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ABSTRACT

CALCULATION OF THE UNPERTURBED
DIMENSIONS FOR LINEAR ATACTIC

POLYMERS ON A SQUARE LATTICE
by Robert C. Thomas
Body of Abstract

A two-dimensional square lattice model for linear
atactic polymers of type CHZ-CHR has been formalized.
The three-dimensional equations developed by Yoo and
Kinsinger were reduced to a regular planar square
lattice and several computer programs were written to
calculate the mean-square end-to-end-dimensions for
several polymeric models.

The model allows the éarbon atoms of the polymer
chain to occupy adjacent corners of the sguare lattice.
Fach step in the polymer chain has a fixed length 1 and
is not allowed to reverse its previous direction. Thus,
the bonds are permitted to go forward 0°, left turn -90°,
or right turn +90°., This model accounts for both first
and second neighbor interactions and the chain config-

uration can be either atactic, isotactic, or syndiotactic.
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The values of <h2>7n12 for the seven polymer
cases. ranged from 1.14 to 2.01 while a value of 1.67
was obtained for a polymer with randon configuration
and randon conformation. Some comparisons are made
between the results obtained on the two dimensional
lattice and what would be expected for the three

dimensional casec.
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I. INTRODUCTION

A. General

In 1958, interest in the theory of dilute polymer
solutions was rekindled when Volkenstein's calculationsl
of the relationship of discrete rotational states to the
average unperturbed end-to-end dimensions of polymer chains
became known to western scientists. By this time, Volkenstein
and coworkers had developed their theories to include polyvmer
chains with both symmetric and asymmetlric structures with
statistically independent rotational states. In addition,
they had closed form solutions for the newly discovered
isotactic and syndiotactic stereoisomeric polymers which
related the average end-to-end dimensions to chain geometry.
Morecover, they developed equivalent equations for atactic
polymers, the configurational (d,1) placements mathematically
desceribed by a single distribution parameter, and the chain
with statistically independent rotations.

'Shortly, however, it was evident that a statistically
independent model could not adequately describe the unper-
turbed dimensions, and Lifson2 and Nagai3 introduced the
statistically dependent rotational model which was trcated
through the formalism of the linear Ising problem and took
into account cooperative effects between first and sccond
neighbors in the chain.

This successful treatment, however, made the mathematical

process somewhat more complex, and in the past several years.
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. o 4.5.6,7 . . . .
nany papers have appeared ' tor chains with symmetric

structure and for the asymmetric stercorcgular isotactic
and syndiotactic forms. Yoo and Kinsingms- developed a com-
prechensive formalism which included a two parameter distri-
bution for the stercosequences in the chain plus a second
neighbor interaction distribution for chain conformations,
all based on a statistically dependent model. This nasteoer
cquation for atactic chains can., with appropriate change,
be converted to handle either the asymmetric syndiotactic
or isotactic chains and symmetric chains as well. The states
of the chain. however, are numcrous since two pararncters aroe
nceded to describe the d, 1 scquences which arise trom the
polynrcerization conditions and these. in turn. have scveral
conformational states for ecach different triplet d,1 scquence
in the backbone. This results in a large number of joint
confiurational-conforrmational states tor the system, and tnoe
formalisn requires a cenerator evatrix of rather large size
with an excessive nurber of parancters.  Since, at best, tvo
paramcters can be obtained from current experirental data,
the formalisne cannot be evaluated properly.  Future work on
configurdiional and conformational distributions by various
spectroscopic technigues may yield sufticient cvidence to
utilize and verity the theory.

However, it is instructive to reduce the formalism to
computations based upon our hest current knowledgee of the
distribution of contigurational and conformational states of

polywer chains, In this way. the ftormalism can be checked



independently for completeness and the eftfect of the joint
distribution can be revealed. Even a cursory glance at

thk computational problem will show that a three dimensional
representation ot the chain has prohibitive compliexity and
detail. Hence, it was decided to reduce the chain preblcem
to a regular two dimensional square lattice. While this
secmingly nay restrict the computaiions to a very special
casc, the principles contained therein in the formalism and
the inter-relationship of the joint states should be revealed
by such a calculation.

In this modcl, therefore., the two dimensional square
lattice will have two types of lattice sites, correspondin:g
to the d or 1 contfiguration in the chain. While the model
is not truly asymmetric, the ditferent sites will retlect
the influence of the corresponding d.1 states in the three
dimensional chain.,  Each step will have a fixed length 1 as
in a real polymer chain, but the bond angles will vary depend-
ing upon the steps taken alonyg the lattice, and they will be
pernitted to go forward 0, left turn -90°, right turn 490
In this sense, the variable bond angles will correspond to
tihe rotational states in the three dimensional chain.  While
this may seem superficial, the fixed bond angles in the thrcee
dimensional chain contributes only a multiplicative term to
the mean squarce end-to-end dimension and, hence. enters as

a constant.



B. Experimental Model
The square lattice model used for this study of
polymer type chains (-CHQ—CHR-)H* is described as follows:
1. Let it be possible for an A or B to be present
at every other corner of the squarc lattice. (scc Figure 1)
A and B are equivalent to the asymmetric carbon atoms ot

the vinylic chain.

- —

J

e R
| |
1
i

T T

| S TN NN S

Figure 1. Polymer Chain on the Square Lattice.

2. Place the initial bond along the positive
direction of the Y axis.
3. The conformational states arec then defined

as shown in Table 1.

* chains of this type have a periodicity of two
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TABLE 1.

Conformational States for the Square Lattice Model

State Tﬁi?ep_@_}_’_e_cg)_l: -Zl::_l_):_ﬂihBondS Bond Angle

1 T 2\ 0

2 - T sn/,
A
3* i . ! ‘L . T
o
4 «— (~T~ 4’7} .

1s measured in a counter-clockwise direction from
. . . th
the projection of the Y axis (-1) bond vector.
4. The confipgurational states are defined as shown

in Table 2.

TABLE 2.
Configurational Statces for the Square Lattice Model

Configuration Growing Chain Ends Rcaction Products Free Encrgy
ol Activa-

e I _ tion
AAA—DL d d ddd 1 €,
A A B—92 d d dd1l H £,

B B B-~33 11 111 I £
B B A-—94 11 11d H 54
B A B—35 1 d 1d1l S o
B A A-—76 1d l1dd H s 6
A B B-—37 . d 1 d1l11 H o
A B A—8 d 1 dld S -:‘:8

1 - isotactic H = heterotactic S = syndiotactic



S. The numbering system usced for the chain atoms

and bonds is shown in Figure 2.

B (2v-1) (2v) B (2v:1) (2v:2) B
or e 3 e »____“__7 or o >0 > or

A A A
(2v-2) (2v-1) 2V (2v:1) (2Vi2)

Figure 2. Numbering System Useced for the Chain
Atoms and Bonds. *

6. The coordinate system used is the same as that
described by Yoo and Kinsinger. For a bond vector ter-
minating at an asymmetric chain atom, a richt-handed
system is used for a bond terminating at a d configuration
(A site) and a left-handed system is used for a bond
terminating at an 1 configuration (B site). For a bond
vector terminating at a methylenic type chain atom, a
right-handed system is used if the CHR-CH, bond originates
from a d configuration (A Sit¢) and a left-handed system

is used if the CHR-CH, bond originates from an 1 configur-

2
ation (B site).

7. The equations used are those described by Yoo and
Kinsinger. We consider here only first and second neighbor

interactions. The generator (or state) matrices are defined

on the following pages.

*The numbers for the bonds appcar at the top of the figure
directly above the bond which is shown as an arrow. The
numbers for the chain atoms appear at the bottom of the
figure directly under the chain atom.



[0 () 0 (W) 0 (W) 0 (W) ]
Uy Uio Uiz Ulg 7|
0 (W) 0 (W) 0 (W) 0 (w)
Us1 Uoo Uasz Ugg |
U(w) (1)
217 UO(W) UO(“) UO(W) 0(“)
31 32 33 34
0 (W) YO(W) 0 (W) 0 (W)
fhl Ugo Uss Usq
where w 1 when A ) — A
w - 2 when B o B
w - 3 when B o —— A
w - 4 when A———e¢-—-—-PB

Matrix (1) is a generator matrix for one of the contorma-
tional matrices. The elements of matrix (1) are defined

in equation (2).

0 (W) (W) (o0 ) | gD (1) o)
Upp o - oxp [‘ {% ©ovi1? (6 oy Y}lgk//;TJ
first neighbor interaction term >~///)f

second neighbor interaction term

In U2Y%l the 2vi1 signifies the rotation of the 2V, 2 bond
about 2vil° U(:i is a term proportional to the probability

that the last bond will be in state r when the previous bond
is in state t and the configuration state is (W). The first
and second neighbor interactions are depicted schematically

in Figurce 3.
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H\~C #-H
-

a (2'"+1)bond a (2 bond
Figure 3. Schematic diagram showing the first and
scecond neighbor interactions for a (2:7%1)

and a (2V) bond.

“pl 0 0 )
D2"'+l 0
.. 0 D>, 0 0
/ N 2+ 1
ID(W) : _ 18]
Sl o (3)
L ot
3
0 0 D2'f'+1 0
!
i 4
(. 0 0 0 D2,+1

Matrix (3) is a transformation matrix which is

part of the transformation matrix 5D9J+1:.



o]

[ (1)
U2V‘»l 0 () 0
(2)
0 Ugr | 0 0
ovi1| - (4)
.(3)
0 0 Uavi1 0
(4)
0 0 0 Uge 1

b =

Matrix (4) is the conformational matrix for 2v:2 bonds

about 2%31 bonds.

— —_—
C1 0 CG 0
0
0 C3 C7
2V .1 - (5)
0 C4 0 ('8
C2 0 C5 O-‘

Matrix (5) is the configuration generator matrix.

C; CcxXp -(i/RT (6)

where €i is the free cnergy of activation for a given

confizuration as defined in Tablce 2.
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(1)
D2Y+1 0 0
(2)

0 Dovi1 0
[bszJ - ;

0 0 p(3)

ov:1
0 0 0

Matrix (7) is the transformation matrix for

(4)
D,
2v: 1

transforming

the coordinates of a 2Y12 bond into the coordinate

for a 2vy:1 bond and each element on the diagonal

transformation matrix as given in (3).

is

system

a

Up to this point we have been considering the bond type

A
¢ —— — Oor
_ B
Now in a similar fashion we will con- A
Oor-—————-®
sider the bond type B !
TI [ E(w) E (v) E (W) E ()
w0en; (W s /
Ufl Ul Uiz Urg
E(w) E (w) E (w) E (w)
Uoi Usso Uos Uoy
2v E (w) E (w) E (W) E (w)
U3y U3y Uss U3y
E (W) © E(w) E (w) E(w)
Va1 Usz Uss Usa _

Matrix (8) is a generator matrix for one of
tional matrices.

where w 1 when o — A

w - 2 when o - B

(8)

the conforma-
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2Y—
first neighbor 1nteract10n tmj

second neighbor interaction term

U "*P[ {6 ™ 0, 00 €M ; " (9)

1
D,y 0 0 0
2
0 . D,y 0 0
(W)]
) (10)
[ 2y 0 0 p3 0
2V
0 0 0 pl
2V
—

Matrix (10) is a transformation matrix which is part-of

the transformation [DZV‘J

e h
2\" 0 0 0
5(2) S
- o 0 0 .
i’ J 2Y (11)
ov| -
5D
o 0 U 0
| (2)
0 (0] 0 U
o 2V_

Matrix (11) is the conformational matrix for 2V:il bonds °

about 2V bonds.
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- -
pil) 0 0 0
0 D{
[Dza (3) o
0 D, 5~
(4)
|0 Dav-]

Mairix (12) is the transformation matrix for transforming
the coordinates of a 2¥31 bond into the coordinate
system for a 2¥hond and each element on the diagonal is
a transformation matrix as given in (10).

Tae final equation used to calculate the unperturbed
dimensions of the various cases is shown in equation (1lJ)

as adopted from the three dimensional formalism of Yoo

Q

1]

and Kinsingori
z 2 . x| * o\ e -1 ) .
(}1 2 nl”: E) g [132+ AOND (532+;\)(L41;2-M) (M**Dg?)aﬁl (13)

where M- E);J[f;aa [Da?z, [iawagfzawﬂjxa
[y Pard s B

= the largest positive eigenvalue of
l}gﬂé}E§2VfJ l}::vttq

the eigenvector corresponding to the above
eirenvalue

the eigenrow corresponding to the above
eigenvalue

S
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E, = a 2 x 2 identity matrix
E..2 a 32 x 32 identity matrix
o)

The bonds considered in matrices [§2.‘,] and

} are shown in Tables 3 and 4. The matrices |D .

2"4- 2

[D27+J’ [EZJQ’ l}?’d]?’ and [EMJ 9 x 4 Are shown in
6, 7. 8

Tables 35, , and 9. The derivations ot the two

transformation natrices are given in Appendix A.

8. In this sguare lattice we only allow the growing
chain end to go in three directions. We disallow it
to reversc its previous direction. This causes the follow-

ing elements of the U matrices Lo be zero.

Vs F i Vo3 Ted T d T s T b

ZT__’\ )’4‘7‘

Duc to symnctry many of the elements within U are identical

Us)y :{\‘- U, « U. -

to other U clcements. These identities are shown in Tables

10 and 11
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I1. CASES STUDIED AND COMPUTATIONAL PROCEDURE

ascs Studiced

desceri ion of 1¢ seven cases studiec
A d iption of tl seven ca stud i

is shown

7.000 C:l

¢ following pages.
1
-(i"RT' - . . . .
¢ A T P B S S B
-% RT - - - et v
where € is the sum of the first and second

bor interaction energics.

In casc onc the polyrer hus a random

U Conformation Elcement

~0's = =L's

])O's = J'E's

where xQ is the 2v+l first ncighbor

~E is the 2 v first neig

el

70 is the 21311 sccond neighbor

N - .
“E is the 277 second nei

/

specifies that the polymer in

1000 Cal, mole

1000 Cal. mole

hbor

shbor

case

conficuration,

Rotational Encr:y Assumed*

interaction eneryy

interaction encrgy

interaction

eneryy

interaction cnergy

one

has a random

rmation in addition (o a random configuration.

* The rotational cnergy valuces correspond to the enerpy

differences between an arbitrary energy level and

point

in the rotational potcential

well.

the

lowest

o le

» STSEY T L
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Case 2

61 = 62 = 63 = E«'l =€5 = 66 = 67 = 68 = 7,000 cal./mole

This polymer has a random configuration.

U Conformation Elewnent Rotational Energy
~ L assumed .
<0 ° =otf ° 1000 cal/mole
ﬂ Elll 100 cal/mole
| P
all otherpE S except pEl11 200 cal/mole
P o3, 100 cal/mole
s
all 7803 that have a bent 750 cal’/mole

conformation
all ﬂ(ﬂ.s that have a bhent 1250 cal/mole
conformation that permits the

R groups to be further apart

all P01 ® that have a bent 2000 cal/mole
conformation that permits the
R groups to be closer together

mte pres.erred co rmations have the lowest rotational
encrgies, -

ﬂElll is the 2¥ second neighbor interaction energy
of element Ui}) which is *’K

ﬂ 0311 is the 27 +1 second neighbor interaction
(3)
1

energy of element Uy which is R-

Case 3

€, €, €, -€,-€;-€; =€, =€, - 7,000 cal/mole

This polymer has a random configuration.

U Conformation Element Rotational energy
' assumed
' e N T
o0 ° = otE ° 500 cal/nole

Po ° "B ° 500 cal/mole



This polymer has a random conformation.

Case 4
Z = .: 4 =< .{ = = , = __ - ,, = 7 . / )
Z1 <o €, ¢4 Ts c <7 o8 7,000 cal/mole

This polymer has a random configuration,

U Conformation Element Rotational Fneryy
assumed

first neighbor H . . . H 50 cal /mole

first neighbor H . . . R 250-1000 cal/mole
second neighbor H . . . H 50-600 cal/mole
second neighbor H . . . R 200-2000 cal, mole
second neighbor R . . . R 800-2500 cal/mole

The rotational energies assumed were assigned after

Cc omparing the first and second neighbor interactions

W hich can be seen in Tables 3 and 4. A "most probable”
€©nergy was assigned to each conformation based on our

bbest interpretation of a real chain.
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Case
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5
€1 = 62 = EJ = E‘l '65 = 66 - 67 ‘—‘68 = 7.000 cal mole
polymer has a random configuration.

U Conformation Element Rotational Eunergy
assumed

]

| B L B
<0 ° o °

R
ﬂOf)’lI‘} . 50 cal/mole
Boi, v 7 - 50 cal, mole

500 cal/mole

]
all other Bo ° 1000 cal, mole
all PE S 1000 cal, mole
6

61 - 62 = 63 : fﬁ = 66 =t67 = 7,000 cal,/mole

65 = 68 = 2,000 cal/mole

polymer has a predominantly syndiotactic configuration.
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E.EPHIBIN“?&?E_FJEEFHE Bg}gi}gnﬂl Eno rgy- Asaude
&0's O(E"S 500 Cal/nmole
ﬂOSllk-f. 30 Cal/mole
Boi,, ‘.ﬂ" 50 Cal/molc

all otherBO's 1000 Cal/role

allﬂE's 1000 Cal.mole

Case 7
62 = 64 65 = 66 :67 =€8 = 7,000 Cal/nole
€, = €, - 2.000 Cal wole
This polymer has a predowinately isotactic configuration

prcferred.

U Conformation Elenent  Rotational Energy Assumed
o 0O's =“E'S 500 Cal/mole
? 03113_§ 50 Cal/mole
F o1 f’[" 50 Cal/molc
4 44-
All otherBo's 1000 Cal“/nole
AllB E's 1000 Cal ‘mole
Tablcs 12, and 14 show the reduced 12 x 12 matrix
of )}2‘3 Ezw;]@zwl_]
B. Computational Procedure

Case 1 will now be used as an example and the methods
of computation will be described. The first step after

assigning ecnergies and calculating the various U, . elements

was to calculate the 16 x 16 natrix[i} JBZW‘J E?Y+l q
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Table 12

Ma trix Eaa Eaﬂ][z;’]-;sos 1-1

case 1

case 2

H. & D“,c -~ ]
U |\b i H
TwPDF.HH ]
vl N (Y Y
qaaQ O =
M A i.r[r.H!sH
M Qi
U WO My
xAaaallx
NS TRYTE b
aa \D —
sa bhzz
LKL
LI
LERLleX K .
L €L L ¢
< << S
€ € LT
AAJAAA
LLC YR ¢
LX<
< < < <€ <
< < < < < <
< <<

case 4

case 5

r LR%XM& h
‘ D A2 N
~ QS>> ™
S a Al T = < g
WM.NUPA m fU.U.HP
Q W >
=39 ko -ﬁl-m ~)
SR
A E[D>D>m
Dalwn o & < vpn
Jze - D uﬁ
€3 W D>
TJJfJI
JJJTJJ
Bhhbhhbh
Lh HHH
N hhHH
bbb hbbh
Bhhbn
hhhikhhH
_ Hhbhibbh ]
5 KFRH
Hoh Hhbh
HhbS ) ;hh b
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Table 12

Matrix E"]Eaﬂ][z“'};sos 1-1

case 1

case

T e alb + ] ]
” UwwleHH
BPD_FHH ]
WRTCRT I (Y
qaaQ O 1+
an rHﬁ
Ao
W WO My
xaaklle T L
Ny No H ~
o o Q \D
sal bz x)
LK
LK
L
L < e
<< << €. <« <«
< € < <L . <
AAJAAA
LCLC Y ¢
S b
< < < <€ <
<z <€ < R R
<<g g

case 4

case O

I RMA_XJ o 1
. DAt N
O E>>x
-4 2 QL (42}
= . ~ ﬂ/

3 Q we >
e mﬂﬂ.wﬂaam g
SUnal ude
=B E[>>m *
LD a. & < yan
e - u;
< £ 3 | lwea >
TJJTJI
NhhhkhbhhH
Bhhhhh

Lh HhhH
N hhb
bhh hbb

Bhhbh
Hhhbhkhb

_ Hhblbhh ]
TJ = h5hH
HHh HbHh
ShbS i ~HhhH
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Table 13

Ma trix[iaaﬁaw.] [Z‘wJ'casos 5-7

case 5 case 6

mme 1o
nmao rmwa Mmoo T T a7
wmno mnao T oo mira
moT T 1| Ta T
nom Ir o T o IT] o
mao Mo mTa ma
il T il P
o T a T[T V7]
all a T 1] vall /| p Vv
duly Fﬁﬁ‘ PUV
alll T N TR
acwm a T 17] oYy
case 7
Y ¢
Ve T o
Y T IT ]
$¢W -
Wy rer
alr T ?Vﬁ
onilr a T
ol anmn
T awi
awIm a7
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Table 14

Key to the symbols in Tables 13 and 14

C::

L57Tx107
.39x10"
.61x10"
.53x10°
.19x107

.67x10°

.61x10"
.42x10°
.84x10°
.87x10"
.39x10"

.98x10°

o)

8

7

7

7

6

.96x10“6

.52x10‘6

7

6

6

6

7

8

‘a

9 &

L R © ™ =

x
i

oV

.51x10"
.32x10°
.52x107
.96x10°
.88x10"
.24x107
.66x10°
.02x10”
.42x10°
.81x10"
.85x10°
.03x10~

.24x%10°

8

8

7

6

7

6

6

6

7

6

6

7

7

n

B M O M W< T W\ uwr~ o

i

(7]

9.

.35x10°

.80x10~

L37x107

.52x10°
.87x107
.76x10°
.66x10°
.87x10"
.72x10°

.78x10°

24x10°

8

7

.51x10‘7

6

-

.20x]0—’

6"

6

7

6

6

6

7

8
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i ; Ty R - Cmatye s /
Matrix [Zan'[ 1s an coxpanded form of matrix [;3,",]

in which cach element of the 4 x 4 matrix is nultiplied
by E4, a 4 x 4 identity matrix. Because we do not allow
the bond to reverse its direction, rows 3, 7, 11, 15 and

)
columns 3, 7, 11, 15 are all zcro. This then allows the
matrix to be reduced to a 12 x 12 for the purpose of cal-
culating the largest positive eigenvalue and the corres-
ponding eigenvector and eigenrow. A machine language pro-
gram to do these cnlculutiéns was written for Michigan
States' digital computor which was called MISTIC. This
program calculated the 16 x 16 natrix [}QVJ E)ﬁl]ﬁarf]q
from the 28 distinct Ujj clements and the 8 Ci elements,
Michigan State University computor program MAOM was then
used to determine the characteristic polynomial of the
12 x 12 rceduced matrix. Michigan State University computor
procram J2 was then used to determine the roots of this
pulynomiall which would he the cigenvalues ol the ratrix.
This approach gave crroncous answers because of its method
of calculating the characteristic polynomial. Program MASM
uses the N + 1 points method which will give erroncous
results when the eigenvalues lie close together. Casce 1
has only two different rows in its reduced 12 x 12 matrix
which indicates that it has not npore than two non-zero
cigenvalues.

Various other methods were investigated until a program

9.10

was written to use the iterated vector method. The

remaining programs were run on a Burroughs 220 digital






“he
W)

computer at Dow Chc-n-i(‘z;l Conpany's Computations Research
Laboratory at Midland, Michigan. These progravs were
written in Burroughs Algol 58. Some hand calculations
using the iterated vector method gave the larpgest pn's-;.jlivo
cigenvalue for Cases 1, 2, 3, and 5 before the computer
program was written.

A method of blocking the matrix was used to solve
for all of the cigenvalues of the matrix for Cases 1 and 3.
The procedure is described in Appendix B.

The eigenvector and eigenrow outpnt from the tirst

b
program in Appendix A had to be normalized so that 2)("
L=t
1. Then the next step was to calculate matrices L\]
[_M + DQVJ and (‘—}332 - li‘;_l. This data was output on caras

because of a limit of 8000 words of core memory available
on the corputcer. This data could have been put on maznetic
tape and used later but since the time required to punch

out the natrices was reasonably short, it was decided to

take the easiest approach.  The final program in Appendix A
2. 2 , - L
calculates h p nl . The new Burroughs B 5000 which 15 at

the Corputations Rescarch Laboratory now could very casily
handle all of the total calculations in one step. This
would require only the 28 Uij variables and the 38 Ci

variables to be input.



ITI. CONCLUSIONS

Al Results
. . 2 2
The ecigenvaluces., celigenvectors, cilgenrows and 61 >,"|1
are shown in Tables 15, 16, 17, 18, and 19. Table 19 also
includes the values of two 2 x 2 patrices which are cailed
MAT2 and MAT3. MAT2 is the product of multiplying A* N A
wihile MAT3 is the product of A* [E:;QM\‘] [E:;z - !\ﬂ—l
[M'DQWBA (sec cquation 13). One can see upon analysis
. . 2 2 § ;
ot cauation (13) that <. > nl” is equal to 1 4 MAT2(2,2) 4

NATS(2.2).
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15
16

CASE_1
.1000, 401
.1000. +01
. 0000, + 0
.1000,+01
.1000,+0"
.1000,+01
L0000, +00
.1000,+01
.1000.+01
.1000,401
0000, + 00
.1000,+01
.1000,+401
.1000, +01
.0000,+00
.1000,+01

CASE

L3016,
L0000,
.3327.
L4093,
L3316,
.0000,
L3516,
.9998,
. 5499,
.0000,
. 8499
. 1000,
. 8199,
. 0000,
. 8499,

Non-noriali-.d eivenv- Ltors.

TABLE 15.
CASE 3
-0l .1000.+401
-01 .1000.,+0)
+00 .0000., +00
-01 .1000,+01
-01 .1000.+ 07
-01 L1000 101
+00 .0000,+00
-01 .1000,+01
=00 .1000,+01
+00 .1000,+01
+00 . 0000, +00
+00 .1000,+01
+01 .1000.+01
+00 .1000.+01
+00 .0000.+00
+00 .1000,+01

CASE 4
.9818.+400
.1893.-01
0000,+00
2010.+00
.9941,400
2147 ,+00
0000.+00
.2033.-01
.9080.4+00
.1270.-01
0000,+00
.2809.400
1000,+01
.2892.+00
. 0000, +00
.1563,-01

o,».m.mv
.1000.,+01
.1000.+01
.0000.+00
.1000,.+01
.1000,+01
.1000.+01
.0000.+00
.1000.+01
.1000,+01
L1000, +01
.0000.+00
.1000.+01
.1000.,+01
.1000,+01
.0000,+00
.1000,+01

m..,m.mna
.1000,+01
.1000,+01
.0000.+00
.1000.+401
L7810, -07
.7840.-07
.0000.+00
.7840,-07
L1574, -07
.1574.-07
. 0000, +00
.1374 . -07
.1254 ,-03
.1254,-03
. 0000, +00

.1254,-03

.1000.+01
.0000.:00
1000, +01
L7340, -07
.7840.-07
0000, +00
. 7840.-07
.1574,-07
L1374.-07
. 0000, +00
1574 ,-07
.1254.-03
.1254.-03
.0000.+00

.1254,-03



ICENVECTOR

4

E

(3

NON-NORMALIZED

TABLE 15. Non-norralis.d eizenve: tors.

CASE_1 CASE 2 CASE_3 CASE 4 CASE 5 CASE 6 CASE 7
xH .1000,+01 L4090 . -01 .1000.4+01 .9018.400 .1000,+01 .1000,+01 .1000,+01
X, .1000, +01 .0016.-01 1000+ L1893 .-01 .1000.+01 .1000.4+01 .1000.,401
x“ . 0000, +02 L0000 .400 .0000,+00 .0000,+00 . 0000 .+00 .0000.,+00 .0000.:00
xM .1000,+01 .3327.-01 .1000,+01 .2010.+00 L1000, +01 .1000.+401 -1000,+01
xw .1000,+0° .A093  -01 . 1000, 01 .99441 ,+00 .1000.401 .7810,-07 L7340, -07
xm .1000,+01 L0316 ,--01 100w+ 01 L2147 ,400 .1000.401 .7840.-07 . 7340 .-07
X.. L0000 00 .0000, +00 .0000,+00 .0000.+00 .0000,+00 .0000.+00 . 0000, +00
xw .1000,+01 L8516 .-01 .1000,+01 .2033.-01 .1000.+01 .76840,-07 L7840, -07
xw .1000.+01 .9998, +00 .1000,401 .9080.+00 .1000,+01 L1674, -07 L1574, -07
xuc .1000,+01 L8499, +00 .1000,+01 .1270.-01 .1000,+01 L1574 .-07 L1071, 07
xhw . 0000, +00 .0000. +00 . 0000, +00 .0000,+00 .0000.+00 .0000,+00 .0000,+400
xﬂm .1000,+01 .8499,+00 .1000,+01 .2809.+400 .1000,+01 .1574.-07 L1574 ,-07
x~u .1000,+01 .1000,+01 .1000,+01 .1000,+01 .1000,+01 .1254,-03 .1254 . -03
xwg .1000,+01 .8499 ,+00 .1000.,+01 .2892 .4+00 .1000, +01 .1254,-03 .1254.-03
xwu .0000,+00 .0000,+ 00 .0000.+00 . 0000, +00 .0000,+00 . 0000, +00 .0000.+00
X .1000,+01 .8499,+00 .1000, +01 .1563,-01 .1000,+01 .1254,-03 .1254,-035

16
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TGENROW

1
Pl

E

NON-NORMALIZED

e et I e at
D0 S N

o R el e
O x N

-
— =
N = O

M<
M‘
Mw

13
14
15
16

CASE 1

.1000.401
.1000,+01
.0000.+00
.1000,+401
.1000.+401
.1000,+01
.0000.+00
.1000.+01
.1000,+01
.1000,+01
.0000,+00
.1000,+01
.1000.+01
.1000,+01
. 0000, +00
.1000,+01

CASE 2

.1000.,.+01
.40354.+00
.0000,+00
.4616,+00
.9978,400
.4615,+400
.0000,+4 00
.4032,+00
L9978,+ 00
4034 .+00
. 0000 ,+00
.4616,4 00
.9978.+00
.4615,+00
. 0000, +00
.4032,+00

TABLE 16.

CASE 3

.1000.+01
.1000.+01
.0000,+00
.1000.,+01
.1000, +01
.1000,+01
. 0000, +00
.1000,+01
.1000,+01
.1000,+01
.0000,+00
. 1000, +01
.1000,+01
.1000,+01
.0000,+00
.1000,+01

CASE 4

L4771 .+00
.1900,400
.0000.+00
.1000.401
. 4350, +00
.8071.,+00
.0000.+00
.2025.+00
L4771 ,400
1595, +00
. 0000 ,+0Q
L9912 +00
. 4350, + 00
.8071,+00
.0000,+00
.2025,+00

Nor-norrmalized ciceonrows,

.3619.+00
. 0060, +00
.1000, +01
.1000.+01
.1000.+01
. 0000, +00

.

$619.,+00
1000, +61
3619,+00
0000, +00
1000,+01
1000.+01
1000, +01
0000, +00

.3619,+00

CASE 6

.1501,+00
.4501,+00
. 0000.+00
.1000,+ 01
.6068,-07
L7956, -07
. 0000 .,+00
-07
9243, -05
.9243.-05
0000,+00
.2149,-03
.2696 ,-07
.1176,-08
.0000,+00
.1160,-08

()
[
Vo
s
-
o

o
(63}

[\

I3
~

CASE 7

L4501 ,400
.43501,+00
. 0000, +00
.1000.+01
.6068.,-07
7936 ,-07
.0000,+00
L0488, -07
.9243,-05
.9243,-05
.0000.+00
.2149.-03
.2696,-07
.1176,-G8
.0000.+400
.1160,-08
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ENVECTOR

T

NORMALIZED EI(

<13
14
315
;wm

CASE 1
2887 . +00
L2887, +00

L0000, +00
L2887 .+ 00

L2587 ,+400
2887 ,+00
. 0000, 400
2887,400
. 2887.+400
2887,+00
.0000,+00
2887,+00
2887,+00
2887.+00
. 0000, +00
.2887,+00

[

CASE 2

RHO8,-01

L7686, -01
.0000 . .00
769~ =01
”auwa.ncd
L7666, -01
L0000, 4+ 00
7686 ,-01
4220, +00
.3891.,+00
0000,+00
3891,+00
4221,+00
3891.+00
.0000,+00
.3891.,+00

.

.

TABLE 17.

Cm e e e—— e o ———

L2RR7 400
L2587, +00
L0000, +00
L2587 400
L2387 .+00
2387 .4 00
0000, +00
2887 ,4 00
2887 .4 00
2337 ,+00
. 0000, +00
.2887,+00
.2887,+00
. 2887 ,+00
. 0000, +00
.2887,+00

Norsalivoeco

L0000,
L2028,
ASILL
L2096,
BRI
.6400,
L1010,
L5098,
. 0000,
L2397,
L4723,
L2450,
. 0000,
.0654,

Ccloonvecton:

00

=0l

100
+ (10O
+ 00
+ 00

.+ 00

-01
+00
-01
+00
+ 00
+00
+00
+00
-01

Q0
23657 .+00
L0000, + 00

B
t
{
~

CRAT7 000

2557

.+ 00
. +G0
0000, +00
2387 ,+00
L2887 ,+00
2537, +00
0000, +00
L2857 .+ 00
L2887 .,+00
.2887.+00
.0000.+00
L2887 ,+00

L2287

CASE 6

L0774+ 0D
LO774, 00
L0000, + 00
Lo771.400
L4527 -07
. 4527 ,-07
0000 ,+00
L4527 ,-07
L9089 .,-08
9089 ,-08
0000.+00
.9089,-08
L7242 ,-04
L7212 ,-04
.0000,+00
.7242 ,-04

CASE 7

LOTT,
L0774,
. 0000,
L7741,
.4527
L4527,
. 0000,
L4527,
.5089.
. 9089,
. 0000,
L9089,
L7242
.7242,
.0000,
.7242,

+ 00
+00
+00
+ 00

=07

-07
+00
-07
-08
-08
+00
-08
-04
-04
+00
-04
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TAILLE 18, Nevo OG0 e e s,

CASE 1 CASE 2 CASE O CASE 4 CASE 5 CASE 6 CASE 7
L2887 .00 L3660 500 L2837 .+00 L2748 ,400 L3254 .4 00 L6705 .+00 LO675.+00
.2887.,+00 L2026 .+00 L2887 ,+00 L1754, +00 L1957 .+ 00 LO675.+400 L0675.+00
. 0000, -00 L0000, 00 . 0000, 500 ,0000, 400 . 0000 ,+00 L0000, +00 L0000, +00
. 2887, +00 L2139 .+00 L2837 ,+00 L3979 .+ 00 La251.+400 .8545.+00 .8543.+00
. 2837 .+00 .3659.-00 L2887, +00 L27T7) 400 L3254 ,+00 .0181.-07 .0184.-07
. 2887 ,+00 .2488.,+00 . 2887 ,+00 L3574 .+00 .3254.400 6797 ,-07 .6797,-07
. 0000, +00 . 0000, +00 .0000.+00 .0000,+00 .0000.+00 .0000,+00 .0000,+00
L2837 ,+00 .23526,+00 . 2887 ,+00 .1790.,+00 . 1957 .+ 00 .2980.-07 .2980,-07
.2887,+00 .3659.,+00 .2887,+00 L2748 ,400 .3254,+060 .7896,-05 .7896,-05
.2887.+00 .2526,400 L2887 .+00 .17335,+00 .1957,+00 .7896,-05 . 7896, -05
.0000,+00 .0000.+00 .0000, +00 .0000,+00 .0000,+00 .0000,+00 .0000.,+00
.2887,+00 .2489,+00 .2887,+00 .3967,+00 .3254,+00 .1856.-03 .1806,-03
.2887,+00 .3659,+00 .2887,+00 .2771,+00 .3254,+4+00 .2303,-07 .2303,-07
.2887,400 .2488.+00 .2887,+00 .3574,+00 .3254.,+00 .1005,-08 .1005.,-08
.0000. +00 .0000,+00 .0000,+00 .0000,+00 .0000,+00 .0000.+00 .0000.+00
.2887.,+00 .2326,+00 .2887.+00 . 1790, +00 .1957.+00 .0913.-09 .9913,-09
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MAT2 (1,
MAT2(1,
MATZ2 (2.
MAT2 (2.
MATS (1,
MAT3 (1,
MAT. (2,
MAT. (2.

19} -

h/nl1~

1)
2)

+

NS0

167

167

\

+00

+00

67

CASE 2
L6285 .-06
425.-01
432, .00
.272.:00
425, -uil
.615.+00
.612,+00
LA67 400
L6335.+00
1.68

TABL

E 19.

167 .4+400
167 .+00
167,400

LL07.+00

500,400
167,
167,400
500.+00

1.67

Final

i+ 00
.0541.,400
.209 ,+00
,+00
.625,+00
169,401
. 889,-01

850 ,+00

2.01

resul te,

S SR WV

113,400
.847 . +00
L6688, 400
L2953, 00

.009.,+7:0

1.62

CASE 6
L 280,202
L1056, -04
L6005, -04
L6005, =04
.156,-04
.212,400
.281,+00
231,+00
12,400

1 21

251,400

212,+00

K75,.-01






B. Discussion of Results

The final results for the unperturbed dimensions of
the seven cases are shown in Table 16. Case one is an
example of both totally random configuration and random
conformation. The value of .<h27/n12 is entirely in-
dependent of the energies assumed for the totally random
case. This results from the fact that matrices M and N
(sce equations 14 and 15) are Adivided bv . the large
positive eigenvaluce of [Iz-rj& V- ][Z ] aad
that the normalized eigenvector and eigenrow arc uscd.
Case three is simply a check oun case one.

Case two has totally random configuration, totally
random first ncighbor interactions, all sccond ncighbor
2V interactions except one are random, and a distinction
is made between only the second neighbor 27V 1 inter-
actions (sce part A section two). This does not notice-
ably change the quantity (h2>/ﬂd2 from that obtained
tor the totally random case. This implies that for this
model the second neighbor interactions must be quite far
apart to noticeably effect the end-to-end dimension of
the polymer

In case four a distinction is made in both first and

second neighbor interaction energies while the configuration

is still kept random (sce part A section two). This has

.

a significant effect on the result. The rotational encr-

gies assumed were ''most probable™ values assigned aftcer

L S
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comparison of the first and second neighbor interactions
which arc depicted schematically in Tables 3 and 4. The
v 2y . .2 . . . v
value ot h >,n1 obtained in case tour (2.01) is es-
sentially that obtained by considering a freely rotating
polymethylene chain consisting of n bonds of identical
length 1 joined at tixed valence angles 0. -For large n
and a tetrahedrally bonded chain (8 - 109.57) a value of
-2, .2 . . . .
I' ‘nl” = 2 is obtained. Hence on a two dinmensional lat-
tice a value of 2 represents a reasonably expanded chain.

Cases &5, 6, and 7 are identical with respect to con-
formation but case 5 has a random configuration. while
case 6 has a preferred syndiotactic configuration. and
case 7 has a preferred isotactic contiguration. The re-
sult for case 5 is very close to the result obtained for
the totally random case. One would probably predict from
the inspection of the preferred configurations for cases

¢ § -k &

-
5. 6, and 7 ﬁ f_i -R

- / .R V4 ¢
that case 6 with a preferred syndiotactic configuration
. . L2

would have a bigher value ot <h%'u11 than a random case
while case 7 with a preferred isotactic configuration
would have a lower value than a random case.

The result for case 7 is in agreement with this
rcasoning while that for case 6 is not in agrcement.  Be-
cause of the disagreement of case 6 with this theory,
case 6 was run thru the various computer progrars a sccond

time. The same result was obtained in both determinations.

Ii‘ﬂ",‘. . o
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Fur ther study on the model in case 6 led to the idea that
the polyrer was actually running in a straight line for
a while nnd'then turning around and going back in the
direction in which it previously came. A schematic dia-

gram dcepicting this is shown in Figure 4.

7 :‘“M
’ A Y S ¢
A Y :
| L L
\
Y
Y
v . Y
VY ); \r
+ Y 4+ 7
A Y A Y
L

Figure 4

Schematic diagram depicting the polymer chain in case 6
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A three dimensional model would allow the polymer to

make many more moves than the square lattice and hence
the results would be different in many cases. If the
isotactic polymer in case 7 were allowed to procced in

three dimensions it would undoubtedly coil up and form

a helix with a longer end-to-end dimension.
These preliminary analyses have aroused more problems
and questions than they have answered. It would be ex- X
|
]

tremely interesting to determine the effect of temper-
ature on the end-to-end dimension., There are many more
different cases which would provide more information
about the polymer model. It would be quite bencficial
to have the matrices M and N (equations 14 and 195)
multiplied out in symbolic form so that one could sce
the positions of the favored conformations in the two

matrices.
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APPENDIX A
FIGURE 5
Diagram used to determine the sin-cosine transformation

matrices when the same coordinate system is used for

i
both bonds. Y Y

Cos = D/X

For 1 1 exchange X'S and y'S

X'=C+D = XCos + YSin X'= XCos - YSin

Y'=A-B =-XSin + YCos Y'= XSin + YCos

Cos Sin

Cos -Sin
-Sin Cos Sin

Cos




FIGURE 6
Diagram used to determine the sin-cosine transformation
matrices when different coordinate systems are used for

the two bonds. { ‘V
[

Y% 4

<
-
[

For d 1
Cos = A/Y
Sin = B/X )
Sin = C/Y
Cos = D/X For 1 d exchange Xx'S and y'°
X'=A-B = -XSin + YCos X'= XSin + YCos
Y'=C+D = XCos + YSin Y'= XCos - YS3in
-Sin Cos Sin Cos

Cos Sin Cos -Sin
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The values of the sin and cosine oi the four bond
angles are shown below,
angle 0 /2 b 37/2
sin 0 1 0 -1

cos 1 0 -1 0
.2 . | | .
Matrix 03143 is d d therefore the sin-cosine matrix

used is{ cos sh]

-sin cos
fﬂﬁng bond angle matrix
1 0 10
01
2 3w/2 0-1
10
3 T -1 0
0 -1
4 /2 01
-1 0
@
Matrix Div?l is 1 1 therefore the sin-cosine matrix
used is Jcos -sin
sin CcOsS
state bond angle matrix _
1 0 1 O
0 1
2 3n/2 0 1
-1 0
3 kg -1 0
0 -1
4 /2 0 -1

TR TERLW T s
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Matrix {pav*J is 1 d therefore the sin-cosine matrix
used 1is sin cos
cos -sin
state bond angle matrix B
1 0 0 1
1 O
2 37/2 -1 0
0 1
3 i 0o -1
-1 O
4 7/2 3 1 o
0 -1
o [ | | | .
Matrix DaV?l is d 1 therefore the sin-cosine matrix
used is [-sin cos
cos sin
state bond angle matrix
1 0 0 1
1 O
2 uTT/:.). 1 O
0 -1
3 T 0 -1
-1 0
4 /2 -1 O
0 1

But for matrix [03‘8
5] [,
[Dam‘r] - [Dg])’ﬂ]

S—
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APPENDIX B

BLOCK METHOD FOR DLTERMINING THE EIGENVALUES OF A MATRIX

A AA 00O
Let B = |A A A and 0= ]O0 0O as shown for
A AA 00O

case one in Table 10. The 12x12 matrix then becomes

5 0o 5 o]
0O B o B Upon solving for the eigenvalues(Y),
o B B the matrix becomes
B 0 B 0]
[B-Y O B 0
0] B-Y O B Which upon multiplication yields
(0] 3 -Y B
_B 0] B —YJ
B-y [6-y o 8 |1+ 8 [o 8-y B ]| =0
B -Y B 0) B B
0] 3 -Y B (0] -Y

Upon multiplying out further

B-v)2(Y2-8%) + (B-v) B 8% &+ B (B-v)(+8%) + B2(-8%) -0
2 ‘ ' S
52v2 —26y° + vyt - 8%, 283y -8%y? 4 8% - 82y 4 8% —Y%v-s
, .,
—28y" +y? -0 v’ (y-28) ~0. ¥=0,0,0,+28
A A A 111
But B ={A A A] , so28 =124 |111
AAA 111

The next step is to solve for the eigenvalues(x) ol the

-

byl matrix,
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Upon solving for the eigenvalues(x) the matrix becomes

1-x 1 1 Which upon multiplication becones

1 l1-x 1

1 1 1-x

(a-x) [a-x® -1 -1[a-x -1 ¢1[1 (1 \] -0

(1—x)(1-2x+x2-1) +X +x =0 -4.')\+‘{ s IX -\ ‘2\ -0
3x2—x3=0 —x2(x—1})--0 x=0,0,+3

Thereiore the twelve eigenvalues of ithe original 12 by 12

matrix are eleven zeros and 6A. Thus the largest positive

cigenvalue of [?27'] @3]” [22"}101 case 1 is 6A or

G6(2 57x10 8) which is 1.54x10°



APPINDIX C
ALGOL 53 COMPUTER T'ROCLDURES

COMM!'NT ITERATED VECTOR METHOD FOR CALCULATING THEL
LARGLEST POSITIVE LIGENVALUE OF A TWELVE BY TWELVE
MATRIX, THIS PROGRAM ALSO PRINTS OUT THLE CORRESPPONDING
EIGi NVECTOR AND LIGHNROW,
R. C. THOMAS:
INTEGER 1,J,K,L:
ARRAY TMATRIX(12,12) . MATRIN(12,12) PRESVECTOR(12) ,
PREVVECTOR(12) ,Y(12):
1.LO.. K L-0;

FOR I (1,1.12) PREVVECTOR(I) -0.0;:

PRESVICTOR(1)-1.0;

FOR J:=(2,1,12): PRESVECTOR(J)-0.0;

IZPUT MAT (FOR I=(1,1,12): FOR J (1,1,12):

MATRIX(I,J)):

READ (;;MAT):
Ll1.. K=K+l: IF K EQL 100: GO TO LO;

FOR I-(1,1,12":

BIGIN Y(I)=0.0;

FOR J-(1,1,12):

Y(I) = Y(I) + MATRIX (I,J).PRESVECTOR(J) IND:
L2.. LRG-0.0;

FOR 1:(1,1,12); BLGIN

IF Y(I) GTR LRG; BLEGIN

LRG = Y(I) END END;



LG..

L7..

WRITE( : ;LARGE ,FORML1) ;

OUTPUT LARGE (LRG);

FORMAT FORM1(B7,F11.5,%);

FOR I-=(1,1,12); PREVVECTOR(I) = PRESVECTOR(I):
FOR 1=(1,1,12); PRESVECTOR(I) = Y(I) 'LRG;

FOR 1=(1.1,12): BEGIN

IF (ABS(PRESVECTOR(1) - PREVVECTOR(I))GTR 0.00001):

GO L1 END:

FOR 1-(1,1,12): BEGIN
WRITE(: ; VECROW , FORML) ;

OUTPUT VECROW .J R+.SVECTOR(I)) END;
L=L+1 ; IF (L EQL 2); GO TO LO:
FOR I-(1,1,12). FOR J-(1,1,12);
TMATRIX(J,I) = MATRIX(I,J):

FOR I-(1,',12); FOR J-(1,1,12):
MATRIX(I,J) = TMATRIX(I,J):

GO TO L1:

FINISH;

R PP
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COMMENT THIS PROGRAM CALCULATES MATRICES M AND N. IT

ALSO PUNCHES OUT ON CARDS IN THE FOLLOWING ORDER MATRICES

N, (M+D2V), AND (E32-M)-1. (PHI2V)2.(D2V+1) AND

(PHI2V+1)2, (SIGMA2V+1)2x4 AND LEIG ARE READ I ON CARDS

IN THAT ORDER. R. C. THOMAS;

ARRAY MATA(32,32) ,MATB(32,32) ,MATC(32,32) ,MATD(32,32),

MATE(32,32) ;

INTFGER I,J,K,N;

PROCEDURE INVERTL (N,A(,)::ERR1): BEGIN

COMMENT INVERT A SQUARE MATRIX, IN PLACE, BY THE NBS
PIVOTAL ROW METHOD . INPUT CONSISTS OF THE ORDER
AND NAME OF THE MATRIX. OUTPUT IS THE INVERSE,
WITH THE SAME NAME., REFERENCE MUST INCLUDE A
STATEMENT LABEL TO WHICH A TRANSFER MAY BE MADE IF
THE MATRIX IS SINGULAR, A PRINT OUT STATING INVERSION
FAILURE WILL BE MADE.
NOTE THAT ARRAY DECLARATION ALLOWS FOR A MAXIMUM
MATRIX OF ORDER 30. IF LARGER ORDER IS NEEDED,
CHANGE ARRAY DECLARATIONS ACCORDINGLY.
AUTHOR - C.D. ALSTAD;

INTEGER I,J,K,L,50,N:

ARRAY ORDER(32),SAVE(32),SHIFT(32);

FORMAT FINV1(B10,*MATRIX SINGULAR, INVERSION FAILED*, WO0):

FOR I-(1,1,N); BEGIN ORDER(I) = O: SHIFT(I) = O END:

|| el



M1.

M2 ..

M3 ..

NSEFK.,., END M3 LEND M2; Z

M1,

MO..

w
[

FOR L = (1,1,N); BEGIN CHAMP = O;
FOR I = (1,1,N): BEGIN Z = A(I,1):

IF ABS(Z) GEQ ABS(CHAMP): BIGIN K = 1I:
FOR J - (1,1,L); IF ORDER(J) EQL K: GO ONSFEIK:

CHAMP = Z; ORDER(L) = K:

il

CHAMi’; K = ORDER(L):
IF CHAMP EQL O: BEGIN WRITHY (::FINV1): GO ERRLI I'ND:

D N VA

9

FOR J —(1.1,N-1):A(K,J,) = A(K,J+1) 'Z: A(K

FOR I ~(1,1.N); BEGIN IF I EQL K: GO MG: MULT A(I,1):

FOR J =(1,1,N-1); A(I,J) = A(I,J+1) = MULT.A(K,J):
ACI,N) - -MULT.A(K,6N):

END M4 END Ml;

COMMENT MA'"RIY “NOW INVERTED BUT SCRAMBLI.D, SO UNSCRAMBLE:

COMMENT UNSCRAMBLE ROWS: K 0

MR1..

MRZ2.

MR3. .

FOR L = (1,1,N); IF SHIFT(L) EQL O: GO MR2:

IF ORDER(L) EQL L; BIGIN SHIFT(L)-L:K = Kil:
IF K EQL N; GO MC4: GO MR1 END:

FOR J-(1,1,N); SAVE(J) = A(L,J): SJ - L;

I = ORDER(L); FOR J=(1,1,N): A(L,J) - A(I,J);
SHIFT(L) = I: L=I; K=K+1; IF K EQL N; GO MC4;
IF ORDER(L) NEQ SJ; GO MR3;

FOR J-(1,1,N); A(L,J) = SAVL(J):
SHIFT(L) = SJ; K = K+l:

IF K NEQ N; GO MR1;

TR AT w - e




COMMENT NOW UNSCRAMBLL COLUMNS;

MC4.. FOR I=(1,1,N): SHIFT(I) = O0: K -- O:

MC5.. FOR L-(1,1,N); IF SHIFT(L) EQL O: GO MCG:

MC6.. IF ORDER(L) EQL L: BEGIN SHIFT(L) = L; K-Kil.

IF K EQL N; GO MC9; GO MC5 END MC6:
FOR J~(1,1,N): SAVI(J) = A(J,L); SJ = L:
FOR I-(1,1,N): IF ORDER(K) EQL L; GO MC7:
MC7.. FOR J=(1,1,N); A(J L) = A(J,I):
SHIFT(L) - I: L = I: K = K+1; IF K EQL N: GO MC9;
FOR I =(1,1,N): IF ORDFR(I) EQL L: GO MCS:
MCS.. IF I NEQ SJ; GO MC7:
FOR J=(1,1,N); A(J,L) = SAVE(J);
SHIFT(L) = SJ; K = K+1; IF K NEQ N: GO MC5:

MC9.. RETURN END INVLRT1():

LOl.. FOR I=(1,1,32); FOR J (1,1,32); BEGIN MATA(I,J) -0.0;
MATB(I,J)=0.0; MATC(I,J)=0.0: MATD(I1,J) 0.0;
MATE(I,J)=0.0 END LO1;

LO2.. FOR I=(1,8,25): MATA(I,I)-1.0; FOR I-(2.8,26)
MATA(I,I)=1.0; FOR I=(5,8,29); MATA(I,I)-=-1.::
FOR I-(6,8,30); MATA(I,I)--1.0;
MATA(4,3)=1.0; MATA(3,4)=-1.0; MATA(7.8)=1.0:
MATA(8,7)=-1.0: MATA(11,12)=1.0; MATA(12,11) -1.0;:
MATA(16,15)=1.0: MATA(15,16)=-1.0;
FOR I=(1,1,32): MATB(I,I)-1.0:

LO3.. INPUT MAT1(FOR I=(1,1,8); FOR J-(1.,1,8); MATC(I,T)):

READ( ; : MAT1);



(@)
(1]

INPUT MAT2(FOR I=(9,1,16); FOR J=(9,1.16):
MATC(I,J)); READ(;;MAT2);
INPUT MAT3(FOR 1-(17,1,24): FOR J=(17,1,24);
MATC(I,J)); READ(:;MAT3);
INPUT MAT4(FOR I=(25,1,32): FOR J-(25,1,3<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>