VERTICAL ELEVATIONS OF
 CAMPUS MONUMENTS

Thesis for the Degree of B. S.
W. H. VanAtta
A. E. Ward
1937

Verticel mevetions $0 f$
 Compue donimerets

A Thesis Subritted to

The Feculty of
RINHICAIV STATE COILEGE
of
AGRICLILTUEE AND AFPLIED SCIENCE

by

か. H:VenAtta

Cancidates for the Degree of

Bachelor of Science

THESIS

TABLE OF COITENTS

I.	Acknowl edgment
II.	Introduction
II I.	Picture
IV.	Procesiure
V.	Errors
VI.	Adjustment of Circuits
VII.	Comrents
VIII.	Fesults
IX.	Conclusion
X.	Enclosure - Cutline man of campue choring results
	N. We: Field lotes on file in the office of the Head of the Civil Fréineering Dent.
	Note: All fioures used in this paper are in meters except those under 'Results' which are in feet.

ASKIOY:I EDGLEST

.ie wish to express thanks to the faculty of the Civil EnEineering Department of Michigan State Wollege for the cooperation we received in this work and especially to Professor Cade for acting as technical odviser.

> i. F. Van Atta
> A. E. Fard

Cur purnose in earrying out this project as our unde gracuete thesis res been two-fold. Firstly, in finding and recording the elevetions of the Cempus Monuments, ie tave contributet valuahle cata to tre Civil Encinearing Department of the College. The elevations we have fourd may be usta es e check on the work done by elementary survering clesees. Secondly, we keve gained prectical experience in leveling. Neither of us had hac any previous experience with e nrecise level and elthough our vork on this control wes only eemiprecise due to the nature of the rroblem, we used the precise level on all lines and now feel well gocueintê with it. Consecuently, we have witten the folloring pecee deccribinc our methods of field rork and computations and some rints on errors ve encouritered. Ve hope thet cur efforts mar benefit sone reader contempleting A Eimilar levelire venture.
i.e have discussed none of the technical points of this rork as taken up in the United States Coast and Geodetic dianual, but ratrer would refer the reacer to that publicetion for further informetion.

Picture of the party and the equipment used.

$-3-$

At verious locations on the Lichigan State collee Campus，the Civil Fricineerivé Decartment has placed concrete ronumerie，in grauns of four，for use in elerentory surveying clesses．In Js35，warich，thetor， and Sempnele，in their undercraduate thesis，accurately established the rorizorital position of eash monument． It shall be the nurpose of this thesis to establish with－ in fairlj acourate limits the vertical elevation of each monument．

The enclosed resp of the Campus will show the rela－ tive proximity of the groups of monuments and will indicete to aryone familiar with the topography of the Campus the dificulties at once epperent in running a precise line over such a short distance vith a compara－ tively larce number of accurate intermediate elevations required．In but few instonces wes more than cne eet－ up required between eny tro Eroups．The abuncance of trees ond shrute on the Nempus made it exceedirgly difficult to keep tre kecksight and foresicht distances equal．Early in the term，me abenconed the orthodox method of procecure as outlined for nrecise leveling by the United States Coast and Ceodetic Survering
\square
r
\bullet

Manual, realizing that we bac encountered a problem different from the ordinary ond requiring specielized treatment. Any surverine project should te accomplished rith due reçard for the element of time. After considerine seversl methods of eprozoch, we decided to adont tim lines (KBui - B - C $-D-E-F-P-G-H-$
 and to run each both forward end backwerd making the most edventafeous set-ups ettempting, of course, to keep the foresicint enc backeicht distarces es nearly equel as could be approximated by eye end, at the same time, adapting the set-up to the nature of the ground even at the expense of unequal foresight and backsight distances. Using this method, we were able to cover a considerable amount of line in that we considered a. reasonable time, as will be shown by an inspection of our field notes on file in the office of Professor Allen, Head of Civil Engineering Department.

While on the subject of time, it may be well at this point to mention the fact that we founc a two man party scarcely adequete to handle a level circuit of this type.

A heavy burden is placed upon the instrument man who must not only handle the instrument but must also keep the notes and watck cerefully for eny acciaental errors

:
$:$
-
\checkmark $\therefore \quad:$
-
:
. 6
\therefore
in reading which are likely to aprear. The Coast and Geodetis Survey lareuel recommends a five or six men party for precise work. Ve believe that fair progrese on projects similer to this problem end of the same ceneral nature cen be made with e three man perty consistine of one instrument man, one note keeper, end one rocman.

Upon completion of the lines described before, we examined the date for the errors which we thought would appear pes an expected consequence of the method employed. It can truthfully be said thet we were not diarpnointed in this respect. Our attempts to correct and balence the circuits and the problems encountered are discussed later in this renort. Ve will elso include on aralyeis of our metrod in recard to its advanteges and disaciventages, its attrihutes end feults, and a generel diccussion of hom we trink a problem of this kind should be hended.

It will be noticed thet ell of our lines were returned to tre point of beginning thus giving us the actual error present in each circuit and offering a reliable basis for correction. As insurance against consistent personal error, the instrument man on the forward running of a line became rodman on the backward

C
-
-
-
\square

6
©
runrine.
Jerly in the term, we nere rrevented from doing mach field work by an unusuel emount of inclement weather. The leccer part of our mork was accomplished on clear days erc in moderate to etrong winds. The advisebility of having a sunshade and a windshield for the instrument beceme forcedly apperent as we experienced considerable difficulty in keeping the kubble in the center of the tube long enough for the instrument ran to take and record the three readings necessary.

Qur results, in corjunction with those obtained by Aldrich, Alston, and Samppala for the horizontal location of the Campus Wonuments, we present on the outline mep of the Cempus enclosec in this report.

Both lerge and smell errors occurred during our work on this project. The only glaring error we found was that of recordirg the wrong meter intervel, that is, \#. 385 instead of 3.385. This is especially apt to happen after taking a series of reacings in the two meter interval and then failing to notice a slight drop in the ground at the next station. The fact that the instrument man had to keep the notea offered a likely source for this type of error. Such mistakes are easily locatec from the reverse running of the line.

Small errors we found to be far more troublesome. It is difficult to determine whother such an error occurred at one point or was occumulated during the run through some meladjustment of the instrument, or through some reneated personal error in technique. Fie believe these small errors to be cue to neglect in accurately kelanっing foresicht and beckeight distamces as shown by the discrepancy in cross-hair intervals, and have corrected the circuits accordingly. On an area such as the Compus, it is difficult to run e Ine according to accepted methods because of the numerous obstacles encountered, namely: buskes, trees, buildings, roads, other surveyine parties, and co-eds, all of which are
-
-

\square
-
present in great abunceroe.
Among the personel errors ritich mey ocour is thet due to a very slight amount of prallex thot roth of us noticed oncasiorally. It ceceme menifest only on medium short sishts in which with the cross-hairs clear anc tie objective focusced on the rod a slight movement of the eye seemed to move the cross-heirs about 1 mm . along the rod. This could usuelly be corrected somerhat by re-focussing the eyepiece but, efter our eyes became tired, any off- focus position of the hairs to overcome parsllax made the crose-trairs fade and reading recame exceedingly uncertein. An inexcusatie dersonel error thet could easily result from having too short or too lone a buhble is thet of not having the two ends at corresronding graduations of the tube. Mren the kurnle is of ronoer length, the ends of the butile fell neer the marked rraduations of the tube ard such er error would be umlikely to ocnur. Lowever, should such on error occur it is immediately apparent upon fuincing tre instrument 180 degrees because, if the reversing point of the bubble had beer found, the bubble vould then be markecily oft center, a conaition wich would at once indicate the error.

Nost of our difficulty in getting good readings
wae the result of unfevorakle reather. returally rain kept us from doing any work outsièe ard, exily in the term, medium to strong rinds nreverted cur gettirg eny reliable ista. rine ten-secord bubhle on the inetrument we rere using rearly diecouraced us early in the term by slinning from cre end of the thibe to the other with each chance in direotion or intersity of the wind. Later in the enring, however, the days were more nearly calm but re had some trourle with heat waves during the last few days. In fort, we believe tret there have been only tho perfect preciee leveling daye for a two men party this term. A perfect ciay is one which is cloudy with no vind, such concitions resulting in ro heat mevea, slare on the rubble tube, or shiftinc of the instrument. ie readily concede tre necessity for en adaitionel two ren, one with a sunchaze and one with 8. wintshield, in a precise leveline nerty.

The speed with wich precise leveling work is carried on depends orimarily unon the roficiency of the instrument man in setting up the level. Cne thing we soon learned was the innortance of setting up the trinod in a nosition that made it convoniert to adiust the instrument without moving ehout. The accertea position is witr a. Line throust tor of the trirod lege parallel to the line of sicht. Goving akout while adjusting the irstrument not only slows the work, but, on soft turf, mey alter the position of the lecs and throw the base off level. We adopted the following procecure in leveling the instrument:

1. Loosen the base clamp nut and vertical spindle clamp screw.
2. Lower the telescope on the micrometer adjustment contect or bearing.
3. Center the circular bubble with the telescope farallel to one leg of the base.
4. Center the telescope bubble over each of the three base legs in order.
5. Level on the line of sifht with the micrometer screw.

Step 4. hrincs the instrument very neerly level, the fine adiustment beine comrleted or the line of sistit by use of the miorometer screw is indicated in step E. At first, we encountered cifficulty ir step 4. because we iad not found the reveroing noint of the wicrometer soreur adiustrient. This wes eacily cone by leveling, soincing the telescope loo cecrees, and bringing the bubble vack nalf-wey fith the leveline forews ond ralfvay uith the micronetier screw. Three or four repetions of the ghove roon located the exect reversince point. ie found it wortrwhile to take care that the bubble he kept as really as possible the same length to facilitate leveling by getting eccustoned to seeing the binnle ends at neerly the same tuke graduations. This was done by clampirg the telescone before moving from nne set-up to the next end carryinc the instrument With the teleacone rorizontal so tret no air coulc escape to or from the vial et the erd of tre bubrle tube.

Examination of the notes taken on the two lires solected showed consicerable error of closure in most cases. further examination showed thet where the foresifht distances exceecicu the backsigrt distances the circuit feilec to close kecause tre foresishts exaneder the kanksijhts and, conversely, thet where the bacrajait zistennes excepcec the foresight distances the circuit failed to close because the backsifhts excepder the forerishts. This cordition was present in every line minch we ran. This fact seerred to ofíer the most relianle basis for correction so we adonter the metrod of adjustrert cesoribec kelor.

Firstly, the mourt hy which the circuit failed to close was computed. This value renresented tre total error in the line. Cur metrod of adjustment attempts the reduction of this error to zero anc its uriform distribution over the circlit in eccordence witr the difference in foresifth end backsicht distances or stacia irtervals. Secondy, the differerce in foresigrt and nacksjght dietences as recresented by etadia intervals wes computed. This difference in intervels was ficured from the point of refirning to each station considered. 'firdly, the sumaticn of the differences
in intervels from the noint of heirming to each succeselve station for all stations considered in the line was taken. Fourtrly, e rertial correction to be applied at eech station mes determivec \mathfrak{z} tekirg e proportion of the totel error of ojosure by en amount represented by the pronortion of the difference in intervels to the etation to the sumation of the cifferences in intervals. Fifthly, the total correction to be epplied et eech statior: wes determined by takire the suretion of the partial corrections to and including the station in question. Sixthly, the corrected difference in elevation between the point of besinning (lBM for every circuit) and the station in question wos comouted by applying the total correction with proper sign to the difference in elevation a, s figured by taking the difference in the sumation of the foresights and backsights to the station.

We have assumed the error of each circuit to be due to a difference in foresight and backsight distances, an essumption which is kased upon a study of all the circuits made which, without exception, sukstertiate our contention. The method of edjustment used, however, assumes a constant difference in foresigkt and backeicht distances through-out the circuit erid essumes further that the difference will be consistently on either the
foresight or the backsight sjde. Actually, such wes not the case and it is expecter thet, following adjustment, sorne slickt error would still remain in the circuit. 'ie believed, however, that the emount of this error would be small and would fall within the limits of accuracy desired.

Station	Forward Elevation	Fackward. Ilevation	Differerice
Kini	1.4627	1.4637	.001
0.4	.3159	.3193	.0006
$N-1$.8076	.8973	.0013
	.7048	.7047	.0001

A comparison of the elevations computed for the four stations tabulated above cles.rly indicates that e fair cegree of accuracy may be obtained from the metrod of leveling and adiustmert employed. Stetions BSAN, K-2, O-4, and N-1 were selected at random from the backmard and forward running of epproximetely the seme line. It will be noticed that the greatest difference in computed elevation is .0013 meter or 1.3 milimeters, a. value which well approximates the closest figure to which the rod can be read. The hackward running of the Iine closed within .0001 meter and, the sumation of the foresight and backsight intervals being epproximately
ecuel, no correction or adjustment vas mede. The forvard running of the line, however, failed to close ky .0n4A meter and a considerable difference ketreen backsight and foresisht intervals was noticed. This rumning was adjusted by the method previously explained and, as a result, checked very favorably with the backward running of the line.

This method hes as its chief acvantage speed of performance both in the field and in the office. The inconsistency between theory of adjustment and the e.ctual cese constitutes the principal fault of the method but, 8, we have shown, only slight errors result. We believe thot, for the purpose intended, such a method of leveling najz be advantageously employed. On the following perges, we present several semples of data and adiuetments made.
\square

LIIE IO. 2 - FCFIMAD

From		To		mation B. S.	Sumetion Intervals	$\begin{gathered} \text { Suane.tion } \\ \text { F.S. } \end{gathered}$	Sumetion Intervals
1:3M	(1)	z-2		3.6250	.748	3.8520	. 821
M.ELS	(2)	L-3		6.6660	. 0 ?	4.7550	1.006
WQ:	(3)	BH 4 N		7.0497	1.175	6.4887	1.234
ALSM	(4)	$\mathrm{K}-2$		0.0800	1.294	0.4120	1.343
M3:	(5)	$0-4$		9.7543	1.466	10.6550	$1.5 ¢ 4$
K.8M	(6)	N-1		2.4870	1.584	11.7860	1.675
VBM	(7)	MSM		. 2326	1.860	15.2370	1.955
	Dif E1	ferenc levati		Difference Interval	Partial Correction	$\begin{aligned} & \text { Totel } \\ & \text { Corr. } \end{aligned}$	Corrected Elevation
(1)		-2270		$-.073$	+.0006	$+.0006$. 2264
(2)	$+1$.	. 911		-. 078	$+.0006$	$+.0012$	+ 1.8122
(3)	+1 .	. 4210		-.05:	$+.0005$	$+.0017$	+1.4627
(4)	- .	. 3220		-. 049	$+.0004$	+.0021	-. 3190
(5)		.9007		-. 12ε	$+.0010$	$+.0031$	-. . ع976
(5)		. 7010		-. 092	$+.0007$	$+.0038$	+. 7048
(7)		. 0044		-. 095	$+.0007$	$+.0045$	+.0001

LINE NO. 2 - BACKviard

From		To	Sumation B. S.	Sumation Intervels	$\begin{gathered} \text { Sumation } \\ F \cdot S . \end{gathered}$	Sumation Interval
MSM	(1)	$\mathrm{N}-1$	3.245	. 214	2.5403	. 349
MSM	(2)	$0-4$	4.257	. 320	5.1533	. 441
1334	(3)	K-2	5.232	. 544	5.5513	. 641
HEM	(4)		8.162	.659	E.6583	. 753
W3M	(5)	I-1	10.558	. 871	8.1643	1.008
MEM	(6)	2-1	12.8ミ7	1.049	13.0763	1. $2 \sim 6$
MBM	(7)	11-1	14.220	1.401	15.0076	1.473
M ${ }^{\text {PM }}$	(8)	BLTM	16.7710	1.930	16.7709	1.840

Difference Difference Partial Totel Corrected Elevation Interval Correction Corr. Elevation
$(1)+.7047-.135$
0.0
$0.0+.7047$
(2) - .8053 -. 121
0.0
$0.0-.8963$
$(3)-.3193-.097$
0.0
$0.0-.5193$
$(4)+1.4637-.095$
0.0
$0.0+1.4637$
$(5)+2.3827-.137$
0.0
$0.0+2.3937$
$(5)-.1853-.177$
0.0
$0.0-.1893$
(7) -.78.7e -.072
0.0
$0.0-.7876$
$(8)+.0001-.010$
0.0
$0.0+.0001$

From	To Sumation E. S.	$\begin{aligned} & \text { Sumation } \\ & \text { Iritervels } \end{aligned}$	Sumation F. S.	Sumation Intervals
NEX	(1) B-1 1.8333	.107	1.2403	. 133
2434	(2) 0 (14.0503	. 371	2.6830	. 449
NBM	(3) D-1 6.6?00	.701	4.1850	. 767
1324	(4)*Thena8.0760	. 883	6.1250	. 651
M534	(5) E-1 ¢.8153	1.056	7.4127	1.155
DSP4	(6) Vir.10.8052	1.336	10.4907	1.353
MD:	(7) F-1 12.3536	1.431	12.6417	1.493
2H3\%	(ع) P-1 14.2403	1.586	13.9630	1.716
HBS	(9) G-1 16.].532	1.701	15.7197	1.823
2.	(10) H-1 18.0525	1.854	18.1577	2.023
1:3\%	(11)	2.052	19.0527	2.35 .3
MEN	(12) Pat 21.2438	2.269	20.4037	2.451
MDM	(13) Hhea 2z.7¢61	2.336	22.3270	2.E¢3
1:3M	(14) N-1 2Ј.4361	2.418	24.7287	3.661
NEW	(15) A-1 26.28SC	2.012	27.4764	2.707
	(16) \4n 28.3\%c8	2.ع®ย	28.3477	2.858

* To relieve the morotony of the situetion we remed tumine noints thusly.

IINE MO. 1 - FOR:MRD

Difference Difference Partis] Total Corrected

(1) +.5530	- .038	+.0002	$+.0002$	+.5932
$(2)+.4123$	-. 078	$+.0007$	+.000e	$+.4132$
$(3)+1.7370$	-. 068	+.0006	+.0015	+ 1.7285
(4) +1.9370	-.088	$+.0006$	+.00?	$+1.9501$
(5) +2.3556	-.079	$+.0003$	+.00:3	+2.3090
$(6)+.3145$	-. $0 こ 7$	$+.0005$	+.0020	+.8175
$(7)+.1108$	-.082	+. 0005	+.0034	+. 1143
$(8)+.2839$	-. 130	+.0011	$+.0045$	+.2814
$(9)+.43 ? 5$	-.122	$+.0010$	$+.0055$	+.4350
(10) - .1352	-. 169	$+.0014$	$+.0069$	-. 1283
(11) -.9382	-. 255	+.0022	+.00¢1	- . 8291
(12) +.8401	-. 182	+.0015	$+.0106$	+ . 850 C 7
$(13)+.3901$	-. 262	+.0022	$+.0128$	+.4119
$(1.4)+.6874$	-. 343	+.0020	$+.0148$	+.7022
(15)-1.1966	-. 185	+.0016	+.01こ4	-1.1702
(15) - . 0179	-. 172	+.0015	+.0179	0.0000

LINE R:O. 1 - FORiard

$\begin{array}{ll} \text { Diff. } & \text { Diff. } \\ \text { Elev. } & \text { Int. } \end{array}$	Guance in	Prirt. Corr.	Total Corr. Corr. Elev.
$(1)+.5930-.026$	-. 026	$+.0067$	$+.0027+.5957$
$(2)+.4123-.078$	-. 052	+.0054	+.0081+.4204
$(3)+1.7370-.063$	+.01?	-. 0013	+.0068+1.7438
$(4)+1.9370-.068$	-. 002	$+.0002$	t.0070+1.9440
$(5)+2.3255-.039$	+.029	-. 0030	+.0040+2.3096
$(6)+.3146-.057$	-. 018	$+.0019$	$+.0059+.3205$
$(7)+.1100-.062$	-. 0005	+.0005	$+.0064+.1173$
$(8)+.2869-.130$	-. 068	$+.0070$	+.0134+.3003
(9) $+.45: 35-.122$	+. 008	-. 0000	$+.0126+.4461$
(10)-.1352 -. 169	-. 047	+.0049	+. $0175-.1177$
(11)-. $8382-.255$	-. 086	$+.0090$	+.0265-.2117
$(12)+.8401-.18 ?$	$+.073$	$-.0076$	$t .0189+.8590$
$(13)+.3991-.262$	-. 080	+.0084	$+.0273+.4264$
$(14)+.6874-.243$	+. 019	-. 0020	+. $0253+.7127$
(15) $1.1836-.185$	+.058	-.coel	t.0192-1.1654
(16)-.0179-.172	$t .013$	-. 0014	+.0178-.0001

LINF NO. 1 - $\mathrm{F}^{\prime} \mathrm{CROMARD}$

It will be noticed that Lire Mo. 1 - Formard has 9. considereble error of closure. On nege 30 is the pdjustment of this circuit accordine to the method nreviousj y exnlained. The elevetions obtainec did not check with those derived from the backward running of the line, a line in which no large error was present. It is more than likely that a blunder was made somewhere in the forward running which would account for the error but, as an experiment, we tried a second method of adjustment, the figures for which are civen on page 21. This method is similar to the rirst except that the correction wes epplied not on the besis of ε difference in intervals, but rather on the basie of the change in the difference in intervals from one station to the next. The resulta of the cecond correction failed to check with the beckward running but came much closer tran did those of the first correction. ke enclose this information to illustrate a possible method of adjustment which, although we did not use it, is more nearly theoretically correct than the firft ricthod.

Following is the backwarc rurrine of approximately the same line.
-

$$
\text { LINE I:O. } 1 \text { - BACEYARD }
$$

LINE IOO. 1 - BASKIARD

Difference Difference Partial Total Corrected mevation Interval Correction Corr. Elevation
$(1)+.3 \therefore 0$
$+.0 \cap \leqslant$
-0.0
0.0
(z) $-.1276+.047$
$-.0002$
$-.0002-.1278$
$(3)+.4461+.120$
$-.0005-.0007+.41554$
$(4)+.2978+.091$
$-.0004-.0011+.2567$
(5) + .1225 +.148
$-.0007-.0018+.1207$
$(6)+2.3818+.070$
$-.0003-.0021+2.3797$
$(7)+2.1468+.088$
-.0(104 -.0025
$(8)+1.0124+.115$
$-.0005-.0030$
$(9)+.4784+.149$
$-.0007-.0037+.4747$
$(10)+.5974+.127-.0000-.0042+.5331$
$(11)+.0050+.153$
$-.0007-.0000+0.0000$

CC:OMTR

The preceding paces of computations indicate the method hy which our results vere obtained. Needless to soy, we have included only a sariple of the work done. We have previously explained the fartors causing us to vary from the accepted stanards of leveling practice. We have presented the theory of our dajustnent. There now rexiain but few words to be riritten end, therefore, we have reserved this section for conment upon our own work and upon leveline practice in ε Eeneral.

For short lines of levels, we believe the method presented in this paper thoroushly practical and sufficiently accurate for work requiring considerable refinement. For long lines, there car be no question but that the accepted procedure of precise leveling as defined by the United States Coast and Geodetic Surveyrye Lanual is, at the present time, the best. Then running cur lines, we, at every opportunity, tied our circuit in on the old set of caripus monuments, the elevations of wich ere stamped on the monument to the nearest ten-thousandth of a foot. All of our circuits started and enoed at MBM in front of $01 \mathrm{cs} \mathrm{Hall}$. The elevation of this bench mark ve carried from station STATE. In checking over the circuits, we found the old
$?$
set of monuments to be in error in excess of .5 foot. From a practical point, of view, it is difficult to understand how en elevation deemed sufficiently accurate to be giver to such fine limits could possibly re in error by such a large amount. This condition would evzone seem to indicate that such elevations carried over a long distance could not properly be given to much less
 than the nearest foot. For this reason, we have listed our results not only as elevations above what we must assume to be sea-level but have also referred them to MB taken as a datum of elevation 100.00 feet.

-

Station	$\begin{gathered} \text { E.evation } \\ \text { WBM-100.000 } \end{gathered}$	Elevation Sea－level
F－3	100．569	$\begin{gathered} 79 \\ 844.813 \end{gathered}$
F－4	100．712	844．9\％${ }^{3} 6$
G－1	161．461	ع45．285
9－2	161.733	845.57%
G－Z	161．997	ع40． $27 / 1$
G－4	102．390	ع46． $3{ }^{5} 4$
H－1	95.530	243．8\％ 4
H－2	98.018	$543.8 / 3 / 3$
H－3	95.706	$843.9 \neq 3$
H－4	100．012	8，44．474
Y－1	95.824	244．0／8
K－2	08.051	ع43．145
$\mathrm{P}-3$	c．3．434	342.288
K－4	95．380	242． 6
L－1	107．853	をここ．07\％
I－2	107．604	851．674
I－3	106． 274	8，50．548
L－4	105．320	849.54
$\because-1$	97.416	$841.6 \neq 0$
\＃－2	07.458	841.703
1：3	27.426	841．EPO
$3-4$	57.264	$8 \div 1.48$

Statinn	$\begin{gathered} \text { EDevation } \\ \text { ditionoo.0ro } \end{gathered}$	Slevation see-l evel
N-1	108.312	¢42.5E6
N-2	102.738	¢46.¢83
$\mathrm{N}-3$	103.155	847.389
I-4	103.EE1	8,47.895
0-1	95.945	840.189
C-2	96.306	ع<C. 5.50
C-3	96.710	E4C.ce3
C-1	57.057	841.301
P-1	100.973	8.4.5.? 01
P-2	101.172	845.416
P-3	101.077	845.321
P-4	J01.074	845.318
U-2	105.528	849.772
2-1	99.385	843.629
Z-2	93.257	843.501

In this thesis, we have atternpted to solve the problen uncertaken and, at the same time, to experiment with sorething new and different in leveling mactice. Future surveys will show whether or not our results are accurate but, accurate or not, wie feel that this project has been of reat value to us in experience. i.e fourd the rork enjoyainle and interesting. All trrough the term we acted as much as nossihle on our orn, feciling trat, in our ifnal term, we should plece to test the judgement and knowlecige acquired during our careers as stufients et this institution. "ie subnit this poper not as a statement of foot and mathematical results hut as a narrative of our exnerierces in carrying out十is work.

TEE ETD

