
NOISE-SHAPING STOCHASTIC OPTIMIZATION AND ONLINE LEARNING WITH
APPLICATIONS TO DIGITALLY-ASSISTED ANALOG CIRCUITS

By

Ravi Krishna Shaga

A THESIS

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Electrical Engineering

2011



ABSTRACT

NOISE-SHAPING STOCHASTIC OPTIMIZATION AND ONLINE
LEARNING WITH APPLICATIONS TO DIGITALLY-ASSISTED ANALOG

CIRCUITS

By

Ravi Krishna Shaga

Analog circuits that use on-chip digital-to-analog converters for calibration use DSP based

algorithms for optimizing and calibrating the system parameters. However, the performance

of traditional online-gradient descent based optimization and calibration algorithms suffer

from artifacts due to quantization noise which adversely affects the real-time and precise

convergence to the desired parameters. This thesis proposes and analyzes a novel class of

on-line learning algorithms that can noise-shape the effect of quantization noise during the

adaptation procedure and in the process achieve faster spectral convergence compared to the

conventional quantized gradient-descent approach. We extend the proposed framework to

higher-order noise-shaping and derive criteria for achieving optimal system performance. The

thesis also explores the application of stochastic perturbative gradient descent techniques to

the proposed noise-shaping online learning framework where we show the performance of the

stochastic algorithm can be improved in the spectral domain.

The thesis applies the proposed optimization method for online calibration of subthresh-

old analog circuits where artifacts like mismatch and non-linearity are more pronounced.

Using measured results obtained from prototype fabricated in a 0.5µm CMOS process, we

demonstrate the robustness of the proposed algorithm for the task of: (a) compensating and

tracking of offset parameters; and (b) calibration of the center frequency of a sub-threshold

gm-C biquad filter.
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Chapter 1

Introduction

Optimization problems in real life are often dynamic in nature, i.e., they keep changing

with time. Therefore there is a need to continuously monitor the system and adapt to the

variations so that the system performance can be maximized or the losses minimized. From

a system level perspective, the block diagram of a generic online learning system is given in

Fig 1.1. The system is characterized by a performance index L called the ‘cost function’ or

the ‘loss function’ which can usually be controlled using a set of adjustable parameters θ.

An online learning system makes use of the previous experience of system output and tries

to adapt to the changing input by learning and correcting itself accordingly. The objective

of the learning system is to be able to predict the output of the system when a previously

unseen input stimuli occurs.

A learning algorithm can usually be modelled as an optimization problem where the set

of adjustable parameters θ need to be adapted in a way such that the loss function L is

minimized. Several different class of optimization algorithms are present in literature [1] [2].

The choice of the optimization method being used depends on the system characteristics,
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input output
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Figure 1.1: Schematic diagram of a generic online learning system

the performance index of the system and the constraints of optimization. Zeroth order

optimization algorithms like direct search algorithms make use of the direct measurements

of the loss function by moving the system adaptation parameter in the direction in which

the loss function decreases. First order optimization algorithms [3] depend on the first

order gradient measurement of the loss function to adapt the system parameters in the

direction of the steepest gradient descent. Second order optimization algorithms like Newtons

method make use of the information present in the hessian of the loss function to adapt

the optimization parameter. As the order of optimization algorithm increases, the rate of

convergence increases. But the requirement of the knowledge of higher order gradients puts

an additional cost on the optimization algorithms of higher order. Several other heuristic

and stochastic optimization techniques have been proposed in literature including genetic

algorithm optimization [4], simulated annealing [5], particle swarm optimization [6] and

reactive search algorithms [7] [8]. One of the most popular optimization techniques is the

gradient descent learning algorithm. It makes use of the fact that the loss function decreases

rapidly along the direction of the slope, imitating a greedy search algorithm in following the

steepest descent. One of the major drawback of the gradient descent algorithm is that it

2



converges to the local minimum point for small enough adaptation rate. So, the optimization

process is highly susceptible to the choice of the intial point used for the iterative updates.

Digitally assisted analog circuits make use of a A/D conversion step in the calibration of the

analog circuits. A conventional A/D converter like nyquist rate converters adds an additional

quantization noise to the system making the adaptation process susceptible to noise. This

results in a dramatic decrease in the performance of the learning algorithm with respect to

the convergence rate.

In this thesis, we propose a novel Σ∆ gradient-descent optimization algorithm which

can be used for online tracking of system parameters in real-time. The proposed algorithm

has superior performance as compared to the quantized gradient-descent algorithm as the

noise-shaping characteristics of the Σ∆ modulator suppress the inband quantization noise

and pushes it away into the higher frequency range. The out of band quantization noise can

be eliminated by using an appropriate lowpass filter. Also, if the input signal is sufficiently

random, the quantization stage of the modulator can be modeled as an additive white-

noise with flat power spectrum density. The randomness in the quantization noise actually

helps the optimization process by allowing the optimization parameter out of local minimum

neighborhood depending on the noise floor level. This enables a larger search space for the

optimization process. Although the global optimization is not guaranteed, the algorithm

is more robust than the ideal gradient descent which is known to converge to the local

minimum.

The remaining part of the thesis is organized as follows. In Chapter 2, mathematical

framework for the quantized version of a 1st order optimization algorithm using gradient

descent approach has been introduced. A novel Σ∆ gradient descent algorithm has been

3



proposed which makes use of the noise-shaping properties of the A/D modulator to achieve

better convergence properties. The effect of the adaptation parameter on the error rate

has been thoroughly studied. The performance enhancement of the proposed algorithm has

been validated through simulations on a speech sample from YOHO database. Chapter 3

generalizes the proposed algorithm to include a higher order loop filter and learning mech-

anism. Chapter 4 deals with gradient-free optimization algorithms (Finite-difference and

Simultaneous perturbation techniques) and the extension of the noise-shaping algorithm to

these cases. In Chapter 5, we introduce the practical problems (non-linearities, mismatches,

temperature variance) in the calibration of analog circuits operating in the subthreshold

region of operation. A single channel analog feature extractor implemented using bandpass

filter is studied. The Σ∆ learning algorithm is validated on hardware by (a) calibrating an

unbalanced first-order Σ∆ modulator for offset cancellation and (b) calibrating the center

frequency of a gm-C bandpass filter. Chapter 6 concludes the thesis with some final remarks

and observations.
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Chapter 2

Gradient Descent Optimization

2.1 Optimization problem

Consider a system where a stochastic parameter X introduces randomness in the measure-

ment of the objective function L(X; θ). Let θ be an adjustable parameter which can be

varied as a response to the change in parameter X . The optimization problem refers to

finding the optimal point θ∗ where the loss function given by L(X; θ) goes to a minimum,

i.e.,

θ∗ = argmin
θ
L(X; θ) (2.1)

Assuming that L(X; θ) is continuous and differentiable w.r.t θ, the partial derivative g(θ) is

given by

g(θ) =
∂L(X; θ)

∂θ
(2.2)

For the remainder of this chapter, the analysis assumes that the gradient of the loss function

exists and is readily available. The case when the gradient is not available or L(θ) is not

5



differentiable is discussed in Chapter 4. Also, the performance analysis is studied for a single

variable system but can be readily expanded to a multi-dimensional optimization problem

with θ ∈ Rp by using a vectorial representation.

2.1.1 Gradient Descent Algorithm

One of the most popular technique for optimization of the above problem is the gradient

descent algorithm, where at each step, the parameter θ is decreased in the direction of the

slope of the loss function L(X; θ). The iterative update

θn = θn−1 − εg(θn−1) (2.3)

converges the loss function to the minimum point given in eq.(2.1). Taking the summation

of the above equation to ∞, the optimal point θ∗ can be obtained to be

θ∗ = −ε
∞∑
k=1

g(θk) (2.4)

The effect of the choice of the learning rate ε on the convergence of the gradient descent

algorithm has been extensively studied in [9],[3]. If the choice of ε is too small, the opti-

mization takes longer time to converge. On the other hand, if the learning rate is too high,

the convergence is effected as the solution oscillates about the optima point. From Taylor’s

series first order approximation of g(θ) about the optima point θ∗, we get

g(θ) = g(θ∗) + (θ − θ∗)g
′
(θ) (2.5)

6



But for the optimal point θ∗, g(θ∗) = 0. Comparing the above equation with eq. (2.3), we

have

εn =
1

g
′
(θ)

(2.6)

which shows that the optimal learning rate is given by the inverse of the hessian of the loss

function.

One of the major drawbacks of the gradient descent approach is that depending on the

initial choice of the parameter θ, the algorithm converges to local minimum even in the

presence of a global minimum. It has been observed that by careful injection of noise to the

learning algorithm, the standard gradient descent converges to the global optimal point. The

idea behind deliberately adding noise comes from the fact that the stochastic nature of the

noise in the recursion would allow the algorithm to escape the θ neighborhood corresponding

to the local minimum.

2.1.2 Noisy Gradient Descent Algorithm

When an intentional noise qn is added to the gradient estimate, the gradient descent algo-

rithm takes the form:

θn ← θn−1 − ε[g(θn−1) + qn] (2.7)

Taking the summation of the above equation to ∞, the function L(θ) converges to its mini-

mum value at θ∗ given by:

θ∗ = −ε(
∞∑
k=1

g(θk) +
∞∑
k=1

qk) (2.8)

7
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Figure 2.1: Block diagram of the noisy gradient descent optimization algorithm

We consider the case when qn is additive white noise with a flat power spectral density. For a

zero mean random white noise, the second term in eq.(2.8) goes to zero, thereby converging to

the same optimal point as in the case of the noiseless gradient descent algorithm in eq. (2.4).

The conditions for convergence of the above algorithm have been studied in [13] and [16],

which prove the almost sure convergence of the algorithm when qn follows certain statistical

properties.

Fig. 2.1 shows the block diagram of the noisy gradient descent algorithm. Depending on

the choice of learning parameter, the final value of θ oscillates randomly about the optimal

point θ∗. In order to reduce the effect of the noise on the optimization, a simulated annealing

technique([11],[12]) has been studied in literature. A large value of the adaptation parameter

ε is initially choosen and is successively damped allowing the initial iterations to move θ out

of the local minimum neighborhood. As the number of iterations is increased, the adaptation

parameter goes to zero thereby decreasing the effect of the additive noise. The choice of the

noise floor level and annealing rate depends on the loss function that is to be minimized.

Care has to be taken to make sure that the adaptation parameter ε doesnot die down to zero

before reaching the global minimum point.The conditions for global minimum optimization

of stochastic gradient descent algorithm has been studied in [10]-[12].
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Figure 2.2: Block diagram of the first order noise-shaping gradient descent algorithm

2.1.3 Noise Shaping Gradient Descent Algorithm

In this thesis, we propose a new optimization algorithm which makes use of the noise shaping

properties of a Σ∆ modulator in finding the optima point. The iterative updates for the

optimization of θ through this new algorithm are given by:

ωn = ωn−1 +
(
g(θn−1)− dn

)
(2.9)

dn = ωn−1 + qn (2.10)

θn = θn−1 − εdn (2.11)

The proposed algorithm has better convergence properties compared to the noisy gradient-

descent algorithm. The architecture introduces a Σ∆ loop which shapes the quantization

noise qn before being used in the gradient-descent iteration. Fig.2.2 shows the block diagram

of the first order noise-shaped gradient descent algorithm.
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For a large number of iterations N , by taking the summation of eq. (2.11), we get

θN = θ0 − ε
N∑
k=1

dk (2.12)

But from the Σ∆ update of eqn.(2.9), if the intial state is ω0, the summation to N iterations

yields
N∑
k=1

dk =
N∑
k=1

g(θk) + ωN − ω0 (2.13)

As N tends to ∞, from the stability considerations of a first order Σ∆ modulator we get

|
∞∑
k=1

dk −
∞∑
k=1

g(θk)| ≤ 2‖g(θ)‖∞ (2.14)

which shows the asymptotic convergence of the algorithm to the optimal point θ∗.

We compare the performance of the above optimization to that of the noisy gradient descent

by studying the convergence properties of both the algorithms in the case of a signal tracking

problem. Consider the loss function in the case of the least mean square optimization problem

given by

L(t; θ) = lim
T→∞

1

T

∫ T

0

1

2
(y(t)− θ)2 dt (2.15)

where the signal that is to be tracked is a sinusoid, i.e., y(t) = sin(ωt). Fig.2.3 shows the

noise-shaping characteristics of the proposed algorithm which leads to better convergence

properties compared to the noisy gradient descent learning algorithm. For interpretation of

the references to color in this and all other figures, the reader is referred to the electronic

version of this thesis. In this simulation, the gradient of the loss function g(θ) is assumed

to be available for computation. The value of ε = 0.5 is chosen for the simulation. The
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magnitude response of the noisy gradient descent algorithm shows that the noise floor of

about 5dB corrupts the tracked signal θ. But in the case of Σ∆ modulator, the noise at

lower frequencies is clearly shaped out of the signal band of interest. By using a suitable

lowpass filter, the high frequency noise can be eliminated from the output.

The proposed Σ∆ algorithm is more robust to traps introduced by local minimum neigh-

borhood. Fig 2.4 shows the convergence of the algorithm to the global minimum even when

the ideal gradient descent algorithm converges to local minimum. The cost function under

consideration is L(θ) = −e−θ sin(θ4)

θ3
. The same initial point θ0 = 1.45 is used for both

the ideal and the Σ∆ gradient descent algorithm. The highly non-linear form of the loss

function causes the ideal gradient descent optimization to converge to the local minimum.

Whereas the addition of the noise qn enables the Σ∆ approach to avoid the local minimum

and converge to the global optimal solution. The global convergence of the algorithm is not

11



0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

Adaptation parameter θ

Lo
ss

 F
un

ct
io

n

Loss Function
Noise Shaping GD
Ideal Gradient Descent

Figure 2.4: Convergence of Noise shaping gradient descent algorithm to the global minimum

guaranteed, and depends highly on the loss function under consideration and the initial con-

ditions. But the addition of the noise randomizes the search process enabling more robust

global search properties.

Fig. 2.5 shows the real-time tracking performance of the algorithms with ε = 0.9. It can

be clearly seen that the Σ∆ learning has larger higher frequency spikes compared to the noisy

gradient-descent case showing that qn is shaped. But at lower frequencies, the Σ∆ algorithm

output follows the input signal more closely compared to the noisy gradient-descent case.

Fig. 2.6 shows that because of the addition of noise to the learning algorithm, there is

no penalty w.r.t the speed of convergence to the optimal point. The loss function under

consideration here is the same as in eq. (2.15), where y(t) = 1, a constant function.

Fig. 2.7 shows that the convergence of the noisy gradient descent algorithm depends

greatly on the noise floor of qn being added. As the magnitude of the noise level qn increases,
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the error in the estimation of θ increases. Whereas the highpass filter characteristics of the

noise shaping in Σ∆ learning reduces the noise qn in the signal band of interest, thereby

improving the convergence. Fig. 2.7(a) and (b) shows that as the noise floor level increases
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gradient descent algorithms for a noise floor of (a) 30dB, (b) 10dB, (c) -10dB and (d) -30dB

beyond the signal strength, the noisy gradient descent algorithm no longer converges to the

original signal. But the Σ∆ learning approach shows better convergence characteristics, as

the error is closer to the case of the ideal gradient descent algorithm.

In the next set of simulations, the performance of the noise induced algorithms is validated

on a sample speech utterance “26 81 57” taken from the YOHO speaker verification data

set. The speech sample at 8KHz is oversampled by OSR=128. Fig. 2.8 shows the FFT of the

original speech sample along with the performance of noisy gradient descent and Σ∆ gradient

14



Table 2.1: SNR (in dB) for different noise levels of the ideal, noisy and Σ∆ gradient descent
algorithms for a sample speech utterance ‘26 81 57’ from the YOHO database.

Optimization Algorithm Noise level SNR (in dB) SNR (in dB) SNR (in dB)
(in dB) ε = 0.1 ε = 0.5 ε = 0.9

Ideal Gradient Descent − 20.622 61.71 105.24

Noisy Gradient Descent -30 19.998 61.07 87.41

-10 16.241 41.36 44.31

10 -2.61 -1.91 -2.13

30 -46.09 -48.15 -46.15

Σ∆ Gradient Descent -30 20.01 61.42 101.74

-10 19.98 60.81 95.767

10 19.58 52.42 57.52

30 10.25 10.45 13.43

15



10
−4

10
−2

−150

−100

−50

0

50

Normalized Frequency

M
ag

ni
tu

de
 o

f s
ig

na
l (

dB
)

ω
c
 = ω

0
/OSR

Figure 2.8: FFT of the sample speech utterance “26 81 57” (in red) along with the noisy (in
blue) and Σ∆ (in green) learning algorithm

descent algorithms. It can be clearly seen that in signal band of interest (ωc = 8KHz), the

performance of the Σ∆ algorithm outweighs the performance of the noisy gradient descent

algorithm. Table 2.1 summarizes the Signal-to-Noise ratio of the output speech signal for

different noise floor levels in the case of the ideal, noisy and noise shaped gradient descent

algorithms.

2.2 Online Learning Example

In this section, we study in detail the performance of the gradient descent algorithms for an

online tracking system. The loss function under consideration is

L(x) = lim
T→∞

1

T

∫ T

0

1

2
{y(t)− x}2dt (2.16)
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where y(t) is the signal that is being tracked by the parameter x. The loss function is being

optimized with respect to x in real-time. The gradient in this case is given by

g(x) = lim
T→∞

1

T

∫ T

0
{y(t)− x}dt (2.17)

The mathematical model for the error is derived for each of the algorithm.

2.2.1 Gradient Descent Tracking

The gradient descent algorithm attempts to track the input y(t) by moving in the direction

of the gradient given by g(x). At time index n, the update for the tracking signal x is given

by

xn = xn−1 + ε
(
yn − xn−1

)
(2.18)

where ε is the step size.

Taking the Z-transform on both sides of eq. (2.18), we have

X(z) = z−1X(z) + ε
(
Y (z)− z−1X(z)

)
(2.19)

which gives

X(z) =
ε

1− (1− ε)z−1
Y (z) (2.20)

The error function E(z) would become

E(z) = Y (z)−X(z) (2.21)

=
(1− ε)(1− z−1)

1− (1− ε)z−1
Y (z) (2.22)
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Replacing 1− ε by α we have,

E(z) =
α(1− z−1)

1− αz−1
Y (z) (2.23)

For frequency ω � ω0 , replacing z−1 = 1− j ωω0

E(jω) =
αj ωω0

(1− α) + jα ω
ω0

Y (jω) (2.24)

Taking the magnitude of the relative error, we have

|E(jω)|
|Y (jω)|

=
α ω
ω0(

(1− α)2 + α2ω2

ω2
0

)1
2

(2.25)

Replacing ω
′
0 = 1−α

α ω0, we get

|E(jω)|
|Y (jω)|

=

ω

ω
′
01 + ω2

ω
′2
0

1
2

(2.26)

The choice of the adaptation parameter ε effects the error magnitude of the gradient

descent learning. Fig. 2.9 shows the real-time learning results of the tracking problem when

the input signal is a tone given by y(t) = sin(ωt). For ε = 0.01 the adaptation is not fast

enough to track the input y(t). As the value of epsilon decreases, the learning becomes less

efficient. Eq. (2.6) shows that the optimal value of ε is given by the inverse of the hessian.

In this case of the tracking problem, the hessian of the loss function is
∂2L(x)

∂x2 =
∂g(x)
∂x

= 1.
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Therefore, the optimal value of the learning parameter is ε = 1, in which case the output x

perfectly tracks the input signal y(t).

Fig. 2.10 gives a quantitative estimate of the relative error
|E(jω)|
|Y (jω)| in the estimate of

x with respect to the variation of α. For a given value of the adaptation parameter ε, the

error E(z) increases linearly with the input signal frequency ω before saturating at a cutoff

frequency ω
′

given by

ω
′
0 =

1− α
α

ω0 (2.27)

where ω0 is the sampling rate. It can be seen that for α→ 0, the error magnitude decreases

to zero.
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2.2.2 Effect of Quantization

In online learning of most analog circuits, the gradient is digitized using an Analog-to-Digital

converter(ADC) before it is used for updating the learning parameter. The digitization of the

input signal introduces an additional quantization error in the estimate of the system param-

eter. The quantized gradient descent algorithm can be modeled by adding the quantization

noise qn to the ideal gradient estimate according to

xn = xn−1 + ε(yn − xn−1) + εqn (2.28)

Although the quantization noise qn is a stochastic random process, we consider the case

20



of one particular realization of qn. Taking the z-transform of the above equation, we get

X(z) =
ε

1− (1− ε)z−1
(Y (z) +Q(z)) (2.29)

where Q(z) is the z-transform of the realization of quantization noise qn. The error function

E(z) would be given by :

E(z) =
α(1− z−1)

1− αz−1
Y (z) +

1− α
1− αz−1

Q(z) (2.30)

Comparing it to eq. (2.23), we see that quantization of the input signal adds an additional

component of error Eq(z) to the gradient descent case, given by

Eq(z) =
1− α

1− αz−1
Q(z) (2.31)

As in the case of the ideal gradient descent, replacing z−1 = 1 − j ωω0
for frequency

ω � ω0, and taking the power spectral density(PSD) of the error, we get

|Eq(jω)|
|Q(jω)|

=
(1− α)(

(1− α)2 + α2ω2

ω2
0

)1
2

(2.32)

where the PSD is defined as |a| = (aa∗)
1
2 . The additional error Eq(z) added because of the

quantization is therefore,

|Eq(jω)|
|Q(jω)|

=
11 + ω2

ω
′2
0

1
2

(2.33)
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where ω
′
0 = 1−α

α ω0.

Fig 2.11 shows the variation of the relative error due to the quantization process Eq(z)

and also the signal error Ey(z) from the ideal gradient descent for a particular value of α. The

eq. (2.31) shows that for a given α the error component Eq(z) has low pass characteristics

with respect to the quantization error qn. The cutoff frequency ω
′
0 is the same as in the

ideal gradient descent case and the quantization error decreases after ω
′
0. Depending on the

statistics of the input signal, a particular value of α can be choosen inorder to reduce the

overall error in the quantized gradient case.

The error qn introduced by the quantization of the input signal can be assumed to be

uncorrelated with the input y(t) if the sampling rate ω0 is much higher than ω. Under this

condition, the error qn can be approximated to white noise with a uniform power spectral

density. Fig. 2.12 shows the variation of the noise floor of the quantization error qn with
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Figure 2.12: Variation of Noise floor (in dB) with increase in no. of quantization bits

increase in the number of quantization bits for both a random input signal and tone. For

every one bit increment in the quantizer, the noise floor due to quantization reduces by 6dB.

As the number of quantization bits increases, the relative error due to quantization process

decreases.

2.2.3 Σ∆ Gradient Descent Algorithm

The mathematical model for the Σ∆ learning system in the case of the learning problem is

given by

wn = wn−1 + (yn − xn)− dn (2.34)

dn = wn−1 + qn (2.35)

xn+1 = xn − εdn (2.36)
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Replacing n by n− 1 in the above iteration, we get

wn−1 = wn−2 + (yn−1 − xn−1)− dn−1 (2.37)

which gives,

dn = (yn−1 − xn−1) + (qn − qn−1) (2.38)

Substituting the above equation back in eq. (2.36) we get

xn = xn−1 + ε(yn−1 − xn−1) + ε(qn − qn−1) (2.39)

For one particular realization of the quantization noise qn, taking the z-transform of the

above equation we have,

X(z) =
ε

1− αz−1
Y (z) +

ε(1− z−1)

1− αz−1
Q(z) (2.40)

The error function E(z) is given by

E(z) =

(
ε

1− αz−1
− 1

)
Y (z) +

ε(1− z−1)

1− αz−1
Q(z) (2.41)

E(z) =
1− z−1

1− αz−1
(αY (z) + εQ(z)) (2.42)

The contribution of the error from quantization of the signal Eqz in the Σ∆ gradient descent

case is given by

Eq(z) =
ε(1− z−1)

1− αz−1
Q(z) (2.43)

As in the case of the ideal gradient descent, replacing z−1 = 1 − j ωω0
for frequency
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ω � ω0, and taking the power spectral density(PSD) of the error, we get

|Eq(jω)|
|Q(jω)|

=
(1− α) ωω0(

(1− α)2 + α2ω2

ω2
0

)1
2

(2.44)

Replacing ω
′
0 = 1−α

α ω0, we have

|Eq(jω)|
|Q(jω)|

=

(
1− α
α

) ω

ω
′
01 +

 ω

ω
′
0

2


1
2

(2.45)

Fig. 2.13 shows the comparison of the error due to quantization in the case of noisy

gradient descent (in red) and the Σ∆ gradient descent algorithm (in green). Eq. (2.43)
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shows that for a given value of the adaptation parameter α, the quantization error has

highpass characteristics with a cutoff frequency ω
′
0. Also, it can be clearly seen that the

quantization error noise floor decreases with increase in the value of α. For a input signal

with known characteristics, a proper choice of α can be made to reduce the overall error due

to the signal and quantization error components.

Fig. 2.14 and 2.15 compare the error convergence of the three algorithms with the vari-

ation of the adaptation rate ε for a 1-bit and 4-bit quantizer respectively. The simulation

results validate the error analysis described in the previous sections. For the quantized gra-

dient descent learning algorithm, the overall error increases as the value of ε increases. On

the other hand, for the Σ∆ gradient descent approach, the noise shaping characteristics can

be clearly seen and the overall error actually decreases with increase in the value of ε. In

Fig. 2.14(d) and 2.15(d) the error in the case of ideal gradient descent is zero and is not

plotted.

Fig. 2.16 shows the variation of the error convergence of all the three optimization al-

gorithms with change in the number of quantization bits for a constant ε = 0.5. As the

quantization bits increases, we see that the error decreases in both the quantized and the

Σ∆ algorithms. This is because the noise floor due to the quantization error decreases with

increase in the number of bits of quantization as shown in fig 2.12.

In the next set of simulations, the signal-to-noise(SNR) ratio of each of the algorithms

is calculated by using a tone at ω = 0.01ω0. The output from each optimization algorithm

is low pass filtered and the SNR is calculated. Fig. 2.17 shows how the SNR varies as a

function of the adaptation parameter ε for different values of the quantization bits. It can

be observed that the SNR of Σ∆ learning algorithm is much closer in performance to the
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Table 2.2: SNR (in dB) for different quantization levels of the different optimization algo-
rithms on a sample speech utterance “26 81 57”.

Optimization Algorithm Quantization levels SNR (in dB) SNR (in dB) SNR (in dB)

ε = 0.1 ε = 0.5 ε = 0.9

Ideal Gradient Descent − 20.622 61.39 105.24

Quantized Gradient Descent 1 -9.87 -44.13 -56.27

2 6.03 -29.59 -41.93

4 37.60 0.734 -12.51

8 22.27 63.08 51.17

Σ∆ Gradient Descent 1 21.54 25.80 12.40

2 20.50 43.93 28.26

4 20.15 60.16 69.51

8 20.04 61.19 102.5

ideal gradient descent case. The variation of the SNR with respect to the no. of bits of

quantization is shown in Fig. 2.18 for different values of ε.

In the next set of simulations, the performance of the quantized gradient descent and

Σ∆ algorithm is validated on the same sample speech utterance “26 81 57” used in the

previous section. The oversampling ratio is still set at OSR = 128. Table 2.2 summarizes

the Signal-to-Noise ratio of the output speech signal for different levels of quantization in

the case of the ideal, noisy and noise shaped gradient descent algorithms.
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Figure 2.14: Error(in dB) vs normalized frequency of ideal gradient descent(in black), quan-
tized gradient descent(in blue) and 1st order Σ∆ gradient descent (in red) optimization al-
gorithms with a 1-bit quantizer for a (a) ε = 0.1,(b) ε = 0.2,(c) ε = 0.5 and (d) ε = 1.0
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Figure 2.15: Error(in dB) vs normalized frequency of ideal gradient descent(in black), quan-
tized gradient descent (in blue) and 1st order Σ∆ gradient descent (in red) optimization
algorithms with a 4-bit quantizer for a (a) ε = 0.1,(b) ε = 0.2,(c) ε = 0.5 and (d) ε = 1.0
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Figure 2.17: SNR(in dB) vs adaptation parameter ε of gradient descent, quantized gradient
descent and 1st order Σ∆ gradient descent optimization algorithms with a n-bit quantizer for
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descent and 1st order Σ∆ gradient descent optimization algorithms for (a) ε=0.2,(b)ε=0.5,(c)
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Chapter 3

Generalized Noise Shaping Algorithm

The Σ∆ gradient descent learning algorithm introduced in the previous chapter made use

of a simple first order integrator as the loop filter. Also a simple first-order gradient descent

approximation method was used in the estimation of the updated optimization parameter. In

this chapter, we generalize the same algortihm by using a higher order loop filter for the Σ∆

modulation stage and a generalized learning filter for the optimization parameter update.

The loss function L(θ) under consideration is assumed to be continuous and differentiable

with g(θ) being the partial derivative of L(θ) with respect to the optimization parameter θ.

Fig. 3.1 shows the block diagram of the generalized noise-shaping learning algorithm. The

generalized loop filter for the Σ∆ modulation stage is H(z) and the feedback learning filter

is F (z).

The output Y (z) of the modulator stage is given by

Y (z) = H(z)[g(θ)− Y (z)] +Q(z) (3.1)
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Figure 3.1: Generalized block diagram of the Σ∆ gradient descent algorithm

which gives

Y (z) =

(
H(z)

1 +H(z)

)
g(θ) +

(
1

1 +H(z)

)
Q(z) (3.2)

When the parameter estimate θ is close enough to the optimal solution θ∗, the Taylor’s series

expansion of g(θ) about the root θ∗ gives

g(θ) = g(θ∗) + (θ − θ∗)g
′
(θ∗) (3.3)

As θ∗ is the root of g(θ), g(θ∗) = 0. Replacing (θ − θ∗) as a new error variable Θ we get,

g(θ) = Θg
′
(θ∗) (3.4)

Replacing eq. (3.4) in eq. (3.2),

Y (z) =
H(z)Θg

′
(θ∗)

1 +H(z)
+

Q(z)

1 +H(z)
(3.5)
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The feedback path in fig. 3.1 shows that the learning update of Θ can be written as

Θ(z) = εF (z)Y (z) (3.6)

Substituting it back in eq. (3.5), we have

Θ(z) =
εg
′
(θ∗)H(z)F (z)Θ(z) + εF (z)Q(z)

1 +H(z)
(3.7)

which gives

Θ(z) =
εF (z)Q(z)

1 +H(z)− εg′(θ∗)H(z)F (z)
(3.8)

The above equation shows the dependancy of the error estimate Θ as a function of the

quantization error Q(z) in the generalized form of noise shaping algorithm. The error transfer

function w.r.t quantization noise Θq(z) is given by

Θq(z) =
Θ(z)

Q(z)
(3.9)

Θq(z) =
εF (z)

1 +H(z)− εg′(θ∗)H(z)F (z)
(3.10)

The magnitude of the error is given by

|Θ(z)| = ε∣∣∣∣ 1
F (z)

+
H(z)
F (z)

− εg′(θ∗)H(z)

∣∣∣∣ |Q(z)| (3.11)

From eq. (3.11), depending on the statistics of the loss function being minimzed, proper

choice of the loop filter H(z) and feedback learning filter F (z) can be made.
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3.1 Higher Order Σ∆ Modulation

The fundamental ideas of noise-shaping of Σ∆ modulator used in gradient descent algorithms

can be extended to the use of higher order modulation. The schematic diagram of a second-

order modulator is shown in fig. 3.2. The structure makes use of two integrators H1(z) and

H2(z) as opposed to just one used in first order Σ∆ modulation. The error signal at the

end of first integration stage is used as the input for the second integrator to achieve higher

resolution than a simple first order modulator. From the z-domain analysis of the second

++ +

− −

X(z)

Y(z)

��(z) ��(z)

�
��

Q(z)
��(z) ��(z)

Figure 3.2: Block diagram of a second order sigma-delta modulator

order Σ∆ modulator, the output of the first integrator stage w1(z) can be written as

w1(z) =
(
X(z)− z−1Y (z)

)
H1(z) (3.12)

and the output w2(z) of the second integrator can be written as

w2(z) =
(
w1(z)− z−1Y (z)

)
H2(z) (3.13)

The quantization at the output stage is modelled by using an additive noise Q(z). The

output of the modulator Y (z) is given by

Y (z) = w2(z) +Q(z) (3.14)
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From the above three equations, eliminating the variables w1(z) and w2(z), we get

Y (z) =
H1(z)H2(z)

1 + z−1H2(z)(1 +H1(z))
X(z) +

1

1 + z−1H2(z)(1 +H1(z))
Q(z) (3.15)

Replacing the value of H1(z) and H2(z) by the integrator z-domain transfer function

H1(z) = H2(z) =
1

1− z−1
(3.16)

in eqn. (3.15), we have

Y (z) = z−1X(z) + (1− z−1)2Q(z) (3.17)

which gives the noise transfer function(NTF) as (1 − z−1)2. The second order modulator

provides more quantization noise suppression over low frequency signal band compared to

the first order modulator, thereby giving higher resolution of the output signal. The second

order modulator shown in fig. 3.2 can be extended to a higher order modulator by using

L integrators in succession. The noise transfer function NTF of such a modulator can be

derived to be of the form

NTF =
Y (z)

Q(z)
= (1− z−1)L (3.18)

Figure 3.3 shows the improvement in the noise-shaping characteristics of a Σ∆ modulator

as the order of modulator increases. It can be shown that for a given oversampling ratio,

the resolution of the modulator increases by 6dB or 1 bit as the order increases.

The noise shaping characteristics of the higher order modulators can be exploited in the

optimization of the learning system introduced in Section 2.2. Fig 3.4 shows the performance

of the Σ∆ gradient descent algorithm when the loop filter H(z) in fig 3.1 is replaced by a
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Figure 3.3: Noise transfer function(NTF) of a first, second and third order Σ∆ modulator

higher order Σ∆ modulator. The figure clearly shows that the tracking error decreases as

the order of the Σ∆ modulator increases. For a given oversampling ratio, the SNR of the

output increases by 6dB or 1-bit when the order of the Σ∆ modulator increases by one.

3.2 Batch Gradient Descent Optimization

The online gradient descent algorithm introduced in eq. (2.3) uses only the instantaneous

value of the gradient for optimization. In the case of noise corrupted signals, a better estimate

of the gradient direction can be got by using the knowledge of gradient direction from

previous iterations [17]. More precisely, for the standard first order Σ∆ optimization, the

feedback learning transfer function F(z) from fig. 3.1 can be used to accommodate previous

values of the output pulse d in the gradient estimate. We consider the case of batch gradient

descent when the learning parameter θ is updated using the previous two values of Σ∆
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modulator output. The update for the parameter θ using gradient descent algorithm in this

case is given by

θn = θn−1 − ε(dn + dn−1) (3.19)

Taking the z-transform of the above equation, we have

(1− z−1)Θ(z) = ε(1 + z−1)D(z) (3.20)

which gives

Θ(z) = ε
(1 + z−1)

(1− z−1)
D(z) (3.21)

Comparing it to the eqn. (3.6), the feedback learning transfer function F (z) is given by

F (z) =
(1 + z−1)

(1− z−1)
(3.22)
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For a first order sigma delta modulator, the loop transfer function H(z) is given by

H(z) =
z−1

(1− z−1)
(3.23)

Substituting eqns (3.22) and (3.23) back in the generalized error equation (3.10),the error

transfer function Θ(z) becomes

Θ(z) = ε
1− z−2

(1− ε)− (1 + ε)z−1
Q(z) (3.24)

Fig. 3.5 shows the noise shaping characteristics of the above batch optimization technique

compared to the standard quantization gradient descent approach. The quantization noise

level at lower frequencies is attenuated in the batch gradient descent algorithm whereas

for the quantized gradient descent case, the noise floor is fairly constant throughout the

frequency range.
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Fig. 3.6 shows the results when batch gradient descent algorithm is used for optimization

of the tracking problem discussed in Section 2.2. The figure clearly shows that at lower

signal frequencies, the batch gradient descent has a much lower error as compared to the

Σ∆ version of the algorithm.
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Chapter 4

Gradient-Free Stochastic

Optimization

In many real-life applications, the functional relationship between the optimization param-

eters and the loss function measurements is not readily available. The gradient based op-

timization algorithms discussed in Chapter 2 assume that such a relationship exists and

that the gradient can be readily computed based on the relationship. But in many complex

systems such as problems dealing with adaptive control, image restoration from noisy data,

training of neural networks and discrete-event systems the gradient measurement is either

not possible or computationally expensive. The models representing such complex system

may be highly inaccurate and not dependable. In such cases, several gradient-less algorithms

have been proposed in literature which make use of direct loss function measurements instead

of the gradient measurement. Direct search algorithms refers to the class of optimization

techniques which donot require the gradient value in the estimate of the optimal value. Pat-

tern search algorithm [1], Nelder-Mead simplex algorithm [14], Rosenbrock algorithm [15]
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are some of the popular zeroth order optimization techniques which make use of only the

loss function measurement in the optimization. The general idea behind these algorithms

is that the optimization parameter is moved in the direction in which the loss function is

decreasing.

Another class of gradient-free algorithms like Keifer-Wolfowitz finite-difference approxima-

tion(FDSA) and Simulataneous Perturbation Stochastic Approximation(SPSA) attempt at

finding the approximation to the gradient using only the loss function measurement. These

gradient approximation algorithms lead to asymptotic convergence of the parameter esti-

mate to the optimal solution. The problem with such algorithms though lies in the fact that

the convergence of these gradient-approximation algorithms is usually slower than that of

gradient based algortihms [18]. But depending on the loss function that is being considered,

the cost of evaluating the gradient may outweigh the speed of the gradient based algorithms

in which case gradient-approximation algorithms become handy. In this Chapter, we extend

the noise shaping optimization technique introduced in Chapter 2 to the case when only the

loss function measurement can be made and the gradient is not available. We introduce the

Σ∆ optimization framework into the gradient-free algorithms discussed above.

4.1 Finite Difference Stochastic Approximation

Consider the optimization of a system with p adjustable parameters and let the objective

function be L(θ). Here the optimization parameter θ is a p-dimensional vector such that

θ ∈ Rp, where p > 1. If ĝ(θ) represents the approximation of the gradient made by using the

loss function measurements, then the approximation can be used in the iterative learning of
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the optimization parameter θ using gradient descent method as follows:

θkn+1 = θkn − εnĝk(θkn) (4.1)

Here, the index n represents the iteration number and the index k represents the kth element

of the vector θ, k ∈ {1, 2, ..., p}. In the finite difference approximation method, each of the

gradient ĝk with respect to the kth element is calculated by perturbing the parameter θ along

the direction of the unit vector uk representing the direction of θk. The approximation can

either be uni-directional or bi-directional with respect to the unit vector uk. In the case of

bi-directional estimation, the finite-difference approximation is given by

ĝk(θn) =
L(θn + cnu

k)− L(θn − cnuk)

2cn
(4.2)

In the case of finite-difference approximation of ĝ(θ), at each iteration 2p number of

evaluations of the loss function need to be made to get the complete gradient estimate along

all the p-dimensions.

4.2 Simultaneous Perturbation Stochastic Approxima-

tion

In the case of simultaneous perturbation approximation of the gradient ĝ(θ), the vector θ is

perturbed simultaneously along all the p-dimensions instead of individually evaluating the

loss function across each dimension. The SPSA approximation of the gradient makes use of

the fact that a properly generated random change of the vector θ contains the same amount
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Figure 4.1: Block diagram of the Σ∆ SPSA gradient descent algorithm

of information about the gradient as in the case of p perturbations of the same vector θ along

each dimension. The gradient estimate in the case of SPSA is given by

ĝk(θn) =
L(θn + cn∆n)− L(θn − cn∆n)

2cn∆kn
(4.3)

where ∆n is the perturbation vector along all the p-dimensions. Imposing certain statistical

conditions on cn, ∆n and gain sequence εn [20], the SPSA algorithm is known to converge

asymptotically to the optimal solution θ → θ∗. One particular choice of ∆n known to aid

the convergene is a bernoulli sequence {±1}. The SPSA algorithm gains heavily over the

finite difference method as only 2 measurements of the loss function are required to calculate

the gradient along all the dimensions p. The convergence rate of both the algorithms is the

same.

In this chapter, we extend the Σ∆ gradient approximation framework from chapter 2

to the estimation of gradient using SPSA. As the true gradient g(θ) is not available, the

approximation ĝ(θ) generated by either SPSA (eq. (4.3)) or FDSA (eq. (4.2)) can be used

in the noise-shaping optimization. Fig. 4.1 shows the block diagram of the SPSA algorithm
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introduced into the Σ∆ optimization framework. The mathematical model for the stochastic

optimization is given by

ωn ← ωn−1 + [ĝn(θn)− dn] (4.4)

dn ← Q(ωn−1) (4.5)

θn ← θn−1 − εdn (4.6)

where all the variables are in vector format of dimension p. For a single-level quantizer the

quantization function Q(.) is given by dn = sgn(.), in which case dn becomes a Bernoulli

sequence {±1}. We can replace ∆n by dn. As dn is a single bit quantizer, eq. (4.4) can be

written as

ωn = ωn−1 +

[
L(θn + cndn)− L(θn − cndn)

2cndkn
− dn

]
(4.7)

which gives

ωn = ωn−1 + [L(θn + cndn)− L(θn − cndn)− 2cn]
dn
2cn

(4.8)

The above equation shows that there is no need to generate the random direction vector ∆n

as the output bit stream of the modulator itself can be used as the direction of perturbation.

Fig. 4.2 shows that infact for the optimization of a simple enough loss function, the per-

formance of the Σ∆ SPSA gradient descent algorithm is as good as an ideal gradient descent

algorithm with respect to the rate of convergence. The loss function under consideration is

L(t; θ1, θ2) =
1

2
(y(t)− θ1x1(t)− θ2x2(t))2 (4.9)

where the input signal y(t) = a1sin(ω1t) + a2sin(ω2t) was choosen as a mixture of two
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different tones at ω1 and ω2. The optimization aims at finding the magnitude of a particular

frequency signal present in the input y(t). From the simulations in fig 4.2 it can indeed be

seen that the Σ∆ SPSA gradient algorithm also converges the values of θ1,θ2 to a1,a2

respectively.
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Fig 4.3 shows the performance of the Σ∆ gradient descent algorithm with gradient es-

timated from the SPSA as opposed to the quantized version of the SPSA gradient. The

noise-shaping characteristics of the Σ∆ learning algorithm discussed in the previous chapters

is preserved even if the gradient is approximated through stochastic perturbation methods.
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Chapter 5

Application to Analog Circuit

Calibration

As opposed to digital circuits, the performance of fabricated prototypes of analog circuits

usually has a high degree of variance from the expected nature. This effect is even more

pronounced in subthreshold analog circuits. But low-power operation and direct interfacing

to the real world signals make analog circuits indispensable in any practical design. De-

pendance of transistor characteristics on temperature,process variations and mismatches in

different components on the die make calibration of analog circuits even more difficult [23].

Digitally-assisted calibration techniques have been proposed in literature to calibrate analog

circuits [21], [22]. But the use of A/D conversion introduces unnecessary quantization noise

in the calibration process making them not feasible for use in calibrating analog circuits

operating in subthreshold region because of the high amount of non-linearity and mismatch

in such systems.

In this chapter, we present the hardware realization of the noise shaping optimization
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framework discussed in previous chapters.We introduce it as an online learning algorithm

to calibrate a feature extraction unit that was developed for speaker verification purposes.

The feature extraction unit consists of a bandpass filter stage, a rectification stage and a Σ∆

modulator is used to measure the magnitude envelope of the speech signal in each frequency

band. Each of the stages is described in detail and the problems arising in the calibration

of the Σ∆ modulator and the bandpass filter stages are discussed.The variability of the

circuit performance especially in subthreshold region of operation due to mismatch in device

parameters is also studied. The optimization framework is validated on the fabricated chip

for two different cases, (a)for balancing an unbalanced Σ∆ modulator and (b)the center

frequency calibration of a bandpass filter.

5.1 Analog Circuit Design of a Spectral Feature Ex-

tractor

The block diagram of a single-channel in analog spectral feature extraction unit along with

the calibration circuit is shown in figure 5.1. It consists of a bandpass filter stage, rectifica-

tion stage and a Σ∆ modulator. The bandpass filter captures only the in-band frequency

component of the input speech signal. The rectification stage gives the magnitude envelope

of the filtered speech signal. The modulator in each channel generates a bit-stream propor-

tional to the energy of the speech signal in that particular frequency band. This bit-stream is

used as features for speaker verification purposes. Each of the above blocks are programmed

with the help of serial-in current DACs.
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Figure 5.1: Block diagram of the feature extraction unit used in speaker verification system

5.1.1 Bandpass Filter Realization

Figure 5.2 shows the realization of the bandpass filter stage using gm − C filter design.

The transconductors used for realization of the filter are described in the next section. The

output current of each of the transconductors in fig. 5.2 are given by:

i1 = gm1Vin (5.1)

i2 = gm2(Vlp − Vbp) (5.2)

i3 = −gm3Vbp (5.3)

The currents through the capacitors C1,C2 are given by

i1 + i2 = C1sVbp (5.4)

i3 = C2sVlp (5.5)

Putting together eqns. (5.1)- (5.5) and solving for the bandpass filter output vbp(s), we
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get

Vbp(s) =

gm1
C1

s

s2 +
gm2
C1

s+
gm2gm3
C1C2

Vin(s) (5.6)

The transfer function of a generic second-order bandpass filter with center frequency ω0,

quality factor Q and gain G is given by

H(s) =
G
ω0
Q s

s2 +
ω0
Q s+ ω2

0

(5.7)

Comparing eqn. (5.6) and (5.7), we have the expressions for center frequency ω0, gain

G and quality factor Q as following:

ω0 =

√
gm2gm3
C1C2

(5.8)

Q =

√
C1gm3
C2gm1

(5.9)

G =
gm1
gm2

(5.10)

Equations (5.8)- (5.10) show that there is a non-linear relationship between biasing parame-

ters gm1, gm2, gm3 and the desired performance of the bandpass filter given by ω0,Q and G.

This gives rise to difficulty in programming the bandpass filter to its desired operating point.

Considering the problems with subthreshold operation of the filters and the DACs used to

calibrate them, this non-linear relationship increases the complexity of programming.

5.1.2 Transconductor

Fig. 5.3 shows the schematic diagram of the transconductor circuit used in the realization

of the bandpass filter described above. The output current of the transcondutor is di-
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Figure 5.2: Schematic diagram of the gm-C biquad filter with the bandpass filter output

rectly proportional to the differential input signal (Vin − Vref ) and the bias current of the

transconductor(Ibias). The output stage uses a cascaded structure (M4,M6,M7 and M8)

in order to increase the output impedance of the transconductor. This helps in reducing

the loading effect on the output current of the transconductor. The range of operation of

the bandpass filter described in fig. 5.2 directly depends on the linear range of operation of

the transconductor. Several topologies have been studied in literature [24] to improve the

linearity of the transconductor operation region. In our circuit, a bump circuit proposed

in [24] has been used. The bump circuit (formed by transistors MB1 −MB4) draws part

of the input bias current away from the input transistors (M3 − M4), thereby reducing

their gm. This improves the linear range of the transconductor. The linear range of this

transconductor has been shown to be around 300mV in saturation region [26].

The transconductance and also the linear range of a FET-OTA have a square root rela-
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Figure 5.3: Schematic diagram of the transconductor circuit used in the bandpass filter

tionship [25] to the input bias current when operating in the saturation region. The tuning

of the bandpass filters over the audible frequecy range (50Hz to 4KHz) require the bias cur-

rents of the transconductors to change 10pA to 4nA, which is in the subthreshold region of

operation. The linear range of operation decreases even more dramatically in this region.

Figure 5.4 shows that the linear range of the transconductor is only about ±120mV for sub-

threshold currents of the order of 100pA. This reduces the linear range of the bandpass filter

input voltage even further. This is because, the input voltage across the transconductor gm2

is the difference between the lowpass Vlp and the bandpass Vbp output stages. Therefore,

for higher values of the quality factor (greater than 3), gm2 is no longer operating in linear

region, and the relationship in eq. (5.2) doesn’t hold good anymore. The whole system is
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no longer a linear system. As a work around to this problem, a simple capacitive voltage

attenuator as shown in fig. 5.5 has been used. The attenuation at this stage is given by

Vfg

Vin
=

C1
C1 + C2 + Cgs

(5.11)

where Cgs is the sum of the gate-to-source parasitic capacitances of all the transistors con-

nected to the floating gate output node Vfg. For C1 = 80fF and C2 = 320fF , the input

to the filter stage was seen to attenuate by a factor of 10, thereby increasing the dynamic

range of operation of the bandpass filter. A separate source of injection current Vinj is also

provided to program the floating gate to Vref .
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5.1.3 Current DAC

Each of the transconductors used in the bandpass filter are biased through a current DAC.Figure 5.6

shows the schematic of a 10-bit current DAC. The current division in the DAC is done by

a standard MOS resistive network. The transistors of each stage of the DAC are so sized

that the current divides by half, thereby generating a binary current DAC. The DACs are

programmed through a serially connected shift-register. Depending on the digital bit stream

(b0− b9) that is programmed, the current in each branch is either bypassed or gets added to

the IDAC . The current division at each stage is accurate only if all the transistors operate

in saturation region. But as the DAC resolution increases (for LSB bits), the transistors op-

erate at lesser and lesser currents due to current division and therefore go out of saturation

region. This leads to non-linear operation of the current DAC. The monotonic nature of the

DAC response has been characterized in [26] for saturation region.

For input bias currents Ibias in subthreshold region, the current division at each stage is

no longer accurate. Infact, this effect is so pronounced in subthreshold region that the DAC

ceases to be not only linear but also monotonic. This can be observed from fig. 5.7 which

shows the performace of a 6-bit DAC in both saturation region(in red, for Ibias = 5µA) and

56



W/L

W/L

2W/L2W/L2W/L

W/LW/LW/L

Figure 5.6: Schematic diagram of the 10-bit current DAC providing the bias current for each
transconductor

subthreshold region (in black, for Ibias = 1.3nA).When a large number of input bits flip say

from 011111 to 100000, the compounded effect of inaccurate current division leads to a huge

non-monotonicity in the output of the DAC which is clearly seen in the fig. 5.7.

The effect of this non-monotonic behavior of the current DACs on programmability of the

bandpass filter is shown in fig 5.8. Three different 10 bit current DACs are used to program

the bias currents of the transconductors of the bandpass filter in fig 5.2. The quality factor

and the gain are set to unity by ensuring that all the three DACs have the same 10-bit input.

The DAC inputs are swept from 0 to 1023, and for each value of the input, the response of the

modulator is plotted. The modulator output is lowpass filtered by averaging the bitstream

and the DC value of the output is plotted showing the non-monotonic behaviour of the filter

response because of the DAC currents.

5.1.4 Halfwave Rectifier

The filter output from the bandpass filter is passed through a half-wave rectifier. This recti-

fication stage extracts the magnitude envelope of the speech signal present in that particular
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Figure 5.7: Output current vs. input bit of a 6-bit DAC showing the non-monotonic nature
of current DAC in subthreshold region of operation

frequency band. The rectification stage consists of a transconductor which converts the out-

put of the bandpass filter stage Vbp to current, with a diode connected PMOS at the output

as shown in Fig. 5.9. The diode connection ensures that the current is only fed into the Σ∆

converter. The negative feedback across the amplifier in the Σ∆ modulator stage ensures

that the output node Iout is held at Vref provided the amplifier is strong enough. The

output impedance of the transconductor is increased by the addition of a cascaded stage as

in fig. 5.3. This enables a precise current summation at the input stage of the Σ∆ modulator.
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Figure 5.8: The bandpass characteristics of the filter biased with subthreshold current DAC’s
at a unity gain and Q = 1.

���
����

Figure 5.9: Schematic diagram of the half-wave rectifer used in the feature extractor

5.1.5 Σ∆ Modulator

Figure. 5.10 shows the schematic diagram of the first-order current mode Σ∆ modulator.

It is used to measure the magnitude of the rectified signal from the half-wave rectification

stage described above. The reference currents for the Σ∆ modulator are generated by a

cascaded transistor pair M2,M3 and M4,M5. The positive reference current Ip generated

by M2,M3 acts as a current source and the negative reference current In acts as a current

sink. A standard fold-cascoded opamp is used for the integration stage of the modulator.
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Figure 5.10: The schematic diagram of the Σ∆ modulator

In order to ensure the correct functionality of the integrator, the opamp was biased to

have an open-loop gain of atleast 60dB. The quantization stage of the modulator consists

of a hysteretic comparator which produces 1-bit quantization. The hysteresis comparator

is formed by using a simple differential amplifier followed by current starved inverter. The

performance of the Σ∆ modulator along with the hysteretic comparator has been previously

studied [27] and is not a subject of discussion here. It has been shown that the modulator

has about 10-bit resolution over a wide input current range (50fA− 100nA).

For a completely balanced Σ∆ modulator, Ip=In=Iref . The integrator voltage in this case

at time instance i with a sampling rate Ts is given by

Vi+1 = Vi +
Ts

CINT
(Iin − diIref) (5.12)
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where di = sign(Vi). Taking the summation of the above equation over N iterations and

taking the limit as N →∞, we have

N∑
i=1

di =
Iin
Iref

(5.13)

which shows that the pulse modulated bit stream di gives a faithful representation of the

input current Iin provided the sampling rate Ts is much higher than the bandwidth of the

input current. The case of an unbalanced Σ∆ modulator where Ip 6= In is dealt with in detail

later. The calibration of an unbalanced Σ∆ modulator wherein the optimization technique

described in Chapter.2 is applied to self-calibrate a Σ∆ modulator is also presented in the

later sections along with the results from hardware testing.

5.2 Test Station Setup

The block diagram of the test station used to characterize the chip is shown in figure 5.11.

The experimental setup consists of an OpalKelly XEM3010 FPGA which is used for generat-

ing all the digital clock pulses required for the chip. The state machine running on the FPGA

can be controlled through Matlab and C interface from the computer. The FPGA is also

used for storing the pulse encoded bit stream generated from the Σ∆ modulator. The FPGA

has an integrated 32MB SDRAM which was used for this purpose. The FPGA has an USB

interface for high-speed data transfer with PC. The collected data is later post-processed

and analyzed in Matlab.

All the analog biases for the chip are programmed through the National Instruments

data acquisition card. The custom made motherboard has 40 different analog output ports
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Figure 5.11: System level diagram of the test station setup

each of which can be digitally programmed through the NI card. These analog output ports

are generated by 5 different 16-bit DACs (LTC2600) present on the motherboard each of

which have 8 analog outputs. The motherboard also generates reference voltage for these

DACs and also the power supply for the test chip. The daughter board offers the flexibility

of interfacing the test station setup with any design under test. Figure 5.12 shows the actual

setup of the test station. The motherboard, FPGA, daughterboard and the test chip can

be clearly seen in the figure. Figure 5.13 shows the micrograph of the fabricated chip with

the bandpass filter stage (a) and the current DAC (b). The prototype has been fabricated

on a 0.5µm CMOS process from MOSIS. A single channel of the bandpass filter occupies
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Figure 5.12: Test station setup showing the interface between the Opalkelly XEM3010 FPGA,
NI data acquisition card, motherboard and the test chip

100µm X 300µm area. Table 5.1 summarizes the performance of the fabricated prototype.

The most power hogging element in the whole design was observed to be the Σ∆ modulator.

The filter and the rectifier were consuming less than 300nW of power.

5.3 Calibration of Sigma Delta Modulator

In this section, the unbalanced Σ∆ modulator is studied in detail. The noise shaping Σ∆

optimization introduced in Chapter.2 is extended to self-calibrate an unbalanced Σ∆ modu-

lator. The results from the simulation and the hardware are also presented. Equation (5.12)

shows the functionality of a balanced Σ∆ modulator. For an unbalanced Σ∆ modulator, the
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Figure 5.13: Micrograph of (a) single channel feature extractor with bandpass filter,rectifier
and Σ∆ modulator stages and (b) the 10-bit current DAC fabricated on a 0.5µm CMOS
process

integrator voltage at time instant i is given by

Vi+1 = Vi +
Ts

CINT

(
Iin − diIq

)
(5.14)

di = sgn(Vi) (5.15)

where Iq is the pulse averaged reference current given by Iq = qiIn + (1 − qi)Ip. Here, qi

is the bitstream di in 0’s and 1’s given by qi =

(
1+di

)
2 . Taking the summation of eq (5.14)

for N iterations,

VN − V0
N

=
Ts

CINT

Iin − N∑
i=1

di
(
qiIn+

(
1− qi

)
Ip
) (5.16)
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Table 5.1: Measured specifications of the fabricated single-channel bandpass filter chip

Technology 0.5µm CMOS process
Single Channel size 1000µm X 300µm

Power - Bandpass filter 150nW
Power - Rectifier 100nW

Power - Current DACs 150nW
Power - Σ∆ modulaor 40µW

Tunable Frequency Range 10Hz - 10KHz
Input Range 400mV

Quality Factor Q 3 (max)
Transconductor Linear Range 240mV

Input Pulse Rate 250KHz

Assuming Vi is bounded, as N →∞ we have

Iin =

(
Ip+ In

2

)
1

N

N∑
i=1

di −
(
Ip− In

2

)
(5.17)

Equation (5.17) shows that for an unbalanced Σ∆ modulator, the average of the bit-

stream at the modulator output doesn’t truthfully represent the input current Iin. There is

a finite error in the measurement of the input current given by the last term in eq. (5.17).

Infact, for zero input current Iin = 0, the modulator has a non-zero offset given by

doff =
1

N

N∑
i=1

di =
Ip− In
Ip+ In

(5.18)

It can clearly be seen that the offset goes to zero for a balanced Σ∆ modulator.

Figure 5.14 shows the performance of an array of Σ∆ modulators biased with the same input

voltages. The current references for each of the modulator are generated by the cascaded

MOS pair as described in fig. 5.10. Even though the Σ∆ modulators operate at the egde
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Figure 5.14: Offset mismatch between individual channels of an array of Σ∆ modulators for
constant input voltage across all the channels

of saturation region (at about 1µA current), we see that the offset variation is as high as

70 percent in some of the channels. All the modulators are biased with the same input

voltage, but because of the differences in routing length of the metal lines supplying input

voltages V NBIAS1 and V PBIAS1 in the chip for each modulator, there is a significant IR

drop before the voltage appears at each of the modulator. This voltage difference between

individual modulators results in unbalanced reference currents causing the offset shown.

The offset described above can lead to erroneous estimates of the input current mea-

surement. This current offset can be cancelled by extending the Σ∆ optimization technique

described in earlier chapters to self-calibrate a Σ∆ modulator.

Lemma 1: For an unbalanced modulator with Ip 6= In and a zero input current Iin, the
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iterative update

Ini+1 = Ini + εidi (5.19)

converges In to Ip for large enough value of N .

Proof: For input current Iin = 0, eq. (5.14) can be written as

Vi+1 = Vi +
Ts

CINT

(
−di

(
qiIn+ (1− qi)Ip

))
(5.20)

Let Ierror = In− Ip. Substituting it in above equation,

Vi+1 = Vi +
Ts

CINT

(
−di

(
qiIp+ qiIerror + (1− qi)Ip

))
(5.21)

Observing that diqi = di, we have

Vi+1 = Vi +
Ts

CINT

(
−diIerror − diIp

)
(5.22)

Comparing the above equation with eqn. (5.12), we observe that the effective input current

Îin is given by

Îin = −diIerror (5.23)

The Σ∆ gradient descent algorithm introduced earlier converges the objective function 1
2 Î

2
in

to its minimum for large enough number of iterations N. The minimum is obtained when

the expected value of the gradient Îin = 0, i.e.,

E
(
Îin

)
= E

(
−diIerror

)
= 0 (5.24)
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The correlation between di and Ierror means that this happens only when E[Ierror] = 0

and E[di] = 0. So, for a large enough N,

Ierror
n→∞−→ 0 (5.25)

The above equation shows that In
n→∞−→ Ip which is a balanced Σ∆ modulator.

The performance of the above Σ∆ calibration has been shown in fig. 5.15. The objective

function being minimized 1
2 Î

2
in is plotted by varying the 10-bit current DAC input bits from

0 to 1023. Figure 5.15(a) shows the loss function for Ip = 0.7Ibias, where Ibias is the

current bias of the DAC. The presence of a large number of local minimum can be seen from

the figure. Figure 5.15(b) shows the convergence of the modulator output to zero because of

the adaptation in eq. (5.19). It can be seen clearly that despite the presence of other local

minimum, the optimization converges to the global minimum at the DAC input of around

780.
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Figure 5.15: Figure showing (a) the loss function 1
2 Î

2
in as a variation of the 10-bit current

DAC sweep, (b) the convergence of the modulator output to zero

Figure 5.16 shows the verification of Σ∆ calibration on hardware. The Σ∆ modulator
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Figure 5.16: Convergence of the modulator output due to In adaptation from the bandpass
filter chip

output converges to zero once the negative current In is adapted. In this experiment, the

reference currents are not generated by the DAC but by the voltage biases of the cascaded

transistors shown in fig. 5.10. Transistors M2,M3 form a voltage(V NBIAS1)controlled

current source. For a given positive reference current Ip, the adaptation is done by pro-

gramming V NBIAS1 using the Opalkelly FPGA. Depending on the modulator output di,

the 16-bit DAC(LTC2600) on the motherboard is either increased or decreased by 1 LSB.

The voltage V NBIAS1 ia initially set to 0 at t = 0.

5.4 Calibration of a bandpass filter

The performance of any analog IC design is greatly effected by the mismatch between differ-

ent components within the chip. The design of high presicion analog circuits needs special

care in order to mitigate the effect of mismatch. This mismatch is majorly because of the
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Table 5.2: Variation of the bandpass filter characteristics across two different chips operating
under similar conditions

- Chip 1 Chip 2
Center Frequency ω0 420 Hz 370 Hz

Quality Factor Q 3.2 0.8
Gain G 66.62 dB 68.6 dB

variability and reliability of the physical process used in fabricating the device. Analog

circuits are also sensitive to ambient temperature. Also, the variation of the performance

across different chips is a major problem in designing precise analog circuits. Several ap-

proaches ([28],[29]) have been used to model the mismatches between devices based on the

drain-current relationship of a transistor in saturation region. Even a small device mismatch

of transistors in weak inversion causes a huge performance variation across components. Fig-

ure 5.17 shows the variation in the performance of the bandpass filter characteristics across

two different chips, both of which were biased under similar ambient conditions and same

input bias. The variation across the chip shows that the mismatch can be as high as 50 per-

cent among different components. One way to deal with the mismatch is to use an on-chip

learning mechanism[30] that can auto-correct for the variation in performance of the chip to

the desired output by using a feedback system.

In this section, we introduce the problem of calibration of a bandpass filter to a partic-

ular center frequency as an on-chip learning framework, by using the Σ∆ gradient descent

approach. Figure 5.18 shows the block diagram of the bandpass filter calibration system.

The bandpass filter described in previous section acts as a low-pass filter when the input

signal is modulated on the reference voltage of the transconductor gm3 instead of Vin1.

Assuming that all the transconductors are operating in their linear region, the current
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equations for each of the transconductor are given by

i1 = gm1Vin1 (5.26)

i2 = gm2(Vlp − Vout) (5.27)

i3 = gm3(Vin2 − Vout) (5.28)
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The currents flowing through each of the capacitor C1, C2 are given by

i1 + i2 = C1sVout (5.29)

i3 = C2sVlp (5.30)

Solving for Vout from the above equation we have,

Vout(s) = Hbp(s)Vin1(s) +Hlp(s)Vin2(s) (5.31)
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where

Hbp(s) =

gm1
C1

s

s2 +
gm2
C1

s+
gm2gm3
C1C2

(5.32)

and

Hlp(s) =
1

s2 +
gm2
C1

s+
gm2gm3
C1C2

(5.33)

which shows that the systems has second-order lowpass filter characteristics w.r.t the input

Vin2. The cutoff frequency of Hlp(s) is the same as the center frequency of the bandpass

filter Hbp(s). From eq. (5.31), define a loss function L(ω) as

L(ω) =
1

2

(
Hbp(ω)Vin1(ω) +Hlp(ω)Vin2(ω)

)2
(5.34)

The problem of calibration of the bandpass filter to a center frequency ω0 reduces to opti-

mization of L(ω).
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Figure 5.20: Oscilloscope figure showing the input tones seperated by 90o phase and the
residual signal from the filter

Figure 5.19 shows the frequency response of both the bandpass and the lowpass stages

of the biquad filter for a unity quality factor. The magnitude of the residual signal from

the filter goes to zero at the center frequency ω0. For input frequencies lesser than ω0, the

lowpass filter stage has a unity gain and the bandpass filter gain tapers at 20dB/decade,

resulting in a non-zero output signal at Vout. For frequencies greater than ω0 the bandpass

filter gain reduces by only 20dB/decade as opposed to 40dB/decade reduction of the lowpass

filter gain. As a result for ω > ω0, there is a non-zero residual signal at Vout. The minimum

point at ω0 can be reached by using a Σ∆ gradient descent algorithm using the loss function

described in eq (5.34). The on-chip calibration method described above has been verified on

hardware using the fabricated prototype. For this experiment, the bandpass filter is biased

at unity gain G and quality factor Q. The input Vin1 to the filter is a tone whose frequency

is the same as the center frequency ω0 to which the bandpass filter is to be calibrated.
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Figure 5.21: Moving average of the Σ∆ modulator showing the minimum when center fre-
quency reaches the frequency of the input tone

Equation (5.32) shows that the bandpass filter has a zero at origin, thereby introducing a

phase difference of 90o at the output compared to Vin1. In order to facilitate the correct

cancellation of the signal at the output due to the lowpass filter stage, the second input Vin2

is phase shifted by the same 90o with respect to Vin1. Figure 5.20 shows both the inputs

to the filter and also the non-zero residual filter output Vout for an uncalibrated bandpass

filter with center frequency not equal to the input tone ω0.

Figure 5.21 shows the results of the calibration from the fabricated chip. The Σ∆ mod-

ulator was run at a sampling frequency of 250KHz. The input tone was set at ω=2KHz and

the bandpass filter was initially programmed to around 1KHz using voltage biasing. The

center frequency of the filter was adjusted according to the learning algorithm by using a

FPGA which tuned the voltage biasing of the transconductors. The modulator output was

filtered by taking a 1024 sample moving average of the bit-stream. Fig 5.21 shows that the

modulator output does not go to zero after optimization. This is because of the presence of
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a constant offset current from the rectifier due to imperfect cancellation of the inputs at the

filter stage. Also, once the minimum point ω0 was achieved, the modulator doesn’t remain

at that point because the rectifier does not estimate the true gradient of the loss function

defined in eq. (5.34) but only gives the magnitude, which is always positive. The actual

calibration point can be achieved by taking the summation of the bitstream up until the

minimum point ω0 is achieved.
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Chapter 6

Conclusion

A novel Σ∆ gradient descent optimization algorithm has been presented in this work. The

proposed learning algorithm has been shown to have better precision compared to the tradi-

tionally used noisy gradient descent algorithm by using the noise-shaping characteristics of

the Σ∆ modulator in real-time tracking of system parameters. The stochastic nature of the

noise in the quantization stage has been shown to be helpful in the case of global convergence

as opposed to the ideal gradient descent algorithm which converges to local minimum. The

proposed algorithm was later extended to include higher-order noise shaping and learning

mechanisms. The performance improvement of the algorithm was shown through simulation

on a sample speech utterance from YOHO database. The Σ∆ optimization framework was

later extended to accommodate gradient-free optimization techniques like finite-difference

stochastic approximation and simultaneous perturbation stochastic approximation.

The performance of the Σ∆ gradient descent algorithm has later been validated on hard-

ware by modeling the problem of calibration of analog circuits as an optimization prob-

lem. The Σ∆ learning was shown to be robust enough to account for mismatches and
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non-linearities even in subthreshold region of operation. The self-calibration of an unbal-

anced Σ∆ modulator converged to the global minimum even in the presence of several local

minima points because of the non-monotonicity of the calibration DACs in the subthreshold

region. The algorithm was also used to calibrate the center frequency of a gm-C biquad filter

by exploiting the lowpass and bandpass filter stages present within the biquad filter.
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