


  

\
1
{
i
l
l

-
I
*

I
[
l
l



ABSTRACT

ASYMPTOTIC DISTRIBUTIONS IN SOME NON-REGULAR

STATISTICAL PROBLEMS

by B. L. S. Prakasa Rao

As the title indicates, we consider here two different

prOblems. The first problem deals with estimation of

distributions with unimodal density and estimation of

distributions with monotone failure rate. The second

problem deals with the estimation of the location of the

cusp of a continuous density.

Recently Marshall and Proschan (Ann. Math. Statist.

lgé' 69-77) have derived the maximum likelihood estimates

for distributions with monotone failure rate and they have

shown that these estimators are consistent. In Chapter 2,

we obtain the asymptotic distribution of these estimators

using the results of Chernoff in his paper on the estimation

of mode. The estimation problem is reduced at first to that

of a stochastic process and the asymptotic distribution is

obtained by means of theorems on convergence of distributions

of stochastic processes. Similar results are obtained for

distributions with unimodal densities in Chapter 1.

Under the usual regularity conditions on the density,

it is well known that the maximum likelihood estimator is

consistent, asymptotically normal, and asymptotically ef-

ficient. Unfortunately, these conditions are not satisfied

for distributions like double-exponential with location
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parameter 9. Daniels, in his paper in the fourth Berkeley

Symposium, has shown that there exist modified maximum

likelihood estimators which are asymptotically efficient

for the family of densities f(x,9kCEXp[—|x - elk}, where

x and 9 range over (-oo,oo) and.%-< k < 1. In Chapter 3,

we show that hyper-efficient estimators exist for 6 when

0 < k <-% and 9 is restricted to a finite interval for a

wider class of densities. We relate its asymptotic

distribution to the distribution of the position of the

maximum for a non-stationary Gaussian process. The estima-

tion problem is reduced to that of a stochastic process and

the asymptotic distribution is obtained by using theorems

on convergence of distributions of stochastic processes in

C[O,1].
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CHAPTER 0

INTRODUCTION

As the title of the thesis indicates appropriately, we

consider here two different problems. The first problem

deals with estimation of distributions with unimodal density

and estimation of distributions with monotone failure rate.

The second problem deals with the estimation of the location

of the cusp of a continuous density.

Grenander [10] derived the maximum likelihood estimators

for distributions with unimodal density and for distributions

with monotone failure rate. He did not derive the asymptotic

distributions for these estimators. It is interesting to note

that the maximum likelihood estimators can also be derived

by methods used in Brunk [2] or in vanlkflen [19]° Recently

Marshall and Proschan [14] showed that the maximum likeli-

hood estimator is consistent. In Chapters 1 and 2, we derive

the asymptotic distributions of the estimators in both cases.

Even though we do not obtain their distributions explicitly,

we show that they are related to a solution of the heat

equation as was done in Chernoff [4] in the case of the

estimation of the mode.

Under the usual regularity conditions on the density,

it is well known that maximum likelihood estimator is con-

sistent and asymptotically normal. See Cramer [6], Kulldorf

[12], Gurland [11], etc. Their estimators are also asymptotic—

ally efficient. In certain cases like double exponential

1
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distribution with location parameter 6, these regularity

conditions are not satisfied. Daniels [7] has shown that

there exist modified maximum likelihood estimators (M.L.E.)

which are asymptotically efficient for the family of densities

f(x,e) = ——-1-—1— exp {-|x—e|k}, -%-< k < 1,

2N1?)

- a) < x < oo/ - a) < e < a).

Recently, Huber has generalized Daniels' results in

his paper presented at the fifth Berkeley Symposium and he

has shown. that M.L.E. is consistent and asymptotically

normal for cusps of order between é-and 1. We show in

Chapter 3 that hyper-efficient estimators exist,when the

exponent k lies between 0 and-% and e is in a finite inter-

val,for a wider class of densities. We relate its asymptotic

distribution to the distribution of the position of the

maximum for a nonwstationary Gaussian process. In fact, it

can be shown that Bayes estimators for smooth prior densities

for 9 are also hyper-efficient for the above class of den-

sities and asymptotically the estimation problem is equiva—

lent to estimation of location parameter for a non-stationary

Gaussian process. It should be mentioned here that some of

the Bayes estimators are asymptotically better than the

M.L.E.



CHAPTER 1

ESTIMATION OF A UNIMODAL DENSITY

1.1 Introduction:
 

Given a set of observations X1,..., Xn from a common

distribution F, it is natural to estimate F by the usual

empirical distribution function in the absence of additional

information. However, one would not use such an estimate

if there is some a priori information about the distribu-

tion F. In this chapter, we shall investigate the problem

of estimation when F is known to be unimodal. Grenander [10]

derived the maximum likelihood estimator for f, where f is

the density of F. Even though it is well known that the

maximum likelihood estimator (M.L.E.) of f is consistent,

we shall give a proof for completeness. We shall relate its

asymptotic distribution to a solution of a heat equation as

was done by Chernoff [4] in the case of the estimation of

the psuedo—mode.

Section 1.2 deals with the maximum likelihood estimation

of the density. The consistency of the M.L.E. is proved in

Section 1.3. Some results related to the asymptotic prop-

erties of the M.L.E. are Obtained in Section 1.4. In Sec-

tion 1.5, the estimation problem is reduced to that of a

stochastic process. We Obtain the asymptotic distribution

of the M.L.E. in Section 1.6.
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1.2 Maximum likelihood estimation of the density:

We shall assume that the distribution F(x) is absolutely

continuous with density f which is unimodal with known mode

u. If u is the mode and F = aF+ + (1 - a)F_ where F+ is

the conditional distribution on [u,oo) and F_ is the condi-

tional distribution on (~00, u), then it can be shown that

the M.L.E. of F is dF+ + (1 - a)F_ where a is the sample

proportion on [uqoo) and F+ and F_ are the M.L.E.'s of the

conditional distributions F+ and F_ reSpectively. Let f+

and f_ denote the densities of F+ and F_ respectively and

let f+ and f; denote their M.L.E.'s. We shall show later on

that for any 5 Z.u, [f+(§) - f+(§)] a Op(n-1/3) and for any

: < u, [E_(;) - f_<;>1 = op<n‘1/3>. Since a - . = op<n'1/2>

we get that for anyg , f(§) - f(§) = Op(n-1/3). Therefore

it is sufficient to obtain the M.L.E. of f+. flét us assume

that u = 0 without loss of generality. Therefore F(x) ='0

for x < 0. Since F is unimodal, f is non-increasing for x :.0.

Suppose X1 i-- o - E'Xn are n observations obtained by

ordering a random sample of size n from the pOpulation with

unknown distribution F. Let B-denote the class of unimodal

distributions F. Let X0 = 0. Let

n

L(F) = 2 log f(Xi) (1.2.1)

be the logarithm of the likelihood for J?€E}. For any F GE},

define F* to be the distribution with density
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O for x.i O

* _ < - <
f (x) — Cf(Xi) for Xi_1 < x j_Xi, 1 _.1 _.n

0 for x > Xn (1.2.2).'

where C is a normalizing constant. It is easy to see that

C.: 1 and L(F*) = CnL(F). Therefore, L(F).i L(F*). In other

words, the M.L.E. fh(x) of f(x) will be a step function with

steps at the order statistics X1,X2,...,Xn.

Hence the problem of maximizing L(F) for F 6:? reduces

to the problem of determining numbers f1,f2,...,fn such that

(i)f1_>_f2:--o_>_fn,

(1].) lel + (X2 " X1)f2 + 000 + (Xn " Xn_1)fn = 1, and

n

(iii) Wfi is maximal. (1.2.3.)

1

This has been done in Grenander [10]. It can also be

done as an application of results obtained by Brunk [2] or

van Eeden [19].

This yields for the M.L.E. of f(x),

 

< -< - < _

f (x) = {fn(xi+1) for Xi < X -Xi+1' O — 1 ‘n 1

n 0 for x j.X0 or x > X (1.2.4)
n

where

1 _ Max Min v - u . 1.2.5

fn(xi) — n Z.v 2.1 O fi.u i.i-1 n(XV - Xu) ‘ )

The estimator fn(x) can also be written in the form

.. F (V) -F (11)
{~ SUP Inf n n for X0 < x :.x

c v > x u < x v - u n

0 otherwise.

 

(1.2.6)
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In other words, the M.L.E. fh(x) is the slope of the

concave majorant of empirical distribution Fn at .

1.3 Consistency of the maximum likelihood estimator:

Theorem 1.3.1.

For every x
 

 

fn(x) -> f(x) inyprobability as n —> oo.

Egggfig If x < 0, then

fn(x) = O for all n and f(x) = 0.

Therefore fn(x) -> f(x) in probability.

Let x 2.0. Let Fn(x) denote the smallest concave

majorant of Fn(x). For any a > 0,

P[JE' Sup IFn(x) - F(x)| < g]-—> £(e) as n —> oo

‘00 ”“00 (1.3.1)

where

00 . .

2(a) = 2 (-1)3e‘28232
j=-oo

by the Kolmogorov-Smirnov theorem.

Let us choose 5 > 0. Then there exists an integer

N0(é) such that for every n > N0(é),

P[Fn(X) < F(x) + sn-l/2 and Fn(x) > F(x) _ en‘l/z

for all x] > 2(a) - g- by (1.3.1).

Since Fn(x) Z.Fn(x) for all x by the definition of Fn,

Fn(X) > F(X) - sn-l/2 for all x

=> §n(X) > F(X) - sn-l/2 for all x. (1.3.2)

Since Fn(x) is the smallest concave majorant of Fn(x) and



F(x) is concave,

Fn(x) < F(x) + en-l/2 for all x

:9 §h(x) < F(x) + gn-l/2 for all x. (1.3.3)

From (1.3.1) - (1.3.3) it follows that for n > No(é),

P[Fn(x) §.F(x) + en—l/2 for all x and

Fn(x) > F(x) - en-l/2 for all x] 5 2(8) - %-.

Therefore, for all n > NO(5),

Fn(x + n-1/4) - Fn(x) < F(x + n-1/4) - F(x)

  

  

‘1/4

P[ n‘171 _' n‘1/1 + Zen

and

E (x - n‘1/4) — E (x) F(x — n‘1/4) — F(x) _1/

n _1/ n > 17 - Zen 4 for all x]

—n 4 -n- 4

> 2(8) -3-. (1.3.4)

Let C > 0. Since f(x) exists for all x, ther exists an

integer N1(C) such that for every n > N1(C).

 

  

 

Fix + n-1/4) - F(x) <11-1/4 - f(X) CI

and

Fix r n-1/1l - F(x) _ f(x) < C0 (1.3.5)

_n'174

  

Now (1.3.4), (1.3.5) together imply that for every

n > Max<No<a>.N.<:)z

. _1/ 1

F (x + n 4) - F (x) _

P[ n _17Z n < f(X) + C + Zen 1/4
 

and
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F (x ‘ n-1/4) - Fn(x)
n -1/ 6

-n_1/4 > f(x) - C - Zen 4] > £(p)—§ .

Now, since fn(x) is the leftehand derivative of Fn(x) at x,

it follows that for every n > Max (NO(5). N1(5)).

Pan(x)‘< f(x) + C + 25n‘1/4 and fn(x) > f(x) - C ~2€n_1/4] >

£(e) -'g -

In other words

Ptfn<x> - f(x>|< C + zen‘1/41 > 1(a) - 5 (1.3.6)
'5

for every n > Max (N0(5),N1(C)). We choose 8 such that

2(5) > 1 --% and n such that

- 4

2sn 1/4 < C or equivalently n > (2%) = N2(§,o).

Hence, from (1.3.6), it follows that for every

n > M3X(NO(O),N1(C) IN2 (C05))I

p[|£“n(x) - f(x)] < 2c1> 1 - 5.

Therefore,

fn(x) -> f(x) in probability as n -> 00.

1.4 Some results related to the asymptotic_properties of

the-maximum likelihood estimator;

Before we proceed to obtain the asymptotic distribution

of M.L.E. fn(x), we shall prove some lemmas which simplify

the problem. We shall assume that f is differentiable at

the point x and that f‘(x) is different from zero.

Let f;’c(x) denote the lepe of the concave majorant

of Fn restricted to the interval [x - 2cn—1/3, x + 2cn_1/3],

evaluated at x. We shall now prove that



Lemma 1.4.1.

There is a function ¢.such that
 

(i) 1%? mgcm ¢ En(x)1 5. (MC)

Elli

(ii) ¢(c)‘—> O as c —> 00.

Proof: It is enough to prove that

 

lim p[¢n(y) 1.Fn(x + Cn-l/a) _ (x + cn‘1/3 _ y)(f(x)-An‘1/3)

n .

for all y,: x and all y 2.x + 2cn-1/3:

x - cn-1/3)+(y - x + cn1/3)()-+-.?31n1/3)

<

for all y 2.x and all y._ x - 2cn-1/3]f

3. 2p(c,A) (1.4.1)

where ¢(c,A) -> 1 as C‘_> 00 and A = -df'(x).

We shall show that for A = -cf'(x),

lim lim P[Fn(y):-Fn(x+cn-1/3)— XHCD-1/3-y)(f(x)-An-1/3)

C-‘>CID n

for all y i.x and all y 2.x + 2cn-1/3] = 1.(1.4.2)

In a similar way, it can be shown that

111“ ii!!! PIFn(Y) iFn(X-cn1/3 )+(y—x+cn-1/3)(f(x)+An-1/3)

c—>oo n
.

for all y 2.x and all y 5-x - 2cn-1/3] = 1. (1.4.3)

(1.4.2) and (1.4.3) together imply (1.4.1) which in turn

proves the lemma.

We note that A > 0 since f'(x) < 0. Let us obtain a

lower bound for

p a PtFn<y>srn<x+cn'1/3>—<x+cn'1/3-y>(f(x)-An'l/a>

for all y i x] . (1.4.5)
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LGt

In<x> = n[Fn(x + cn‘1/3>- .n-1/3(f<.> - An‘1/3> - Fn<x>1

= n[F(x + cn-1/3) - F(x) - cn-1/3(f(x) - An_1/3)]

+ n[{Fn(x + cn-1/3)—Fn(x)) - {F(x + cn‘1/3)-F(x)}]

= n[F(x) + cn-1/3f(x) + %c2n-2/3f'(x) + o(n—2/3)

— F(x) - cn-1/3f(x) + cAn-2/3]

+ n[{Fn(x + cn-l/S) - Fn<x>3 - {F(x-+ cn‘1/39-Féx)ll

= n1/3[%c2f'(x) + cA + 0(1)]

+ n[{Fn(x + cn'1/3)-Fn(x)} - {F(x + cn’1/3) - F(X)}]

= n1/3Bn + c1/2n1/3[f(x)]1/2Vn (1.4.6)

where

. _12. _ c2.
(1) Bn — 2C f (x) + cA + 0(1) - --§—f (x) + 0(1)

and

(ii) Vn = c-1/2[f(x)]-1/2n2/3[{Fn(x + cn-1/3) - Fn(x)}

- {F(x + cn-1/3) - F(x)}]. (1.4.7)

Obviously,

E(Vn) = 0.

and

Var(V ) = n[F(x + cn‘l/a) - F(x)111 + 6(n‘1/311
 

cn2/;f(x)

n1/3
EETET [cn-1/3f(x) + 0(n_1/3)][1 + o(n-1/3)]

1 + 0(1).
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Therefore from (1.4.6) it follows that

In(x) = n1/3Bn + c1/2n1/3[f(x)]1/2Vn

where

E(Vn) = O and Var(Vn) = 1 + 0(1). (1.4.8)

Let 0 < A < 1. By Chebyshev's inequality

2 2

P[In(x) > -N%rf'(x)n1/3]=P[Bn + c1/2[f(x)]1/2Vn > - A%rf'(x)]

2 1
 =p[vn > {(1-1)32—9 (x)+(o(1)}cl A2[f(x)]1/L2]

 

 
 

 

 

’ 1 [1 + 3(1)]Cf(x) . (1.4.9)

[(1 - MEZ—f'bc) + 0(1)]2

As n -> oo,

[1 + o(1)]cf(x) _5 cf(x)

CZ 2 c2 2

[(1 - wag—F(x) + 0(1)] [(1 — Mtg-F(x)]

= 4f(x)

(1 - x>2c31f-<x>12

Let

Q(C) _ 4f(X)

(1 - x)2c3[f-(x)12

From (1.4.9), it follows that there exists an integer N1 such

that for every n > N1,

c2 1/ 3
P[In(x) > - Airf'(x)n 3] 2.1 - §Q(c). (1.4.10)

From (1.4.5), we have

p = P[Fn(x + cn-1/3)-(x + cn-1/3- y)(f(x) - An-1/3)- Fn(y) 2.0

for all y 2.x]
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= P[{Fn(x+cn-1/3)-F (y)} - (x + cn-1/3- y)(f(x)-An-1/3) 3.0
n

<

for all y _.x]

= P[n[Fn(x+cn-1/3)- Fn(X)} - cn2/3(f(X) - An_1/3)

: n(Fn(y)-Fn(x)] - n(y — x) (f(x)-An_1/3) for all y 1 x]

= P[In(x).: n[[Fn(y)-Fn(x)] - (y - X)(f(X)-An-1/3)]

<

for all y _.x]

2

: P[n{Fn (y) - an) - n(y - x) (f(x)-An-1/3) : 492.... (mg/3

<

for all y _.x]

- 321cm» (1.4.11)

for every n > N1 by (1.4.10).

Let F*(y) be the distribution defined by its density,

0 for y < -a

f* (y) = f(x) for -a _<. y I. x (1.4.12)

f(y) for y > x

where a is chosen so as to make F*(y) a distribution function.

Since F*(y).i F(y) for all y,

_1/ < c2 1/
PF[n{Fn(y)-Fn(X)} — n(y - X)(f(X)-An 3).. -erf'(x)n 3

for all y.i x]

2

-: PF*[n{Fn(Y)-Fn(x)) - n(y - x)(f(x)-An-1/3) E.- grf'(x)n1/3

<

for all y _.x] (1.4.13)

where PF denotes the probability when F is the underlying

distribution.

(1.4.11) and (1.4.13) imply that for every n > N1,
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> ‘1/3 > szn 1/3
p _ PF*[n{Fn(X)-Fn(y)] - n(x - y) (f(X)-An ) _. Ng- (X)n

for all y E.x] - %Q(c)

' { ) )] f '1/3 sz- 1/3>- PF*[n Fn(x -Fn(y - n(x - y)( (x)-An ) - 7\-2-- (x)n _ O

for all y f. x] - %Q(c). (1.4.14)

Let Z(B,t) for t 3.. 0 be distributed as

’ 2

N(tq) - nt(f(x) - An-1/3) - n1/3X%rf'(x) (1.4.15)

where N(q) is a Poisson process with parameter

q = [nf(x) - Bnl/z] and B is a constant > O.

From (1.4.13) we have for all n > N1,

p Z. PF*[n[Fn(x)-Fn(y)} - n(x -y) (f(x)-An-1/3) - n1/3A322—f' (x) Z O

“for all y f. x] - % Q(C)

- EF*{PF*[n{Fn(x)-Fn(y)] - n(x — y)(f(x)-An-1/3)

-n1/3)\-C72-f' (x) Z O for all y i x] )Fn(x) }- g- Q(c)

= EF* [P[Z(B,t) Z. 0 for all t such that O .1 t f. x + a] I11(x+a)q)

- .3».
— nFn(x)]] - 2 Q(c).

Let

_1/ 1/ c2

T = nFn(X) - n(x + a)(f(X) - An 3) - n 3N§rf'(x).

From our earlier remarks it follows that for every n 5 N1,

p 2'. EF*{P[Z(-B,t) Z. 0 for O f. t i x + a] |Z(B,x + a) = Tn]

3

- §'Q(C)

.i EF*{P[Z(B,t) : 0 for all t _>_ 0] |z(B,x + a) = Tn} - % Q(c).

(1.4.16)

Now
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P[z(B,t).Z.O for all t 3.0].2

EF*[P{z(B,t):o for all t2L0]|z(B,x+a)-Tn]

+ PF*[Z(B,x + a) < Tn].

Therefore from (1.4.16), it follows that

pZP[Z(B,t)ZO for all t:O]-PF*[Z(B,x+a)< Tn]- %Q(c)

for all n > N1. (1.4.17)

Now

PF*[Z(B,x + a) < Tn] = P [N(q(x + a)) < nFn(x)].
F-X-

By Chebyshev's inequality

< F(x) (1 - F(x))

Let us now choose an e > 0. Then there exists a constant

PF.[N(q<x + a)) < aFn(x>1

BO > 0 such that

PF*[N(q(x + a)) < nFn(X)] < e

where q = nf(x) - Bonl/z.

Hence, from (1.4.17), we have for all n > N1

p z. P[Z(B0,t) : o for all t 1 0] - g- Q(c) - 5. (1.4.18)

It is obvious that for any real number u

E[exp{uZ(BO,t))]= exp[tq(eu-1)—utr-ukn1/3 ggf'(x)]

where

q = nf(x) - Bonl/2

and

r = nf(x) - Ana/3.

Therefore

2

E[exp[uZ(B0,t) - tq(eu-1)+utr+hun1/&% f'(x)}] = 1

for all u.
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Let

T = inf {t : Z(B0,t) = 0].

By Wald's fundamental identity in the continuous parameter

case, (See A. Dvoretzky, J. Kiefer and J. Wolfwitz [9]) it

follows that

2

E[eXp{uz(Bo:T) - T{q(e”—1) - ur} + Anni/ag'f'(X)]] = 1-

LJ“o
Let us choose no such that q(e - 1) = nor.

Now we have

1/ (:2

E[exp{uOZ(B0,t) + kuon 35-f'(x)}] = 1.

This implies that

1/ c2

P[Z(BO,T) = 0] i.exp[-kuon 3\§ f'(x)]

In other words,

P[Z(B0,t)‘i.0 for all t.: 0]

1/ c2
.1 1 - exp[-Xu0n 3-§ f'(x)] (1.4.19)

From (1.4.18) and (1.4.19), we have

2

p.2 1 - expf—ku0n1/3 g- f'(x))-%-Q(c) - 8 (1.4.20)

for every n > N1.

 

u

Since q(e O - 1) ; nor where q = nf(x) - B0n1/2 and r = nf(x)-An2/3,

_1/

= - 2An 3 “'1/3

”0 f(x) -+ o(n. ). (1.4.21)

From (1.4.20) and(1.4.21), it follows that for every n > N1

2

p 2,1 - exp[-A[-2??X) 3 + o(n'-1/3)]n1/3 %- f'(x)]-e-%-Q(c)
 

2

= 1 - exp{-x[%%l + 0(1)]521 f'(x)} - e — % Q(c). (1.4.22)
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Therefore,

. 2
11m , _ _ 3 f' x) _ _.3

T P— 1 8*“ AC “£731.74 .- 2 W’-

Since a is arbitrary, we have

. 2

11m > _ _ 3 f' (X) §_

Let us now take limit as c‘—> G).

Since Q(c) -2 0 as c —> oo,

11m 11m p = 1.
(1.4.23)

C n

Let

s - P[Fn(y).i Fn(x + cal/3) — (x + CHI/3-y)(f(x) - Afil/3)

for all y 2.x + 2c 51/3].

It can be shown, by the same methods which were used

in proving (1.4.23), that

lim lim

s = 1. (1.4.24)
c n

(1.4.23) and(1.4.24) together prove (1.4.2).

Lemma 1.4.2.

Suppose that [ch}, [Xn] are collections of random

variables such that

 

(i) lim lim P[X C # x ] = 0

c->CO n->oo n n

(ii) lim P[xC ¢ X] = 0

C—‘>OO

(iii) ch converges to XC in law as n -2 00 for every c.
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Then

Xn converges to X in law.
 

Proof:

Let L(X,Y) denote the Levy distance between the distribu-

tion functions of X and Y.

Since L(X,Y) i.P[X # Y], we have

(1) lim Ilm L(X ,x ) = 0
nc n

C—>CD n->oo

and
(1.4.25)

(ii) lim L(XC,X) = 0 .

Since L is a metric,

< <

0 _.L(Xn,X) _.L(xn,xnc) + L(ch'xc) + L(XC,X).

Taking limit as n-vaa, we have for any fixed c

 

< - <‘_‘-'— _-—"'

0.. lim L(Xn,X)_l;m L(Xn,XnC)+l;m L(XnC,XC)+L(XC,X)

 

,xnc) + L(XC,X)

since lim L(ch.XC) = 0 by (iii) of the hypothesis. (Con-

n

vergence in Levy distance is equivalent to convergence in

law.) So we have for any c

o :. lim L(xn,x) 1 lim L(xn,x

n n

nC) + L(XC,X).

The expression in the right hand side of the above

inequality is equal to zero by (1.4.25). Therefore,

limL(Xn,X) = 0. In otherwords Xn converges to X in law.

As a consequence of lemmas 1.4.1, 1.4.2, it follows

that it is enough to find the asymptotic distribution of
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f*n C(x) as n—>a> and then prove a result analogous to that

in lemma 1.4.1 for limiting random variables in order to

obtain the asymptotic distribution of fn(x).

1.5_fiReduction to ayproblem in stochastic processes:

In this section, we shall reduce the problem of calculat-

ing the asymptotic distribution of the slope of the concave

majorant of Fn(Y) over [§-2c 1.11/3, §+2c 51/3] at Y =§ to

the corresponding problem of a Wiener process over [~2c,2c]

after suitable normalization. We assume that f is differ-

entiable at g with f'(§) ¥ 0. Let us now consider

Fn(§+6) - Fn(§) for 6 in [-2cnl/3,2cnl/3].

Now

Fn(§+5)-Fn(§) =[F(§+fi)-f%§)] + [[Fn(§+5)-F(§+5)]-[Fn(§)-F(§)1l

62

= 5f(§) +'§ f'(§)[1 + 0(1)] +

{[Fn(§+é) - F(§+é)1-[Fn(§) - F(gm

= 5 f(g) — D62[1 + 0(1)] + 51/2 Yn(6) (1.5.1)

where

Y (6) = 111/2 [[Fn(§+6) - F(§+6)] - [Fn(g) - F(§)]] (1.5.2)

and

13:23:31.0. (1.5.3)
2

Let an(§) +6Bn(§) denote the tangent to the concave majorant

2
of fil/zYn(6) - D6 [1 + 0(1)] at 6 - 0. In other words,

Bn(g) is the lepe of the concave majorant of

2
56/2 Yn(6) - D6 [1 + 0(1)] at 6 = 0.
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From (1.5.1), we note that

f;,C (g) = f(g) + 5n(§). (1.5.4)

We are now interested in determining the limiting

distribution of 6n(§) after suitable normalization.

 

LEt

5 ; rnC where rn = [fD-znnl]1/3 and f = f(i).(1.5.5)

LEt

( ) 51/2 Yn(6)
W =

n C r2 D
n

51/2[fD‘2n"1]”2/3 D_1 Yn(6)

= n1/6 fz/B nl/s yn(a). (1.5.6)

Let on = an(§) and an = Bn(g).

Let us now consider

51/2 Yn(6) - D62[1 + 0(1)] - an - and

[51/2 Yn(6) - riCZD - an - BnrnC - rfi C2 0(1)]

 

 

'1/2

2 n Yn(5) 2 an BnC 2

= r D[ ' - C --—-- --—-—- - 0(1)] (1.5.7)

n r2 D r2 D r D
n n n

2

B 2 a B
2 n n n 2

=rD[W(C)- +-—-) - (T‘- )-Co(1)]-'

n n (I; 2rnD rnD 4rr21D2

(1.5.8)

From (1.5.7), we observe that

B

rnD is the slope of the concave majorant at C = 0 of the

n

 

process

xn(C) = Wn(C) - cztl + 0(1)] (1.5.9)

2CD2
on [-q,q] where q = f
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Let D[a,B] denote the space of all functions on the

interval [n.B] with discontinuities of.first kind and let

us introduce the convergence in D[a,8] by J1 - topology

(see Sethuraman [18]).

Let W(§) be the Wiener process over [-q,q]. It is

obvious that the trajectories of the process Wn(C) belong

to D[-q,q] with probability one. It is well known that

the process W(C) had trajectories in C[-q,q] with probability

one and C[-q,q] is a closed subset of D[-q,q].

Let un be the distribution induced by the process Wn

on D[-q,q]. Let u be the distribution induced by the process

W on D[-q,q]. Our aim is to prove that un converges to u

weakly. We shall prove some lemmas which lead to the result.

Lemma 1.5.1. For any C.£E [-q,q], Wn(§) is asymptotic-

ally normal with mean 0 and variance |C|.

Proof: By definition

Wn(§) = nl/sfz/alf/a Yn(6)

= n1/6f2/3D1/3{[Fn(§+6) - Fn(§)] - [F(g+5)-F(g)]]n1/2°

Obviously

Etwn(t:)] = o,

and

Var[Wn(C)] = n1/334/3 92/3 n%[F(g+6) - F(§)][1+o(1)]

= nl/a 24/3 D2/3 (5| f(§)[1 + 0(1)]

n1/3 E4/3 D2/3 rn (C) f(g) [1 + 0(1)]
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= [CI [1 +0(1)1,

by (1.5.5).

. Therefore by the central limit theorem for independent

and identically distributed random variables, we get that

c
  

Wn(C) is asymptotically normal with mean 0 and variance

Remarks:
 

In a similar way, it can be shown that for any collection

C1,---,§k such that [Ci| j,q, the joint distribution of

[Wn(C1),Wn(C2),...,Wn(Ck)] converges to a multivariate nor-

mal distribution with mean 0 and variance-covariance matrix

(6(ci.cj) m1n<)g).lcjl>>

where 6(a,b) is defined by

1 if a,b are of the same sign

6(a,b) = ‘{

0 otherwise.

The next lemma consists of showing that the processes

Wn(C) satisfy an equicontinuity condition.

(Lemma 1.5.2.

E2£_anx C1<C2<C3.in {-q.q],

2

E[|Wn(C1) - wn(C2))2|Wn(C2) ‘ Wn(C3)|2]:C|C3 ‘ C1)

where C is a constant independent of n.

Proof:

From the definition

Ellwn<c.) - wn(c.)|2)wn<c.) - wn(c3)|21

 

 

= E
2

rnD rnD

EIAY (61)-r-11‘/2Y (6 ) 2 51/2)! (62)-51/2Y (6 ) 2-
g n 2 n 2 }. _{ n n 3 }.



l
l :
3

 

where CO is a constant independent of n, by Chenstov [3],

 

 

-2

_ Con 2 2
‘ 8 4 rnlC3 ' C1)

r D

n

C n.-2

= O -2 -1 e/ 4 |C3 ‘ C112
[fD n ] 3D

by (1.5.5):

C
- 0 2
_ ;§]C3 _ C1) . (1.5.10)

Let C = Cof-Z. From (1.5.10), we have

E[an(C1)- wn<c.))2|wn(c.) - wn(c.))2|1:c|c. -c1I2

where C is independent of n.

We shall now state a theorem connected with convergence

of distributions of stochastic processes on D[a,B].

Theorem 1.5.3.

Suppose {Xn} is a sequence of stochasticpprocesses on

D[a,B] such that
 

(i) for any ti’ 1 i.i i.k ig,[a,B]. the joint distri-

bution of [Xn(t1),...,Xn(tk)] converges to the

joint distribution of [X(t1),...,X(tk)]

and
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(ii). for any t11<t21<t3 ip_[a,6]

El IXn(t1)-Xn(t2) [71 lxn(t2)-xn(t3) [72 I] :5 ch:3 - t1|1+y3

where 71 > 0, 72 > 0, 73 > 0 and C > 0 are independent

2£n-

Let [vn] and v be the distributions induced by {Xn} and [X]

respectively on D[a,B]. Then Vn converges to v weakly.
 

Proof:

See Sethuraman [18].

As a consequence of lemmas 1.5.1 and 1.5.2 and the

remarks made after lemma 1.5.1, it follows as a particular

case of theorem 1.5.3 that the distribution ”n converges

Weakly to the distribution u.

Furthermore C2[1 + 0(1)] converges to C2 uniformly in

C since C is in [-q,q]. Hence, by a simple extension of

Slutsky's theorem for processes, it follows that

Theorem 1.5.4.

The sequence of processes Xn(C) = Wn(C) - C2[1 + 0(1)]

pp [-q,q] converges in distribution to the process

x(c) = w(c) 4:2

where W(C) is the Wiener_process on [-q,q].

1.6 Asymptotic distribution of the maximum likelihood

estimator..

For any x e D[-q,q], let g(x) denote the lepe of the
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concave majorant of x(§) at C - 0. It is easy to see that

if xn -2 x in Jl-tOpology and x is continuous, then xn —¢ x

in the supremum norm tOpology. (See SethuramanlIS] pp. 129).

But, if xn -e x in the supremum norm topology and concave

majorant of x has unique slope at C = 0,then g(xn) —> g(x).

Further, it is well known that the process X is continuous

with probability one. Therefore g is a functional on

D[-q,q] whose set of discontinuities has probability zero

with respect to the distribution of X. FurtherXn converges

in distribution to X by Theorem 1.5.4. Therefore the distri—

bution of g(xn) converges weakly to the distribution of g(x).

Hence we have the following lemma.

Lemma 1.6.1.

.LEE f(x) be a unimodal density. ‘Lgp f;,c(§) denote

the slope of the concave majprant of Fn(y).gp [g - 2cn‘1/3,

g + 2cn-1/3] §£_y = 5. Further suppose that f'(g) exists

and is non-zero.

EBEE

nl/a 14;,C<g) - f(;)1
 

is distributed apymptotically as the lep§_of the concave

majorant of the pppcess

W(t)-t2, -q:t:q

at t = 0 where W(t) is the Wiener process with mean 0 and

_ I

variance 1 per unit t, W(0) = 0; D = .251397 f = f(g)

and q =2cf-1D2.
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Proof: This theorem follows from the remarks made in

(1.5.4) and (1.5.9).

The next lemma shows that the lepe of the concave

majorant of the process X over [-q,q] at C = 0 and the slope

of the concave majorant of the process X over (-oo,oo) at

C = 0 are essentially the same.

Lemma 1.6.2:

TheyprobabilityL that the lepe of the concave majorant

of the process X(C) = W(C) - C2 over [-q,q] pp C = 0 is dif-
 

ferent from the slope of the concave majorant of the process

X(§) = W(C) - C2 pp_(-oo,oo) §p_c = 0, tends to zero as

q —> 00.

Proof:

For any a, let PC denote the probability that there

exist points u < a-c and v > a+c such that L(u,v,x) Z.X(a)

where L(u,v,x) denotes the line joining (u,X(u)) and

(v,X(v)). It is obvious that PC is independent of a.

Let us choose a to be zero.

Then PC = P(there exist points u < -c or V > c such that

L(u,v,x) 2.x(o) = 0). (1.6.1)

We notice that for any c,

x(g) :.w(§) +-c2 - 2c|c|. (1.6.2)

Therefore,

PC f. 2P[x(c) _>_ 0'__ , for some t > c]

.1 29[w(c) 2.2e: - c2 for some g > c]

2
2E[P[W(C).Z 2c§ - c for some C > c}|W(c)]

Q
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1c2

= 2f:;o P{W(C).Z 2cC - c2 for some C > c|W(c)=x]d¢(x)

oo

+2f£222 P[W(C) Z. 2cC - c2 for some C > ch(c)=x]d¢(x)

where 6 is normal with mean 0 and variance c,

112J" P[W(Q)-W(c) Z-2cC-c2-x for some C > c|W(c)=x]d¢(x)

: 2) P[W(t).Z 2c t + c2 - x for some t > 0|W(0)=x]d¢(x)

CD

d+ 2f1c2 @(X)

I

. ' -

4

' 4

since W(C) is a stationary process with independent increments,

. l
2

c

= 2f4 p(w'(t) : 2ct + c2-2x for some t > O|W'(0)=0]d¢(x)

-CD

CD

+ 2f1 d¢(x)

/’ZC

where W'(t) is a Wiener process with W'(O) = 0.

But

P{w'(t) 2: 2ct + c2 - 2x for some t > 0 |w'(0) = 0]

= exp {8 cx - 4 c3] .

This can be proved by means of Wald's fundamental identity.

Therefore,

2

6° 1
< ' 4 A _ 3 _—

PC _-2] exp [85x 41c }. Jz—m? dx

CI)
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+

CD

—x .

2f 2 exp {2c (Ev—c dx
1/4c

. C .

3 2 exp [- 55:} .

1 2 exp {-ZC] +J-2—7TE 5/4 C)

 

 

Taking limit at c -> 00, we get that

PC -> 0 as c ->'oo o (1.6.3)

Now let p be the probability that the slope of the concave

majorant of X on [-q,q] at C = 0 differs from the slope

of the concave majorant of X on (-oo,oo) evaluated at C = 0.

Then

p :.P[There exist points ul < 0, v1 > 2c such that

L(u1,v1,x) 2.x(c) or that there exists points

u2 < -2c,v2 > 0 such that

L(u2,v2,x) z-X(-C)]

by remarks made earlier.

Therefore,by (1.6.3), p —> 0 as q —> 00. (1.6.4)

(1.6.4) proves the lemma. .

In view of lemmas 1.4.1, 1.4.2 and 1.6.1, 1.6.2, we

obtain the following theorem.

Theorem 1.6.3.

Let f(x) be a unimodal density. Let fn(§) denote the

M.L.E. of f(g) based on n observations. Further suppose

that f is differentiable at g with non-zero derivative. Then

n1/3[fD]-1/3[fn(§) - f(§)] is asymptotically distributed

as the lepe of the concave majorant of the process
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2

 

 
 

W(t)-t, -CD<t<oo

.3; t = 0, yhggg.w(t) is the Wiener process on (-oo,oo) ygggl

W(0) = 0 and mean 0, variance 1 per unit t, D s --£L§§l ,

f=f(§)-

The next step consists of deriving the distribution of

the lepe of the concave majorant of the process W(C) - C2

over (-oo,oo) at C = 0° It seems to be impossible to obtain

an eXplicit evaluation of the distribution. We shall show

that it is related to a solution of a heat equation as was

done by Chernoff [4] in the case of the distribution of the

location of the maximum for the process W(Q) —.§2 over (—oo,oo).

Let a + BC denote the tangent to the concave majorant

of the process W(C) - C2 at C = 0. We are now interested in

obtaining the distribution of B. Let h(B) denote the value

of C for which

Wm - (c + a)? (1.6.5)

is maximized over (—oo,oo) . .

Consider

)2 2W(C) - C2 - a - at = W(C) - (C +'§- - (a - %—).(1.6.6)

By Theorem 1 of Section 4 in Chernoff [4], the prob-

ability density function of h(B) is ¢(C - B) where

MC) = $— Ux(t:2.c)ux(cz.—c) (1.6.7)

where Ux is the partial derivative of U(x,C) with respect

to x, U(x,C) being a solution of the heat equation

1
EUXX - UC (1.6.8)
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subject to the boundary conditions

(i) U(x,§) = 1 for x Z.C2

and . . (1.6.9)

(ii) U(x,§) —> 0 as x-—> -oo. .

We note that

Prob[B - 53 :.3 :.B + 53]

= Prob[h(-B-%—§§-) .1 0, h(B $513): 0]

= Prob[h(§—g——§§) .<_ 0] - Prob[h(-B—;5—§§) £5 0]

= h(c - 13—5—36: - l w: - 9-3—9544
-d) -oo

_(3 5 53) _ (3 g 53)

fw(c)dt;. - f ((4)42:

—00

 

-00

_(B E OB)

=f + 6 Mama.

_(§_§_;§)

Therefore the density of B is

%z/1(-%). (1.6.10)

we note that ¢ is symmetric from (1.6.7).

Hence we have the following theorem.

Theorem 1.6.4.

The probability density function of B, viz. the slope

of the concave majorant of the process W(C) - C2 pp C - 0

where W(C) is a two-sided Wienep;pevy process with mean 0

and variance 1 per unit, is

1

5' (Mg)

where ¢ is defined in (1.6.7).
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Combining the results in Theorems 1.6.3 and 1.6.4, we

have the following final result.

Theorem 1.6.5.

Let f(x) be a unimodal density. _Iigt fnfi) denote the

M.L.E. of f(g) based on n observations. Further suppose
 

that f is differentiable at g with non-zero derivative

f'(§). Then the asymptotic distribution of

n1/3[_f(§)§' (§)j'1/3[‘fn(§) _ “W

has the density

fi-wg)

where p is defined in (1.6.7).



CHAPTER 2

ESTIMATION FOR DISTRIBUTIONS WITH MONOTONE FAILURE RATE

2.1 Introduction :

In this chapter, we shall investigate a problem analogous

to the problem treated in Chapter 1. We shall now suppose

that the distribution F has the monotone failure rate r.

(definitions are given in 2.2). Suppose X1, ..., Xn are n

independent observations from F. Grenander [10] and Marshall

and Proschan [14] have obtained the maximum likelihood

estimator (M.L.E.) of r and the latter showed that these

estimators are consistent. We shall obtain the asymptotic

distribution of the M. L. E. as a function of a solution of

a heat equation as was done by Chernoff [4] in the case of

estimation of mode. Methods used in the chapter are similar

to those in Chapter 1 and therefore, proofs are given only

at places where they seem to be necessary.

We mention here that Murthy [15] has obtained some

estimators of failure rate which are consistent and asymp-

totically normal. He does not assume a priori that the

failure rate is monotone and his estimators are based on

the choice of "window". Watson and Leadbetter [20] have

also obtained similar estimators.~

We shall give proofs only for the case of distributions

with increasing railure rate (IFR). Results in the case of

distributions with decreasing failure rate (DFR) are

31
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analogous to those in the case of IFR and we shall mention

them in section 2.7.

Sections 2.2 and 2.3 deal with definition and properties

of distributions with monotone failure rate. Some results

related to the asymptotic properties of the M.L.E. of r

are given in Section 2.4. The problem is reduced to that

of a stochastic process in Section 2.5. The asymptotic dis-

tribution of the M. L. E. is obtained in Section 2.6.

2.2 Definition andpprOperties of distributions with monotone

failure rate:
 

Let F be a distribution function with density Pf.

The failure rate r of F is defined for x such

that F(x) < 1 by

r(x) =-1——§L-)-;y . (2.2.1)

Let R(x) a - log (1 - F(x)

"
E
I
X

. It is easily seen that R is

V

convex on the support of F if and only if r is non-de-

creasing and that R is concave on the support of F if

and only if r is non-increasing. We say that F is an

IFR (increasing failure rate) distribution or a DFR (de-

creasing failure rate) distribution according as r is non-

decreasing or non-increasing. PrOperties of distributions

with monotone failure rate are discussed in Barlow, Marshall

and Proschan [1].
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2.3 Maximum likelihood estimation for increasing failure

rate distributions:

Suppose F is an IFR with failure rate r. Let

X1 §.X2 i.--- §.Xn be an ordered sample from F. Let c3Lbe

the class of IFR distributions. It is not possible to ob-

tain the maximum likelihood estimator for F e y—directly

by maximizing the likelihood

n

L(F) = W f(X

f(Xn) can be arbitrarily large for F e 2}. Therefore, we

consider a sub-familyng’ of El consisting of distributions

. . . n < n

F(x) With r :.M, obtaining Sup M F f(Xi) —-M . There

F e 3. 1

is a unique distribution FnM €2¥M for which the supremum

is attained. The failure rate an of En“ converges to

a failure rate in as M —> 00 for argument x < Xn. For

X Z.Xn, fn = M for all M and therefore an'-> 00 as

M -> 00. This estimator fn’ which is infinite for x Z'Xn’

is called the M. L. E. of r.

From the results of Grenander [10] or as an application

of Van Eeden [19], the estimator En can be derived and it

is given by

0 for x < X1

1 _ 1 < < ' < _
rn(x) rn(Xi) Xi _.x < Xi+1'1'_ 1._ n 1

00 x :.x
n

where

V-rl _1

rn(Xi) = min max [[V-u][ Z (n—j)(Xj+1-Xj)] }.

VZi+1 uii j-u
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Marshall and Proschan [14] showed that this estimator

is consistent.

The estimator En can also be written in the form

 

~ =~ F(v)-F(u)

rn(x) 32: iii 3 n (2.3.1)

I [l-Fn(y)]dy
1.1

where Fn(x) is the empirical distribution function.

 

In fact

[rn(Xi)] = Sup Inf ¢n(v) - ¢n(u) (2.3.2)

>1 +1 <£
_-—- u— .

n n V-u

where

1 Xj
¢n(n) = ID [1 - Fn(x)1dx°

A

Let 9n be the concave majorant of ¢n' Then, from (2.3.2),

it follows that [531(k)].1 is the slope of the concave

 

majorant 5n 2;. Fn(x).

2.4 _Some results related to the asymptotic prOperties of

the maximum likelihood estimator:

x 1

Let rn(x) denote the M.L.E. of r at X. Let r; C(X)

I

denote the slope of the concave majorant of ¢n at Fn(x),

when the argument of ¢n is restricted to the interval

_1 _

[F(x) - cn /3 , F(x) + cn 1/3]. It can be shown, by

methods analogous to those used in Section 1.4 of Chapter 1,

that



35

Lemma 2.4.1.

Cligb TEE. P[r;'c(x) # fn(x)] = 0.

Let g be such that O < F(g) < 1.

We shall now obtain some asymptotic expansions of §n(y)

for y in the interval [F(g) - cal/3, F(g) + c51/3] I

We shall assume that _

(i) f is differentiable,

(ii) f' is continuous, and (2.4.1)

(iii) the failure rate r is differentiable at

the point g and r'(§) is non-zero.

(For any function h, h' denotes the derivative of h).

As a consequence of assumptions made above, it follows

that for x in a sufficiently small neighborhood of g ,

(1) f(x) is bounded away from zero,

(ii) r(x) is bounded away from zero, and

(iii) -£%%§% is bounded.

Suppose that

(i) f(x).: 7,

(ii) r(x) 2.0 and (2.4.2)

(iii) )fé’}: I: k

for x in that neighborhood of’g

Let Fn(§) = nn' Let F(g) n. It is well known that

Tln ... T] = op(fil/2).

LE’C

U. = F(Xj+1) - F(Xj) - E[F(X.3 3+1) — F(xj)| xj] (2.4.3)

where Xi’ 1 2.1 §.n are the order statistics and E[Y)X]
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denotes the conditional expectation of Y given X.

It is easy to see that

 

Uj = F(Xj+1) - F(Xj) - 1(xj) (2.4.5)

where 1 - F X.)

1(xj) = n _ j(+31 .

We shall obtain the necessary asymptotic expansions in

a series of lemmas which will be combined at the end to

give the final result.

We mention here that the approximations which are of

the order Op are all satisfied uniformly for 6 in [—c,c]

in the following lemmas. Let

a = [nn] and b = [nn + 6n2/3], (2.4.6)

where 0 < n < 1 and -c-1 6._ c.

Lemma 2.4.2.
 

b—1 X(X.)+U.

nu) (A) - «v E‘-)1 = 2 (n-')( 3 Jim (51/3).
n n n(n j-a J '_ftf;7__ p

Proof:

By definition of Uj in (2.4.5), we have

F X. = F X. + X. + U..(3.1) (3) M3) 3

Therefore, Xj+1 = F-1[F(Xj) + 1(xj) + Uj].

Expanding F-1(Y) by Taylor's theorem up to second order

terms, we get that

 

-1
_ dF (y) =

xj+1 — x3. + [1(xj) + Uj] dY Y F(Xj)

2 d2F-1(Y) - «
+ 1/2[7((x.) + U.] 2 Y = 6. (2.4.7)

3 3 dY j .

where Gj lies between F(Xj) and F(Xj+1).
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It is easy to see that

 

 

dF Y __ _ 1

dY I Y ‘ F(x)) ” f(xj)

and 2 1 . (2.4.8)

d F- (Y) Y = e, = “f (Cj)

de 3 f3(cj)

where

g -1
Cj F (9])

By definition,

b a b-l .

n[¢n(a) - ¢n§591 = _2 (n-J)(Xj+1 - Xj)

3:3

b-1 7\(Xj) + Uj] ( )

= Z n —j

j=a f(x).)

b'l f'(Cj ) 2

_1/2 8 —3————(n-j ){)(x. ) + v.) (2.4.9)

3' =a f (r. ) 3
j

by (2.4.7) and (2.4.8).

Now for n sufficiently large, we have by (2.4.2)

b-1 f (q.)

E |,2 "3—-l— (n-j) {6(Xj) + Uj}2|
J=a

 

k b-1

.-1 )2¢§ E[( n--j)(5(X ) + Uj )]2

v 3-a

b-l -
_ . 2
- fg-jga (n-J) E[F(Xj+1) - F(Xj)1

b-1
5_. 2 _.

= y2 (n+1)(n+2) an (n 3)

i.h§' 25-(b-a) n = O (n-1/3) (2.4.10)

7 n
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since b-a = 0(n2/3).

(2.44» and (2.4.10) together prove that

 

10-1 ij )+U.

2- _ é. : _- j_ -1
n[¢n(n) ¢n(n)] jE-a (n j){ f(Xj) }+op (n /3).

Lemma 2.4.3.

b-1 (n-j)U- b-1 _

n[¢n(9) — ¢ (3)] = z ?TE‘T1 + z ?7%;T' + 0p(n1/3).
n n n . . ._

3'3 J 3'3

Proof: By Lemma 2.4.2,

b-1 MX )+Uj

n(enéf) - ¢n(§-)1= z [ £013.) 1(n-j )+0p (n/3)
j=a

b-l (n-j)Uj .b-l (n_j) 1-F(Xj)
—1

=an 7-5?)— +an (n-j+1)I f(x).) } + "10‘n A)
J

 

b-1 (n-j)Uj b-1

f(Xj )3 + jZar(Xj )

b-l 1

a(n-j+1)'(r(xj ) + 0p(fil/3). (2.4.11)

Now

b-1 b-l
1

< ._______Elj—2am FDIC—:37 l _ajia (n-j+1) for n large by

(2.402)

n-b+2 1

.1 d -dx

n-a

£212.12. = 0(51/3)
n-a (2.4.12)= alog

since b-a = 0(n2/3) and n < 1.

From (2.4.11) and (2.4.12), we have

b-1 (n-j)U. b—1 1
b a _ —1/

n[¢n(';1')- ¢n (H)]-j§a Wl 4-anW + 0p (n 3) o
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Lemma 2.4.4.

b-l

1 _ 'b-a r'[Z(fl)] 1 Abra
Z — _

j=a r(XjS . r[Z(T])] r2[z(q)] f[z(n)] n

)2

 

+ o (nl/G)
P

where Z(t) = F- (t) for O fi.t 5.1.

Proof:

Let zj = z(%§.

-)
3 for some aj between 

F(x.) - F(Z

Now x. — z. = 3

3 J f(ajf

X. and Z.

3 J

and f is bounded away from zero.

By the Kolmorov-Smirnov theorem,

-1

S§p|F(Xj) — F(Zj)| = Op(n /2).

Therefore

_1/

u X0 _ Z. — 0 II 2 0 2.4.13

Since. [, - ,

° ' ' '(-r?(§-)

riijj W .ri;.5 :.r2QCE)‘ (Xj 7 Zj)

J

for some Cj between Xj and Zj' we have

b-1 1 b-1 1 b-1 r'(§.)( )

Z - Z = - Z X. - Z.

j=a r(xj5 j=a rzzj) j=a r2(cj) 3 3

- Op(fil/2 ,nZ/a) - 0p(n1/6)

by (2.4.13) and the fact that 'E2 is bounded.

r
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In other words,

b 1 b—l

- 1 : 1 1/6

i? inc—3.7 32%;) + °p<n >'
3

(2.4.14)

By Taylor's Theorem, we have

1 _ 1 + (1__ n {_ r'[z(n)J 1 }

r(sz - r[z(n)] n ) r2[Z(n)] f[z(n)]

+ (% - n) 0(1):

which implies that

 

b-l b-1 .
1 _ b-a r'[Z(n)] 1 .1

z _ - Z ( ‘ )
j=a rizjf r[Z(n5] r2[Z(n)] f[z?n)] j=a n n

b'11 )<)+ Z — o 1

j=a (n n (2.4.15)

_ b-a _.ELLELDI] 1 (b—a)? n1/

firmw— rzmw mom n *°‘ 3’

since b-a - 0(n2/3).

From (2.4.14) and (2.4.15) we get that

b-l 2
1 = b-a _ r'|Z{DZ| 1 (b-32 1/

an r(xj) r[z(q)] r2[Z(n)] f[z(n)] n + Op(n 6).

Lemma 2.4.5.

b-1 (n-j)U. b-1

' x. = [z1 ] Z (n-j)Uj + op(n1/6) ‘
j=a j n j=a

Proof:

By the.Kolmogorov-SmiIDOV' Theorem, it can be shown

as before that

f(zlcj") = 27%;) + OP(J_%_ )- (2.4.16)

Therefore
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b-1 (n-j)U. b-l (n-j)U. b-1

2' -T-—7—1'= f Z + Z’(n-j)Uj Opc-—). (2.4. 17)
. f . . .
J-a x3 3=a J j=a pJE'

But

2 2

{El(n-j)Uj0p(31-fi)l} : Bun-nu12m147:)

= o(%) uniformly in j. (2.4.18)

Therefore (2.4.17) and (2.4.18) imply that

 

 

 

bgl (n-j)Uja b-1 (n-j)Uj 0 1/6) 2 4 19)

+ . .

=a f(xj f(zj ) p(n (

since b-a = 0(n2/3).

‘1 _ 1 j f'UzCnxL
But ETET7'—'EEZIETT + (H - U) [— + 0(1)]-

3 f2 [2(2)]

So we have,

b-l (n-j)Uj_b-1 (n-j)Ujb-1 j f2 (ZQ ))

z —— >3 —— + z u.(—-n)[- ’1 +o<1>1<n-—j)

j-a f(zj ) j=a f[Z(”)] j=a 3 n f2 (Z(n))

1 b‘1 '.

"W jia ‘n'J’Uj + Zn (““2”

where

b-l . .

2n = 2 (%--q)[-f2(z(n)) + o(1)](n—j)U..

j=a f <z<n)) 3

Since E(Uj) = O for each j, E(Zn)= 0.

‘ 2-b-1 .
4, . k .

But Var-(Zn) 1 :2. 3.251% _ n)2(n_3 )2 var(Uj)

‘ 2 by (2.4.2)

2 b-l . - ~

15235-2- 18 (% - n)2.$2_:§.l)_ since Va'r(U.) :92—

v j=a n v 3 =n

for some constant d

= 0(1) since b-a = 0(n2/3).
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Therefore Z = 0 (1).

n P

Now (2.4-19), (2-4.20) together imply that

b-l (n-j)Uj b-l
= _. 1 1/6

jia “f(x'j) [3.2a (’1 J)Uj]f[z(n)] + 0.1:>(n ) + 0pm

b-1

=[Z + O (n1/6).

j=a P

. 1

(n—3)Uj] f[Z (1.1)]

From lemmas (2.4.3) — (2.4.5), we have the following theorem.

Theorem 2.4.6.

Lg£.§ be such that 0 < F(é) < 1 and let F(g) = n.

Suppose that -c.i 6.1 c. ‘

Ls}; a= [nn] grid b= [nn+ 6n2/31-

21121

b a

nt¢n(;) - “31".?”

 =fl.3__ W (5) -2311: 1 r'LZ(n)]
r[Z(n)] n 2 f[Z(n)] r2[Z(n)]

2/ /'
on 3 11

+ rtz‘mn + op‘n 6"

where

b-l .

w (5) a Z n2/3 i2:lill.u_°

n ._ (n-a) 3
3-3

Proof:

By lemmas (2.4.3) - (2.4.5), we have

n[¢n(%) - “GM?”

_ 130—12— BM) + Op(n1/6) (2.4.21)
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where

_ 1 r' Z .

But [(b-a) - én2/3|.i 1.

Therefore, from (2.4.21), we have

-a b-1 (n-j)Uj
b a _ n

nwnw - wan 'W .2 T37—
J=a

+ én2/3 52n1/3

r[Z(n)] - 2

b‘1 - b-1 .
.2112._ £1.21). n-a (n- )

“2‘11” jfam'a) ”j + fIz—Tm) jig—£7 Uj

+ 5n2/3 _ 62n1/3

r[Z(Tfi] 2

B(n) + Op(n1/6).

= _E:BE__.b§1 (n-j) U + T'* 5n?/3 _ 5 n /3

f[Z(n)] . (n-a) j n f[z(‘—_Anl)] 2 (n)+0 (nl/G):

3=a p
(2.4.23)

where

b-1 .

_ gn-a Z (n-J

n f[Z(n)] j:
T U .

a (n-a) j

Obviously

< 1 b-l

BIT | _. 39:11-E|U.| = 0(51/3)
n Jf[Z (71)] j=a (n-a)

since b-a = 0(n3/3) and E|Uj| = 0(n-1).

Therefore, form (2.4.23), we have

b—1 -
Q __ a _ n|1—g| (n-J)

énz/a 52n1/3
________ ________ 1/6

+r[Z(n)] 2 ’3‘”) ’“Op‘n ’
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= n b-l (n-j+1) U _ R

r[Z(n)] j=a (n-a) j n

én2/3 52n1/3
_ _____ 1/

+W 2 B(T]) + 0p (n 6), (2.4.24)

where

R =__2__b§;1_l_u

n r[Z(T])] j=a n-a 3

Obviously

_ -1/ . -1
Eanl — 0(n 3) Since E )Ujl = 0(n ).

Therefore, from (2.4.24), it follows that

1/3 52n1/

2. a _ n” 3 ,6n2/3- 1
n[¢n (n) - ¢n(I—1')] - r—[Z—(TTTT Wn(5)- —2——B(T]) +W+Op(n /6)

where '

b-l -

wnw) = 2 n2/3 412—3? U.. (2.4.25)

j=a 3

Remark: Since r(x) is non—decreasing and since r'(§)# O,

we have B(n) > 0.

2.5 Reduction to a problem in stochastic_processes:

In this section, we shall reduce the problem of calculat-

ing the asymptotic distribution of the slope of the concave

majorant of ¢n(Y) over [F(g) - cfiI/3, F(g) + oil/3] at

Y = Fn(§) to the corresponding problem of a Wiener process

over [-c,c] after suitable normalization-WEIShall assume

that the conditions in (2.4.1) are satisfied.

.Let Fn(§) = nn and a = [nn], b = [nn + én2/3], and

F(g) = n where -c 3.5 :.c.
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By theorem 2.4.6,

 

b a _ n n

n[<bn(;:) “MK” - MW] - 2 am)

2/
on 3

r[Z(n)] *0 (n 6’

where B(n) and Wn(d) are defined in (2.4.22) and (2.4.25).

Therefore,

W (6) 2

2/ b a = n 7 5

n 3[¢n(n-) " “31‘3” r[Z('q] ‘ 2 13m)

r[Z(T])] + 0p(n 6). (205.1)

Let an(n) + 6 fin(n) denote the tangent to the concave

majorant of

W (5) 52 _1

Fig—(37] - 71301) + 0p(n l6) over {-C.C]. at

5n = (nn _ n)n1/3.

We notice that

 1/ .1 _ __.__;____ =

where [r; C[Z(T])]]-1 denotes the slope of the concave

I

majorant of ¢n(Y) over

0

- —1

[n-cn1/3, q+cn l3] at Y = nn.

We are now interested in determining the limiting dis-

tribution of Bn(n).

Let 5 = AC where

)\ = {W}. . r (2.5.3)

_ -1/
Let vn(c) - 7\ 2 wnw). (2.5.4)
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Let us now consider

HMJT “m?“aJM-BH<Mé+om
)

kl/zvn(é) B(n)x2§2
 - an(n) - Bn<n)xc + op<51/6)
r[Z(n)] - 2'

1/ 2d (T1) 21.13 (Tl)_ x 2 2 _1/
- r[z(n llvn(C) - c --;Z§7;;- 2-————;—— 1 + 0p (n 6)

, (2.5.5)

by (2.5.3),

2
1

x 2 Bn(n) 2 2an(n) an (n)

=———(—T— [V (C) - (C + )-( )1

r[Z n J n A B(n) h23(n) x232(n)

 

 

+ op(fil/6). (2.5.6)

23 (q)

From (2.5.5), we notice that R§%fiT—' is the s10pe of

the concave majorant at C = Cn = k-1(nn - 1])n1/3 of the

process

Xn(C) . vn(C) - c2 + op(fil/6) (2.5.7)

on [-q,q] where q =-%.

= 0 (51/6). (2.5.8)Notice that Cn p

Let X(C) = W(C) - C2, where W(C) is the Wiener process

on {-q.q].

Let D[a,B] denote the space of all functions on the

interval [a,B] with discontinuities of first kind and let

us introduce the convergence in D[a,B] by Jl-t0pology.

(See Sethuraman [18]).

Let W(C) be the Wiener process over [-q,q]. It is

obvious that the trajectories of the process Vn(C) belong
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to D[-q,q] with probability one. It is well known that the

process W(C). has trajectories in C[—q,q] with probability

one and C[-q,q] is a closed subset of D[-q,q].

Let un be the distribution induced by the process Vn

on D[-q,q].. Let u be the distribution induced by the

process W on D[-q,q]. .

Our aim is to prove that un converges to u weakly.

We shall prove some lemmas which lead to the result.

Lemma 2.5.}.

For any 5 in. [-c,c] , Wn(é) is asymptotically

 

normal with mean 0 and variance lé

Proof:

Let A1,...,A be independent random variables each

n+1

with the exponential distribution ne-nx, x.: 0. Let

 

Dn = A1 +. o o + An+10 (2.509)

A1 + + Ai

Then Zi - D , 1 §.i i.n form order statistics

n

of a sample of size n form the uniform distribution on

[0’1]. (205010)

From (2.4.25), we have

2/3 b_1 n-j+1

W (5) = n 2 U.
n . j-a n-a 3

b-1 - 1-F(X )_ 2/3 n-J+1 .

- n jia --—n_a [F(x)-+1) - F(xj) - n_j+1 1.

Therefore, from (2.5.10), it follows that Wn(5) has the

same distribution as



 

 

 

 
 

 

 

 

 

1_ 'i

-1/3 b-1 A. - D ' ‘
. +1

W305)? ' a .3 (n-J+1)[-l— - n_j$1 ]
1-(-) j=a

n «y -

-1/3 b-1 A + +... +A

: n a z (n-j+1)[A.+1 J71: jfljnflfl]

Dn(1-E') j-a

_1/3 b-1

.... n a z (n-j+1)[(A.+1 711-) ~(Aj+1+°°'+An+1--I-];-)].

Dn(1-'r;) j=a n-j+1

(2.5.11)

Let /

—1 b-1
n 3 . 1

(1) Anus) - 1.2 (n-3+1>(Aj.1 - H)
n 3

and

.. __ n n-J+1

(11) Bn(c5) 1_ E j=a 3+1+'°°+An+1 n ).

n (2.5.12)

Then

A (<5) B (<5)

w*(5) a n — 3 (2.5.13)

n n

Since E(Aj) = .1]: for 1 S. 3 f. n+1,

E(Bn(<5)) - 0. (2.5.14)

Now

-2/3 b-l

Var(Bn(6)) - (1- 2)2 Var[j:a (Aj+1 + ... + An+1)]

n

n.2/3 b-1 n+1

='———5—§- Var[ Z (j-a)A. + (b-a) Z Aj].

(1- 3) 3'3 3":

—2/3 b-l
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since A]. are independent and Var (Aj) = $2- .

n

Therefore

-2/ b-a-l
3 . .2

Var(Bn(é)) = n2 a 2 [ Z 3 + (b-a) (n-b)]

(1- g) 3‘1

= 1 [(b-a-1)(b-a)[2(b-a-1) + 1)

6

+ (b-a)2(n-b)]

3
1 b-

n8/3(1_ 292 [$ 33)+ (b
-a)2n].I

A

Since b-a = 0(n2/3), the term on the right hand side

tends to zero. Therefore, from (2.5.14), it follows that

Bn(é) -¢-O in probability.

Since Dn converges to 1 in probability, by Slutsky's

theorem (See Cramer [6]),

Bn(6)

D
n

7> O in probability. (2-5-15)
 

Imn: fn(t) be the characteristic function of An(é). Then,

 

 

 

 

-1/ b-1
_ tn 3 - .l

fn(t) - EIeXPfl 1_ _ 33a ((n-3+1)(Aj.1 - nn )1 .‘

n

-4 b—1 Q )b-l n ‘_

= exp{-i 2 n-j+1 }w _ - /

._ — j=a j—a n 1[(ni+1):n 3]

"5

since Aj's are independent and exponentially distributed.

Therefore
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-4/ b-l b-1
log f (t) = _.££E___§ z (n-j+1) + 2 log n

n a .

(1-';) j=a 3:?

b'l n-'+1 -1/3
- Z logEn - {imL-lz—l tn )]

j=a
1' '-

n

-4/ b-l b-1 . -4/3

=‘1tn a3 z (n-j+1)- z log[1 - 1t(“’j+1)n J

1" E j=a j=a 1- 3

11

2-8/ b-l

= _ £;2__2.2 2 (n-j+l)2 + 0(1)

2(1- 3) j=a
n

2 -8/ 5-1

_ -t n a g z [(n-a)2+ (a-j+1)2+ 2(n-a)(a-j+1)] + 0(1)

2(1- -) J=a
n

2 -8/

= - 1:__n___3_:§_ (b-a)(n-a)2 + o(1)

2(1--9)
n

2 -8/

= - 5—3—3 nzlzslnm + 0(1)

2

- g- lél + o(l).

Therefore, fn(t) -' exp { - g— (5|) as n -+ °°.

Hence by the continuity theorem for characteristic

functions, it follows that

An(6) is asymptotically normal with mean 0 and

variance '6) . (2.5.16)

Then, by Slutsky's theorem (See Cramer [6]),

An(6)

D

n

 

is asymptotically normal with mean 0 and

variance (6| (2.5.17)
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since Dn converges to 1 in probability.

From (2.5.13), (2.5-15) and (2.5.17), we get that Wh(é)

isamymptotically normal with mean 0 and variance (5|.

Lemma 2.5.2-

For any C in [-q,q], Vn(C) is asymptotically normal

 
widinman O and variance [C

Proof: This lemma follows immediately from lemma

2.5.1, since by definition

= '1/2vn(C) x wn(6).

Remark: In a similar manner, it can be shown that for any

collection C, ... , Ck such that Ci 6 [-q,q], the joint

distribution of [Vn(C1), ... , Vn(Ck)] converges to the

multivariate normal distribution with mean 0 and variance

- covariance matrix (6(Ci’cj)" min (|§i|,|Cj())

where'

if a,B are of the same sign_ 1

é(o,fi) - {0 otherwise.

The next lemma proves that the processes {Dnvn(C)) on

[-q,q] (Dn is defined in (2.5.9)) satisfy an equi-continuity

condition.

Iggmma 2.5.3.

Lesser C1IC2 _i_r.1_ l-q:q1:

4

EIDnVn(C1) ‘ DnVn(C2)|

2

:.C|C1 - Czl + ICI - C2) 0(1)

Where C is a constant independent of n.
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Proof: We have

E(nnvn(s.) - nnvn(é.)(4

_ 4

= x 2 EanWn(c1) - ann(c2)l

‘ K-z EilAn(51) ‘ Bn(51)} - {An(52) ‘ Bn(52)}|4

where An(é), Bn(é) are defined in (2.5.12),

<srfiEm(a)-A(6H4+Em(a)-B(aHfi—- n 1 n 2 n 1 n) 2

(2.5.18)

by the elementary inequality

ElX + Y|4 1.8[Elxl4 + EIYI4].

Let

bl = [nn + 61n2/3] 7 b2 = [nn + 52n2/3].(2.5.19)

Let us first compute

ElAn(51) ‘ An(52)|4

_.2 . 1+1
(1 n) 3 b1

-4/3 bz-l
. 4 9

' n a 4 [ 2 (“‘3+1) ‘4'
[1" '_'] j=b1 n

n

b2-1 b -1 ‘

+ 6 Z Z (n-i+1) (n-j+1)2'lz ]:

1-b1 j-b1 n

1 j (2.5.20)

since Aj are independent and

1 _ _1" _ 1.4 -._g .
E(Aj) a 37 Var(Aj) — n2, E(Aj n) — n4 (2.5.21)

for all j such that 1.: j.: n+1.

From (2.5.20), we have

 

 



 

-4 b -1
9 3 2 . 2 2

IA (5)‘An(52)|4 in ,-=(4[,z (fl-#1)]

4( “‘3) J=b1

_‘/

9 3 2 2
:2 ‘a4 [(152 -b1)n]

n 1- -)
n

"4/3

.5. 9n 4 4 (e32 — 51)2 n4/3n4

(1-n) n . ,

2
= c1|52 - 511 . (2 5.22)

Let us now compute

4
E|Bn(61) - Bn(éz)|

"4/3 b -1

-n E1 2 (A. -l)+... (A --1-)}l4
a 4 ._ 3+1 n n+1 n

(1' 39 J‘bi

-4 b —b n+1
3 2 1' 1 l- 1 4

- n a 4 I Z 3( 1+3- 39+(b2'b1)_~2 (AD-"))

(1 a) = J=b2 1

-4/ b -b n+1
< 3n 3 2 1 1 1 4—

...———[E j -—) +b-b)4E (A--)]

(1-.',a;)4lj-1(Ab1+3n|4(21 lj 41:3anl

-4/3 bZ-bl bZ—bl bz-bl .2-2

= 8n [{ 2 9-4 + 6 Z Z 1 J 3

a 4 . -l— . ._ 4

(1- —) 3=1 n4 3:1 1-1 n

i755:

n+1

+ (bz-b1)4{ z 2+62 z 14.)]

j=b2+1n i n

i#jj

-4/ b -b
7 3 2 1 . 2

_<_ 2“ z: 3212 + (152-151)4 (n-bz) 1
4 a 4 .=

n_ (1- n) j 1

 

4:/
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”4/3

-= 73?. a)4 [Is-61:2 n 4’3 n4 + 152-6114 rug/3 n21n __

n by (2.5.19),

_ 72 2 —2/ 3

- ?I_—333'[l52‘51|
+ I52‘51I n 3 3C 1

n since [52-51l 1 2c,

:c2|52-51|2 + [52-51| 0(1). (2.5.23)

where C2 = -Zgji

(l-n)

Combine (2.5.8), (2.5.22) and 2.5.23) we get that

2< .‘2 2 2
Eanvn(§1)-Dnvn(q2)|._ 8k [C1|52-61] + C2|52-51| +|62-61|o(1)]

2

= ClCz'C1l + ICz—C1l 0(1)

where C is a constant independent of n.

This proves lemma 2.5.3.

Remarks:

Since Dn converges to 1 in probability, DnVn(C)

is asymptotically normal with mean 0 and variance [Cl by

lemma 2.5.2. Further from the remarks made at the end of

lemma 2.5.2, it follows that the joint distribution of

[DnVn(C1), ... , DnVn(Ck)] lS asymptotically multivariate

normal with mean 0 and variance - covariance matrix.

<6<ci.cj) min <|c1|.|cj|))

where 6 is defined by

_ 1 if a,b are of the same sign

6(a,b) - {0 otherwise.

When Dth(C) is represented in terms of exponentials

as in lemma 2.5.1, we note that DnVn(C) is a process with
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independent increments.

We shall now state a theorem connected with convergence

of distributions of stochastic processes with independent

increments in D[Q,B].

Theorem 2.5.4.

Let_ Xn be a sequence of processes with independent

increments on D[a,B] and_ X be a_process on D[a,B] quh

2152

(i) for any ti, 1 i.i i.k “in [a,B] the joint distri-

bution of [Xn(t1), ... , Xn(tk)] converges to thegjoint

distribution of [X(t1), ... , X(tk)], and,

(ii) there exist constants 7 > 0, C > 0 independent

.9: n such that for every t1,t2 e [c.51,

2
E|Xn(t1) - xn(t2)|7 :.c|t1-t2| -+ |t2-t1| 0(1).

 

Let Vn and v be the distributions induced by_ Xn and X

respectively on D[d.B]- Then Vn converges to v weakly.

Proof: From the condition (ii) of the hypothesis it

follows that

E|Xn(t1) - xn(t2)|7 : Alt1‘tzl

for all n and for t1,t2 e [a,B] such that lt1‘t2I < 1

where A is a constant independent of n.

Therefore, for any 1 > O,

A t -t
'2 lliéé.

17 x7

 P{|xn(t1) - xn(t2)| > M i

for all ItZ-tll :- 5 < 1.
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Let w(5,x) = A%-. We note that Y(5,k) -9 0 as é-—> 0.

A

Now from the remarks made on page 140 of Sethuraman [18],

it follows that the distribution Vn converges weakly to v.

As a consequence of lemma 2.5.3 and the remarks made at

the end of the lemma, we get that the sequence of distributions

induced by the processes DnVn(C) on D[-q,q] converges

weakly to the distribution u induced by the process W(C)

on D[-q,q]. .

Since Dn converges to 1 in probability, the follow-

ing theorem can be obtained by Slutsky's theorem generalized

to processes. (Rubin [16]).

Theorem 2.5.5.

The sequence ofgprocesses Vn(C) pg. [-q,q] converges

in distribution to the process W(C) 9n. [-q,q].

Furthermore

_1

C2 + Op(n /6) converges to C2 uniformly in C , since C

belongs to a finite interval and 0p is uniform for

C 6 l-q.q].

2 '1/6
Hence the process Xn(C) = Vn(C) - C + Op(n ) con-

verges in distribution to the process

X(C) = W(C) - C2 on [-q.q].

where W(C) is the Wiener process on [-q,q].

2:6 Asymptotic distribution of the maximum likelihood

estimator for increasing failure rate distributions:

In view of the result obtained at the end of section 2.5
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and the lemmas 2.4.1, 1.4.2, 1.6.2, the following final

result can be obtained by methods analogous to those used

in Section 1.6 of Chapter 10

Theorem 2.6.1.

Let F(x) be a distribution with non-decreasinggfailure

rate r(x). Suppose that fn(§) is the M.L.E. of r(§‘)

based on n observations. Further assume that the condi-
 

tions in (2.4.1) are satisfied. Then the asymptotic dis—
 

tribution of

n1/ _SleyfiiJ—r'r ‘4-1/3 __1.__-_1_

3[ 2f<§ 1 [Enm rm]

has densipy

 

l Q.2“.)

where Y is defined in (1.6.7)o

2.7 Asymptotic distribution of the maximum likelihood

estimator for decreasing failure rate distributions;

In this section, we shall give results for distributions

with decreasing failure rate. Let F(x) be a DFR distri-

bution with failure rate rkfl. Let in1x) denote the M.L.E. of

r(x). It was shown by Marshall and Proschan [14] that the

estimate fn(x) is conshmnnt and [i:n(x)]"1 is the slope of

the convex minorant of ¢n(Y) at Y = Fn(x),

where

j 3

¢> (—> ‘I [1 - Fn(y)]dy.

Xj being the order statistics of a random sample of size n
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and Fn is the empirical distribution.

The following theorem can be proved by methods analogous

to those used in the case of IFR.

Theorem 2.7.1.
 

Let F(x) be a distribution with non-increasing failure

rate r(x). Let fn(g) denote the M.L.E. of r(x) §£_
 

x = g. Further suppose that conditions in (2.4.1) are
 

satisfied. Then
 

 

1/3 -2 C(g) ‘1/3 1 — 1
n {My} 2 1 [—--——.(g) rm]

n

is asymptotically distributed as the slppe of the convex

minorant of thegprocess W(t) + t2, -a)< t < oo §E_t = 0

where W(t) is the two-sided Wiener process with mean 0

and variance 1 per unit t and
 

2.2::
From Chernoff [4], we have the following theorem.

Theorem 2.7.2
 

The probability density function of E, the value of C

which minimizes W(C) + C2 where W(C) is the two-sided

Wiener_process with mean 0 and variance 1 per unit C i§_

W(C)

where Y is defined in (1.6.7).

From theorems 2.7.1 and 2.7.2, we have the following

result for DFR distributions.
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Theorem 2.7.3.

L§£_ F(x) be a distribution with npn-increasinq failure

page r(x). Suppose that fn(§) is the M.L.E. of r(g)

based on n observations. Further assume that the condi-
 

 

tions in (2.4.1) are satisfied. Then the asymptotic distri-

bution of
 

-r' r ‘4 "If3 1 1

“1A” 12955)} 1 [sum “E731
 

has the density'

1/2 1(g)

where Y is defined in (1.6.7).

Finally we conjecture that similar results can be

obtained for the asymptotic distribution for estimates of

T(X) = ¢[F(X)]f(X)

when T is monotone and ¢ has a special known form.



CHAPTER 3

ESTIMATION OF THE LOCATION OF THE CUSP

OF A CONTINUOUS DENSITY

3.1 Introduction:
 

Chernoff and Rubin [5] and Rubin [17] investigated the

problem of estimation of the location of a discontinuity in

density in their papers in the third and fourth Berkeley

symposiums respectively. They have shown that the maximum

likelihood estimator is hyper-efficient under some regularity

conditions on the density and that asymptotically the esti-

mation problem is equivalent to that for a non—stationary

process with unknown center of non-stationarity. Daniels

[7] has obtained an asymptotically efficient estimator of

6 (modified maximum likelihood estimator) for the family

of densities

1
f(x,9) = exp {-lx-G|x},'§ < h < 1.

2r(1+1)
I

In this chapter, we shall obtain a hyper-efficient

estimator for 9 where 9 is a parameter determining the

family of densities f(x,9) given by

  

A
_ 8 x,9 x-G + g x,9) for x :.A

log f(x,9) -‘{g(x,9)| I ( 'for x > A

(3.1.1)

where

. = B 6 if x < 6

(1) g(x,9) {7(9) if x > 9,

6O
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(ii) 0 < 7. < 1/2, a_nd (3.1.2)

(iii) 9 e (0:5) where -A < a < B < A. .'

We shall prove that hyper-efficient estimators, among

them the maximum likelihood estimator (M.L.E.), exist for 6

under some regularity conditions and that asymptotically the

estimation problem is equivalent to the estimation of the

location parameter for a non-stationary Gaussian process.

We obtain some results related to the asymptotic pro-

perties of the M.L.E. in Section 3.2. The estimation problem

is reduced to that of a stochastic process in Section 3.3.

The asymptotic distribution of the M.L.E. is Obtained in

Section 3.4. Section 3.5 contains the evaluation of

integrals encountered in Section 3.2.

3.2 Some results related to the asymptotic properties of

the maximum likelihood estimator:

Since our interest centers around obtaining the

asymptotic distribution of the M.L.E. of 9, we can assume.

without loss of generality, that the true value of the

parameter is zero.

We shall assume that the following regularity conditions

are satisfied by f(x,9).

(i) For each 9 # 0 e [a,B], there corresponds a 6(9) > 0

such that

E0[|:Eg|:'é(e)[log f(x,¢) — log f(x,0)]] < 0. (3.2.1)

(ii) For every ee:[a,B],

2

W)— ,W exist and

592
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2

Eo[[[§9é%Lgl]e_ol] < a: and EO[|§-§é%*gl[].i.k < 00

for all 9. (3.2.2)

0

... a 9

(111) Eol logégixi)le=o] = 0' (3.2.3)

(iv) 3(9) and 7(9) are twice differentiable at all 9 with

bounded derivatives. (3.2.4)

(v) [f(x,0) - f(0,0)|.i K |x|x for all x e [-A,A]

(3.2.5)

for some constant K.

We would like to mention here that even if the density

is given by

g(x,9)lx—eIM g(x,9) for -A z. x r. 3

log f(x,9) =

g(x,9) for x < -A and x > B

where conditions (3.1.2) and (3.2.1)—(3.2.5) are satisfied,

it can be reduced to the form (3.1.1) by suitably modifying

the function g(x,9) and the conditions (3.1.2) and

(3.2.1)-(3.2.5) can be shown to be satisfied by the new

density very easily.

Let Xi’ 1 fi.i fi.n be n independent and identically

distributed observations from f(x,9).

Let 9n denote the M.L.E. of 9.

Lemma 3.2.1.

The M.L.E. 9n is stronqiy consistent under condition

(3.2.1).

Proof:

Let S(9,5e) denote the interval (9—6 9+ée) wheree!

69 is given for each 9 by condition (3.2.1). Choose any
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number n > 0.

Let

k

Lk(9) = _2 log f(Xi,9). . (3.2.6)

1-1

Let Q = [9: Q.: 9.: 5 ] fl [9: [9[.i q].

We notice that U S(9,5 )DSZ and S2 is

9€Q 9

compact. Therefore, there exists a finite set 91, ..., q“

in 0 such that

M .

U s(ei,5e )39- (3.2.7)

i=1 1

Now

Pol U {lékl > 3}] iPol U {Sup L149) > Lk(0)}1
kin kin 9 6 G

M

.1 2 Po[ U { Sup Lk(9) > Lk(o)}]
': > .1 k_n e e s(ei.5ei) (3.2.8)

by (3.2.7).

Choose an e > 0.

Since E{ Sup [log f(X,9) — log f(X,O)]} < 0

9 e S(9.,6
1 9i

by condition (3.2.1), it follows by the Strong law of large

numbers, that there exists an integer N(9i,g) such that

k

P[ U Sup 2 [log f(X.,9) — log f(X.,O)]>< 0]

kin 9 e S(9.,é ) j=1 3 J --

1 9.
1

> 1 -
.E

M

for every n > N(9i,e), i = 1, ... , M.

Since
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Sup n

e es(e ,56 ) 2 [log f(X.,9) - log f(X.,O)]

_ i j:1 3 J

n Sup

< 2 [lo f X.,9 - lo f X.,O ,._j=1 e 6 5(91'59.) g ( J ) g ( 3 )1

1

we get that

U Sup . L (9)> (O)}] < £-

P[k:n 9 € S(9i,5e ) ki . *Lk.‘ .7 M

i

for every n > Max[N(9i,g), i a 1, ..., M].

Therefore, from (3.2.7) and (3.2.8) we get that

NU IW|> H<M£=
kin ’k U M E

for every n > Max(N(9i,g), 1.: 1.: M).

In other words,

9n is strongly consistent.

Let us now consider the log-likelihood ratio

L (9) - Ln(0) where Ln is defined in (3.2.5).
n

We have

n x 7‘

Ln(e) - Ln(0) = 21 [g(Xi,9)|Xi-9| -s(xi.0)|Xil ]

i=1

n

+ Z [g(Xi,9) ‘ g(Xi,0)]

i=1

where- 21 denotes that the sum is extended over those Xi

such that |X.| :.A.
1

2

Let 9'(X,9) = £35.91 and g"(x,e) = a 2162(3) '
6
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Then by Taylor's theorem (in view of (3.2-2)),

L(9) L(0)'§[(X9 97‘ o An - n '- 1 E ii )lxi- ‘ -' g(xil )lxil ]

i=1

n

+ 9 Z g'(X.,O)

i=1 1

92 1 n

+-§ f (1-t) .2 §f(xi,9t)dt. (3.2.9)

0 1-1

n 92

= 2 w(xi,e) + n9 E[g'(X,0)] +-Jfi'e w + n —- v

1-1 n 2 n

(3.2.10)

{8(X69)|X-9|7\- g(x,o)[x[7‘ for [x[ :1
otherwise,

1 n

(...) wn - [fi (.21 g'<xi.o> - n E(g'(X:0))],
l:

and n 1

(111) vn =3; 2 fg"(Xi,9t)(1-t)dt. (3.2.11)

i=1.0

Since g'(X.,O) are i.i.d. random variables, condi-

tion (3.2.2) implies that Wn is asymptotically normal with

mean 0 and finite variance by the central limit theorem

for i.i.d. random variables.

Since g"(Xi,9t) are i.i.d. random variables, by

Condition (3.2.2), we get that

Vn = 0p(1).

Therefore, from (3.2.10), we have

Ln(9) - Ln(0)

I
I

I
I
M
3

W(xi,e) + n e E[g'(X,O)]

i 1

920 190(1)+n§ p().:
fi
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The lemmas which we will prove next lead to the calcu-

lation of. E0[Ln(9) - Ln(0)], Varo[Ln(9) - Ln(0)] and

Varo[Ln(9) - Ln(¢)].

Lemma.3.2-2.'

Forany 9.<1> € [01.6],

2 < 2K+1

Eo[‘1’(X,9) - w(x,¢)] _B [e - ¢[

where .B is a constant independent of 9 and ®,

 

and

EO[Y(X,9) — 1(x,¢)12 = [e—¢|2“+1 [2c f(0,0) + 0(1)]

is; 9 —*> O and (D —> 0

where

P A+ F 2 2

c = 42,..qu '1“[a2(o > + v <o)—2a<o>y<o)cos m
2 In (2M1)

(3.2.12)

Proof:

Let us assume without loss of generality that 9 > ¢.

By the definition of Y (X,9),

A

=f [e(x 9)]X-el- (x, ¢ )-|x¢|7‘] 2f(x,0)dx

-A

= T1 '1' T2 (3.2.13)

where

. A 1 1 2
(1) T1‘= f[e(x,e)|x-e| — g(X,¢)IX-¢| ] f(0,0)dx

and

A 1] 2[
(ii) 12 = f[e(x,e)|x-e|7‘- g(x, ¢ )|x-¢|] [f(X,O)—f(0,0)]dx.

-A (3.2.14)
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Let n = 9 - ¢.

By condition (3.2.5),

[Talin[e(,)X9 lX-9I- (,x¢> [x<1>|121x931

-A

.1 2K (T3 + T4) (3.2.15)

where

(1) T3 =f[e(x-q,¢)[x-e|- (x, ¢ )lx--¢|x] 2 lxlx'dx

and

A

(ii) T4 = f lx-e|2”|x|A[e(x-n,¢) - e(x,e)]2dx(3.2.16)

'For x < 9, g(x,9) _ €(X-fl:¢) 3(9) ' B(¢)

7(9) - 7(2)-

Therefore, integrand of T4 is of the order

and for X > 9, 8(X,9) — e(X-q,¢)

[9-¢|20(]X-9|2%|x|9) Since 9(9) and y(9) have bounded

derivatives.

Since 9 belongs to a finite interval, it follows that

[e-¢|2 0(1). (3.2.17)

Let y

A

(1) T5 = f [s (x-n, ¢)M|x-e| (x, ¢ )[x-¢|] f(O,Q)dX

and

(ii) T. = ? [(e(x,e)|x—e|k — e(x,¢)|x-¢|A

-A. -(€(Xrn,¢)lX-9| - e(x,¢)[x-¢]A]]2f(o,0)dx.

(3.2.18)

From the inequality

Itnum + v(x)]2.x]1/2-[).2(x).x11/2l 2 [(v2<x)dx1 1/2.

it follows that
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IT11/2 _ Tsl/zl-i T61/2. (3-2-19)

From (3.2-18), we have

A 2 21
T6 = f [g(x,9) - g(x-n,¢)] [x-el f(0,0)dX .

-A

[e-¢|2 0(1), (3.2.20)

since 9 -belongs to a finite interval and 6(9) and

7(9) have bounded derivatives.

Let us now consider T5. We have

A/n
T5 = n2k+1f(0,0)A; [a (nY-n, ¢)[Y - -]k-5(nY ¢)[Y - glx]2

- n

by the substitution X = nY,

A-CD

n2A+1f(0'0) ? [s(nZ+¢-n,¢)[Z-llx-e(nz+¢,¢)lzlx]2dz

-A-¢

n

by the substitution Y = Z +-%,

A-n¢

= 32k+1f(0 0)fn [h(z-1)|z-1|A- h(z)|z|7‘]2 dZ

-A-¢

n

B(¢) if Z < 0
‘Where h(Z) -{7(¢) if Z > 0.

Therefore,

00

T5 = n2A+1f(0,0) f [h(ze1)|z—1|A- h(z)|z|7‘]2 dz

‘(IJ

- q2A+1f(0.0) f [h(z-1)|z-1|x— h(z)|z|k]2 dz

2 4 (3539-. 5:3)
n
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2A+1

= n f<0.0) 2c<¢)-n2x+lf(O,O)f[h(Z-1)[Zellx-h(Z)[le12dz

-A-¢ A-¢
z ¢ ( n n ) )3 2 2 )

P(A+1)r(%-A).
 

[Bz(¢)+V2(¢)-ZB(¢)V(¢)cos w A]

(3.2.22)

where C(¢)=

222+lf%(2k+1)

(The integral will be evaluated in Section 3.5, lemma 3.5.2).

Since 9 and ¢ belong to a finite interval,.it

follows from (3.2.21), that for any 9 and ¢' in [a,B]

T5 = n2x+1 0(1) (3.2.23)

and for 6 and ¢ in [a,B] such that ¢'-> 0 and n —# 0

2X+1 2k+1

0(T5 = 2 c(o) n f(0,0) + n 1). (3.2.24)

Let us now consider T3.

We notice that

A A A A 2
|T3|.: |A| f [e(X-n,¢)|X-9l - €(X,¢)|X-¢l ] dx

< AKT

—'f'©,0) 5 '

Therefore, from (3.2.23), it follows that for any. 9 and

¢ in the interval [a,B],

Ta = n2x+l 0(1). (3.2.25)

On the other hand, for 9 and ¢ such that

n-> 0' and ¢ —> 0, let us evaluate T3.

A-¢

Now T3 - n2k+1 P [€(nZ+¢—n,¢)|Z-1|x-e(nz+¢,¢)lZIx]2|¢+nZ|de

-A-¢

n

Let Q¢ T1(Z) denote the integrand in the right hand

 

side. We observe that as ¢ and n —> 0, the range of
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,integration tends to (-oo,a>). We note that

62(¢)[IZ-llk-Izlk]2|¢+n2)k for z < o,

Q¢’n(Z) = y2(¢)[[z-1|k-|zlx]2|¢+nz|x for z > 1,

[B(¢)[Z-llx-7(¢)(Z|k]2|¢+nzf\for o < z < 1.

By condition (3.2.4), B(¢) and y(¢) are bounded.

Let c1 2 Sup [IB(¢)|. lv(¢)|}.

¢€[d,B]

Therefore the integrand Q¢ T1(Z) is bounded by

I

c12[|z-1|7‘-|z|%]2|A|A for z < o,

Q(Z) = clzuz—lfl—IZIMZIA)x for z > 1,

2
c12[|z-1| K+C12|Z[2k+2C12|Z-1|%|Z|x]IAIA

forO <Z,< 1,.

for all o and n.

Further Q(Z) is integrable over (-oo,oo) since

0 < A < 1/2, and Q¢ n(z) —» o as ¢ —> o and n —» 0.

Therefore by the bounded convergence theorem,

A-¢

n

f Q¢ HZ) dZ —> 0 as ¢ -¢ 0 and n-—> 0.

-A-¢

W

In other words, for 9 and m such that n —> O and

¢ —> 0,

2
T3 = 3 3+1 0(1). (3.2.26)

From (3.2.19) and (3.2.20), it follows that

Ti/z = Tg/Z + |9-¢| 0(1).

Therefore, from (3.2.23), we have
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T1 - T5 + [9—¢[ Tg/z 0(1) + {9--¢[2 0(1)

= T5 + [e—¢|x+3/2 0(1) + le-¢|2 0(1). (3.2.27)

Let us first.consider the general case when 6 and ¢ are

any numbers in [a,B].

Now

E0[Y(X,9)—Y(X,¢)]2 = T1 + T2 by (3.2.13),

.1 Tg+[e-¢|x+3/2 0(1)+|e-¢|2 O(1)+2K(T3+T4)

by (3.2.15) and (3.2.27),

I
A

n2k+1 0(1)+n7‘+3/2 0(1)+n2 0(1)

23+l 0(1)+n7‘+3/2 0(1)+n2 0(1)]+ 2K[n

by (3.2.23), (3.2.25) and (3.2.17),

T127x+1

= [0(1)+n/2‘* 0(1)+n1-2k 0(1)]

= n2k+1 0(1) (3.2.28)

since 0 < A < 1/2 and n is in a

‘ finite interval.

Suppose in addition that G .and ¢ approach 0.

Then

Eo[w(x,¢)-w(x,¢)]2 = T1 + T2

T5fi9-¢|x+3/2 0(1)+|e-¢|2 0(1)

+ n2” 0(1) + n2 0(1)

by (3.2.26),(3.2.27),(3.2.15) and (3.2.17)

qzx+1[2c f(O, 0)+o(1)1+n“‘°‘/2 0(1)

2h+1

+ n2 0(1) + n 0(1) by (3.2.24),
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n2A+1

[2c f(O, 0)+o(1)+r]"-7\1/2 0(1)

n2x+1[2C f(O 0)+ 0(1)], (3.2.29)

since 0 < x < 1/2.

(3.2.18) and (3.2.29) together prove the lemma.

Let

¢(x e) = {e 5(X,0) x Sgn x |x|7"1 for |x[ :.A

’ 0 Otherwise

(3.2.30)

Lemma 3.2.3-

1+2k

E0[Y(X,9)+¢(X, =|9| [-C+o(1)]f(o,o)

+ f[e(X,9)-€(X-9,0)]IX-Gle(X,0)dX

-A

where o(l) is in 9 and C is given by (3.2.12).

Proof:

Let us suppose that 9 > 0.

By the definition of Y and w,

E0[Y(X,9) + ¢(x,e)]

A

f[e(x,e M|x-e| (x, 0))|x|

-A

+ e e(x,0) x Sgn x|x|x_1]f(x,0)dx

T1 + T2 (3.2.31)

where

(1) T1 -‘f[e(x-e, 0)M|x-e| (x, 0))|x|

+ e e(x,0) A Sgn x|x|k‘1]f(x,0)dx

and
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A

(ii) T2 = f[e(x,9) - g(x—e,0)][x-e|‘f(x,0)dX(3.2.32)
-A .

We now have

9

T1 [911+X7; [g(x-1,0)|x-1|x- g(x,o)|x[‘

-A 9

. + x"1.. k 5(X,0) Sgn X|X| . ]f(x6,0)dX

1+X(T3 + T4)[9|

where A/e x x

(i) T. = f te<x-1,0)Ix-1I - e(x,0)|x|
A/e

.+ A.e(X,O) Sgn x‘xlfi‘11f(o,o)dx

A/e x i
(ii) T = f [8(X-1,0)|X-1| - 5(X,0)|X[

-A/e

+ h 8(X.0) Sgn X [XIX-1][f(X9,O)-f(0,0)]dx.

(3.2.33)

we have .

_ 0° _ x_ A x-1
T3 — f(0,0) f [e(X-1,0)|X 1| e(x,o)|x[ +xg(X,O)Sgn x|x| 1dx

_m ,

k A
- f(0,0f f [a(X-1,0)|x-1| -e(x,0)|x|

x|:A/e

+ x e(X,O) Sgn x |x|%'1]dx

= —f(0,0f f [€(X-1,0)|X-1|x-e(x,0)[X|x

x|:A/e

+ A e(X,O) Sgn x |x|x"l]dx

by lemma 3.5.1 of Section 3.5.

Since the integrand on the right hand side of the above

equality is of the order 0(|X|x-2),

T3 = 0(1) |e|1‘* . (3.2.34)
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Let us now evaluate T4. Let f = f(0,0)

From (3.2.33), we have

A/e

T4 - f [e(X—1,0)|X-1|xeX,O)IXI

- /6

k-l
+ x e(X.0) Sgn x | | ] x 0 [xel de

A/e

+ f [g(X- 1, 0))[x-1| €(X,O)|X|

-A/

+ k 8(X,0) Sgn X I Ix-l]

[f(X9,0)-f(0,0)-fe(x,0)[Xelx] dX.(3.2.35)

Let t

(1) T5 =f|9|kf [5(X-1) olx—1| - s(X,0)lX[x

+ k e(X,O) Sgn x [XIX-1]5(X,O)[X[A

.. A k
(11) T6 =-f|9|x [e (x-1,o)|x-1| - e(X,O)|X|

IXIIA/e -

+ 1 g(x.0) Sgn x |XI"'11 g(x.0) [x|"

and

A/e

(iii) T7 = f [g(X--1, 0)|x-1|- g(x, 0)|x|

_A/e

+ x s(X,0) Sgn x |x|x‘1]

A

[f(xe,0) - f(0,0) -fe(x,0) [Xe] ] dx.

We have

T4 = T5 + T6 + T7. (302.36)

By lemma 3.5.4 of Section 3.5,

T5 = -Cf|6|x (3. 2. 37)

2A-2)
Since the integrand of T6 is of the order O(|X|
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T6 - [9'1 (9(1’2*o(1). (3.2.33)

Let us now evaluate T7.

We notice that the range of integration tends to (-oo,a))

as G -> 0.

Furthermore for each X,

fixem) — no.0) - fetx.0)Jx9Jl_> 0w—

as G —9 O

191‘
. . R A

and the integrand of T7 15 bounded by C1 [Xl [9|

for each X, and is bounded by C2 lex‘2 for X large

for some constants C1 and C2.

Therefore, by the bounded convergence theorem,

T7 = |9|ko(1). (3.2.39)

From (3.2.34) - (3.2.39), we have

T3 + T4 = |e|1‘x 0(1) - Cf|9|k + |e|k 0(1) (3.2.40)

Therefore,
2

T1 = |9|1+A[-Cf|9|k + |e|“ 0(1) +-;ell‘“ 0(1)]

_ |e|1+2‘[-CE+ 0(1)].

Now, from (3.2.31) and (3.2.32), we have

Eo[‘1’(X:9) + ¢(x,e)]

1+2x .. A x
|e| [—cf+ o(1)]+ f[e(X,9)—e(X-9,0)]|X-9| f(X,O) dx.

-A (3.2.41)

Now, if 6 —a 0, then

1+2N-Cf+ 0(1)]E0[Y(X,G) + ¢(x,e)] = |e|

. A x

+ f[e(x.9)- 5(X—9,0)]|x-e| f(x,0) dx (3.2.42)

-A

since 0 < A < 1/2, (3.2.42) proves lemma 3.2.3.
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Using the results obtained in lemmas 3.22 and 3.2.3, we

shall compute E0(Ln(e) - Ln(0)], Varo(Ln(9) - Ln(0) and

Varo (Ln(9) - Ln(¢)) in the following lemmas 3.2.4 and 3.2.5.

Lemma 3.2.4.
 

1+2}

E0[Ln(9) - Ln(0)] = - n Cf|e| [1 + 0(1)]

where o(l) is in 9 and C is given in (3.2.12), and in
 

general, for any 9 e [a451,

EO[Ln(6) - Ln(0)].i -n H |e|1+zx

where H is a constant independent of n and 9.

Proof:

Let us assume that 9 > 0.

We have

EOILn(9) - Ln(o>1 n E[log f(X,9) - log f(X,O)]

n E[Y(X.9)] + n E[g(x,e) - g(X.0)1

n E[Y(X,9)] + n E[9 g'(X,0)

e2 1

+7-g(1-t)g"(x,9t) dt]

n E[Y(X.9) + 9 g'(X,O)] + n 92 0(1)

by condition (3.2.2),

n E[w(x,e) + 4(x,e)] + n 92 0(1)

+ n E[e g'(X,O) - ¢(x,e)]. (3.2.43)

Where ¢ is defined in (3.2.30). 2

Let

(1) T1 = E[W(X,9)+¢(X,9)]-?[e(x,9)-8(X-9,0)]|X-6|kf(X,O)dX

-A

and
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(ii) T2 = E[6 g'(X,O) "' ¢(X,9)]

A

+f [g(x,9) - 6(X-9.0)] lx-el7‘ f(x,0) dx.

‘A ' ' (3.2.44)

From (3.2.43), we have .

EO[Ln(G) - Ln(0)] = n T1 + n T2 + n 92 0(1). (3.2.45)

From (3.2.3), we have

a log f(X,9) =

EO{ Be 9:0} 0°
 

Therefore,

A A 1-1
I [s'(x,0)|x| - x g(x,0) Sgn x |x| ] f(X,O) dX

00

+ f g'(X,O) f(X,O) dX - 0.

-oo

In other words,

A

E[e g'(X,0) - ¢(x,e)] = —e fg'(x,o)|x|A f(X,0) dx.

-A

From (3.2.44), it follows that

A 1 1
T2 = f([e(x,e)-g(x-e,0)]|x—e| -ee'(x,0)|x1 )f(x,0) dx.

-A

We note that T2 = 92 0(1) since 9 is in a finite interval

and B(6),7(9) have bounded second derivatives.

Therefore from (3.2.45), it follows that

2

E0[Ln(6) - Ln(0)] = n T1 + n 9 0(1).

By lemma 3.2.3, as 9 approaches zero,

I1+2)\

T1 = |9 {-c + o(1)]f.

Therefore, if 9-—> 0, then



78

l1+27\

[e [-Cf+ 0(1)] (3.2.46)0

I

since 0 < A < 1/2 .

In other words there exists a number n > 0 such that

Cf
E0[Ln(9) — Ln(0)] : _ n 5- lel1+21 (4)

for all 9 such that 9 e [a,B] and [GI < n.

Let us now consider the set

Q = [9: a.: 9.: s]n[e: 9|.: n]-
 

Since this is a compact set, there exists a finite set

61, ... , 6 in 0 such that
m

m < >use,6 an

1=1 l 91

where S(6i,5e.) denotes the interval (Bi-59 ,6i+5e )

1 1 1

and be is given by condition (3.2.1).

i

Therefore

Sup Eo[log f(X,6) - log f(X,O)]

GER

i. Sup E Sup {lo f(X,9)-log f(X,O)]

' m e e S(ei,ée )

i

by condition (3.2.1).

Since (9|.Z n > 0 , we have now

Sup Eo[ log f(X,9) - log f(X,O)] < 0 .

9 s Q |e|1+2h

Let D - - Sup E0 {log f(x,e) - log_fgx,0)

9 € 0 |e|1+27\ ‘

Notice that D r O.
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Then for every 6 s Q,

E0[Ln(9) - Ln(0)] = n E[log f(X,9) - log f(X,O)]

1 - nD|e|1+2)‘.

This, together with (*), implies that

1+2}
E0[Ln(9) - Ln(0)].: - n H [9| (3.2.47)

for every 9 in [d.B],

where H is greater than zero°

Lemma 3.2.5.

For any 9 and ¢ in the interval [a,E]:

Varo[Ln(G) - Ln(¢)] :.n Q [e-¢|2“+1

where Q is a constant independent of 9,¢ and n,

and

Varo[Ln(9) - Ln(0)] = 2 nC f(0,0) [e12k+1(1 + 0(1))

where o(l) is in 6 and C is given by (3.2.12).

Proof:

Since Xi’ 1.: i.i n are i.i.d. random variables

Varoan(9) - Ln(0)1

= n Varo[log f(X,G) — log f(X,O)].

(3.2.48)

Let us now compute for 9 -> O,

E0[log f(X,6) — log f(X,O)]Z

2

Eo[Y(X:9) + g(X.9) - g(X:O)J

Eorw(x.e>12 + Emma) - g(x.o>12

+ 2 Eo[Y(X:9){g(X:9) - g(X:0)}]-

T1 + T2 + 2T3 (3.2.49)
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where

(1) T1 = E0[Y(X,9)]2,

(ii) T. = notg<x.e) - g(x.o)12,

and ' '

(iii) T3 = Eo[1(x.9){g(x.9) - 9(X:0)}]o

Note that 12 = 92 0(1) by condition (3.2.2) and

 

T1 = lelgx+1 0(1) by lemma 3.2.2.

Further

3+2k

[T3] : JT1T2. Therefore T3 = [6| 2 0(1)°

Therefore, from (3.2.49), we have for 9-—> 0

Eo[log f(X,G) - log f(X,O)]Z

3+2}

27‘+1+|e|_§m0(1)+[e|20(1)= [2 C f(0,0) + 0(1)] (9|

|9|2x+lt2 C f(0:0) + 0(1)] (3.2.50)

since 0 < A < 1/2.

Now

Varo[log f(X,6) - log f(X,O)]

a Eo[log f(X,9)-log f(X,O)]Z-[Eo[log f(X.9)-109 f(X,O)]}Z

I2M1 ' 2
= [9 [2c f(0,0) + o(1)]-{—c[e|1+zx[1 + o(1)])2 f

by (3.2.50) and lemma 3.2.4,

2h+1
)9) [2c f(0,0) + 0(1)].

Therefore, from (3.2.48), we have

varoth(9) - Ln(0)1

_ n Iel2M1
2c £(0,o)[1 + o(1)] (3.2.51)

Let us now consider Varo[Ln(9) - Ln(¢)] for any 9,¢ in

[a.B]-
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Obviously

Varo[Ln(9) - Ln(¢)]

:_n E0[log f(X.9) - log f(X, )12

= n Eo[{‘i’(X,9) - 2(x.¢)} + [g(x,9) - g(X:¢)}]2

2h+1

2}

.1 2n [B|e-¢| + le—¢|2 0(1)}

by condition (3.2.2) and lemma 3.2.2,

+

1 n Q (9-4%“ 1 (3.2.52)

where Q is some constant since 9 and ¢ belong to a

finite interval. (3.2.51) and (3.2.52) prove lemma 3.2.5.

We shall now prove a theorem Which enables us to con-

clude that the probability, that the maximum of Ln(9) - Ln(0)

1 1
18 attained out31de the interval [—K n -'szi' K n ‘ 1+2h],

approacheszero for K sufficiently large. More precisely,

Theorem 3.2.6.

There exists n > 0 such that

1 Mn(9) > _ o

“1427. 21+1 - '71] ‘

n|e|

 

 

lim lim Po[ Sup

T-700 n |9|>Tn

where Mn(9) = Ln(9) - Ln(0).

Proof:

Since Mn(9) is continuous in 9, it is enough to prove

that

Mn(9)

 

lim lim P0 [ Sup -f£2i

T—>oo n leijkl>Tn nleijkl
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1

for some set {eijk) dense in {9 : [9] > Tn 1+21 ].

1 . k.

+‘J
_ 1+2x 1 2 _

Let eijk 2 for 1 — O,1,2,...

j = O,1,2,...

k = O,1,2,...,23-1.

_ 1 (3.2.54)

Obviously eijk is dense in {6: 9 > n 1+2) ].

We shall prove (3.2.53) when 9 ranges over

_.;l__

{9: 9 > Tn 1+2K }.

The proof is analogous when 9 ranges over

_.l;_.

{9: 9 < -Tn 1+2K ].

Let y = 2% + 1.

Let us now define

= _ V
Tn(eijk) Mn(eijk) E[Mn(9ijk) + nH eioo], (3.2.55)

where H is defined in lemma 3.2.4.

- 7 < 7
Since 6100 _.eijk and

< _ Y < _ V

E[Mn(eijk)] -' “H eijk -' nH eioo’

it follows that

T 9.. M 9.. ~

.;E£_£IE1.:._E£_$JEE.. (3.2.56)
7 97

ioo ijk

Therefore

M (9.. )
1 k

Po[ Sup—37 n7 1 Z. 'Tl]

9 jk>Tn neijk

T (6.. )

:.Po[ Sup-l- n 13k :.-n] (3.2.57)

9 . >~cny 97
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From (3.2.55),

z _ v = _ 7 iv
)] nH eio H T 2

130[anio oo

and

E0[Tn(9iij’2k+1) - Tn(Gilj_1’k)] = 0. (3.2.58)

Now

Var[Tn(9. )] = Var[Mn(6 )1
100 ioo

:.n Q @100 = Q Tyzly' (3.2.59)

Let us now compute

var°[Tn(ei,j,2k+1) ‘ Tn(ei,j-1,k)]

= var°[Mn(ei,j,2k+1) " Mn(ei,j-1,k)]

< _ 7
_.n Q|ei,j,2k+1 ei,j-1,kl by lemma 3.2.5,

. 2k+1 ..EI
. "——'I'— '_ 'Y

:.Q TV 217 I2 23 _ 223 |

2k+1 y

. j _.

= Q 3V 2W 2 2 )1 - 2 3|7

I
A

° 7
Q T7 2(1+1) [$993217

2

)7.= Q TV (2 log 2)y 2(1'j (3.2.60)

We observe that

< _ 7

Tn(eioo) _' nC eioo

and

_ < 7

Tn(ei,j,2k+1) Tn(ei,3—1,k) “npjeioo

for all i,j and k = o,1,...,23‘1-1

imply that
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< _ Y -
Tn(9ijk) _. nneioo for all 1

provided

a)

— g + z p..: -n- (3.2.61)

1'1 -

We shall choose C > 0 and sequence Pj suitably at the

end so as to satisfy the condition (3.2.61).

Tn(eijk) .: _ 9]
Therefore, Po[ Sup _._l__ -

>Tn 1+2x “9:00

ijk

00
v>

i .2 P[Tn(eioo) _ -nC 9.1.00]

1-0

j-l

(1) C0 2-1

V_
<+ 2 2 z PlTn(9i,j,2k+1) Tn(9i,j-1.k)-“Pjeioo]

i=0 j=1 k-o

 
 

< 3; 4g 1721V . +C§ Cg 23‘119‘fl217’(21og2W2"3y

i-o [H-c12t27221y i=0 j=1 p? 127 22”

by (3.2.58), (3.2.59), (3.2.60) and Chebyshev's inequality,

CD

2

(H-C) Ty i=0

oo _. yoo . _ _

+,£%{ z 2 17] (2 139 2) 2 23(1 7) 9.2

T i=9 j=1 j

gL 1 [ 1 + (2 log 2)7 0; 2j(1-y) 2'2]
  

Ty 1-2-Y (H-Q)2 2 j=1 3

(3.2.62)

_lfi_

Let us choose 0 < C < H and Pj = 2 2 o where 6 > 0

and .

oo 5.5k/2

= —ZP,— — . .n C 1 3 C 1:3:775
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Then, from (3.2.72).

 

 

  

 

 

  

 

 

Sup Tn(eiik) >

Po[ 1 —"T]]

1 n9?
9.. >Tn +2h 100

13k

<_Q_ 1 [1 +L21032)7 1 1.

TV (142—7) (H—zg)2 23+162 1-2‘3

(3.2.63)

Therefore, by (3.2.57)

M (9.. )

11m Po[ Sup 1 n yljk > ‘2]

n -- ..

7 13k

eijk>Tn

< 11. 1 [ 1 + (2 log 2)7 1 l

17 1-2"7 (Hr 02 2M1 62 1-2““

5.2-1/2

where C < H, 6 > 0 and n = C - and y = 2h+1.

1_2-h72

Taking limits as T-—> a), we get that

M (9.. )

lim lim po[ sup 1 n 11k 3-‘91 = o
7

T n —-— n9..k

9.. >Tn y 13

13k

since y > 0.

This proves theorem 3.2.6 in view Of the remarks

made at the beginning of the proof.

3.3 Reduction to a problem in stochastic processes:

We shall reduce now the problem of determining the

asymptotic distribution of 9n or equivalently the asymptotic

distribution of the maximum of Mn(9) to that of a limiting
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process. In view of theorem 3.2.6, we can restrict our

1 1

attention to intervals of the type [-Tny, Tny] where T > 0

and 7-: 2% + 1 in order to locate the maximum of Mn(9).

For T > 0.

1

let Xn(2;) = Mn(n_ —1+27\C) for C 6 {-3.3}, and X(C)

be the continuous normal non-stationary process on {-1.1} with

E[x(c)1= -c|c|7f(0.0).

Var[x(q)]= 2(2f(0,0) |§|V,

and Cov[x(ci).x(:2)1 = c f<o.o>[Icily+lczlyelci-czlyl7

 

(3.3.1)

1 / - 1 2 2

Where = PfiziiiJ;(?2:+l)llB (0) + v (0) - 26(0)7(0)cos wk]-

Let

An(C) = Xn(C) - E(Xn€))

and A(C) = X(C) - E(X(C))- (3-3-2)

Theorem 3.3.1.

For any C,e [-T,T], An(C) is asymptotically_normal

with mean 0 and variance 2C f(0,0) |Q|7.
 

Proof:

By definition

An<c> = Mn(9) — E[M(9)1
n

where 1

e = n 1+21 C-

Let



An(c) = Bn(c) + cn(c)

where

B (c) = ; [5(X e)|x —9|)‘-s(X 0)|x [A]
n i=1 i’ i i’ i

- n E[¢(X,9)]

and

n.

Cn(C) = '2‘ [9(X1:9) - 9(X1.0)]-n E[9(X.9)-9(X.0)1
1"1

where 21 denotes that the sum is extended over only those

X.'s for which IXiI §.A.

 

1

Obviously

Eo(Cn(C)) = 0

and

2

varo(cn(c))-i n Eo[g(x.9) - g(x.0)1

.: k n 92 by condition 3.2.2

__2__

= k 1+21 C2

21-1

= k n2M1 C2 .

Since 0 < x < 1/2, it follows that

Varo (Cn(C)) —> 0 as n -> 00.

Therefore,

Cn(§) converges to 0 in probability as n -> 00.

Hence An(C) and Bn(C) have,the same asymptotic distri-

bution by Slutsky's Theorem.

Let F; be the distribution function of Bn(C) and

 

 

§(x) be the normal distribution with mean 0 and variance 1.

Let

Y = w(x,9)
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where

c and w is as defined in (3.2.11).

n

Bn(c) = E [Yi - E(Yi)]

where Yi are i.i.d as Y.

By the normal approximation theorem, (See Loeve [13], pp. 288)

* x - x i. .90 . n - 3.[Fn ( ) §( )I [Var ’Bn(C)]"7‘§ E[Y E(Y)I

where C0 is a numerical constant.

It can be easily shown by methods analogous to those used

in lemma 3.2.5, that

EIY - E(Y)|3 :. c1[e|37‘+1

where C1 is a constant independent of 9.

3k+1

- 1+2} 37‘ 1

Therefore, IF;(x) - §(x)|.i CO n C1 n [Cl '+

{2c f(0.0)ch7[1+o(1)113/2

A

- 1+2?\
= COC1|C| 3A+1 n

{2c f(0,0)|§|y[1+o(1)]):7;

This term tends to zero as n -> 00 since A > 0.

Therefore, _En££2____. is asymptotically normal with mean 0

JVar(Bn(C)

and variance 1. But we note that

Var (Bn(c)) = 2c f(o,0)|c|7[1 + 0(1)],

from the proof of lemma 3.2.5.

This establishes that Bn(C) is distributed asymptotically
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as normal with mean 0 and variance 2C f(0,0)|C|y. Therefore,

An(C) is distributed asymptotically as normal with mean 0

and variance 2C f(0,0)[§[y.

Remark: By the normal approximation theorem again, it can

be shown that for any real numbers a1, ..., ak and

C1: C2: ..., Ck in [‘TIT]:

k .

.2 anAn(Ci) is asymptotically normal with mean 0

i=1

and variance

 

k2 kk

2c f(0,0)[ 2 ai |§i|7+ 2 z ai

i=1 i=1 j=

i<j

aj[lCi 17+|Cj ly‘lci-Cj [7}]

The next theorem shows that the process An(C) on

[-T,T] satisfy an equi-continuity condition.

Theorem 3.3.2.
 

For any C1,C2 if; [’TIT]!

EIAn(c1) - An(C2)|2 291:1 - czly

where Q is a constant independent of n,§1,§2 and

7 = 21 + 1.

Proof:

By the definition of Xn(C)

313nm.) - An<c.)12 - varomnw.) - we.»

1

where 91 = n Y C1 and 92 = n V C2.

H

But from lemma 3.2.5,
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Varo [Mn(91) - Mn(92)] _<_ n Q [91 - 92))”.

Therefore

E[An(C1) ‘ An(C2)]2 j-nQ n-llcl'C2ly

= Q |C1 ‘ Czly-

From Kolmogonmfs theorem, (see Doob [8]) the process An(§)

has trajectories in C[-T,T] by theorem 3.3.2.

We shall now state a theorem connected with convergence

of distributions of stochastic processes on C[a,b], where

C[a,b] denotes the space of continuous functions on [a,b]

with supremum norm topology.

Theorem 3.3.3.
 

Let Xn be a sequence of stochastic processes on

C[a,b] and X be another process on C[a,b] suCh that

(i) for any ti 6 [a,b], 1 i.itj.k, the joint distri-

bution of [Xn(t1, ..., X tk)] converges to the jointn(

distribution of [X(t1), ..., X(tk)], and

(ii) there exist. constants A,B,C, > 0 independent of

n such that for every n

A 1+B
E|Xn(t1) - Xn(t2)| < c t1 - t2| .

Then the sequence of processes Xn converge in distri-

bution to the process X.

For a proof of the above theorem, see theorem 2.4 of

Sethuraman [18].

Theorem 3.3.1 and the remarks made at the end of its

proof together with theorem 3.3.2 imply the following result

in View of theorem 3.3.3.
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Theorem 3.3.4

Thejprocesses- An(§) gg_ [-T,T] converge in distribu-

tion to the process A(§) on [-T,T].

Therefore we have

Theorem 3.3.5

The process Xn(C) 92_ [-T,T] converge in distribu-

tion to the process X(C) ‘QQ [~T.T].

2.422;:

Since E[Xn(§)] = -c |c|7[1 + 0(1)]f

where 0(1) is uniform for C E [-T,T] as n'-> a) by

lemma 3.2.4, and since

E[X(C)] = -CE|C|7, it follows that

E[xn(c)1 -2 E[x(c)1 as n —2 co

uniformly for C in the interval {-1.1}.

Therefore, by an extension of Slutsky's theorem to

stochastic processes (See Rubin [16]), it follows from

theorem 3.3.4, that the process An(§) + E[Xn(C)] converges

in distribution to the process A(§) + E[X(§)].

In other words,

The process Xn(C) converges in distribution to

the process x(C) on [-T,T].

For any x e C[-T,T], let g(x) be the value of t

that maximizes x(t) over [-T,T]. Obviously g(x) is a

continuous functional in the supremum norm topology on

C[-T,T], provided x has a unique maximum.
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Therefore by theorem 3.3.5, the distribution of

g(Xn(C)) converges to the distribution of g(X(C)) for

C E [-T,T]. Hence we have the following theorem.

Theorem 3.3.6.

The distribution of the position of the maximum of

' 1 1

M 9) over [-Tn 7, Tn v] converges to the distribution
n(

of the position of the maximum of non-stationary Gaussian

process X(C) defined in (3.3.1) over [-T,T].

The next theorem proves that the process X(C) over

(-oo,oo) has its maximum in a finite interval with probability

one 0

.Theorem 3.3.7

Prob [lim SUP -§Jll-i.-1] = 1

[Tl-eoo Clrlyf

where C is given in (3.2.12).

Proof:

We shall first prove that

Prob[llm sup EJII.:__1] = 1.
T—'>+CD CTyf

Define 'A(T) = X(T) - E[X(T)]

=X(T) +c|T|7£. (3.3.3)

Let

Sup A(T)

ZO = and

1 :.T §.2
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Sup

2 = A f - 0,1,2, ...

n 2n.: 4.: 2n+1 (T) or n

_ Sup IA(T) - A(1) (3.3.4)
and U - 1 :.T fi.2 I

Since A(T) is normally distributed with mean 0 and

variance 2C f(0,0)[T|y and covariance of A(T1) and A(T2) is

c f(0,0)[|T1|7 +|72|7 - [Tl-Tzlv], it follows that zn

21

and Z0 22 have identical distributions. Therefore, for

any 5 > O,

21

p[zn > c 2n7] = p[z0 > e 22 1. (3.3.5)

Let k = C f(0,0).

We note that k > 0 and 1 < y < 2.

Since A(T) is continuous on any finite interval with

probability one and since dyadic rationals are dense in [1,2],

-1 s

U = Sup A(§-9 - A(-—9| 2, 2, l

with probability one.

 

Therefore

00

U i. 2 T2 with probability one (3.3.6)

£=1

s-1 5

where TE = 2 Sup 3+1 |A( 22) - A(2£)|.

2 + 1.1 5.1 2

Now for any a > 0 and 1 > r > 0

P[T£ > arg]

_ Sup 44“) - Min > an: 1
‘ P[ z z 1 23 22

2 + 1 2.5 i.2 +



 

 

 

 

 

2+1

< 2 5-1 s E
_ z P[|A(£)-A(—Z)I>ar.]

+1 2 s-1 5 E

<22 2 > P(IA(——) - 3(7)) > a.)
2 2

. 5-1 s . .

for some 5 Since A( 2) - A(—Z) are i.i.d as normal

2

with mean 0 and variance k 2 -37.

Therefore, by Chebyshev's inequality

1-27
B 2

P[TE > ar ]_<_ 2'2 m k. (3.3.7)

a r

Now, from (3.3.6), we have

Prob[U > lfrl i.Prob [TE > arg for some 1 1.3 < 00]

0° 2
i. Z P[Tg > ar ]

i=1

5. a; 217’ 21-“ k

£=0 a2r2£

by (3.3.7) I

_ 2 1

— 2 k l-y °
a :2

(1‘ 2 )

r

-Ll

Let r = 2 4 .

Therefore,

P[U > a ]:2—2k 1 .

_.1 a 1-3L

1-2 4 1-2 2

Equivalently

P[U > a] 1—2 (3.3.3)

a

where D is a constant.
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Therefore

00

E(U) = f P(U > a)da

0

D> a)

- f P[U > a]da + f P[U > a]da

0 D

00

:D +f Eida

D a

by (3.3.9)!

fi.D + 1 < a) . (3.3.9)

Since

IZOI j |A(1)| + Sup [A(T) - A(1)|

< :2

= |A(1)| + U,

Elzol : E(|A(1)])+ E(U) < 00

by (3.3.9).

Let EIZOI = J.

Now

00 oo ‘

z P[zn > 5 zny] = z P[zO > g 2n7/2]

n= n=

by (3.3.5):

00
J 1 '

.1 Z - by (3.3.9)

n=0 8 2n7 2

and Chebyshev's inequality,

= g--z‘-----l‘--7'-- since 1 < y < 2.

8 1_2-Y 2

Therefore

00 n
z p[zn > a 2 y1 < so for all e > 0.

n-O

Then, Borel-Cantelli lemma implies that
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P[Zn > s Zny infinitely often] = 0 for every. 5 > 0.

In other words

 

Z

Prob [lim Sup 2 1.0] = 1. (3.3.10)

n 2 7

Z

Since J—AT) 1 __n if 2n 1 T 1 2n+1

Ty _.2n7 -_ I

it follows that,

Prob[ lim Sup AllL10] = 1.

T -> 00 TV

Since A(T) = X(T) + CTyf for T > O,

we have

Prob [ lim Sup 5131'1.-1] = 1. (3.3.11)

T'—9+OO CTyf

Similarly we can prove that

Prob [ lim Sup élll— .1 -1] = 1. (3.3.12)

T—> -co C[lef

(3.3.11) and (3.3.12) together prove the theorem 3.3.7.

3.4 Asymptotic distribution of the maximum likelihood

estimator :

From theorems 3.2.6, 3.3.6, and 3.3.7, we get the follow-

ing final theorem.

Theorem 3.4.1 .

Consider the family of densities f(x,9) given by

<

log f(x,9) = [E(X'e :'§
)[x-9|x + g(x,9) for x

g(x,9) for X  

 

where (i) A‘;§ a finiteynumber

(ii), 0 < A < 1/2

... _ B 9 if x < 9

(111) E(XIG) - {ygeg if X > e
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agg_ (iv) 9 belongs to a finite interval- (a,B)

satisfying the regularity conditions (3.2.1) - (3.2.5).

Let_ 9n denote the M.L.E. of 9 based on) n independ-

ent observations of f(x,9). Let 90 denoteythe true value
 

f 9. Then

 

- 90] has a limitingdistribution

and it is the distribution of the position of the maximum

of the non-stationary Gaussianyprocess X(T) 2n_(-oo,oo)

£1111

E[X(T)] = -c I |29+1ff(9o,90 ) EYE.

21+1+ 2R+1 2k+1

I 'lTl‘Tzl 1
COV[X(T1) .X(T2)]'C f(OOIQI) [ [71! [72

 where C = P(giii;;1<:;:i3[66(90 )+)’2 (9 0)-26(90)y(90)cos wk].

In other words, the M.L.E. 9n is a hyper-efficient

estimator since 1

1/2<T$27{‘1 for 0<)\<1/2.

In fact, by analogous methods, it can be shown that

Bayes estimators for 9 , for smooth prior densities, are

also hyper-efficient and asymptotically the Bayes estimation

of 9 is equivalent to the estimation of the location

parameter for a non-stationary Gaussian process.

3.5 Evaluation of integrals:

We shall now evaluate the integrals encountered in

Section 3.2.
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Lama 3.5.15

0° h 1
Let H(1)E f [s(X-1,0)[X+1[ —5(X,0)|X| +K5(X,0)Sgn X

—oo

Then H(h) = 0 for 0 < 1 < 1/2.

3192:

Since the integrand is of the order 0([Xlk-2) the

integral H(k) < 00 for 0 < 1 < 1/2. Let us now compute

A

f[e(x-1,0)|x-1|9-s(x,0)|x[§%g(x,0) Sgn xlxlx'11dx

O

= {lama—x)x - mom-x)x - 46(0)(-X>x"11dx

+ g[B(0)(1_x)
% - 7(0)x9 + h7(0)xx-1]d

x

A

+ {mom-1)x - 7(0)x“ + ly(0)x*'11dx

A+1 h A yx_1

=B(0)f ydy-6(0) 'ZYXdY-ha(0)gy dy

1 x 1 x h-1dx
+ 6(0) f y dy - 7(0) f x dx + 17(0) f x

A-l A A

+ 7(0) f xkdx - 7(0) f xxdx + xy(0) f xk-ldx

0 1 1

A+1

B(O)fy )‘ldx

-1

kdy - kB<°>fy dy-v(0)f dey + 47(0)f X

A-l

h+1_ h+1 h+1 h+1
[(A 1 _ _

  

Since 0 < h < 1/2.

)7\+1_ )\+1

(A+1 1+1 A - Ak-—> 0 as A -> oo

[XIX-1
]dX.
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and

(A-1)_f1

A+ 1 -> O as A -> a).

Therefore H(x) = O for all k such that O < A < 1/2.

Lemma 3.5.2.

 

 

Let h(y) = )|y|k for all y

where

_ B for y < O

E(Y) - { y for y > 0.

Then for any T1.T2 and O < k < 1/2,

00

R(T1.T2) E f [h(y-T1)-h(y)][h(y-T2)-h(Y)]dY

-oo

; 2k+1 2A+1 2x+1

- C[IT1I -4T2[ -[T1-T2l ] (3.5.1)

where

C E 2k+1 [B +7 -267 cos wk]. (3.5.2)

2 J%(21+1)

Proof:

Since the integrand of R(T1,T2) is of the order

|Y|2?\-2 for Y sufficiently large and since 0 < A < 1/2,

the integral R(T1,T2) is finite.

Define

tha(Y) = E(Y) |Y|xe-a|yl for a > 0 . (3.5.3)

Let us now consider

lha (y-11)-ha(y)|

“aiy'T1|_
emu/Feall".

Xe-a|y||

|€(y-11)ly-i1lxe

GIY‘T1|_
|8(y)|y-I1|Ae- -e(y)lY|e
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for |y| > [T1[,

I
A Max <lBl:lvl>le'a‘Y’Tllily-Tllx - lylle‘alyi+a|Y-Tll}l

= Max (lfilrl7l) e-aly-Tlll{ly_11|%_ lylm e-aIT1l}i,

(3.5.4)

Let Co = Max (|fi[,[y|).

For [yl > [11|, we have from (3.5.4),

[ha(y-Tl) -ha(y)[

:.Co e—QIY'T1||([y-Tl[X-[y[x)-ly|x(e'alT1l-1)|

.1 Co RITIIIny-1+Co[y|x(ealT1|-1)e-Qlyl‘ (3.5.5)

For lyl > Max ([11},172I).

[ha(y-11)-ha(y)Ilha(Y'T2)'ha(Y)l

j-{Co 7\I'Tlllylkml +ColY|x(ealT1r‘1)e-alyl}

{Co AIT2FIth—1+ ColY|x(ea[T2+_1)e-QIYI}.

2 2 - Zla2 -2.

Co A [Tszille-A 2 alYl

I
A

+ C02|y[ [Tsz [e

+ 2C02 k aIrszllylzl-l e-alyl. (3.5.6)

Let us observe that for O < A < 1/2,

OD

<1) I I IZ*' < a» ,
Max(|11|, TTzl)

a)
(ii) I |y|zxaz e-Zalyl dy = Pg1+212 1-2x

a < oo ,
-oo 21+2?\

and

00

(iii) f a|y|2x-1 e-alyldy = P(ZK) a _ < oo.

-oo
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Therefore, from (3.5.6), we get that

00

flhOz (y-T1) ‘ha (WIlha (y-12) -h0;”de < oo.

-oo

In particular, we get that

ha(y-T) - ha(y) e L2(R)

for every T , where L2(R) denote the set of square

integrable functions on the real line.

From (3.5.6) and (3.5.7), we observe that for any

A > max ((Tll’lTZI)

flh (y—Tl) - ha <y>|lh (Y‘Tz) - ha (y)| dY

IYI>A

:.C1 A27”1 + C2 al-Zx, (3.5.8)

where C1 and C2 are constants.

Letfkfiy)= [ha(y-T1) - ha(y)][ha(y-T2)-ha(y)].

Obviously 9a(y) —> 90(y) as a —9 0 for each y.

Let us consider

  

(I) (I)

f 9a(y)dy - f 90(y)dy
"CD -CD

{< |9a(y)-90(y)ldy,+ f (9a(y)|dy + { [90(y)[dy

:(Y —A |y|>A~ Iy >A

—| (m l9a(y)-eo(y)ldy + 2C1AZ7"1 + ca a1-2A

Y—A

by (3.5.8).

Choose an e > 0.

Since 0 < A < 1/2, we can choose a number A0 such

that



Therefore

00 00
162A

f 9a(y)dy - f 90(y)dY-1 I f l9a(y)-eo(y)ldy+8+caa
-oo -oo y(1Ao

By the bounded convergence theorem

|9a(y) - 60(y)|dy —> o as a-—> o .

(Y 30

Therefore there exists an no > 0 such that

for a > (10:

00 CD

I 9a<y>dy - f 90(y)dy .1 3s

-a> -oo

In other words

lim oo oo

a->0 f 9a(y)dy = f 90(y)dy - (3.5.9)

-(X) -CD

Let ha(t) denote the Fourier transform of ha(y).

we have

1 a) ity

ha(t) - -6; ha(y) e dy

oo . oo .
A - - t A - + t37 Y e (a 1 )ydy+é-B Y e (a 1 )y dy

= y P(1+A)

1+x + B P(1+x) (3.5.10)

(a-it)
(a+it)1+x

Let ga(t,T) be the Fourier transform of ha(y-T)-ha(y).

Now

(t )= )91h < - >-h < )1 eityd9a ,T - -00 a Y T a Y Y

CD CD

't 't
= f ha(y-T)el ydy - f ha(y)el Y dy

-CD -(I)
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.. 1 P(1+A)_ LP (1+A) it'r_ [:(a-it)1+“ + (a+1t)1+*:](e _1) (3.5.11)

by (3.5.1.0) .

By Parseval's theorem,

00

f [ha(y-T1) - ha(y)][ha(y-Tz) - ha(y)] dy

‘00

1 0° -———————
= 5; _é ga(t.11) ga(t.'rz) dt

= 31‘ 9‘1“)? f 7 1+1 + B 1+1} (€11:th
7T -00 (a-it) (a+it)

7 + B (e‘itT2-1)dt
{ (a+it)1+)‘ (a-it)1+7‘}

1 2 0°. 72+62 1 1
.-.- -— 1" (1+A) A + YB + "—"‘—_"

2v _in (a2+t2)1+x { (a_it)2+2x (a+it)2+21):]

[eit(Tl-T2)_eitT1_e-itT2+ 1] dt

(3.5.12)

Therefore,

00

R(T1,T2) E f [h(y-Tl) -h(y)][h(y-Tz) - h(y)]dy

-oo

_ C0lim

- f a—50{[ha(Y'T1)‘ha(y)][ha(Y‘T2)‘ha(Y)]dY

-oo

_ 1im 0° h ) d

-a,,0_£gha(y-T1)-ha(y)][ha(y-Tz)- O,(y 1 y

lim. 1 2 0° yZ +52
= — 1‘ (1+A) [
a->O 2w _i; (a2+t2)1+A

1 1
+ 76{ + }]

(a-it)2+2k (a+it)2+2x

[elt(T1-T2)_ e 1tT1_ e-lth +1]dt
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by (3 .5 .12.) ,

_ 1 2 0° lim 72 + 2

27T -00 (1 >0 [(a2+t2) A

  

(a-it) (a+it)
+ 75-) 1 2+2A + 1 2+2AE|

[elt(T1-T2) _ e-1t11 _ e-lth + 1]dti

by the bounded convergence theorem,

_ 1 2 0° 1 2 2
”-57? P (1+A)-(j;o mm {7 + B -276 COS WA}

{e1t(T1*T2) _ e ltT1 _ e-lth + 1}dt

='§% P2(1+A)(72+B2 - 26y cos WA)

0° 1 it(T -r ) it? -itT

f I |§I§X {e 1 2 - e 1 - e 2+ lldt .
-oo t

(3.5.13)

Let T3 = Tl-Tzo

For any a > 0, define

OD . . . .

G(a.s) E f |t|a-1(e1t73 _ eltT1_e-ltT24—1)e’5ltl dt

‘00

   
 

=I‘(a)[ 1 3+ 1 a_ 1 a_ 1 a

(e-ira) (€+iT3) (8-iT1) (e+irl)

____1___3._ —-1—:+-351

(8+iT2) (8-iT2) E

. . . . a-1+2

Since the integrand 1n G(a,e) 13 of the order It] ,

the integral can be defined for a > —1.

In other words, for a > -1
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G(a.e) = P(a)[ 1 a + 1‘J§"‘"_l"‘35 ‘ 1 a
(e-iT3) (8+iT3) (8-iT1) (5+i11)

_ ,1.1 a -.___—l——3 +-§5 1 (3.5.14)

1€+iT2) (8-iT2) E

In particular, the above equality is true for a'= - (1+2A).

Let n = -(1+2x).

Since

Itin-l (eitT3_ eitT1_e-
itT2 + 1) e-Eltl .

.1 [tin-1 leith-ei
tTl-e-it

h
+ ll

and f|t[n-1 (eitT3-eitT1-e-i
tfr2

+ ll dt < CD.

it follows by the bounded convergence theorem,

oo . . .

lim G(n,e) = f [tln-1 (eltT3-eltT1-e lth + 1)dt.

e—>O -00

Therefore, from (3.5.14), we have

00 _ . . _.
f It)“ 1 (eltT3_eltT1_e 1t12 + 1)dt

-OO

-2P(n) sin WA [[T3I-n-IT1I-n-IT2I-n]

1+2).+| 1+2x_lT1_T2l1+2x
2P(n) sin WA [(Tll ]

(3.5.15)

12]

Therefore, from (3.5.13) and (3.5.15), we have

_ 1 2 2 2 . .
R(T1,T2) -'§F P (1+A)(y +3 -267 coswA)2P(-1-2A) Sln WA

1+2h+IT2[1+2A_[T1_T2|1+2*1, (3.5.16)[ lTll

Let

c --%; P2(1+A)2P(-1-2A)sinwAA(72+BZ-ZBY cos VA) (3.5.17)

2

.-£—L%ibl [ g%:%bl] sinWAF(y2+Bz-26y cos VA)
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by the formula P(x + 1) = x F(x),

 

 

 

1
2 IT.(e-A)I‘(->.+—)

- - F (;+A) i42x* * “ 2 ‘lsinwAI(72+BZ-28y cos WA)

2 WW(2.A-F1) .2

1

P(x)P(x-+-0

by the duplication formula P(2x) 2 22X = th.

1

P(7\+1)P(§"7\) 2 2

- [6 +7 -25) cos WA] (3.5.18)

220+¥Fh(2x+1)

by the formula P(x)P(1-x) = W/sin FX .

Combining (3.5.16) and (3.5.17), we have

 

 

R(T1IT2) = C[(T1(1+2x + (T2(1+2x ‘ (Tl-T2(1+2k]

(3.5.19)

where

_was-M 2 2
c - 223*¥}(2131(B +y — 26y cos WA]. (3.5.20)

Lemma 3.5.3.

For any T

00 ,

_é)[e(y-T)ly-Tlx - s(y) (ylxlzdy = 2c|T[7 (3.5.21)

where 7': 2A+1 and C is defined in (3.5.20).
 

Proof:

Note that the integral is R(T.T) where R is defined

in the previous lemma.

Lemma 3 .5.4 .

1‘ 0° A A A-l x
Q(A) E f[e(x-1)|x-1| -e(x)|x| +A sgn xlxl e(x)]g(x)|x| dx

-a)

= -c
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where C is defined in (3.5.20).

Proof:

Since the integrand of Q(A) is of the order

2A-2)’ and since 0 < )\ < 1/2 , Q(A) iS finite.

0

= f [fi(1-x)x- B(-X)x- A(-X)x-1 B] 5('X)x dx

-oo

A A-
1

+ f [3(1-x>* - vx + hx 1)] v xA dx
0

(X)

+ f [fix-1)k - vxx + AKA-17] 7x“ dx
1

(I)

= 62 f [(Y+1)“ - Y) - 1YA'11 yA oy
0

CD

+ 72 f [(x-1)x - Xx + xxx'l] x“ dx

1

1 1 1

+ BY f (1-X)xxxdx + 72 f A x2)“.1 dx - 72 f x2x dx

0 o 0

(I)

= 62 f [(Y+1)x - Yx - hyx‘l] Yx dY

0

(I)

+ 72 f [<x-1)* - xx + AXx-l] x) dx

1

2 ‘A 12
+ By B(A+1,A+1) + y 'EA - 2A+1

CD
.

= 62 f [(Y+1)x - Yx - hyx'l] Y0 dY

0

(I)

+ v2 f [(x—1)k - xx + Axx_1] x“ dx

1

2

+ BY B(A+1,A+1) + 2A-1) (3.5.22)

212A 1)



108

Let us now compute

CD

I [(Y+1)x - Yx - AYK'IJ Yx-dY- (3.5.23)

0

Let G(€) (Y+1)7‘ - (Y+s)7‘ - A(Y+s)7‘-1] Y7‘ dY. (3.5.24)Il
l

0
'
s
.
8

For any Q's -1 and a’< -1/2,

(I) I CD I

f Ya’(e+Y)B’dY = sl+a+5 f YO"(1+y)B dY

0 V 0

, 1 ,

O

I

= el+a+5'3(o#1, —23L1).

Therefore, for -1 < A < -1/2,

1+2A

- eG(€) = B(A+1, —2A-1) B(A+1, -2A-1)

\

- A 82% B(A+1, -2A+1).

Since G(s) is analytic for A < 1/2, it follows that

1+2A

- sG(€) = B(A+1, -2A—1) B(A+1, -2A-1)

- A 82% B(A+1, -2x+1) (3.5.25)

for all A < 1/2 and in particular for 0 < A < 1/2.

Furthermore the integrand of G(e) is bounded uniformly in

8 by an integrable function since 0 < A < 1/2.

We shall now take limit as e -> 0.

By bounded convergence theorem, it follows that

CD

f [(Y+1)k - YA

0

A
- xyx‘l] Y dy = s(1+1, -21—1).

(3.5.26)

Similarly, we can show that
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2

2A-1
A dx = 3(1+1, -27\-1)-2 21+1 .

CD

I [(x_1)x _ Xx + 7935-1] x

1

Therefore, from (3.5-22), we have

[B52 B(A+1, -2A~1) + 7’2 B(A+1, ~2A-1)Q(A)

+ B‘Y‘ E(A+1.A+1)] (3.5.27)

="’C v

(3.5.27) proves the lemma.
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