THE INFLUENCE OF NITROGEN AND PLANT POPULATIONS ON SEVERAL CULTIVARS OF PICKLING CUCUMBERS

> Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY CHRISTOPHER JOHN RAJZER 1977

.

· via

.

ABSTRACT

THE INFLUENCE OF NITROGEN AND PLANT POPULATIONS ON SEVERAL CULTIVARS OF PICKLING CUCUMBERS

By

Christopher John Rajzer

Early and late plantings of several cultivars of pickling cucumbers Cucumis sativus L, were evaluated under various levels of preplant N and plant populations. Cultivars responded to treatments differently in fruit yields, sex expression, fruit set, and length to diameter Increasing nitrogen rates to 67 kg/ha increased ratios. yields (metric tons and dollars/ha) in the early planting only, and 101 kg/ha appeared to suppress yields in both plantings. High nitrogen rates (67 and 101 kg/ha) reduced the percent cull fruit in the first planting. Increasing the plant populations increased yields only when N was sufficient, Increasing populations from 99,000 to 296,000 plants/ha increased the percent culls, but oversize fruit decreased with increasing plant populations. Yield was positively correlated to percent pistillate flowers and fruit number per vine,

Cucumber plants and fruit were analyzed at harvest to determine the plant nutrient content and nutrient removal

ty fru vers, cutri respe 36 kg culti popul conte kg pj tent kutri 25 pe by fruit. Factors studied were time of planting, cultivars, N levels, and plant populations. The mean plant nutrient content of N, P, and K was 103, 9, and 147 kg/ha, respectively, with mean nutrient removal of 22, 3, and 38 kg/ha, respectively. The nutrient levels of three cultivars were increased by added N and increasing plant populations. Nitrogen treatments influenced plant nutrient content. Yields and percent cull fruit were also affected. As plant population increased, both total nutrient content in the plants and nutrient removal by fruit decreased. Nutrient removal from a field by cucumber fruit is about 25 percent of the total plant's content at harvest.

THE INFLUENCE OF NITROGEN AND PLANT POPULATIONS ON SEVERAL CULTIVARS OF PICKLING CUCUMBERS

Вy

Christopher John Rajzer

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Horticulture

.

ciatio

STEDOI

grate

and M

corri

Patie

gradu

ACKNOWLEDGMENT

I would like to express my sincere thanks and appreciation to Dr. H. C. Price for his counsel, assistance, and support during the course of my graduate program. I am most grateful to Drs. J. E. Motes, A. R. Putnam, M. J. Bukovac and M. M. Warncke for counsel and service on my guidance committee.

My greatest indebtedness is to my wife, Dina, for her patience, understanding, and encouragement throughout my graduate studies. Guida T ance body inter <u>for 1</u> Guidance Committee:

The Paper-Format was adopted for this thesis in accordance with Departmental and University regulations. The thesis body was separated into two sections. Both sections are intended for publication in <u>The Journal of the American Society</u> for <u>Horticultural Science</u>.

1.57			
1151			
INTE			
111			

SEC POP CJC

> SE(Poi Cu(

> AP:

TABLE OF CONTENTS

]	age
LIST	OF	TAB	LES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v
LIST	OF	APP	END	ICE	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vi
INTRO	DUC	CTIO	N.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
LITEF	RATU	JRE 1	REV	IEW	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	Nut	trit	ion	al	Re	qu	ir	em	en	nts	s c	f	Cu	cu	ımt	ber	? •	•	•	•	•	•	•	2
	Eff	fect	of	P1	an	t	Po	pu	la	ti	or	n c	n	Cυ	ιοι	ımt	er	• 0	fro	ow1	th	•	•	7
	Nut	trie	nt	Upt	ak	е	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	8
	0t}	ner 2	Pla	nt.	Re	sp	on	se	s	tc	1	iu 1	tri	ti	.or	ı	•	•	•	•	•	•	•	11
SECTI	ION	ONE	•	THE	I	NF	LU	EN	CE	<u> </u>)F	N	TR		E	N A	NI) I	PL/	AN 1	C			
CUCUN	A'I' J IBEH	LONS RS I	• ON	SE FRU	IT.	RA. Y	L IE	CU LD	L'I S		•	(S	•	•	• •T(•	۹۲۲ ۱	IG •	•	•	•	•	•	17
	Abs	stra	ct.	•		•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	18
	Int	trod	uct	ion		•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	18
	Mat	teri	als	an	d i	Me	th	od	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20
	Res	sult	s a	nd	Di	sc	us	si	or	1.	•	•	•	•	•	•	•	•	•	•	•	•	•	22
	Lit	tera	tur	e C	it	ed	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	32
SECTI	ION	TWO	•	THE	: I	NF	LU	EN	CE	E C)F	N	ETF	2 0 0	E	1 A	NI) I	PL	AN I	ſ			
POPUI CUCUN	LAT I MBEH	IONS RS I	ON I.	SE NU	VE TR	RA IE	L NT	CU CU	LI ON	IV ITE	AF EN]	rs [<i>I</i>	OF ANE	7 F) F	PIC REN	CKI MO\	IA/	IG	•	•	•	•	•	34
	Аъз	stra	ct.	•		•	•		•	•		•	•	•	•	•	•		•	•	•	•		35
	Int	trod	uct	ion		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	35
	Mat	teria	als	an	d I	Me	th	od	s	•	•	•	•	•	•	•			•		•	•	•	36
	Res	sult	s a	nd	Di	sc	us	si	or	1.			•	•	•	•	•	•			•	•	•	37
	Lit	tera	tur	e C	it	ed	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	46
APPEN	DIC	CES		•		•	•					•		•	•	•	•	•	•	•	•		•	48

Iat
1
2
3
4
1
3
L

LIST OF TABLES

Table

Section One

1	Effect of plant population, nitrogen and cultivar on vine and fruit characteristics: Early Planting
2	Effect of plant population, nitrogen and cultivar on vine and fruit characteristics: Late Planting
3	Effect on sex expressions and fruiting habits: Early Planting
4	Effect on sex expressions and fruiting habits: Late Planting

Section Two

1	Soil analyses at tip-over 41
2	Nutrient content in fruit removed by harvesting for early planting
3	Nutrient content in fruit removed by harvesting for late planting 43
4	Plant nutrient content at harvest for early planting
5	Plant nutrient content at harvest for late planting

LIST OF APPENDICES

Table		P.	age
A-1	Early planting: Weight (MT/ha) of fruit	•	49
A-2	Early planting: Fruit wt. (g)	•	50
A-3	Early planting: Other plant parameters at harvest	•	51
A-4	Early planting: Pistillate flowers per node	•	52
A-5	Early planting: Staminate flowers per node	•	53
A-6	Early planting: Blind flowers per node	•	54
A-7	Early planting: Soil analyses	•	55
A-8	Dry weight (g) for early planting	•	56
A-9	Nutrient analyses on July 1, for early planting	•	57
A-10	Nutrient analyses on July 9, for early planting	•	58
A-11	Nutrient analyses in vines only on July 17-19, for early planting	•	59
A-12	Nutrient analyses in fruit on July 17-19, for early planting	•	60
A-13	Nutrient analyses of vines and fruit on July 17 for early planting	-19	9, 61
A-14	Nutrient content on July 1, for early planting.	•	62
A-15	Nutrient content on July 9, for early planting.	•	63
A-16	Nutrient content in vines only on July 17-19, for early planting	•	64
A-17	Late planting: Weights (MT/ha) of fruit	•	65
A-18	Late planting: Fruit wt. (g)	•	66
A-19	Late planting: Other plant parameters at harvest	•	67
A-20	Late planting: Pistillate flowers per node		68

- Tat 4-4-4-4-4-4-4-4-4-4-
 - A_ A_

A-21	Late planting: Staminate flowers per node 69
A-22	Late planting: Blind flowers per node
A-23	Late planting: Soil analyses
A-24	Dry weights (g) for late planting
A-25	Nutrient analyses on August 24, for late planting 72
A-26	Nutrient analyses on September 1, for late planting
A-27	Nutrient analyses in vines only on September 13-17, for late planting
A-28	Nutrient analyses in fruit on September 13-17, for late planting
A-29	Nutrient analyses of vines and fruit on September 13-17, for late planting
A-30	Nutrient content on August 24, for late planting 78
A-31	Nutrient content on September 1, for late planting
A-32	Nutrient content in vines only on September 13-17, for late planting
A-33	Daily extreme and mean temperature data recorded from the Horticulture Research Station, East Lansing, MI

5115 5		
cul		
cor		
Cul		
pl		
će		
ph		
·		
ir		
÷.(
e:		
ç		
u u		
С		
?		
2		
(

INTRODUCTION

There are many factors influencing the yields of pickling cucumbers (<u>Cucumis sativus</u> L.). Some of these factors are cultivars, nutrients, or plant populations which are somewhat controllable, or local environmental factors which are variable. Cultivars may respond differently to various fertilizers and plant population. The nutrient concentration of pickling cucumbers varies with application of fertilizers, spacing, and the physiological age of plants.

The invention of a mechanical once-over harvester aroused interest in new cultural practices. Plant populations changed to increase yields. Monoecious cultivars were replaced with earlier maturing cultivars which were predominantly female. Therefore, nutrient requirements and uptake by plants grown under these practices should be different.

The objective of this study was to examine the response of cultivars as well as the influence of plant populations and nitrogen, and how their main effects and interactions may be related to cucumber growth, sex expression, yields, and to evaluate plant and fruit nutrient contents.

car ber whi wel yie har Abo tì. ra pr ar. it to 1 0f Ą tł Μa nc Wa

LITERATURE REVIEW

Hoglund (1958) stated that there are many factors that can interact to influence the overall yield of pickling cucumbers. These determinate factors are local environment over which we have little control, cultivars and nutrition, as well as plant populations which man can alter to influence yield.

Before the early 60's most of the pickling cucumbers were harvested by hand several times throughout the growing season. About this time a once-over machine harvester was developed that required higher plant populations and different fertilizer rates to obtain maximum yields. The literature does not provide adequate information on optimum growth determinates and their interaction for machine harvested cucumbers. However, it does describe the responses of the pickling cucumber plants to several growth factors.

Nutritional Requirements of Cucumber

One of the earliest studies on nutritional requirements of pickling cucumbers was by Magrude (1933) in southern Ohio. After a long study, he indicated that cucumbers benefitted from the application of 1.0 T/A of limestone and the application of manure yearly. Magrude did not report on the pH of the soil nor the organic matter content but one might suspect that it was sandy acidic soil. When commercial fertilizers became

avai esta (192 liz in 1ar of οſ st aŗ We re K • S t 1 available, researchers compared their effectiveness to established practices. This led to Comin and Bushnell's (1928) work with slicing cucumber. With the application of lime during the early years of their experiment, no increase in yield was observed even though the initial pH was 5.6. A marked increase in yield was recorded with the use of 77 lb/A of N supplemented with superphosphate. With the application of 160 lb/A of N (nitrate of soda) and manure, yields were still greatly increased with no indication of leveling off. K application was not profitable and only small quantities of P were needed. In contrast, two years later, Bushnell (1930) reported that his cucumber crop showed the highest response to K and that this had now become the limiting element.

With the development of complete fertilizers, nutrition studies became more numerous. Seaton et al. (1936) indicated that 16 T/A of manure gave a slightly better yield than 1220 lb of 4-10-4 fertilizer. Two years later in New York, Dearborn (1936) had the foresight to see that commercial fertilizers would some day become an important tool to vegetable growers. He observed that high N levels increased vegetative growth and fruit size of cucumbers.

Anderson (1941) recommended 800 to 1000 lb/A of 6-8-8 for land not previously cropped, and 800 to 1000 lb of 6-8-12 for land already in production. No specific amount of supplementary nitrogen was recommended, although its use was suggested. Later, Anderson (1943) indicated increased yields were received with 500 and 1000 lb/A of 6-8-6 fertilizer with little difference between rates. More recent work by Wittwer and Tyson

(1950) from a fertilizer trial at three locations in Michigan concluded that a band application of 500 lb/A of 3-12-12 would be profitable on fertile soils, and that the application of N was beneficial only on poorly drained soils. They concluded that fertile soils needed smaller amounts of fertilizer, than previously reported, in the area of 500 lb/A of 3-12-12 to obtain yields of 237 Bu/A. Soils of low fertility produced lower yields, however, they could produce up to 200 Bu/A with applications of 800 lb/A of 3-12-12. Where drainage is poor, nitrigication is low, or if sod is plowed down, one should side dress with 200 lb/A of ammonium nitrate, and for better earlier growth and production, band placement of fertilizer should be practiced. For higher late season yields, fertilizer should be broadcasted.

Comparing growth responses to various levels of fertilizer in Maryland, Reynolds (1954) was unable to observe any different responses in yield of pickling cucumbers. In Michigan, Miller (1957) noted that 200 and 400 lb/A of 5-20-20 placed 2 inches under the seed would reduce stand and yields. This was one of the first studies on the effects of fertilizer placement for pickling cucumbers. He also reported that 100 lb/A of K_20 depressed yields. The highest yields were obtained with 100 or 200 lb/A of 5-20-20 fertilizer placed 2 inches to the side and below the seed or with 300 lb/A of 5-20-20 broadcasted before planting.

A more intensified nutritional study by Ries and Carolus (1959) indicated that 20 lb/A of N and 80 to 160 lb/A of P_2O_5

Wit Wit y1e of to fe ha Ca n.c th by Ce a: to tı C ų W t a 5 d (d with 80 lb of K_2^0 would produce yields of over 400 Bu/A. With 160 lb/A of $P_2^0_5$ compared to 80 lb/A, no reduction in yields was observed. They concluded that soil potassium levels of 150 to 200 lb/A K_2^0 would be sufficient. Good yields (361 to 440 Bu/A were obtained by broadcasting 400 lb/A of 5-20-20 fertilizer prior to planting.

In the 1960's, the invention of a mechanical once-over harvester aroused interest in new cultural practices. In Canada, Bishop (1960) with a complex study found P is of more relative importance than either N or K. He also found that yields were not always increased but were never decreased by N, P, or K.

By the early 1970's, most of the research dealt with excess minerals decreasing yields. In North Carolina, McCollum and Miller (1971) studied different rates of N, P, and K only to find that few of the yield differences were assignable to treatments. Postitive yield trends from the addition of increasing increments of N and K_20 up to 80 lb/A and for P_2O_5 up to 63 lb/A were observed.

Bishop et al. (1969) reported that at 3 locations there were variable yields without applied N. However, at 2 of these locations, yields were not significantly increased with additional N, but were significantly decreased by more than 56 kg/ha. It is an important observation that yields can be decreased without an observed reduction in plant growth.

At the Piedmont Substation in Alabama, Johnson et al. (1973) concluded that responses to N fertilizer were variable depending on soil area and fertility. Added P_2O_5 provided large

incre iiffe crea resp iori wh.: N a dr Tr. no ť a 5 ł increases in yield with increasing increments at several different locations. K₂0 gave indications of yield increases. Downes and Lucas (1966) have also reported yield responses from applied K which quantitatively is the predominate element in cucumbers according to Ward (1967).

Cantliffe (1977) reported the results of a 3 year study which supported earlier findings. His work dealt only with N applied in the form of urea or ammonium nitrate, sidedressed or broadcasted on plantings for once-over harvesting. The use of N rates of 67 or 134 kg/ha increased yields with no differences between forms. These findings are similar to those of McCollum and Miller (1971) and Bishop et al. (1969) and McCall et al. (1958) who obtained maximum yields with 50 kg/ha and 56 kg/ha respectively of N.

The results of extra side dressing showed basically no benefit as Ries and Carolus (1958) also reported. Cantliffe (1977) concluded that applications of 67 to 134 kg/ha of N broadcasted and incorporated into the soil would produce maximum yields for once-over harvesting of pickling cucumbers.

The nutrient requirements for the gynoecious hybrid pickling cucumbers appear different than those of the monecious cultivars. Motes (1975) indicated that hybrid cucumber cultivars which mature in 50-60 days require less nitrogen than monecious cultivars which were hand harvested over longer periods of time.

There is a variation in fertilizer recommendations and responses of pickling cucumbers. However, we can conclude from these readings that much of the variation is due to the

init
onne
ing
0ver
and
in :
200
ula
cor
res
";;;
is
Co
الا م .
tr
ap
es
sī
yi
be
sī
đ
tì

as

initial soil fertility, cultural practices, or local environmental effects. Furthermore, N may not be the main limiting factor to yields. It is the one element most commonly over-applied that results in a reduction of yields. If P_2O_5 and K_2O are at adequate levels in the soil, less variation in yields will be observed.

Effect of Plant Population on Cucumber Growth

With the adoption of mechanical harvesting, plant populations have been increased drastically to obtain yields comparable to hand harvesting. Banadyga (1949) summarized research on spacing of hand-picked cucumbers as follows: "Varying results have been obtained with spacing tests. It is recognized that rows should be 5 to 7 ft. apart, but much controversy exists on the spacing of plants in the rows." Three years later, Ware et al. (1953) conducted a spacing trial with rows 3 ft. apart and plants 12, 24, and 36 inches apart in the row. With no supplemental irrigation, the highest yields were obtained from the 12 inch spacing.

A 3 year spacing trial by Ries (1957) reported that with spacings of 6, 12, 18, and 24 inches apart in 5 ft. rows, yields were highest at the 6 inch spacing with no differences between 12 and 18 inches. Yields were lower with the 24 inch spacing. Plots were harvested by hand and higher yields were due primarily to higher earlier yields. In a later planting, there was no effect of plant density on yields.

When even higher plant densities were observed, it seemed as if there was no limit that would result in increased yields.

Putn
ing
yiel
1 f*
Mor
rla
9 i
Car
unc
Yi
50
ha
đo
(2
do
đ
đ
۲
(
2

Putnam (1963) evaluated populations for once-over harvesting varying from 22,000 to 87,000 plants/A. The highest yields with greatest number of fruit per plant were from a 1 ft. spacing irregardless of the distance between rows. Morrison et al. (1967) with similar work indicated that plant populations of 77,800 plants/A at 9 inch spacing in 9 inch rows consistently produced the highest dollar value. Cantliffe et al. (1975) observed two different cultivars under 8 populations ranging from 50,000 to 850,000 plants/ha. Yields as dollar and tonnage/ha increased with populations of 50,000 to 100,000 and 250,000 to 500,000 plants/ha. Delaying harvest for 4 days doubled the tonnage but did not affect the dollar value with both cultivars reacting similarly. Cantliffe (1977) reported that in a fertilizer study, the mean yield in dollars/ha was higher at 450,000 plants than at 250,000 plants/ha.

With the application of nitrogen, an increase in plant density will increase both tonnage and dollar yield. However, there is much more controversy on the limits one can go with density. It appears there may be interactions between the nitrogen and population levels.

Nutrient Uptake

Some of the first chemical analyses of cucumbers were performed by Wilkins (1917). He showed that Ca was 10 times higher in vines than in the fruit, with Mg only 2 to 3 times higher. P content was slightly higher in the fruit compared

to day hi€ pro The flo be th gr Ng ÷. la Þ ť W S 1 1 i S j â 5 to vines whereas K and N levels were similar in both.

Friedrich and Schmidt (1954) analyzed plants every 10 days for N, P, K, Ca and Mg. They found that there was a high Ca content in the leaves. N was stored in leaves as protein, and the fruit contained high amounts of soluble N. There was a large increase in nutrient uptake during the flowering and fruiting phase.

Campbell (1953) found that Ca levels in pickling cucumber vines were not changed by soil applications of Ca, but the K levels would increase with added K. Reynolds (1954) growing cucumbers under varying rates of N, P, K, Ca, and Mg observed significant differences in the amounts of all of these elements except N in the leaves and fruit.

Ries (1957) in a spacing trial, observed an inverse correlation between spacing and concentration of NO_3 -N in cucumber petioles. He also observed that P would increase in plant tissue as spacing and N levels decreased. Petiole K levels were higher in low fertilized plots (300 lb/A of 12-12-12 plus side-dressing 100 lb/A of NH₄) than those with a higher fertilization rate. In the higher fertilized plot (300 lb/A of 12-12-12 plus side-dressing 200-275 lb/A of 12-12-12), K increased in the petiole as spacing increased.

Miller (1957) found an inverse relationship between the soluble N and soluble P in cucumbers. Both nutrients increased in the petioles during the season. The largest yields were associated with moderate levels of soluble NO_3-N (892 ppm) and P (59 ppm) in petioles at harvest. Mg increased sharply

25 tř petic harv to a than К₂0 E1-S Was crit ind lin but fro bla siz Wer NO inf ٥f Dr th_{0} 1b, ha: 8. ac. as the season progressed.

In a study of the nutrient levels in laminae and petioles of cucumbers grown at low populations for multiple harvesting, Bishop et al. (1969) found the yield response to applied P_2O_5 to be of much greater relative importance than applied N or K_00 . The study indicated that N and K_20 each at 50 kg/ha and P_20_5 at 100 kg/ha would be adequate. El-Sheikh and Broyer (1970) reported that total N content was less satisfactory than NO_3-N content to determine critical N concentration for optimum growth. Cantliffe (1977) indicated that total N within the blade or petiole of pickling cucumbers did not appear to be a good indicator of yields, but highest yields were obtained when the leaf blade contained from 4 to 5% total N. The concentration of NO_3 -N in leaf blade and petiole tissue rapidly decreased during the fruit sizing period. When preplant and side dress N fertilizers were used, this led to an increased tissue concentration of NO_3-N and total N. The source of N fertilizer had little influence on tissue concentration. The tissue concentration of K, Ca, Mg, Fe and Mn were higher in tissue when treated prior to planting with 67 to 207 kg/ha of N.

McCollum and Miller (1971) found that after 72 days the N, P, and K uptake by cucumber plants was 90, 12, and 145 1b/A respectively. The nutrient fruit removal with multiple harvesting was 40 lb N, 6 lb P, and 55 lb K/A with yields of 8.7 to 11.9 T/A. The maximum rate of growth and nutrient accumulation occurred about 50 days after seeding.
50 gro reç of <u>0-</u> gr gr f. to ea () (W Ц 9 (1 With once-over harvesting, plants generally take only 50 days to obtain maximum dollar yields. If the plants are grown for shorter periods of time, nutrient content and requirements should vary. However, there are no indications of research in this area.

Other Plant Responses to Nutrition

Reynolds and Stark (1953) reported that in comparing growth response to N, Ca, K, and Mg, N levels produced the greatest effect on vegetative growth. The greatest number of fruit occurred on plants receiving a medium supply of N compared to very low or high amounts. Similar results were reported earlier by Dearborn (1936) and Cantliffe (1977), while Tiedjens (1926) found that high N improved fruit shape. Cantliffe (1975) observed that the number of fruit per plant decreased with increasing plant populations. However, varying the population did not affect fruit shape or color.

Miller (1957) in a greenhouse study, found that high amounts of N increased the length to diameter ratio of fruit. Cantliffe et al. (1975) reported that with "Premier" the length to diameter ratio (L/D) was decreased at lower plant populations.

N levels have also been found to affect sex expression of cucumbers. Dearborn (1936) indicated that high N supply produced more pistillate flowers. Miller (1957) reported that both pistillate and staminate flower production were increased. However, the staminate to pistillate ratio was decreased with high N levels. Vaile (1938, 1942) indicated that the set and

num
00m]
of
inc
lev
N u
flo
Wer
rat
L_{lc}
lev
cue

number of marketable fruits were greater under high as compared to low nutrient conditions.

Reynolds and Stark (1953) reported that the dry weight of cucumber plants grown on sand increased with increasing increments of N, but there were more fruit at the medium N level.

Cantliffe (1977) reported that the addition of preplant N up to 134 kg/ha resulted in a greater number of pistillate flowers per plant. However, the percent of off-shape fruits were also highest for the highest N treatment, while L/D ratios were not influenced. Similar results were reported by Lloyd and McCollum (1940). It appears that both nutrient levels and plant populations can influence the quality of the cucumber fruit under different local environmental conditions.

LITERATURE CITED

- Anderson, W. S. 1941. Growing cucumbers for pickling in Mississippi. <u>Miss. Agr. Exp. Sta. Bul</u>. 355:1-17
- Anderson, W. S. 1943. Close spacing, medium fertilizer rate most profitable for pickling cucumbers. <u>Miss</u>. <u>Farm Res</u>. 6(3):8, March.
- 3. Banadyga, A. A. 1949. Cucumbers for Pickles. <u>Nat</u>. <u>Pickle Packers Assoc</u>., Oak Park, Ill. 276 pp.
- 4. Bishop, R. F., E. W. Chipman and C. R. MacEachern. 1969. Effect of nitrogen, phosphorus and potassium on yields and nutrient levels in laminae and petioles pickling cucumbers. <u>Can. J. Soil Sci</u>. Vol. 49, 297-304.
- 5. Bushnell, J. 1930. The relative response to fertilizer of cabbage, tomatoes, cucumbers, and sweet corn. Proc. Amer. Soc. Hor. Sci. 27:515-519
- Bushnell, J. 1941. Fertilizers for early cabbage, tomatoes, cucumbers, and sweet corn. <u>Ohio Agr. Exp. Sta</u>. <u>Bul</u>. 622
- Campbell, J. D. 1953. Differential cation absorption and yield response by vegetable crops grown at various levels of calcium, potassium and sodium. Ph.D. Thesis. Michigan State College. 163 pages.
- Cantliffe, D. J. 1977. Nitrogen fertilizer requirements of pickling cucumbers grown for once-over harvest I. Effect on yield and fresh quality. <u>J. Amer. Soc. Hort</u>. <u>Sci</u>. 102(2):112-114.
- Cantliffe, D. J. and S. C. Phatak. 1975. Plant population studies with pickling cucumbers grown for onceover harvest. <u>J. Amer. Soc. Hort. Sci</u>. 100(5):464-466.
- Cantliffe, D. J. 1977. Nitrogen fertilizer requirements of pickling cucumbers grown for once-over harvest II. Effect on plant tissue mineral nutrient concentrations. <u>J. Amer. Soc. Hort. Sci</u>. 1-2(2): 115-119.

- 11. Comin, D. 1938. Early yields of selected truck crops as affected by fertilizer treatments. <u>Proc. Amer.</u> <u>Soc. Hort. Sci</u>. 35:673-677.
- 12. Comin, D. and J. Bushnell. 1928. Fertilizers for early cabbage, cucumbers, and sweet corn. <u>Ohio Agr. Exp.</u> <u>Sta. Bul</u>. 420.
- 13. Dearborn, R. B. 1936. Nitrogen nutrition and chemical composition in relation to growth and fruiting of the cucumber plant. <u>Cornell Univ. Agr. Exp. Sta</u>. <u>Mem</u>. 192.
- 14. Downes, J. D. and R. E. Lucas. 1966. Pickling cucumber yields in relation to NPK fertilization and P-K soil tests. <u>Proc. 17th Int. Hort. Congr. 1</u>, Abstr. No. 456.
- El-Sheikh, A. M., M. A. Abd El-Hakam and Albert Ulrich. 1970. Critical nitrate levels for squash, cucumber, and melon plants. <u>Comm. in Soil Sci. and Plant</u> <u>Anal.</u> 1:63-74.
- 16. El-Sheikh, A. M. and T. C. Broyer. 1970. Concentrations of total nitrogen in squash, cucumber and melon in relation to growth and to a Piper-Steenbjerg effect. <u>Comm. in Soil Sci. and Plant Anal</u>. 1:213-219.
- Friedrich, G. and G. Schmidt. 1954. Untersuchungen uber die Nahrstoffausnahme van Triebhausgurken in Wasserkulturen. (The absorption of nutrients by glass-house cucumber in soilless culture). Arch. Gartenb. 2:319-335. (<u>Hort. Abst</u>.).
- Hoglund, C. R. 1958. Economics of growing and irrigating pickling cucumbers. <u>Quarterly Bul. Mich. Agr. Exp.</u> <u>Sta</u>. 40(4), 796-805.
- 19. Lloyd, J. W. and J. P. McCollum. 1940. Fertilizing onion sets, sweet corn, cabbage and cucumbers in a four year rotation. <u>Ill. Agr. Exp. Sta. Bul</u>. 464: 219-236.
- 20. Johnson, W. A., C. E. Evans, E. L. Mayton, and W. A. Griffey. 1973. Soil Fertility studies with pickling cucumbers in the Piedmont Area of Alabama. <u>Alabama</u> <u>Agr. Exp. Sta. Cir</u>. 211.
- Magrude, R. 1923. Observations on the effect of liming truck crops in Ohio. <u>Proc. Amer. Soc. Hort. Sci</u>. 29:175-179.

22.
23.
24.
25.
26.
27.
28
20
3
-

- 22. McCall, W. W., R. E. Lucas, C. M. Hansen, and W. C. Hulburt. 1958. Fertilizer placement studies with the pickling cucumber. <u>Mich. Agr. Expt. Sta. Quar</u>. <u>Bul</u>. 40:637-645.
- 23. McCollum, R. E. and C. H. Miller. 1971. Yield, nutrient uptake and nutrient removal by pickling cucumbers. J. Amer. Soc. Hort. Sci. 96:42-45.
- 24. Miller, C. H. 1957. Studies on the nutrition and physiology of pickling cucumbers. Ph.D. Thesis, Mich. State Univ. 69 pages.
- 25. Morrison, F. D. and S. K. Ries. 1967. Cultural requirements for once-over mechanical harvest of cucumbers for pickling. <u>J. Amer. Soc. Hort. Sci</u>. 91:339-346.
- 26. Motes, J. E. 1975. Pickling cucumbers productionharvesting. <u>Mich. State Univ. Ext. Bul</u>. E-837.
- 27. Putnam, A. R. 1963. Horticultural aspects concerned with the production of pickling cucumbers for onceover harvest. M.S. Thesis, Mich. State Univ. 59 pages.
- 28. Reynolds, S. W. 1954. Studies with cucumbers for pickling. Ph.D. Thesis, Univ. of Maryland.
- 29. Reynolds, C. W. and F. C. Stark. 1953. Growth and fruiting responses of cucumbers to varying levels of Ca, K, Mg and N in sand culture. <u>Assoc. Southern Ag</u>. <u>Workers</u> 50:133.
- 30. Ries, S. K. 1957. The effect of spacing and supplemental fertilizer applications on the yield of pickling cucumbers. <u>Mich. Agr. Exp. Sta. Quart. Bul</u>. 40(2):375-381.
- 31. Ries, S. K. and R. L. Carolus. 1958. The effect of nutrient level on growth of pickling cucumbers. <u>Mich.</u> <u>Agr. Exp. Sta. Quart. Bul</u>. 40(3):659-668.
- 32. Seaton, H. L., R. Hutson and J. H. Muncie. 1939. The production of cucumbers for pickling purposes. <u>Mich.</u> <u>Agr. Exp. Sta. Spec. Bul</u>. 273.
- 33. Tiedjens, V. A. 1926. Some observations on the response of greenhouse cucumber (Cucumis sativus) to certain environmental conditions. <u>Proc. Amer. Soc. Hort. Sci</u>. 23:184-189.
- 34. Vaile, J. E. 1938. <u>Ark. Exp. Sta. 50th Ann. Rpt. Bul</u>. 368:82.

- 35. Vaile, J. E. 1942. <u>Ark. Exp. Sta. 53rd Ann. Rpt. Bul</u>. 417:28.
- 36. Ward, G. M. 1967. Greenhouse cucumber nutrition: a growth analysis study. <u>Plant and Soil</u> 26:324-332.
- 37. Ward, G. M. 1967. Growth and nutrient absorption in greenhouse tomato and cucumber. <u>Proc. Amer. Soc.</u> <u>Hort. Sci</u>. 90:335-341.
- 38. Ware, L. M., C. L. Isbell, H. Harris and W. A. Johnson. 1953. Studies with pickling cucumbers in Alabama. <u>Ala. Agr. Exp. Sta. Cir</u>. 114.
- 39. Wilkins, L. K. 1917. The high calcium content of some cucurbit vines. <u>N. J. Agr. Exp. Sta. Bul</u>. 310: 1-20.
- 40. Wittwer, S. H. and J. Tyson. 1950. Yields of pickling cucumbers as influenced by rates of fertilizer application, fertilizer placement, and nitrogen side dressing. <u>Mich. Agr. Exp. Sta. Bul</u>. 32(4):535-539.

SECTION I

THE INFLUENCE OF NITROGEN AND PLANT POPULATIONS ON SEVERAL CULTIVARS OF PICKLING CUCUMBERS

I. FRUIT YIELDS

The
041-
Chr Dan
Ats
pic
Var
res
ior
nit
dol
to
and
pla
on]
to
th
vi
D0;
ny

The Influence of Nitrogen and Plant Populations on Several Cultivars of Pickling Cucumbers I. Fruit Yields.

Christopher J. Rajzer <u>Department of Horticulture. Michigan State University</u>, <u>East Lansing, MI 48824</u>

Abstract: Early and late plantings of several cultivars of pickling cucumbers (Cucumis sativus L.) were evaluated under various levels of preplant N and plant populations. Cultivars responded to treatments differently in fruit yields, sex expression, fruit set, and length to diameter ratios. Increasing the nitrogen rate to 67 kg/ha increased yields (metric tons and dollars/ha) in the early planting only, and 101 kg/ha appeared to suppress yields in both plantings. High nitrogen rates (67 and 101 kg N/ha) reduced the percent cull fruit in the first planting. Increasing the plant populations increased yields only when N was sufficient. Increasing populations from 99,000 to 296,000 plants/ha, increased the percent culls but decreased the percent oversize fruit. Both fresh and dry weight per vine decreased with increasing plant populations. Yield was positively correlated to percent pistillate flowers and fruit number per vine.

INTRODUCTION

Previous studies indicate that there are many factors influencing the yields of pickling cucumbers (<u>Cucumis sativus</u> L.)

Some
tier
iac
yie
of
đm
4. ^f
a:.
<u>ζ</u> ,
*:
?.
t
e
I
(

Some of these factors are cultivars, nutrients, or populations which are somewhat controllable, or local environmental factors which are variable.

Previous nutritional studies indicated that increased yields of cucumbers were obtained by broadcasting 448 kg/ha of 5-20-20 prior to planting (10). Nitrogen applied sidedressed or broadcasted as urea or ammonium nitrate at rates of 67 or 134 kg/ha produced maximum yields for a once-over harvest on a coarse sandy loam soil (2).

Others (6) have indicated that various rates of N, P, and K, did not significantly increase yields, although, increasing trends were observed with an increase of N and K up to 90 and 71 kg/ha respectively. There are some indications (1, 15) that yields can be increased by addition of various individual elements, although yield increases were not consistent.

Comparing vegetative growth responses, increasing increments of N produced the greatest effects on growth and dry wt. (9). The maximum number of fruit was produced with a median level of N compared to a very low or high rate (2, 4, 9). Fruit per vine decreased with increasing plant populations (3). High N also improved fruit shape (11) in some studies, while others found the percent off-shape fruit and length to diameter ratios (L/D) to be increased (2, 7). Sex expression can be altered by increasing nitrogen levels, forming more pistillate flowers, although the ratio of pistillate to staminate flowers decreased (4, 7). Fruit set and numbers of marketable fruit were greatest under high nutrient conditions (12, 13).

0t from 50 dollars from 50 in har ļ did no B for on number with u the ro 1 a mul contr was t nitro relat in 19 Star and 11.5 plan MSU_ plar

Other studies (3) with 2 cultivars and 8 populations from 50,000 to 850,000 plants/ha indicated that yields in dollars and tons/ha increased with increasing populations from 50,000 to 100,000 and from 250,000 to 500,000. A delay in harvest of 4 days doubled the tonnage but dollars/ha values did not change.

By increasing plant populations, yields can be increased for once-over harvesting. Highest yields with the greatest number of fruits per vine were obtained from a 30 cm spacing with up to 215,000 plants/ha regardless of the distance between the rows (8).

Most of the published data deals with cucumbers grown in a multiple-harvesting system and examines various levels of controllable factors on yield. The objective of this study was to examine the influence of cultivar, populations, and nitrogen, and how their main effects and interactions may be related to cucumber growth, sex expression, and yields.

MATERIALS AND METHODS

Cucumbers were planted in both early and late season tests in 1976. The May 25 planting consisted of 2 cultivars, Green Star and Premier, grown at 3 plant populations, 99,000, 148,000, and 198,000 plants/ha. The Conover sandy loam soil contained 11.5 kg/ha of residual NO₃-N and 3.0% organic matter. The late planting on July 22 had 3 cultivars, Green Star, Premier, and MSU-76 with plant populations of 99,000, 198,000, and 296,000 plants/ha. The Conover sandy loam soil tested 37.3 kg/ha of residu planti pH of 7 per apart by th Seeds rows kg/ha prep] exper as m subp at 2 cont plar durj adeo Wer fir nod pla S_{ta} and The mec residual NO3-N and 2.0% organic matter. The soils for both plantings were medium to high in P, K, Ca, and Mg, with a pH of 5.9. The pollinators for cultivars were adjusted to 7 percent and planted with a Dahlman seeder in rows 40 cm apart, and the appropriate spacing within rows was obtained by thinning at emergence to acheive the desired populations. Seeds were planted in beds 5.5 m long and 2.0 m wide with 4 rows to a bed. Four levels of N (urea) 0, 34, 67, and 101 kg/ha were applied with a Gandy spreader and incorporated preplant along with 62 kg/ha of P and 116 kg/ha of K. The experiment was designed as a split-split plot with cultivars as main plots, N levels as subplots and populations as sub subplots, each replicated 3 times. Chloramben methyl ester at 2.0 kg/ha was applied immediately after seeding for weed control. Carbaryl at 2.0 kg/ha was applied twice in each planting for beetle control. Irrigation of 15 cm was applied during each season. A hive of bees was supplied to insure adequate pollination.

At 35 to 40 days after seeding (DAS), 10 plants per plot were randomly selected and flower type characterized for the first 10 nodes. Forty-five to 50 DAS, fruit set on these nodes was determined by the swelling of the ovary. The early planting was harvested 53 and 55 DAS for Premier and Green Star respectively. The late planting was harvested 53, 54, and 57 DAS for Premier, MSU-76, and Green Star respectively. The cucumbers were harvested by hand simulating once-over mechanical harvesting. Fresh vine weight was recorded, and

fruit were graded and weighed. The grade and dollar values were calculated from standards established by the Pickling Cucumber Improvement Committee (PCIC), i.e. less than 2.0 cm diameter (132/metric ton), 2.7 to 3.8 cm (66/metric ton), 3.8 to 5.1 cm (44/metric ton), and over 5.1 cm (11/metric ton). The percentage of fruit culls, "nubs" and "crooks" was calculated for each plot. L/D ratios were measured on 10 randomly selected fruit between 3.8 and 5.1 cm in length. The fruit dry weight was determined from fruit that were removed and dried at 70° C.

RESULTS AND DISCUSSION

Cultivar Influence

Cultivars responded in only the wt. per vine and L/D ratio for the early planting, with Green Star the more vigorous cultivar (Table 1). Different cultivar responses were observed in the late planting with Green Star being the poorest yielder in both weight and value/ha (Table 2). These lower yields corresponded to lower fruit numbers per vine. Green Star and MSU-76 had the highest number of pistillate flowers but the former cultivar had only 23 percent fruit set versus 39 percent with MSU-76. Either poor pollination or the abortion of the ovary after pollination were 2 possibilities for yield differences between these cultivars in the later planting. In the first planting yields correlated closely with sex expression. As expected, cultivars respond differently when grown under different environmental conditions. The time of planting had a pronounced effect on the yields of pickling cucumbers. The early planting (May 25) responded differently to both N and populations than the late planting (July 22). These differences may have been related to local environmental factors or the differences in soil NO_3 -N.

Differences were noted in vegetative growth between cultivars. In the early planting, the fresh wt. of Green Star was greater than that of Premier, while there was no significant difference in their dry wt. (Table 3). This indicates that Green Star makes more vigorous growth and may have a higher water requirement.

For the late planting, vine wt. and L/D ratio did not differ among cultivars, but Premier and MSU-76 yielded significantly more than Green Star. The percent oversize fruit data does not support the idea of later maturity.

Nitrogen Influence

Nitrogen had its greatest influence on the early planting. Yields increased as N levels increased up to 67 kg/ha after which there was no additional benefit (Table 1). The greatest percent culls were obtained with low rates of N, while less oversize fruit occurred with 0 and 101 kg N/ha. Increased fruit dry wt. was associated with higher rates of N. A significant interaction indicates that both cultivars were not different in fruit dry wt. at 0 and 34 kg N/ha, however, Premier was significantly higher at 67 and 101 kg N/ha. No differences in sex expression were observed in the early planting that could account for a difference in yield (Table 3).

In the late planting, nitrogen affected sex expression but not yields. The lowest number of staminate flowers were produced with 101 kg N/ha. An interaction between cultivars and nitrogen levels for marketable fruit per vine shows Premier and MSU-76 both significantly better at 0 to 67 kg N/ha with only MSU-76 greater at 101 kg N/ha.

Cultivars varied in sex expression, and with more pistillate flowers produced, the yields were increased. Nitrogen increased percent pistillate flowers and fruit set while staminate flowers decreased with increasing increments in the late planting. The lower plant populations did produce more pistillate flowers in the late planting only, but the differerces were so small they may be of no importance.

Increasing rates of preplant N increased dollars and metric tons/ha in the early planting with no significant differences in the late planting. There are indications that at 101 kg N/ha fruit tonnage is depressed. McCollum and Miller (6) observed a positive yield response with increasing increments of N fertilizer up to 90 kg/ha, while Wittwer and Tyson (14) and Ries and Carolus (10) found no benefit of supplemental N, except on low fertility soils.

In these tests, residual NO_3 -N for early and late plantings was 11.5 and 37.3 kg/ha, respectively. Cantliffe (2) observed that the percentages of off-shape fruit were greater for higher rates of applied nitrogen, with no effect on L/D ratios. In the early study which was influenced by N, percent culls decreased with 67 and 101 kg N/ha compared to 0 and 34 kg N/ha, with no effect on L/D ratio in either planting.

The differential responses to N between plantings could have been influenced by the daily mean temp. and amount of residual NO_3 -N in the soil or nitrification. With the higher temp. that occurred during growth of the early planting, the growth rate was rapid, requiring more N. With lower temp. and higher NO_3 -N level in the soil, differences were not noted.

There were indications that increasing increments of N increased both vine fresh and dry wt. when yields were influenced by N. This confirms Reynolds and Stark's (9) work. However, when yields were not changed by N, there were no differences in vine wts.

Population Effects

There were no influences of populations on yield or dollar value for the early planting (Table 1). However, percent culls was increased with an increase in population. Oversize fruit was reduced with 198,000 plants/ha. Green Star fruit size decreased linearly with an increase in population while in Premier size leveled off at 148,000 plants/ha.

There was an inverse relationship between the fresh wt. per vine and population. An interaction indicated that Green Star was a vigorous cultivar producing more fresh wt. at all populations. However, the dry wt. per vine did not differ with changes in populations.

Both marketable and total fruit per vine decreased as populations increased. The greatest effect of population was in the late planting, with yield and dollar values showing similar trends. The highest yields were obtained with 198,000 and 296,000 plants/ha (Table 2). These yield differences attributed to population also correspond to the fruit produced per vine (Table 4). The total fruit per vine varied from 30 to 60% of the actual fruit set which was about one-third of the total pistillate flowers which indicate that yield is not necessarily related to this parameter.

As plant population increased, in the late planting, the percent culls increased (Table 2) while oversize fruit decreased. At 99,000 and 198,000 plants/ha Green Star had the greatest percent of oversize fruit, while MSU-76 had the lowest. There were no cultivar differences at the highest population.

Cantliffe and Phatak (3) reported that increasing the plant populations could increase yields. Yields in both dollars and metric tons/ha increased with increasing populations for the late planting, with no effect observed in the early planting. However, in both plantings increasing the population increased the percent culls and decreased percent oversize fruit. Weights of fresh and dry vines decreased with increasing plant populations, while L/D ratios of fruit were not affected.

Relationships between both fresh and dry wt. per vine and

dry wt. of fruit was noted (Table 2). As plant populations increased, the plant and fruit wt. decreased. Populations appeared to have the greatest influence on yields when nitrogen levels were not limiting.

Although increasing the plant population increased the total yield, it decreased marketable and total fruit per vine. Cantliffe and Phatak (3) observed similar results. It also appears that there are differences in sex expression which can be attributed to planting dates and cultivars. N will enhance yield when not present in the soil in abundant supply, however, when the supply is adequate, plant population may then become the factor limiting yield. Although higher plant populations provide less fruit per vine, the net result is increased marketable yield.

characteristics.	
d fruit	
on vine an	
cultivar (
and	
nitrogen	
population,	
plant	ting.
of	lan
Effect	Early I
Table 1.	

fresh Dry per vine (g) $(5, by wr.)$ (1) Cultivars; Green Star $159a^2$ $21.4a$ $4.8a$ $9.6a$ $12.5a$ $7.7a$ (2) Nitrogen; 0 $113m$ $17.6m$ $4.1m$ $18.0m$ $12.7m$ $5.4m$ (2) Nitrogen; 0 $113m$ $17.6m$ $4.1m$ $18.0m$ $12.7m$ $5.4m$ (2) Nitrogen; 0 $113m$ $17.6m$ $4.9mn$ $13.4m$ $17.8m$ $6.7a$ (2) Nitrogen; 0 $113m$ $17.6m$ $4.9mn$ $12.7m$ $8.6n$ (2) Nitrogen; 0 $113m$ $17.6m$ $4.9mn$ $12.7m$ $8.6n$ (3) Plants/ha; 99 $168n$ $19.9r$ $5.8n$ $3.3n$ $8.2n$ $8.4n$ (3) Plants/ha; 99 $168r$ $19.9r$ $5.8n$ $3.6n$ $15.7r$ $7.4r$ (1000's) 148 $127s$ $19.9r$ $5.2r$ $13.4s$ $10.0s$ $7.4r$	¥	ain effects	3	t. per v.	fne (g)	Fruit dry	wt Fruit	grade	Market	table fr	ult
 Cultivars; Green Star 159a² 21.4a 4.8a 9.6a 12.5a 7.7a Premier 104b 16.4a 5.6a 9.5a 14.8a 6.7a Nitrogen; 0 113m 17.6m 4.1m 18.0m 12.7m 5.4m 67 122m 18.6m 4.9m 13.4m 17.8m 6.5m 67 145m 17.8m 5.9n 3.6n 15.7m 8.6n Plants/ha; 99 168r 19.9r 5.8r 3.3n 8.2n 8.4n 8.2n 8.4n Plants/ha; 198 19.9r 5.7r 6.8r 15.7r 7.4r 198 104t 17.7r 5.2r 13.4s 10.0s 7.4r Interactions; 1x2 NS NS				Fresh	Dry	per vine (g) (<u>2 by</u> Culls	. wt.) Oversize	MT/ha	L/D	PCLC (\$/ha)
(2)Nitrogen;0113m17.6m4.1m18.0m12.7mm5.4m (kg/ha) 34122m18.6m4.9mn13.4m17.8m6.7mm (kg/ha) 34122m18.6m4.9mn13.4m17.8m6.5mm (kg/ha) 67145m17.8m5.9n3.6n15.7m8.6n $(101$ 150m21.8m5.8n3.3n8.2n8.4n $(100^{\circ}s)$ 14819.9r5.7r6.8r15.7r7.4r $(100^{\circ}s)$ 148127s19.9r5.7r6.8r15.7r7.4r $(100^{\circ}s)$ 148127s19.2r4.6f8.6f15.7r7.4r $(100^{\circ}s)$ 198104t17.7r5.2r13.4s10.0s7.4r (4) Interactions;1x2NSNSNSNSNSNSNS (2) $104t$ 17.7r5.2r13.4s10.0s7.4r (2) $104t$ 17.7r5.2r $13.4s$ 10.0s7.4r (3) $104t$ $17.7r$ $5.8r$ NSNSNSNS (2) $1x2$ NSNSNSNSNSNSNSNSNS (3) $104t$ $17.7r$ $5.2r$ $13.4s$ $10.0s$ $7.4r$ (4) Interactions; $1x2$ NSNSNSNSNSNS (3) $102t$ $107t$ $17.7r$ $10.0s$ $1.4r$ $17.7r$ $10.0s$ <t< td=""><td>(1)</td><td>Cultivars;</td><td>Green Star</td><td>159a^z</td><td>21.4a</td><td>4.8a</td><td>9.6a</td><td>12.5a</td><td>7.7a</td><td>2.52a</td><td>494a</td></t<>	(1)	Cultivars;	Green Star	159a ^z	21.4a	4.8a	9.6a	12.5a	7.7a	2.52a	494a
			Premier	104b	16.4a	5.6a	9.5a	14.8a	6.7a	2.44b	413a
	(2)	Nitrogen;	0	113m	17.6m	4.lm	18.0m	12.7mn	5.4m	2.45m	346m
		(kg/ha)	34	122m	18.6m	4.9mn	13.4m	17.8m	6.5mn	2.49m	407mn
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			67	145m	17.8m	5.9n	3.6n	15.7m	8.6n	2.47m	541n
(3) Plants/ha; 99 168r 19.9r 5.7r 6.8r 15.2r 6.8r $15.7r$ 7.4r $(1000's)$ 148 127s 19.2r 4.6r 8.6r 15.7r 7.4r 7.4r 198 104t 17.7r 5.2r 13.4s 10.0s 7.4r 7.4r 13.3 ks ns			101	150m	21.8m	5.8n	3.3n	8.2n	8.4n	2.50m	520n
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(3)	Plants/ha;	66	168r	19.9r	5.7r	6.8r	15.2r	6.8r	2.48r	424r
198 104t 17.7r 5.2r 13.4s 10.0s 7.4r (4) Interactions; 1x2 NS NS * NS NS NS NS 2x3 NS NS NS NS NS NS NS NS NS 1x2x3 NS NS NS NS NS NS NS NS 1x2x3 NS NS		(1000's)	148	127s	19.2r	4.6r	8.6r	15.7r	7.4r	2.47r	461r
<pre>(4) Interactions; 1x2 NS NS * NS * NS NS * NS NS * NS NS</pre>			198	104t	17.7r	5.2r	13.4s	10.0s	7.4r	2.48r	473 r
1x3 * NS NS NS * NS 2x3 NS NS NS NS * NS 1x2x3 NS NS NS NS NS NS	(†)	Interactions;	1x2	SN	SN	*	NS	SN	NS	SN	NS
2x3 NS NS NS + NS NS 1x2x3 NS NS 1x2x3 NS			1x3	*	SN	NS	NS	*	NS	NS	NS
1x2x3 NS NS NS NS NS NS NS NS			2x3	NS	NS	NS	*	NS	NS	SN	NS
			1x2x3	SN	NS	NS	NS	NS	NS	SN	SN

²Mean separation within sets by Duncan's multiple range test at the 5% level

characteristics.	
fruit	
and	
vine	
ЦО	
cultivar	
and	
nitrogen	
population,	
plant	fng.
of	ant
Effect	Late P]
Table 2.	

Ма	iin effects	121	Vt. per v	ine (g)	Fruit dry v	t Frui	t grade	Marke	table fr	ult
			Fresh	Dry	per vine (g	t) (% b Culls	y wt.) Oversize	MT/ha	L/D	PCIC (\$/ha)
(1)	Cultivars;	Green Star	168a ^z	15.8a	3.la	5.6a	4.43	8.5a	2.49a	524a
		Premier	141a	11.3a	4.la	4.0a	2.9a	11.8 b	2.5la	714b
		MSU-76	162a	15.la	4.48	3.2a	2.la	12.5 b	2.60a	769b
(2)	Nitrogen;	0	161m	14.5m	3.7m	3.6m	3.3m	11.6m	2.52m	691m
	(Kg/ha)	34	160m	13.9	3.9m	4.6m	4.1m	10.4m	2.54m	677 m
	ŀ	67	161m	14.3m	4.lm	4.4m	2.9m	11.3m	2.54m	694 m
		101	147m	13.5m	3.7m	4.4m	2.4m	10.5m	2.53m	044m
(3)	Plants/ha;	66	228r	18.7 r	4.8r	2.3r	6.6r	10.0r	2.53r	589r
	(1000's)	198	141s	12.6s	3.7s	4.1s	2.4s	11.5s	2.54r	700s
		296	102t	10.8t	3.lt	6.3t	0.4t	11.3s	2.54r	717s
(7)	Interactions;	1x 2	SN	SN	SN	SN	NS	NS	SN	NS
		1x3	SN	NS	NS	NS	NS	NS	NS	NS
		2x3	SN	SN	SN	NS	NS	NS	NS	NS
		1x2x3	NS	NS	NS	SN	NS	NS	NS	NS

^zMean separation within sets by Duncan's multiple range test at the 5% level

		% Rlind	Flow ner 10	ers F nodes	ruit set	Fruitt ner	vtne
Main effect	S	nodes	Pistillate	Staminate	10 nodes	Marketable	Total
(1) Cultivars;	Green Star	7.9a ^z	7.65a	1.55a	2.63a	1. 42a	1.61a
	Premier	5.9b	6.23a	3.18a	3. 38a	1.17a	1.34a
(2) Nitrogen;	0	6.6m	7.21m	2.14m	3. 08m	1.15m	1.38m
(Kg/ha)	34	7.2m	6.87m	2.41m	3.68m	1.07m	1.31m
ı	67	7.lm	6.81m	2.48m	2.83m	1.43m	1.58m
	101	6.8m	б. 89т	2.43m	3.43m	1.51m	1.62m
(3) Plants/ha;	66	7.0r	6.98r	2.32r	2.95r	1.76r	1.99r
(1000's)	148	6.6r	6.98r	2.36r	3.00r	1.10s	1.28s
	198	7.lr	6.88r	2.4lr	3.06r	1.01s	1.15s
yNo significant	interactions						

Table 3. Effect on sex expressions and fruiting habits. Early Planting.^y

^zMean separation within sets by Duncan's multiple range test at the 5% level

			Flow	ers F	ruit set		
		% Blind	per 10	nodes	рег	Fruit per	vine
Main effects		nodes	Pistillate	Staminate	10 nodes	Marketable	Total
1) Cultivars;	Green Star	7.8a ^z	9.03a	0.19a	2.12a	1.05a	1.14a
	Premier	4.6b	8.53b	0.96b	3.35 b	1.3 4b	1.44b
	MSU-76	4. 3b	9.25a	0.32a	3.6 3b	1.38 b	1.45b
2) Nitrogen;	0	5.0m	8.84m	0.59m	2.86m	1.23m	1.31m
(Kg/ha)	34	5.9mn	8.92m	0.48mn	2.99m	1.23m	1.32m
I	67	6.0n	8.94m	0.46mn	3.31m	1.32m	1.42m
	101	5. 3mn	9.05m	0.43n	2.97m	1.24m	1.32m
3) Plants/ha;	66	4.8r	9.09r	0.40r	3.19r	1.80r	1.91r
(1000's)	198	5.8s	8.89s	0.51s	3.08rs	1.13s	1.21s
	296	6.0s	8 . 83s	0.58s	2. 83s	0.84t	0.91t
(4) Interactions;	1x2	SN	SN	SN	SN	*	NS
	1x3	NS	NS	NS	NS	NS	NS
	2x3	SN	NS	SN	NS	NS	SN
	1x2x3	SN	SN	SN	SN	SN	S.N.

Table 4. Effect on sex expression and fruiting habits. Late Planting.

^zMean separation within sets by Duncan's multiple range test at the 5% level

•

Literature Cited

- Bishop, R. F., E. W. Chipman and C. R. MacEachern. 1969. Effect of nitrogen, phosphorus and potassium on yields and nutrient levels in laminae and petioles of pickling cucumbers. <u>Can. J. Soil Sci</u>. Vol. 49, 297-304.
- Cantliffe, D. J. 1977. Nitrogen fertilizer requirements of pickling cucumbers grown for once-over harvest I. Effect on yield and fresh quality. <u>J. Amer. Soc. Hort</u>. <u>Sci</u>. 102 (2):112-114.
- 3. Cantliffe, D. J. and S. C. Phatak. 1975. Plant population studies with pickling cucumbers grown for once-over harvest. J. Amer. Soc. Hort. Sci. 100(5):464-466.
- Dearborn, R. B. 1936. Nitrogen nutrition and chemical composition in relation to growth and fruiting of the cucumber plant. <u>Cornell Univ. Agr. Exp. Sta</u>. <u>Mem</u>. 192.
- Downes, J. D. and R. E. Lucas. 1966. Pickling cucumber yields in relation to NPK fertilization and P-K soil tests. <u>Proc. 17th Int. Hort. Congr. 1</u>, Abstr. No. 456.
- McCollum, R. E. and C. H. Miller. 1971. Yield, nutrient uptake and nutrient removal by pickling cucumbers. J. Amer. Soc. Hort. Sci. 96:42-45.
- 7. Miller, C. H. 1957. Studies on the nutrition and physiology of pickling cucumbers. Ph.D. Thesis, Mich. State Univ. 69 pages.
- 8. Putnam, A. R. 1963. Horticultural aspects concerned with the production of pickling cucumber for once-over harvest. M.S. Thesis, Mich. State Univ. 59 pages.
- 9. Reynolds, C. W. and F. C. Stark. 1953. Growth and fruiting responses of cucumbers to varying levels of Ca, K, Mg and N in sand culture. <u>Assoc. Southern Ag</u>. <u>Workers</u> 50:133.
- Ries, S. K. and R. L. Carolus. 1958. The effect of nutrient level on growth of pickling cucumbers. <u>Mich.</u> <u>Agr. Exp. Sta. Quart. Bul</u>. 40(3):659-668.
- Tiedjens, V. A. 1926. Some observations on the response of greenhouse cucumber (<u>Cucumis sativus</u>) to certain environmental conditions. <u>Proc. Amer. Soc. Hort. Sci</u>. 23:184-189.

- 12. Vaile, J. E. 1938. <u>Ark. Exp. Sta. 50th Ann. Rpt. Bul</u>. 368:82.
- 13. Vaile, J. E. 1942. <u>Ark. Exp. Sta. 53rd Ann. Rpt. Bul</u>. 417:28.
- Wittwer, S. H. and J. Tyson. 1950. Yields of pickling cucumbers as influenced by rates of fertilizer application, fertilizer placement, and nitrogen side dressing. <u>Mich. Agr. Exp. Sta. Bul</u>. 32(4):535-539.

SECTION II

THE INFLUENCE OF NITROGEN AND PLANT POPULATIONS ON SEVERAL CULTIVARS OF PICKLING CUCUMBERS II. NUTRIENT CONTENT AND REMOVAL

The Influence of Nitrogen and Plant Populations on Several Cultivars of Pickling Cucumbers II. Nutrient Content and Removal

Christopher J. Rajzer <u>Department of Horticulture. Michigan State University</u>, <u>East Lansing. MI 48824</u>

Abstract: Pickling cucumber (<u>Cucumis sativus</u> L.) plants and fruit were analyzed at harvest to determine the plant nutrient content and nutrient removal by fruit. Factors studied were time of planting, cultivars, N levels, and plant populations. The mean plant nutrient content of N, P, and K was 103, 9, 147 kg/ha, respectively, with mean nutrient removal of 22, 3, 38 kg/ha, respectively. The nutrient levels of three cultivars were increased by added N and increasing plant populations. Nitrogen treatments influenced plant nutrient content. Yields and percent cull fruit were also affected. As plant population increased, both total nutrient content in the plants and nutrient removal by fruit increased. Nutrient removal from a field by cucumber fruit is about 25 percent of the total plant's nutrient content at harvest.

INTRODUCTION

Nutrient concn of pickling cucumbers vary with application of fertilizer, spacing, and the physiological age of plants. Inverse relationships between soluble N and soluble P

with yield have been reported (10). The total N in the lamina and petioles does not correlate with yields, concn of NO_3 -N in the tissue rapidly decreasing during the period of fruit development (4).

With multiple harvesting and moderate yields (9), total N, P, and K uptake was 101, 13, and 163 kg/ha, respectively. At low plant populations, N fertilizer was found to increase tissue concn of N, K, Ca and Mg (2).

An inverse correlation exists between spacing and the concn of NO₃-N in cucumber petioles. P increased as spacing and N levels decreased. K levels were higher in plots receiving low fertilizer levels, but at higher fertilizer rates K increased in petioles as spacing increased (13). The objective of this study was to evaluate nutrient concent and removal with various cultivars, nitrogen levels, populations, and planting dates.

MATERIALS AND METHODS

This is the second part of a two-part paper. The procedures utilized, experimental design, and fruit yields have been previously reported for these experiments (11). Plant tissues were collected at 3 periods throughout the growing season: First at tip-over (6-7 leaves), secondly between tip-over and harvest, and thirdly at harvest, with fruit and plants analyzed separately. Tissue was dried at 70° C, weighed and ground in a Wiley Mill to pass a 20-mesh screen. The tissue (.10g) was assayed for NO₃-N using an Orion nitrate

electrode (5). Total N was determined by Macro-Kjeldahl procedure (1), K with the flame spectrophotometer¹, and other elements with the spark emission spectograph² (6).

Soil samples were taken at tip-over and analyzed for pH, BpH, P, K, Mg, and Ca by standard techniques. The nutrient content of whole plants and removal by fruit is reported in kg/ha or g/ha, and takes into consideration differences in dry wt. due to treatments and the content of nutrient in the plants/ha, rather than the concn.

RESULTS AND DISCUSSION

Both plantings were made on soils similar in nutrient levels (Table 1). Therefore, any difference in nutrient concn of the plant or fruit are assumed to result from the assigned treatments or local environmental factors.

Cultivar Responses

There were essentially no differences in the nutrient content of fruit (Table 2 and 3) or plants (Table 4 and 5) attributable to cultivars in the early and late plantings. No relationship existed between nutrient content and yields of these same cultivars. Cultivars tested appear to be efficient in their ability to use available nutrients in the soil (Table 4 and 5). However, differences were noted within a cultivar between different planting dates and various N and

¹Beckman model B, Beckman Instruments, Inc., South Pasadena, Calif.

²Quantograph, Applied Research Laboratories, Glendale, Calif.

population treatments. This could be related to their adaptability to local environmental factors.

Nitrogen Influences

With increasing rates of N in the early planting, N, K, Ca, Mg, Mn, Zn, and NO_3 -N content of the plant increased (Table 4), and N, P, K, Ca, Mg, Mn, Fe, B, Zn, and NO_3 -N was significantly higher in Green Star at 101 kg/ha than Premier. While an interaction of nutrient removal of N, K, and B, in Premier were significantly higher at 67 kg/ha and 101 kg/ha than Green Star. There was a concurrent increase in the yields and a decrease in the percent culls with increasing increments of N, for the early planting (11).

For the late planting, N had no effect on fruit yields (11) and no influence on the nutrient content of the plant and fruit other than NO_3 -N which increased with increasing increments of applied N in the plant tissue. It appears that in plant tissue, NO_3 -N does not correlate with yields. El-Sheikh and Broyer (8) found NO_3 -N values to be more satisfactory than total N to determine the critical N concn for maximum growth. Comparing both the early and late planting, the total N or NO_3 -N values (Table 2 and 3) can not be a satisfactory indicator of growth since there is no consistent relationship with yields, vine weights, culls, or sex expression (11). Cantliffe (3,4) observed that NO_3 -N was high in plants receiving high N, but also found it reduced yields. This supports the idea that NO_3 -N is not a good indicator of growth.

When N was limited (early planting), uptake of applied N increased linearly. When N levels were adequate (late planting) for growth, then the additional uptake of N was suppressed. Reynolds (12), growing cucumbers under varying rates of N, P, K, Ca, and Mg observed significant differences in the amounts of these elements in the leaves and fruit of all except N. Also, no yield responses were observed when N levels were adequate for growth. This indicates that N may influence the uptake of other elements and become a limiting factor of yields. The mean values of N, P, and K removed by plants for the early and late plantings were 98, 8, 150 and 108, 10, 144 kg/ha, respectively. Nutrient removal by fruit was 20, 2, 39 and 24, 3, 37 kg/ha, respectively.

Higher nutrient content in the late planting compared to the early planting are associated with a higher percentage of pistillate flowers among both cultivars and N treatments. Dearborn (7) and Miller (10) reported similar findings. Tiedjens (14) found that high N improved fruit shape. Considering percent culls as a characteristic of fruit shape, there was a decrease in culls with increased applications of N in the early planting. The shape of cull fruit indicated that pollination was not the cause but that nutritional content can become an influencing factor.

Plant Population Influences

In plant tissue at harvest for both plantings all mineral elements were found to increase with increasing plant
populations (Tables 4 and 5) except for NO_3^{-N} in the early planting. The lack of change in NO_3^{-N} could have been the result of rapid growth and metabolism. Ries (13), found an inverse correlation in NO_3^{-N} concn and plant population. This indicated that the plants were not receiving adequate N or that the metabolism of NO_3 was increasing with an increasing population.

Fruit nutrient removal increased in both plantings with increasing populations, with Premier having significantly higher levels of P and Mg at 198,000 plants/ha than Green Star. Nutrient removal had linear relationships between increasing yields (11) and populations in both plantings. When populations increase, the nutrients removed by plants and fruit may increase because of the increase in root to soil surface area. Therefore, higher plant populations require more of the available soil nutrients if higher yields are to be obtained. As populations increase, nutrient content of the fruit becomes about 25 percent of the total plant nutrient content at harvest.

Planting	рН	Bph	P	<u> </u>	Ca cg/ha)	Mg
Early	5.8	6.5	208.1	342.4	1554.5	301.6
Late	6.1	6.7	166.9	326.4	1390.0	213.9

Table 1. Soil analyses at tip-over.

early planting.
for
harvesting
Ъy
removed
fruit
<u>1</u> n
content
Nutrient
Table 2.

Main	effects		N	Ч	K	Ca	Mg	M	Ŧе	Cu	£	Zn	V	N-,ON
				(k	g/ha)						g/ha)			
(1)	Cultivars:	Green Star Premier	18a ^z 21a	2.0a 2.4a	36a 43a	2.2a 2.9a	1.8a 2.0a	16a 18a	111a 71a	13a 11a	10a 12a	16a 20a	127a 52a	0.20a 0.50a
(2)	Nitrogen: (kg/ha)	0 34 67 101	13m 16m 23n 26n	2.1m 2.2m 2.3m 2.3m 2.3m	32日 36日 441 441	2.0m 3.2m 3.2m	1.6m 1.7m 2.2n 2.2n	13m 16mn 19n 20n	66m 90mn 103n 106n	9ш 12ш 17ш	9m 11m 12m 12m	15m 17m 20m 19m	77m 105m 95m 82m	0.04m 0.07m 0.40n 1.00o
(3)	Plants/ha:	99 148 198	16r 18r 25s	1.6r 2.0r 3.08	30r 36r 52s	2.0r 2.6r 3.0	1.5r 1.7r 2.5s	14r 15r 228	84rs 78r 1128	9r 13r 14	9r 10r 15s	14r 17r 23s	86r 75 r 108r	0.30r 0.30r 0.50r
(4)	Interaction 1	us 1 x 2 1 x 3 2 x 3 . x 2 x 3	* NS NS NS	N N N N N N N	* NS NS NS	SN SN SN SN	NS * NS NS NS	NN NN NN NN	NN NN NN NN	NS NS NS NS	* NS NS NS	NS NS NS NS	SN SN SN SN	NN NN NN NN

^zMean separation within sets by Duncan's multiple range test at the 5% level.

>
planting.
late
for
harvest ing
by
removed
fruit
in
content
Nutrient
÷.
Table

Main effects		N	Р (1,	K K	в С	Mg	Mr	ъ	Cu	B -	Zn	Al	N-EON
			2 2 2 2 2 2 2	/ 1181 /					2	114/			
Cultivars:	Green Star Premier MSU-76	208. ² 248 278	2.28 2.98 3.38	308 408 428	3.68 3.68 4.28	2,28 2,58 2,78	18a 22a 26a	82a 82a 93a	88 118 128	8a 10ab 11b	13a 14a 17a	94а 83а 97а	1.5a 2.0a 2.2a
Nitro gen:	0 84 101	日 日 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	37в 38в 38в 36в	3.7 3.7 3.7 3.7 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	日 日 の の の の の の の の の の の の の の の の の の	日日 00 00 00 00 00 00 00 00 00 00 00 00 0	85¤ 87¤ 93¤ 77¤	101 101 111	888 888 888 888 888 888 888 888 888 88	н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	96m 90m 102m 77m	1.4 1.6 2.0 日 日 2.0 日 日 2.0 日 日 2.0 日
Plants/ha: (1000's)	99 198 296	16r 25s 31r	2.95 3.67 3.67	25r 38s 48t	2.6r 3.9s 4.9t	1.7r 2.58 3.2t	14r 24s 27t	61r 89s 107t	8r 11s 13s	6r 10s 12t	9r 16s 18t	69r 93s 111t	1.3r 1.9s 2.5t

^yNo significant interactions. ^ZMean separation within sets by Duncan's multiple range test at the 5% level.

ly planting.
for ear
harvest
content at
nutrient
Plant
Table 4.

Main effects	И	. _{С4}	К	ප ප	Mg	щ	Fe	ភី	щ	Zn	Ţ	NO3-N
		(k e	ç/ha)				••	в)	(/ha)			
(1) Cultivar Green Star Premier	1048 ² 938	8.7a 8.1b	164 a 136 a	81 а 65а	27а 20а	248 a 183 a	2028 a 1445a	124 a 86 a	100а 73а	228a 204a	321 4а 2387b	17.9a 11.5a
(2) Nitrogen 0 (kg/ha) 34 67 101	70 m 83 mn 102n 138o	8. ⁴ 田 9.1日 8.5日 日	127m 140m 151m 184n	64m 67m 72m 88m	日 5 5 5 5 5 5 5 5 5 5 5 5 5	159m 189m 228no 2850	1613m 1804m 1572m 1958m	107m 101m 97m 116m	80 86 86 86 86 86 86 86 86 86 86 86 86 86	181m 198m 205m 279m	2671 л 3083 п 2529 п 2919п	1.6m 6.4m 17.7n 33.10
(3) Plants/ha 99 (1000's) 148 198	73 r 100 s 122t	6.0r 8.4s 10.9t	108r 158s 185t	52r 74 s 93t	17r 24s 30t	150r 220s 276t	1486r 1610r 2113s	86r 105rs 125s	61r 87s 112t	153r 215s 279t	2309r 2712r 3381s	10.6r 18.3r 15.2r
(4) Interactions 1 x 2 1 x 3 2 x 3 1 x 2 x 3	SN SN SN SN SN	NS NS NS NS	SN SN SN SN SN SN	SN SN SN SN	NS NS NS NS	SN SN SN SN SN	NN SN SN SN SN	NS NS NS NS	NN NN NN NN NN	SN SN SN SN SN	NS NS NS NS	* SNN NNN NNN

^zMean separation within sets by Duncan's Multiple Range test at the 5% level.

>	
planting.	•
late	
for	
harvest	
at	
content	
nutrient	
Plent	
le 5.	
Tab	

Main effect	Ø	N	P (kg/ha	K (8 C	Mg	Mn	ы Б	Cu (g/	В (ha.)	Zn	Al	N-EON
Cultivars:	Green Star Premier MSU-76	108a ^z 94a 122a	9.3a 8.2a 11.4a	1528 1268 1558	86 a 67 a 90a	29a 22a 27a	228a 181b 247a	1531a 992a 1195a	102а 82а 72а	79а 57а 78а	178a 139a 202a	23528 13828 16308	28.6a 25.8a 31.3a
Nitrogen: (kg/ha)	0 34 101	104m 108m 110m 110m	10.6 9.5日 8.6日 日 日 6	146日 146日 146日 146日 146日 146日 136日	84 80 81 8 8 1 8 7 8 8	24日 24日 251日 26日 26日 26日 26日 26日 26日 26日 26日 26日 26	207日 211日 230日 226日	1321m 1209m 1197m 1230m	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	76в 71в 72в 67в	178m 188m 171m 156m	1971 и 1696 в 1672в 1813в	17.2m 26.8mn 33.2n 37.30
Plants/ha: (1000's)	99 198 296	80r 109 s 135t	6.8r 9.8s 12.3t	104r 145s 185t	60r 82s 101t	19r 26s 34t	160r 221s 275t	1012r 1202r 1504s	65r 82s 108t	52r 72s 91t	133r 170s 217t	1516r 1707r 2141s	22.0r 29.3s 34.4s

YNo significant interactions. ^ZMean separation within sets by Duncan's multiple range test at the 5% levels.

Literature Cited

- Anonymous. 1970. Methods of Analysis of the Association of <u>Official Agricultural Chemists</u>. Eleventh ed. Washington, D. C.
- Bishop, R. F., E. W. Chipman and C. R. MacEachern. 1969. Effect of nitrogen, phosphorus and potassium on yields and nutrient levels in laminae and petioles of pickling cucumbers. <u>Can. J. Soil Sci</u>. Vol. 49, 297-304.
- 3. Cantliffe, D. J. 1977. Nitrogen fertilizer requirements of pickling cucumbers grown for once-over harvest I. Effect on yield and fresh quality. <u>J. Amer. Soc. Hort</u> Sci. 102(2):112-114.
- 4. Cantliffe, D. J. 1977. Nitrogen fertilizer requirements of pickling cucumbers grown for once-over harvest II. Effect on plant tissue mineral nutrient concentrations <u>J. Amer. Soc. Hort. Sci</u>. 1-2(2):115-119.
- 5. Cantliffe, D. J., G. E. MacDonald, and N. H. Peck. 1970. The potentiometric determination of nitrate and chloride in plant tissue. <u>New York's Food and Life Sci. Bul</u>. No. 3.
- 6. Carpenter, P. N. 1964. Spectograph analysis of plant tissues. <u>Main Agr. Exp. Sta. Misc. Publ</u>. 666.
- 7. Dearborn, R. B. 1936. Nitrogen nutrition and chemical composition in relation to growth and fruiting of the cucumber plant. <u>Cornell Univ. Agr. Exp. Sta. Mem</u>. 192.
- El-Sheikh, A. M., M. A. Abd El-Hakam and Albert Ulrich. 1970. Critical nitrate levels for squash, cucumber, and melon plants. <u>Comm. in Soil Sci. and Plant Anal</u>. 1:63-74.
- 9. McCollum, R. E. and C. H. Miller. 1971. Yield, nutrient uptake and nutrient removal by pickling cucumbers. J. Amer. Soc. Hort. Sci. 96:42-45.
- Miller, C. H. 1957. Studies on the nutrition and physiology of pickling cucumbers. Ph.D. Thesis, Mich. State Univ. 69 pages.
- 11. Rajzer, C. J. 1977. The influence of nitrogen and plant population on several cultivars of pickling cucumbers I. Fruit yields. (<u>Proposed ASHS</u>)

- 12. Reynolds, C. W. 1954. Studies with cucumbers for pickling. Ph.D. Thesis, Univ. of Maryland.
- Ries, S. K. 1957. The effect of spacing and supplemental fertilizer applications of the yields of pickling cucumbers. <u>Mich. Agr. Exp. Sta. Quart</u>. <u>Bul</u>. 40(2):375-381.
- 14. Tiedjens, V. A. 1926. Some observations on the response of greenhouse cucumber (<u>Cucumis sativus</u>) to certain environmental conditions. <u>Proc. Amer. Soc. Hort. Sci</u>. 23:184-189.

APPENDICES

Maia officer						Grades				
		14	Я	2A	2B	3A	3B	4'S	Culls	Total
Cultivars:	Green Star Premier	0.4a ^z 0.2a	0.8a 0.6a	0.9a 0.8a	1.la 0.9a	3.8a 3.5a	1.3a 1.1a	1.4a 1.5a	0.8a 0.8a	10.6a 9.4a
Nitrogen: (kg/ha)	0 34 67	0.3m 0.3m 0.3m	0.6ш 0.6ш 0.9п	0.6m 0.8mn 1.1n	0.6m 0.8mo 1.3n	2.7m 3.5m 4.3m	0.9m 1.1m 1.4m	1.1mn 2.1m 1.8m	1.2m 1.3m 0.4n	8.1m 10.3m 11.5m
Plants/ha: (1000's)	101 99 148 198	0.3m 0.2r 0.3r 0.3r	0.8m 0.6r 0.7r 0.8s	1.1n 0.8r 0.9rs 1.0s	1.2no 0.9r 1.0r 1.0r	4.1m 3.4r 3.9r 3.6r	1.3m 1.3r 1.2r 1.1r	0.8n 1.6r 1.6r 1.1s	0.4n 0.6r 0.9s 1.0s	10.1m 9.5r 10.4r 10.1r

of fruit.
(MT/ha)
Weight
planting:
Early
le A-1.
Tab

^zMean separation within sets by Duncan's multiple range test at the 5% level.

					Grade			
Main effect:	0	IA	1B	2A	2B	3A	3B	4's
Cultívars:	Green Star Premier	10.2a ^z 4.0a	18.1a 14.6a	42.5a 37.8h	67.la 60.4a	111.9a 108.4a	153.4a	196.3a 215.4h
Ni troven :	0	4_0m	15.4m	37.7m	59.5m	109.6m	143.2m	183_0m
(kg/ha)	34	7.7m	15.9m	40.0n	63.0mn	108.0m	148.0m	189.5m
	67	4.8m	17.5n	42.00	65.6n	112.2m	163.2m	205.6m
	101	12 . 0m	16 .5mp	40.9no	67.ln	110.7m	160.2m	245.3m
Plants/ha:	66	4.0r	16.4r	40.2r	63.0r	108.2r	155.5r	197.3r
(1000's)	148	12.6 r	17 . 0r	40.lr	65.2r	113.0r	160.3r	239 . 6r
	198	4 . 8r	15 . 6r	40.lr	63.2r	108.9r	145.lr	180 . 6r
ZW						1 1 1		

•
<u>@</u>
Wt(
Fruit
planting:
Early
A-2.
Table

'Mean separation within sets by Duncan's multiple range test at the 5% level.

at harvest.
parameters
Other plant
urly planting:
Table A-3. Ea

.

Main effects		Vine length (cm)	Fresh vine wt. (MT/ha)	Percent fruit of biomass	Culls fruit/vine
Cultivars:	Green Star Premier	99.9a ^z 86.9b	22.0a 15.1b	30.7a 36.6a	.14a .12a
Nitrogen: (kg/ha)	0 34 67	92.4m 92.6m 94.2m	15.8m 17.3m 20.4m 20.7m	32.0m 35.3m 32.3m	.19m .17m .09n
Plants/ha: (1000's)	 99 148 198	92.6r 93.3r 94.3r	16.6r 18.5s 20.5t	35.lr 34.7r 31.3s	.16r .13s .11s
² Mean separation	within sets by D	uncan's multiple	e range test at t	he 5% level.	

51

node.
flowers per
Pistillate
planting:
Early
A-4.
Table

						Node	locatio	u				
Main ettecté	-	1	7	°	4	2	9	7	80	6	10	Mean
Cultivars:	Green Star Premier	.29a ^z .36a	.83a .69a	.77a .55a	.69a .52b	.62a .52a	.71a .62a	.84a .64a	.92a .74b	.98a .78a	.99 a .83a	.76a .62a
Nitrogen: (kg/ha)	0 34 101	. 32 . 37 в . 32 в	. 78m . 78m . 73m . 75m	.67в .66в .64в .67в	.65m .58m .56m	.65m .53m .57m	. 66ш . 66ш . 68ш . 67ш	. 79п . 69п . 73п . 76ш	.85m .80m .83m .83m	.92m .87m .86m .88m	.93m .92m .89m	.72 .69 .68 в
Plants/ha: (1000's)	99 148 198	.32r .33r .32r	.76r .75r .76r	.67r .68r .63r	.62r .64r .55r	.59r .57r .56r	.66r .66r .68r	.74r .76r .73r	.82r .81r .85r	.88r .86r .90r	.91r .90r .91r	.70r .70r .69r
^z Mean separa	ition within se	ts by Dur	ıcan's	multiple	range	test at	the 5%	<pre>% level.</pre>				

						Nod	e locati	uo				
Main effects			2	с	4	S	9	7	ω	6	10 Av	erage
Cultivars:	Green Star Premier	.06a ^z .15a	.10a .26a	.22a .44a	.30a .47b	.35a .48a	.28a .38a	.14a .35a	.08a .26b	.01a .22a	.01a .17a	.16a .32a
Nitrogen: (kg/ha)	0 34 67 101	.14m .06m .11m .11m	.16m .17m .18m .20m	.32m .33m .34m .32m	.33 .41 .44 .37 .37	.348 .438 .428	.34m .33m .32m .32m	.21m .28m .27m .23m	.14m .20m .17m .17m	.08m .12m .14m	.07m .08m .10m	.21m .24m .25m .25m
Plants/ha: (1000's)	99 148 198	.09r .12r .10r	.17r .18r .18r	.33r .31r .36r	.38r .34r .44r	.40r .43r .42r	.33r .33r .32r	.26r .23r .25r	.18r .18r .15r	.11r .14r .10r	.09r .10r .09r	.23r .24r .24r
^z Mean separatic	n within sets	by Dunca	um s'nu	tiple 1	cange te	st at	the 5% 1	evel.				

. opou
рег
flowers
Staminate
planting:
Early
A- 5.
Table

per node.
flowers
Blind
planting:
Early
A-6.
Table

						Node	e locati	ton				
Main effects			2	е	4	2	9	6	8	6	10	Mean
Cultivars:	Green Star Premier	.64a ² .49a	.08a .05a	.01a .01a	.02a .01a	.02a .01a	.01a .01a	.01a .01a	.01a .01a	.01a .00a	.00a .00a	.08a .06b
Nitrogen: (kg/ha)	0 34 67 101	.54m .57m .57m	.06m .06m .09m	011 010.01 010.01	.02m .01m .01m	.01m .03m .01m .00m	01m 02m 01m 01m	.01m .02m .01m .01m	01m 00m 01m 00m	00 . 01 . 00 . 00 .	000 00 00 00 00	.07 .07 .07 .07 .07 .07
Plants/ha: (1000's)	99 148 198	.58r .55r .58r	.07r .07r .06r	.01r .01r .01r	.01r .02r .01r	.02r .01r .02r	.01r .01r .01r	.00r .01r .02r	.01r .01r .00r	.01r .00r .00r	.00r .00r .00r	.07r .07r .07r
^z Mean separati	on within sets	by Dunca	um s'nu	ltiple 1	tange te	st at t	che 5%]	level.				

Main effects		Hd	BpH	d.	K (kg/ha)	Ca	Mg
Cultivars:	Green Star Premier	5.8a ^z 5.8a	6.5a 6.5a	211.2a 205.0a	324.3a 360.4a	1513.4a 1595.5a	302.94 300.3a
Nitrogen: (kg/ha)	0 34 67 101	6.0m 5.9mn 5.8n 5.60	6.6m 6.6m 6.5m 6.4n	221.1m0 246.8m 187.1no 177.5n	359.2m 350.9m 336.6m 322.8m	1584.3m 1569.4m 1517.0m 1547.0m	298.9m 310.3m 301.7m 295.6m
Plants/ha: (1000's)	99 148 198	5.8r 5.8r 5.8r	6.5r 6.5r 6.5r	213.9r 199.8r 210.6r	350.1r 340.6r 336.6r	1552.6r 1525.8r 1575.0r	306.8r 299.3r 298.6r
		-			i i i		

analyses.
Soil
planting:
Early
A-7.
Table

²Mean separation within sets by Duncan's multiple range test at the 5% level.

Main effects		Vines pl July 1 ^z	us fruit July 9	Vines July 17-199	Fruit July 17-197
Cultivars:	Green Star Premier	4.2a ^x 3.5a	12.0a 10.0b	21.4a 16.4a	4.8a 5.6a
Nitrogen: (kg/ha)	0 34 67 101	3。7日 4。0日 4。0日 3。7日	9.7ш 11.1ш 11.5ш 11.6ш	17.6m 18.6m 17.8m 21.8m	4.1m 4.9mn 5.9n 5.8n
Plants/ha: (1000's)	99 148 198	3.8r 3.8r 3.9r	10.5r 11.8r 10.5r	19.9r 19.2r 17.7r	5.7r 4.6r 5.2r
^z Tipover.					

planting.
early
for
(g)
ry weights
3-A
Table

^yHarvest. *Mean separation within sets by Duncan's multiple range test at the 5% level.

			F	,	ç	4	ł	ţ	ł	f	1	1	
		z	ւ	¥	Ca	Вш		re	Cu.	a	U7	TH	N-S-N
Main effect	Ø			(%)						(mqq			
Cultivars:	Green Star Premier	4.1aY 4.0a	.31a .29a	4.8a 4.2a	2.3a 2.2a	. 69a . 69a	68a 64a	807a 884a	34a 31a	23a 20a	64a 67a	1398a 1450a	13.1a 11.4a
Ní trogen : (kg/ha)	0 34 67 101	3.7m 4.0n 4.20	. 31m . 34m . 30mn . 26n	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3.5.5 3.1 3.1 1.1 2.5 3 1.1 2.5 5 7 1.1 5 7 1.1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	. 70n . 70n	53m 63mn 70no 780	802m 813m 857m 910m	36m 31m 31m 33m	22m 22m 22m 21m	62m 62m 66m 72m	1360m 1510m 1458m 1369m	6.6m 9.6m 16.0n 16.8n
Plants/ha: (1000's)	99 148 198	4.lr 4.lr 3.98	30r 30r 31r	4.4r 4.5r 4.7r	2.3r 2.3r 2.2r	.70r .69r .68r	66r 68r 64r	907r 850rs 780s	32r 35r 31r	21r 21r 22r	65r 67r 64r	1547r 1429rs 1296s	11.9r 12.6r 12.3r
^z Tipover													

N
planting.
early
for
1,
July
uo
analyses
Nutrient
A-9.
Table

y Mean separation within sets by Duncan's multiple range test at the 5% level.

planting.
early
for
ົ
July
uo
analyses
Nutrient
A-10.
Table

		N	д	К	Са	Mg	Min	Fe	Cu	В	Ωn	Al	NO3-N
Main effect	Ø			(%)						(mdd)			
Cultivars:	Green Star Premier	3.4a ^z 3.3a	.26a .27a	5.0a 4.6a	2.la 2.la	.69a .67a	67a 62a	564a 571a	3ба 34а	24a 22a	60a 64a	1067a 1043a	8.6a 7.5a
Nitrogen: (kg/ha)	0 34 67 101	3.5m 3.1m 4.0n	.29m .30m .25n	4.78 4.68 5.18	1.8m 2.2n 2.3n	.59m .70n .71n .72n	49m 58m 71n 80n	538m 543m 597m 592m	36в 35в 36в	23 n 23 n 23 n	56m 58m 63m 73m	992m 1106m 1132m 992m	1.3m 4.9m 9.8n 16.2o
Plants/ha: (1000's)	99 148 198	3.4r 3.3r 3.3r	.27r .26r .26r	4.8r 4.8r 4.8r	2.lr 2.2r 2.lr	.68r .69r .67r	61r 66r 66r	580r 592r 532r	35r 35r 34r	23r 23r 22r	61r 64r 62r	1070r 1116r 978r	9.2r 7.6r 7.3r
ZMean separa	ation within	sets by	Dunca	n's mul	tiple r	ange te	st at	the 5%	level.				

[able A-11. Nutrient analysis in vines only on July 17 - 19, for early planting. ²	
[able A-11. Nutrient analysis in vines only on July 17 - 19, for early plant:	ing. ^z
Table A-11. Nutrient analysis in vines only on July 17 - 19, for early $_{ m I}$	planti
[able A-ll. Nutrient analysis in vines only on July 17 - 19, for e	arly
[able A-11. Nutrient analysis in vines only on July 17 - 19,	for e
Table A-11. Nutrient analysis in vines only on July 17 -	19,
Table A-11. Nutrient analysis in vines only on July 17	1
Table A-11. Nutrient analysis in vines only on July	17
Table A-11. Nutrient analysis in vines only on	July
Table A-11. Nutrient analysis in vines only	uo
Table A-11. Nutrient analysis in vines	only
Table A-11. Nutrient analysis in	vines
Table A-11. Nutrient analysis	in
Table A-11. Nutrient	analysis
Table A-11.	Nutrient
	Table A-11.

Main affart	a	N	Ъ	К	Ga	Mg	Æ	Ч	Cu	æ	Ωn	Al	N-EON
HALL STREET	n			(%)						(mdd)			
Cultivars:	Green Star Premier	2.7ay 2.9a	.22a .23a	4.la 3.9a	2.5a 2.5 a	.81a .74a	74a 65a	634a 567a	36a 30a	29a 25a	67a 72a	1046a 965a	5.3a 4.2a
Nitrogen: (kg/ha)	0 34 101	2.2m 2.5m 3.0n 3.50	.25m .26m .20n	3.6m 4.0mn 4.ln 4.3n	2.4m 2.4m 2.6m 2.7m	.68m .75mn .87no .81o	56m 62mn 78no 820	622m 628m 562m 589m	38m 32m 33m 33m	28m 27m 26m 26m	64日 64日 69日 82日	1056m 1097 m 946 m 922 m	0.5m 2.4m 6.6n 9.6o
Plants/ha: (1000's)	99 148 198	2.9r 2.8r 2.7r	.22r .23r .23r	4.0r 4.3s 3.8r	2.5r 2.5r 2.5r	.78r .77r .78r	67r 71r 70r	679r 534s 587rs	36r 32r 32r	26r 27r 28r	69r 69r 72r	1094r 937r 986r	5.lr 5.7r 4.6r
² Harvest													

THARVEST. YMean separation within sets by Duncan's multiple range test at the 5% level.

N
00 C
Æ
ц,
g
P]
า
H
ê
L
5
чн
_
13
2
₹.
5
Ċ
đ
0
Ļ
H
្អ
44
q
•••
00
8
- Ř
[]
ĝ
-
Ę
en
-
t 1
Ľ,
1
-
2
7
÷
a
, T
ab
Ĥ

		N	Ь	K	Ca	Mg	ų.	Ге	Cu	В	Zn	Al	NO3-N
Main effect	8			(%)						(mqq)			
Cultivars:	Green Star Premier	2.6a ^y 2.6a	.28a .30a	5.2a 5.2a	.32a .35a	.26a .25a	23a 21a	164a 88a	16a 15a	15a 14a	23a 24a	189 a 69b	0.3a 0.5a
Nitrogen: (kg/ha)	0 34 67 101	2.2m 2.3m 2.7n 3.1o	.34m .30n .27n .27n	5.2m 5.2m 5.2m 5.2m	. 33m . 32m . 31m . 38m	. 26m . 25m . 26m	21n 22n 22n 22n	108ш 127ш 129ш 140ш	16m 17m 19m 11m	15m 15m 14m 14m	24n 25n 23n 22n	126m 146m 122m 121m	0.1m 0.2m 0.4n 1.00
Plants/ha: (1000's)	99 148 198	2.7r 2.6rs 2.4s	.30r .29r .29r	5.3r 5.2rs 5.1s	.35r .35r .30r	.28r .25r .25r	23r 21r 21r	149r 113s 116s	16r 16r 14r	15r 14r 14r	25r 23r 22r	161r 109r 116r	0.4r 0.4r 0.4r
Zyarvaet													

"Harvest. YMean separation within sets by Duncan's multiple range test at the 5% level.

N
planting.
early
for
19,
I.
17
July
uo
fruit
and
vines
of
analyses
Nutrient
Table A-13.

*1

		N	4	К	Ca	Mg	Wn	Fе	Cu	В	Zn	Al	N- ² ON
Main effect	Ø			(%)						(mdd)			
Cultivars:	Green Star Premier	5.4a ^y 5.4a	.51a .54a	9.3a 9.2a	2.9a 2.8a	.81a .74a	97a 86a	798a 654a	52a 46a	44a 39a	90a 96a	1235a 1033a	5.7a 4.7a
Nitrogen: (kg/ha)	0 34 67 101	4.4m 4.8m 5.7n 6.6o	.59m .56m .47n .47n	8.9m 9.2m 9.2m 9.5m	2.7m 2.7m 3.0m 3.1m	.68m .75mn .87no .81o	76m 84m 100n 104n	730m 755m 691m 729m	538 498 458	4 3日 4 1日 4 0日 4 0日	88m 89m 92m 104m	1182m 1243m 1068m 1044m	0.6m 2.6m 7.0n 10.6o
Plants/ha: (1000's)	99 148 198	5.6r 5.4rs 5.1s	.53r .52r .52r	9.3r 9.5r 8.9s	2.9r 2.8r 2.8r	.78r .77r .78r	90r 92r 92r	828r 648s 703s	52r 48r 46r	42r 41r 42r	94r 92r 95r	1254r 1046r 1103r	5.5r 6.2r 4.0r
^Z Harvest													

harvest. YMean separation within sets by Duncan's multiple range test at the 5% level

N
planting.
early
for
1,
July
uo
content
Nutrient
A-14.
Table

		N	4	м	Ca	Mg	Å	Fe	Cr	æ	Zn	Al	N-EON
Main effect:	Ø		-	(kg/ha)						(g/ha)			
Cultivars:	Green Star Premier	25a ^y 21a	1.9a 1.5a	30а 22а	14a 12a	4.3a 3.6a	42a 33a	476a 450 a	21a 16a	14a 11a	39a 35a	841a 742a	8.4a 6.1a
Nitrogen: (kg/ha)	0 34 67 101	20m 23m 25m 24m	1.0m 2.0m 7.8m 1.8m	24 m 27 n 27 n 27 n	11m 14m 13m	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 m 38n 41n 43n	412m 472m 480 m 489m	180 180 190	11 0 138 128	338 40 40 338 338 338 40 338 338 338 338 338 338 338 338 338 33	700m 874m 834m 757m	3.5m 5.8m 9.6n 10.0n
Plants/ha: (1000's)	99 148 198	15r 23s 30t	1.2r 1.78 2.4t	16r 268 37t	8r 138 17t	2.6r 4.0s 5.3t	24r 39s 50t	325r 471s 593t	12r 20s 24t	8r 12s 17t	24r 38s 50t	577r 806s 991t	4.2r 7.6s 9.9t
² Tin-over													

Tip-over ^yMean separation within sets by Duncan's multiple range test at the 5% level.

N
planting.
early
for
6
a July
õ
content
Nutrient
A-15.
Table

		N	4	×	Ca	Mo	Mn	Ч. Ч	Cu	8	Zn	L TA	N-CON
Main effect:	Ø			(kg/ha)		P				(g/ha)			
Cultivars:	Green Star Premier	60a ² 49a	4.5a 3.9a	86a 68a	39a 31a	12a 10a	121a 94b	999a 843a	63a 50a	43a 32b	107a 97a	1904a 1552a	15a 12a
Nitrogen: (kg/ha)	0 34 67 101	36m 51n 62no 70o	3 4 4 3 3 4 4 3	68m 76m 79m 87m	26 m 36n 38n 40n	8m 12n 12n 12n	70m 98n 1230 1410	744m 875m 1056m 1012m	52m 56m 62m 62m	日日 70日 70日 70日 70日 70日 70日 70日 70日 70日 7	79m 94mn 108no 1270	1373m 1805m 2028m 1706m	2日 270日 270日 270日
Plants/ha: (1000's)	99 148 198	36r 58s 70t	2.8r 4.68 5.3t	51r 83s 99t	22r 39s 44t	7r 12s 14t	64r 118s 141t	606r 1048s 1111s	36r 61s 71s	24r 41s 47t	64r 112s 130t	1125r 2015s 2044s	10r 14s 16s
ZMaan sanar	stion within s	aata hu		[+ 1 n l n		t oot	т + ho 59	lavel '				

Mean separation within sets by Duncan's multiple range test at the 5% level.

N
planting.
early
for
19,
1
11
July
uo
only
vines
in
content
Nutrient
A-16.
Table

		z	Ь	К	Ca	Mg	Mn	Fe	Сц	B	Zn	A1 1	N-EON
Main eilect	70			(kg/ha					(g/ha)				
Cultivars:	Green Star Premier	86a ^y 72a	6.7a 5.7b	128a 94a	79a 62a	25a 18a	232a 165a	1917a 1374a	112a 75a	90a 61b	212a 184a	3088 a 2335b	18a 11b
Nitrogen: (kg/ha)	0 34 67 101	57m 67m 79m 111n	6.3m 5.4m 6.2m	95m 104m 106m 140n	63m 65m 85m 85m	18 m 20 m 23 m 26 m	146m 173mn 209no 266o	1547m 1713m 1469m 1853m	98m 89m 80m 106m	7 4m 7 5m 7 0m 8 4m	166m 180m 185m 260m	2595m 2978m 2435m 2837m	2ш 6ш 17п 32о
Plants/ha: (1000's)	99 148 198	57r 82s 97s	4.4r 6.4s 7.9t	78r 123s 132s	50r 71s 90t	16r 22s 28t	136r 205s 254t	1403r 1533r 2000s	77r 92rs 111s	53r 77s 98t	139r 199s 256t	2224r 2638r 3273s	10r 18r 15r

²Harvest YMean separation within sets by Duncan's multiple range test at the 5% level.

Vit- officers					Grade	es S				
MAIN EILECLS		lA	IB	2A	2B	3A	3B	4's	Culls	Total
Cultivars:	Green Star	0.1a ^z	0.8a	1.5a	1.7a	4.2a	0.7a	0.5a	0.6a	10.2 a
	Premier	0.2a	0.9a	2.1b	2.8b	6.0a	0.6a	0.4a	0.6a	13.6a
	MS U- 76	0.la	0.9a	2.4b	3 . 7b	5.8a	0.4a	0.3a	0.5a	14 . 2a
Nitrogen:	0	0.lm	0.8m	1.9m	2 . 8m	5 . 9m	0.8m	0.5m	0.5m	13.4m
(kg/ha)	34	0.2m	1.0m	1.8m	2.6m	5.1m	0.4m	0.5m	0.6m	12.lm
	67	0.2m	0.9m	2.2m	3.0m	5.2m	0.6m	0.4m	0.6m	13.0m
	101	0.1m	0.8m	2.lm	2.7m	5.0m	0.5m	0.3m	0.5m	12.lm
Plants/ha:	66	0.lr	0.6r	1.5r	2.2r	5.3rs	0.9r	0.8r	0.3r	11.8r
(1000's)	198	0.lr	0.9s	2.0s	2.9s	5 . 8r	0.6s	0.3s	0.5s	13.2s
	296	0.2r	1.ls	2.5t	3.2t	4.9s	0.2t	0.lt	0.8t	13.0s
e										

fruit.
of
(MT/ha)
Weights
planting:
Late
A-17.
Table

²Mean separation within sets by Duncan's multiple range test at the 5% level.

Main effect	S	1A	18	2A	Grade 2B	3A	3B	4's
Cultivars:	Green Star Premier MSU-76	5.3a ^z 6.6a 6.8a	15.8a 15.5a 18.2a	38.3a 39.8a 39.6a	63.4a 63.5a 63.1a	102.3a 101.2a 100.9a	117.5a 124.8a 128.3a	105.6a 117.5a 126.1a
Nitrogen: (kg/ha)	0 34 67 101	5.98 6.58 6.28	16.2m 17.3m 15.5m 17.1m	39.6m 39.6m 38.5m 39.2п	63.6m 64.Оп 63.2n 62.6n	102.4m 100.7m 102.5m 100.3m	131.8m 116.7m 140.9m 104.8m	106.4m 136.9m 114.5m 107.8m
Plants/ha: (1000's)	99 198 296	6.4r 6.4r 5.8r	17.2r 16.4r 15.9r	39.6r 38.6r 39.4r	63.7r 63.3r 63.0r	104.5r 102.7r 97.2s	150.8r 131.4r 88.5s	164.2r 132.1r 52.9s
^z Mean separa	ation within a	sets by Du	uncan's mul	tiple range	test at th	e 5% level.		

Table A-18. Late planting: Fruit wt (g).

harvest.
at
parameters
plant
Other
planting:
Late
A-19.
Table

Main effects		Vine length (cm)	Fresh vine wt. (MT /ha)	Percent fruit of biomass	Culls fruit/vine
Cultivars:	Green Star	102.1a ^z	29.2a	25.6a	.08a
	Premier	99 . 6a	24 . 5a	35 . 5a	. 08a
	MSU-76	98 . 0a	27 . 2a	34.la	. 06a
Nítrogen:	0	101 . 6m	27.5m	32 . 0m	. 07m
(kg/ha)	34	99.4m	27.2m	31.6m	.07m
ŀ	67	99.8m	27 . 3m	31.9m	.08m
	101	98 . 8m	25 . 7m	31 . 6m	. 08 m
Plants/ha:	66	100 .8r	22 . 6r	34.lr	.08r
(1000's)	198	101.1r	27.9s	31.9s	.07r
	296	97 . 8r	30.4t	29.3t	.07r
ZWoon conception	······································		44 40 4004 0000	<pre>> E 4 101</pre>	

Mean separation within sets by Duncan's multiple range test at the 5% level.

Main efferts						Nod	e locat	ion				
			5	m	4	Ω	٩	-	∞	6	F0	Mean
Cultivars:	Green Star	.24a ^z	.96a	. 93 a	.93a	, 99a	1.00a	1.00a	.99a	1.00a	.99a	.90a
	Premier	.56b	.98a	.73b	.51b	.87b	.99a	.99a	.99a	.99a	. 99a	. 85b
	MSU-76	. 58b	. 96a	.91a	. 86a	. 95a	1.00a	.99a	1.00a	1.00a	.99a	.92a
Nitrogen:	0	.51m	.95m	.79m	.73m	.95m	1.00m	1.00m	1.00m	1.00m	.99m	. 88m
(kg/ha)	34	.44m	. 96m	. 88n	.76mn	.94m	. 99ш	1.00m	.99	.99ш	. 97ш	. 89m
1	67	.43m	.97m	. 88n	. 76mm	. 94m	1.00m	. 99 m	. 99m	1.00m	1.00m	.89m
	101	.48m	.97m	.87n	. 82n	.93m	1.00m	.99m	.99m	1.00m	.99m	. 90
Plants/ha:	66	.54r	.96r	.89r	.80r	.96r	.99r	1.00r	1.00r	.99r	.99r	.91 r
(1000's)	198	.44s	.96r	.85rs	.76rs	.93r	1.00r	.99r	.99r	1.00r	.99r	. 89s
	296	.42s	.96r	. 83s	.73s	. 93 r	.99r	.99r	.99r	1.00r	.99r	. 88s
^z Mean separati	ion within sets	by Dunca	n's mul	tiple r	ange te:	st at	the 5%	level.				

Table A-20. Late planting: Pistillate flowers per node.

						Node	- locati	uo				
Main effects			2	3	4	2	9	7	ø	6	10	Mean
Cultivars:	Green Star Premier Wen-76	.01a ^z .01a	.01a .02a	.07a .27b	.06a .49b	.01a .13a	.00a .01a	.01a .01a	.01a .01a	.01a .01a	.01a .01a	.02a .10b
Nitrogen: (kg/ha)	0 34 67 101	001 100 100 100 100 100 100 100	.03 .03 .02 .01 .01 .02	.21m .11n .12n .13n	.27m .23mn .24mn .18n	.05m .06m .06m .07m	п10. п10. п10. п10.	010 10. 010 010	m10. m10. m10. m10.	.00m .00m .00m .00m	.01m .02m .00m	.05mn .05mn .05mn
Plant/ha: (1000's)	99 198 296	.00r .01r .01r	.02r .02r .02r	.11r .15rs .16s	.20r .23rs .26s	.04r .07r .07r	.01r .00r .01r	.01r .01r .01r	.01r .01r .01r	.01r .01r .01r	.01r .01r .01r	.04r .05s .06s

node.
per
flowers
Staminate
planting:
Late
A-21.
Table

²Mean separation within sets by Duncan's multiple range test at the 5% level.

						Node	locati	Б				
Main effects		1	2	3	4	5	9	7	8	6	10 Av	erage
Cultivars:	Green Star Premier MSU-76	.74a ^z .44b .41b	.02a .02a .02a	.01a .01a .00a	.01a .01a .00a	.00a .00a .00a	.00a .00a .00a	.00a .00a .00a	.00a .00a .00a	.00a .00a .00a	.00a .00a .00a	.08a .05b .04b
Nitrogen: (kg/ha)	0 34 67 101	.47m .56m .57m .52m	.02m .02m .03m .01m	.00m .01m .01m .00m	.01m .01m .00m	00 00 00 00 00	00 00 00 00 00 00	00 00 00 00 00	00m 00m 00m	по 100 100 100 100 100 100 100 100 100 10	000 000 000 00	.05m .06mn .06n
Plants/ha: (1000's)	99 198 296	.46r .56s .57s	.01r .02r .02r	.01r .00r .01r	.01r .01r .01r	.00r .00r	.00r .00r .00r	.00r .00r .00r	.00r .00r .00r	.00r .00r .00r	.00r .00r .00r	.05r .06s .06s
^z Mean separat	ion within sets	by Dunc	an's mu	ltiple	range t	est at	the 5%	level.				

Table A-22. Late planting: Blind flowers per node.

Main effects		Hd	BpH	Þ.	K (kg	Ca /ha)	Mg
Cultivars:	Green Star Premier MSU-76	6.0a ^z 6.0a 6.0a	6.7a 6.6a 6.6a	145.5a 168.6a 186.8a	333.4a 302.4a 343.5a	1375.1a 1412.5a 1382.5a	218.4 a 212.6a 210.8a
Nitrogen: (kg/ha)	0 34 67 101	6.lm 6.0mn 5.9n	6.7 п 6.6ш 6.7п	165.5m 180.6m 166.4m 155.4m	304.1m 333.8m 333.6m 334.4m	1365.2m 1245.5m 1484.6m 1464.8m	216.5m 193.8m 225.1m 220.2m
Plants/ha: (1000's)	99 198 296	6.0r 6.0r 6.0r	6.7r 6.7r 6.6r	161.2r 164.8r 174.8s	316.1r 329.4r 334.0r	1412.5r 1390.0r 1367.6r	212.1r 217.5r 212.1r

analyses.
Soil
e planting:
Late
A-23.
Table

²Mean separation within sets by Duncan's multiple range test at th 5% level.

planting.
late
for
(g)
weights
Dry
A- 24.
Table

		Vines pl	us fruit	Vines	Fruit
Main effects		August 24z	Sept. 1	Sept. 13-17 ^y	Sept. 13-17 <u>9</u>
Cultivars:	Green Star	4.8a ^x	10.4a	15.8a	3.la
	Premier	4.6a	10.9a	11.3a	4.la
	MSU-76	5.2a	11.6a	15.1a	4.43
Nitrogen:	0	4.8m	11.Om	14 . 5m	3.7m
(kg/ha)	34	5.0	10.9	13 . 9m	3 . 9m
ŀ	67	4.8m	11.2m	14.3	4. JE
	101	4°-9	10.5m	13 . 5m	3 . 7m
Plants/ha:	66	5 . 8r	14.lr	18 . 7r	4.8r
(1000's)	198	4.7s	10.0s	12.6s	3.7s
	296	4.0t	8.6t	10.8t	3.lt
Zm.					

"Tip-over."
yHarvest.
XMean separation within sets by Duncan's multiple range test at the 5% level.

Table A-25.	Nutrient and	alyses on	n Augus	t 24, f	or late	planti	z, gn						
		N	ЪЧ,	м	Ca	Mg	Mn	Fe Бе	Сп	В	Zn	Al	NO ₃ -N
Main effects				(%)						(mdd)			
Cultivars:	Green Star Premier MSU-76	3.9аУ 3.9а 3.9а	.23a .25a .25a	4.5a 4.1a 4.1a	2.7a 2.7a 2.8a	.88a .92a .89a	71a 74a 71a	419a 470a 380a	14a 16a 12a	20.4a 19.4a 19.5a	50a 50a 52a	637a 761a 560a	9.6a 9.3a 8.0a
Nitrogen: (kg/ha)	0 34 67 101	3.88 3.98 4.08	. 25m . 25m . 25m . 24m	4.2日 4.4日 4.2日 4.2日 4.2日	2.6m 2.7m 2.8m 2.8m	. 93m . 85m . 92m	66m 67m 73n 82o	453m 395m 419m 425m	16m 12m 12m 15m	19.4m 19.7m 19.7m 20.1m	47m 53m 51n 52n	728m 588m 632m 662m	7.9ш 8.9шп 9.2п 9.2п
Plants/ha: (1000's)	99 198 296	4.0r 3.9s 3.7t	.27r .24s .23s	4.3r 4.2r 4.2r	2.8r 2.8r 2.6s	.89r .91r .89r	72r 73r 71r	479r 396s 394s	14r 13r 15r	20.4r 19.6s 19.3s	52r 51r 49r	764r 597s 597s	9.2r 8.6r 9.1r

²Tip-over ^yMean separation within sets by Duncan's multiple range test at the 5% level.

Table A-26.	Nutrient and	alyses c	n Septe	ember 1,	, for la	ite plar	iting.						
		z	θ.	×	C C B	Mg	Ŵ	Fe	Сц	щ	Zn	A1	NO ₃ -N
Main effects	~			(%)						(mdd)			
Cultivars:	Green Star	3.9a ^z	. 29a	4 . 5a	2.9а	.93a	76a	528а	14a	23 . 2a	56a	758a	10.9a
	Premier	4.0a	.33a	4.2a	3.la	.94a	76a 70	518a	17a	21.6a	60a	752a	11.0a
	MSU- /0	4 . La	act.	4.38	3 . Ua	864.	/ya	4/Ja	LJa	22.03	03a	049a	y.3a
Nitrogen:	0	3.7m	. 34m	4.3m	2.9m	.97m	69m	522m	15m	22.2m	53m	746 m	6.3n
(Kg/ha)	34	4.lm	.32m	4.4m	2.9m	. 86m	73mn	466m	15m	22.2m	65n	630m	10.3n
	67	4.0m	. 32ш	4.3m	3. l u	巴6.	80no	507m	16m	22.7m	61n	720m	12.0no
	101	4.2m	.31m	4.3m	3.0m	. 96ш	88o	533m	15m	22.7m	59mn	784m	13.00
Plants/ha:	66	4.2r	.34r	4.2r	3.1r	.92r	76r	595r	16r	22.9r	60 r	902r	11.2r
(1000's)	198	4.0s	.328	4.2r	3.0r	.94r	81s	484 s	15r	22.5rs	61r	659s	9.8r
	296	3 . 9t	.318	4.5r	2 . 9r	.96r	75r	443s	15r	22.0s	57 r	600s	10.3r
ZWOOD								6 1	-				

late planting.
for
Ъ,
September
uo
analyses
Nutrient
e A-26.
1

's multiple range test at the 5% level. Mean separation within sets by Duncan'

Table A-27.	Nutrient ar	alyses	in vines	only c	n Septe	ember 13	3 - 17,	for la	ite pla	inting. ^z			
Main effects		N	6 4	X	Ca	Mg	Å	Ъ	Сп	B	Zn	Al	NO3-N
				(%)						(mdd)			
Cultivars:	Green Stai	: 3.2a ^y	.24a	4.2a	3.0a	1.01a	77a	525a	33a	25.4a	59a	816a	10.2a
	Premier	3.4a	. 25a	4.2a	3.1b	.96a	8la	460a	35a	23.la	62a	663a	11.7a
	MSU-76	3 . 5a	.27a	4 . 1a	3.1b	. 90a	87 a	421a	21a	24 . 4a	67a	590a	10.9a
Nitrogen:	0	3.lm	.27m	4.2m	3 . 0m	.98m	73m	484m	32m	24.7m	62m	744m	6.5m
(kg/ha)	34	3.4n	.25m	4.2m	3 . 1m	. 91m	82m	468m	31m	24.4m	68m	665m	10.6n
I	67	3.4n	.27 m	4.3m	3. Ош	. 97ш	84m	449 m	28m	24.5m	61m	647m	12.6no
	101	3 . 5n	. 24m	4 . Om	3.0m	.95m	88m	472m	28m	23 . 6m	58 n	704m	14.10
Plants/ha:	66	3.5 r	.26r	4.lr	3. Ir	.92r	82r	533r	31r	24.2r	66r	812 r	10.9r
(1000's)	198	3.4s	.26r	4.2r	3.lr	.97s	81 r	445s	29r	24.4r	60r	645s	ll.lr
	296	3 . 3s	.25r	4.2r	3 . 0r	.97s	82r	428s	30r	24 . 3r	61r	613s	10.7r
2													

planti
late
for
17,
ł
13
September
uo
only
vines
in
analyses
Nutrient
A- 27.

^zHarvest. ^YMean separation within sets by Duncan's multiple range test at the 5% level.
N
00 C
- <u>-</u>
ŭ
đ
Ъ
۵١
Ľ,
la
50
ΨĨ
•
5
•
13
E L
ğ
e
L L
e
S
ğ
0
<u>н</u>
Þ
Ę,
-
Η.
m
ě
ys
Ξ.
na
Ø
Ļ
en
Ť
t
Ĩ
•
28
Ĩ.
A
a
P]
5
-

		N	р.	×	Ca	Mg	Å	Fе	Сп	æ	Zn	Al	NO3-N
Main effects				(%)						(mdd)			
Cultivars:	Green Star Premier MSU-76	3.6a ^y 3.3a 3.4a	.40a .41a .43a	5.4a 5.3a 5.4a	.64a .49b .52b	.39a .34b .34b	33a 29a 31a	160a 112a 120a	15a 15a 16a	14a 13a 14a	23a 18a 22a	193a 120a 124a	2.7a 2.7a 2.8a
Nitrogen: (Kg/ha)	0 34 67 101	3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50	.43m .43m .41m .38m	5。4日 5。3日 5。3日 5。3日 5	.55m .52m .55m	.378 .348 .358	30日 31日 30日 30日 30日	129m 129m 146m 119m	15m 15m 17m	14m 14m 14m 13m	23m 21m 21m 21m	148m 143m 172m 121m	2.4m 2.7mn 2.8n 2.9n
Plants/ha: (1000's)	99 198 296	3.4r 3.5r 3.4r	.41r .42r .41r	5.4r 5.4r 5.3r	.55r .55r .54r	.35r .35r .36r	29r 34s 30t	139r 129r 123r	16r 16r 15r	14r 14r 13r	20r 23s 20r	163r 141rs 133s	2.7r 2.6r 2.8r
ZHarveet													

"Harvest. ^YMean separation within sets by Duncan's multiple range test at the 5% level.

		、									5		
		N	ρı	¥	Ca	Mg	Å	Че	J	æ	Zn	Al	No3-N
Main effects				(%)						(mqq)			
Cultivars:	Green Star	6.9a ^y	.64a	9.6a	3.6a	1.40a	110 a	686a	48a	39a	82a	1010a	13.0a
	Premier	6.7a	.66a	9.5a	3.6a	1.30a	110a	572a	50a	36a	80a	783a	14.4a
	MSU-76	6.9a	. 70a	9.4a	3 . 6a	1. 24a	118a	541a	38 a	38 a	88a	714a	13 . 7a
Nitrogen:	0	6.5m	.70m	9 .5 m	3 . 6m	1.36m	103 m	614m	4 6m	39 n	82m	893m	9.lm
(kg/ha)	34	6.9n	.67 m	9.5 n	3.6m	1.26m	113m	597m	46m	38m	89m	807m	13.3n
	67	6.9n	. 68 m	9.7m	3.6m	1.32m	118m	595m	43m	38m	83m	819m	15.3no
	101	7 . 0n	.62m	9.3m	3 .6m	1.31m	118m	591m	4 5 0	37m	79 m	824m	17.00
Plants/ha:	66	6.9r	. 66r	9.5r	3 . 6r	1.27r	112r	672r	47r	38r	85 r	974r	13.7r
(1000's)	198	6.8r	. 68r	9 .5r	3.6r	1.32r	115r	574s	45r	38r	83 r	786s	13.8r
	296	6.7r	.66r	9 . 5r	3 . 6r	1.33r	112r	553s	44r	38r	81 r	747s	13 . 6r

Nutrient analyses of vines and fruit on September 13 - 17, for late planting.² Table A-29.

^zHarvest. ^yMean separation within sets by Duncan's multiple range test at the 5% level.

N
planting.
late
for
24,
August
uo
content
Nutrient
A-30.
Table

Main offart	c	Z	Å	K	Са	Mg	Mn	Fe	Сц	В	Zn	Al	N03-N
Malli ellect	â			(kg/ha)					Ŭ	(g/ha)			
Cultivars:	Green Star Premier MSU-76	34a ^y 34a 38a	2.1a 2.3a 2.5a	40a 36a 41a	23a 24a 27a	7.4a 8.0a 8.6a	59a 62a 66a	343a 388a 355a	12a 15a 12a	17a 17a 19a	43a 45a 52a	512a 619a 513a	8.5a 8.2a 7.5a
Nitrogen: (kg/ha)	0 34 67 101	33m 37m 35m 36m	2.2m 2.5m 2.3m 2.2m	36m 42m 38m 38m	23m 25m 26m 26m	8.0m 7.6m 8.1m 8.4m	55m 61mn 62mn 72n	372m 351m 355m 369m	15m 12m 11m 14m	17m 18m 17m 18m	41m 51m 46m 49m	586m 515m 530m 560m	6.8m 8.2m 8.2m 9.1m
Plants/ha: (1000's)	99 198 296	24r 37s 45t	1.6r 2.3s 2.9t	25r 40s 52t	16r 26s 31t	5.0r 8.5s 10.6t	39r 66s 82t	270r 362s 453t	8r 12r 18s	12r 18s 23t	31r 49s 60t	428r 537r 678s	5.3r 8.0s 10.9t
Z													

^zTipover. YMean separation within sets by Duncan's multiple range test at the 5% level.

		N	ይ	К	Ca	Mg	Mn	Э Н	G	B	Zn	Al	N-60N
Main effect	Ω.				(kg/ha				Ŭ	(g/ha)			
Cultivars:	Green Star	73a ^z	5.6a	86a	548	17 a	139a	928a	26a	43a	104 a	1306a	20a
	Premier Vou 76	78a 062	6.5a 7 / 2	81a	60a	19a	148a	963a	33a 225	42a 782	120a	1367a	21a 202
	0/-ncu	003	/ • 4a	928	048	208	T048	y/Ja	928	408	BCC1	BU2CI	20a
Nitrogen:	0	72m	6.8m	86m	57m	19m	135m	1003 m	30 ш	44日	105m	1425m	12 m
(kg/ha)	34	80 m	6.6m	86m	58 m	17m	139	885 m	30 <u>n</u> 30	44m	131m	1183m	20 m
I	67	81 m	6 .6m	87 m	64 m	20m	160m	976m	33m	4 6m	124m	1379m	24 m
	101	82m	6.0n	85m	60 п	19m	167 m	954 m	29 m	4 3m	117m	1338 m	25m
Plants/ha:	66	58r	4.9r	60r	43r	13r	103r	797r	23 r	32r	85 r	1193r	16r
(1000's)	198	79s	6.58	84s	60s	19s	157s	958s	30s	45s	125s	1313rs	19s
	296	99t	8.2t	114t	74t	24t	190t	1109t	39t	56t	148t	1487s	26t
^z Mean separ	ation within	sets b	y Dunc	an's mu	ltiple	range	test	at the	5% leve	1.			

N
planting.
late
for
1,
September
uo
content
Nutrient
A-31.
Table

N
planting.
late
for
17,
I
13
September
uo
only
vines
in
content
Nutrient
A- 32.
Table

Main effect	, o	Z	പ	К	Ca	Mg	, uh	Fe	Cu	В	Zn	Al	NO3-N
	2		Ŭ	kg/ha)						(g/ha)			
Cultivars:	Green Star	88a ^y 20-	7.la	122a	82a	27a	209a	1449a	93a 70-	72a	166a	2258a	27a
	Fremier MSU-76	, ua 95a	о. Ja 8. Oa	0/a 113a	0.28 85a	25a	222a	910a 1102a	70a 59a	40a 67a	120a 184a	1533a	29a 29a
Nitrogen: (kg/ha)	0 34 67	82m 83m 86m	7.5m 6.5m 7.0m	111m 107m 110m	80ш 76ш 18ш	26m 21m 25m	186m 188m 206m	1235m 1122m 1104m	82m 76m 72m	66ш 61 ш 62ш	164m 172m 156m	1875m 1606m 1570m	16m 25mn 31no
Dlante/ha.	101	86m 67.5	6.lm 4.0~	100m 79+	74m 57+	23 m 17+	206 m 175+	1153m 051+	67 ш 57+	58m 45+	142m 124r	1736m	350
(1000's)	198 296	84s 105t	6.8s 8.7t	106s 136t	788 788 96t	24s 31t	1978 1978 248t	1113r 1397s	71rs 95s	421 62s 79t	154s 154s 198t	1614r 2030s	27s 32t

^zHarvest. ^yMean separation within sets by Duncan's multiple range test at the 5% level.

	Date	Max.	Min.	Mean		Date	Max.	Min.	Mean
Mav	15	73	59	66		23	79	57	68
,	16	66	60	63		24	80	60	70
	17	69	54	62		25	73	65	69
	18	57	50	49		26	76	60	68
	19	60	35	48		27	85	62	74
	20	64	46	55		28	85	66	76
	21	76	49	62		29	82	62	72
	22	69	39	54		30	78	56	67
	23	63	41	52					
	24	60	38	49	July	1	65	55	60
	25	62	43	53	•	2	75	53	64
	26	64	43	54		3	76	52	64
	27	68	42	55		4	73	54	64
	28	74	52	63		5	84	55	70
	29	72	59	66		6	85	60	73
	30	65	57	61		7	86	61	74
	31	74	59	67		8	85	60	73
June						9	79	55	67
	1	74	58	66		10	81	68	75
	2	70	47	59		11	89	78	84
	3	73	45	59		12	89	56	73
	4	76	53	65		13	76	48	62
	5	80	50	65		14	78	58	68
	6	81	52	67		15	94	64	79
	7	83	56	70		16	90	65	78
	8	85	55	70		17	75	52	64
	9	86	59	73		18	85	58	72
	10	89	63	76		19	83	57	70
	11	88	68	78		20	85	66	76
	12	88	56	72		21	84	64	74
	13	84	65	75		22	80	58	69
	14	89	67	78		23	83	63	73
	15	90	73	82		24	84	64	74
	16	80	61	71		25	80	57	69
	17	73	52	63		26	84	61	73
	18	78	55	67		27	87	67	77
	19	85	62	74		28	86	57	72
	20	72	48	60		29	80	65	73
	21	78	56	67		30	71	57	64
	22	73	62	68		31	76	63	70

Table A-33. Daily extreme and mean temperature data recorded from the Horticulture Research Station, East Lansing, MI.

	Date	Max.	Min.	Mean	Date	Max.	Min.	Mean
August	. 1	71	50	61	10	72	48	60
	2	73	48	61	11	67	52	60
	3	70	44	57	12	80	55	68
	4	80	49	65	13	83	52	68
	5	78	62	70	14	84	58	71
	6	80	59	69	15	87	57	72
	7	72	50	61	16	59	58	59
	8	72	48	60	17	68	59	64
	9	77	48	63	18	74	52	63
	10	81	52	67	19	76	49	63
	11	85	65	/5	20	/9	28	69
	12	84	/0	//				
	13	80	68	77				
	14	82	0Z	72				
	15	08	50	59				
	17	72	44	58				
	10	/3	40	60				
	10	00	40 50	04 40				
	72	60	50	00 70				
	20	00	59	73				
	21	97	57	73				
	22	90	56	72				
	23	82	56	69				
	25	85	57	71				
	26	84	61	73				
	27	85	63	74				
	28	86	65	76				
	29	80	49	65				
	30	70	38	54				
	31	69	51	60				
	•-		•-	•••				
Sept.	1	86	60	73				
	2	68	40	54				
	3	72	50	61				
	4	83	62	73				
	5	79	47	63				
	6	67	39	53				
	7	78	52	65				
	8	88	61	75				
	9	92	61	77				

Table A-33. Daily extreme and mean temperature data recorded from the Horticulture Research Station, East Lansing, MI

