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PREFACE

In the synthesis and design of a servomechanism the frequency
resrcnse curves are of great importance, being an indication of system
stability etc. Such curves are readily obtained, as a rule, either from
exverimental data or by evaluating the analytical expression of the
system. However, from the standpoint of safety and a consideration of
the system time requirements, the transient response of the svstem to
discontinuous disturbances should also be known. FExcessively hirh peaks
are to be avoided as are semi-sustained oscillations. Unfortunately,
the transient resnonse is difficult to determine, either analytically
or experimentally, hence relationships are sought between the transient
response and the more easily obtained frequency response.

It is the purpose of this thesis to present in an organized manner
three different methods of finding the transient response to a unit
step input from the frequency resnonse for a stable system. A problen
will be solved by each of the methods and comparisons made among the
threc with respect to the advantages and disadvantages of each.

This paper can be used as a guide for apvlying any of the three

methods to a suitable problem.
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At the present time techniques for the synthesis of closed-loop
servomechanism systems or improvement cf existing systems are based
primarily unon the frequency response of the system: the output, or
some function of the outnut plotted against frequency in amplitude and
phase as the sinusoidal input varies over a wide range of frequencies
beginning at zero c.p.s. These responses may indicate maximum gain and
stability, as well as other characteristics.

However, it is necessary to have a knowledge of the transient
response of the system as well, since all closed-loop systems are likely
to bte subjected to types of discontinuous inputs which cause transients.
The simple closing of a switch, the action of a circuit breaker, compo-
nent failure in an adjacent system or a sudden change of load may cause
transient disturbances. Such disturbances are often negligible, but in
a lightly damoed system oscillatory transients of damaging magnitude may
result, an annoying train of oscillations persisting for some time may
be initiated, or both conditions may occur. Hence a knowledge of the
‘transient response of the system is important to the designer.

If the input to a specific system is always to be of a certain
gpecialized nature it is better to study the transient response to this
typical input, of course, but often the response of the system to arbi-
trary inputs is determined by comparison with response to a unit step
input: a wave form of zero amplitude for t (time) < O, and of unity
amplitude for t 2 O. Thus the response of a system to a unit step
can be considered a standard, and the words "transient response", as
used in this paper, refer to the rcsponse to a unit step unless other-

wise cspecified.



A basic present-day procedure for finding the response (both
'transient and steady state) of a system to a certain inout is to apply
onerational calculus e.g. the Laplace transforn, to the differential
equation of the output, provided such an eguation is available, trans-
forming from a time domain to a functicnal domain, to obtain the charac-
teristic equation and find its roots, and then by means of an inverse
transformation return the rrotlem arain to the time domain in such a
manner that the solution to the ariginal differential equation is
obtained.1 Yowever, due to the fact that the desired rnots of the
characteristic equation are obtained only after the solution of a
polynomial of nossibly high order, this analytic metnod for finding
the transient response may be exceedingly slow and laborious.

Another means of determining transient response is by the uti-
lization of a transient analyzer, in which inductances, capacitances,
resistors and electronic amplifiers are used as analogues of masses,
springs and damners. Unfcortunately, this analyzer cannot be applied
until much is known about the individuzl components of the system, and
unless the study is to run over an extended period of time, and the
analyzer is flexible and well instrumented, the analytic method, though
slow, may take less time.?2

A third method is to find the transient resnonse of the system
from the frequency resnonse curves, which are readily obtainable from

the analytic expression of the system or from exnerimental observations.

1. Gordon Brown and Donald Campbell, Principles of Servomechanisms,
John VWiley & Sons, Inc., liew York, 1948, p. 060.

20 Ibido, po 190



It is the purpose of this paper to consider three such methods and to
make a comparison among them as to ease of understanding, ease of ap-
nlicaticn, limitine conditions, speed, accuracy and limits of avolication
to involved protlems.
The methods are:
I. To determine the roots of s in the characteristic equation of
the system by graphic means, from the freguency response curves,
and to use either granhic or operational calculus procedures to
obtain the transient solution, given the roots.t
II. To apply an approximate inverse transform to a succession of
trapezoidal waves obtained from the frequency response curve of
the output So(jw) , ylelding an approximate transient response.2
ITII. To approximate the unit step input by a half cycle of a
square wave, resolve the square wave into its sinusoidal components,
and to obtain the transient response by summing the system frequency
resoponse (known from the output over input frequency response curve
%%f(&uf)) to a sufficient number of these component waves.>
All three of these methods oresunncse a systen linear in the test range,

and stable over the frequencies involved.

1. Walter Fvans, "Graphic Analysis of Control Systems", AIFE Trans-
actions, Vol. 67, pps. 547-551.

2. Brown and Campbell, op. cit., pps. 332-3¢&5.

3. Ce. A. A. Vass and E. Q. Hayman, "An Approximate ..ethod of Deriving
the Transient Response of a Linear System from the Frequency Response",
Royal Aircraft Establishment, C. P. 113 Technical Note no. GW. 148,
November, 1951.




Yethod I

Determine the roots of s in the characteristic equation from the
frequency response curves by graphic means and use either graphic or
operational calculus procedures to obtain the transient solution, given
the roots.l

The basic problem in finding the transient response is to determine
the roots of the differential equations which correspond to the ex-
ponential transient terwms dominating the response. The function which
describes the system from output to error, %%?(s), or the inverse,

{%o(s), is a function of the complex variable s, wnich has damping (6)

as its real part and frequency (W) as its imaginary part. The
imaginary axis of the s plane corresponds to % jw .Z. The frequency plot
of %’(jw) obtained by setting s = ywJ is simoly one line of a conformal
map, with the roots of s lying at the value of the variable (the point
in the s plane, 6 i+Jh ) which makes the function -g—o(s) equal to
-1 for a system with unity feed back, or equal to - for a gain of K
in the feedback loop.

That the root lies at a value such that the function é%b(s) is

equal to -1 is shown by the following illustration of a simple unity

feedback system:

l. F¥alter R. LEvans, op. cit., pps. S5L7-551.

2. Brown and Ca~pbell, op cit., p. 171.
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Fig. 1. Unity Feedback System
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The roots of s in the expression §-1T+3—+K— are obtained by setting

K

the expression equal to zero, or by finding values of s which will make
-g-o(s) = -1 l, which gives the samne effect.

For a general case, Method I goes as follows:

l. BRreak the feedbacx loop and apply a sinusoid; make a locus
plot of error (error = input in this instance) over output as a function
of frequency, either analytically, letting s= jw in the %0(5)
expression, or by taking observational data.

2. Considering the vector locus plot to be the base line from
which the comnlex roots of the main damped sinusoidal term caan be found,
construct an orthogonal lattice of - ¢°= constant and Jw = constant
lines and determine the complex roots of s by noting where on this
lattice the roint -1 falls.

The justification for this step is easily shown:

1. The distinction between S—o(s) and g—oqw) lies in tne fact that

é—o(s) may lie almost anywhere in the plane, depending on the conplex
value of $=-0"2 J&W while %;(Ju)) is a special case of %e (s)
where s= juJ, and is a single curved line.



_ 0s _ _ [ 3
let s=-¢ +jw, from which == v 1, and go(s) is a function

gs _
2w
of s, which has a particular derivative with respect to s at each point

in the region of interest.

2% (8 %GB - 1&E 2
2(&)= 5 (&6) % < -1 559 W

The clhange of the function with respect toc — g is seen to be dis-
placed 90" ccw. from the change with respect to jw , which lies along the
%O(Ju)) curve. The change of the function with respect to s is 90° CW.
from the %O(Ja)) curve. For equal changes in -g~ and jW , a set
of curvilinea.t; squares will be formed with conformal map oroperties as
shown. If the expression of g—o(s) is known, points on this lattice
near the -1 point may be plotted by solving the expression using dif-

ferent values of -=¢~ and jW in s =—0 )W .

$=-142 J— 5= (5= 14
o= )(3—\ 1+J1

Fige 2. General %‘(Jw) locus showing curvilinear squares,
For this illustrative example the root lics at s = -0.9+4+j 2.8, and

since complex roots occur in conjugate pairs, s is also = -=0.9 -J 2.8.



This procedure is valid only for systems linear in the test range,
with results avnplicable to the range. This restriction is necessary
since the justification of the curvilinear lattice depends on the deriva-
tive being indevendent of the amplitude of the function, devending only
on the nature of the function.

If the g—o(s) expression is not available, and the %O(Jw) curve
has been experimentally obtained, a sketch of the curvilinear squares
may be made quite accurately without knowing points in the lattice,
provided the baseline, or the éi$ﬁ99 locus is not so strongly curved
as to cause undue distortion and overlanning near the -1 point. In
general, this method is much more accurate if points on the curvilinear
system are carefully plotted by several evaluations of the é%b(s)
expression using complex values of s which will cause é%a(s) to fall
near the -1 voint.

Once the complex roots are known, assuming a single pair is had,
they can be divided out of the polynomial expression for %gi(s). The
simplified exnression may then be either solved by straight forward
algebraic methods, or perhaps graphically from the original plot,
having found the general location of the real roots by inspection of
the simplified function. The author of this paper has found that, once
the complex conjugate roots have been found, the real roots are most
easily obtained through factoring the simplified expression, since
plotting the curvilinear squares in the region of w= 0 is rather

critical.



3. Having found the roots, determine the general forml and the
amolitude of the transient solution for each root by means of operational

calculus. The general form of the solution due to the conjugate complex
e(-a'uw)t + Kze(-c-.w))t

roots sz-c4+Jw is fi(¢)= K (5)
-pt
For a real root, s= A fa(v)= Ksze p (6)
The amplitude of a transient is given in terms of its root by:
=
A 2 (O (7)
5 35(90(5))

S=Siz - 01+ JWh

. £ . e D (&) =0 (Ot
Since e"(s) differs from e"(s) by only a constant, a(afs» 5?(57‘5))
Thus, the angle of the derivative can be read directly from the plot
(See angle B , Fig. 2) and the magnitude can be fouad by taking the
change in %. (s) (distance from origin) divided by the chauge in s

(as measured on curvilinear lattice) and averaging over several measure-

ments near the -1 points

Letting s= ae” (o= ton™ ;g' and
2(8.6) = be”

the transient solution for cunjugate complex roots s = =04 Jon and

se=0-jJwr is:
e(-a'w.w-)t e(-d:-aw.)t |

= +
fl(t) a.e™ l;. ez: 2=C\ + JW) d‘edg bt elg S= -3 - juw, (8)
From relationships between the denominators,
O‘z O,, ’ b.’ba, y Sy = -~ Oz , 6.: -82
(%a)

~Jwt 10144 54)

'fl (‘t) s +e

e‘clt (eJUt -o{.-ln
aby

1. Stanford Goldman, Transforamation Calculus and flectrical Transients,
Prentice-Hall, Inc., ilew York, 1949, p. 419




t
fi(e) = a-'—; s (Wt - -8)) (Sb)

For real roots, sz 0 , the transient solution is:

e—/‘ ¢t

fa(t) = RYY] (10)

Since there is no j term in s, engand g, will be O or M, and

+ et
fa(e) = N (11)
The entire transient solution is thnen:

fee) = cos (Wt - on-8) +

b Q, bs (12)
Occasionally systems will have two pairs of quadratic roots in about

the same frequency range, and the .g—‘(jw) plot will circle the -1 point
with the result that the curvilinear lattice built up from one side will
overlap thet built up from the other side. 4 series of successive

anrroximations will simplify. Otart with a pair of conjugate roots sug-

gested by one lattice and divide the %-‘-(s) function by these. This
]

may be done gra‘ohicallyl or analytically. The resulting plot will
surgest a second nair, and g-:(s) can be divided by these to give more

closely the first nair,

Continued use of this method warrants tne use of specialized
protractors and pivoted scales, as explained by those who developed this
method, to simplify the read.ng of angles, the »lotting of the curvi-
linear lattice, and any necessary craphic division. The author of this
paper has attempted to explain this .etaod without mention of srecial
equipment. An illustrative problem will be worked by this method a

little later to more comnletely explain the procedure.

1. Erown and Caunbell, op. cit., pp. 165-166.
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MZTHOD IT

Apnly an anproximate inverse traasform to a succession of trape-
zoidal waves obtained from the output frequency response curve ©a(UW),
and obtain an anproximate transient response.l

ILet the overall output function of a system be H(s)= Gg(s). The
general problem of finding h(t), the transient response, knowing H(s)
is in performing the inverse Lanlace transform.

It is assumed throughout the following treatment that:

1. Ii(s) may be written as a ratio of two raticnal polynomials in
s with real and constant coefficients.

2. lim H(s)= O

S o0

3. Y(s) has no poles on the imaginary axis cor in the right half-

nlane. In general the inverse transfcra is given by the integral

Ce)o0

hee) = —_ J Hes) e*3 ds

Zny C-Jo0 (13)
where the nath of interration is parallel to the imaginary axis and c
is a value such that the path of integration is to the right of all
poles of H(s). Since by assumption there are no voles oa or to the

right of the imaginary axis, the »ath of integration may be macde this

axise. +J0
. J H(s) ets ds
S h(t) & =
o nwE g (1)
Iet s = yus

E(s)= ReH(jw )+ j Im HE(joJ)

1. Ei‘d_o, pDo 332"3650

2. David lidder, The Ilanlace Transform, Princeton University Press,
Princeton, New Jersey, 1941, p. 241,




Re and Im refer to real and imaginary parts of the function, Make
these substitutions into 1l,

‘@
h)= iJ— J_” [Re H(jw) cos wt = Im H(jw) sin wt-_\ dw

e . . dw
+ 7 J.’ [Re H(jw)sin wt +Im H(jw) cos w-t.] 15)

Since H(s) is a ratio of polynomials in s with real and constant
coefficients, Re H(jW) is an even function in w, and Im H(jw) is an
odd function in w. Cos Wt, by series expansion, is an even function
in W, and sin wtis odd. The bracketed term of the first integral is
then an even function in w , while that of the second integral is odd.
Sincé the limits of integration are from -e0 to+4e0 , the value of the
first integral is twice that from O to e@ , while the value of the

second integral is zero. Equation 15 then becomes:

-
h(i) = —.:TJ:Re H(Jjw)cos wt dw - %Iolm HG) sinwt dw (14
Both integrals contain functions of time in the sine and cosine terms,
the first integral being an even function of time, the second, odd.
For the integration indicated in equation 1l along a closed path which
takes in the imaginary axis from-jeo to4jes, plus a large semi-circle
in the right half-plane, the value of h(t) is zero for all negative
values of time, since, by assuming no poles of H(s) in the right half-
plane, the sum of the residues at the poles of H(s)ets within this
contour is zero.l This means that numerically, the two functions of

time in equation 16 are equal for all values of time.

1. E. A. Gujllemin, The Mathematics of Circuit Analysis, John Wiley &
Sons, Inc., New York, 19L9, p. 30L.
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I;"‘JoE’eH(jw)cos wt dwl = l—!ﬁf}m H(w) sin wt dwl (17)

ind for positive values of”time:

h®) =%‘-_|—L Re H(jw) cos wt dw (18)
This is the exact inverse traasfor:n for an H(s) satisfying the stated
c.ondi tions.

Few practical protleus are of such a form the Re H(J'w) can be
interrated as such, so a general approxinate procedure is used.

1. Plot Re H(Jw) against @) and approximate the curve with a
series of straight line segments. See Fig. L.

2. Trite the straight line approximation as a sum of trapezoidal
functions, and anply equation 18 or a simplification to each one. The
sum of the resulting time functions is an approximate h(t).

The general travezoidal function used to anproxinate ke H(J‘w)
is shown in Fig. 3.

Let He H(Ju)) aproximation = R(w))

y= m (L *2‘:'.'“) Wad W& Wb
Area of trap, Ai= F W
" o ! W= Wb+ Wa
| - S
Wa ("] Wb A = wb;wa

Fig. 3. General travezcidal function.



hi(t) = %j?\’(w)coswt dw
0o

Wi-a (A LT\
hi(#)= nj roswtdw + 5 J n(&ﬂ"—“-’-)coswtdm
Wi-a
Expand: wy-Aal wital
_ 2P 2Pk (@Di1+a1)
hl(‘t)- %—J;COSQR Jo + 2o :MOSAC?t Jw
(AIFY.N)

- 7~T'°' Jw.g::aswt dw-

wum

= 2Pisin ot el)'.A'+ ri(wi+a) wt
) = & sihw ,o T WA
Wi+4,

- —Si -.___.cosa)t'

wr. . 0"“. ri
na,t wt I Tat?

l-—A. w‘-Al
Substitute limits; sine terms cancel, leaving:

ht)= = TIA Tart? [ cos (Wi+a;)t - cos (- Aa)t]

ht) = nzai:-.tﬁ 8:) sin wit sinast

rici=A, 9 tranezoidal area

- 2A1 sihnwit sinait
h(t): 55 S5 At

For a general function Re H(yjw ),

- 2Arx sihwkt sinAct
ht) = Z m Wkt Oxt
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(19)

(20)

(21)

(22)

(22)

(23)

(2L)

(25)
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This ecuation can te evaluated morc easily by using tables of % A

Re H(Jw), or Re ©o(jw) can be derived from a locus plot of
g{"(,&w) , its inverse,%(:,w), or by manipulation of &(jw). Take
©o(juw)and multiply the magnitude of the function at each () value by
the cosine of the angle at which the function lies to find Re ©@o(jw).

Having obtained Re ©o(jw) , express it as a series of trapezoidal

waves as shown:

Wa
b
:% we We wf
™
II
fr_ Y \"m\we
4 l rs III v \\wh
¥ X
Wa . Woila Wh-Wwa
F-r. I hz(t) = 281 20 a0 2
m Wb+ Wa wb-Wa
: we Z —Z
3
P2-r3 II\ Other trapezoids treated similarly.
Y We
Y Wq
¥ we wf
e~
4~Is z P N\ wgq
# cancel wd we
Pa-ry N\ _7§_ Negative area

A wd

Fig. L. Bxpression of Re ©e(jw) as series of trapezoidal waves.

1. Zeitschrift fur Xrystallographie, Vol. 85, p. LOL, Berlin, 1933,
tables prepared by Dr. J. Sherman, reproduced in Brown and

Campbell, op. cit., Dpe 357.
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It is advisable, in order to plot the results of the swmmation of
equation 25, to tabulate the evaluation of each term of the swmation
over a range of t sufficient to plot the transient waveform h(t) until
it has reached to within a few percent of its final value.

The following form is suggested:

ﬁ o o.1 0.2 0.3  ——
hu (t) h'(f)ltgo )]0,

hz(t)lhl(t)ltgo nz&)l‘GQI

e o o o - - . -

Table 1.
The plot of the sum versus time yields h(t), the transient responss.
An illustrative exaaple will be worked by this method a little later to

more comnletely exnlain the procedure.
rethod III

Arproximate the unit step input by a half cycle of a square wave,
resolve the square wave into its sinusoidal components and sum the
svstem frequency resnonse (known from%—f—(jw) frequency response curve)
to a sufficient number of these component waves to obtain the transient

resnonse of the system to a unit step input.l

1. Tass and Yayman, op. cit., p. 1-13.
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The frzquency response curve -gf(Jw) shows the system gain and
nhase shift of the outrut for each single input frequency. If the
general inout to a system could be expressed as a sum of sinusoidal
components, the output could be calculated as a sum of responses to
the individual input frequencies.

A step function, which is the standard input for the determination
of the transient response of a system, cannot be expressesd as a sum of
individual frequencies, but a square wave can be, and if the fundamental
frequency of the square wave is selected so taat the time necessary for
the transient response of the system to settle to a few percent of its
final value is less than the time for a half cycle of the square wave,
then the transient response of the system to the first half cycle of
the square will closely represent the transient response to a unit step,
for a not too lirhtly damped system.

An inout square wave, of maximum value unity, of miniaum value zero

and of fundamental frequency @Wf is exnressed by the formula:

| . -
v sin (2n-1) wst (26)

(- 4

! 2

Fi S = 4+ &
The amplitude and rhase of the individual frequencies will be altered

by the system, and the general output wave will appear as:
L 4

Fot) =g +4 %, 222 sn[(zn-n)wrt vBana] ()

n=l 2n-|
where Ao, 1 is the gain of the system at a frequency of (2n—1)u¥ and

B2n-l is the phase snift at this frequency. Thus, an approximate

transient response curve can be obtained by evaluating equation 27 over
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a range of t from zero to slirhtly less than a half preriod of Wg,
using values of A2n-1 and B2n-1 gotten from the frequency rcsponse
curve g-:(jw) of the system,or %(jw) .

The constant ‘z'-’ in eqguation 27 should not be used when the
system has an integrating element (Eg. a capacitor) in series. Such
an element can be detected by examination of the transfer function curve
(it will have a zero value at W=0) or the transfer function expression
(it will have an s factor in the numerator). This ‘%' represents the
D.C. level uoon which the regular alternating square wave is superimposed,
and it is seen that whatever the DC level of the input, the output will
be clamped to a zero reference level if it is assumed that tne capacitor
has adequate time to acquire the DC charge of each half to the square
wave innut.

Tvaluating w¢ , the fundamental frequency of the applied square
wave requires some care. If Wfis too low, an excessive amount of work
must be done, since the response to a greater number of odd harmonics
will have to be considered in order that the maximua amplitude of the
response of the system to the highest harmonic chosen will be a low
enough value so that higher harmonics can be neglected. If W§ is too
high, the accuracy of the method will be impaired, since the transient
will not have time to die down during a half cycle.

It has been determined that for an W which is ~‘50f the lowest
undanped natural frequency of the system, consideration of the first

six terms of equation 27, that is, using odd harmonics one through

eleven, will be sufficient.
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1. Choose W¥f .

There the fain curve exhibits a sharp vpeak, indicating light damping,
this peak falls near the natural resonant frequency of the circuit. Let
the frequency of maximun gain be Wo . A choice of w;:%e is permissible
in this case. As daming increases, Weo cdecreases, and W must be chosen
greater than %9 in order to give reliable results. LithW§ too low, the
system gain will not be low enough at the 11lth harmonic, and extra
harmonic terms will have to be considered. If the contribution of the
11th harmonic is greater than 27 of the contribution of Wy, either raise
Wf or use the 13th harmonic if this gives results in the 2% region.

If the contribution of the 9th is less than 2%, W¢ is too high and must
bae lowered.

If the form of the gain curve is such that is has a late resonant
neak near the noint vhere the 1lth harmonic would fall were the high
frequency trend neglected, consideration of an extra harmonic term or
two will increase the accurscy of the results.

If the gain curve falls of monotonically, indicating heavier
damning, w¥ maybe tentatively chosen so that at 5 W¢ the phase shift
is 90°.

In general, where tae gain curve has some positive value at w=0
choose as the 1lth harmonic of W§ a frequency such that the maximum
gain is 15 db below the gain of the low frequency portion cf the curve.
Check as before to see if 1lth harmonic contribution & 2% of the
contribution of wg . If the gain curve is zero at W=0, as it will be

if the system contains a series integrating compcnent, as a capacitor,
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choose el by resonant peak method and then aprly the 11lth harmonic
check. Txperience will soon give a messure of skill in choosing WFf .
2. Read from the gain and phase shift curves the values needed

to make the summation of equation 27:

Fo(+) -l

e Asn- _
T3, T on[@n-ders Banc] o

and extend this over a sufficient range of t values.
Certain measures may be taken to simplify the orocedure. Iazely:

construct a 2 A=l t.p1c (colum L, Table 2) and alter
M 2n-1

)wo T 2m

(2n-Nw¢ into 105 (2

conversion of radians to degrees, and$ a dlmensionless parameter,

equation 28 becomes:

1
4 6 (2n-1) 3%" _}?

(28b)
L e I T
we B A % A,
3wr Bs
Table 2.
e Gain and phase shift of Wy harmonics.

T the solution of the single illustrative example to follow this
t will be evaluated
imensionless parameter 5

simplification will not be used.
directly, and t will not be contained in the
thus simrnlifying the construction of the desired plot of amplitude
versus t which will te comnared with that of the exact solution.

(2n-1) g
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“#l o al 0.2 —

| = ]] e.l%,o.""sl A
2 B’ e‘l%:af’ b’

Table 3.

Tabular form of ©mn+ Bap-) over range of % values.

6 Bu

Yultiply the sine of each angle in the n 3l row of Table 3 by the

n=1 row value of % -:—:2'—:- from Table 2. Record as in Table 4 and

reveat with remaining rows.

n Al o ol 0.2 —_—
i [%Asins %Asn(ﬁw.)'m
2 |&AssnBs | - - - -

Table L.
+0.5 +0.5 +05 Tabular data necessary to plot output
sum vs t (or & ).

Add 0.5 to the sum of each column of lable L (this is the DC
reference level of equation 27), excert when the gain curve shows that
the system has an integrating component in series by having a gain of
zero and a 90° nhase sihift at W= 0, and plot the column suns against
time Lo obtain the approximate transient response to a step input.

In crder to coarare these three methods of finding transient
resronse from frequency resvonse, an illustrative problem will be

worked by each of the three in order.
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A single problem which will illustrate all three of the methods
and yield in addition an exact solution for purposes of comparison is
difficult to frame. Its expression must have a nair of conjugate roots
and several real roots, to illustrate ietiod I; it must have no poles
in the right half plane, or on the imacinary axis (or at zero) in order
to sauvisfy the conditions of Lethod II; it must have an exact analytic
forn for annlication of the inverse Laplace transform.

The nrotlen shown in Fig..5, with a judicious choice of numerical
values, satisfies the conditions atated above.

iven: syvstem as showmne.

ereror output

K=o €, e, 25 - S | ©o
es (5%°)(5+3) (S-lot7+ A2

nput
oL

K2=-6 <—
-

Fige. 5. Block diagram of illustrative problem.

66L& = €= er+e;

[(5+20*+821(5+0)(3+P) ou

e; S - 6& 9 ez = 255
_ [(51e+8%] (54¥)(54P)
65 - ‘eo{ 255 - 6}
s £ (sy = (5t 4621 (548X5+A) - 1505
S = 1505 (29a)
_ [(sto0*+ 851(5+¥X5+P) (30)

i . &
a-o(:,). -e—o(s)-o-l 1508
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Note the selection of K,= -6 in equation which makes g" (s)
(-]

factarable, By inversion,

150 8
[(s+ex)2 +.82] (s+ §)(S+P) (31a)
Since, for a unit step input, F(s).= -é- >

_ 150
[(s+e)2+42](s5+8)(54R)

©Oo(S) =
(32a)

The s coefficient of 150 in the numerator of the r.h. side of equation
is necessary to cancel the s introduced in the denominator when removing
e@(s)=-s!- fom the expression, which would violate the conditions of
Method II that there be no poles at zero.
In the system of Fig. 5 assign values:
x= 1,2 §= ¢
L= 2,5 P= 3.3

Applying the inverse Laplace transform to

150
[(s+1.2)*+ 25%])(s+e)(s +3.3) (32b)

yields the transient solution

‘eo(s) =

So(t)=-335¢ " sin(2.5t+102.9)- 1.88 €t + 5.1 €7 33T (33)

which is shown plotted in Figs, 7, 9, and 11,

At this point, the vector locus diagram has been made for g—;( Jw)
(Fig. 6, note) and from this, vector locus plots of %O(jw), required
for Method I (Fig. 6 and note), g-{(Jw), required by Method ITI
(Fig. 10) and Re ©o(jWw) , required by Method II,
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Although these curves were obtained analytically for tne most part,
it is possible teo carry througn the graphic solutions of ..ethods II and
III without knowning the analvtic expression for the system. It is alinost
necessary, however, to know the analytic expressions in order to obtain
an accurate solution by i.ethod I, since, in the event of strongly curved

égija”'near the -1 point, the curvilinear laltice is plotted by evalu-

ating -é%b(s) for several complex values of s.
w S (Jw) Se(jw) Re Go(yw)
L mag. anrle mar. angle
0 | 0o -Q0 0 90 .99
1 10.10 -35.¢ .10 35.5 .99
.2 5.10 -81 .20 81 .98
.5 2.0 -67.5 U9 €7.5 .91
.8 1.25 -£3.6 «30 53.6 81
1.0 .99 -13.6 1.01 L3.6 .69
1.5 .60 -14.5 1.66 14.5 .26
2.0 L9 11.8 2.0L -11.8 -.20
3.0 L9 79 2.06 =79 -.67
1.0 79 125 1.26 -125 -.26
€.0 2.05 169 L9 -169 -.015
8.0 L.31 192 .23 =192 .006
10.0 8.33 207 .12 -207 .005
20.0 55.50 237 .02 -237 ..8x10*

Table 5. Tabular data for plottinz system freguency response curves,
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LETHCD I

To solve: Problem given in Fig. 5.

Given: the %.(jw) locus plot, baseline of the-@¢+4 jw system.

Find the conjugate roots of s by determining where the point -1+jO
lies cn the-@g 43 coordinate system. In Fig. 6 a rouzh sketch indicates
that the point -1+j40 will lie between 0= -2 and@ = -1, andW=2 and W= 3.
In order to plot the curvilinear squares more accurately, substitute for

s in the analytic expression of %o(s), whose expansion is:

£ (s)z 32+11.75°+49.8*-3I5 + 152.3
©o

1505 (290)
the four values obtaining respectively
s = -1+j32 éo(s): .90 @757
= -1+33 = 1.10 e7'68
a 2452 : .85 eille
= -2+33 = 1.12 e114

Plot these points on Fig. 6 and draw the orthogonal lines. The complex
conjugate roots are read as § = -1.25% 32.6.
The two remaining roots may be found by dividing the quadratic

2
portion of the output expression ©e(s) hy (s+1.25) + 2.6*

54411.79% +49.85%+ 1195 +152.3 ~
(5+1.25)2+2.6*

524925 + 18.48 = (5+6.23X5+4+2.97) (34)
Sp= -2.97 5 S53=-6.23

The transient solution resulting from all the roots is

e'l-zst cos (L 6t"“l°8Q + e—-l-97t e" .23t

het)= a,bi Giemibe% © Gevabgeds Y
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€

.0

e O
e‘,(wu.))

w4

-g—-gw)frequency response curve, low frequency portion.
Q

. . L "M ]
5= -14)8 TITT e
- o eIt
1+}0 Y 37:( jw) frequency response
) curve. Note: used only
 WATY R L to derive - (uw) locus;
\ enlarge scale x 5 and
i displace one unit to left.
t Y P
- )
// !
.ﬁ'/‘" !
Ry X
),./ W=t
B LY
’ ~ . Y,A,” . : Y £
7 i . qws=.8 pitee

Fig. 6. Erequency *esponse cuvaes -g-;(,w) and %o(jw) .

v
é
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-1.25¢

In £ C 2.6t-c~8,
Q. b 03(2.6 *
Qe =25 = -1.25+;2.6 = 2.8ce’''58®
b = A%,CS)
LT AS $38,3 ~1.25+}2.6

by is the average of several @ra‘cios in the region of the root.

as a&e ratio
Petween s = :2'.::: 1 .02 .02
;;13;_ 1 .05 .05
aho: SN LN 241 .17
s 1 .20 .20
L | Ll
A1

4 can be read directly from the plot as the angle between the real

axis and the W=2.6 line at the point -1+4)0

Thus the first term becomes:

e-o.ﬁt

cos (2.6t - “5o8‘60) =-3.18 e"’zstsln(z.bt +94.Z)
2.80 x .|
since cos(2.6t —175.8) = - sin (2.6t + 94.2).
e-2.97t
oweb, e ’

- |28
ba = 65'90‘5))

(36)

In 028252 -2.97 4)0 = -297 e*°

Find absolute value of derivative algebraically.
$:82: -297
by = [ & (524 1175+ 4982+ 119s +152.3
ds 150s )

S$= ~2.97
bl: 0065
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The line of constant frequency associated with tae root s= -2.97
passing through the point -14)jO is the W= 0 line, hence the angle of
intersection of this line with the real axis is 0° or 180° .

Lt 52 -2.97, F,(s)= <1, while at 5= -2.9M45, & (s)> -L.

Hence, /3‘ 180°. (As¢ decreases, the @ const. line runs left to right).

Then _g-un . e-297¢ - 518 e-2°7t
0re%1h84: -2.97x.065 e (37)
e- @13t

Tor the third term,

Ose*sbsess

aye®™s = 83 = -6.23+,0 = -623

bs = 0.1l
By= ©O°
The third term is _36:;? o z -|lape-%3t (38)
The entire transient solution is tne sum of equations 36, 37, and 38.
h(t) = -3.18€ " sin(2.6t+ 9).2)
+ 5.18€ 7%, )6 @~ 623¢ (39)

Compare the nlot of this output waveform with the exact solution
in rfige 7. The merits and disadvantages of this method will be dis-
cussed at a later point and conpared with the two methods remaining to

be illustrated.
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LETHOD IT
To solve: problen fiven in Fig. 5.
Civen: an aoproximate inverse transformation equation
n

h(t) = 35_ Sin Wxt sin Axt
K=\ Wkt Axt (25)

applicable to a general function Re©bo(jW) which satisfies certain
conditions and is expressed as a sun of trapezoidal waves. The output

function,

150
S4 4+ 1L.733% +449.852+ 1195+ 152.3

eo (3) =
(32¢c)

fulfills the conditions necessary for asplication of this method, namely:
that ©,(s) be written as a ratio of two rational polynomials in s, with
real and constant coefficients; that lim. Ggﬁs'):o; and that (s) have
no roles on the imaginary axis or in the right half-plane. ¥ith regard
to this last condition: This method was specifically develoved to
determine the response »f a system to a unit impulse, whose Laplace
transform Q(s) =1. BRecause of this, the expression of e"(s) is identi-
cal to that of €s) alone, and the peneralized H(s) in the explanation
of lethod II is equal to (s)— ©,(s). In using this method to find
the resnonse to a unit 5332, (whose transform 6‘(5):%), €,(s), not
g-‘.:(s), must satisfy the stated conditions. Since €y(s) =§!'g:'(s) it
is seen that a pole at s=0 will exist in @),(s) unless tie expression
of g—f(s) already contains a zero at thc origin (an s in the numerator).
In such a case the pole and zero will cancel, and ©e(s) will satisfy

the given condition that there be no poles on the iraginary axis or in
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the right half-plane. The method cannot be used to find the unit step
response of any system save one whose transfer function —g—:(s) has
one or more zeros at the origin, whereas it can be used to find the
unit impulse response to any system whose transfer function has no
poles at the origin.

Since the transfer function of the problem has a zero at the origin,

90(3 = '503_
C [(5+1.2)*+2.5%](5+33Xs+6) (31b)

Then

Gots) = %%"m N [ (s+a.2,)2-::5°’](543.3)(5+6) (32b)
and fulfills the three conditions.

The data necessary to plot Re©p(jw) has been entered in colum
3, Table 5. FPlot the function and approximate the curve with straight
line segments in Fig. 8.

Write the straight line approximation as a sumoftrapezoidal

function and apply

2]
- 2Ax  Sin Wkt Sin Axt
h(t) - %’l “" b)xt AK: (25)

where Ayxis the area of each trapezoid,
(Wx is the mean base,
Ok is half the difference between the bases.
From Fig. 8, tabulate trapezoidal data.
BEvaluate h(t) over a sufficient range of t values (see Table 7) and
plot, in Fig. 9, along with the exact solution for purposes of com=-

parison,
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We Ox

S O
I 175 30 .86 .58 .27 .10
1I 5k .86 1.50 1.17 .3k .63
111 .26 1.50 1.78 1.6L 1L 3
v -2.0 L.0 6.0 5.0 1.0 -1.0
v =.50 3.0 L.0 3.5 .50 -1.75
VI .56 1.78 2.35 2,07 .29 1,16
VII Jh 2,35 2.7 2.53 .18 .36

Table 6, Trapezoidal Data.

h({) = %[OJO ém'wt 3N 27t -+ 0.63 Sinil.loct s\n .36t

.56t 27t L6t 36t
+ 043 %t sin.i;:t — sagtbt su%t
— 175 A0SST L:t’l-_ + 116 smzbg,':t Wiz'gft
+ 0.36 'L';..?sgt;t snn.';alft].

(ko)
The merits and disadvantages of this method will be discussed at

a later point and compared with the other two methods, the last of which

will be illustrated immediately.
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METHOD III
To solve: problem given in Fig. 5.
Given: frequency response curves of the transfer function, %—:(,w),
Fig. 10.
Determine ¢ , the fundamental frequency of the square wave, which
approximates a unit step input. Set wk = %94- 20%, where Wo1is frequency
of maximum gain. In Fig. 10, Wo= 2.5,

=25 420% = 0.5+ 0.1 = 0.6 ,
= o

Test to see if the maxirum contribution of the 11th harmonic of
WE= 0,6 2 2% of the contribution of WF.

Contribution of W=6,6: A _ .37 @
1 ]
Contribution of w¢=0.6:

{%}:._%%g 056 > 2%

Raise b} to 0.7 and test as before. The contribution of the 1llth
harmonic & 3% of wg contribution., The 13th harmonic contribution = 1.7%
that of W¢ . This is satisfactorily close, and W)y =0.7 will be used;
the 13th harmonic will be used in the solution.

Indicate harmonic frequencies of wy= 0.7 on Fig. 10 and make the

following tables from the g-f(,a)) curves:
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Fhase Shift Gain 2 2n-1

n (2n-1)ws Ben-i Azn-y I 2n-i
1 0.7 56 0.7 45

2 2.1 =21 .2.12 45

3 3.5 -107 1.58 .20

L L9 =149 .85 .08

5 6.3 =174 b2 .03

6 Te7 =190 2L 01

7 9.1 =202 .15 .008

Table 9. Gain and phase shift data of g—f(jm) at odd harmonics 1-7 of

Wf= 0.7,
T ™ IN SECCIDS
n t 0 2 oLl 08 1.2 1.6 2.0 20)4 208 3.2

1 £6 €L 72 8 76 €0 LhL 27 12 -5

2 =21 3 27 75 57 9 =39 =87 L5 3
3 =713 =87 =27 5k L6 =35 =65 15 85 3
L =31 =87 =37 75 -7 =61 61 17 -85 27
S -6 -78 =29 ol =81 L6 -10 =24 €0 -84
6 10 -78 -13 16 =20 23 =26 30 =33 37

7 22 -51 -56 90 -57 2L 10 =42 76 =70

Table 10. Aagle (2n—l)§z"—ﬂo-w;t+ Bap-¢y table with angles in degrees

converted into quadrant I & IV equivalents.

1Tultiply the sine of each term in the n= lst row of Table 19 by the

Azn-i
2n-|

values to get final table, Table 11 yielding solution. Plot in Fig. 11

corresnondins n<s1lst value of %— s, Table 93 repeat with other n

with exact solution.
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COMPARISON AND BISCUSSION

It would have been impractical to construct such equipment as
pivoted db scales or sliding orotractors for the solution of a single
problem, although each of the three methods might be handled more
quickly, more easily and perhaps more accurately by utilizing specialized
devices applicable to that method. The foregoing solutions were arrived
at without the use of such specialized equipment suggestéd by the original
authors. Therefore, the remarks made by the author of this paper express
his opinion as to the relative merits and limitations of the three methods
treated without special devices which might have affected the findings.

Some general conditions apply to all three methods. The system under
consideration must be both linear and stable in order that the methods
apply.

Understanding of procedure: Method III, the square wave approximation,
is readily understood with a minimum of explanation. Its procedure is
logical, simple and straight-forward. Method I, next in order, pre=-
supposes an acquaintance with conformal mapping and complex variables;
the procedure for finding the conjugate complex roots is easily followed.
Finding the magnitudes of the transient terms corresponding to the roots
is more difficult. This requires a knowledge of transformation calculus,
the principles of which must be accepted on the basis of a mathematical
proof, Method II has the least easily understood approach. Here a
mathematical development alone is used to develop the final expression

of the transient output by means of the inverse Laplace transform, and
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the end expression is not obvious from an examination of the original
inverse transform.

Applicability: Method III applies to any stable system, whatever
the form of the curve of the system transfer function, and does not
require that the analytic expression of the curve be known, Method II
will not find the response to a unit step for a system whose output
expression or curve indicates a pole at s=0, thus violating the con-
ditions necessary for the mathematical steps leading to the simplified
expression for time response. Hence, the m.et.hod will determine a unit
step response only for a system whose transfer function has one or more
zeroes at s: 0 as well as having no poles at s= 0, The method is ap-
plicable, however, to many more systems ifitis used to determine the
response to a unit impulse, since only the condition rejecting systems
with poles at sz 0 applies. This method also will work without knowing
the analytic expression of the transfer function. Method I is not
readily applicable to a system having two or more pairs of conjugate
complex roots, especially if the roots lie at about the same point on
the complex plane, This is due to the fact that the error-to-output
frequency response curve will be strongly bent for such a system, making
difficult the pnlotting of the complex curvilinear square system. In
such a case, and indeed, in the general case, where a high degree of
accuracy is required, this method should not be applied to a system
whose curves cannot be expressed analytically, because such expressions
are necessary for the accurate plotting of the curvilinear squares, and

for the algebraic determination of the real roots.
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Accuracy: Method II, by increasing t:ie number of trapezoids used
in approximating the curve, may be made as accurate as desired, at the
expense of time and labor. However, even for a small number of trape-
zoids used to obtain a rough approximation, the result closely follows
the exact solution. Method III gives a solution that may agree to
within a few percent of the exact response, depending upon the careful
and tested selection of Wwy¢ , the fundamental frequency of the square
wave, Method I offers the least accurate solution of the three, es-
pecially at the beginning of the time range. The accuracy may be
improved by making the necessary curvilinear plot to a larger scale
and by plotting more points, again at the cost of time and labor. For
all but the most critical requirements, however, the solution by lMethod
I should suffice,

Speed: Method III is most quickly carried out, with the data
necessary to evaluate the summation expression being read directly
from the transfer function curves without delay. Method I allows the
rough determination of the complex roots of s almost immediately if
the frequency response curveis not too strongly bent. The approximate
real roots also follow quickly from dividing the transfer function by
the complex roots. However, the magnitudes of the transient terms
corresponding to all of the roots require quite some time to find.
Method II is regarded as the most time consuming, especially if a
large number of trapezoids is considered, since obtaining the expressizms
for the trapezoids and then evaluating the large summation requires

slow, painstaking work.
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Advantageous features and general evaluation: Method I yields
the equation of the transient response curve. This is desirable, since
a change in the transient resnonse due to an altered narameter may be
found without again going through the entire procedure for finding the
response, merely by considering the effect of the parameter change on
the correct term or terms in the equation. This feature is not found
in the other two methods. This method also has the advantage of yielding
very quickly the avvroximate roots of the system from which the time
response is found. The accuracy of Method II is its chief advantage.
In many cases this will offset the additional time used in arriving at
the solution., Method ITI, after due consideration, appears to be the
best general method for obtaining a solution quickly and accurately,
for, to repeat: the principles and procedures are most clear, the
limitations are much fewer in number than those for the other methods,
the findings agree favorably with the exact solution and are quickly
obtained. Although Methods I and II may have the desirable features
of speed and accuracy respectively, these are combined in Method III
along with others to make this one of the most favorable graphic means

shown for determining transient response from frequency response curves,



Method 1 Method II Method III
Understanding
of procedure 2nd 3rd 1st
Applicability 3rd 2nd 1st
Accuracy 3rd potentially 2nd
1st
Speed potentially 3rd 2nd
1st
General Gives analyt- High ac- Most rea-
Advantages ic formula curacy sonable
of output possible, approach;
waveform; best gen-
change of eral
system para- method ,

meters readily
handled;
quickly gives
approximate
response and
natural fre-
quency of
oscillation,

Table 12.

Tabular summary of Discussion.
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