spin part.

Giving the proton effective M1 9 factors (gsp(eff)=

0.8xgsp) and g,p(eff)=0.962xglp) reproduces the measured

magnetic dipole moment. These calculations are shown in

Figure IV.10c and IV.10d with the HO and WS radial wave

functions respectively. The radial size parameter of the

valence proton is reduced 5% from that required by the rms

radius. Much better agreement is obtained with these

empirical values. The WS radial wave functions reproduce the

high-q values better than the H0.

The octupole moment can be calculated using the formula

3

= - _—(gs _ 49!) (11>, (105)

70

with <r2 >1/2= 3.606 fm calculated with the WS radial wave

functions. The binding energy of the valence orbit is fixed
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Figure IV.10. Form Sgctors for the magnetic elastic

electron scattering for K calculated by quenching the 9

factor of the M3 contributions to 60% of the free-space

value. Figure IV.10a shows the calculations with

free-nucleon values for the M1 contributions. Figure IV.10b

shows the calculations with g p(eff)= glpxl.15 and

gsp(eff)=gsp(free) for the M1 contributions. Fiure IV.10c

are calculated with gsp(eff)= 0.8xgsp and g,P(ef£)= 0.9629,?

for the M1 contributions. Figure IV.10d is the same as

Figure IV.10c but usig the WS potential whose valence

orbits rms reduced 5%. The same conventions are used for

the different multipoles as in Figure IV.2. See caption of

Figure IV.9 for the data.
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to be 8.329 MeV. According to this formula, the

single-particle moment is found to be -0.88 PM fmz. The

value with quenching M3 to 60% of the free—nucleon value

(gs(eff)=0.6 gs and gl(eff)=0.6 g, ) is found to be

-0.48 ”N fmz. The rms radius of the valence orbit in this

case is reduced 5% from that required by the rms radius.

Experimental data for the octupole moment of 39K has been

quoted by Lapikas (Ref 53) by extracting the data to q=0,

which cannot be considered as an accurate value. Suzuki

(Ref 46) has calculated the octupole moment by including

the effects of first order core polarization, pair

currents, one-pion exchange currents and isobar currents due

to TT- and P—meson exchanges corrections. He obtains the

value -1.454 “N fmz.

IV.7. Magnetic elastic scattering from p—shell nuclei

In the p-shell region we study the nuclei 6Li, 7Li,

98e, 108, 11B, 13C, 14N, and 15N . The calculations for

6Li and 14N are presented in Figure IV.ll, those for 7Li

and 9Be are presented in Figure IV.12, those for 108 and 118

are presented in Figure IV.13 and those for 13C, and 15N are

presented in Figures IV.14. The lines denoted by crosses

represent the calculations with the single-particle model.

The solid lines and the lines denoted by plusses represent

the calculations with a new empirical Hamiltonian (Ref 18)

and the Cohen-Kurath interaction (Ref 19), respectively, with
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Figure IV.11. Form factors £95 the magnetic elastic

electron scattering for Li and N calculated with two

different wave functions, MSU wave functions (solid lines)

and the Cohen-Kurath wave functions (plus gigns) using

the HO potentials of b=b ms- The data for Li are taken from

Ref 57(ciicles), Ref 58 (squares) and Ref 59 (triangles),

and for N are taken from Ref 58 (squares)), and

Ref 60 (circles).
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Figure 1V712. Forg factors for the magnetic elastic

scattering of Li and Be. The conventions of the

presentation are the same as given in the caption of Figure

IV.ll. The decomposition of the multipoles

calculated with the MSU wave functions are M1 (dotted lines)

and M3 (dashed lines). Free-nucleon values are used here for

the 9 factors. The data for Li are takgn from Ref 61 '

(circles) and Ref 62 (traingles), for Be are taken from

Ref 63 (circles), Ref 64 and Ref 58 (squares).
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Figure IV1&3. ForTlfactors for the magnetic elastic

scattering of B and B. The conventions of the

presentation are the same as given in the caption of Figure

IV.12. The data are taken from Ref 58 (squares) and

Ref 57 (circles).
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Figure IV1§4. ForTSfactors for the magnetic elastic

scattering of C and N. The conventions of the

presentation are the §ame as given in the caption of Figure

IV.12. The data for 1 C are Egken from Ref 63 (circles) and

Ref 65 (triangles), and for N are taken from Ref 66 (squares).
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single-nucleon wave functions of HO potentials of b= brms and

free-nucleon 9 factors. Good agreement is obtained for those

nuclei where the M1 is the only multipole which contributes

to the scattering. In the case of 9Be, the M3 multipole is

overestimated and needs to be quenched to describe the data

in this region. The behaviour of the data at large-q values

is the same as in sd-shell nuclei; normaly they increase as

a function of q. To get a better reproduction of these data

with theory, the rms radius of the valence nucleons must be

reduced. The reduction of the rms radius might help also in

7Li, 10B and 11B, where the behaviour is almost the same as

in 27Al, normaly the calculated form factors at low-q values

are lower than the data.

IV.8. Conclusions

From these comparisons, we conclude that the

configuration-mixing shell model succeeds in describing the

magnetic elastic scattering data if we allow for small

modifications to the free-space forms of the magnetic

operators. We use two different types of single-particle

radial wave functions, obtained from the HO and WS

potentials. No major differences between these two

potentials appear in describing the data except in the

region of high momentum transfers. There the WS potential

gives better agreement with the experimental data than the

HO potential in 170 (Figure IV.5c and IV.5c') and 39K
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(Figure IV.10c and Figure IV.10d). For those nuclei in which

higher multipoles contribute to the scattering, the

high-momentum-transfer data are not be described by these

two potentials when the valence nucleons have a radial size

determined by the rms radius. Reduction of the radial

parameters by 5% seems to resolve the discrepancy at high

momentum transfers for these nuclei. Also in some cases the

lower multipoles are improved by this reduction, as in 27A1,

where the calculated peak at lower momentum transfer falls

lower than the data when the radial parameter of the valence

nucleons determined by the rms radius. For those nuclei in

which M1 is the only multipole which contributes to the

scattering, the radial size parameter determined by the rms

radius seems to describe the data at high—q values without

any reduction in the radius. The M3 contributions are

overestimated in almost all instances. This suggests that

the core-polarization effects cannot be ignored and can be

taken into account by giving the nucleon an M3 effective

g-factor less than its free value.
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Table IV.2. Calculated one-body transition density

matrix elements for the ground state of stable p-shell

nuclei for the wave functions of Ref 18 and Ref 19.

030M(i,f,L,j,j‘,aa0

A;J" ref 2j-2j' = 3-3 3-1 1-3 1-1

23m

6:1+

L=l a 0 0.50116 -0.43568 0.43568 -0.17060

b 0 0.51828 -0.31022 0.31022 -0.22473

7:3/2'

L=l a 0 0.98732 -0.02161 0.02161 0.04009

2 -0.29741 0.33561 —0.33561 0.26912

b 0 0.98594 -0.01682 0.01682 0.04447

2 —0.37212 0.30047 -0.30047 0.23792

L=3 a 0 0.63188 0.00000 0.00000 0.00000

2 -0.65016 0.00000 0.00000 0.00000

b 0 0.72854 0.00000 0.00000 0.00000

2 -0.62924 0.00000 0.00000 0.00000

9:3/2‘

L=l a 0 0.97682 0.11030 —0.11030 0.07329

2 0.63727 -0.03971 0.03971 -0.09598

b 0 0.99265 0.07927 —0.07927 0.02325

2 0.67171 -0.06522 0.06522 -0.08804

L=3 a 0 0.78341 0.00000 0.00000 0.00000

2 0.73450 0.00000 0.00000 0.00000

b 0 0.84834 0.00000 0.00000 0.00000

2 0.75134 0.00000 0.00000 0.00000

10:3+

L=l a 0 1.66784 0.14446 “0.14446 0.01732

b 0 1.68331 0.18029 -0.18029 -0.03158

L=3 a 0 0.31373 0.00000 0.00000 0.00000
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lRef'l9

Table IV.2. (cont'd.) -

b 0 0.39980 0.00000 0.00000 0.00000

11:3/2‘

L=l' a 0 0.99489 0.21692 -0.21692 0.01615

2 -0.68575 -0.11247 0.11247 0.25977

b 0 0.99985 0.22396 “0.22396 0.00047

2 -0.70255 -0.11637 0.11637 0.23566

L=3 a 0 0.73701 0.00000 0.00000 0.00000

2 -0.78990 0.00000 0.00000 0.00000

b 0 0.78576 0.00000 0.00000 0.00000

2 -0.75915 0.00000 0.00000 0.00000

13:1/2'

L=l a 0 0.03275 0.03952 -0.03952 0.89645

2 -0.ll993 “0.03815 0.03815 0.81506

b 0 0.01737 0.02962 -0.02962 0.94506

2 -0.09112 “0.03091 0.03091 0.81325

l4;l+

Ifi=l a 0 0.02502 0.09508 “0.09508 1.33510

b 0 0.05497 0.15510 -0.15510 1.24037

15; 1/2'

==l a 0 0.00000 0.00000 0.00000 1.00000

2 0.00000 0.00000 0.00000 -1.00000

b 0 0.00000 0.00000 0.00000 1.00000

2 0.00000 0.00000 0.00000 -l.00000

6) Ref 18
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Table IV.3. Experimentally determined rms charge radii

of stable p-shell and odd-A sd-shell-nuclei and the

corresponding values calculated in the harmonic-oscillator

model with length parameters brms and in the Woods-Saxon

 

 

model.

7 rmsTfmT’ brms(fm) Exp.Ref rms(fm) rms(fm7

NUCLEUS exp HO ws

5L1 2.510(100) 1.880

7L1 2.350(100) 1.740

98e ‘ 2.519(12) 1.763

108 2.400(26) 1.611

118 2.400(26) 1.611

13c 2.472(15) 1.628

14N 2.529(25) 1.645

15x 2.580(26) 1.678

170 2.712(5) 1.763 2.716 2.692

192 2.898 1.833 2.903 2.855

21Ne ‘ (2.984) 1.845 2.989 2.961

23Na 2.896(9) 1.810 2.992 3.034

25Mg 3.003(11) 1.793 3.010 3.097

2711 -3.058(5) 1.804 3.064 3.158

2951 3.122(15) 1.825 3.134 3.216

319 3.187(3) 1.848 3.197 3.271

33s (3.264) 1.881 3.274 3.321

35c1 3.351(16) 1.921 3.360 3.363

37C1 3.351(17) 1.921 3.359 3.349

39x 3.437(2) 1.95 3.442 3.436

 

a) Ref 67



Table IV.3. (cont'd.)

b) Ref 68

c) Ref 69

d) Ref 70

e) Ref 71

f) Ref 72

9) Ref 73

h) Ref 37

i) Ref 74

j) Ref 75



Table IV.4. Measured and calculated magnetic dipole

moments for p-shell and sd-shell nuclei.

 

 

Experimentc'd

nucwus a“ (sd)a (sd)b (q-»0)

( 9N) ( 8N) ( HN )

5L1 1+ 0.878 0.824 0.822

7L1 3/2’ 3.169 3.234 3.256

99e 3/2‘ -1.115 -l.289 -1.177

108 3+ 1.819 1.811 1.801

113 3/2' 2.509 2.532 2.688

13c 1/2' 0.763 0.701 0.702

14N 1+ 0.339 0.326 0.403

15N 1/2‘ -0.264 -0.264 -0.283

170 5/2+ -1.911 -l.893

19F 1/2+ 2.911 2.628

21Ne 3/2+ -0.824 -0.662

23Na 3/2+ 2.219 2.218

25Mg 5/2+ -0.908 -0.855

2741 5/2+ 3.584 3.642

2951 1/2+ -0.501 -0.555

31p 1/2+ 1.023 1.132

33s 3/2+ 0.651 0.644

35C1 3/2+ 0.663 0.822

35c1 3/2+ 0.433 0.684

37x 3/2+ 0.124 0.391

 

a) Calculated magnetic moments based on the complete p-shell

and sd-shell space wave functions of Ref 17 Ref 18
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Table IV.4. (cont'd.)

and the freernucleon 9 factors.

b) Calculated magnetic moments based on the coplete p--shell

space wave functions of Ref 19 and the

"free-nucleon" 9 factors.

c) Ref 76 ,Ref 77 and Ref 78 for p-shell nuclei.

d) Ref 79, Ref 80, Ref 81, Ref 82 and Ref 12 fortsd-shell

nuclei.



CHAPTER V

ELECTROEXCITATION 0F EVEN PARITY STATES OF 27Al

v.1. Introduction

The nucleus 27A1 is one of the most interesting nuclei

in the sd-shell because it represents a point at which the

nuclear deformation changes from prolate (for 26Mg) to

oblate (for 28Si) (Ref 12). The electroexcitation of

27Al has been analyzed previously (Ref 83 and Ref 13)

in terms of the full 0d5/2- ls1/2- 0d3/2 space with the

restriction of J"z 5/2+ levels, and with a truncated space in

which at least 6 particles were restricted to the 0d5/2

shell. In this study we use the full 0d5/2-lsl/2-0d3/2 space

for all states to obtain the eigenfunctions of a new

empirical Hamiltonian (Ref 17). In Figure v.1, we show the

measured 27Al (e,e') spectrum taken from Ref 13 in

comparison with the calculated spectrum. The experimental

and theoretical energy levels are shown in Figure V.2. In

this chapter, we compare the form factors for all the

measured positive-parity states that have definite

assignments of spin and parity.

Complete separations between the longitudinal and

transverse form_factors have been done only for those states

of excitation energies Exs 3.0 Mev. The calculated

95
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Figure v.1. Experimental spectrum of 27Al (e,e') in

comparison with the theoretical form factors of the

positive-parity states calculated at the same angle and

incident energy as the measured spectrum.
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longitudinal form factors are compared with the experimental

data for these states only. For higher—lying states,

calculated transverse and total form factors are compared

with the data.

V.2. Elastic scattering for the 5/2+ ground state

The measured elastic form factor for the 5/2+ ground

state is shown in Figure v.3 in comparison with the DWBA

calculations which incorporate single—nucleon wave functions

of the HO potential with b=brms (solid line) and WS

potential (dashed line). The different multipoles that

contribute to the elastic scattering are E0 (dotted line),

E2 (plus signs) and E4 ("Y" signs). These multipoles are

calculated with the HO potential of b=brms- The elastic form

factor is dominated by E0 up to momentum transfer 2.3 fm'1

where E2 becomes more important. The E4 contribution is very

small and has a negligible contribution to the scattering.

In the region of small momentum transfers, the HO radial

wave functions describe the scattering data very well up to

the first diffraction minimum. Beyound that region, the HO

results fall below the WS results. The latter fit the data

very well in this region. This behaviour is similar to that

noticed for other cases studied in the sd-shell region

(Ref 33).
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Figure v.3. DWBA elastic scattering form factor

calculated with the single-nucleon wave functions of the

HO potential of b=brms(solid line) and of the WS

potential (dashed line). The different multipoles E0, E2

and E4 (dotted lines, plus and ”Y" signs, respectively)

are calculated with the singlernucleon wave functions

of the HO potential of b=brms. The data are taken from

Ref 42 (circlesl-250 Mev, (squares)-500 Mev.
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v.3. Inelastic scattering to the 0.844 MeV, 1/21+ state

The longitudinal E2 form factor M(q) for the inelastic

scattering of the 0.844 MeV, 1/21+ state is shown in Figure

v.4, where we compare two models for the core-polarization

transition density, the valence model (dashed line) and the

Tassie model (solid line). The low-q values favour the

valence model.

Figure v.5 shows the form factor M(q) calculated with

the HO potential of length parameter b=brms (solid line) and

the WS potential (dashed line) using the Tassie model for

the core-polarization transition density. The measured B(E2)

value is reproduced reasonably well but the scattering data

are higher than the theory in the region of momentum

transfer l< q2 < 4 fm"2. No differences between

these two potentials appear in describing the data except at

the photon point, where the measured B(E2) value is

reproduced better with the HO radial wave functions.

The transverse form factor is shown in Figure v.6

(dashed-dotted line) calculated with the HO radial wave

functions of b=brms- In this Figure we show the different

contributions from the spin and orbital parts. The different

multipoles that contribute to the scattering are E2 (plus

signs) and M3 (cross signs). The transverse form factor is

dominated by the spin contribution. The orbital contribution

is important only in the region of the diffraction minimum.

The contributions of both multipoles are important in the
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Figure v.4 Longitudinal E2 form factor M(q) for the

l/21+ state in 2 Al calculated with the single-nucleon

wave functions of the HO potential combined with the

Tassie and valence models (solid and dashed lines,

respectively) The data are taken from Ref 13.
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region of low-q values up to q==l.7 fm‘l. Beyond that, the

transverse form factor is dominated by the magnetic

scattering. From the discussions of the magnetic elastic

scattering in the previous chapter, we conclude that the M3

form factor needs to be quenched to get a reasonable

explanation of the experimental data. The result of

quenching the M3 form factor to 60% of the free-nucleon

value is shown also in this Figure. Quenching the M3 form

factor improves the agreement with the low—q data. At q >

1.5 fat”1 the form factor is underestimated by a factor of

2.5. From here on in our discussions all the calculations.

are presented with the M3 form factor quenched to 60% of its

free-space value.

In Figure v.7 we show the total form factor for the

0.844 MeV,1/21+ state calculated at 0: 90° by the solid

line. The longitudinal contribution is shown by the dashed

line. The dashed-dotted line shows the transverse form

factor, including the kinematic factor (l/2+tan2t3/2). In the

region of low and medium momentum transfer the scattering is

mostly longitudinal, while at the large momentum transfers,

both longitudinal and transverse are important.

v.4. The 1.014 MeV,3/21+ state

Form factors for the 1.014 MeV, 3/21+ state are shown

in Figure v.8, calculated with the radial wave functions of

the HO potential of b=brms- The longitudinal E2+ E4 form
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Figure v.527Longitudinal EZ form factor M(q) for the

1/21+ state in Al calculated with the Tassie model

combined with single-nucleon wave functions of the HO

potential of b=brms(solid line) and of the WS potential

(dashed line). The data are taken from Ref 13.
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Figure v.6. Transverse form factors for the 0.844 MeV,

1/21+ state calculated with the HO radial wave functions of

b=brms- The upper two Figures show the contributions from

the spin and orbital 9 factors respectively. The lower two

Figures calculated with free M3 9 factors and quenched M3

9 factors to 60% of the free—nucleon values, respectively.

E2 and M3 multipoles are shown by the plus and cross

signs respectively. The data are taken from Ref 13.
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Figure v.7. Total form factor for the 0.844 Mev, 1/21+

state calculated at 0: 90 (solid line). The dashed line

represents the longitudinal form factor, and the

dashed-dotted line represents the transverse form factor

1.5 FTZ. The data are taken from Ref 13.
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factor (dashed line) is dominated by the E2 contribution

(plus signs). The E4 multipole (”Y" signs) makes a

negligible contribution to the longitudinal scattering. The

data is reasonably well explained, although it is slightly

underestimated in the region of l < q < 1.5 fm’l.

The total transverse form factor is shown by the

dashed-dotted line. The multipole decompositions that

contribute to the transverse scattering are M1 (dotted

line), E2 (plus signs), M3 (cross signs) and E4 ("Y'I signs).

Good agreement is obtained at low- and high—q values,

while in the region of medium-q values, the form factor is

underestimated by a factor of 2.

The total form factor of the 1.014 MeV, 3/21+ state is

shown in this Figure by the solid line, calculated at 0=90°.

The scattering is mostly longitudinal (dashed line) except

at the region of the diffraction minimum where the

transverse contribution 1.5 FT2 is also important

(dashed-dotted line)

2 usingIn Figure v.9 we plot the form factor M(q) vs. q

the two models for the core polarization, the valence model

(dashed line) and the Tassie model (solid line). The high-q

values are very well explained by the Tassie model, while

no big diference appears between these two models at the

low-q values. The measured B(E2) value is well reproduced as

shown-in this Figure as q-+0. From previus study (Ref 33)

it was found that the longitudinal scattering data are well
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Figure v.8. Form factors for the 1.014 MeV, 3/21+

state calculated with the single-nucleon radial wave

functions of the HO potential of b=brms- The longitudinal,

transverse and total form factors are represented by the

dashed, dashed-dottted and solid lines, respectively. The

plus and "Y" signs in the longitudinal plot represent the

contribution of the E2 and E4 multipoles of the

longitudinal form factors. The decomposition of the

multipols of the transverse form factor are Ml (dotted

line), E2 (plus signs), M3 (cross signs) and E4 (”Y"

signs). The total form factor is calculated at 6= 900 The

data are taken from Ref 13.
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Figure V. 9. Longitudinal and transverie M(q) form

factors for the 1. 014 MeV, 3/21+ state of A1 calculated

with the single--nucleon wave functions of the HO

potential of b=brms. In the longitudinal plot, the solid

and dashed lines represent the calculations with the

Tassie and valence models respectively. The measured B(E2)

value and B(Ml) value are shown at q= 0 in the longitudinal

and transverse plots respectively. The data are taken from

Ref 13.

 

 



M
_
(
_
q
)

g
o

Figure v.9

22.5

110

 

20.0 -

17.5 “

15.0 -

10.0 r

75*-

2.5- 

1 I 1 I l I 1 1 r 1 T

1., 1.01 Mev, 3/2"

I

/

1,1 T 1 j

 

 

4.5

4.0“

3.5 #-

 

T, 1.01Mev, 3/2“

 

 

 

 



111

described by the Tassie model in this mass region. We will

use the HO radial wave functions of b=brms and the Tassie

model for the core-polarization transition density

throughout the calculations of the excited states of 27Al.

The predicted magnetic dipole transition matrix element is

slightly smaller than the measured value, as shown in the

M(q) plot for the transverse scattering.

v.5. The 2.211 MeV, 7/21+ state

Form factors for the 2.211 Mev, 7/21+ state are shown

in Figure v.10 calculated with the radial wave functions of

the HO potential of b=brms- The longitudinal E2+ E4 form

factor (dashed line) is dominated by the E2 contribution

(plus signs), as the E4 multipole ("Y" signs) makes a

negligible contribution to the longitudinal scattering. The

experimental data are very well described throughout the

different momentum transfer regions.

The total transverse form factor is shown by the

dashed-dotted line. The decomposition of the multipoles that

contribute to the transverse scattering are M1 (dotted

line), E2 (plus signs), M3 (cross signs), E4 ("Y" signs) and

M5 (triangles). The shape of the form factor is very well

reproduced, but the magnitudes are slightly underestimated.

The total form factor for the 2.211 MeV, 7/21+

state is shown in this Figure by the solid line, calculated

at 8:900. Once again, the scattering is mostly longitudinal
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Figure v.10. Form factors for the 2.211 MeV, 7/21+

state. The convections of the presentation are the same as

given in the caption to Figure V.8. The M5 multipole is

shown by the triangles. The data are taken from Ref 13

(circles), Ref 84 (triangles).
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Figure v.11. Longitudinal and transverse M(q) form

factors for the 2.211 MeV, 7/21+ state. The convections

of the presentation are the same as given in the caption

of Figure v.9. The data are taken from Ref 13 (circles),

Ref 84 (triangles).
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(dashed line), while the transverse part, 1.5 FT2

(dashed-dotted line), makes a negligible contribution. The

experimental data are very well reproduced at all q values.

Good agreement is obtained with the measured B(E2) value, as

shown in Figure v.11. The predicted B(Ml) is higher than the

measured one by a factor of 2, as shown in the transverse

M(q) plot.

v.6. The 2.735 MeV, 5/22+ state.

Form factors for the 2.735 5/22+ state are shown in

Figure v.12, calculated with the radial wave functions of

the HO potential of b=brms~ In the region of low-q values,

the longitudinal E0+ E2+ E4 form factor (dashed line) is

dominated by the E2 contribution (plus signs), while in the

region of medium-q values it is dominated by the E4

contribution ("Y" signs). In the region of high-q values the

E2 and E4 multipoles contribute equally to the longitudinal

scattering. The E0 contribution (dotted line) is very small

compared to the EZ and E4 multipoles. The shape and

magnitude are very well reproduced except at the region of q

between l—l.5 fm'1 where the form factor is slightly

underestimated.

The total transverse form factor is shown by the

dashed-dotted line. Good agreement is obtained between

theory and experiment. The decomposition of the multipoles

that contribute to the transverse scattering are Ml (dotted
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Figure v.12. Form factors for the 2.735 MeV, 5/22+ state.

The convections of the presentation are the same as given

in the caption to Figure V.8. The convections for the

different multipoles are the same as those in Figure V.3

and Figure v.10. The data are taken from Ref 13.
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line), E2 (plus signs), M3 (cross signs), E4 ("Y" signs) and

M5 (triangles).

The total form factor F2(q) is shown by the solid line,

calculated at13= 90°where the scattering is mostly

longitudinal (dashed line). The transverse form factor, 1.5FT2

(dashed-dotted line), makes a negligible contribution to the

total form factor except in the region of q > 2 fm'l.

The measured B(E2) value is reasonably well reproduced, as

shown in Figure V.l3. The measured B(Ml) value is also well

reproduced, as shown in the transverse M(q) plot.

v.7. The (2.98,3.004) MeV, (3/22+, 9/21+) doublet

The theoretical form factor of this unresolved doublet

is obtained by adding the calculated form factors of the 3/22+

and 9/21+ states (Figure v.14). The total longitudinal E2+ E4

form factor is shown by the dashed line. The largest

contribution is due to the E2 form factor (plus signs). The

E2 form factor is dominated by that of the 9/21+ state, while

the 3/22+ state makes a negligible contribution to the EZ

form factor. The E4 form factors of both states ("Y" signs)

contribute approximately equally to the longitudinal

scattering and they make negligible contributions except in

the region of the diffraction minimum. The experimental data

are slightly underestimated in the region of q > 1 fm-l.

The total transverse form factor is shown by the

dashed-dotted line. The decomposition of the multipoles that
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Figure V.l3. Longitudinal and transverse M(q) form

factors for the 2.735 MeV, 5/22+ state. The convections

of the presentation are the same as given in the caption

to Figure v.9. The data are taken from Ref 13 (circles),

Ref 84 (triangles).
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Figure v.14. Form factors for the (2.98,3.004) MeV,

(3/22+,9/21+) doublet. The convections of the presentation

are the same as given in the caption to Figure V.8. The

convections for the different multipoles are the same as

those in Figure v.10. The data are taken from Ref 13

(circles), Ref 84 (triangles).
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contribute to the transverse scattering are Ml (dotted

line), E2 (plus signs), M3 (cross signs), E4 ("Y" signs) and

M5 (triangles). The transverse form factor is dominated

by the M1, E2 and E4 multipoles. The:shape of the form

factor is very well reproduced, but the magnitude is

overestimated in the region of q < 1.5 fm'1 by a factor of

1.5.

The total form factor F2(q) is shown by the solid line,

calculated at 9= 90i The total form factor is dominated by

the longitudinal contribution of the 9/21... state.

Reasonable agreement is obtained with the measured

B(EZ) value of the 9/21+ state, as shown in Figure v.15 for

the longitudinal M(q) plot. The measured B(Ml) value of the

3/22+ state is overestimated, as shown in the transverse

m(q) plot.

V.8. The higher-lying states

We present here the shell—model predictions of the form

factors for the states above 3.0 MeV which have

experimentally known spin and parity assignments. The

experimental longitudinal form factors have not been

separated from the total form factor measured at 90°. The

calculations presented here are for the transverse form

factors measured at angles 1600 and 180°, and for the total

form factors measured at 90°. The decomposition of the

different multipoles of the longitudinal scattering are
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Figure v.15. Longitudinal and transverse M(q) form

factors for the (2.98,3.004) MeV ,(3/22+,9/21+) doublet. The

convection of the presentation are the same as given in

the caption of Figure v.9. The data are taken from Ref 13

(circles), Ref 84 (triangles).
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shown in the total form factor plots.

The form factors for the 3.68 MeV, 1/22+ state are

shown in Figure v.16. The transverse form factor is shown by

the dashed-dotted line. It is dominated by the E2

multipole (plus signs), while the M3 multipole (cross signs)

has a very small contribution at q > 2 fm'l. Good agreement

is obtained with the few available data points. The total

form factor calculated at€3= 900 is shown by the solid line.

In the the region of q < 1.5 fm'l, the scattering is mostly

longitudinal (dashed line) and no significant contribution

appears from the transverse 1.5 FT2 part (dashed-dotted line)

at this region of q. In the region of high-q values > 2 fm’l,

the scattering is mostly transverse. Reasonable agreement is

obtained in shape and magnitude throughout the different

momentum transfers regions.

The form factors for the 3.957 MeV, 3/23+ state are

shown in Figure V.l7. The transverse form factor is shown by

the dashed-dotted line and the different multipoles that

contribute to the scattering are Ml (dotted line), E2 (plus

signs), M3 (cross signs) and E4 ("Y” signs). The transverse

scattering is dominated by the M1 contribution (dotted

line). The total form factor calculated at 6= 90°is shown by

the solid line. The scattering is dominated by the

transverse 1.5 FT2 part (dashed-dotted line) at all q values

except in the region of q between l-2 fm‘l, where both

longitudinal and transverse parts are important. The
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FiguEe v.16. Form factors for the 3.68 Mev, 1/22+

state of Al. The upper plot represents the transverse

form factor (dashed-dotted line). The E2 and M3 multipoles

are shown by the plus and cross signs respectively. The

lower plot represents the total form factors calculated

at 9= 90° (solid line). The dashed line represents the

longitudinal form factor, while the dashed-dotted line

represents the transverse form factor including a factor

of 1.5. The data are taken from Ref 13.
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FiguSe v.17. Form factors for the 3.957 MeV, 3/23+

state of A1. The convections of the presentation are the

same as given in the caption to Figure v.16. The

decomposition of the multipoles of the transverse form

factor are M1 (dotted line), E2 (plus signs), M3

(cross signs), and E4 ("Y" signs). The decomposition of

the multipoles of the longitudinal scattering are shown in

the total form factor plot as E2 (plus signs) and E4

("Y" signs).
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longitudinal form factor is dominated by the E4 contribution

("Y" signs) in the region of q > 1 fm'l, while E2

‘ contribution (plus signs) is more important at q < 1 fm-l.

{An overall agreement is obtained with the experimental data.

In Figure v.18, we show the form factors for the 4.41

Mev, 5/23+ state. The transverse form factor is shown by the

dashed-dotted line and in the region of low-q values the

transverse scattering is dominated by the M1 contribution

(dotted line). As q increases, E2 (plus signs) and M3 (cross

signs) contributions become more important. The

contributions from E4 ("Y" signs) and M5 (triangles)

multipoles are small and they are important only in the

region where E2 and M3 have their second minima. The

transverse data are very well reproduced. The total form

factor calculated at 9= 90° is shown by the solid line. In

the region of small momentum transfers the scattering is

dominated by the transverse part (dashed-dotted line). At

q > 1 fm'l, the longitudinal part (dashed line) becomes more

important up to q==2.3 fm'l, where the transverse part

becomes again important. The longitudinal form factor

contributes to the scattering through the E0 multipole

(dotted line), 82 multipole (plus signs) and E4 multipole

("Y" signs). The E4 multipole dominates the longitudinal form

factor up to q::2 fm-l. In the region of q > 2 fm'l, the

contributions from E0, EZ and E4 multipoles are all

important. The experimental data are very well reproduced
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FiguEe v.18. Form factors for the 4.41 MeV, 5/23+

state of Al. The convections of the presentation are the

same as given in the caption to Figure v.16. The

decomposition of the multipoles of the transverse form

factor are Ml (dotted line), E2 (plusses line), M3

(cross signs), E4 ("Y" signs) and M5 (trianles line). The

decomposition of the multipoles of the longitudinal

scattering are shown in the total form factor plot as E0

(dotted line), E2 (plus signs) and E4 (”Y" signs).



134

 

  

   

 

MSU-83-332

I I I I 1

T, 4.4 I MeV, 5/2 +

Idat -

no" — 3

—5

3'0 . ..*_.-._.‘9“ "

NV / Fm '\.‘ ‘

u - . 1%.

IO 5 p] x .+* '. 22H. s i J

x++ o 0*. . . ~ ' s
x? .0 + o '

no" "+ . . *
V ‘ 'W

x" A‘ YYY 3’

l0. L X“ f v x
Y

x"' 5‘ Y + X ’ Yy “
v - 1!

IO’9 : ‘ *1 a: * 1~ : Y

_ 90°

-4
IO P '1

  
 

Figure v.18

 



135

FiguSe v.19. Form factors for the 4.51 MeV, ll/21+

state of A1. The convections of the presentation are the

same as give in the caption to Figure v.16. The

decomposition of the multipoles of the transverse form

factor are M3 (cross signs), E4 ("Y" signs) and M5

(trianles). Only E4 multipole contributes to the

longitudinal scattering.
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throughout the different q values.

In Figure v.19, we show the form factors for the 4.51

MeV, 11/21+ state. The transverse form factor is shown by

the dashed-dotted line and it is dominated by the E4

multipole ("Y" signs). The M5 multipole (triangles) makes a

negligible contribution. The total form factor calculated at

6= 900 is shown by the solid line, where the scattering is

totally longitudinal (dashed line). Very good agreement is

obtained for all q values.

The form factors for the 4.58 MeV, 7/22+ state are

shown in Figure V.20. The transverse form factor is shown by

the dashed-dotted line and the different multipoles that

contribute to the scattering are Ml (dotted line), E2 (plus

signs), M3 (cross signs), E4 (“Y" signs) and M5 (triangles).

In the region of q < 0.5 fm'l, the M1 multipole dominates

the scattering. As q increases the E2 multipole becomes more

important up to q=:2 fm’l. At q > 2 fm'l, the transverse

scattering is dominated by the E4 multipole. The total form

factor calculated atf3= 90° is shown by the solid line. The

scattering is mostly longitudinal (dashed line) and is

dominated by the E4 multipole ("Y" signs) in the region of q

> 1 fm-l. The experimental data are very well reproduced.

v.9. Conclusions

The complete-space shell-model calculations succeed in

describing all the positive-parity states of 27Al considered
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FiguSe v.20. Form factors for the 4.58 MeV, 7/22+

state of Al. The convections of the presentation are the

same as given in the caption to Figure v.16. The

decomposition of the multipoles that contribute to the

transverse form factor are Ml (dotted line), E2

(plus signs), M3 (cross signs), E4 ("Y" signs) and M5

(trianles). The decomposition of the multipoles that

contribute to the longitudinal scattering are shown in the

total form factor plot as E2 (plus signs) and E4 ("Y" signs).
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in this study. The longitudinal form factors for the

low-lying states of excitation energies below 3.0 MeV are

very well described. The B(E2) values are reasonably

reproduced with the isoscalar effective charge of l.7e. The

transverse form factors of these states are very well

reproduced in shape. However, the magnitudes need to be

adjusted for some multipoles to get better explanation of

the data for all momentum transfers regions. Quenching the

M3 multipole to 60% of the free-nucleon value helps in some

cases in describing the low-q values where the M3 multipole

is important. The measured B(Ml) are not well reproduced for

some cases with the free-nucleon g factors of the M1

multipole. This suggests that the M1 multipole needs to be

renormalized by using effective 9 factors. The total form

factors of these low-lying states are dominated by the

longitudinal scattering.

The higher-lying states, of excitation energies above

3.0 Mev, are also well described. Some of these states are

dominated by the longitudinal scattering as in the 4.51 Mev,

11/21+ and 4.58 MeV, 7/22+ states. The 3.957 MeV, 3/23+ state

is dominated by the transverse scattering. The other two

states are dominated alternatively by the longitudinal and

transverse scattering at different q regions.
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Table V.2. Calculated occhation numbers for sd-shell

orbits in the ground state of Al.

p/n 2j= 5 l 3

p 4.108 0.422 0.470

n 4.787 0.602 0.611



APPENDI X

To obtain the one-body density matrix (OBDM) defined in

equation ( 5) in isospin formalism, we can define the

operator 5 which is a tensor operator in isospin space,

a(t,t3)= (-1)t“t35(t,-t3) (106)

then the operator [a+(t,t3) Q a(t,t3)] can be written

[a+(t,t3) a a(t,t3)]= (-1)t‘t3[a+(t,t3) Q a(t,-t3)]

= (-1)t‘t3 Z<t t3 t '-t3 IAT ATZ >

ATATZ

[ a+ up a 1(ATrATz) (107)

where t= 1/2, t3= l/2 for proton and -1/2 for neutron,

and ATZ= 0 and AT= 0,1.
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[a+(1/2,t3 )qp a(l/2,t3 )]= (-1)1/2‘t3{ <1/2 t3 1/2 -t3| o 0>

[a+ ® 51(AT,0)

+ <1/2 t3 1/2 -t3 1 1 0>

[6* ® 5 1mm), (108)

[a+(p/n) a a(p/n)]=,fi"'/2 [ a+ ,3, a ](AT=0)

+/-\[1/2 [a+ a a 1‘51"” (109)

Using Wigner-Eckart theorem, the matrix element of the

operator a+ Q 5 is

<Tf Tz |[a+ ® 5 1(AT=0)IT1 'I‘z > (-1)Tf'T

x 4, l|[a+ 951(AT=0)IIT1> (110)

0
H

<Tf 1; Ma” 2 1(AT=1)ITi 'rz >= (-1)Tf‘T

-Tz 0 T2

x <Tf'|l[a+ o 51(AT=1)IIT1> (111)

The OBDM becomes

OBDM(p/n))= <fl[a+ (t,t3 )®a(t‘,t3 )1 li>
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Tf - Tz Tf 0 Ti

=(-1) xVZ OBDM (AT=0)/2

Tf - T Tf l T'

(+/—) (-1) z 1 xV6 OBDM (AT=l)/2

‘T2 0 Tz

(112)

where OBDM(AT) is given by

<f| |[a+(t) ® 5(t)](AT)lli>

OBDM(i,f,L,AT)= (113)

(2AT+1)

 

Equation ( 8) fOllows from reduction in both spin and

isospin spaces.
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