





ABSTRACT
ASYMPTOTIC DISTRIBUTIONS IN SOME NON-REGULAR
STATISTICAL PROBLEMS

by B. L. S. Prakasa Rao

As the title indicates, we consider here two different
problems. The first problem deals with estimation of
distributions with unimodal density and estimation of
distributions with monotone failure rate. The second
problem deals with the estimation of the location of the
cusp of a continuous density.

Recently Marshall and Proschan (Ann. Math. Statist.

36, 69-77) have derived the maximum likelihood estimates

for distributions with monotone failure rate and they have
shown that these estimators are consistent. In Chapter 2,

we obtain the asymptotic distribution of these estimators
using the results of Chernoff in his paper on the estimation
of mode. The estimation problem is reduced at first to that
of a stochastic process and the asymptotic distribution is
obtained by means of theorems on convergence of distributions
of stochastic processes. Similar results are obtained for
distributions with unimodal densities in Chapter 1.

Under the usual regularity conditions on the density,
it is well known that the maximum likelihood estimator is
consistent, asymptotically normal, and asymptotically ef-
ficient. Unfortunately, these conditions are not satisfied

for distributions like double-exponential with location
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parameter 6. Daniels, in his paper in the fourth Berkeley
Symposium, has shown that there exist modified maximum
likelihood estimators which are asymptotically efficient
for the family of densities f(x,ekOexp{—|x - elk}, where

x and 6 range over (-co,m ) and %-< k < 1. 1In Chapter 3,
Qe show that hyper-efficient estimators exist for 6 when

0 <k <-% and 6 is restricted to a finite interval for a
wider class of densities. We relate its asymptotic
distribution to the distribution of the position of the
maximum for a non-stationary Gaussian process. The estima-
tion problem is reduced to that of a stochastic process and
the asymptotic distribution is obtained by using theorems
on convergence of distributions of stochastic processes in

c[o,1].
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CHAPTER O

INTRODUCTION

As the title of the thesis indicates appropriately, we
consider here two different problems. The first problem
deals with estimation of distributions with unimodal density
and estimation of distributions with monotone failure rate.
The second problem deals with the estimation of the location
of the cusp of a continuous density.

Grenander [10] derived the maximum likelihood estimators
for distributions with unimodal density and for distributions
with monotone failure rate. He did not derive the asymptotic
distributions for these estimators. It is interesting to note
that the maximum likelihood estimators can also be derived
by methods used in Brunk [2] or in van Eeden [19]. Recently
Marshall and Proschan [14] showed that the maximum likeli=-
hood estimator is consistent. 1In Chapters 1 and 2, we derive
the asymptotic distributions of the estimators in both cases.
Even though we do not obtain their distributions explicitly,
we show that they are related to a solution of the heat
equation as was done in Chernoff [4] in the case of the
estimation of the mode.

Under the usual regularity conditions on the density,
it is well known that maximum likelihood estimator is con-
sistent and asymptotically normal. See Cramer [6], Kulldorf
[12], Gurland [11], etc. Their estimators are also asymptotic-
ally efficient. In certain cases like double exponential

1
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distribution with location parameter 6, these regularity
conditions are not satisfied. Daniels [7] has shown that
there exist modified maximum likelihood estimators (M.L.E.)

which are asymptotically efficient for the family of densities

£(x,0) = —2— exp {-[x-6]%), T <x <1,
2r(1+;)
-CD<X<CD/ - @®»® < 6 < .

Recently, Huber has generalized Daniels' results in
his paper presented at the fifth Berkeley Symposium and he
has shown that M.L.E. is consistent and asymptotically
normal for cusps of order between %-and 1. We show in
Chapter 3 that hyper-efficient estimators exist,when the
exponent k lies between 0 and % and © is in a finite inter-
val,for a wider class of densities. We relate its asymptotic
distribution to the distribution of the position of the
maximum for a non-stationary Gaussian process. 1In fact, it
can be shown that Bayes estimators for smocth prior densities
for © are also hyper-efficient for the above class of den-
sities and asymptotically the estimation problem is equiva-
lent to estimation of location parameter for a non-stationary
Gaussian process. It should be mentioned here that some of
the Bayes estimators are asymptotically better than the

M.L.E.



CHAPTER 1

ESTIMATION OF A UNIMODAL DENSITY

1.1 Introduction:

Given a set of observations Xi,..., X, from a common
distribution F, it is natural to estimate F by the usual
empirical distribution function in the absence of additional
information. However, one would not use such an estimate
if there is some a priori information about the distribu-
tion F. 1In this chapter, we shall investigate the problem
of estimation when F is known to be unimodal. Grenander [10]
derived the maximum likelihood estimator for f, where f is
the density of F. Even though it is well known that the
maximum likelihood estimator (M.L.E.) of f is consistent,
we shall give a proof for completeness} We shall relate its
asymptotic distribution to a solution of a heat equation as
was done by Chernoff [4] in the case of the estimation of
the psuedo-mode.

Section 1.2 deals with the maximum likelihood estimation
of the density. The consistency of the M.L.E. is proved in
Section 1.3. Some results related to the asymptotic prop-
erties of the M.L.E. are obtained in Section 1.4. 1In Sec-
tion 1.5, the estimation problem is reduced to that of a
stochastic process. We obtain the asymptotic distribution

of the M.L.E. in Section 1.6.
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1.2 Maximum likelihood estimation of the density:

We shall assume that the distribution F(x) is absolutely
continuous with density f which is unimodal with known mode
w. If p is the mode and F = oF  + (1 - a)F_ where F_ is
the conditional distribution on [p,00) and F_ is the condi-
tional distribution on (-co, p), then it can be shown that
the M.L.E. of F is &§+ + (1 - a)F_ where § is the sample
proportion on [u,o ) and f+ and ﬁ_ are the M.L.E.'s of the
conditional distributions F and F_ respectively. Let f+
and f_ denote the densities of F and F_ respectively and
let £ _ and f; denote their M.L.E.'s. We shall show later on
that for any § Z u, [f+(§) - f+(§)] = Op(n-1/3) and for any
¢ < [E(g) - £.(g)) = 0 (n7*/3). since & - a = o_(n7/2)
we get that for any€ , £(g) - £(g) = Op(n_1/3). Therefore
it is sufficient to obtain the M.L.E. of f+. I®t us assume
that uw = 0 without loss of generality. Therefore F(x) =0
for x < 0. Since F is unimodal, f is non-increasing for x >o.

Suppose Xy = .. .= Xn are n observations obtained by
ordering a random sample of size n from the population with
unknown distribution F. Let 7 denote the class of unimodal

distributions F. Let Xy = 0. Let
n
L(F) = 2 log f(X,) (1.2.1)

be the logarithm of the likelihood for FeF. For any F ¢ ¥,

define F* to be the distribution with density
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0 for x = 0
£ (x) = cf(x;) forXx,  <x=X,, 12iZn
0 for x > X_ (1.2.2)

where C is a normalizing constant. It is easy to see that
C 21 and L(F*) = ¢c"L(F). Therefore, L(F) 2 L(F'). 1In other
words, the M.L.E. En(x) of f(x) will be a step function with
steps at the order statistics X1:/Xgseee, X -
Hence the problem of maximizing L(F) for F e:? reduces
to the problem of determining numbers f1:f2r~-°:fn such that
(1) flifzi--vifn,

(ll) lel + (XZ - Xl)fz + ... + (Xn - Xn-l)fn = 1, and

n

(iii) ]W-fi is maximal. (1.2.3.)
1

This has been done in Grenander [10]. It can also be

done as an application of results obtained by Brunk [2] or

van Eeden [19].

This yields for the M.L.E. of f(x),

< < 3 < -
f (x) = {;fn(xi+1) for X; < x = Xity’ 0=4iZn-1
n 0 for x = Xo or x > X_ (1.2.4)
where
- _ Max Min v - u -(1.2.5
fn(xi) "nZvx>Zi 0ZXuli-1 n(XV - Xu) ( )

The estimator %n(x) can also be written in the form

F (v) = F_(u)
Sup Inf n n <
- {V>x u < x vV - u forxo<x_xn

0 otherwise.

(1.2.6)
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In other words, the M.L.E. fﬁ(x) is the slope of the

concave majorant of empirical distribution Fn at x.

1.3 Consistency of the maximum likelihood estimator:

Theorem 1.3.1.

For every X

fn(x) — f(x) in probability as n — oo.

Proof: If x < 0, then
fn(x) = 0 for all n and f(x) = 0.
Therefore fn(x) — f(x) in probability.
Let x Z 0. Let ﬁn(x) denote the smallest concave

majorant of Fn(x). For any € > O,

P[JH' Sup IFn(x) - F(x)] < g] = £(e) as n — oo
T =x=® (1.3.1)
where
oo . .
fe) =3 (-1)3e 2e%3”
j=-

by the Kolmogorov-Smirnov theorem.
Let us choose & > 0. Then there exists an integer

No(6) such that for every n > Ngo(6),
p[Fn(x) < F(x) + sn-l/2 and F_(x) > F(x) - en-l/2

for all x] > [f(g) = % by (1.3.1).

Since ﬁn(x)‘i Fn(x) for all x by the definition of En’
Fn(x) > F(x) - sn-l/z for all x
= fn(x) > F(x) - en-l/2 for all x. (1.3.2)

Since ﬁn(x) is the smallest concave majorant of Fn(x) and



F (x) is concave,

Fn(x) < F(x) + en_l/2 for all x

= fn(x) < F(x) + an_l/2 for all x. (1.3.3)

From (1.3.1) - (1.3.3) it follows that for n » No(é),
P[fn(X) ZF(x) + en-l/2 for all x and

ﬁn(x) > F(x) - en-l/2 for all x] s () - % .

Therefore, for all n > No(é),

Fo(x + n-l/“) - F_(x) _F(x + n-l/“) - F(x)

-1/
- + 2en /4
n~1/4a n-1/4

P[

and

fn(x - n-1/4) - ﬁn(x) F(x - n_1/4) - F(x)

>
/4 /4

- 2{5n_1/4 for all x]

> L(e) - 7 - (1.3.4)

Let { > 0. Since f(x) exists for all x, ther exists an

integer N;(f) such that for every n > N, (),
F(x + n-1/4) - F(x) _

n-1/4 £(x)| < ¢,
and
Plx = n /%) - p(x)
’_‘n_l/4 - £(x)| < ¢. (1.3.5)

Now (1.3.4), (1.3.5) together imply that for every
n > Max(vg(6)N4(2))

F_(x + 4) - F

and
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F_(x - n-1/4) - F_(x)
n n -1/ 6
=i/, > f(x) = § - 2en /4] > 2(;%—5 .

Now, since fn(x) is the left-hand derivative of ﬁn(x) at x,

it follows that for every n > Max (N, (8), N;(8)),

Pufn(x)_< £(x) + ¢ + 2en_1/4 and £_(x) > £(x) - ¢ —zen‘1/4] >
L) -3 .

In other words

PIf (x) - £(x)|< L + 2en™ /4] > g(e) --% (1.3.6)

for every n > Max (No(é),Nl(C)). We choose € such that
L(e) > 1 - %-and n such that

- 4
2en 1/4 < ¢ or equivalently n > (g%) = No (L,90).

Hence, from (1.3.6), it follows that for every

p[lfn(x) - f£(x)]| <2t] >1 - 6.

Therefore,

fn(x) —> f(x) in probability as n —> .

1.4 Some results related to the asymptotic properties of

the maximum likelihood estimator:

Before we proceed to obtain the asymptotic distribution
of M.L.E. fn(x), we shall prove some lemmas which simplify
the problem. We shall assume that f is differentiable at
the point x and that f* (x) is different from zero.

Let f;'c(x) denote the slope of the concave majorant
of F_ restricted to the interval [x - 2cn_1/3, X + 2cn-1/3L

evaluated at x. We shall now prove that



Lemma 1.4.1.

There is a function ¢ such that

(1) Tim PIf _(x) # £ (x)] = o (c)
and

(ii) ¢(¢) — 0 as ¢ — .
Proof: It is enough to prove that

lim P[?n(Y) = Fn(x + cn_1/3) - (x + cn_l/3 - y)(f(x)-An—1/3)
n

for all y = x and all y > x + 2cn_1/37

Fn(y).i F_(x - cn_1/3)+(y - x + cn—1/3)(f(x)+An-1/3)

n

for all y Z x and all y = x - 2cn-1/3]

> y(c,n) (1.4.1)
where y(c,A) — 1 as ¢ — o and A = -¢f'(x).
We shall show that for A = -cf'(x),

lim ;ig_P[Fn(y):Fn(x+cn-1/3)-(x+cn_1/3—y)(f(x)—An_1/3)
c—w n

for all y = x and all y Z x + 2cn—1/3] =1.(1.4.2)
In a similar way, it can be shown that

lim lim P[Fn(y) :Fn(x-cn_1/3)+(y-x+cn-1/3)(f(x)+An_1/3)
c—> n

for all y Z x and all y = x - 2cn-1/3] =1. (1.4.3)
(1.4.2) and (1.4.3) together imply (1.4.1) which in turn
proves the lemma.

We note that A > 0 since f'(x) < 0. Let us obtain a

lower bound for
p = P[Fn(y):Fn(x+cn_1/3)—(x+cn—1/3—y)(f(x)-An-1/3)

for all y = x]. (1.4.5)
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Let
1,(x) = nlF (x + en”/3)s en 3 ((x) - an"2) - B_(x)]
= n[F(x + cn-1/3) - F(x) - cn-1/3(f(x) - Ah-1/3)]
+ n[{Fn(x + cn-l/a)—Fn(x)} - {F(x + cn_1/3)—F(X)}]
= n[F{x) + cn-1/3f(x) + %Czn-2/3f'(x) + o(n—2/3)
- F(x) - cn_1/3f(x) + cAn-2/3]
+ n[{Fn(x + cn_1/3) - Fn(x)} - {F(x + cn-1/3)-F£x)]]
= n1/3[%czf'(x) + cA + o(1)]
+nl{F (x + en"/3)k_(x)} = (F(x + on”/3) - B(x))]
= n1/3Bn + c1/2n1/3[f(x)]1/2vn (1.4.6)
where
2
(1) B = 30°£'(x) + ca + o(1) = - $—£'(x) + o(1)

and

(1) v, = < ae0 ™V et s e (x + M3y -k (x))

- F(x + en”3) - B(x))). (1.4.7)
Obviously,
E(v ) =0,
and
var(v_) = n[F(x + en™*/3) - p(x)1[1 + 0(n~%/3))

cnz/;f(x)

n1/3

=169) [cn-1/3f(x) + O(n—1/3)][1 + o(n-1/3)]

1+ o(1).
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Therefore from (1.4.6) it follows that

I_(x)

. n1/3Bn ¢ Menape(x)1 Y 2y

n

where

E(V ) = 0 and var(v_ ) = 1 + o(1). (1.4.8)

Let 0 < A < 1. By Chebyshev's inequality

2 2
P[I_(x) > -)\Eé-f'(x)nl/3]=p[13n + c1/2[f(x)11/2vn > = NG (x)]

2
=P[v_ > {(1-N)5£'(x)+,0(1)]

1/2[f( )]lle

> 1 1+ ‘2’(1)]°f(x) . (1.4.9)
[(1 - NSGE (x) + o(1)1?
As n —> o0,
[1 + o(1)]cf(x) s cf(x)
2 2 2
(1 - NG () + o112 (1 - NS (x)12
4f (x)

T (1 - NS (x)12

Let
4f(x)
(1 - 22”18 (x))2

From (1.4.9), it follows that there exists an integer N, such

Q(c) =

that for every n > N;,
C2 N 1/3 > 3
P[In(x) > = M f£'(x)n"/3] Z 1 - 50(c). (1.4.10)
From (1.4.5), we have
p = P[F (x + cn_1/3)-(x + cn-1/3- v)(£(x) - An-1/3)- F (v)zo

for all y = X]
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= P[[Fn(x+cn-1/3)-Fn(y)] - (x + cn-1/3— y)(f(x)-An-1/3) Zo0

for all y = x]
= pn(F, (x+cn™2/3)- F_(x)) - en®/3(£(x) - anY/3)
n n
z n{Fn(Y)-Fn(X)] - n(y - X)(f(x)-An-1/3) for all y = x]

P[In(X) el n[{Fn(y)—Fn(x)] - (y - X)(f(x)—An-1/3)]

for all y = x]

2
> P[n[Fn(y) - Fn(x)] - n(y - x)(f(x)-An-1/3).i -N%—f'(x)n1/3

<

for all y = x]

-2 o(c) (1.4.11)
for every n > Ny by (1.4.10).

Let F* (y) be the distribution defined by its density,

0 for y < -a
£ (y) = £ (x) for -a 2y < x (1.4.12)
f(y) for y > x

where a is chosen so as to make F*(y) a distribution function.
Since F*(y) > F(y) for all y,

2
-1 < C . 1
PF[n[Fn(y)—Fn(x)} - n(y - x) (f(x)-An /3)._ -Nirf (x)n /3
for all y = x]
2
z PF*[n{Fn(y)—Fn(x)} - n(y - x)(f(x)—An-l/a) = -N%rf‘(x)n1/3

for all y = x] (1.4.13)
where PF denotes the probability when F is the underlying
distribution.

(1.4.11) and (1.4.13) imply that for every n > N;,
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2
p 2 Ppx[n{F (x)-F_(y)] - n(x - y) (f(x)—An_l/") el 7\92—f' (X)nl/3

for all y = x] - %Q(C)

= ( )] £ -1/s v oynt/oz
= PF*[n Fn(x)-Fn(y - n(x - y) (f(x)=-An ) - 7\-2— (x)n z0

for all y = x] - %Q(c) . (1.4.14)

Let Z2(B,t) for t Z 0 be distributed as
| 2
N(tg) - nt(f(x) - An_l/a) - n1/3%%rf'(x) (1.4.15)

where N(g) is a Poisson process with parameter
q = [nf(x) - Bnl/z] and B is a constant > O.

From (1.4.13) we have for all n > N,,
2
P 2 B, [n(F, (6)-F, (y)] - n(x ~y) (£G)-an"/3) - n/32 0 () 2 0
for all y = x] - % Q(c)
= E_, (P, [n{F_(x)-F_(y)) - n(x - y) (£(x)-an""/3)
F* " F* n n'Y Y
a3t (x) 2 0 for all y = x1|F. ()] 2 a(e)
n 5 x) = or all y = x]| o x 5 Qlc
= Epx (P[z(B,t) 2 0 for all t such that 0 = t Z x + a] [M(x+a)q)
= nF_(x)]} -3 Q(c)
n 2 °
Let
2
T = nFn(x) - n(x + a) (f(x) - An-1/3) - n1/37\92—-f' (x) .
From our earlier remarks it follows that for every n > N,
p = EF*{P[Z(-B,t) Z0for0=tZx+a]ll2B,x+a)=T]
3
- 35 Q)

z EF*[P[Z(B,t) 20 for all t 2 0]|z(B,x + a) = Tn} - % Q(c).
(1.4.16)

Now
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P[z(B,t) 2 0 for all t > 0] =

Epx [P{Z(B,t)20 for all t20} [Z(B,x+a)=T ]
+ PF*[Z(B,x + a) < Tn].

Therefore from (1.4.16), it follows that
p2P[z(B,t) 20 for all tZ0]-P, [2(B,x+a) < T ]- %Q(C)
for all n > N;. (1.4.17)
Now
+ - +
Prx[2(B,x * a) < T ] = P [N(q(x + a)) < nF_(x)].

By Chebyshev's inequality

<EG) (1 - F(x))
B2 |

Let us now choose an € > 0. Then there exists a constant

Po [N (@(x + 2)) < nF_(x)]

B0 > 0 such that

Prx[N(a(x + a)) < nF_ (x)] < e

where q = nf(x) - Bonl/z.

Hence, from (1.4.17), we have for all n > N,
p = P[Z(Bo,t) Z 0 for all t Z 0] - % Q(c) - . (1.4.18)

It is obvious that for any real number L

E[exp{uZ(Boft)}]= exp[tq(eu—l)-utr—uknl/3 g?f'(x)}
where
q = nf(x) - Bonl/2 ,
and
r = nf(x) - An2/3.
Therefore

2
E[exp{uZ(Bo,t) - tq(eu-1)+utr+kun1/3% f'(x)}] =1

for all p.
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Let
T = inf {t : Z(Bo,t) =0].
By Wald's fundamental identity in the continuous parameter
case, (See A. Dvoretzky, J. Kiefer and J. Wolfwitz [9]) it

follows that

2
E[exp{uz(By,T) - T{q(e"-1) - pr} + Mnl/e'% £'(x)}] = 1.

v
Let us choose Lo such that g (e 0_ 1) = Ko -

Now we have

1/ c2
E[exp{uOZ(BO,t) + Nyyn 3§»f‘(x)]] = 1.

This implies that
1/ c2
P[Z(By,T) = 0] :.exp{—kuon 3\5 £ (x)}

In other words,

P[Z(Bo,t) > 0 for all t = 0]
1/, c2
>1 - exp{—kuon 3 5 f'(x)} (1.4.19)

From (1.4.18) and (1.4.19), we have

1/ c2 3
px>1- exp{—kuon 3 o) f'(x)]-ﬁ-Q(c) - € (1.4.20)
for every n > N;.
v
Since (g (e 0 _ 1) = Ho¥ where q = nf (x) - B0n1/2 and r = nf(x)-An2/3,
-1/
a =_2An ‘3 -1/,
Ko () + o(n ) . (1.4.21)

From (1.4.20) and(1.4.21), it follows that for every n > N;

2
px1- exp[—%[——?T;T—i + O(n-l/a)]nl/s'% f'(x)]-€~% Q(c)

. 2
=1 - exp{-)\[zc—g(){}){—) foM)] S £ () -¢e-30(). (1.4.22)
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Therefore,

lim

' 2
=P XZ1-expl- %03'£g7£§l] - € - g'Q(c).

Since g is arbitrary, we have

. 2
lﬁ& Pp=1 - exp{-A c3 E?T£§l ] - %-Q(c).

Let us now take limit as ¢ — .

Since Q(¢c) —> 0 as c —> o0,

lim lim _ _
- ——p=1. (1.4.23)

Let

S = P[Fn(y) = Fn(x + cﬁl/3) - (x + cﬁl/a-y)(f(x) - Aﬁl/3)

for all y = x + 2c 51/3].
It can be shown, by the same methods which were used
in proving (1.4.23), that

lim lim

s = 1. (1.4.24)
c n

(1.4.23) and (1.4.24) together prove (1.4.2).

Lemma 1.4.2.

Suppose that [Xn 3. {Xn] are collections of random

C

variables such that

(1) 1lim lim P[X o X1 =0
c—>® n—> n n

(ii) 1lim P[X ZX] =0
c—>00

(1ii) xnc converges to Xc in law as n —> o for every
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Then

Xn converges to X in law.

Proof:
Let L(X,Y) denote the Levy distance between the distribu-
tion functionsof X and Y.

Since L(X,Y) = P[X # Y], we have

(1) lim Tim LX ,X.) =0
nc n
C—>Q0 n—>Qo
and (1.4.25)
(i1) lim L(xc,x) =0 .

c—>0
Since L is a metric,

< <
0= L(xn,x) = L(xn,xnc) + L(xnc,xc) + L(XC,X) .

Taking limit as n—>a , we have for any fixed c

0 = 1j

im L(X_,X)Zlim L(X_,X_ _)+lim L(X__,X_)+L(X_.X)
n n n

—

m L(xn,xnc) + L(XC,X)

= 1li
n

since lim L(ch,xc) = 0 by (iii) of the hypothesis. (Con-
n

vergence in Levy distance is equivalent to convergence in

law.) So we have for any c

0 = lim L(Xn,X) = Tim L(x

) + L(Xc'x)'

X
n " nc

The expression in the right hand side of the above
inequality is equal to zero by (1.4.25). Therefore,
lém L(Xn,x) = 0. In otherwords X  converges to X in law.
As a consequence of lemmas 1.4.1, 1.4.2, it follows

that it is enough to find the asymptotic distribution of
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£ c(x) as n—>@ and then prove a result analogous to that
in lemma 1.4.1 for limiting random variables in order to

obtain the asymptotic distribution of f (x).

1.5 Reduction to a problem in stochastic processes:

In this section, we shall reduce the problem of calculat-
ing the asymptotic distribution of the slope of the concave
majorant of Fn(Y) over [§-2c 51/3, g€ +2c 51/3] at Y =€ to
the corresponding problem of a Wiener process over [-2c,2c]
after suitable normalization. We assume that f is differ-
entiable at € with £'(£) # 0. Let us now consider

Fn(§+6) - Fn(g) for & in [-2cﬁl/3,2c51/3].

Now
F_(g+6)-F_(g) =[F(g+6)-F(§ )] + ([F_(g+0)-F(g+6)1-[F_(£)-F(£)1)
52
= 5£() + 5 £'(8)[1 + o(1)] +
{{F (g+5) - F(g+8)1-[F (&) - F(§)1]
= 6 £(g) - D62[1 + o(1)] + 71/ Y (8) (1.5.1)
where

v_(6) = n*/2 ([F_(g+6) - FE+6)] - [F_(8) - F(E)1) (1.5.2)

and

D=i(il>0‘ (1.5.3)

2

Let an(g) +6Bn(§) denote the tangent to the concave majorant

of 51/3Yn(6) - p&2 [1 + o(1)] at & = 0. In other words,
5n(g) is the slope of the concave majorant of

2

A2y () - 6% [1 + o(1)] at & = 0.
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From (1.5.1), we note that
£ o (g) = f(g) + Bn(E)- (1.5.4)
We are now interested in determining the limiting

distribution of Bn(g) after suitable normalization.

Let
5 = r  where r = [fD-zn-lll/3 and f = £(€).(1.5.5)
Let
o) at/2 v (s)
w =
n'® 2 p
n
= 51/2[fn'2n'1]'2/3 p~! Y_(8)
= n'/s £2/3 p*/s Y_(9). (1.5.6)

Let a = o (&) and B, = 6n(g).
Let us now consider

51/2 Yn(é) - D62[1 +o(1)] - a, - B0

(772 y_o) - 2%y - o - pr C-x2 2 o))

-1/,
n‘2y (%) a g G
= rﬁp[———z—l-— -2 . S - D t26(1)] (1.5.7)
r D r° D r D
n n n
2
p_ 2 a B
= r2 (W (£) €t R - BBy - t20 (1)1
n n

(1.5.8)

From (1.5.7), we observe that

g

?25 is the slope of the concave majorant at { = 0 of the
n

process
X, (£) = W () = t2[1 + o(1)] (1.5.9)

2
on [-q,q] where q = 2%2- .
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Let D[a,B] denote the space of all functions on the
interval [a,B] with discontinuities of first kind and let
us introduce the convergence in D[a,B8] by J; - topology
(see Sethuraman [18]).

Let W({) be the Wiener process over [-q,q]. It is
obvious that the trajectories of the process wn(g) belong
to D[-q,q] with probability one. It is well known that
the process W({) had trajectories in C[-gq,q] with probability
one and C[-q,q] is a closed subset of D[-gq,q].

Let (SN be the distribution induced by the process Wn
on D[-gq,q]. Let p be the distribution induced by the process
W on D[-q,d]. Our aim is to prove that W, converges to

weakly. We shall prove some lemmas which lead to the result.

Lemma 1.5.1. For any ¢ in [-q,q], Wn(C) is asymptotic-

ally normal with mean O and variance |{].

Proof: By definition

wo(L) = o eg2/3 /s Y_(8)
= n1/652/301/3{[r‘n(§+6) - F_(g)] - [F(g+5)-F(g)] ]nllz‘
Obviously
E[wW,(£)] = o0,
and
varu_(¢)] = n*/38*/3 0*/3 nlir(g+s) - F(g)11140(1))

_ /s §4/s D°/3 18] £(£)[1 + o(1)]

= n1/3 ;4/3 D2/3 x 1] £(g) [1 + o(1)]
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= [¢] (1 +0(1)],
by (1.5.5).
| Therefore by the central limit theorem for independent
and identically distributed random variables, we get that

g

Wn(C) is asymptotically normal with mean 0 and variance

Remarks:

In a similar way, it can be shown that for any collection
£1,+++,¢ such that ‘Qil‘: q, the joint distribution of
[Wn(Cl),Wn(Cz),...,Wn(Ck)] converges to a multivariate nor-
mal distribution with mean 0 and variance-covariance matrix

(8(L;.85) min(|gls1851))
where 6(a,b) is defined by
1 if a,b are of the same sign
6(a,b) = {
0 otherwise.
The next lemma consists of showing that the processes

Wn(C) satisfy an equicontinuity condition.

Lemma 1.5.2.

For any {;<Cz<f3 in [-4.q],
BLIW_(L1) - W_(£2) |2 |W_(C2) - W_(£s)1215e |y - &y

where C is a constant independent of n.

Proof:

From the definition

BLIW, (81) = W, (22) |2 W, (L2) - W (23) 1)

1_11/6 8 _51/2 8 2 1711/2 s _51/2 g ) 2|.
Y ( ; Yn(z)} ( Y (83) Yn(a}

2
2
r D r D

= E
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where Co is a constant independent of n, by Chenstov [3],

-2
_ %" 2 2
- "8 4 rn|C3 = C1|
r D
n
C n-2
S §fapd |0 - Ca |®
[fD “n 7] /3D
by (1.5.5)1
C
- 0 2
= ?IQ:‘) - Cll R (1.5.10)
Let C = Cof-z. From (1.5.10), we have

ELW_(L1) - W_(22) 12w (L) - w_(ts) |2 1%c|ts - £4]°

where C is independent of n.
We shall now state a theorem connected with convergqnce

of distributions of stochastic processes on D[a,B].

Theorem 1.5.3.

Suppose {Xn} is a sequence of stochastic processes on

D[a,B] such that

(i) for any t 1=4iZXx%in [a,B], the joint distri-

bution of [xn(tl)'°“'xn(tk)] converges to the

joint distribution of [X(tl),...,x(tk)]

and
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(ii) for any t; <ty <tz in [a,B]

LI, (£2) X, (k) [V, (e) X, (60) Y21 2 g - e [

where y; > 0, 72 >0, y3 > 0 and C > 0 are independent

of n.

Let {vn] and v be the distributions induced by,{xn] and (X}

respectively on D[a,B]. Then v, converges to v weakly.

Proof:

See Sethuraman [18].

As a consequence of lemmas 1.5.1 and 1.5.2 and the
remarks made after lemma 1.5.1, it follows as a particular
case of theorem 1.5.3 that the distribution W,  converges
weakly to the distribution .

Furthermore C2[1 + 0(1)] converges to Cz uniformly in
€ since { is in [-9,q]. Hence, by a simple extension of

Slutsky's theorem for processes, it follows that

Theorem 1.5.4.

The sequence of processes xn(c) = Wn(c) - C2[1 + o(1)]

on [-q,q] converges in distribution to the process

x(t) = w(g) -¢2

where W(C) is the Wiener process on [-q,q].

1.6 Asymptotic distribution of the maximum likelihood

estimator ;.

For any x ¢ D[-q,q], let g(x) denote the slope of the
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concave majorant of x({) at £ = 0. It is easy to see that
if X, —>x in Jy-topology and x is continuous, then X, > X
in the supremum norm topology. (See Sethuraman [18] pp. 129).
But, if X, —> X in the supremum horm topology ana concave
majorant of x has unique slope at £ = 0, then g(xn) — g(x).
Further, it is well known that the process X is continuous
with probability one. Therefore g is a functional on
D[-q,q] whose set of discontinuities has probability zero
with respect to the distribution of X. Further Xn converges
in distribution to X by Theorem 1.5.4. Therefore the distri-
bution of g(xn) converges weakly to the distribution of g(X).

Hence we have the following lemma.

Lemma 1.6.1.

Let f(x) be a unimodal density. Let f; c(g) denote

the slope of the concave majorant of Fn(y) on [g - 2cn-1/3,

E + 2cn-1/3] at y = €. Further suppose that f'(f) exists

and is non-zero.

Then

nt/s (£ (g) - £(g)]

is distributed asymptotically as the slope of the concave

majorant of the process

W(t)—tz, -2 tZgq

t t = 0 where W(t) is the Wiener process with mean 0 and

_F
variance 1 per unit t, W(0) = 0; D = —251513 f = £(g)

and q —2c£1p2,
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Proof: This theorem follows from the remarks made in

(1.5.4) and (1.5.9).

The next lemma shows that the slope of the concave
majorant of the process X over [-g,q] at £ = 0 and the slope
of the concave majorant of the process X over (-oo,oo) at

£ = 0 are essentially the same.

Lemma 1.6.2:

The probability, that the slope of the concave majorant

of the process X(f) = W(¢) - Cz over [-q,q] at £ = 0 is dif-

ferent from the slope of the concave majorant of the process

X(¢) =w(g) - Cz on (-0, ) at £ = 0, tends to zero as

q —> .

Proof:
For any a, let Pc denote the probability that there
exist points u < a-c and v > a+c such that L(u,v,x) = X(a)
where L(u,v,x) denotes the line joining (u,X(u)) and
(v,X(v)). It is obvious that P_ is independent of a.
Let us choose a to be zero.
Then P_ = P(there exist points u < -c or V > ¢ such that
L(u,v,x) 2 x(0) =0). (1.6.1)
We notice that for any (,
X(¢) 2w(L) +c2 - 2¢|t], (1.6.2)
Therefore,
P, = 2P[X(t) 20  for some ¢ > c]

2

2 2P[W(L) Z 2¢t - ¢ for some £ > c]

2

2E[PW(L) = 2ct - ¢ for some ¢ > c}|w(c)]

.
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= 2f;oo PW(L) =2 2ct - c?2  for some ¢ > c|w(c)=x)as(x)

@ 2

P{W({) 2 2cf - c® for some ({ > c|W(c)=x)de(x)

2

= 27 P{(W(t) Z 2c t + ¢ - x for some t > 0|W(0)=x]}deé (x)

+ 2Ilc2 de (x)
‘3
since W(f) is a stationary process with independent increments,

2
4 /lc
=2 PW'(t) 2 2ct + c2-2x for some t > 0|w'(0)=0}doe (x)
-®

oo
+ 2f1 de (x)

3
/ 4€

where W' (t) is a Wiener process with W' (0) = 0.

But
P{W'(t) Z 2ct + c? - 2x for some t > 0 | w'(0) = 0]}
= exp {8 cx - 4 c3] .
This can be proved by means of Wald's fundamental identity.
Therefore,
o

3 1
exp (8cx -4.c7}. Toa ax

r, 22/ =

(00)
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@ 2 1
e 5T ) T
c
’ exp (- %5 }

=2 exp {—2C3} +'\/_2_TE (1/4 C)

Taking limit at ¢ — @, we get that

P,—> 0asc— o ¢ (1.6.3)

Now let p Dbe the probability that the slope of the concave
majorant of X on [-q,q] at £ = 0 differs from the slope
of the concave majorant of X on (-oo,oo) evaluated at ¢ = 0.
Then
p = P[There exist points u; < 0, v; > 2c such that
L(uy,vy,x) Z X(c) or that there exists points

ug < =-2c,vg > 0 such that

L(ug,va,x) :-X(-C)]

by remarks made earlier.

Therefore, by (1.6.3), p —> 0 as g — 0. (1.6.4)
(1.6.4) proves the lemma. |

In view of lemmas 1.4.1, 1.4.2 and 1.6.1, 1.6.2, we

obtain the following theorem.

Theorem 1.6.3.

Let £(x) be a unimodal density. Let En(g) denote the

M.L.E. of f(g) based on n observations. Further suppose

that f is differentiable at g with non-zero derivative. Then

n1/3[fD]-1/3[fn(§) - £(g)] is asymptotically distributed

as the slope of the concave majorant of the process
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w(t) - 2, -m< t < ®
at t =0, yhg;g»W(t) is the Wiener process on (-oco,m ) with
W(0) = 0 and mean O, variance 1 per unit t, D = _<£l%£l ,
£f=f().

The next step consists of deriving the distribution of
the slope of the concave majorant of the process W(C) - ;2
over (-m,0 ) at { = 0. It seems to be impossible to obtain
an explicit evaluation of the distribution. We shall show
that it is related to a solution of a heat equation as was
done by Chernoff [4] in the case of the distribution of the
location of the maximum for the process ‘W(() —_Qz over (-m ,00).

Let a + B denote the tangent to the concave majorént
of the process W(t) - Cz at £ = 0. We are now interested in
obtaining the distribution of B. Let h(B) denote the value
of { for which

w(t) - (¢ +8)° (1.6.5)
is maximized‘over (-0 ,0) . .

Consider

)2

2
w(e) -2 -a-pt=w(e) - (¢ +5)% - (« - B-).(1.6.6)

By Theorem 1 of Section 4 in Chernoff [4], the proh-
ability density function of h(B) is y({ - B) where
1 2 2
v(2) = 3 u (£2,0)u (22, -) (1.6.7)

where Ux is the partial derivative of U(x,C) with respect

to x, U(x,{) being a solution of the heat equation

v =-v (1.6.8)
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subject to the boundary conditions
(i) u(x,g) =1 for x I.Cz
and (1.6.9)
(ii) u(x,t) - 0 as x = -oo. .

We note that

Prob[B - 6B = p X B + 6B]

= Prob[h(g—é—gg).i 0, h(ﬁ—%—gﬁ).z 0]
= prob(h(B5-8) = 0] - prob[n(E3-B) £ o]

= Fu(c - B5B)ar -} oy(r - BESByar
-aD =00

_(B = 0B ) _ (B + 6B)
2
- [ag(C)dc - [ y(t)at

-00
_(B 5 5B)
=/ ‘s y(L)acg.
_(B_Z__B)

Therefore the density of B is
2v(-5. (1.6.10)

we note that ¥ is symmetric from (1.6.7).

Hence we have the following theorem.

Theorem 1.6.4.

The probability density function of g, viz. the slope

of the concave majorant of the process W({) - & at £ =0

where W({) is a two-sided Wiener-Levy process with mean 0

and variance 1 per unit, is

zv&

where y is defined in (1.6.7).
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Combining the results in Theorems 1.6.3 and 1.6.4, we

have the following final result.

Theorem 1.6.5.

Let f(x) be a unimodal density. Lgti%lﬁ) denote the

M.L.E. of f(g) based on n observations. Further suppose

that f is differentiable at € with non-zero derivative

f'(€). Then the asymptotic distribution of

nl/a[_.f_!ug_‘gll-l/alfn(g) - £(g)]

has the density

1
5 ¢(%)

where ¥ is defined in (1.6.7).




CHAPTER 2

ESTIMATION FOR DISTRIBUTIONS WITH MONOTONE FAILURE RATE

2.1 Introduction :

In this chapter, we shall investigate a problem analogous
to the problem treated in Chapter 1. We shall now suppose
that the distribution F has the monotone failure rate r.
(definitions are given in 2.2). Suppose X;, ..., X are n
independent observations from F. Grenander [10] and Marshall
and Proschan‘[14] have obtained the maximum likelihood
estimator (M.L.E.) of r and the latter showed that these
estimators are consistent. We shall obtain the asymptotic
distribution of the M. L. E. as a function of a solution of
a heat equation as was done by Chernoff [4] in the case of
estimation of mode. Methods used in the chapter are similar
to those in Chapter 1 and therefore, proofs are given only
at places where they seem to be necessary.

We mention here that Murthy [15] has obtained some
estimators of failure rate which are consistent and asymp-
totically normal. He does not assume a priori that the
failure rate is monotone and his estimators are based on
the choice of "window". Watson and Leadbetter [20] have
also obtained similar estimators.

We shall give proofs only for the case of distributions
with increasing railure rate (IFR). Results in the case of

distributions with decreasing failure rate (DFR) are

31
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analogous to those in the case of IFR and we shall mention
them in section 2.7.

Sections 2.2 and 2.3 deal with definition and properties
of distributions with monotone failure rate. Some results
related to the asymptotic properties of the M.L.E. of r
are given in Section 2.4. The problem is reduced to that
of a stochastic process in Section 2.5. The asymptotic dis-

tribution of the M. L. E. is obtained in Section 2.6.

2.2 Definition and properties of distributions with monotone

failure rate?

Let F be a distribution function with density.: f.
The failure rate r of F 1is defined for x such

that F(x) <1 by

r(x) =1—f-%f%;y ) (2.2.1)

Let R(x) & - log (1 - F(x)). It is easily seen that R is
convex on the support of F if and only if r is non-de-
creasing and that R is concave on the support of F if
and only if r is non-increasing. We say that F is an
IFR (increasing failure rate) distributinn or a DFR (de-
creasing failure rate) distribution according as r is non-
decreasing or non-increasing. Properties of distributions
with monotone failure rate are discussed in Barlow, Marshall

and Proschan [1].
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Maximum likelihood estimation for increasing failure

N
LJ
w

rate distributions:

Suppose F 1is an IFR with failure rate r. Let
Xy S Xg = v = X_ be an ordered sample from F. Let F be
the class of IFR distributions. It is not possible to ob-
tain the maximum likelihood estimator for F e F directly
by maximizing the likelihood

L(F) =

£(x,) . since

3y 3

1
f(xn) can be arbitrarily large for F € E}. Therefore, we
consider a sub-family gM of 7] consisting of distributions

n
F(x) with r = M, obtaining Sup M T f(xi) = M". There
Fexy 1

is a unique distribution ﬁnM e:?M for which the supremum

is attained. The failure rate an of ﬁnM converges to

a failure rate fn as M — oo for argument x < Xn. For

x2x , an = M for all M and therefore an — o as

M — o. This estimator fn, which is infinite for x > X
is called the M. L. E. of r.
From the results of Grenander [10] or as an application

of van Eeden [19], the estimator fn can be derived and it

is given by

0 for x < X,
T -< T < < 4 < -
rn(x) rn(xi) X; 2x <X, ,124iZn-1
o) x Z X
n
where
v~1

X.) = i max V- = -3 ) (X, =X.
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Marshall and Proschan [14] showed that this estimator
is consistent.

The estimator fn can also be written in the form

- - F - F

r (x) = sz}f{ Sup {;(V) n(%) (2.3.1)
J [1-F_(y)ldy
u

where Fn(x) is the empirical distribution function.

In fact
[r (x;)] = Sup Inf o _(v) - ¢ (u) (2.3.2)
>itl <X
> u= .
n n v-u
where

. X.
o (L) = fOJ [1 - F_(x)]dx.

Let 5n be the concave majorant of ¢n' Then, from (2.3.2),

it follows that [i:n(x)]-1 is the slope of the concave

majorant $n at F_(x).

2.4 Some results related to the asymptotic properties of
the maximum likelihood estimator:

r

- 1
Let rn(x) denote the M.L.E. of r at X. Let -¥‘_?;7

denote the slope of the concave majorant of ¢n at Fn(x),
when the argument of ¢n is restricted to the interval

-1 -
[F(x) - cn /s , F(x) + cn 1/3]. It can be shown, by
methods analogous to those used in Section 1.4 of Chapter 1,

that
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Lemma 2.4.1,

c&ig; IEH P[r;'c(x) # fn(x)] = 0.
Let € be such that 0 < F(g) < 1.
We shall now obtain some asymptotic expansions of 3 (y)
for y in the interval [F(g) - cn1/3, F(e) + cn1/3].
We shall assume that _
(i) £ is differentiable,
(ii) f£' is continuous, and (2.4.1)
(iii) the failure rate r is differentiable at
the point € and r*(g) is non-zero.
(For any function h, h' denotes the derivative of h).
As a consequence of assumptions made above, it follows
that for x in a sufficiently small neighborhood of £ ,
(i) £(x) is bounded away from zero,

(ii) r(x) is bounded away from zero, and

f'(x

is bounded.
f(x

(iii)
Suppose that

(i) f£(x) 2>,
gii) r(x) > a, and (2.4.2)

l<

(iii) | i

for x in that neighborhood of g

Let F_ (g) = n . Let F(g)

n. It is well known that
1
nn-n=0(n/2)
Let

U, = F(Xj+1) - F(Xj) - E[F(x

; - F(xj)l X4] (2.4.3)

J+1>

where X,, 1 =i = n are the order statistics and E[Y|X]
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denotes the conditional expectation of Y given X.

It is easy to see that

uy = F(Xj+1) - F(Xj) - x(xj) (2.4.5)
where 1 - )
Mxy) = 5= §(§j1 .

We shall obtain the necessary asymptotic expansions in
a series of lemmas which will be combined at the end to
give the final result.

We mention here that the approximations which are of
the order 0p are all satisfied uniformly for 6 in [-c,c]
in the following lemmas. Let

a = [nn] and b = [nn + 6n2/3], (2.4.6)

where 0 <n <1 and -c 26 = c.

Lemma 2.4.2.

n[o_(2) - o_(2)]

1]
UM
i
o))
5
[}
u
"
N
»
4 %
(=]
haed
&
o]
o]}
[y
~
w

Proof:
By definition of Uj in (2.4.5), we have
F(X. = F(X.) + X.) + U..
(X541) = F(Xy) + A(xy) + U
Therefore, Xy, = F'l[F(xj) + x(xj) + Uyl
Expanding F-l(Y) by Taylor's theorem up to second order

terms, we get that

X4

-1
= dF __(v) l =
xj + [x(xj) + Uj] e Y F(xj)
2_-1 o
+ 1/2[N\(x.) + U.]2 5L111?C!l IY = 0. (2.4.7)
J 3 ay J ,

where 6, lies between F(xj) and F(Xj+1).
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It is easy to see that

dF (¥ - - 1
20 v ey - gy
and \ (2.4.8)
alr 1y l v =8 _ -f (Cj)
ay? b Py)
where
-1
&y = F 7(85)
By definition,
b-1
nlo,®) -0 @1 = 2 (-3) &y, - Xy
J=a
= 2 n -j
j=a By
b-1 -( )
-1/2 = -3___7(n-3){x(x ) + Uy )2 (2.4.9)
j=a g
J

by (2.4.7) and (2.4.8).

Now for n sufficiently large, we have by (2.4.2)

b 1 £'(L.)

—3—J— (n-3) (A(x;) + vy)?)

| _%z BL(n-3)(A(xy) + uyn?

<~

=5 (b-a) n =0 (n-1/3) (2.4.10)

| A
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since b-a = 0(n2/3).

(2.49) and (2.4.10) together prove that

. . b AU, )
n[¢n(30 - 0n(50] =2 (n-J)f—fT%;T-J'}'+Op(n 3).

Lemma 2.4.3.

b-1 (n-j)U. b-1
b ay, - J 1 -1/
n[o =) - o =] == + 3 == + 0 (n'3).
n'n n'n j=a flxj$ j=a r(xj) p
Proof: By Lemma 2.4.2,
b-1 k(x )+U
b a /
nfo () - o ()= Ea [—?1§—7_-](n— )+0 (n 3)
b-1 n—j)U b 1 ¢(._ 1-F x-)
( (n-3) ( } + 0 (51/3)

_(_7‘ 2 e UEE; )

b-1 (n-j)uy  b-1

fix 5 + Z rix 5

b-1 1

4 (- 3+1)'(r(x y + 0 (51/3). (2.4.11)

Now
b-1 b-1
El'Z (n-;ﬁlj r(i.) | = aZ T;:%:TT for n large by
J=a J J=a 2.4.2)
-b+2
<a /[ = dx
n-a

= alog 9§§§3 - o@s) (2.4.12)

since b-a = 0(n2/3) and n < 1.
From (2.4.11) and (2.4.12), we have

b-1 (n-j)u. b-1 _
n[¢n(%0- ®h ( )1= 2 '—gagfyl + 2 ;7%—7 + Op(nl/s)-
J

j=a j=a J
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bgl 1 _ b-a _r'lz(n)] 1 (b-a)2 +0 (n1/6)
j=a T&3) - rlz(m)] o 20,y flz()] P
where 2(t) = F-l(t) for 0 = t = 1.
Proof:
Let 2z, = z(d).
F(x.) - F(2.)
Now X. - 2. = J J for some a. between
J J f(a.) J
] X. and Z.
J J

and f is bounded away from zero.

By the Kolmorov-Smirnov theorem,

-1
sup|F(x;) - F(z))] = 0, /2y,

Therefore

- o (5
S?p |Xj - Zjl = Op(n 2), (2.4.13)

Since o, ,

1 :
r(kj) »”_r(sz \r?(C\)' ( i J
for some Cj between xj and Zj' we have
b-1 b-1 b-1 r'(¢.) )
z ————7 —3——2—- - 2.
j=a T (% rfz . (&5 )( ]
op(ﬁl/z ,nz/s) - op(nl/e)

]
by (2.4.13) and the fact that £§ is bounded.
r
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In other words,

b-1 b-l

NGl 7—7”(“/6)'

By Taylor's Theorem, we have

(2.4.14)

S i veo rlz(n)] 1
ey TR T W 2y T

+ (- 1) o(1),
which implies that

b-1 b-1 .
1 b-a r'l[z(n)] 1 bl
5 = - = (4 - )
j=-a r(Zj) r[Z(T])] rZ[Z(T])] f[ZzTﬁ] j=a n L

-1 .
s -
+j=a =)o) (2.4.15)

_ b-a___ _ r'lz(n)] 1 (p-a)? 1/
~ r[z(n)] r2[Z(n)] £{z ()] n +on72)

since b-a = O(n2/3)

From (2.4.14).and.(2.4,15) we get that

g S z'(z(n)] __1 (b-a)? 1/
jia r(xj) T r(z(n)] "~ rz[Z(q)] £12(1)] a + Op(n 6).

Lemma 2.4.5.

b-1 (n-j)U. b-1
2 FXL) T [z1 7 2 (e-3)uy ¢ op(nl/s) .
j=a j M1 j=a

Proof:

By the Kolmogorov-Smirnov Theorem, it can be shown

as before that

1 _ 1
£(x5) T 1(zy) + OP(J—%— ) (2.4.16)

Therefore



pA ?TiTT'l = Z"‘ECZTTl z‘(n—j)Uj OPQ%%)'(2'4’17)

J=a J j=a J 3
But
(& |(n-3)0,0,(32) 1= B((n=3)0,1 10 (201
n-j)u.o _(==)|} X E[(n-] =
J Pyn P rn
= 0(%) uniformly in j. (2.4.18)
Therefore (2.4.17) and (2.4.18) imply that
b 1 (n-j)U b-1 (n-j)U
LR I EET Y 0 (/%) (2.4.19)
since b-a = O(n2/3).
1 1 £ [zggz]
But = + ( + o(1)].
f(zj) fl[z(n)] n £2 (2 (7)]
So we have,
b-1 (n-3)Uj5 b-1 (n=3)U; b-1 ;
s =3 + 5 U.(= -1 —-i—‘m+o(1)](n-3)
jma £@5) T4z, f[Z(”)] j=a I P £2 (2 (1))
1P ) (2.4.20)
= — n-j)U. + 2 .
£z (M1 42, j 7 %n
where
b-1
z, =3 @& -n 5L L o)) (-g)u;.
j=a £2 (z (1))

Since E(Uj) = 0 for each j, E(Zn)= 0.

) Ef.b -1 .

o <
But Var(Z ) R (l-- n) (n—j) Var(U )
: C oYY j=a
by (2.4.2)
2 b-1 . . \2 .
=g s 2- n)zﬂ—JL since var (U.) =<
2 <2 n 2 j 2
Y J=a n . ‘n

for some constant d

= 0(1) since b-a = O(nz/a).
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Therefore 2_ = 0_(1).
n p
Now (2.4.19), (2.4.20) together imply that
b-1 (n-j)U4
2, 1 = g z (n=3) U] + 0_(n/8) + 0_(1)
fo ) j'£[z2 (q)] p p

b-1
:[Z

+0 (n1/6).
j=a P

. 1
(n"J)Uj] fl2 (T\)]

From lemmas (2.4.3) - (2.4.5), we have the following theorem.

Theorem 2.4.6.

Let ¢ be such that 0 < F(§) < 1 and let F(§) = 7.

Suppose that =-c = 6 Z c.
Let a = [nn] and b = [nn + 6n2/3].
Then

b a
nfe_ () - o )]

- n1/3 W (8) 62n1/3 1 r'[z
= rzm ) - T Fzmn 212 ()]
6n2/3 1[
trizm T %@
where
- q2/3 _r:J.tLL

Wn(é) Jzn (n-a) Uj
Proof:

By lemmas (2.4.3) - (2.4.5), we have
nfe &) - o @)

1 b1
S EEm 2, MY

_db=a) pg) o+ op(nl/e) (2.4.21)
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where
- 1 r'[z .
But | (b-a) - 6n2/3|.i 1.

Therefore, from (2.4.21), we have

b-1 (n-j )UJ

(n-a)

6n2/3 62n1/3
T rzm1 T 2

b a = _(n-a)
n[@n(ﬁ') = ¢n('r_l)] - f[z(ﬂ)] j:a

B(n) + 0 (m/e)

b-1 . b-1 A
n-nn (n-3) nn-a (n-J)
EzMm] jo,m-a) Y3 T EzmT I W) U

2/ 2 1/
oén /3 6“n" /3 1/
+ Tz(m] - 2 B(n) + OP(n 6)
b-1 : 3/ 2 1/,
= _n=]n (n-J) +_on7/8  $“n7/3 1/¢
AT 2 (n=a) Uj + T f[Z(ﬂ?l 5 u(n)+op(n )e
) (2.4.23)
where
b-1 .
- n-a n-7
"n T FzWT 42, o) U5
Obviously
b-1 .
< 1 (n-3) = ‘1/
E|Tn| = FZ (] jga (n=2) E|Uj| = 0(n/3)
since b-a = O(n?/3) and E|Uj| = O(n_l).

Therefore, form (2.4.23), we have

b-1 .
by _ ay, o nh[l- (n-J)
6n2/3 52n1/3

- 1/¢
+ T1Z ()] ) B(n) + Op(n )
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b-1 .
= n___ (n-j+1) U. - R
r(z(n)] .2 (n-a) j n
j=a
2/ 2 1/
6n 3 6 n 3 1/
+ - + 6 .
r(2(n)] ) B(n) +0,(™"€), (2.4.24)
where
R = n bgl 1 v
n  r[z(n)] j=a Dma 37
Obviously
Eanl = 0(1_11/3) since E IUJI - O(n-l),

Therefore, from (2.4.24), it follows that

1/ 2 1/
b a,, . n '3 8“n"/3 : 1
nlog @ - 0 @1 = Fory W, 0- E5—s ) +i iy vo @/e)

where -

b-1 .
_ 2/ n-J+1
Wn(é) = Jza n’3 j—('ml- Uj. (2.4.25)

Remark: Since r (x) is non-decreasing and since r' (g)# O,

we have B(n) > O.

2.5 Reduction to a problem in stochastic processes:

In this section, we shall reduce the problem of calculat-
ing the asymptotic distribution of the slope of the concave
majorant of ¢ _(Y) over [F(g) - cﬁl/3, F(g) + c51/3] at
Y = Fn(g) to the corresponding problem of a Wiener process
over [-c,c] after suitable normalization. We shall assume
that the conditions in (2.4.1) are satisfied.

Let F (f) =n and a = [nn], b = [nn + 6n2/3], and

F(g) = n where -c = 6 = c.
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By theorem 2.4.6,

2/
dn“/3 1/

) ¢ S 6
*Tizmy T % ® %)
where B(n) and Wn(é) are defined in (2.4.22) and (2.4.25).
Therefore,

W (8) 2
2/ b a = N ¢
n"f3e Q) -0 QD =TT -2 B

1/
on-/3 _1/
+ + 6). e e
EICACE ™1 Op(n ) (2.5.1)
Let an(q) + 6 Bn(q) denote the tangent to the concave

majorant of

w_ (%) 62 -1
STy - F B + 0, G over [-ciel, at
6 = (n, - nnt/s,

We notice that

1 1 1 =
» U zmy T Tz Pa 2.5.2)

where [r; c[Z(n)]]—1 denotes the slope of the concave
’

majorant of ¢n(Y) over

[n—cﬁl/a, n+c51/3] at Y = nn.

We are now interested in determining the limiting dis-
tribution of B _(n).

Let & = AL where

A = {£[Z_(11.LL_1_3_(3.L} , (2.5.3)

Y
Let Vn(c) =N /2 wn(é). (2.5.4)
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Let us now consider

wn(f,') 62 -1/6
TzT B(nri— -a () - Bn(n)f5 + Op(n )

_ a2y () B (n) A2 2

1/
-a () =B (WA + Op(n 6)

r(z(q)1 -~ 2
1/ 2a_(n) B, ()¢
- A 2 2 n n _1/
- riz (n ][Vn(c‘) - ¢ -m- ZW] +0p(n 6)
. (2.5.5)
by (2.5.3),
2
AL/ 2 By 2 20 () B “(n)
= [v_(¢) - (¢ + ) = - )]
r[2()T "'n AB(n)  A°B(7) A2B2(n)
+ op(ﬁl/s). (2.5.6)
2Bn(n)

From (2.5.5), we notice that ICV is the slope of

the concave majorant at ¢ = ¢ = %-l(nn - q)n1/3 of the
process
x () = v_ (&) - t2 +0_@@e) (2.5.7)
n n P T
on [-g,q] where g = %.
Notice that (¢_=0 (51/6) (2.5.8)
n p o L] L)

Let X(t) = w(t) - Cz, where W({) is the Wiener process
on [~-q,d].

Let D[a,B] denote the space of all functions on the
interval [a,B] with discontinuities of first kind and let
us introduce the convergence in D[a,B] by J;-topology.

(see sethuraman [18]).
Let W({) be the Wiener process over [-q,q]. It is

obvious that the trajectories of the process Vn(c) belong
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to D[-q,q] with probability one. It is well known that the
process W({) has trajectories in C[-q,qg] with probability
one and C[-gq,q] is a closed subset of D[-q,q].
Let W be the distribution induced by the process Vo
on D[-g,g].. Let u be the distribution induced by the
process W on D[-gq,q]. |

Our aim is to prove that K, converges to U weakly.

We shall prove some lemmas which lead to the result.

Lemma 2.5.1.

For any & in [-c,c] , wn(é) is _asymptotically

normal with mean O and variance |é|.

Proof:

Let Ap,...,0 be independent random variables each

n+i

with the exponential distribution ne-nx, x > 0. Let

. (2.5.9)

D =08p . . . +B

By + een + B
D 4
n

1 =i =n form order statistics

Then 2Z, =
i

of a sample of size n form the uniform distribution on
(0,1]. (2.5.10)

From (2.4.25), we have

2/3 b-1 n-j+1

W (6) =n jfa s U
b-1 _ . 1-F (X )
- 2/g n-j+1 N
= n T === [F(Xj+1) - F(Xj) s il

j=a
Therefore, from (2.5.10), it follows that Wn(é) has the

same distribution as



A1+o..+A'
-1/; b-1 8, 1- nn"_“l., -
1-(2) j=a n
n -
n-l/a b-l A.+ +oo. +A +
= 2—0 I (n-3H1)[b,,. - Ll
b, (1-2) j=a A
-1/,  b-1
= n_a- S (n=3+1)[(B,,, - %1-) —(Aj+1+"'+An+1-l)].
D (1-3) j=a J n-3j+1 n
(2.5.11)
Let /
-1 b-1
n 3 . 1
(1) a_(8) = = 2 (n=3+1) (85, - 3)
n J
and
-1/5 b-1 :
. . _n n-J+1
(ii) Bn(é) 2 jia (AJ+1+"°+An+1 = ).
(2.5.12)
Then
a (8) B (o)
n n
wX(s) = 55— - B . (2.5.13)
n n
. -1 < .
Since E(A.) = o for 1% 3j =nt1,
E(Bn(é)) = 0. (2.5.14)
Now
var(B_(8)) = —5 Var[ 2 (8., + ...+ An+1)]
(1- 3) j=a )
-2/3 b-1 n+l
='£———3—§ var[ 2 (j—a)Aj + (b-a) = Aj]'
(1- 3) j=a j=b

n-2/3 [bgl j-a 2 + (@ )2 (n=b)
= a2 . -a 2
(1- ;) j=a+l n n
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since Aj are independent and Var (Aj) = l§-.

n

Therefore

2

var (B_(6)) 32 + (b-2)? (n-b)]

[}
N
‘'™

1 (b-a-1)(b-a){2(b-a-1) + 1)}
6

[}
—

+ (p-a)%(n-b)]

3
n8/8(1- 2,2 RV
n .

|A

Since b-a = 0(n2/3), the term on the right hand side
tends to zero. Therefore, from (2.5.14), it follows that
Bn(é) — 0 in probability.

Since Dn converges to 1 in probability, by Slutsky's

theorem (See Cramer [6]),

B, (6)

D
n

=> 0 in probability. (2.5.15)

Let fn(t) be the characteristic function of An(é). Then,

-1/4 b-1
tn /3 . 1

S [(n-3+1)(A.,. = =)1 )]
1- 5 J=a (n=j L ) j*1 n

fn(t) = E[exp (i

=4/3 b-1 b-1, I
= exp{-i z Qn-j+1)lf (n-j+1)tn’/3
- = Jj=a j=a n-i[ 2
1 - =
n

since Aj's are independent and exponentially distributed.

Therefore
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=4/ b-1 b-1
log £ (6) = - EB—2 5 (a-j41) + T logn
(1-2)  j=a j=a
b-1 .
- Z 1ogln - {i SE:JELI tn-1/3}]
j=a 1- a
-4/, b-1 b-1 -4/3
_-itn a3 £ (n-j+1)- T log[l - it(n-j+)n ]
1- P j=a 1- ﬁ
2-8/ b-1
ot 3 s ae? 4 o)
a2
2(1- -I_l) j=a
2 -8/ b-1
-ztn 3 s [(n-a)+ (a-3+1)2%+ 2(n-a) (a-§+1)] + o(1)
a,2
2(1- =) j=a
2 -8/
- -En 3 (hoay(n-a)? + o(D)
a2
2(1- ;)
2 -8/
= - 523 2502 4 o)
S
=-3 |6' + o(l).
t2
Therefore, fn(t) - exp { -5 |6|} as mn - %,

Hence by the continuity theorem for characteristic
functions, it follows that
An(é) is asymptotically normal with mean 0 and
variance |6| . (2.5.16)
Then,»by Slutsky's theorem (See Cramer [6]),
A_(8)

D
n

is asymptotically normal with mean 0 and

variance |6| (2.5.17)
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since Dn converges to 1 in probability.

From (2.5.13), (2.5.15) and (2.5.17), we get that Wn(é)

is asymptotically normal with mean O and variance [&§].

Lemma 2.5.2-

is asymptotically normal

For any ¢ in [-q,4], Vn(C)

with mean O and variance |[{].

Proof: This lemma follows immediately from lemma

2.5.1, since by definition
- -1/
v (L) = A W (6).

Remark: In a similar manner, it can be shown that for any

collection ¢, ... , C such that €. € [-g9,q], the joint
k i

distribution of [Vn(Cl), cee Vn(Ck)] converges to the
multivariate normal distribution with mean O and variance
- covariance matrix (6(Ci'cj)" min (|§i|,|Cj|))

where
if a,f are of the same sign

1
é(a.p) = {0 otherwise.

The next lemma proves that the processes {DnVn(C)] on

[-g.,q] (Dn is defined in (2.5.9)) satisfy an equi-continuity

condition.

Lemma 2.5.3.

For any (3, in [-q,qd].,
4
B[D_v_(t1) - D_V_(£5)]
2
2clty - ta| + |C1 - L2 o(1)

is a constant independent of n.

where C
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Proof: We have
4
EIDnVn(51) - DV (%;)]
-2 4
=22 E[p W _(21) - DW_(L,)]
-2 4
= A E[[An(51) - Bn(él)} - {Angaz) - Bngéz)}l
where An(é), Bn(é) are defined in (2.5.12),
< -2 4 : 4
< 8\ [ElAn(<51) - An(62)| + E|Bn(<51) - Bn(62)| 1
(2.5.18)
by the elementary inequality
E|X +Y|428[E|x|4 +E|Y|4].
Let

by = [nn + 61n2/3] i by = [nn + 62n2/3].(2.5.19)

Let us first compute

E|a_(61) - A_(55)]*

. o . 1,4
T, e -
n
-4/3  Dby-1
. 4 9
-t 2 (i)t 5
[1- =] J=by n
+6 2 5 (n-i+1) (n—J+1)2 1—4 1.
l-b]_ j-b]_ n
i#£j (2.5.20)
Since Aj are independent and
1 1 1,4 _ 9
E(Aj) =55 Var(Aj) = —5i E(Aj— =) =5 (2.5.21)
n n

for all j such that 1 = j = n+l.

From (2.5.20), we have




-4/ by-1
4 <9 3 2 . 2.2
E[a (61) - A (82)]" 275 — [ (n-3+1)7)
*(1- o) 3%bs
_‘/
9 3 2.2
_<_r41 ‘a4[(2-b1)n]
n (1- H)
-4/4
< 2n 77 (%2 - 61)2 n‘1/3n4
(1-1)"n
= Cy|8g - &4 (2.5.22)
Let us now compute
4
-4/, b,-1
-1 I T LTV ISR N ) T
. j*f1 n nt1 n
(1- ;1') 3=by
n 3 2 1
- S50y, 4y E)¥(bg-by) = (A-—)
n
< 81’1-4/3 |b2§b1 ( 1 | +(b b )4 I n;l (A 1)[4]
—— E J byl - 1 -
(1— %)4 1 Ab1+J n 2 jab.a+1 jn
-1/ by-b bg-by; bgo-b; .2.2
- 8n a34 2219'4+6221§21 1}
(1- =) j=1 4 j=1 i=1 n
n n . f
i#3
n+l
+ (b —b1)4{ s 24635 3 1—]]
2 . nd T T 4
J=bz*1 i jJ n
i#3
-4/, ba-by
< 72n 5 jz}z + (by-by) (n_bz)zl
4 a4 .
n (1 H) j=1
7 -4/3
=B [p)? nt 4 byby)* 0%
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1/4

= 72121 a4 [[62-61]% n /s ot s |6g=64]* n®/s
-2
n by (2.5.19),
= — T2 [15,-6,|% + [65-6,| n /3 83
(1_ 2)4 2 1 2 1
n since [85-8;| = 2c,
< Cg|63-6412 + [65-61] o(1). (2.5.23)
where C, = ——zg—z .
(1-1)

Combine (2.5.8), (2.5.22) and 2.5.23) we get that
2. o~—2 2 2
EIDnVn(C1)‘DnVn(Q2)| = 8N “[C1]03=61] "+ Ca|03-61 | +[62=61]0(1)]

2
= C|La=C1 | + [C2=Ca]| o(1)
where C 1is a constant independent of n.

This proves lemma 2.5.3.

Remarks:

Since D, converges to 1 in probability, DnVn(C)
is asymptotically normal with mean 0 and variance |§| by
lemma 2.5.2. Further from the remarks made at the end of
lemma 2.5.2, it follows that the joint distribution of
[Dth(C1): cee DnVn(ck)] is asymptotically multivariate
normal with mean 0 and variance - covariance matrix.

(6(25,ty) min (1451, 1851))
where 6 1is defined by

= 1 if a,b are of the same sign
6(a,b) {O otherwise.

When Dth(Q) is represented in terms of exponentials

as in lemma 2.5.1, we note that DnVn(C) is a process with
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independent increments.
We shall now state a theorem connected with convergence
of distributions of stochastic processes with independent

increments in D[a,B].

Theorem 2.5.4.

Let Xn be a sequence of processes with independent

increments on D[a,R] and X be a process on D[a,B] such

that

(i) for any ti, 1=i=% in [a,P] the joint distri-

bution of [Xn(tl), oo Xn(tk)] converges to the joint

distribution of [X(ty1), -.. , X(t, )], and

(ii) there exist constants Yy > O, C > 0 independent

of n such that for every ty,ty € [a,B],

E|Xn(t1) - xn(t2)|7<: C|t1-t2|2'+ |te-t1]| o(1).

Let v_ and v Dbe the distributions induced by xn and X

respectively on D[a,B]. Then v, converges to v weakly.

Proof: From the condition (ii) of the hypothesis it
follows that

E|X, (t1) = X (t3) |7 < Alts-t, |

for all n and for t;,ty € [a,B] such that |t;-tp| < 1
where A 1is a constant independent of n.

Therefore, for any A > O,
L Alta-tq] -
P{|x (t1) - X_(tz)] > A} N

2[5

for all |tp-t;| 2 & < 1.
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Let Y¥(&,A) = é% . We note that ¥(8,A) = 0 as & — O.
A

Now from the remarks made on page 140 of Sethuraman [18],
it follows that the distribution v, converges weakly to wv.
As a consequence of lemma 2.5.3 and the remarks made at
the end of the lemma, we get that the sequence of distributions
induced by the processes DnVn(C) on D[-g,q] converges
weakly to the distribution p induced by the process W(()
on D[-q,q]. |
Since Dn converges to 1 in probability, the follow-
ing theorem can be obtained by Slutsky's theorem generalized

to processes. (Rubin [16] ).

Theorem 2.5.5.

The sequence of processes Vn(c) on [-9,q] converges

in distribution to the process W(¢!) on [-gq,q].

Furthermore

-1
CZ + Op(n /6) converges to Cz uniformly in ¢, since ¢

belongs to a finite interval and Op is uniform for
£ e [-q.,4].
2 -1/g
Hence the process Xn(C) = Vn(C) -7+ Op(n ) con-
verges in distribution to the process
- 2
x(¢) =w() - ¢t° on [-q,q],

where W(f) is the Wiener process on [-q,q].

2.6  Asymptotic distribution of the maximum likelihood

estimator for increasing failure rate distributions:

In view of the result obtained at the end of section 2.5
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and the lemmas 2.4.1, 1.4.2, 1.6.2, the following final
result can be obtained by methods analogous to those used

in Section 1.6 of Chapter 1.

Theorem 2.6.1.

Let F(x) be a distribution with non-decreasing failure

rate r(x). Suppose that fn(g) is the M.L.E. of r(€)

based on n observations. Further assume that the condi-

tions in (2.4.1) are satisfied. Then the asymptotic dis-

tribution of

1/ 2 (e)rE))™* -1/ 1 - 2
has density
1
v (5

where VY is defined in (1.6.7).

2.7 Asymptotic distribution of the maximum likelihood

estimator for decreasing failure rate distributions ;

In this section, we shall give results for distributions
with decreasing failure rate. Let F(x) be a DFR distri-
bution with failure rate rk). Let fn(x) denote the M.L.E. of
r(x). It was shown by Marshall and Proschan [14] that the

1 is the slope of

estimate I (x) is consistent and [fn(x)]_
the convex minorant of ¢n(Y) at Y = Fn(x),
where

j J
6, @) = [ [1 - F_ (v)ldy,

Xj being the order statistics of a random sample of size n
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and F is the empirical distribution.
The following theorem can be proved by methods analogous

to those used in the case of IFR.

Theorem 2.7.1,

Let F(x) be a distribution with non-increasing failure

rate r(x). Let fn(g) denote the M.L.E. of r(x) at

X = €., Further suppose that conditions in (204,1) are

satisfied. Then

1/4 —2 c(g),"1/, 1 -1

is asymptotically distributed as the slope of the convex

minorant of the process W(t) + t2, -m< t <o att=20

where W(t) is the two-sided Wiener process with mean 0

and variance 1 per unit t and

1 r'(e)
BHe) 2

c(g) = - .

From Chernoff [4], we have the following theorem.

Theorem 2.7.2

The probability density function of E, the value of ¢(

which minimizes W({) *+ Cz where W(¢) is the two-sided

Wiener process with mean O and variance 1 per unit ({ is

¥(¢)
where VY is defined in (1.6.7).

From theorems 2.7.1 and 2.7.2, we have the following

result for DFR distributions.
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Theorem 2.7.3,

Let F(x) be a distribution with non-increasing failure

rate r(x). Suppose that fn(g) is the M.L.E. of «r(&)

based on n observations. Further assume that the condi-

tions in (2.4.1) are satisfied. Then the asymptotic distri-

bution of

- -4 -1/5 1 1
/o PR " ety - Ay

has the density’

1/2 ¥(5)

where VY 1is defined in (1.6.7).

Finally we conjecture that similar results can be
obtained for the asymptotic distribution for estimates of
T(x) = ¢[F(x)] £ (x)

when T is monotone and ¢ has a special known form.



CHAPTER 3

ESTIMATION OF THE LOCATION OF THE CUSP
OF A CONTINUOUS DENSITY

3.1 Introduction:

Chernoff and Rubin [5] and Rubin [17] investigated the
problem of estimation of the location of a discontinuity in
density in their papers in the third and fourth Berkeley
symposiums respectively. They have shown that the maximum
likelihood estimator is hyper-efficient under some regularity
conditions on the density and that asymptotically the esti-
mation problem is equivalent to that for a non-stationary
process with unknown center of non-stationarity. Daniels
[7] has obtained an asymptotically efficient estimator of
6 (modified maximum likelihood estimator) for the family

of densities

£(x,6) = -1 exp {—|x—6|k], %-< AN < 1.

1
2P(1+K)

In this chapter, we shall obtain a hyper-efficient
estimator for 6 where 6 is a parameter determining the

family of densities f(x,6) given by

A
_c¢e(x,0)|x=-6 + g(x,6) for |x| = a
log £(x,0) = {Efx 2 Ix=617 + ol G
(3.1.1)

where
. - B (6 if x < 6
(1) e(x.0) {yieg if x » 6,

60
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(ii) 0 <A < 1/2, and (3.1.2)

(iii) 6 ¢ (a,p)  where -A <qg <p < A. -

We shall prove that hyper-efficient estimators, among
them the maximum likelihood estimator (M.L.E.), exist for 6
under some regularity conditions and that asymptotically the
estimation problem is equivalent to the estimation of the
location parameter for a non-stationary Gaussian process.

We obtain some results related to the asymptotic pro-
perties of the M.L.E. in Section 3.2. The estimation problem
is reduced to that of a stochastic process in Section 3.3.
The asymptotic distribution of the M.L.E. is obtained in
Section 3.4. Section 3.5 contains the evaluation of

integrals encountered in Section 3.2.

3.2 sSome results related to the asymptotic properties of

the maximum likelihood estimator:

Since our interest centers around obtaining the
asymptotic distribution of the M.L.E. of 6, we can assume,
without loss of generality, that the true value of the
parameter is zero.

We shall assume that the following regularity conditions
are satisfied by £(x,6).

(i) For each 6 # 0 ¢ [a,B], there corresponds a &6(6) > O
such that

E°[|§ESL: s(0)l1eg £(x,0) - log £(x,0)]] < 0. (3.2.1)

(ii) For every 6 ¢ [a,R].,

dg(x,6) qu(x,e)
96 ae2

exist and
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2
Eo[“éﬂé%ﬂ]e.ol] < o and Eo[la_g_élzt.ﬂ[] <k < oo

for all 6. (3.2.2)

. o )
(iii) Eql 1°gg§(x' )Ie-o] =0. (3.2.3)

(iv) B(€) and y(6) are twice differentiable at all 6 with
bounded derivatives. (3.2.4)
(v) |£(x,0) - £(0,0)| = K |x|X for all x € [-A,A]
(3.2.5)
for some constant K.
We would like to mention here that even if the density
is given by
e(x,@)]x-9|k+ g(x,6) for -A =Zx ZB
log f(x,6) =
g(x,6) for x < -A and x > B
where conditions (3.1.2) and (3.2.1)-(3.2.5) are satisfied,
it can be reduced to the form (3.1.1) by suitably modifying
the function g(x,6) and the conditions (3.1.2) and
(3.2.1)-(3.2.5) can be shown to be satisfied by the new
density very easily.
Let X., 1 <iZ>n be n independent and identically

distributed observations from f(x,G).

Let én denote the M.L.E. of 6.

Lemma 3.2.1.

The M.L.E. én is strongly consistent under condition

(3.2.1).

Proof:
Let S(6,0,) denote the interval (6-0,, 6+6,) where

69 is given for each 6 by condition (3.2.1). Choose any
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number 1 > 0.
Let

k

L(6) = = 1log £(x;.9). , (3.2.6)

i=1

Let Q =[0:a X6 ZpB]1 N[6: [6]2n].
We notice that U §(6,9,)3Q and Q is
0efd

compact. Therefore, there exists a finite set 64, ..., QM

in § such that

Now
Pyl U {|ék| >n}] 2 Pe[ U { sup L,(6) > L,(0)}]
k2>n kZn 6 € Q

M

<3 Pl U { Sup L (8) > Ly (0)]]

11 k20 e 56,5 ) (3.2.8)
1

by (3.2.7).

Choose an € > 0.
Since E{ Sup [log £(Xx,6) - log £(X,0)]1} < O
6 ¢ s(6,,96
i’'"e,
i
by condition (3.2.1), it follows by the Strong law of large
numbers, that there exists an integer N(Qi,e) such that
k
P[ U Sup S [log £(X.,0) - log £(X.,0)]>< 0]
kZn 6 € §(6,,6, ) =1 ] J -
i
> 1 -

£
M
for every n > N(ei,s), i=1, ..., M.

Since
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Sup n
6 es(6,.%, ) 2 [log £(X.,6) - log £(x.,0)]
) i §=1 ] J
o Sup
< 2 log f£(X.,6) - log £(X.,0)],
_j=1 6 € S(ei’ée_)[ g ( j ) g ( j )]

we get that

U Ssup L _(6)> L _(0)}] < £
Ple>n {e ¢ s(6,,6, ) e }7 M
i’ "6, - <
1
for every n > Max[N(Gi,e), i=1, ..., M.

Therefore, from (3.2.7) and (3.2.8) we get that

U

Plizy, {8kl > )1 <Mg =

for every n > Max(N(Gi,s), 1 =i M.

In other words,

én is strongly consistent.

Let us now consider the log-likelihood ratio
Ln(9) - Ln(O) where L_ is defined in (3.2.5).

We have

L (8) - L (0) = 3, I 6 oM 0 A
n "~ %n - 1 E(xi' )Ixi_ I —E(Xi’ )Ixi| ]

i=1
n
+ 2 [g(Xi,e) - g(Xi,O)]
i=1
where 2; denotes that the sum is extended over those
such that |Xi| = A.

2
Let g'(X,6) = §3§%¢Ql and g"(x,6) = 9 . X8l -
6
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Then by Taylor's theorem (in view of (3.2.2)),

L (6) - 1 (0) = 3, e(x,,0) [x;-6 ™= e(x,,0)[x, |M

n 1
i=1

n
+6 3 g'(Xi,O)

i=1
92 1 n
+3 [ (1-t) = ¢"(x,,6t)dt. (3.2.9)
0 i=1
n 92
=2 ¥(X;,8) + né E[g"(x,0)] + Jn 6 W +n > Vn
i=]1
(3.2.10)
where N
A
. - ¢e(x,6)[x-6|"- g(x,0)|x| for |Xx| = a
(1) ¥(x,6) = { 0 | | x| otheiwlse,
1 n
() W, = (77 (2 9°(x;,0) = n B(g" (x,0))1,
l=
and n 1
(1ii) v_ == = [ g"(x,,6t)(1-t)at. (3.2.11)
i=1 0

Since g'(xi,O) are i.i.d. random variables, condi-
tion (3.2.2) implies that W is asymptotically normal with
mean O and finite variance by the central limit theorem
for i.i.d. random variables.

Since g"(Xi,Gt) are i.i.d. random variables, by
condition (3.2.2), we get that

v, = Ob(l)'

Therefore, from (3.2.10), we have

Ln(G) - Ln(O)

n
= 3 w(xi,e) +n 6 E[g'(X,0)]
i=1
Jn iy
++Vn 6 Op(l) +ng Op(l).
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The lemmas which we will prove next lead to the calcu-
lation of Eg[L (6) - L_(0)], Vare[L (6) - L (0)] and

Varo[Ln(G) - Ln(d>)] .

Lemma. 3.2.2.

For any 6,¢ € [a,B],

2 < 27+1

Eol¥(X,6) - ¥(X,0)]° 2B [6 - ¢

where.. B 1is a constant independent of 6 and ¢,

and

2M1 19c £(0,0) + o(1)]

Eol¥(x,8) - ¥(x,0)1% = [6-0]
as & — 0 and ¢ — O

where

¢ = LOHLIC(/2 =N 1a2(4) 4 42(0)-2p(0)y(0)cos Tl

921 (zx+1)
(3.2.12)

Proof:
Let us assume without loss of generality that 6 » ¢.

By the definition of ¥ (X,6),

Eol[¥(X,60)- \f(x,c»)]2

A
= [ [e(x,0)]x-6|"- e(x,0)|x-0|M? £(x,0)ax
-A

= T; + Ty (3.2.13)
where
(i) Ty = f[exe)|x-e| -s(x ®)|xX- ¢| £(0,0)ax
-A
and
(ii) To = f[e X, e)|x-e| (x,0)|x- ¢| [f(x,o)-f(o,o)]dx.

(3.2.14)
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By condition (3.2.5),

|T2 | :.Kf[e X,6)|x- e| (x,0)|x- ¢| [X[%dx
-A
2 2K (T3 + Ty) (3.2.15)
where
(1) Ty = f[e<x-n,«>>rx 6| e(x,0)[x-0|M2 |x|* ax

and

A
(i1) Tg = | [x=62Mx|Me®-n.0) - e(x.,6)]2%ax(3.2.16)

‘For X <6, e(X,8) - e(X-1,0) =p(6) - B(o)
v(8) - v(eo).

Therefore, integrand of T4, 1is of the order

and for X » 6, e(X,0) - g(X-7n.9)

|9-¢|20(|X—6|2%|X|x) since B(f) and v(6) have bounded
derivatives.

Since 6 Dbelongs to a finite interval, it follows that

l6-0]2 0(1). (3.2.17)
Let
(i) T5 = f [e(X-7,¢) |x-9| (X, |x-¢|% 2 £(0,0)a
and
(i1) T = f [{e(x,0)|x-0|" = e(x,0)|x-0|"
A =(e(x-1,0)[x-6|"- e(x,0)|x-0]")1%£(0,0)ax.
(3.2.18)

From the inequality
|[flu(x) + v(x)]zdx]l/z-[fuz(x)dx]1/2| = [fvz(x)dx]l/a,

it follows that
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lT11/2 _ Tsl/zl < Tsl/z. (3.2.19)

From (3.2.18), we have

A
Te = [ [e(X,0) - e(x-n,0)12[x-6|2M£(0,0)ax
-A
= 6-0]2 0(1), (3.2.20)

since 6 .belongs to a finite interval and B(6) and
Y(6) have bounded derivatives.

Let us now consider Tgz. We have

a/n
q2k+1f(0,0) } [e(nY-n.,0)|Y - %Ix-s(nYr¢)lY "ﬁlxlde

_A'r]

Ts

by the substitution X = nY,

A-0
£(0,0) ? [e(nz+¢—n,¢)|z-1|x-e(nz+¢,¢)lzlxlzdz
-A-0

N

2 +1
n

by the substitution Y =2 + %,

A-9¢

n
2M1e,0)f [hiz-1) |z-1| - n@) |z|N? az
-A-0

n

i f
where h(z) = {5&:; 1f g

Therefore,

(o o]
Ts = 12M1£0,0) J [h(z-1) |2-1|- n@) |2|N? az
-Q0

- M£0,00 [ mE-1 jz-1* he) (2N e

=A-9¢ A-¢
z ¢ ( . o )
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27+1

= n°M1£00,0) 2c(0)-12M1

£(0,0) [[h(z-1) |2-1|h(z) |z|N 2az

-A-¢ A-0
z ¢ ( = ¢ o ) g3.2.21)

FOMLT (A
(e
22MLr (2a+1)

(6) +y2 (6) =28 (8)y (6) cos T A]
(3.2.22)

where C (¢ )=

(The integral will be evaluated in Section 3.5, lemma 3.5.2).
Since 6 and ¢ belong to a finite interval, it
follows from (3.2.21), that for any 6 and ¢ in [a,B]

7y = 1221 0 (1) (3.2.23)

and for 6 and ¢ in [a,B] such that ¢ > 0 and n — 0

22+1 22+1
o

Ts = 2 c(0) £(0,0) + 7 1). (3.2.24)
Let us now consider Tj.
We notice that
A
|Ta| = |A|h f [e(x-n,¢)|x—6|x- e(X,¢)[X-¢|x]2dX

< ART

— £©0,0)5 °
Therefore, from (3.2.23), it follows that for anyv 6 and
¢ in the interval [a.,B].,

rs = 1201 0(1). (3.2.25)

On the other hand, for 6 and ¢ such that

n—> 0 and ¢ — 0, let us evaluate Tj.

Now Tz = n2K+1 P [€(nZ+¢—q,¢)|Z-1|x-e(qz+¢,¢)lZIx]2|¢+qZ[de

Let Q¢'n(z) denote the integrand in the right hand

side. We observe that as ¢ and n — 0, the range of
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integration tends to (-oco,® ). We note that
82 (0) [ |z-1| 2| M2 |e+nz|" for z < 0,
Q¢’n(Z) = 72(¢)[[Z-l[x-IZ[%]2|¢+nZ[x for z > 1,
[B(¢)lz-l[x-y(¢)|z[x]2|¢+qz[kfor 0 <2z <1,

By condition (3.2.4), B(¢) and y(¢) are bounded.

Let cy = sup ([B(e)], [v(e)]].
be [C!,B]

Therefore the integrand Q¢ ﬁ(Z) is bounded by

ci2r|z-1*- 2| N2l for z < 0,

Q(2) ci2r|z-1| |z [N 2} for z > 1,

2 2 2 2 2 A
Cc,90]2-1]""+c,% 2| k+2c1 |z-1| IZ|A]|A|K
for 0 <2 < 1,
for all ¢ and 7.
Further Q(Z) is integrable over (-oco0,00) since
0 <A < 1/2, and Q, n(Z) —> 0 as ¢ — 0 and 7 — O.
Therefore by the bounded convergence theorem,
A-¢
]
f Qp AZ) dz — 0 as ¢ — 0 and 1 — O.
¢ ’

~A-

n

/
In other words, for 6 and ¢ such that n — 0 and
o — 0,
ry = 21 o(1). (3.2.26)

From (3.2.19) and (3.2.20), it follows that

T:/z = T;/z + |6-0| 0(1).

Therefore, from (3.2.23), we have
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Ty = Ts + [6-0] T5/2 0(1) + |o-0|? 0(1)
= Tg + [6-¢|%+3/2 0(1) + [6—¢l 0(1), (3.2.27)
Let us first consider the general case whén e ana ¢ are

any numbers in [a,B] .

Now

Eo[\y(x,e)-‘if(x,cta)]2 =T, + T, by (3.2.13),

= 2g+]0-0 M2 0(1)+]0-0 |2 0(1)+2K(rs+2,)

by (3.2.15) and (3.2.27)

0 1) ™22 0 1)42 0 (1)

|A

27+1
n

27+1 0(1)+n7\+3/2 0(1)+n2 0(1))

+ 2K({n
by (3.2.23), (3.2.25) and (3.2.17),

2%+1

= [0(1)+q/27 0 (1) 47122

0(1)]

= 2™ o 1) (3.2.28)

since 0 < A< 1/2 and n is in a
' finite interval.
Suppose in addition that 6 'and ¢ approach O.
Then

Eo[w(X.¢)-w(x,¢)12 =Ty + Ty

rs40-0 | M2 0(1)+|0-0|2 0(1)

2N+1 2

+ 7 o(1) + 7% 0(1)
by (3.2.26),(3.2.27),(3.2.15) and (3.2.17)

2MLiac £(0,0)+0 (1)] 4™ 2 0(1)

22+1

+ nz 0(1) +n o(l) Dby (3.2.24),
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12M1iae £(0,0)+0 (1) +n* 272 0 (1)

+ 717220 (1)

12Mlioc £(0,0)+ o(1)],

since 0 < A < 1/2.

(3.2.18) and (3.2.29) together prove the lemma.

(3.2.29)

Let
6 (x,8) = {90 e (X,0) A Sgn X lek—l fgihlﬁiiiéA
(3.2.30)
Lemma 3.2.3 -
Eo[¥(X,6)+0(x,0)1=]6 | 2 M ~c+0(1)]1£(0,0)
+ f[e(X.G)-e(X~9,0)]|x—e|kf(x,0)dx

-A

where o(1l) is in 6 and C is given by (3.2.12).

Proof:

Let us suppose that 6 = 0.

By the definition of ¥ and ¢,

Eol¥(X,0) + ¢(X,6)]

where

(i)

and

?[E(X:G) x-6 | M=e(x,0) x|
-A

+ 6 €(X,0) N Sgn x|x|x-1]f(x,0)dx

Ty + Tg

T, = f[e(x—e 0)|x-e| (x,0) |x[

+ 6 g(X,0) N\ sgn X|X|x_1]f(x,0)dx

(3.2.31)
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A

(ii) T, = [[e(X,0) - e(x-6,0)] [x-6| M (x,0)dx (3.2.32)
-A

We now have

6
[e|1+xﬁie [s(X-l,O)lX-l[x— s(X,O)leX
-A

T, =
A1
.+ N e(X,0) sgn X[X|"TT1£(x6,0)dx
1
= [6] +X(T3 + Ty )
where
a/6 A A
(i) T3 = [ [e(X-1,0)|x-1|"- e(x,0)|x]|
-a/e
) A-1
+ A e(X,0) sgn X|x|" T1£(0,0)dx
and |
a/6 A A
(ii) T4 = [ [e(x-1,0)[x-1|"- e(x,0) x|
-A/6
+ A e(X,0) Sgn X |x|x'1][f(xe,o)-f(o,o)]dx.
(3.2.33)
we have

- I A A A-1
Ty = £(0,0) [ [e(X-1,0)|x-1|"-¢(X,0)|x|"+Ae(X,0)sgn X|X|" "Jax
A A
- f(o,of [ [e(x-1,0)|x-1|"-e(x,0)|x]|
X|2a/e

lk—l

+ N €(X,0) Sgn X |X 18X

i _f(O'OfxléA}S(X-IIO)|X-1lx-€(x'°)|X|x

+ N e(x,0) sgn X |x|x'1]dx
by lemma 3.5.1 of Section 3.5.
Since the integrand on the right hand side of the above

equality is of the order 0(|X|x-2),
T, = 0(1) |o|P7™ . (3.2.34)
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Let us now evaluate T4. Let f = £(0,0)
From (3.2.33), we have
a/e
T, = fe[s(x-1,o)|x-1|x - e(x,0) x|

+ A e(x,0) sgn x [x|M1e(x,0)|xe | Mrax

+ Aée[s(x-lro)lx-llx - e(x.0)[x|"
-a/6

A1
x|

+ N e(x,0) Sgn X ]

[£(X6,0)-£(0,0)-£e(X,0)[x6|N ax.(3.2.35)

Let
a
(1) 15 =0 [ (e(x-1),0)[x-1]* - ¢(x,0) x|
-00
+ N e(X,0) Sgn X |x|x'1]e(x,o)|x|k dx,
(ii) Te =—£]0| [ [e(x-1,0)|x-1|® - e(x,0) x|}
[x|22/8 -
+ N e(X,0) Sgn X |x[x"1] e(X,O)lxlx dx,
and
a/e A N
(iii) T7 = [ [e(X-1,0) |x-1|"- g (x,0) |X]|
-a/6
+ N e(X,0) Sgn X |x|x'1]
[£(x6,0) - £(0,0) -fe (X,0) |xe|%] ax.
We have

Ty = Ts + Tg + Ty7. (3.2.36)
By lemma 3.5.4 of Section 3.5,

—ctle|™ . (3.2.37)
2%-2 )

Ts

Since the integrand of Tg is of the order O(|X|

?
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Te = (6] |0]12M0(1). (3.2.38)
Let us now evaluate Tgy. ‘
We notice that the range of integration tends to (-oco,m )
as 6 — 0. |

Furthermore for each X,

£(x0,0) - £(0,0) - f{x,0)[x6 |} o o _
k .
16|

and the integrand of T; is bounded by C, [X|x|6[x

for each X, and is bounded by C, |X[x-2 for X large
for some constants C; and C,.

Therefore, by the bounded convergence theorem,

T, = 6] o(1). (3.2.39)

From (3.2.34) - (3.2.39), we have

Ty + 1, = [6117Mo(1) - celo|M + 8|} o(1)  (3.2.40)
Therefore,

1+A

T, = [0 M —ce]o|M + 6| o(1) + o |1 o(1)]

= |61 e+ 0(1)].
Now, from (3.2.31) and (3.2.32), we have

Eol¥(X,6) + ¢(x,6)]

A
0112 cEr o(1)1+ [le(x,6)-e(x-6,0)] [x-0 | P£(x,0) ax.
-A

(302.41)
Now, if 6 — 0, then

2N _cfr o(1)]

Eol¥(X,6) + ¢ (x,6)] = |6]
: A .
+ [le(X,6)- €(X-6,0)] |x-6|"£(X,0) dX (3.2.42)

-A

since 0 < A < 1/2, (3.2.42) proves lemma 3.2.3.
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Using the results obtained in lemmas 3.22 and 3.2.3, we
shall compute Eo(L_(6) - L_(0)], Varo( L(0) - L (0) and

varg (L_(6) - L (¢)) in the following lemmas 3.2.4 and 3.2.5.

Lemma 3.2.4.

1+2A

EO[Ln(G) - L,(0)] = - n cf|6| [1 + o(1)]

where o(1) is in 6 and C is given in (3.2.12), and in

general, for any 6 ¢ [a.,B].

EolL_(6) - L_(0)] = -n H |o| 122

where H is a constant independent of n and 6.

Proof:
Let us assume that 6 > O.

We have

Eo[Ln(G) - Ln(O)] n E[log £(X,0) - log £(Xx,0)]

n E[¥(X,6)] + n E[g(X,06) - g(x,0)]

n E[¥(X,9)] + n E[6 g'(X,0)

e2 1
+75-g(1-t)g"(x,6t) dt]

n E[¥(X,6) + 6 g'(X,0)] + n 62 0(1)

by condition (3.2.2),

n E[¥(X,6) + ®(X,6)] + n 62 0(1)

+n E[6 g'(X,0) - ¢(x,6)]. (3.2.43)
Where ¢ is defined in (3.2.30).
Let

(i) T, = E[¥(X,8)+6(X,6)]- f[e(x (x-6,0)] |x-6| f(x 0)dax

and
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(ii) T, = E[6 g'(X,0) - ¢(X,6)]

* ? [e(x,0) - e(X-Q,O)]|X~9|x £(x,0) ax.
A ‘ (3.2.44)

From (3.2.43), we have

EolL_(6) = L_(0)] =n Ty +n T, +n 6% 0(1). (3.2.45)

From (3.2.3), we have

d log £(X,6) -
Eo 38 |e=o} 0.

Therefore,

Ik—l

A
f [e'(x,o)lxlx - N e(X,0) sgn X |X ] £(x,0) a&x
-A

(e @)
+ [ g'(x,0) £(X,0) dx = 0.
-0

In other words,
A
E[6 g'(x,0) - ¢(X,6)] = -6 fe'(X,O)|X|x f(x,0) ax.
-A
From (3.2.44), it follows that
¥ A A
Tg = [([e(X,0)-e(X-6,0)] |X-6|"-6e"(X,0)|X|"}E(x,0) aX.
-A
We note that Tg = 62 0(1) since 6 is in a finite interval
and B(6),y(6) have bounded second derivatives.
Therefore from (3.2.45), it follows that
2
Eo[Ln(G) - Ln(O)] =nT; +n 6° 0(1).
By lemma 3.2.3, as 6 approaches zero,

142

Ty = |6] [-C + o(1)1£.

Therefore, if 6 — 0, then
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142

Eo[L_(6) - L (0)] =n [6] [-Cf+ o(1)] (3.2.46)

since 0 < A < 1/2 .
In other words there exists a number 17 > 0 such that

EolL_(6) - L_(0)] =-n e

l1+27\ (*)
for all 6 such that 6 € [a,8] and |[6] < 7.
Let us now consider the set

Q= [6: o 260 =pIN[6:

eli'r]].
Since this is a compact set, there exists a finite set

B1/ «eo Gm in £ such that

U 8(6.,8, ) Q
i=1 17765

where S(6,,8, ) denotes the interval (ei-ée.'ei+66i)

i i
and &, is given by condition (3.2.1).
i
Therefore
Sup Eg[log £(X,6) - log £(X,0)]
6efd

= Sup E | Sup {log £(x,0)-log £(X,0)]}
= m e € S(ei'69.3 .
i

by condition (3.2.1).
Since |6| Z n > 0 , we have now

Sup Eg[ log £(X,0) - log £(X,0)] < O .
6 € Q |ell+2%

Let D= - Sup Eg {log £(X,6) - log £(x,0)

Notice that D » O.
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Then for every 6 € {,
Eo[Ln(G) - Ln(O)] = n E[log £(X,0) - log £(X,0)]
= - nD|9|1+2x .
This, together with (*), implies that

1+2A

Eo[Ln(G) - Ln(o)].: -nH |6] (3.2.47)

for every 6 in [a,PB].

where H is greater than zero.

Lemma 3.2.5.

For any 6 and ¢ in the interval [a,B].,
2A+1

Varg[L (6) - L_(¢)] = nQ |6-0 |

where Q 1is a constant independent of 6,¢ and n,

and

vare[L_ () - L_(0)] = 2 nc £(0,0) [6]*M1(1 + o(1))

where o(1) is in 6 and C is given by (3.2.12).

Proof:

Since xi’ 1 <i=n are i.i.d. random variables
Varg[L (6) - L_(0)]

= n Varg[log £(X,6) - log £(X,0)] -
(3.2.48)

Let us now compute for 6 — O,

Eollog £(X,6) - log f(X,O)]2

Eo[¥(X.0) + g(X,6) - g(x,0)]2
2

Eo[¥(X,6)12 + Eqlg(X,6) - g(x,0)]

+ 2 Eol¥(x,0){g(x,6) - g(x,0)]}].

Ty + Ty + 2T (3.2.49)
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where
(i) T, = Eol¥(x,6)12,
(ii) T = Eolg(x,6) - g(x,0)12,
and
(iii) T3 = Eol¥(X,0){g(x.6) - g(x,0)}].

62 0(1) by condition (3.2.2) and
2A+1

Note that T,

T, 16| 0(1) by lemma 3.2.2.

Further
3+2A

|T3| =VT1T,. Therefore Tz = |6 2 0(1).
Therefore, from (3.2.49), we have for 6 — 0
Eol[log £(X,6) - log f(x,O)]2

3+2A

2"+1+|9|-§_—'o(1)+|e|2o(1)

= (2 C £(0,0) + o(1)] |6

22112 ¢ £(0,0) + o(1)] (3.2.50)

= [0
since 0 < A < 1/2.
Now

Varg[log £(X,6) - log £(x,0)]
= Eg[log £(X,6)-log f(X,O)]z-{Eo[log £(x,6)-log f(X,O)]]2

2M1 190 £(0,0) + o(1)]-{-c|6| ™2 1 + o(1)])? £

= |6]
by (3.2.50) and lemma 3.2.4,

1612M2c £(0,0) + o(1)].

Therefore, from (3.2.48), we have
varg[L, (6) - L (0)]

- n [o]2M1

2¢ £(0,0)[1 + o(1)] (3.2.51)
Let us now consider Varg[L (6) - Ln(¢)] for any 6,¢ in

[a.B] -
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Obviously
Varg[L (6) - L _(¢)]

= n Egllog £(X,6) - log £(X, )]2

= n Eo[ {¥(X,0) - ¥(X,0)) + (g(X.8) - g(x,)}12

= 2n (Bol¥(X,0) - ¥(X,0)]12 + E[g(X,6) - g(X,6)]
27+1

2)

< 2n (8|6-0] + -0 |2 0(1))

by condition (3.2.2) and lemma 3.2.2,
=nq |e-o|2M1 (3.2.52)
where Q is some constant since 6 and ¢ Dbelong to a

finite interval. (3.2.51) and (3.2.52) prove lemma 3.2.5.

We shall now prove a theorem which enables us to con-

clude that the probability, that the maximum of Ln(G) - Ln(O)

1 1

is attained outside the interval [-K n - T:EK} Kn -~ IIEX],

approaches zero for K sufficiently large. More precisely,

Theorem 3.2.6.

There exists n > 0 such that

SETRY oL — ~n =
n|o|

lim 1lim Po[ Sup
T—C0 n |6 |>tn

where M (6) =1L (6) - L (0).

Proof:

Since Mn(e) is continuous in 6, it is enough to prove

that

—_ M_(6)
lim Tim Py [ Sup 537 = -nk0(3.2.53)

T—>00 n |eijﬂ>r

1
“1+27%
n nleijk'



82

1
for some set {eijk] dense in {6 : |6 > TA'TIEX ].
1 . k.
Let 6, = 2% 512 for i =0,1,2,...
j =0,1,2,...
k =0,1,2,...,29-1.
. (3.2.54)
Obviously eijk is dense in {6: 6 > Tn71+2k }.

We shall prove (3.2.53) when 6 ranges over
1

(6: 6 > tn 1+2A ).

The proof is analogous when 6 ranges over

1

(6: 6 < =1n 1+2) ].
Let v = 2N + 1.

Let us now define

T (8 ) = M_(

- Y
n(®isx - eijk) E[Mn(eijk) +nH 6! 1, (3.2.55)

ioo
where H is defined in lemma 3.2.4.

Since 9? <gY and

ioo ijk
< _ Y < _ Y
E[M,(6;44)) = -nH 67, = -nH 6/
it follows that
6.. M (6..
" COagsc) > M) | (3.2.56)
oY e
ioo ijk
Therefore
M (6...)
1 k
Pol  Sup-% ny =12 > oq)
6 jk>Tn neijk
T (6..,)
= Pol Sup—l- _E__ilﬁ__: -n] (8.2.57)
6 >~cny ng?
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From (3.2.55),

= - Y = _ YolY
Eo[Tn (eioo)] nH eioo Ht'2
and
EolTn(0;,4,2k+1) = Tnlfi,5-1,%)1 = O
Now
Var[Tn(Gioo)] = Var[Mn(eioo)]
< Y = YolY
=ngQ eioo Q T'27 "
Let us now compute
vare [T, (8; 5 ox+1) = Tn(fi,j-1,x/]
= Varg[M, (6, 4 oy iq) = M (65 5 1 x)]
< - Y
=0 Q8 5 ok+1 ~ %3, 5-1,x]
2k+1 _kT
g ¥ 2l |g 23 _ p237t Y
2k+1 vy
T3 .
sV 222 1o 273

1YY
<q ¥ 2(1+1) [long 1Y

C Y
=qQ 1/ (2 log Z)V 2(1 i)?,

We observe that

< _ Y
Tn(eioo) = -nt eioo
and
- < Y
Th(€i,5,2x¢1) = Tn(®i,5-1,x) P58i00

for all i,j and k =0,1,...,27

imply that

(3.2.58)

(3.2.59)

by lemma 3.2.5,

(3.2.60)

-1_,
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< _ v ;
Tngeijk) = -nne;  for all i

provided
@
-+ 2 P. = -7. (3.2.61)
=1 J .
We shall choose ¢ > 0 and sequence Pj suitably at the

end so as to satisfy the condition (3.2.61).

T, (6, .5)
Therefore, Po[ sup _ _1 ————71—- > -7
>rn 122 9 0o
ijk
@
< S PIT (6, ) > -nt e ]
: n 100 100
i=o
j-1
@ ® 2-1 y
+ = z Z P 6. . -1 (6. . < nP.6!
i=0 j=1 k=o [Tn( l,J,2k+1) n( 1,J-1,k)—'n j 1oo]
< 0; 0 Tvzgvz _ +0; o; 23-1%17317(?02 2)Y2~3Y
im0 [H-C]"T ‘YZ 1y i=o j=1 Pj T Y 2 1y

by (3.2.58), (3.2.59), (3.2.60) and Chebyshev's inequality,

© o]

= —Q—— Z 2—i'Y
(H-C)z'ry i=o

© . Yoo .4l _
+ & 327y (2109 2) 5 53 (1Y) 52
T i=0 j=1 ]

-9 (1 1 _, (2109 2)7 % gi(1-y) p-2
<Y 197V (H-C 2 =

Let us choose 0 < { < H and Pj = 2

and :
o] 6.§R/2

= ¢ -SSP, = = e,
IR R
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Then, from (3.2.72).

Pol Sup Tn(eijk) :-‘ﬂ]
1 2 neY
0..,.>Tn +22 100
ijk
<9 11, (21og2) 1
Y (1-27Y) (m-r)?  2M1s2 1-2"A
(3.2.63)
Therefore, by (3.2.57)
M (6..,)
lim PO[ Sup 1 n_(g.]i__:_n]
Y
n —7 neijk
915%™
<9 _1 1 , {2 log 2)Y 1
w7 1277 (m- 92 2™ 42 1-27 2
5 9~M2
where ¢ <H, 6 >0 and n = - and vy = 2A+1.
1_2-k72
Taking limits as 1 — o, we get that
o M_(6,..)
Iim Tim po[ 59 | R dik > ;=9
T n - = n@?.k
6...>tn Y 1]

ijk
since vy > O.
This proves theorem 3.2.6. in view of the remarks -

made at the beginning of the proof.

3.3 Reduction to a problem in stochastic processes:
We shall reduce now the problem of determining the
asymptotic distribution of én or equivalently the asymptotic

distribution of the maximum of Mn(e) to that of a limiting
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process. In view of theorem 3.2.6, we can restrict our
1 1

attention to intervals of the type [—Tny, Tny] where 1 > 0
and Y= 2A+ 1 in order to locate the maximum of Mn(e).
For 1 > O,

1
let Xn(C) = Mn(g--1+2kc) for ¢ € [-1,7], and X(¢)

be the continuous normal non-stationary process on [-1,T] with
E[x(¢)1= -c|t]Y(0,0),
var[x(£)) = 2¢c £(0,0) [¢]7,

and  Cov[X(Ly1),X(L2)] =¢C £(0,0)[|&s|Y+|La|7-|Cs-C2 "1,

(3.3.1)
where C = Fé;;i%f;‘t:i+l)xl [62(0) + 72(0) - 28(0)y(0)cos 7A\] .
Let
A (2) = x_(2) - E(X€))
and A(L) =x(L) - E(x(¢)). (3.3.2)

Theorem 3.3.1.

For any C € [-T,7], An(C) is asymptotically normal

with mean O and variance 2C £(0,0) |C|7.

Proof:
By definition
A (L) =M (6) - E[M (6)]
where 1
o0 = n 1¥2A c.

Let



87

A (L) =B (L) +c (L)
where

_ 3 A A
B,(L) = 21 [e(x;.,9)[x;-6|"-e(x;,0)(x,["]

n i=1
= n E[lp(xle)]
and
n
c (¢) = 2z [9(x;.6) - g(x,,0)]-n E[g(X,6)-g(x,0)]
l-

where 2; denotes that the sum is extended over only those

Xi's for which |X.| = A.
i

Obviously

Eo(cn(C)) =0

and

|A

Varo(cn(c)) n Eglg(X,6) - g(x,o)]2

| A
w
o]
D

by condition 3.2.2

=k n—__- g .
Since 0 < A\ < 1/2, it follows that
Varg (Cn(C)) — 0 as n — .

Therefore,

Cn(C) converges to O in probability as n —> .
Hence An(Q) and Bn(C) have the same asymptotic distri-
bution by Slutsky's Theorem.

Let F; be the distribution function of Bn(C) and
3(x) be the normal distribution with mean O and variance 1.
Let

Y = ¥(X,0)
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where

1
6 =n 12X ¢ and v is as defined in (3.2.11).
Then .
n
Bn(C) - 151 [Yl - E(Yi)]

where Yi are i.i.d as Y.

By the normal approximation theorem, (See Loeve [13], pp. 288)

* (x) - x)| = Co n - 3.
[FL (%) - §(x)] e 'Bn(c)]°7? E|Y - E(Y)|

where Cg 1is a numerical constant.
It can be easily shown by methods analogous to those used

in lemma 3.2.5, that

Ely - £(y)|3 = c, |03

where C; 1is a constant independent of 6.

_3A+1
1+28 3n+1
Therefore, |F;(x) -3(x)| = ConC1n [¢]
{2c £(0,0) [t |Y[1+0(1)])3/2
A
3A+1 - 142N
_ cocat] P n

(2c £(0,0)|¢|Y[1+0(1)])3/2

This term tends to zero as n — o since A > 0.

Therefore, _Eniél____ is asymptotically normal with mean O
JVarZBnZQS

and variance 1. But we note that
var (B_(£)) = 2c £(0,0)]¢|Y[1 + o(1)1,
from the proof of lemma 3.2.5.

This establishes that Bn(C) is distributed asymptotically
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as normal with mean 0 and variance 2C f(0,0)|C|7. Therdfore,
An(C) is distributed asymptotically as normal with mean O
and variance 2C f(0,0)[C[y.
Remark: By the normal approximation theorem again, it can
be shown that for any real numbers aj, ..., ay and
€1, C2v --0r & in [-T.7]4

X _
izl anAn(Ci) is asymptotically normal with mean O

and variance

ko, Kk k
2c £(0,0)[ 3 a, 617+ 2 T a a, (|t
i=1 i=1 j=1 J
i<j

'y'*ICJ |Y'IC1‘QJ I'Y}]

The next theorem shows that the process An(c) on

[-t,7T] satisfy an equi-continuity condition.

Theorem 3.3.2.

For any C]_,Cz E ["TIT]I
E|An(C1) - An(Cz)lz =Qlty - §2|y

where Q is a constant independent of n,{;,{s and

Yy = 2N + 1.

Proof:

By the definition of X (¢)

1

EIA_(L1) - A_(£2)12 = varg[M_(6y) - M_(65)]

Y

where 6; = n v i1 and 65 =n v €a-

But from lemma 3.2.5,
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vare [M (61) - M_(65)] Zn o [6; - 6,]7.

Therefore
2

|a

E[An(C1) - An(ﬁz)] nQ n-1|C1'C2|y

=Q [&y - Czly~
From Kolmogarov's theorem, (see Doob [8] ) the process An(C)
has trajectories in C[-1,Tt] by theorem 3.3.2.
We shall now state a theorem connected with convergence
of distributions of stochastic processes on C[a,b], where
Cla,b] denotes the space of continuous functions on [a,Db]

with supremum norm topology.

Theorem 3.3.3.

Let Xn be a sequence of stochastic processes on

C[a,b] and X be another process on C[a,b] such that

(i) for any t; € [a,b], 1 =i =k, the joint distri-

bution of [Xn(tl, cees xn(tk)] converges to the joint

distribution of [X(ty), ..., X(tk)], and

(ii) there exist. constants A,B,C, > 0 independent of

n such that for every n

A 1+B
Elx (t1) - X (t2)|" <cClty -tz 7.

Then the sequence of processes xn converge in distri-
bution to the process X.

For a proof of the above theorem, see theorem 2.4 of
Sethuraman [18].

Theorem 3.3.1 and the remarks made at the end of its
proof together with theorem 3.3.2 imply the following result

in view of theorem 3.3.3.



91

Theorem 3.3.4

The processes A _({) on [-7,7] converge in distribu-

tion to the process A(f{) on [-T,7].

Therefore we have

Theorem 3.3.5

The process Xn(C) on [-1,7] _converge in distribu-

tion to the process X({) on [-T1,71].

Proof:
since E[X_(£)] = -c [¢]|Y[1 + o(1)]f
where o(1) is uniform for ¢ € [-1,7] as n — @ by

lemma 3.2.4, and since
E[X(Z)] = -c£|¢]|Y, it follows that
E(x_(£)] — E[X(f)] as n—>
uniformly for (¢ in the interval [-7,T7].

Therefore, by an extension of Slutsky's theorem to
stochastic processes ($ee Rubin [16] ), it follows from
theorem 3.3.4, that the process An(Q) + E[Xn(C)] converges
in distribution to the process A(f) + E[X(¢)].

In other words,

The process Xn(Q) converges in distribution to

the process X(¢) on [-T1,7]-.

For any x € C[-1,7], let g(x) Dbe the value of t
that maximizes x(t) over [-1,7]. Obviously g(x) is a
continuous functional in the supremum norm topology on

C[-1,7], provided x has a unique maximum.
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Therefore by theorem 3.3.5, the distribution of

g(x (L)) converges to the distribution of g(x(¢)) for

€ ¢ [-t,t]. Hence we have the following theorem.

Theorem 3.3.6.

The distribution of the position of the maximum of
1 1

6) over [-tn ', n

converges to the distribution

n(

of the position of the maximum of non-stationary Gaussian

process X(¢{) defined in (3.3.1) over [-7,T].

The next theorem proves that the process X(f{) over
(-0 ,00 ) has its maximum in a finite interval with probability

one.

Theorem 3.3.7

prob [1iM SuP X(1) < 37 =1
|t|—o c|t|s

where C is given in (3.2.12).

Proof:

We shall first prove that

prop[tim sup X(r) < g4 = p,

>+ CTyf
Define A(t) = X(1) - E[X(1)]
= x(1) +c|r|7£. (3.3.3)
Let
Sup A (1)
Zo = and

17122
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Sup
Z = A = ’ ’ ’ ® o o
n T oon < < gntl (t) for n = 0,1,2
Sup [a(t) - a@)] (3.3.4)

Since A(t) is normally distributed with mean O and
variance 2C f(O,O)['rIy and covariance of A(t;) and A(t,) is

C £(0,0)[|vy|” +|12|? = |t1-T2|"], it follows that z_
ny

and 2y 22 have identical distributions. Therefore, for

any ¢ > 0,
ny
Plz_ > ¢ 2" = P[Zo > € 2° ]. (3.3.5)
Let kX =C £(0,0).
We note that k >0 and 1 < 7y < 2.
Since A(tr) 1is continuous on any finite interval with

probability one and since dyadic rationals are dense in [1,2],

-1
U= Sup a(E=1) - A=)
2£+1 2 2

=

with probability one.

Therefore
e
Uz 3T, with probability one (3.3.6)
£=1
s-1 ]
where T, = Sup 241 |A( 2E) - A(zl)l.
27 +1<s =2

Now for any a >0 and 1 >r > 0

P[Tﬂ > arﬁ]
S s-1 _s y4
= P[ up |A( g) - A( £)| > ar”]
2/ + 125 =281 2



2£+1
= = P[IA(E%l) - A(—%)[ > arz]
_ol: 2 2 ’
s=2"+1
1 -1
(2% - 2% p(a(E]) - AR > ar)
2 2

for some s since A(E:%) - A(—%) are i.i.d as normal
with mean 0 and variance k 2+ %Y.
Therefore, by Chebyshev's inequality

1-4y

£ 2
P[TB > ar”]= Zz 5357 k. (3.3.7)
a‘r
Now, from (3.3.6), we have
Prob[U > lir] = Prob [Tﬂ > ar? for some 1 £ f < ]
2 )
= = P[Tz > ar”]
=1
< ® g elly
=32 ¥ z=E kv
£=0 a‘r
by (3.3.7) ’
- 2 1
) a2 . o1- )
(1- 2 )
r
- X
Let r = 2 4 .
Therefore,
P[U > a__ :.35 k 1 .
- X a 1- X
1-2 4 1-27 2
Equivalently
D
P[U > a] f.a—z (3.3.8)

where D 1is a constant.
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Therefore
@
E(u) = [ P(U > a)da
0
D a
= [ P[U > a]da + [ P[U > a]da
0 D
feo)
=D +f D—z-da
D a
by (3.3-9)1
D +1<® . (3.3.9)
Since

|Zo| = [A(1)] + sup  [A(7) - A(1)]
1=<¢=

= |a(1)| + U,

E|Zo| 2 E([A(D|)+ E(U) < o

by (3.3.9).
Let E|2o]| = J.
Now
(oe] @ )
S Plz, > ¢ 2™ = 2 P[2Z > € 2“7/2]
n= n=0
by (3.3.5)1
© 1 ,
< —
= nzo . 53775 by (3.3.9)
and Chebyshev's inequality,
=3 : since 1 < < 2
e 1-27Y/2 v
Therefore
X n
z P[Zn > g 2 y] < @ for all ¢ > O.
n=0

Then, Borel-Cantelli lemma implies that
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P(z, > ¢ 2" infinitely often] = 0 for every ¢ > O.

In other words

Prob [lim Sup —= X 0] = 1. (3.3.10)
n 2y
A(t) 2 n n+1
Since = if 279 =1t =22 ,
Ty 2y

it follows that,

Prob[ lim Sup éill-i 0] = 1.
T —> oo 7

Since A(1) = X (1) + Cryf for T > 0,

we have

Prob [ lim Sup Eill.i -1] = 1. (3.3.11)
T —>+00 CTyf

Similarly we can prove that

Prob [ lim Sup X(r) = -1 = 1. (3.3.12)
—> - c|t|’¢

(3.3.11) and (3.3.12) together prove the theorem 3.3.7.

3.4 Asymptotic distribution of the maximum likelihood

estimator :

From theorems 3.2.6, 3.3.6, and 3.3.7, we get the follow-

ing final theorem.

Theorem 3.4.1 .

Consider the family of densities £ (x,6) given by

A <
- (e(x,0)[x-6|" + g(x,0) for x| = A
log f(x,8) = { g(x,0) for (x| > A
where (1) A is a finite number

(ii), 0 < A < 1/2

(iii) e(x,0) = {5223 if

L
V A
D O
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and (iv) 6 belongs to a finite interval (a,B)

satisfying the reqularity conditions (3.2.1) - (3.2.5).

Let en denote the M.L.E. of 6 based on n independ-

ent observations of £(x,6). Let 6, denote the true value

f 6. Then

- 6p] has a limiting distribution

and it is the distribution of the position of the maximum

of the non-stationary Gaussian process X(t) on (- ,c)

with
E[X(1)] = -C |T|2)\+1f(90:90) and
Cov[X(Ty1).,X(Tg)]=C f(gbﬁw[|T1IZX+1+lT2|2x+1‘|T1'T2|2X+1]

C(A13r(1/2-2A) .2 2
h Cc = B0 )+v° (60 )-28(6 2 Al .
where 22k+¥fﬁ (2741) [B°(60)+Y (60)-2B(60)Y(6g)cos T

In other words, the M.L.E. én is a hyper-efficient

estimator since 1
1/2 < Tao% < 1 for 0 < A < 1/2,

In fact, by analogous methods, it can be shown that
Bayes estimators for 6 , for smooth prior densities, are
also hyper-efficient and asymptotically the Bayes estimation
of 6 1is equivalent to the estimation of the location

parameter for a non-stationary Gaussian process.

3.5 Evaluation of integrals:

We shall now evaluate the integrals encountered in

Section 3.2.
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Lemma 3.5.1.

@

Let H(N)= | [s(x—l,O)IX-I[X-E(X,O)[X|k+ke(X,O)Sgn X|x
-0

Then H(A) = 0 for 0 <\ < 1/2.

Proof:

Since the integrand is of the order 0([X|m-2) the

integral H(A) < o for 0 < A < 1/2. Let us now compute

A
[le (X-1,0) |x-1|7‘-g (xX,0) |x|7§-7\e (X,0) Sgn XIXI)\_lldX
-A

0]

i {[6(0)(1_x)x - B(0) (=)™ - 28(0) (=x) " ax

+ 5[6(0)<1—x)“ - y©0)x® + Ay (0)x ) ax

A
+ {[7(0)<x-1)* - v )%™ + Ay (0)x 1 ax
A+l gy
= g (0) f y'dy - B(0) 6 yNdy - g (0) J dy
N 1 . A1y,
+ B (0) f y'dy - v(0) f x"dx + Ny (0) f x
A=l o A 5 A a1
+ v(0) [ x"dx - y(0) [ x"ax + Ay(0) [ x" "dx
0 1 1
A+l -1
B(O)I yhay - RB(O)fy dy-y(O)fly“dy + xy(O)f xMLax
A—
M1 A+l A1 A+
p(o)({BHL_=A oM - y(o) A et L Ny,

Since 0 < A < 1/2,

l?\"'l_ A)\"'l
A+l

(A+1 - Ax'—> 0 as A — @

!7\-1

]axX.
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and

aMl o (ML

T 1 Ax'—> 0 as A — .

Therefore H(A) = 0 for all A such that 0 < A < 1/2.

Lema 305020

Let h(y) = 8(Y)|Y|x for all vy

where
_ B for y <0
e(y) = { Y for y > 0.
Then for any T;3,Ta and 0 < A < 1/2,
oo}
R(11,72) = [ [h(y=71)-h(y)]1[h(y-72)-h(y)]dy
-
' 27+1 22+1 27+1
= ¢ |ty 2™ Y1 PM - - P 3L5L1)
where
 DOMLTG =N 5
C = 5537 [B9+y“-2BY cos 7TA]. (3.5.2)
2 N (22+1)
Proof:

Since the integrand of R(ty,Tz) is of the order

27-2 for Y sufficiently large and since 0 < A < 1/2,

Y|
the integral R(t;,Tp) 1is finite.
Define
h (y) = e(y) |y|"e’°‘|y| for a > 0. (3.5.3)

Let us now consider

Ih, (Y-T1)-ha(Y)l

le(y-rl)|y;f1|%edaiy—T1|-€(y)1ylke-alyl’

|e(y)ly-rllke-aly'Tll-e(y)Iylxe-a'yll
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for |y| > |t1].
= Max (IBI;|7|)le—aly-71|{[y-11|x - IyIKe_a|Y|+a|Y’TII]|

= Max ([8],|¥]) e'aly—Tlllily-Tllx- ly | e_a!Tll}l.

(3.5.4)
Let Co = Max (|g].|Y])-
For |y| > |[r1|., we have from (3.5.4),
|h, (y=71) -h_(v) |
< co eIV (jymry M [y M- [y eIy |
= Co K|11|Iy[x-1+coIylk(ealTll-l)e-alyl‘ (3.5.5)
For |y| > Max (|11}, |T2])"
|h, (y=t1)-h_(¥) | [h (y-72)-h_ (y) |
= feo Mraly|M oy Ml ee ¥l
{co 7‘l’l'zl'IYf)\_l"' ColYlk(ealTZ{—l)e-aly|]°
2 - -
< co? B [rara | [¥]12M2 + co® [y [P |rary o720 1Y
+ 2Co2 A alTszllyIZK- e-aly[. (3.5.6)

Let us observe that for 0 < A < 1/2,

@® 27\-2

i J ¥l <o
Max (|7q ], ﬁTzl)
@
- 2
and
(o)
(iii) f c:t|y|2}‘-1 e—alyldy =ren o < .

—® (3.5.7)
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Therefore, from (3.5.6), we get that
©
_g;lha(Y"Tl) - h, ) [|h, (y-12) - h (y)[dy < co.

In particular, we get that

h_ (y-7) - h (y) € Lz (R)

for every T , where L, (R) denote the set of square
integrable functions on the real line.
From (3.5.6) and (3.5.7), we observe that for any

A >max ([ty],]|t2])

lyIIAIhO‘ (y-t1) = h_(y)||h (y-12) - h_(y)| dy

AZK—I 1-2A (3.5.8)

:.C]_ +CQQ »

where C; and C, are constants.

Letg (y) = [b (y-T1) = h, (¥)1[h, (y=-72)-h_(¥)].
Cbviously Ga(y) —> BOg(y) as a —> 0 for each Vy.

Let us consider

o (e o)

J 6, w)dy - [ Bo(y)dy

-0 -0

= |6, (y)=6o(y)|dy + [ |6 (y)|dy + [ |60 (y)|dy
ly]=a” © ly|>a” @ ly]>a

il {:A[GQ(y)-Go(y)ldy + ZCIAZ}‘_1 + Cq al"zk
y

by (3.5.8).
Choose an ¢ > 0.
Since 0 < A < 1/2, we can choose a number Ay such

that



Therefore

@© @ 1-22
[6,y)ay = [ 6o(y)dy|= [ [6_(y)=8¢ (y) |dy+e+Caa

-0 -0 ly |32
By the bounded convergence theorem
|9a(y) - 6p(y)|dy >0 as a—> 0 .
Iy :Ao
Therefore there exists an q¢ > O such that

(0 @] (e 0]
J 6 ,(y)dy - | 6o(y)dy| = 3¢
-QD -00

In other words

lim oo o
a—0 [ Ga(y)dy = [ 6o(y)dy . (3.5.9)
-00 -0o

Let ﬁa(t) denote the Fourier transform of ha(y).

we have
@ .
~ - ity
ha(t) -£; ha(y) e dy

co . oo .
- - - - +1t
= gy yx e (a :l.t)ydy-F({‘3 y% e~ (atit)y dy

X L@A+N) , B LA+ (3.5.10)
14N T 14
(a-it) (a+it)

Let ga(t,T) be the Fourier transform of ha(y-T)-ha(y).

Now
_ P ity
g, (t,7)= _é;[ha(y-T)-ha(y)] e” “dy

oo : o) .
= [ ha(y-T)eltydy - J ha(y)elty dy
e ») -
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- Y P(1+7\) @;P (1+X) (eitT_l) (305'11)
[(a-it)lﬂ (a +1t)1+7‘:|
by (3.5.10).
By Parseval's theorem,
@
[ Th (y-t1) = h (¥)1[h (y-T3) - h (y)] dy
-
=L f (t,Tq) (t,79) dt
2T —p g 1 g 2
- 1 @ itTl
= L 2 (1+A)f + (e -1)
2T {(a lt)1+7\ (a+it)1+x}
X + B (e'ith-l)dt
{(a+it)1+k (a_it)1+x}
1 2 ©r 242 1 1
= 5— I (1+N) + VB + 5y
2r -£> (@Z+t2)1HA { (a-it) 2+2A (a+it)2+2%}
[eit (Tl‘Tz)_eitTl_e-itT2+ 1] dat
(3.5.12)
Therefore,
oo
R(t1.,72) = [ [h(y-11) =h(y)][h(y-T2) - h(y)ldy
-00

@ , .
=_£oéj:‘0{[ha (y-71)=h_ (y)][h_ (y-T2)-h_(y)]dy

= Lim T (y-t1)=h ()] (B (y=15)-h_(y)]d
a—’o-oo q YT/ =R Y q \Y~T2/) -0, ¥/ ldy

“a—0 27 e @ 2+t2)1+}\
1 1
+ B { + h
(@-it) 272N T aie) 2P2A

[elt(Tl-Tz)_ o itTi_ -itTy +1]dt



104

by (3.5.12)r

_ 1 9 O yim [ y2 + g2
= =T (1+%)f = ______ETx_
o ) a0 l:(az %) I3

(a-it) (a+it)

+ved - 228 T - 2+27\E|

[elt(T1'Tz) - e ittty _ _-itTy 1]dt

by the bounded convergence theorem,

-1 2 ot 1 2 2
== T (1+7\)_£o [t|2+2x {v¢ + B° -2yR cos mA}
{eit(Tl—Tz) _ e‘itTl _ e'ith + 1}dt
= f% P2(1+k)(y2+62 - 2By cos TA)
@ 1 it (T1-Tq) it -itT
/ T—TEIEX {e 17727 _e™""1 _ e 2+ 1}at .
-0 t

(3.5.13)
Let Tg = T1=Tg.

For any a > 0, define

@ : , ,
G(a,e) = [ [tla'l(eltTa - eltTl-e—lt724-1)e'€lt| dt

-00
1 1 1 1
= I'(a)l + - -
(E—iT3)a (e+113)a (e-iTl)a (e+i11)a
1 _ 1, 2,
a

(e+itg)? (e-irz)a €

. . . . a-1+2

Since the integrand in G(a,e) is of the order [tl '
the integral can be defined for a > -1.

In other words, for a > -1
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1 1 1 1
G(a,e) = T(a)[ + - -
(e-it3)?  (e+iTg)? (e=iTy)®  (e+ity)®
- 1 1 __+2 (3.5.14)

{e+iTg)®  (e-iTp}¥®  €®
In particular, the above equality is true for a = - (1+2}).
Let 7 = —(1427).

Since

It[ﬂ—l (eith_ eitTl_e‘ith + 1) e-Eltl I
< ltln—l IeitTa_eitTl_e-ith + 1‘
and fltln-l IeitTa-eitTl-e-itT2'+ 1 dt < @,

it follows by the bounded convergence theorem,

oo . . .
lim G (n,e) = [ |e|771 (e1tT8_e3tT1 71872 4 gyq¢,
e—>0 -Q0
Therefore, from (3.5.14), we have

o) _ : , i
f ltln 1 (eltT3_eltT1_e ltT2 + 1)dt
-0

-2I'(n) sin TA [[73[—n~|71|_n-|T2|-n]
1+27A

]
(3.5.15)

1+2k-|T1-T2|1+2k

2I'(n) sin 7w [ |7y +|7g |

Therefore, from (3.5.13) and (3.5.15), we have

R(Tq,7g) = %; r2(142) (y2+82-287 cosma)2r(-1-22) sin 7A

1+22 L4201 o, (142N

+[1g ] (3.5.16)

([ITll
Let

¢ = & r?(142)2r (-1-22)sinmA (Y2 +82-28Y cos TA) (3.5.17)

L
2T
_ I2(14)) [ -I(-22)

- T ] sinW%?(72+62-267 cos TA)
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by the formula TI'(x + 1) = x I'(x),

1
_r2(aa) NI (-M5)

']sinwxl(72+62—2sy cos TA)

™ 22 20 (2041) |
1
Frx)rx+3)
by the duplication formula T (2%) 2 22x = N7,
1
I"(7\+1)I"(§—7\) 2 2
= [B“+y“=2B8Y cos TA] (3.5.18)

by the formula [I'(x)I'(1-x) = 7/sin mx .

Combining (3.5.16) and (3.5.17), we have

1+2 1+2 142

R(Tl,Tz) = C[[Tli A + I'T.'zl A - lTl"Tgl ]
(3.5.19)

where
PO G -2) (82+y2- 2 Al (3.5.20)
c = - BT+Yy = 2B7Y cos TA]. e
22M15 (2a1)
Lemma 3.5.3.
For any T
(e o) ,
[ ley-0) |y-1| = e |y|M2ay = 2¢|c|¥ (3.5.21)
-

where Yy = 2A+1 and C is defined in (3.5.20).

Proof:
Note that the integral is R(t,T) where R is defined

in the previous lemma.

Lemma 3.5.4.

o
Q(A) = f[e(x—l)|x-1|%-e(x)|x|x+k sgn x|x[k_le(x)]e(x)|x|xdx
-®

= -C
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where C is defined in (3.5.20).

Proof:

Since the integrand of Q(A) is of the order

27‘-2), and since 0 < A\ < 1/2 , Q(A\) 1is finite.

0
A A-1
= [ (B(1-x)M p(-x) A(-x)"1 g1 B(-x)" ax
-0
1 A A A-1 A
+ [ [B(A-x)" = yx" + "7yl vy x" dx
0
o0
+ f [y(x-l)k - yxx + XXk-ly] yxx dx
1
(e 0]
0
a
F 2 T L= - XM+ aM Y KM ax
1
1 1 1
+ By [ (l—x)xxxdx + 72 [ A x2M1 gy 72 f 2N ax
0 0 0
a0
= 62 / [(Y+1)K -y - XYx_I] v ay
0
a
+ 72 [ [(x-l)k - xx + %xx-l] xk dx
1
+ By B(A+1,A+1) + 2 A 2
Y ' Y 2% T 2+l
a ,
= 62 J [(Y+1)7‘ - ¥ - )\Y7"1] Y» ay
0
ao
F 2 T -1 -+ ™ML KN ax
1
2
+ By B(M1,0+1) + LA2A-1) (3.5.22)

2(2\ 1)
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Let us now compute

(e o)

AT A A Ve ot BRI (3.5.23)
0
® A A A1 A
Let G(e) = [((Y+1)" - (Y+e)" = A(¥+e)™ 7] ¥" dy. (3.5.24)
0

For any o> -1 and p‘< -1/2,

(@ o] / Qo ’
fYO" (e+Y)B' dy = 51+Q+6 ) ¥ 1+v)F ay
0 0

a1 .
0

u

= 1Y 5 s, —2d-1).

Therefore, for -1 < A < -1/2,

142
- €

G(g) = B(A+1, =-2A-1) B (A+1, =-2A-1)

.
2 e2d (1, —27+1).

Since G(e) is analytic for A < 1/2, it follows that

1+2A
- €

G(e) = B(A+1, -27-1) B(A+1, -2A-1)

- 2N B(M1, —22+1)  (3.5.25)

for all A < 1/2 and in particular for 0 < A < 1/2.

Furthermore the integrand of G(e) is bounded uniformly in
e by an integrable function since 0 < A < 1/2.
We shall now take limit as g — O.

By bounded convergence theorem, it follows that

A A

- Ml v gy = B(M+1, -2a-1).

@© A
[ [(y+1)" - ¥
0 (3.5.26)

Similarly, we can show that
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2

@

A A A1 A 2N-1

{ [(x-l) - x" + A\x ] x" d&x = B(%+1, _2x_1)_2 51t

Therefore, from (3.5.22), we have

Q () [512 B(A+1, -27-1) + 7‘2 B(A+1, -2A-1)

+ B'y’ B(M1,A+1)] (3.5.27)
="’C .

(3.5.27) proves the lemma.
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