var—v ‘- J"—'_ H mm ll 1 | l l EXPERIMENTAL ANALYSIS OF INDETERMINATE STRUCTURES AS APPLIED TO RIGID FRAMES Thesis for the Degree of M. S. MICHIGAN STATE COLLEGE Henry L. Thompson I940 was? Irffii‘z- EAPERIMLNTAL ANALYSIS OF INDLTERMINATE STRUCTURLS AS APPLIED TO RIGID FRAMES by HENRY LOREN THOMPSON A THESIS Submitted to the Graduate School of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN CIVIL ENuINEERIHu Department of Civil Engineering 1940 CONTENTS Material 1. Introduction _______________ 2. Furpose of Thesis ____________ 5. Theory of Model Analysis ————————— 4. History of Model Analysis ———————— 5. Design and Operation of the Deformefer Cages ________ 6. Construction of theliodel -------- 7. Single Span Frame Bent ————————— 8. Analysis of the Rigid Frame Bridge Models ———————— (a) Single Spen Model .......... (b) Double Span.Model —————————— (0) Triple Spen.Model .......... 9. Conclusions ................ 10. Appendix ................. 11. Picture of Deformeters and Models - - - - (i) EXPERIMENTAL ANALYSIS OF INLETERMINATE STRUCTURES AS APPLILD TO RIuID FRAMES by HENRY LOREN THOMSON INTRODUC ION .vw During the past fifteen years there have been more statically indeterminate structures built than in any other like period in the history of construction. Such construction has been.made possible to a great extent by the research worker experimenting with structural models. Engineers have long recognized the economic and aesthetic advantages of the continuous structure. The tie that has held the designer to the old type of structure, consisting of abutments and simple spans, is the simplicity of the mathematical theory. In the highly complicated designs the designing organization is confronted with two main problems-developing or recruiting designers capable of handling the more complicated theory and the high cost of the de- sign. In order to aid in the solution of the problems of giving the public the "aesthetic structure" the laboratory analysis of the stati- cally indeterminate structure has been deve10ped. Model analysis is a distinct method of approach to the solution of statically indetermi— nate structures and can be used alone or in conjunction with the theo- retical analysis as a check. (1) PURPOSE The research to be described in this thesis has been carried out with the following definite objectives in mind: (1) the design and the construction of a sample deformeter gage that will be sufficiently accu- rate for model analysis and one that can be made cheaply; (2) the test- ing of the gages as designed with a direct comparison of results obtained with the deformeter gages and a theoretical analysis of a statically indeterminate structure; and (5) the experimental analysis of single, double, and triple span rigid frame bridges to determine the variation in the moment at the left knee due to a variation of the depth of the haunch. THEORY.Q§.MODELI£EALYSIS The laws laid down by Clapeyron, Castigliano, Maxwell, Hooke, and others are basic and some knowledge of them is, therefore, necessary for a complete understanding of the mechanical solution. ,These under- lying laws are not superseded by the laboratory methods but modern con- ditions have simply created a demand for a mechanical short-cut in applying them. Assume the fixed arch as in Fig. 1 and let it be required to find the reaction produced at point 1 along the line X—X by a load "P" at point 2. First with the arch free of any load, suppose the point 1 to be removed from its anchorage and moved a distance [SIX in the direction X—X only. To accomplish this it will be necessary to apply not only the distorting force X0, but, also, a restraining moment 20 to prevent rotation of the arch about the point 1, and a linear restrain— ing force To to prevent movement at right angles to the line X—X. As (2) (2A) \ Hg. 4 no Z or Y movement takes place, no work is performed by these restraine ing forces. Therefore, the external work done or the elastic strain energy is given by the following equation: U1 : Sxo‘g‘lx = W' where W' is the internal work. Now with the rib in its deflected position add the load "P" at point 2 and its consequent reactions le, Ylp, and 21p. Since these reactions perform no work, the second increment of work is . U2 - %PA 2p = w" where W" is the internal work. 102p is the corresponding deflection at point 2 produced by the load "P" and Zle is the correSponding de- flection at point 1 produced by X. All deflections in this discussion have a similar meaning. By corresponding deflection it is meant the measured deflection in the direction of the load or reaction at the point considered. The total work performed on the arch is I w = w' 4- W" = ég-onlx +' gPAgp The same deflected position may be attained with the same exp penditure of energy by applying X0, le, and "P" simultaneously, in which case the external work is U = %XoAh 4" SfxlpAlx +23}, (A 2p’A2x) Since the external work is equal to the internal work, this equation becomes - - L‘ l. .1. 1 Since equation II is the expression for the total internal work, it is (5) equal to equation I. Equating I and II and cancelling out similar terms gives le 1x = PA 2x or le= P 4.2.3.. A lx This last expression shows that any two related forces are inversely proportional to the coincident displacement of their points of application in the direction of the forces or inversely prOportional to their corresponding displacements. Similarly, by giving the reaction point 1 a-Y movement and restraining it from both X and Z movement, the Y reaction may be ex- pressed as 1x The same method of attack is used in the determination of the angular reactions or moment at the supports. Any moment Z may be expressed as a couple as P times d (Fig. 5). If under the application of this moment, point I of Fig. 5 moves to l? and point 2 to 2', the total work done by the moment is 2 As P is equal to Z divided by d the external work becomes V U = 3d (41+Az) = iZAzz (4) where A zz is the angular rotation expressed in radians. Therefore, the external or internal work done by a couple is the moment of that vcouple times the angular rotation of the coincident point divided by two, provided this rotation is small, otherwise, (A1* A 2) divided by "d" would not equal A no ‘ Now consider Fig. 4 which is an arch. First assume no load on the rib and apply a moment Z at the point 1. The total work is Ul = W' " IZoAlz With this moment acting apply the load "P" at point 2 restraining point 1 from turning. In order to do this a new moment Z (moment at 1 due to the load "P") must be applied but no work is done by this new moment. The total work done by applying this load is 02 = ePAzp= w" The total internal work done by this body with these 'loads is .. III II = W' + w" = fi-zodlz + éjPAgp This same deflected position can be attained by applying all of the loads and reactions simultaneously. The internal work is then a I l 4. i w zzoAlzi- 2271131513 3P(A2p .. A22) - i A ,_ .1. A 4. I A l. A IV W " 2Z0 12 :3le 12 2P 2p " BP 22 Where Agz is the deflection at point 2 due to the angular rotation at point 1. Equating equations III and IV, since they are equal, le the (5) moment at the support is given by the following expression after proper cancellation of terms: Z - A21, lp - P 12 For this work equation to be truce, the dimensions d, A1, and A 2 of Fig. 5 must be measured in the same units as 422 of Fig. 4. Therefore, if A12 radians distortion at point 1 produces A 22 inches deflection at the load point 2, the moment at point 1 due to a unit load at point 2 is AizL pound-inches. If the displacement A22 be A 12 measured in feet, then the moment reaction for a unit load is A 22 pound-feet. lz HISTORY g; MODEL ANALYSIS The first practical use of model analysis of indeterminate structures was made by Mr. James R. Griffith, then Assistant Professor of Civil Engineering, Armour Institute of Technology, in the design of the catenary structures and signal bridges for the Illinois Central Railroad's Chicago electrification in 1924. Mr. Griffith was con- fronted with a three-column structure which was indeterminate by twenty-one variables. The prospective cost of designing these and more complicated structures by any analytical method presented a serious problem. Apparently the only possibility of avoiding this tedious mathe- matical analysis was by a method of measuring the deflection in cellup loid or cardboard models. This method was only a laboratory experiment (6) at that time, which had been devised by the late Professor George E. Beggs of Princeton University and described in a paper presented before the American Concrete Institute, in 1922. Professor Beggs loaned his original equipment to Mr. Griffith and by the use of this equipment Mr. Griffith demonstrated that approximately two—thousand dollars per year could be saved in the cost of design alone. The Illinois Central Railroad then purchased one of the first commercial deformeters and used it in their design. By the use of the deformeters and models a considerable saving was obtained in the designing cost and in the actual cost of the structures. ‘ Model analysis started with the late Professor George E. Beggs in the summer of 1916 when his attention was given to the problem of the deflections and stresses of a triple span continuous truss bridge of the B. & L. E. R. R. over the Allegheny River. He found it advan- tageous to construct the influence lines for the trusses. After having plotted these lines Professor Beggs noticed that they resembled the elastic curves of continuous beams fastened at three supports and de- flected a unit distance at the remaining support for whose reaction the influence line was draw . To determine the accuracy of this observa- tion, a tenefoot pole of uniform section and three nails were used. To draw the influence line for one reaction the pole was restrained by single nails at the other three reactions and deflected a distance to scale of one-thousand pounds at the first reaction. The ordinates of this elastic curve were measured. The values obtained by this crude mechanical apparatus and by the exact theory showed very close agree- ment. In January 1920, Professor Beggs checked the theory of mechanical analysis (Maxwell's Theorem) by means of a wood model of a single span bent hinged at the supports and with a horizontal member half the length of the deck placed as shown in Fig. 5. The members were made of wood strips five—eights by seven—sights of an inch in cross-section and the columns and main horizontal member were fifty inches in length center to center of connections. Metal gusset plates and screws fastened the bars together. No loads were applied while the deflections were being measured. The horizontal and vertical reactions were found by the use of Maxwell's Theorem and then these loads were applied at the three supports as shown and the pins removed. The supports did not move which proved the correctness of this theory and application. These reactions as found by measuring the deflections are seen to satisfy very well the three laws of static equilibrium. 4 H A: /z “ ms" l " k§=.1%¢ AZévgyena’.fL7gsaprvfix -¢—-—-Ls ‘: I :R 0\ & ‘--ib :5 H di‘? Fig. 5 (8) After feeling definitely that this method could be applied to statically indeterminate structures, Professor Beggs designed some «deformeter gages to be used in connection with micrOSCOpes to measure the deflections. The gages produced a known displacement and the micro- scopes measured the deflections at the assumed points of application of the loads and in the direction of the loads. These gages as original- 1y designed were somewhat crude in comparison with the gages sold by the late Professor Beggs during the past few years. This equipment is probably the most accurate yet devised but is quite expensive. A set of six gages and three microscopes costs about eight-hundred dollars. Although Professor Beggs has probably done most for the analysis of structures by models, there are others who have worked independent- ly and have used similar or different methods based on.Maxwell's Theorem. Among these is Mr. Otto Gottschalk who has developed the ”Continostat Gottschalk". His method and apparatus has been described in various technical literature, the first being a paper entitled "Mechanical Calculation of Elastic Systems" given before the Franklin Institute and appeared in the £91m]. pf, the Franklin Institute in July 1926. One of Mr. Gottschalk's latest publications appeared in the Medina .91 the. American fascism 9f Qiril Engineers for January 1957, under the title of ”Structural Analysis Based on Unloaded Models". The Continostat Gottschalk consists of various mechanical sup— ports and very flexible splines used as the elastic structure. Known deflections are produced at the point at which the reactions are sought and the flexible splines forming the members of the structure bend in the shape of the elastic curve of the member. The ordinates from the (9) original position to the deflected position are measured by means of the ordinary scale. The reactions at the different points are then found by the ratio of the deflections. The deflection at the point where the reaction is sought is usually made equal to one unit, which makes the elastic curve represent the influence line for that reaction. An article appeared in the "Epgineeringlflgggfifigggpd", Volume 99, Number 25, December 8, 1927, by Mr. Anders Bull in which he explains a method of analysis using wire models. As a partial fulfillment of the requirements for the Master of Science Degree in Civil Engineering at the University of Idaho, Mr. Lyman G. Youngs prepared a thesis on the subject of "Stress Determination in Statically Indeterminate Struc- tures by Means of Brass Wire Models". This thesis represents a very good study of the possibilities of wire models. Wire models are use- ful provided the moment of inertia of each member is constant, but if the members have a variable depth it is almost impossible to obtain a model that truly represents the structure. Therefore, it seems that this method can be used only for the more simple structures. In order to get around the high cost of the Beggs Deformeters with the microscopes there have been various other gages devised and among these is the "home made" deformeter designed by Mr. T. Werner, Engineer for the Arthur G. McKee Company of Cleveland, Ohio. This deformeter was developed in the Structural Models Laboratory of the Case School of Applied Science. These gages are inexpensive to make and have proved quite satisfactory for most work and particularly for demonstration.work for structural classes in model analysis. A redesign of these gages was used in the preparation of this thesis. The same (10) fundamental idea was used but an improved method of holding the gages together and still permitting the desired motions was incorporated in- to the original design. DESIUN AND OPERATION 9;: THE DE1*'OI@[ETE1{ ULUES The redesign of the Werner Deformeter is shown on the print, page 12. The original gage only had two springs which held the bars together and the wire passing through the springs passed through the bars at an angle which caused a push of the small bar against the verti— cal glass plate of the long bent bar. The three springs and the new method of mounting the springs makes a much stronger gage and one that is more sure in operation. A set of four gages as shown on the print (page 12) was made under the author‘s direction at the Michigan State College of Agriculture and Applied Science and another set made in the Physics' Machine Shop at the University of Idaho. Both of these sets worked satisfactorily. The two bars are held in contact by means of the three springs and the cylinders "a", "b", and "c". These cylinders were soldered with extreme care in order that they would be exactly parallel to each other when the bars are placed together since they must be in contact with the glass plates of the opposite bar for their entire length. By inserting a filler plate of uniform thickness between the cylinders "a" and "b" and the glass plate a definite movement takes place. When a filler plate is inserted between the cylinder "c“ and the glass plate another movement will take place at right angles to the first. If a filler plate is inserted only between cylinder "a" and (11) " ( 129':- C x” ” Cg/fl .- 9, /,/ l 5/ [/7 4. i , _ __ ,_ A “1-“- 7-, 4.-...- --_- , -_- _ I ' 1.1 T . 1?; I {\ié 089,0 0W8: iii: 9 L :1 E 3 T Wl’fbé web”? WY ' i 1 W i N w 4 - - I4 I u p > 2 I . I ,__+. a’e/Pd/n P/ace. JIJ ll 1' . 1Ll J 111 J l ‘ I ' I l t I F‘~ —- M i '— e- - >-l-‘—Z W. ———.l—. g‘ -47 796 /e . 2 i /6 5 , 061:" , t / 3 I 3 3 I ' .9 «z—+W§M8+<—-———«-Z—' Ingw—Z—fii ‘ 1 . 1 ' i _. ' .____._L.__ l ’ +———— —+-L———5.m~—T———.——+ ! gs, : ' ' p I f a! Eppea’flo/es a; Cop'SCrew: . —‘-’ H / ‘ —’ i —, i . /6 0 95 In 2 X ’6 Bar , . 1 l n J I f ' ' ‘ ‘ l f ,_ +-————— e a fi 1 # l ; e i .5 ‘1/6 K/O/es /e peep I ..—.._-—___-~_. ._ _- _ __—-.i It a i f / / I ’ / 1' i " -x 3 g ‘r _ / \4\\ i / )3? 5/30/65 CS/t.‘ 7‘0 \\\_fig~_*w _* __*____ __1 _ _ “ilxj’ -__ —_ _ “J .3. ._ : 1' ,I . . 8 8,6 089,0 . /, {f : 1 __ % x55 S/ormgj R—mm—rt ' ——————m~————+—— -7'~¢—~—~,§ C‘s/f. HO/G’J / 3 // ; 2‘ ”/7934? 57‘89/ 50" L-i-g‘ . f j/ee/flarJ((o/a’/?o//pa’/ (Co/0’ R0 fled/Inar/edon Bo f/o/n . ,4//0//7er Face: 7 5,7700”, ~«£170.35 P/a/ewé 77) 26k, ,3 Wide G/aea’O/i7 L 1 w l T f: 1 I d g @ {E i: I I ‘r also i: it i 3 4L 4L L._- i 1' I r Jul ii. 05 5/ 67V 0/" DEfORA/E 7£R 6/! GE (12) the glass plate an angular movement takes place. According to Max—' well's Theorem this movement and the deflections at the points of application of the assumed loads is all that is needed for the solution of the structure. One gage is necessary for each support of the structure. In setting up the equipment all the reaction lines and the lines of action of the loads are drawn as accurately as possible on a sheet of drawing paper either tacked to a table or drawing board. The long glass plate of the gage must be set exactly at right angles to the center line of the model at the support. This is usually the vertical reaction line. The cylinder "b" is placed directly over the intersection of the two reaction lines. The straight bar (one with the cylinders) is screwed to the table or drawing board. The model is usually made of celluloid and is clamped under the one-half times five—sixteenths of an inch bar on top of the long bent bar. The model should be clamped*accurately so the reaction lines on the model will correspond exactly in position with those drawn on the drawing board. To keep the model in a horizontal plane it is necessary to support it by either glass or celluloid plates at different points. Between these plates and the model a small steel ball about one—sixteenth of an inch in diameter is placed. The small steel balls reduce the friction at these points to a negligible quantity. The means of measur- ing the deflections at the several points are a mirror, mirror bar, focusing flashlight, and a screen. The mirror consists of a half razor blade with a needle soldered on the back of the blade and a small mirror glued on the front. The (15) height of the razor blade from the sharp edge of the blade to the top of the needle point should be about one-half of an inch. This will give about the best size deflection on the screen. The mirror bar used is a one-quarter inch copper tube about twelve inches long. In one end of the bar a needle is soldered at right angles to the longi- tudinal axis of the bar. The other end is flattened for a couple of inches from the end and a piece of sand paper is glued to the same side as the needle. The needle of the mirror bar is placed lightly into the model at a load point and the other end with the sand paper is placed on top of the needle of the razor blade. The center line of the mirror bar should coincide with the action line of the load. A slight deflection of the load point will tip the mirror and cause a very large deflection on the screen. A focusing flashlight of.good quality is used with a small house bell transformer instead of batteries. This gives a permanent light ’ of the same quality. The flashlight is placed about fifteen feet from the mirror and a screen is placed at twenty or more feet in front of the model. The screen consists of a cross-sectional paper about sixty or more inches high and should be at least ten inches wide. The light should be focused on the mirror until a good image appears on the screen. With the model in a normal position (with no dietortion) a read- ing of the initial position of the image on the screen is taken. A filler plate is inserted in each support giving the whole model a deflection equal to the thickness of the filler plate. A second reading is taken and the difference between the two readings gives the filler thickness as measured on the screen. The filler plates are hen re- moved and one plate is inserted in the gage for which the reaction is (14) desired. The deflection is again measured on the screen in the same manner. The ratio of these deflections gives the reaction at the support considered for a unit load at the load point, since the ratio of the deflections times the load gives the desired reaction as dis- cussed in the theory of model analysis. Let D filler plate thickness as measured on the screen d = deflection of the load point as measured on the screen H, M, and V Z reactions ‘ Load at load point (considered as "U I unity) From the basic theory of Model analysis the reactions are given as follows: v:__g.__ H=__%... ; M=_.g...K ‘0 K is the distance between the cylinders "a" and "b" measured to the same scale as the model either in inches or feet giving a result in pound-inches or pound-feet. In measuring the deflections the needle of the mirror bar at the load point moves a very small distance at right angles to the line of action of the load as well as in the vertical direction (the latter is the displacement desired). In making this movement the mirror will be slightly tipped giving a deflection on the screen that is not due to any vertical movement of the load point. If this movement is large it will be necessary to correct for this error, which is given ap- proximately by the following equation: (15) e : d2 213k In this equation "d" is the deflection on the screen due to this move— ment at right angles to the line of action of the load, "b" is the length of the mirror bar, and "k" is the number of times the apparatus is multiplying the actual deflection of the model. ("k" is about 1030.) The diagram of Fig. 6 is a proof of this error. 0’ k? b:2 — d2=(b - e)2 b2 - d2 = b:2 - 2be + e2 (e213 an error of higher order) e :2 d2 2bk Fig. 6 CONSTRUCTION gr; THE 2.5 in: The model should be made of well seasoned celluloid of uniform thickness. However, it can be made of other material but celluloid is much better than card board or any other material. As the thickness of the celluloid is constant the depth of the section of the model should (l6) be proportional to the cube root of the moment of inertia of the par- ticular cestion of the actual structure. This will make the model structural similar to the actual structure. de‘lB/f The proportionally factor should be so chosen as to make the model flexible. The scale of the model should be chosen so the model is of convenient size. After the scale and "k" have been chosen the centerline of the model is laid out on the celluloid sheet. The outline is drawn and the model is cut out with a coping or band saw. The celluloid is planed down to near the proper dimensions and theh sanded by means of sand paper to the exact dimensions. The thickness of the section of the model should be to the nearest 0.001 of an inch of the proper dimension. An error in the thickness of the section will cause an appreciable error in the results. SINuLE saw FEM g; BENT The first structure tested or analyzed by this equipment was a single span frame bent as shown in Fig. 7. The moment of inertia of the bent was assumed constant for the legs and the deck and assumed to be one-thousand units to the fourth power. The height was twenty-five feet and the span twenty feet. The influence ordinates were calculated by means of formulas from "Stresses in Frame Structures" by H001 and Kinne. A unit load was considered throughout the analysis. (17) n WK The mathematical formulas used to analyze this bent with the loads 5mm: 5 PAN BENT Fig. 7 on top of the deck were: (18) Ya.-+- _I.F___£la Lit 4F [FL Ill. _.g,1 1 .-.- loo? in." t 9 ~ a k V2" 4-9—1 | k: 0.04 1L e I + ~ it .21; . | . i .1. Q I; T 1'“- ‘“ 3' w .519; :;[:: 2M! 4!. a2. MAB=+Pab~L a—b 2L2 n-+ 2 6n'f l FJDC:_E_£__‘D._J=L._+IL:_§_ 2L2 n'+ 2 6n-+ l M303—m _2.L.._+.1L:_§... 2L2 n+2 6:141 MCB=-£_a_h_ZL_.+a_-__h_ 2L2 n+2 6n+l K : I :looo=_5__ L 20 n : Kh =50x_§=l.25 I 1000 After the moments were calculated the vertical and horizontal reactions were calculated by means of statics. The following tables show the results as obtained from the mathematical analysis and the results as obtained from the deformeter analysis. Moment at the Left Support Load Mathematical Deformeter Eoint Talus _L_ Value 10 0.000 0.000 11 0.240 0.248 12 0.467 0.474 15 0.652 0.646 14 0.769 0.774 15 0.790 0.790 16 0.687 0.674 17 0.453 0.427 18 0.000 0.000 (19) .Mertical.Bsaetion.ai.thsflLaft.Euuaart Load Mathematical Deformeter Eoint Value Value 10 1.000 1.000 11 0.884 0.884 12 0.761 0.756 15 0.652 0.656 14 0.500 0.499 15 0.568 0.567 16 0.259 0.258 17 0.117 0.120 18 0.000 0.000 Ihzziaantalpfieaciian ai.ihejhef .finpaent Load Mathematical Deformeter _LPoint Value Value 10 0.000 0.000 11 0.040 0.041 12 0.069 0.069 15 0.086 0.087 14 0.092 0.092 15 0.086 0.087 16 0.069 0.069 17 0.040 0.041 18 0.000 0.000 From the above tables and the curves plotted to represent this data on pages 21 and 22, the close agreement of the deformeter values to those calculated mathematically can be seen. With careful handling of the gages little trouble was eXperienced in obtaining preper values. Each time the filler plates were inserted in the gages care was taken to see that the two bars came together exactly the same manner. A little experience with the gages created confidence in the accuracy of the work. (20) Inst. l .I ‘18....0'. IOIIQ 1"." ‘11111I ... I‘ll-tau; at: I. J 4 4 .4 4 M 4 .411 4 4 . 4 . :1 4.114. ..11 1A #. ...... 110‘. 111' “1+.H o.» ... 1.1.94Ir. .r.11.9. 11‘... . 1 .... ... II.. o . 1 1 . .Q. . be . 1 14H. . >1; 1 v 1» I 1 .1 ...:.1 We . . 1 . . cdl b. v u 1 . 1» . no . . 1 1 .1 . . .. 1 . .1 .11. 1 4 .l1f—. v1.0 1‘! I o 47.. .1. o. 1..: V.o1 Y .1 .... .... . 1 . 1. 1 1 . . u ‘ . . .1 . h 1 ~.11« . 1.1.. .1 ....w... 4 . . 1 1". 1 ... o . . 1.. .. A191 T v a I I I01... I b III I a 1.1 I MI L.|1 II1. . 1011 I1I. 19.1514 11 II 1 11. .1. 1-1. 1...v 1 41.! 11. It... . a. . v« v . .... . . .1 .11) 1L. ... 1 ..1 1r. . ... 1 1 .0 v <11+ 1.. . . 1 vb l o. m .h .1 . 11] t... .1 . ‘1'. . . v 1. _ ..1 . . . . .1 . . . . L 1 v .1 1.. 1.11 .11. , 1. .1.. . .. 1 o... 1v.11.o.. . o. .1. .. .... on ... 1. .11... . .v .. q . . . . 1 ... . ~. ...1 1. 1. r1 . . .... .v.. .. . . . .1 Q. 1 I1. A 1 .1 1.. It . 1.1. v . . . . 1p y Pl I. 1 4 . 14 4 — b . . 1 1 . . 1 .11 .11. I . 1.] ova. 1... 1 .164 .10. . \Q o 1 . ..4. 11.. ..fi. .~ .. m L 1 . .. .. . . 1 . .1 uAIA11 1.0. .1 11 .0 1'. .1 10.16Ao . .. c v. . 1 . . . 1 1. 11 1'7. .1 o..1r JO. 1 t o 1. 11 1 .rfio o .151 o . 1 . 1... . . Av: .... . .. . fl 1 01 I .. . 11Ir711 1.. 1. 1 . < 1? 1 1 0.1. .. ... . . .1. o . 1 .u 1... vs. . 1. . 1' Y . 1 p H 1 -11 .1 -. 11.111111111111121... I. .1 Ir: - - -1 1-1TI .1 l u . . . .. . ._ .tv. 1 I _ .I. 1 Al 1 .1 _ H. 1 o .. . .1 .. y s .. . .n.. .. 1 . x..w . .. . fl .1 . .. . 1. . .00; I, .1 v ..1. c1 1 14 k I .1 1 A . . H . . . . 1. . .-.1 1. 1 .v 1 . 1 H . i L O *1 . .' Ham 1-1~- 1 o 1 .. . .1 . A . . . o . 1 1 1. . . 1. .1101... O O . . .. ... .. 1 1.1.” . 1. .19.. . ~ . 1 11- 1... . *1 1 1 ...Q. a: 1 I10 oHQo 1 111101“ . o I: t 1 I I 9. 1 o 1 O. 11 . 14. 4. .01 A O 1 1 .. o. VIIII II II TtI'Ar v .I I- 4 I . I + 40" IA . . .11I . 1I 1 . 1.1 v .w. 1 v V .. 1A 1. T 1¢.. ...... 1o. .91 1. . 1 ¢ . .l.5 1 c u o 1 . V 1511» . o. e T1 o .0 Yr . ..r < o .1. h. . .1. o 1 VA .. . ..v 11. .11 1919 . 1. 1 a .v. 1. as. .o 1.1 .. a 1 . 1 11v 1.. .. 1 . . 1. .1 . 1.. .1111—1. .1..Lo . 1. 4 1- 4 v1 . 1. q 1. . 1 .1. a . ..1 ¢ 1 . _1 1. w . 1 . 1 .o . _ . so . 1.. ”.11 .11. 1 . 1.. .1 . 1 . . 1 *1 1. ..1. . .. 1. ...H. 1.7 ... .. . . 1 IV I.I~ut.. . 1 . 1. n s 1 .. .V. . . 10 1 . . a . — 1.1110,!- TI IIIAIII I I L .A . .. 1. 1.. «1 . . .. 1. . L. .1... 1 ~ 111. 1 o . 1 _— I. L 1 1 . 1 0 1 o «Obfr—qo1ur.‘ --:. o o ......1..-‘ V . D G '1 6 V . . .. o _ . III< VIPIILI Idl >1 .1. ..~ 1... . .. . . .1. .. . . ... .. 1a. . .. . 1. .1 o 1 .1 1w. . 1.. _. ..1 . .. w. . . .o . 1 .. 0.0 v.» 1 . v . 1 ...1I1 . . 1. . . . .. . .. + 1 . . . ... 91.1. .1. > a . .... . . . 1 . . .1 1 .1 . 1 v. 1 ..u. m. .s.1~ .. .1“. A ,. 1. . . . 1 .. .. a .11. .. o. ..o _...“ 1 . 1..¢ .1 1 . 1 . ... 11 on p o 11 fit . ... —II.< .1o . 1 o. u. . .. a .F111 ...! 1 .1 I..1.v.1 I II11TI111I|F401II1II1II II 71111.11 1TII1.1I1 . ..1.h... . . .... . . M _ 1 _... .. A . .11. ..1 t. A . .. n 11. 1... . 1. o . o... .. 1 .. 90'. V O . ‘ 2 n. .. . ... 1 1.11.. 1 91 1. 94. o. . . 1.. . O_ ... .... . 01.1 .. P a . I‘ITI I .. . .._ . i . on. . £1111 1 o a .n... .. . . . .1, .. .«1. . .1 .1. v .111“. .. _ . . . .. 1. - .... ..1v...>. . ... .. H.111. . . M..— .L . . .. 1. . 1 «.111. .11 1 . . . LILIL. L Ll - .... a. . o I. 11'.— > .01.. 1&1. .1 I. 1 .1 v1» 11.. . .1 a .. : . ... .1,11-.:...1.. ...." 1. — . .... .. . . . . .. . 11.. 1..? ... .. ... ...... .... . . 1 u. 1. 1.. ..L . 1. .1 ... 1 . >1 r [H . i ..q .. _ . 1... a. . .. .1 .1_ . 1. 1.. .-.; . .... i .. ...1 .- I- I; .. 7.1, . .~ 111.. 1 *s o l.1¢ . 1111.... 1... . ..1a fl. m o .. . . .» . . o IIJ. 11.. F .I 11. I..1I4IIIPI1I 141 _ . . o . . 1 . . .... . .. .4 1. ‘&1 A1 . 1 2 . . . 1 . . I .1 1‘ 1... . .... . ,. . . . . 1 .4.. . . . fil1 . 1 s .1. 1 o o 11 1. 1 .v. .... .. . . . .._ l - .. .1 P > 1 .. 11. 1 . 1. _. . w .. .. . 11... .. . I . ... 1. . 1-11-1114: 1 . 11 . . . 1 1. 1a 1 . .. .. . .— . r. . . 1 , . a . m 1 1 . . . 1 ..1. 4 J u . .. 1. 1A.. 1. . o1. _1.~.1.L .1... .. . ... . . .. 1w ... .1. . .. _...J. ,1 . e 1 . o . . . .. . 1 A .1 9 .l. I .~ 1 A o .. I. . T. :1 .1 .. - 1.1+ . a 1.0111. 11TVII4I L 1 . .... 1 . .. .. ... .. .. .. I s . . .. 1 .Vw1o o e a «. . .v .1. .I l O. .1 w. .v 1111. 1 1 .. _. 1..» .1 . I1._1 .9 1 ..IV .. .1 1 . .. ..h . . . " .. .1“ . 1..... . . _. . 1 . ... .. ... w 1 . 1. . . 1 . .M ..v.1* 1 1 . 11” ... 1 o 0 . 1 11 .1. .1 11. 1. o 1 1. 1' .... .1. . . . .. .. . .. . .. . . . . .— . . .11 111* L7 IaVI I . . I111II TI091I1IAIII . . 1 . ‘1 . W6 . 1. AL. . I... .. .. .. . . L ... .. .. v e.—.. a ..11. '11. u... are“ . .1. . . 1 . 1.1V 1VV1.11‘ T 1 .... o0. . 1 ... .A . .9 . .v.u ..... 1r 1’1 TI. 4 . . .. .056 . 111.7. .1 . 1. . p 11 1 . 1.1 . 11. . .01.. .1... 11+...». 1 7. .1 .1 _ .11 . v 1 .1.» o_~ . 1. . o . 1 . 1 . . . . .. l . . . 1 . . v . o 9.11.. .1. 11.0... 1 1. . L 1 v I r. 1 . I . 1 9 III III III! III 0 v1.1 1} II‘I IA . VI-....I1.II+ . .. . . .. .V...w 1. ~ .1. 1. _ ... . 1 1' . “v .. t... . 1. 1 .1 1... 11.. .. M . “.... . . .1. .. .1. .1 . . .1 .1 o . . v 1. . . _.1 .1 . v "1 . .4. v. ._ I p; - .. ; a . 1- 1 1 1» I «.... .... .a . . 11. so . .1 I u -1! 1. 1. 1—1... . 11.. .11. .411 .. .... n: . .1 1.. . .. etc . 10—1.¥.I v I .14.. ., v.11 1 1 1 . 1.. .11 .11 1 . .7! H1... .1 .1_ L1!. ... 1o. 1». o . .1 1......1 .uu. . 1 191 1.0 10.... o .. .11 . P .4 I . A ~. . .... IhL 1 .. s. 11.. _ I ..v. 1 .1 V . I k I v . v o a” .1 .vvbw v.1 v 7.41.170 I .... ..o :1. .10. .9g . 1 16.. '11 I I. 1 .. . .I.1 1. .11. 11.....1 ‘HI1t¢.. 1 . ...! . l .1» 0.07;. 11.‘ 1+ 111‘. 1. c. I o. . .. .. 1... 1.. .... .1 1 .1 h . . . in .... . . . . or. .. O L IF H1 A "O‘. [Du-III... I... ‘11.. . 4 67 ' .-.. W 1 . 1 .— .4; .. . ..—-—.-1—.—.-9 "<11. l 1 I 4/6’2Wh/ -... ._. __ . .fi--_- ...- 1 1/0/ I ”3% l 1 21052121 I 1% 1 1 1 00.7.1! T 'L(/ ...... J 1 . . . $ . g , . . 11' $.- :::" . . .. 1 . 1 w...'-~-—_4 .. - 1‘.-—. .. . . . . . . , D pay/#7 05' J l I r . . ...QQNKU fl ...... M\~1V§u\s.wmwfix . 'la'! "u“¢-‘c-l ola..|ll O‘CII" 1“... 11 - .. -. .1. . x1 o... 1 f _.'_-1. l l .1— { . 1.! .. I .11.. £13 l o o 1 - . 1 - . . . .. I . . .. _. . .. .. . 1. . .... ... . V . . ... A 11 1 . 1 - .1 1 -.-1 1 .. . . . . . , .. ._V._..--.. . ._ , . . '. .'.- . A ‘ l ‘ ’ -..-_..-. .. _..---- I'V . 1 . ! . l _-..--. .11 :-t; .- -..- 4/0,. f??? 1 , . 771’“. .....-éL...fJL4 (22) O 1 _.L_ \ TL! _ 3 --md.~--y.~ . . . W.. ... 1 1 - -.. -..—..r—o..__ 1 1 l I o—. 1 1 I 1 » 1 , - . 7w ‘ I 13 -$m‘ , . ”:....-.“ 1* =71 .|. .J 1..-... . 5—._.._4..-—_.—-.' 0 1:5 .11; x! {‘Nf From the experience with the single Span frame bent it was Satisfactory to assume that the equipment as designed is capable of accurate work. At least, the error will be small and the value one obtains from an experimental analysis approaches very closely to the actual value of the stress in the structure. The mathematical analysis is based on some assumptions and it is doubtful whether or not the ~ m... values thus derived approach any closer to the actual values in the structure. an.“ waitress 913 THE RIGID lfléfi BRIDgg pangs. The data for the bridge constants for the single and double span bridges were taken from "The Rigid Frame Bridge" by Mr. A. G. Hayden, Ch. VI, pp 45-58, and Ch. Ix, pp 107—126, respectively. The data for the triple span bridge were assumed. The depth of sections as given in the above text or those assumed were considered as the normal depth. In the first analysis of each bridge model a depth of ten per cent greater than normal was used at the load point next to the abutments or piers. This increased depth varied as the offsets of a parabolic curve to zero at the center of the Span. For the second analysis the normal depth of section was used. For the third analysis a depth of section that was ten per cent less than normal was used at the load point next to the abutments or piers. The abutments and piers were of the same section thickness for all three analyses. The purpose of the variation of the depth of the haunches was to find out how much and in what direction the moment at the left knee varied for this situation. In the design of single span rigid frame (25) bridges the depth of section next to the abutments and at the center are usually assumed to be one—fifteenth and one—fortieth of the span respectively. This has proved best from experience in the design of such bridges. The models were made of transparent celluloid and only one bridge model was used for all three analyses in each case. The second and “if 1 third analyses were made after the models were sanded down to their proper depth of section each time. In this way more comparative re- sults were obtained and any errors in making the models were the same y for all three analyses. All of the tabulations and the curves showing f the results are in the appendix. After the values of the vertical, horizontal, and moment re- actions were found from the deformeter method they were plotted and smooth curves drawn through the plotted points. Necessary values to compute the moment at the left knees by statics were taken from the curves and not from the tables of values for these forces given in the appendix. Single Span.Model The curves for the moment at the left knee for fixed supports show a definite increase as the depth of haunch is reduced. The maxi- mum moment occurs at the left knee when a unit load is at a point fortys one-hundredths of the span from the left support. The increase of the second analysis was 0.65 pound-feet or 7.8 per cent over the first at the maximum and the third analysis was 0.58 pound-feet or 4.2 per cent increase over the second analysis. This shows that the increase in moment is not according to a straight line variation. (24) For hinged supports a definite increase was shown and the maximum value occurs with a concentrated load at the center. The increase of the third analysis over the second was 5.8 per cent. No data for hinged supports were taken for the first analysis as the deformeters were not arranged at that time to analyze the models for hinged sup- ports. Double Span.Model The curves for the moment at the left knee for the fixed supports show an increase in the value of the moment near the maximum as the depth of the haunch decreases. The percentage increases are 2.9 and 2.6 per cent respectively for the second and third analyses. The maximum value for the moment at the left knee occurs when a concentrated load is at a point thirtybeight-hundredths of the Span from the left support. The results for the hinged supports gave little difference between the values of the moment at the left knee for the three dif- ferent analyses. The slight difference could be attributed to experi~ mental error. The maximum value occurs at a point thirty-eight—hundredths of the span from the left support, the same as for fixed supports. Tgiple Span.Model With the triple span model the deformeter analysis showed a definite decrease in the value of the moment at the left knee. How- ever, this decrease was small, being 1.6 and 2.5 per cent respectively for the second and third analyses. For the hinged supports the decrease was 2.2 and 5.4 per cent respectively. (25) ‘m— «a 4“.“‘5 . -u CONCLUSIONS In the design of the deformeter gages the principle of the Werner Deformeter has been retained. The principle on which the gages work is the use of filler plates to give displacements at the supports between the three cylinders, "a", "b", and "c", and the glass plates. These displacements can be measured as well as displacements at the load points. The deformeters as designed for use in this thesis have an improved method of holding the bars together and give a more sure action of the gages. The results should be more accurate as it is 1‘40.— .9 ‘r-scm o easier to get the bars to come together exactly the same each time which is an important point in the operation of the gages. The gages are very easy to manipulate. In the operation of the equipment it is best to have one person operating the gages (placing the filler plates in the gages and taking them out as required) and a second person taking the readings at the screen. This saves much time over that required to operate the gages by one person, as well as the walking back and forth to the screen. When two persons are operating the equipment the Werner Deformeters are much faster than the more expensive Beggs Deformeters and just as accurate. With the Beggs Deformeters a microscope must be focused each time a reading is desired, while one focus of the flashlight usually is enough for two to four load points before a change of the position of the flashlight is necessary. The results as obtained for the single Span frame bent with the gages showed a very close agreement with the theoretical analysis. (26) Also, the results for the single span rigid frame bridge for the second analysis (which was for a normal thickness) checks very closely with the results for the influence lines as given for this same bridge in the text "The Rigid Frame Bridge" by A. G. Hayden, pp 65 and 66. Although the influence line for point SL is not shown it would be of identical shape to that shown for point 6L except that it would start at zero and go down to a maximum of about 8.8 or 9.0 pound-feet. These are the only curves that can be checked with the theoretical analysis. This close check leads one to feel confident that the other results as obtained with the deformeters are as accurate or will approach as closely to the actual value of the moments and reactions that exist in the structure as the theoretical analysis since the latter is based on some assumptions. The cost of the four gages to complete a set with the mirror bar was forty—eight dollars. Therefore, the gages are inexpensive, and since they do give accurate results, are recommended for use both as laboratory demonstration work and for research work on statically inde- terminate structures. However, because of the method necessary to use to obtain the displacements at the supports, the gages can only be used for structures with horizontal and vertical reaction lines. At least the gages must be placed so that the glass plate is either horizontal or vertical. No attempt was made to check the experimental results for the three bridge models except as noted above, nor, account for the results for the variation of the depth of the haunch from a theoretical stand- point. The values as given in the tabulations in the appendix were (27) those as obtained from the work and all readings were taken at least twice and some checked more than once. These results were then averaged and the averaged values plotted to make the curves of the reactions as shown in the appendix. However, a theoretical analysis would seem to indicate that the moment at the knee should be reduced as the depth of the section is reduced as more material at the knee would "draw" the greater amount of moment from a theoretical fixed-end moment. By not changing the abutment or pier sections probably had something to do with the fact that the moment at the knee was not reduced in the single and double span models (an increase was noted). However, in the triple span model a decrease in the moment at the left knee was shown. There is the possibility that a still more accurate method than yet devised would be necessary for research of this nature where small changes in the model would show up better in the results. If this is true, the allowable error in the construction of the model is greater than thought by those who have worked with model analysis. It would not be necessary to sand the sections down to the nearest 0.001 of an inch but possibly the nearest 0.01 of an inch is all that is neces- sary. This would make the models much easier to construct which is one objection to the use of this type of analysis. The results show need for further research with the deformeter analysis with a theoretical analysis as a direct comparison so as to have a more definite tie—up of the deformeter analysis and the mathe— matical theory. (28) APPEMI ’- }-{ *v I lluflimammaLinss eve Single Span.Model Reactions Fixed Supports ————————————— 55-o5 Hinged Supports ------------ 36-u7 Double Span Model Reactions Fixed Supports ———————————— 43—46 Hinged Supports ------------ 47-49 Triple Span Model Reactions Fixed Supports ------------ 58-61 Hinged Supports ------------ 62-64 Tablgg Page I Single Span Rigid Frame Bridge and Model Constants --------------- 51 II Section Thickness of Single Span Model ------ 51 III Experimental Results - Single Span Model (Fixed Supports) + ----------- 58 IV Experimental Results - Single Span Model (Hinged Supports) --------- - 59 V Double Span Rigid Frame Bridge and Model Constants --------------- 40 VI Section Thickness of Double Span Model ------ 41 'VII Experimental Results - Double Span Model (Fixed Supports) ------------ 50 VIII Experimental Results - Double Span Model (Hinged Supports) ----------- 53 IX Triple Span.Rigid Frame Bridge and Model Constants - - - - — - - — — - — — - — - 55 (29) Aprbnnig (gong ) Tables X Section Thickness of Triple Span Model —————— XI Experimental Results - Triple Span Model (Fixed Supports) ------------ XII Experimental Results - Triple Span Model (Hinged Supports) ----------- (50) 69 Siuapg SPAN 61016 66165 661165 ALL MODEL 01:6T16265 .— Table I Coordinates of Model** 391116 51:51 1 1654) I 1ft) 1. L311 alml..-x_(in.l_ 1L 6.00 16.00 1.0 0.4 0.15 0.55 2L 2.65 1.55 4.0 0.5 0.10 1.55 5L 5.21 2.75 8.0 0.0 0.00 2.67 4L 5.65 4.75 12.0 —0.5 .0.10 4.00 5L 4.00 5.55 15.9 0.1 0.05 5.50 6L 5.55 5.75 16.9 5.9 1.50 5.65 7L 2.75 1.75 17.5 7.9 2.65 5.77 6L 2.15 0.65 17.7 11.9 5.96 5.90 9L 1.70 0.41 17.9 15.9 5.50 5.97 10L 1.40 0.25 16.1 19.9 6.65 6.05 llL 1.25 0.16 16.2 25.9 7.96 6.07 116 1.25 0.16 16.2 27.9 9.50 6.07 10R 1.40 0.25 18.1 51.9 10.65 6.05 96 1.70 0.41 17.9 55.9 11.96 5.97 66 2.15 0.65 17.7 59.9 15.50 5.90 76 2.75 1.75 17.5 45.9 14.65 5.77 66 5.55 5.75 16.9 47.9 15.96 5.65 56 4.00 5.55 15.9 51.7 17.25 5.50 4R 5.65 4.75 12.0 52.1 17.56 4.00 56 5.21 2.75 6.0 51.6 17.26 2.67 26 2.65 1.55 4.0 51.5 17.16 1.55 16 6.00 16.00 1.0 51.4 17.15 0.55 *5)? Scale of Model 1": 5' * Bridge Constan 5 taken from "The Rigid Frrme Bridge" by Arthur 0. Hayden, Ch. Vi, pp 45—58. Table‘l; ~7- SECTIL‘N THICKNESS 01" SINCLLC SPILN RIC—ID r'FJJfiL BlilDuE AICDE'L Point Thickness First Anglvsis .Sepgnd Analysis___Thirdfi£nalysj5 1L 1.575 1.575 1.575 2L 0.694 0.694 0.694 5L 0.842 0.842 0.842 4L 1.009 1.009 1.009 5L 1.048 1.048 1.048 6L 1.024 0.951 0.858 7L 0.782 3.720 3.658 8L 0.602 0.564 0.526 9L 0.465 0.446 0.429 10L 0.575 0.5 8 0.561 11L 0.527 0.526 0-525 Deformeters and Models (51A) 6.4. Q S or. m) .. . . P ¥ #. .\ .4 a. A...\\ “4. i.\~. mix 4.4404441 4 . .4 NINA K\.4H\4V\Q.lk m -N.4\M.\\J\ Pix \/ \ x x.) ..I .{4 < TQU R4 INMJ 5,444.4 f. M: Nvmv V: D u G I' P 7 ( (32) .111 s min-1| 1 - r1.-ll.a111 l J: 1.. ...-:::r-i-a-J. . . .1. 1 _ . . 1 n . .1 1 . . _ H 1 .1- . _ 1 _ 1 .1 1 1 1 1 1 1 . . . 1 _ 1 .. ..1 - 1.4. - 1- .. .... - 11.1. --.----I 1 1 1 .. 1. . 1. . 1 m 1 u .. .U .1 . . . -...-:--!.n.----.---i-.--.-1.-,--.V, . -111 .. . 1 . 1 . 4 o‘l’i)fiiutl.1l L1, 1 1 1 1 1 .HKQSWV -4QNXQN _ 1 _ 1.1-. 1 . a titi1 - - . . 1 1 ..... 1 . wkw .- . 1 . 1 .1 . ..r .1 . . 1 . 1 . -: - litany-Q . . .- . U . . 1. j . 1 H1 ... 1 1 1 1 . 1 _. 1 . 1 fl 1 .1 1 .1 . 1 _nq .. . i ”A. .- Fm 5111 . th - . .. 1. . m - 1 1 1 AU .1... . 1 1.. .1.- .w 1 ./f . ., _ w 1 . 1 1 1 41‘- - 11.1.-. --.; ...1- - . 1/ 1 .1- - - -4 :...l-mv441111 i:é::1;rirt-:1 we .1. 1. ,1. LJ... . . «.0 1. . a 1 T .... w .n WWW .. 1p 11.; . U 1 .- w -...1- “M1 4.... -1 ...... 1fl 411.11 I. .. _ .. 1 . {w ..I 1..-11.4. .1 t1;- 1fit1a- 54.- -. I ull- -Iyn¢o1-f II).1 ..Ill . . 1 _. 1. . M1.” ..... a ... .. 1 . _ ...1 a 1 . --.--.--.-.--1--.-.___----. .- -1- 1.. . .. 1' . . ..., ... _ . . 1 1 1 .1 . ..H 4 hr . J1 .1 1 1 1 . 1. :1; . .11 2.1 _ _ .A .1, W h 1 “- . . m :1 1 -.MI 1 1:15“. :1. n.“ . . I .T . .115 4_. .-. 1..-“p a - w . 1 - 1 . . 1 . . 1 . .v- -51 r - .-7.uIQN$ nil-1|..---- 1 iii-1-1-31.1. 1 fl . _1 g... ...m .. 1 ._..-1w. 1 1 . .. 1 ..loibibu-cnl » . +- _ 1 . . . . 1 ”J H 1 1 . 1.11. 1 ww-Bq-$-.i-.I1ra- . 1 1 1 - 1 1. . 11. . ..1 1 .1 1 . ... /r 1 1 1 +21- 14-4.11.- + 1 .1- ::.-p- -.t... : ..+| I a -. i :..:-hit) I . 1 -_ . 1 .1 q .. r“ . 1 f. - .- . 1 1. 1. : ./ . . 1 . M 1. 1:1. 1. ...-11-1-1111 .- . _ 1 J 1 . _ 1 .1 --.-4!.-- 1 L111 ...--4.- - - -16 1..“ L -- -- 1..:.220:...-5.5+.---.-1.--z 1 .1 a . .1 .. 1/ . 1 1- . 1 1r .1 . 4%“ .../v. .1...- 1 ;:1 -0 r - . M . . :5. 1H .:1 1 .1. 1% ,i1 ; 1 . fl - . m . .u - . . . k . . m u j 4 1 l 0 €+| I 1 d.:«.. {viii-4b- 4 ) 1 pc- .1. v {funky-71:0. Ab . I .1111r-I 11-1 - 1-.-,-:/.1- -..- - 1 1 . 1 _ . .. 1 w n 1.. 1 1 1 . 1 . . ..n A .- .-.-:7... -. H u 1 ! 1.11."...5 m, ... .. 1 1 u 1 1.- 1 - .- o -- ---- l lb.) )I-iJu-lln-Illl'v?‘ I‘. . 1 . 1 , 1 . . a, . H. a ._ /* :.-.--..- ---.1 .1. ......” .1 1. m J/ 1 1 1 1 A. - 3/. :4 . . 1 I . . I .- 41! ...-xi- . x1; 11 - 1 11 Wu g1 1.- _ . a _ H _ . . .r .- . - 1 :W 4:91. It! 1..-W) “sghix A .. 1 H .1 M . . 1 . .1 w. (._-1 [1‘1 ”...-11.. . _ M a l)!!- . 6114-46-04. Ill! 1) -|. il'cllu 1-.!‘Ill'7l III. I 0h. hmfik. x? 4.04.._45.4-4H \N _ 146-41 MW? 464441464 144.444.41.144k 14446410. >1.th 1 641416 v7 " ) 1.“qu %1. V . a . (‘65) (34) (35) I 1.1-. 1 - ..-1_1._.T_____1-.1 1 ‘ ' - I I “Tr.“'"“—"‘lr~' ' 1 1 PP .III. fiI11-111-I11111111-111-114111113141111 11111111431411-1411 1.1 11.111111111111111 . 1 . 1: .1 1 1 M441494m woo-414 434$ Wb>>>m mh4bmm1 1 1. . .1 _ _ . 1 . . .. _ 1 _ 1 1 1 1 . 1 11 111-111-1111 1141111.-1--1---\444-\>4m44nm 41445-41304..- 1\ Q44-o44¢441-.1-_ 1- .1 1.11.1.1 1 . 1 1 ..... 1.1m .. 1.43m44m44401444 4.44 EOQBUG 1. .. 1 - . 1. 1- 1 .. 1 _ . . 1 .. . 1 - 1. 1. _ 1 11-4%, 1 - 1 -1 111-1 1-14--1444444%mR bkhthKu -..-111-111.1111---111111111111-.. 1 1 1 1 .1 . 1 1 1 1 1 . 1 1 -1, :1. . .. . . _ 1- 1 .1; 1 1 1 1 1 ._. 1 _ 1_ _ 1 . .1 1 1 1 1 . 11 1 U 1 1 1 - #:1- 1-1 .1- 1-.- 111111-..-1-1- 1 11 1 4 1- 1.111. 111.1 - 14141.1 1 11.1. 11-1-1- 1 . 1 ,1. 1.. ,1 ..... 1 11.0-...- . . 1 . 1 ....... 1 . o 1 1 1 1 1 1 1 1 1 _ _ 1 1. - 9.4 1 1-1.1-1111 0.1111 .11 1 1.11;:- 1444441Mmm$3bk44444444911 1.1...-_._._4_-_... ..-—.1. 1 r --_..1..._T1111_.__1. -1 I 4 1 ' 1 I I I n ' -1150 I . , .. [-.--(192’! .Verflca/ aria/.- Hombre/77104.; ._d I _ Heath-2A: .s- ' ; 1..-1.1.1444 4.144.4- n44 kJWu-quvu- I I . 41.- - .... 1..-_....-.l__......__-. . o _ . .1 .. . . 1 1 .- 4 . . 3 / 11I11r1I1 1 ILII1 1 + 111... 144.4. 4.1444 444.4. mm. 1 \3\u4.\u\. bbxcvvxnl 1 I 1 I 1 I 1 l 1 I I I ' . I ‘ I 1111111111 1111' -1 1 , 1 :31“ . -1111111 .4“.-- 1 1 H 1 . 1 1 _ . 4 1111? 1 taill 11 1.1 III II III I Illldc 11 11114.11 III-1.11. III-o I 4.111... I. I . W . I I1IL. . . _ . . 1 h _ 1 u . 1 1 1 1 1 -. 1 1 1 w _ w . 1 _ 1 1 . . a 1 . .1 . - - . . 1 .. - - . o 1 11. p 4. w ..... Q . - .. s - . .. M . _ . 1 . 1 . - a . .- 4 n 1 . 11 M 1 1 1 1 1 u 1 1 1. a _ . . a n H .1 M _ .. _u _ 1 m . I I. JI I I I!” II ’ III. I I. - I- I III-I .I .IIAII I I . Io ...IOiI I I, I1I4I IIIII FIIII Io. I II III III! III‘I III-«III IIIIII II .. I I 1L1.» I. I . 1 1 1 _ «I . 1 1 1 1 _ 1 . 1 1 1 .I I. 1 _ 1 - 1 1 .1 . 1 1 U .1 H n . / 1 1» r m ~ 1, . 4 - 1 - . . . . - . . . . ll . . . - - . 1. ..1 ¢ . . . . ‘1 / . 1 4 . . . II I: WI» III HII .1 I 1 I . I u m . v1. . I II I II II._+IIII I//- . III-I . I I I III I I III‘ II I l.. I I II .1 I I— . . 4 . . 1 1. 1 \ 1 a 1 / 1 1 1 . . . . 4 4 w\ ”1 — 4 - 1 / . . 4 1 . o 1 4 _. /. 1 1 .\ . 1 1 4 1 1 I I I4 II 11¢}! I I I I H :IWIIIO III III I II I I. I I / I I III I I 1 1 III! IIHIIIIII 44 — W I'2A\ 1. - 1 .1 - 1-1 1-1-1- 11 1 ._ 1 1 1.1.1 1 1 . . _ ._. 1 .1 1 .. 1 . 1 1 1 1 1 . 1 - -- - 1 -. - - - 1.1111. -- .-1..w1 £40 .00. 1 -.. ,. 1 . QW QR .. ”44%. 1 QW Q04 Q\\ 14% _ 494 14.0 . u% . .Nh NW w1 I 1 1 I111 1.1I11Is 1 1 I _ 41 1 .1 1 1 1 -1 4 . - 4 4 1 .1 ... 1 1 1 . 1 1 . .. 1 1 _ 1 _ . 1 _.- .11 1 1 1 1 .1 - -1 11 11 1 1111- - -1-11.1- III-1W1- .-1.11--_.111- 11- -11- 11.1 1.111111 1 _ .1 1 \11- 1 1 . 11. 4 .11 1 1 . . 1 1 1 . . -4 1 1+..\ 1 -/+ 1 1 . 1 n. 1 _ .. \ 1 _ _— _ 4 1 1 1 .- - I - - 4. ‘ . a - . _ 1 1 1 4 . . 1 1 1 +111-- 1.1.11. 1 _ _ _ 4.45.0444 Q4414m14414 1 11 11. +. .1. 41-44 6.41 4444.443me. 4 1 _ . M . 1 . - .. 1 . . . . _ . 1 r .1 . - I I II. 11 I-11 1 1 . 1 _ 1 1 . . w u 1 . _ 1 . 1 1 11 - 111 1 11I 1-. . 1 .. U . . _ .1 . \1-*. > V 14 1 1 4 . r 1 111 u I U . u 1 1 . . _ 1 IIIIlilauu fl. .l..l 1.- 111 :11 111-1. .1- 444. 1 . - .. 1 « I 1 l 1 1. _ .. . \ 1 1 . . ~ . 1 _ M . . .ouIIIlII III III II“. III-I 1 hIII-II III ..I11TI II .IILIIII1IIII ...IIIIIIIrIIII'II‘ I—II II I II I - 41III1II'III 4 m . 4 _ 1 . A . 1 . 1 . . . 1 ~ . . g . 4 fl . ... 1.1 v: 1 > _ ...... .4. 1 4 a1 1. n . .- \ . 1 1 4 4 4 1 1 1 . 1 — _ 1 A 1 .1- 1111 11.1 K .111 11 1.1 -- - 11111-11 11111-111111 -1 114-1- 11- 111 -.-.1 -11. 1. . 1 . 1 4 1 1 . 1 1 . 4 . . 1 H . 1-1-1.111-.. .-.. - o _ 1 1 1 _ . 1 1 1 1 u n _ . _ . . _ 1 .- 1 1.1 I -11 1.11111 11 ...IJJ- 1 1 _ . .1 n . a . Q ~15 1 12 0a 77 M; 212m.- 1 } 1 I c . . . I 1 L1 1 I I 1 1 .... ”1..-l“ a1“aau 1 11.-...- 1.. -- .. -o ...... . p + - 1 . n a - 11 . . 1 1 L H -1- -11 . 1111-1111 1 -11 111-111.--11-1L ._ - .11. 11 1. 1 . . . fi. o . 1 . .. _ 1 . 1 1 . H . 1 4 1 m . 4 1 1. .h- 1 I 1 I 11.11I-11I .I.. ...-.1 I I . .. ------ 1 . n 11.1 1v 1. 1 . . 1 1, . . 1 . 1 1 _ . .. — ~ .1 a _ . 1 _ 4 _ w . _ W _ _ L 1 I” 4 b 041-4931444410 - l 1...... .1. 1 .---.. _..-; . 1.1-1 1.11.1 . I I 1 . 1 _.--_11.-..1:1 {345% 1 . - 11I-_11.- 1 F- ...—1|. ... .I.. 1..-1+ _- -1L1 ._. MwQRQmw 1434.»..4-444144 Q\b4ww1 4544046.... N-VQQNWL -1..- Il.I-1IIIIII1I-AII I IIIIIJII *I KQK «34140144. wmAQV wwtm44\\n4\ 1 IIII-I 444.411-.. ..-.111-1221114- 4 . 1 .1 m 1. 11.1 1 . _- .4 1 . . _ . 1- .. ..1 1 1 1 1 . 1 1 -11 L1 -11 1 1.11111 1.11111 -- 1 11.1111 [7'7\ iii-.1114 ......III 1' APLPLIIJLIITILLI RELJULTS S NuLE SPIN RIuID FRil L BRIDEQ - FIALD_§UPPORTS Results for First Analysis Moment at Left Vertical Reaction Horizontal Ree ction Moment at EninL_n111_JhuuxnuL......._Le£t_finan:Ll.____..l&£jLSyn“art Ififilgflnee 6L 0.96 0.12 -l.90 7L 0.07 0.92 0.27 —5.92 8L 0.26 0.85 0.40 —5.70 9L 0.81 0.78 0.52 -7.52 10L 2.08 0.68 0.64 -8.56 11L 5.41 0.57 0.71 —8.03 11R 4.41 0.42 0.71 —6.62 10R 5.27 0.50 0.64 -4.95 9R 5.02 0.20 0.52 -5.47 8R 4.05 0.11 0.40 -2.06 7R 2.82 0.07 0.2 -1.45 6R 1.42 0.05 0.12 -0.61 .Eeanlts.£nr.Eecnnd.AnaLxfii§ Moment at Left Vertical Reaction Horizontal Reaction Moment at .EQ1ndL_..___ihnuxudL_.....__léfl3LiEKanaiL.._____LéfiELihuuxujL_l_._.léfiiLfixuxa 6L 0.96 0.12 -2.06 7L 0.14 0.92 0.28 -4.07 8L 0.2 0.88 0.45 ~6.18 9L 0.85 0.80 0.57 ~8.00 10L 2.01 0.69 0.68 —9.01 11L 5.40 0.57 0.75 —8.64 llR‘ 4.57 0.42 0.75 -7.26 10R 5.50 0.50 0.68 -5.58 9R 5.15 0.21 0.57 ~5.95 8R 4.59 0.12 0.45 -2.54 7R 2.95 0.08 0.28 -l.58 6R 1.49 0.05 0.12 -0.77 (58) Table III (ggnt.) Resultg for Third Analysis Moment at Left Vertical Reaction Horizontal Reaction Moment at Egint Supgort Lei: Supoort _~_Leflt Suanort Left Knee 6L 0.29 0.97 0.14 -2.2 7L 0.25 0.95_ 0.50 —4.59 9L 1.12 0.80 0.57 -8.51 10L 1.71 0.69 0.69 —9.52 11L 5.49 0.54 0.77 -8.96 11R 4.50 0.42 0.77 -7.58 10R 5.27 0.50 0.69 -5.89 9R 5.05 0.2 0.57 -4.26 8R 4.29 0.12 0.45 —2.86 7R 2.82 0.07 0.50 —1.90 SE 1.48 0.05 0.14 -0.95 Table l}: EAPLRINLNTAL RESULTS SINLLE SPAN RIuID FRIML BRIDqE - HINLLE SUPPORTS Results for the Second Analysis* if Vertical Reaction Horizontal Reaction Moment at Eointo Left Sugport Left_Suonrt Left Knee 6L 0.95 0.10 —l.59 8L 0.79 0.51 -4.95 10L 0.61 0.49 -7.79 11L 0.55 0.54 —8.58 9R 0.50 0.41 —6.52 SE 0.22 0.51 -4.95 7R. 0.12 0.20 —5.18 -* The deformeter gages were not constructed so as to use hinge supports when the first analysis of the single span bridge was analyzed, and, therefore, only the results for the second and third analyses are shown. (59) Table 3: (cont.) Results for the Third Analysis Vertical Reaction Horizontal Reaction Moment at Point Left_Supgort Left Supoort Left Knee 6L 0.92 0.11 —1.85 7L 0.88 0.25 -5.66 8L 0.79 0.54 -5.40 9L 0.69 0.45 -7.00 10L 0.61 0.52 —8.50 11L 0.55 0.57 -9.06 11R 0.47 0.57 -9.06 10R 0.58 0.52 -8.50 9R 0.29 0.45 -7.00 8R 0.18 0.54 -5.40 7R 0.15 0.25 -5.66 6R 0.07 0.11 —1.85 Table 1 DOUBLQ SPfiN RIUID FRLNL BRIDeL 1ND LODLL CONSTANTS* ' e s' s N ' _Boint thtll I Lft4) LY Lit) X LfIJ x (in.) y lin.) Depth 1L 2.5 1.50 1.8 0.0 0.00 0.600 0.962 2L 2.6 1.81 6.8 0.0 0.00 2.267 1.024 5L 5.5 5.58 11.8 0.0 0.00 5.955 1.286 4L 5.7 4.96 16.7 0.0 0.00 5.567 1.455 5L 2.8 2.25 18.2 5.0 1.67 6.067 1.098 6L 2.0 0.85 19.2 10.0 5.55 6.400 0.796 7L 1.5 0.59 19.9 15.0 5.00 6.655 0.614 8L 1.1 0.15 20.4 20.0 6.67 6.800 0.446 9L 1.0 0.11 20.5 25.0 8.55 6.855 0.405 10L 1.2 0.20 20.4 50.0 10.00 6.800 0.491 11L 1.7 0.56 20.2 55.0 11.67 6.755 0.692 12L 2.6 1.87 19.7 40.0 15.55 6.567 1.055 15L 4.0 6.59 19.1 45.0 15.00 6.567 1.559 14 5.7 17.71 18.1 50.0 16.67 6.055 2.190 15 2.0 0.79 15.1 50.0 16.67 4.567 01777 16 2.0 0.79 8.1 50.0 16.67 2.700 0.777 17 2.0 0.79 5.1 50.0 16.67 1.055 0.777 ! --‘- ‘x-'- nm—- ‘ - ~—-—. -I‘ ...—--—¢—o A‘— (40) 15R 12 11R 10R 9R 8R 7R 6R 5R 4R SR 2R 1R 0 \_J mmmqoooma-domxlm NMCNCNNMl—‘HHHHMsb 6.59 1.87 0.56 vv-‘--a.--.-.--~.—-.—co 13212.! (22411) 19.1 19.7 20.2 20.4 20.5 20.4 19.9 19.2 18.2 16.7 11.8 6.8 1.8 n .- ._.”. m“ --g‘ _-.. a. ..w-‘--a.-—. - -- ‘ 55.0 63.0 65.0 70.0 75.0 83.0 85.0 90.0 95.0 100.0 100.0 103.0 100.0 V—.—- - --- —- -.- Dimensions of N l .Egintl__L_L£tl__111L£L_L-..__L£tl_1.4 (ft11.1r.Lin.1-;x-Cin11__Dc:nth 18.55 20.00 21.67 25.55 25.00 26.67 28.55 50.00 55.55 55.55 55.55 55.55 55.55 6.567 6.557 6.755 6.800 6.855 6.830 6.655 6.403 6.067 5.567 5.955 2.267 0.600 1.559 1.055 0.692 0.491 0.405 0.446 0.614 0.796 1.098 1.455 1.286 1.024 0.962 - --u—o—ac- -.-.-———-_..— -.—. -“*.-*-.H * Bridge constants taken from "The RL id Frane Bridg e" by Arthur G. Hayden, Ch. IX, pp 107-126. SECTION THICKNLSS 0F Tab1e_yl DOUBLL SP4 ”N RIGID rRAJE BRIDuE -_‘ «._.—1. _-..“ _ -thichneas Point 5L 1.207 1.098 6L 0.858 0.796 7L 0.641 0.614 8L 0.455 0.446 _ 9L 0.405 0.405 10L 0.501 0.491 11L 0.751 0.692 12L 1.125 1.055 15L 1.715 1.559 15R 1.715 1.559 12R 1.125 1.055 11R 0.751 0.692 10R 0.501 0.491 9R 0.405 0.405 8R 0.455 0.446 7R 0.641 0.614 6R 0.858 0.796 5R 1.207 1.098 (41) .‘ —. -.— -~ 5035; ._..- 0.988 0.754 0.586 0.459 0.405 0.482 0.655 0.947 1.405 1.405 0.947 0.655 0.482 0.405 0.459 0.586 0.754 0.988 _gFirstRAquzsi ls _Secqnd 4n»1£§a§-£l%i£4.14411_i§ m) \ ..\ QII..B Q‘wl‘sx \. 0 PHV ...» h» ‘.\.J ..A/ {4 \o ‘4 .4 .... ... V. . .\-.w\ 11x \ \FK. xx.) ...J 5% \ .... O m-\.\.(.r. L. ., _ a \K C ......c. wk \< r no. , 2;... ..\ h 4‘ . I. \l \2 \J , x. _ .4. .. \ . . . . - - . C: ...1.0h...u\.m “we. . ... I,» .... ..a 9v .....0 whoa“ . , - (42) . A - . o a . . . . . 1 . . . . M - .. .. T1 #4 0- --47§——- -—.— (A2\ .. . r . a _ _ . o . . . 1. 1 . . .. A o 4. .-U v .4“ .W .9 ._ _ A . _ A. o .. .4 < .1 . o‘ .... 4A.~ .... ..- .. . . ... .. .. - . :1. .me . . .....1‘. r.1 . b 1! . 41?. I- 1V1 . .. 4.1 1 9|...- —‘ 4 LI» {I 4 . 9.. .4 . .«A o p <, 1.. ... 401. YA..1A>v. .-‘6 J 4. A .q O ...o. 4. .. . ..4 o . _ ... ., . .A o .A . A . .. . .‘ .1 ac. A .t.g.—<. ._.... .n. 0.4 .. o .. \ . . '§.. .‘.. 1A . .V-. Aoc4.. 4 ... . AA<1 0— Jfi‘.o. .L. .4 . m. . . - . ... #14- on u. a...“ . . fl.. .. 1 . +7... v. ....4 ..v at.. . . I. - ...?1. ‘1 . 6 +,.. .. . .. .. L . _ 1 .~ . . . . P1... . A. . ..A o. . .. .... .o 0. .1A . . .. .1. . DA. . .. . . .. . r 1 . 1. 1 \ . 1 “ID .r I. .1. . . » 1 . l1. _ _ 4 A A A. o . 1. A 07?.0 .4 1 .. ‘01»A1 3...: 0‘; A A A A ‘1‘. ~40. 6A. I4 0 rfo014.r4 ‘o 9. tc.b n A. a o I” A: . cl“ ... . .70 J. . . 4 .9 1 o. .. '14..— . 11.0 L..1 .1“ 4 ...o .... ... .... .A o A as 1+~¢ .. .ln . . v. A A. A ’ ‘1 TIA. t. . v . r ... ... . .Vv A n a 1.. u .. . 9.. .A. I.‘ ...... 14'. lo 9.. o¢.oA 46 o . .A ...:‘.A.. s . ... . 1AA .... 1.“. . no. .A o ...: 1 O ... 1 4.. 3 0A.. . .. AV.. ..w». o. 1. . - ..Y. I. _. fi _ . . . .. u... . ..u. no w.‘ c 1...... a .. .. ...a . .9 ...l. . o T... ..O I. .u .AL A ..v.»Ao$.Q.. 40A....1 ...... I I A. 441 . o . o . 1 . L . ._. s b-||.filll '5'!» [It 4 4 . . i 1 4 < T‘j..1l 1 o . . ¢ 9... .v ¢ . l 5’. oo.‘ r; . . 4 .. 1 1 . _o.~ .. _ Ll...4x..m.. I ._ b0 .1. .0. 5.... . . .I . < .9 .H.. .» Id. 1.4 ‘ 1 _ ... .... _. 1... .. . . . ..».. . _ . .. “4). .u .1. .. . .... . . .... 4 . .. . . . _.". .1. . 1 . r. 5.. . .4 . .g . ... ._. H... . .14 T... A . . . .. <-.-Ap.. . . . . . ... .. . .. ..-. . .. . . L .1 .. A . . . . .1 fl . . . . . v. o . .... 1. . .... 1... .. . .. ._ . 1v . . . y . -i .. . .... .. . .r.. . . . . . ... _ . . . 1 K: . 1 . 1. 1 m. . 9 9H . c. . 4 ... .6. 1 . a... ..1“ . . . . A. . . o. . _ . o M M m . . . .. .. A. . .. ..A.‘ .. . . . A 4 e 1 4 u .1 . .. .1 v . . . A .. \- . o. . .1- v. . . . ... . 1 . ... . . ... .0. . u ...+ ..A .... o . ..- . v u k A . A 9. .( *.. . .w. 1d ' l. I‘ll‘lu.¢al lifit .' 1 4 1 .lll‘ L7 _ . o . A $ . . .o . 4 . .4. A. - A” 4| 0 n .. .. .g. .. ... 0‘ . . ... .. .-. t .o .I . . i. . c .. 1 . . -.. . ..1. . .- AAAC. A» .' .. - .. . . . . a . .. . . . o . 1.. .. . .o. . . 1 v .A .L .. . . . . w .1 r1 1 1 . 1 . . . ... .. o-‘ . . . . ... .. .. . -fi .. 1.-....4... .. . r . w. .1 . . 1 .. . . . 1 i1 _ . .. .. . . __ .. . .. ... .. n .. . .- .. . . . . ... . _ 1 . 1 . . . . .7 .....:. . .t. . _ . 7. r . -.. 1- 1 . . . .. . .. .. . ..:. . .1 .. 2.: . t . .. .. :._ .:1 1:. 1.3.1.1.. -.11! . 1 L . 1 . r r o . 1 . . .. t 1 ~ . ... . 1. .9 .1 .. 1.. . . A. .v o a .. 1 _ . Vr . x . u .. . o.» . . .:... . .. . 1 . . ... : : ..f -. .. -.;: 1,. .. . , 1 1... 1 1 .... . ... . :,: . . - .... 1 .. f: .. :.l1.t 1T. . . o. 1 . -. A.L.. ... h .. . L. A + 7 .. .1 . ~ ..- . .... 1. ...: . . .-- e 1. [H . V. .n 1.. . ‘ . ._. J I 1 _ . ~ . . .1 . . . . .. . .o A“. v. . A.A ... .\ 1 A . . I41. ... ‘ . . v . x . - . ... .. . o . 4.. . . . . . 1 1. . . . .Ar ..-. .. . . - . . .. . A.. . 1 .. ... . 1 .v . 1. .. - .‘u . . o. .. . . .. v.1 . .... . . 1 .11 . . u. 1 - 7v. . . .uv r . ’1 r! . 1.. _ . W11 1: .... 1‘. .ov. . . 1 .1. a 1.1 . . .-. .9 -.. . ..o .o . , A . ..... . ... ... 77,9‘61’1‘, 0A0.r||llfil‘i I. r 7) > D \rltlll- «I . l . . H1 .. . . .. . . ... ..p ... . .. v 1 w .. . . A. o ... . . . v .I . .. ..o . 4 v. ... . . 1V _ . _ . . .y. ..A A T H.. . —..4f .. o .. .. A.. .o . H . .1 .. u 5-. . .. . o . .. . . - . .... . ...A .¢ ... Y t. u. . .1,» n n .A . . .>.v 4 . . A . y bw|.¢.. u .y ’1‘ .. . .uA. . 4 .v u. .. | 1 F . 1 ._1...11. .1\. . 1. ....L . . ... .. 1.1.. .. I .. s..- . .1’. m ..... 1.1.! Ir. ...1. .41 L. ‘IJ‘ 4 4 .ll 1 < . F F o .p 1 .. .V . . n . . ..n. p. . . 1.. . . .. .w . u. v.0 . .. .. . 1. . . . . ‘ _ . .l .t' . ”.11 1 4 .- . .o v v . . o .v . . .. . Y ... . _ A1 A v u . . o o . .1 » _... 1. . A 1 . . . utvIA . I . ..1 .. L . A... 5 A . ch .. . . .. . .1“ 11 . . . ., . . .. . .. .. v.A ._. .4 A . -. - . . . 1. . 1 . . l v _Vt- LTcllll‘ v.0 .I ..IIOIO ! Qt . .11 Y‘ I It I 1 149‘ .lil ittrlullr'al.’ 1L4?! 1 . A. .. ..1. 1.. . o¢.¢ . ..H ... . 1 . . . .. . . . . . ... A. _ .. . _ ._. 1 . .... .o A s . 1. 1 1 ~51. . o ...! . .|~ a A. Y. ... o .1. . .. w .. .. . .. .... ...\ .. . . ... . 1 . ... .. .. 1..A .. ... .. . 1 . o . . . . . h .. I- . _ .. w? . . . . .1.. -1 ..h . . .1.. .. A . .‘fs. .. . . a 1 . ’ 1 1 . . 1 r l > 1 4 11.] 1 1. J 1. u 1. 4 .NI... u .... .. .- .1. . .-.. .. .. .Hg. . _.. . .. . . 1 . . ... a .0 ... p. 1 u. ..-A . ._A ..A . A. . .1 . v. .. . . . 1 . - v 1 . .u .. 1‘ A . . M. .1...“ . . ... . . ... v. a . I...» m _ _ _ _ . .. .11.; ..L. .. :... . -. .. . . .. .. , .. ..1.. . ... . A 4". 7 o H.o§ Arvl‘ VIJJ‘IYnl41‘ H L I'I-#on.T§A ~0"-AII".V tf’tOJIIJIA‘I'A..VOII‘A + . ... .... A . ..A A . . .1 a 1. v . n . .1 .1. u s V . . , . . 1 . . » . a. I o n . . . . .v 1A .v u 4 . .. _ ‘_ . . . . .‘H v.11. .. ‘ u on u. 1 v o . . . I .. . . l _ a v . o . .. ., 4 . .. . A. . ... 1 . . .b. o . < .o .1 r . 0|- ..Q. 1 . . . h L P _r 11 L P 4 4 4 ~ _ .. 1 . .1. ..0 . v . . 1 . w c. . .4.. T c. o . ~ .. 1 ‘4 . .. . no a . -. . L. . . A ... ..+A o . IA ... . . .- A I..fi., lo 1 . . .1 A 1 . A. . . .F . . . .. _. . o . . . . . . . . . 5.. . . J 1 .1 o . 1 _ \ o 1 _..A _o . . . a. . o . . . .1 v ... .. q. . 4.. . .o. ..1 ._ v ._ 1 . r . . . I‘lr.£VAlqtv| b 7.1!. rL 4 1 1» ._.J liv‘jlvvllJtt 'lll . . . . . .- 1 .. . . . 1 , . . .. _ . . . . . . .1 . 7.. . . . . \ .. . ...i 1 .. .A . ... . . .. .... . .1 .. .. .. a... -A . .. L , . . A . 1 . ... . . . .1 1 . . . A .. . w , .A .. .W . - 1 m . -. 1L 1 _ V A..A . . . a. . .. _ . .. . .bvb. . . . 7v: * . ... . -, y 1 u I s . o 1 d _ .. J A 1 .: Tm. I - 1.11. 1 J- u 1 {-v v:- .11..- 1". 2 : 1' “nudgf. .... f A-A 1.1.. ' u t . i 1 1L c . A A . . A 4 . . .. .. A . .1. ..l.-. . . . . ... ... . . ... . 1 y .TVo A o . . . .. . . .9 o o . ... . Tbill. . b t 117|4 P . . . AFIIIIT.‘ .. ...c . .1 . . ..- . . .4 1 .. . . . . IV 14 l _.- 1.. v A .m’ ‘0 J . ~ *- .-—o- J ...“ w—s 11‘ . .k{. ‘0 ‘ 1 ..A i Q . 9 . o . { 4 P . < . A. . a. 1 .w .1" . .1. A.. ... .. .VA _ . ‘ _ . q ._710 ..A I OA . . v0... . . o. 1‘. _ ...v o A. ..m. . ... .11.... . .1.. .4 .. 1: . . . 1.. ... . .. 1 L1. . . .1 .. - . _ _ .. . . , . . . 1 . A14- .- v.6..- . . .4 Ta.‘ . . h .771 AH. Aw .p. .a ..A. A . 7o.‘ . 7w. 9 . .V. .. u. ‘ A A. .5 L - .fl. .¢ . ¢ . W .O . ..O‘l.. OI ..v. u p > . . v Lrl. clllw‘l'latllvt .41. 1 . “1 . ‘0 l. u . t ‘ o . 1'1 v . A ...; 1 . . i e —r$—o A _‘-| .. A 6 It .$ . b 7 '7 111 9. J4 . . . v 9 v. l»-.-~>~»e~~ 1 14 l.‘ .-J . 1 0 . v f ptcl .~ u" 1 ._J. ... J. D p '1 A . I -v A-. | A .- . V ,. A_1 . t .. . -. . .41. ‘1 V 1" 1 A -.‘. f. o. U‘04 FM 4 Y 1.1 Al I ‘w r. C o v . ,. 'HM¢44_ 7 >4 A I. A 1 u l O ..-- . .. .-.. - . . [—«fl . . I- . t. . l«“ .— CI >4 . . _ 0 . I. l v I. . . . o O . . .. ‘I .9. .. C I he . . . .. ““0" .- . -I _... 1... . ‘. .8 I l . . ... - .. ‘9 ... J . . {_.-- . . ‘ *l'. I Q - . O-o 11 v- . _ _4 --—~.—......4~1._ .. I111. A. f'u y.. A. O .0 ... ... r --. L I . .1 . . _J . . ... I o'- 0 0 WM. . b‘<--L—~j I..-“ ‘1 1r. “- -111: ‘ . 1 ! SEA? . Y .1: 444—4+_.- c— ‘—.-.—J 1 I ,. A A . 1 ~ 4 . I I o . A b . . . . . . . . A . _. 1 1 .1 . . . x . I. . . . 1 . » v . o . . . 1 . . A . . . . 1 A, .A . C1161 R’Gl II. 0.13 -.1 1+ l 0121.: A . >1 6A9 . AAIIDLvAAAA .A w ‘. I .H -.. L 1 v. f . .I. I o .. . . . . . A A . A ¢ . A A . o 1 . A . . 1 A . . . A . . . 1 . . 1 . . A . o . 1 I . . . . . 4 o . u . . . ... . w A . . . 1 b r { J .4 A1 _ 1 A .4 . p . . . l M. . 4 . A . 4 . . 1 . 4 . . o. . A . w A A A A v . . A u . 4 4. A A 4 . _ . . . o o A . 4 A A . . . . o 4 ..1 1. «AA . A . . . , . . 1 . . .. . r ,A . , . u . A s . 4 o A A A, A A 4 ‘Y OJ-.'A I A .9 OITA Al 4 AL [I’lvl'ol' '4! .Al! -.‘otall4ll . ” r.. w I Al’o 11L . . A . . . . . . . . . . o . . . . , A. r! o 4. 4 . A A A .4 . 1 _ . A A . 4 .4 . . A 4 . A . . 1 1 h a o d r A O A h 4+... 4.. 4-- .1... . . . . >44-.A‘4-—A-1 11 . _ V . I 4 A. . . . . . V 1 1.. . _ 1. ._ 31-1.1.1. 1. :1 . 1 1 1 F. . a % .. . b? A. . . A. .A A .‘IA‘AAAO.AA.|1 i“... 7L9.A.« LIA A A A . .l . Y 1|. Al... . I‘hLAVAI .1016 IA: l.A| All NV“ ~1wa§ \GgWUWW 11L?! . 1\ 1-1.1.. 111.4 . 1 .1. _ .75.. . .1. . . ..a..........A. .. . 1 .1. _L1 m..\ \\\b Her. .. -_H . 1 . .111 1 .11 . A . . . .. .... ... . . .. .1 . .1 .1? .. r11- ..L1-..!,.t..-;--rp I --..1+ 3 . . 5 1.1--A1IH ...; . .14.-A.A .1 T l I ‘ A 111.111.111-111" ‘t 13... .1 ‘1‘. :.j I -1‘AIL A. . A V 3 .. ’ i. .. . 11. _. ,_1 - 7w . 9 51~ :..i- . . Q A 111.11.441.14... I , . Y 1. . 4s . 1 . . . A‘Allrl. 041.!!1 I41 . ¢ ‘ Ac . . A 1AA. A A. 9.; . . A . . 11A .1 .Afi . . . . . . . . . 1 . . . . .. .. 4’ . . y A v . . . . 1 o . 1 . . 1 .. y . . 1 . .p. . ~ ’ QAQ. . .... ... . . . 1 1. u . U 1 ... 1 a 1 1 . . . . . 11. . ... ,A .1 V AI A All; Illll' I-..“ 1. . 1 . ._ A . ...A . A ... A . .4 . A4 1- ... . AA .9 . 4 ... AL. 9 A 1. . 1 .1 A A .. 1 . . 1 . . w . . ... Vw.*.c v.. ‘A .vl. t «at. .A' .... .AA . .rv1... . .A A .. . . .1. .. . A.A A ...“.4. 1.1.11 4.. .1 1 1- . ..1. .,.. . 4 . 41A}. 9 .. o A 4. .... o... . c . o . F A 1‘. '9v“l$._0.6 Oi‘iufi‘l. ‘bl't‘l .715. A... ...4 . .1 ... 1?. . .01 . 1 3 A A”... . .1 . .. .. .. _»1 4 . .. , 1 . . . . fl .... _ .1 .. “ A .A .. A A «.0.» .1_ v1 .. .... I . “7 YA 5. _ 1 4 Valli: . 1 v..wh A 1oAA1_C . ...Q. o ..n. I 1’. g‘ A*. . . . o ..o If? .... A . ..1A { A. r... .. .1... .fm. .-.1th1..f:i. . 1 . A. ... L'- . . . +.IV‘ 1. v ...u AA“. .. 1 n .4 .v.. .1 '01.]! A0: . A A. . . 1.. . .. .. 4.... ...v w..4 . . A4. ...; . v 1.. 1 . .. . .. . 1.4L...94_. ..A . A. . ..1 1. . v . A. K1. ..LTL 1.1 1......1.. _ . . . (1+4) (45) - —§ _.+ A .1 . ._-“..— \ I I I ; l. ‘ Q) - -_. ‘--.- . - I I I x; = ‘ 1' , l I J- I I 1 I I I I I I I I I I I I I >A ‘\ L3 db > /i” . ,1 . _«4 _ ..- H-,._.__ \n “X I I HI I I To... I I 5‘ I I I I I I I l - I : I T, I ‘ . T X * 1 WI" / \ O ,. J J _ \ . _ . V A ‘ . n ! p . . \ .. .. . N . , m N .. . .h a w . II fI .? I. II. IIIJIOII IIIAIII I I LII a II IIILY I..- .. M. N _u ; . _ . , I . . . ,.. . . o _ w I AV - --H -....QIH- I“- . ,. . I . I I I . v -. ...... y .-._ .---~.- 4 --.—..V‘Y .. - I I , , . I 1.: II IIIVI ALVII ..TIIII.I.I IIII I I I I I T I I I I I h—kt‘.‘ I I I I , a I- I I I I —-.—‘-.-l -L . a . My . u . .m . . . U .. n h _ Iw has .r r ._ I” ..u. G . . 4.| . % m H“ . g I A I v A I III LY I 4 II .19... \L I III “III. I47 IdIIILleI IIPIIIIv IL! I I II In 6 .. . . n. v ,.y _ * . VAL-_-... _._-_-_._. I . , . I _. _.... - .-- 4....-‘4. - ._. . ‘ .- _ _ . ¢ v ” a _ m w a H H 1 ._ I LI I A I I .1 J lllll I II I VIII II :0 ._ I I I IY I III _ w w . W ,. _ . . _ _. _ 1 . , .o-......iI.i.-, - , . . . . I , _ A . .. _ . . , . . I L r l I I 1 I v I I I l v ’I o I _L_ I j I I I 1 I I r I ' ' j .. q... .4 .. w I I I I J ‘ I . . , l r .' . . . . . I _. H...V.._r-..._4.....- _.... 4 _I , . 3 Y I" , I , i I I b I J I 3‘ W’Wr‘j‘ " " a 72 i 1 I r" $-V- I I v __ _...... I I n m» . m W H _ - J. . 3.. . _ ’ WKKQQQQMI \QWWQXYK WQ . \x um mamfi NQWNNWQQ ‘wflw -IUQQQ-.QuQmQQ\Q , __ , _‘ " quxQQ. QQYQQ ~3wa _.\<.\Q...M, Qxxk. _ . .‘I: 1IIIIII I- II I II I I——.._.;_.__ ._. . IIIII III I III IIII‘II I III! ILIIII. III .. III PI III. I II I I I I II .. ! I. I. I I'h-o;:y—‘_::_L——-—4I- .— . . [ t , p I fifimffififi A c . ...... _...—J- t i i t if z : 32m . ~+- .....‘J l 4H: I 187" ffl; , . b—coHQ“.——O——Tc~— .7 . . . . . . - . . . .. .. ‘ . ' .. ', . . |. .7 ... . . _-‘ . .. . ,.l .‘ . .I » 'vv . v .. ... ‘ ... .- . :1 f 10 v 'V L. ( 3 f‘ .0 | — A- ___L .7 “f. -l j ob -. I {I t I .7 F,L.;__ --u ~a—l,~“~4 5 J .lloo.» CIIII|IL VO-I 04“; \ “my in .. in? > b. V . W. .“ ... no ‘ . V . .‘fi 4 .. . . .. — _ A. . . . .‘IAI9-I-¢rs- 1+.‘imflll‘ ‘1." , ‘tAT'P’I ..,..1.4 .. - . .. _ l , 1 ? N.: M. H a. . . ,‘ —¢ . h. _.wr.“ IV 1 0 T. b - A .-. ..K J. gfhg. 7 f: 1 ... o .. ., . .4} II Iotalrvnl . ..«L U. .... .. wc.».vA ,v. . H .7. ..1... i. I . .. 4.4 xfln d h-.. -.M . .J _... .. . _ J ., O I I W‘ ;42 f ,.H. a U Pkw.i {phi ..gfl.r‘ .«tfi 1_4r§. ‘U r { W‘ _..I‘ ..‘. ”3L .fl. .. "’f$ ;. Q r...........;. n V A :A. ..fi I 1 .. v ...-Q .. .- .Ll- ‘9 U 2'. k v ' H A to AL__ -vo 9"" ., o J C I ‘ a A- . n L... “'94wa—oo . . . ‘ £ c lhR\ Table ——-—‘.- |<1 * BPLRIMBNTA; RESULTS DOUBLE SPAN RIGID r'Ri-Li'fiii BliIDiIE - FIAL‘D SUPEURTS .__1§Liinalmfigagiign&___ .Haniagnialmfigggiiqna. - Point VL VC VB. HL HO H R 5L -+0.950 '+0.025 +0.025 +0.20 —0.15 —0.07 6L, +0.890 -+0.07O +0.040 +0.56 -O.26 -0.ll 7L -+0.800 '+O.160 '+0.040 '+0.50 40.58 —0.15 8L +0.660 -+0.550 40.010 '+0.59 -0.51 -0.08 9L +0.480 +0.560 -0.050 ‘*0.54 ~0.58 +0.04 10L -+O.500 «+0.810 -0.110 +0.45 —0.58 +0.15 11L -+0.180 -+0.950 -O.100 +0.28 —O.46 +0.17 12L +0.110 40.970 -0.080 +0.17 -0.52 +0.15 13L +0.050 +0.990 -0.040 +0.09 -0.16 +0.07 15R -0.040 +0.990 «+0.050 -0.07 '+0.16 -0.09 12R —0.080 +0.970 1+0.110 -0.15 ‘*O.52 -0.l7 11R -0.100 +0.950 +0.180 -0.17 +0.46 -O.28 10R —O.110 +0.810 +0.500 -O.15 ‘+0.58 -0.45 9R -0.050 +0.560 +0.480 -0.04 +0.58 -O.54 8R ‘+0.010 ‘+0.550 +0.660 +0.08 +0.51 -O.59 7R +0.040 -¥0.l60 +0.800 +0.15 +0.58 -0.50 GB +0.040 1+0.O7O +0.890 +0.11 +0.26 -0.56 SE +0.025 +0.025 +0.950 +0.07 +0.15 -O.20 .Mgmgniaizg;myaiiunuuflmi Mgmgnta_a:_tn§Juz£ngxaa Point ML MC MR MK 5L +0.15 —0.98 -0.91 —5.19 6L 'P0.51 -l.88 -1.58 -5.71 7L +0.70 -2.76 -1.92 -7.65 81. +1.67 -5.44 -l.51 —8.25 9L +2.18 -5.65 -O.57 -7.15 10L +2.42 —5.16 +0.85 -4.79 11L +1.79 -2.45 +1.16 --2.81 12L +1.29 -l.54 +0.97 -1.57 15L +0.66 -0.79 +0.57 -—O.68 15R —0.57 +0.78 -0.66 +0.60 12R -0.97 +1.54 -1.29 +1.20 11R --1.16 +2.45 -1.79 +1.68 lOR -O.85 +3.16 -2.42 +1.66 9R +0.57 +5.65 -2.18 +1.02 8R +1.51 “5.44 -1.67 +0.27 7R +1.92 +2.76 --0.70 -0.25 SE +1.58 +1.88 -0.51 -0.24 Sfi +0.91 ‘+0.98 -0.15 -0.27 (50) Egfinlta.£gn Lh§.§aggnd.4n31xaia T.a_b..l.e_ 31.1.]; (29.41;...) W -m‘?6fi"iéfim§§m (51) Point VL V0 V3 HI. HG HR 5L +0.96 +0.05 +0.02 +0.20 —0.12 -0.08 6L +0.91 +0.06 +0.05 +0.57 -0.2 —0.15 7L +0.80 +0.16 +0.05 +0.54 -0.59 —0.14 8L +0.67 +0.55 +0.01 +0.61 —0.52 -0.09 9L +0.47 +0.57 -0.05 +0.57 -0.59 +0.02 10L +0.29 +0.80 -—0.09 +0.44 -0.59 +0.14 11L +0.18 +0.92 -0.10 +0.50 -0.47 +0.17 12L +0.10 +0.97 -0.07 +0.19 -0.52 +0.15 15L +0.05 +0.99 —0.04 +0.09 -0.16 +0.07 15R -0.04 +0.99 +0.05 —-0.07 +0.16 -0.09 12R -0.07 +0.97 +0.10 -0.15 +0.52 -0.19 11R -0.10 +0.92 +0.18 -0.17 +0.47 -0.50 10R -0.09 +0.80 +0.29 -0.14 +0.59 -0.44 9R -0.05 +0.57 +0.47 -0.02 +0.59 -0.57 8R +0.01 +0.55 +0.67 +0.09 +0.52 -0.61 7R +0.05 +0.16 +0.80 +0.14 +0.59 —0.54 GB +0.05 +0.06 +0.91 +0.15 +0.24 -0.57 SE +0.02 +0.05 +0.96 +0.08 +0.12 -0.20 HummufimLa$_Lh§_fiuaaazLa BkmmxuaL§$LLha4LefliJfin§§ 5L +0.14 -l.01 -1.07 45.19 6L +0.55 —1.87 -1.82 ~5.85 7L 4'0.79 -2.72 -2.18 -8.05 L +1.70 -5.40 ~1.76 -8.45 91.. +2.46 -5.67 -0.55 -7.07 10L +2.60 -5.19 +0.78 -4.75 11L +2.09 -2.44 +1.50 -2.95 12L +1.45 -1.60 +1.12 -1.80 15L +0.72 -0.81 +0.62 -0.70 15R —0.62 +0.81 -0.72 +0.55 123 -1.12 +1.60 —1.45 +1.04 1.13. -1.50 +2.44 -2.09 +1.54 10R -0.78 +5.19 -2.60 +1.49 9R +0.55 +5.67 -2.46 +1.05 8R +1.76 +5.40 -1.70 +0.50 7R +2.18 +2.72 -0.79 -0.15 6R +1.82 +1.87 -0.55 ~0.57 5R +1.07 +1.01 -0.14 —0.28 Table 111 (cont .) Results for the Thigg Analysig .“‘— mmgmflmb WEQL.EQ.§£EQHL Point VL _ VC VL HL HQ m 5L +0.96 +0.02 +0.02 +0.20 -O.l.2 -0.08 6L -+O.90 -*0.07 +0.05 ‘+0.58 -0.25 -0.15 7L ‘+0.81 -¥0.16 +0.05 I+0.54 -O.59 —0.15 8L .+0.67 -+O.54 —0.0l +0.65 —0.54 -0.09 9L +0.47 +0.57 -0.04 +0.58 -O.62 +0.05 10L '+O.29 ‘+O.78 -0.08 1+0.45 ~0.58 '+0.l5 11L -+O.18 +0.91 —0.09 +0.50 —O.47 +0.17 12L +0.10 +0.97 -0.07 +0.19 -O.52 '+O.15 15L .+0.05 -+O.99 —0.05 +0.09 ~O.17 -t0.08 15R -0.05 +0.99 +0.05 -0.08 +0.17 -0.09 12R -0.07 ‘+0.97 +0.10 -0.15 +0.52 -O.19 11R —0.09 -+0.91 '+0.18 -O.17 +0.47 -0.50 10R -0.08 -+O.78 ‘+O.29 -0.15 '+0.58 -0.45 9R -0.04 '50.57 +0.47 -0.05 -+0.62 -0.58 8R —0.01 -+0.54 ‘+O.67 '+0.09 +0.55 ~0.62 7R +0.05 «r0.16 +0.81 ‘+0.15 ‘+O.59 —O.54 6R -+0.05 '+0.07 +0.90 ‘+O.15 '+0.25 -O.58 SR -+0.02 +0.02 +0.96 l+0.08 +0.1? ~O.20 MQMMWLS Mammgtihaieitim Point ML MC MR MK 5L 1'0.16 -1.01 -1.08 v5.18 6L {'0.47 -1.94 -1.92 —5.95 7L §-0.87 -2.91 -2.52 -8.29 8L §-l.82 -5.61 —l.75 ~8.65 9L ' -+2.59 -5.71 -0.48 -7.09 10L 1-2.8l -5.50 +0.88 -4.70 11L -r2.27 -2.46 +1.56 -2.71 12L -r1.56 -l.70 '+1.22 -l.65 15L -k0.78 —O.89 '+0.69 -0.82 15R -O.69 -+0.89 ~0.78 ‘+0.47 12R —1.22 -rl.70 -1.56 +0.95 11R -l.56 'f2.46 -2.27 '+1.50 108 -0.88 +5.50 -2.81 +1.27 9R +0.48 +5.71 -—2.59 +0.98 8R .+1.75 '+5.61 -1.82 -+O.15 7R +2.52 '+2.91 -0.87 —0.19 6H +1~92 -+l.94 -O.47 -0.27 SE +1.08 -+l.01 -0.16 ~O.28 (52) Tablg VIII EAPQRIWENTAL RESULTS DOUBLE SPAN RIQID IRALJE BRIDGE _ HINulfl_I)_ SUPPORTS Results for the First Analvsigg _..M -.. *- ‘ 5L +0.94 +0.05 +0.05 +0.16 --0.15 -0.04 -2.67 6L +0.86 +0.08 +0.06 +0.51 —0.26 -0.08 —5.18 7L +0.75 +0.17 +0.07 +0.44 —0.57 -0.09 -7.55 81. +0.65 +0.55 +0.05 +0.47 -0.44 -0.04 -7.85 9L +0.44 +0.59 -0.04 +0.42 -0.47 +0.05 -7.01 101. +0.29 +0.79 -0.10 +0.51 -0.45 +0.11 -5.18 11L +0.18 +0.95 -0.11 +0.21 -0.54 +0.15 -5.51 12L +0.11 +0.97 -0.09 +0.15 -0.25 +0.10 --2.17 15L +0.06 +0.99 -0.05 +0.06 --0.11 +0.05 -1.00 15R —0.05 +0.99 +0.06 -0.05 +0.11 -0.06 +0.84 12R -0.09 +0.97 +0.11 ~0.10 *0.25 -0.15 +1.67 11R -0.11 +0.95 +0.18 -0.15 +0.54 -0.21 +2.17 10R -0.10 +0.79 +0.29 -0.11 +0.45 -0.50 +1.84 9R -0.04 +0.59 +0.44 -0.05 +0.47 -0.42 +0.84 8R +0.05 +0.55 +0.65 +0.04 +0.44 -0.47 -0.66 7R +0.07 +0.17 +0.75 +0.09 +0.57 -0.44 —1.50 6R +0.06 +0.08 +0.86 +0.08 +0.26 -0.51 —l.55 5R +0.05 +0.05 +0.94 +0.04 +0.15 -0.16 -0.66 Results for 32112 Second fill-5.1.5.. ¥ Verffigfieac—t—IOQL Egrfzofielfieactions 115:1ent atTeftm Point VL V0 V3 H1, H0 HR MK 5L +0.95 +0.05 +0.04 +0.17 -0.15 -0.05 -2.84 6L +0.86 +0.08 +0.06 +0.52 -0.24 -0.08 ~5.55 7L +0.76 +0.18 +0.06 +0.44 ~0.55 -0.08 —7.55 8L +0.62 +0.54 +0.05 +0.47 -0.45 -0.04 -7.85 9L +0.45 +0.59 -0.04 +0.44 -0.49 +0.04 ~7.01 10L +0.51 +0.79 -0.10 +0.51 -0.42 +0.11 -5.18 11L " +0.18 +0.95 —0.11 +0.20 -0.55 +0.12 -5.51 121. +0.11 +0.97 -0.08 +0.15 —0.22 +0.09 -2.17 15L +0.05 +0.99 ~0.05 +0.06 -0.11 +0.05 -1.00 (55) TabIg VIII (EgntJ mmmmmsm (09.33.) . - u Point VL Vb Vfi HL_u HG HR “K _ 151?. -0.05 +0.99 +0.05 -0.05 +0.11 -0.06 +0.84 12R -0.08 +0.97 +0.11 —0.09 +0.22 -0.15 +1.50 118. -0.11 +0.95 +0.18 -—O.l2 +0.55 -O.2O +2.17 10R -0.10 +0.79 +0.51 -0.11 +0.42 -0.51 +1.84 9R -0.04 +0.59 +0.45 —0.04 +0.49 -0.44 +0.66 8R +0.05 +0.54 +0.62 +0.04 +0.45 -0.47 —0.66 7R +0.06 +0.18 +0.76 +0.08 +0.55 -0.44 -—l.55 6R +0.06 +0.08 +0.86 +0.08 +0.24 -0.52 -1.55 5R +0.04 +0.05 +0.95 +0.05 +0.15 -0.17 —0.84 mnnammmq Anglican Point 17L V3 V3 HL HG EB. ML ' 5L +0.95 +0.05 +0.04 +0.17 -0.15 -0.05 --2.84 6L +0.85 +0.08 +0.07 +0.55 -0.24 -0.08 ~5.51 7L +0.74 +0.19 +0.06 +0.45 -0.56 -0.08 —7.55 8L +0.61 +0.56 +0.05 +0.47 -0.45 —0.05 —7.85 9L +0.45 +0.59 -0.04 +0.41 -0.46 +0.04 -6.85 10L +0.50 +0.79 -0.09 +0.50 -0.40 +0.10 --5.01 11L +0.19 +0.92 -0.11 +0.20 -O.55 +0.12 -5.51 12L +0.11 +0.97 -0.08 +0.15 -0.22 +0.09 42.17 15L +0.06 +0.99 -0.05 +0.06 -0.11 +0.06 -1.00 15R -0.05 +0.99 +0.06 -0.06 +0.11 -0.06 +0.84 12R -0.08 +0.97 +0.11 -0.09 +0.22 -0.15 +1.50 11R —0.11 + 0.92 +0.19 -0.12 +0.55 -0.?0 +2.17 10R -0.09 +0.79 +0.50 -0.10 +0.40 -0.50 +1.67 9R —0.04 +0.59 +0.45 —0.04 +0.46 —0.41 +0.66 8R +0.05 +0.56 +0.61 +0.05 +0.45 -0.47 -0.66 7R +0.06 +0.18 +0.74 +0.08 +0.56 -0.45 —1.55 6H +0.07 +0.08 +0.85 +0.08 +0.24 -0.55 ~1.55 5R +0.04 +0.05 +0.95 +0.05 +0.15 -0.17 -—0.84 -—.0--—-_- .—-—-.— T2b1gil§ TRIPLE_SPAN RIGID EEAME BRIDUE 1ND LODEL CUIT MTJNTS JimmignsJ... “ MM Point 51:21) I (£14) 5L581ngt),_“_-_~11n. "1._pepth 1L 2.5 1.50 0.0 1.8 0.000 0.40 0. 550 2L 2.8 1.81 0.0 8.8 0.000 1.51 0. 585 5L 5.5 5.58 0.0 11.8 0.000 2.82 0. 755 4L 5.7 4.98 0.0 18.7 0.000 5.71 0. 819 5L 2.8 2.25 5.0 18.2 1.111 4.04 0. 827 8L 2.0 0.85 10.0 19.2 2 2'; 4.27 0. 455 7L 1.5 0.59 15.0 19.9 5.555 4.42 0.551 8L 1.1 0.15 20.0 20.4 4.444 4.55 0.255 9L 1.0 0.11 25.0 20.5 5.558 4.55 0.250 10L 1.2 0.20 50.0 20.4 8.887 4.57 0.281 11L 1.7 0.58 55.0 20.2 7.778 4.55 0.598 12L 2.8 1.87 40.0 19.7 8.889 4.49 0.591 15L 4.0 8.59 45.0 19.1 10.000 4.57 0.891 14L 5.7 17.71 50.0 18.1 11.111 4.22 1.251 15L 2.0 0.79 50.0 15.1 11.111 2.91 0.444 18L 2.0 0.79 50.0 8.1 11.111 1.80 0.444 17L 2.0 0.79 50.0 5.1 11.111 0.89 0.444 18 4.0 8.59 55.0 19.4 12.222 4.42 0.891 19 2.8 1.87 80.0 20.5 15.555 4.59 0.591 20 1.7 0.58 85.0 21.0 14.444 4.70 0.598 21 1.2 0.20 70.0 21.4 15.558 4.78 0.281 22 1.0 0.11 75.0 21.5 18.887 4.79 0.250 25 1.2 0.20 80.0 21.4 17.778 4.78 0.281 24 1.7 0.58 85.0 21.0 18.889 4.70 0.598 25 2.8 1.87 90.0 20.5 20.000 4.59 0.591 28 4.0 8.59 95.0 19.4 21.111 4.42 0.891 178 2.0 0.79 100.0 5.1 22.222 0.89 0.444 188 2.0 0.79 100.0 8.1 22.222 1.80 0.444 158 2.0 0.79 100.0 15.1 22.222 2.91 0.444 148 5.7 17.71 100.0 18.1 22.222 4.22 1.251 158 4.0 8.59 105.0 19.1 25.555 4.57 0.891 128 2.8 1.87 110.0 19.7 24.444 4.49 0.591 118 1.7 0.58 115.0 20.2 25.558 4.55 0.598 108 1.2 0.20 120.0 20.4 28.887 4.57 0.281 98 1.0 0.11 125.0 20.5 27.778 4.55 0.250 88 1.1 0.15 150.0 20.4 28.889 4.55 0.255 78 1.5 0.59 155.0 19.9 50.000 4.42 0.551 88 2.0 0.85 140.0 19.2 51.111 4.27 0.455 58 2.8 2.25 145.0 18.2 52.222 4.04 0.827 48 5.7 4.98 150.0 18.7 55.555 5.71 0.819 58 5.5 5.58 150.0 11.8 55.555 2.82 0.755 28 2.8 1.81 150.0 8.8 55.555 1.51 0.585 18 2.5 1.50 150.0 1.8 55.555 0.40 0.550 m-.—'—-—P. .— ._. —.———..—- '— 12.19.18 14. 5802191; 1810888 5 01 T88 TRIPLE 52.4.8 810113 R1188. 13111ng 80081 Thickness .Egint First Analysis 1§8g9nd Analysis .ibird Analysis 5L 0.690 0.627 0.564 6L 0.490 0.455 0.419 7L 0.566 0.551 0.555 8L 0.259 0.255 0.251 9L 0.250 0.250 0.250 10L 0.286 0.281 0.275 11L 0.418 0.596 0.575 12L 0.642 0.591 0.541 15L 0.980 0.891 0.802 18 0. 980 0.891 0.802 19 0.642 0.591 0.541 20 0.418 0.596 0.575 21 0. 286 0.281 0.275 22 0. 250 0.250 0.250 25 0. 286 0.281 0.275 24 0.418 0.596 0.575 25 0.642 0.591 0.541 26 0.980 0.891 0.802 158 0.980 0.891 0.802 12R 0.642 0.591 0.541 11R 0.418 0.596 0.575 10R 0.286 0.281 0.275 QR 0.250 0.250 0.250 BR 0.259 0.255 0.251 7R 0.566 0.551 0.555 6R 0.490 0.455 0.419 5R 0.690 0.627 0.564 (56) ...... L. a VA ._,. . wk, My: ‘ \an‘wfi 4‘ \O N309: \. w ,o .3. v Q E? w E, 0d 0 \ Q > TR m, mm “$ka \ V . \ \IJ . "a- i as I. ~ Q 1 ,3, \ u v 3 \., ‘ ‘. (N r \. «V ‘ I Inli |1‘ IV \\ , n a A ..‘x C\ A , ' I V 4 ,“(11L(4 ‘7 _____J / fig/MIC? /(..~ ' I I g 1 -) f. , . . . . .. (57) I Afir ’i‘ .2 {Li (m- 754/ / / J‘ / x / 1 1’7. ”‘1 /"/" /. _L.-ll ’ f C? [’7 C i? C / C/ Y!;v.l’t .3051713L 4 w n [0}? 9R HR | n V,_ _ -.-—._.___.___.. ._-...— ,_._. .- - . l ...... ._..— _.- ‘0‘- , -_ _w._.~.’. ‘ r ....-_. a..- ' v ,V ._w._.__.._.. .nvcloltyu. rvlvl. I 1.! £1 J: {OI fl, 1 ‘_‘.—A - 0}]: fl. ‘1; .,.-.<. ...A w “*‘E “‘ ”_-.....“ -LV,_ .. .... - l . _.... ._d 1,..~..__~_...._ -_.—......(u... ... 1 f5 r. i C , 77/955 59w 1915/0. FRAME 89/06,. -/fiv%mgflc5NZAUEU»Fbki 1 ‘ dappa/ 3 Jflbnavnia/1960cfivfij'e/fixgar Fr} 5 1 ...l ‘ .3 Q5 (9.6 . +. +_. 7 A 1 +0.6 9Q 4 + . N n . . . _ _ 1- a.“ 1.1 11. .111 1. m _ .. H _. . m 1 ., , .. .1 T: .1.-- #:1111111- v v _ .. _ _ _ . 7 _ . , _ _ . _m ~ _. ._ .N. _ a H . . _ ‘ . , a _. 11.... 1 11111141111 5 1.1! 1+ 1 fl .7 r v . 7 L. _ _ p 1 W ,. . 1111! 1 1+1. 1. . L 0. + ..A i I‘T.‘ W 7* 1 MM? 9;? _ 8f? ... . 4.. ._. \. \ . was“: "\ / e i! !£;'?I§1.i¥v|la.i gglll‘fi 131‘ 11.... .‘i?’) ..... 111-- . T. v w“ M q x. w _ , W M . 1.11 1- M. ... j ... f - 11.111.131-11-.. 111-11-: 111L111; {#11 11-1%-.- 51.11.11 .1 1 h r H. g R P . 111 ............ 1:1111131§#1+1.- - 1&11fl1w1.-- . fi, . .,j w . w. _ R m 1 1 11 -11 1111. 1..-.- . . 11 7 0. .-11- _ ._ ;._ _. .1._....._.*;___. fl 1 1 1 x 1 l 1 -. 41.- /. 1 1 «:1— k. fi/f‘ ‘ ["7 I" I . __ 0 _ u g- m . w m 1. . . . x . \ . q/L .J/n / m .*t‘..o{¥:u ::.Ax II.» (111. I 0: . w . U ~ 1 ... y5{5; in? . ‘ 585017 44/70/5525 j ”" n ma 1 2417* 0 f5? 1| 1. «\J’Efl . 1 .InII..1 .lu...n\.u1 .. -.-- ._.._ "V— f 5 ...... _ H _ w ~ m 493 1 1 .11111 l1kv1l1 I _ WU“... «mkxg NJme 4 1 1 .- .— _._.._t_..._.__._.___ .._ 1 : 1 w 1 .0 w _ M f .u .. .. . a Y"“' 1..--. “' ’ -. 4p...~.-.— ~~»_. ... [Jill'l1l’l11vlll 61 11!. 1 _~...4,...__....‘, 1 1.11 1 1. .91I1vlr. JTII.) ...... 01’?!» In! 'OIAY1 ll 15; ’94. 1 _%£Z0 .HWW1. ' 1 , 1 2 I 9%} 7% i1... 9 51_. 1 1 - . .--. -*- 1.. 1 1 If 1 1 O I 1 I #1 i l I v 1 i 1 ,_ ._.—-_F -_....w_—..‘r ‘ 1 1' 1 11.1 1 1 1] - 11-...11 1.1 . 1 1 .-i .4 .4 4 .4, 4 4 . . 4 4 .4 4 4 4 4. . 1:24 11.11111..-; 4 4 4. 1.. a . 4 44 . . .. ... 4 4 4 4 4 . _ 4 4 . 4 4 . . 4 4 1 .1 I ...1 11111.1-.1111 111111.. 1. 4 . . 44 . 4 w 1.3 .44 . 4 W . .4 4Y5 . . 4 . 4 . _ 4 4 4 _ . 4 .l/ . . . . 4 . 11- . .11 -1141 - .- 41 1 11 - 1.441111 -11 ...-11.1 15 .1111-..-.....1,.11f11 .11. 4 .4 . ..... 5 4 j ./ M1. , . . ..4 W . . 1 . . . - . . . 11 14111.1. 4 R4 .4 W‘VAWU/w 5 4. 14w _ 4 g 4 .j7195 4 4 _ 4 . . _ . 4 a / 4 4 . 4. 3:44 . 4 .. ..- 4 931.431 a. ...- 14- 1 4 . . . .. . . 4 .. . _. . . . -11111 1 - ”UM:W- . . _ . 6 4 4 . _. . . . . 4 . . . .. 4 . 4 . 4 4 . .4. . . . . . 4 . 4 .1. . .4 11. 144.14.4d- 4. . ...-4 4 4 . 4 , 4 . .. 4 fl /0 _ 4 4.. 4 4 111 11.1.11.- 4 R 4 .1441 .41 . +1] 4 . p _h. V 141 . 4 7 . 4 4 _ . . 0 4f ,4 . 4 _ . 4 .4 143:...44 4}! In...- - 4.. - -4 4 4 _ . . 4 . 414/! 4 04 f 4. _ 4 . 4 4 R4 . _ . _ . CU . . . . 4 _ 4 - 11741141114. -.1. . w 1 4. . 1.111114 4 _ _ 8. . . . 4 . . . 4 4 4 - 4 ..ME4 1 .-..I... . 4. : .-.4 4 4 . _ . . 4 _. . .- -1411--- .9. -. _ 4 4 4 9 4 4 . d . 4 ... . . _ 4 4 4 4 /.R . 4 4 4 . . 11 l 11.41- . W 0. -: 111'.- I1.1l11.-.d.111111..i4 4. / 4 .. , 4 4 4 4 _. ... 4 4 . ... 4 . 44 4 . 4. . 4 4 .- . . R. . 44 4 4 - .- . . 1../1...- ...-41.11.11131111 .- 11411-14 4 . 4. 4 / . 4 4 4 . . _ . . . . . 4 _ . 4 4 4 4 ,4 . _ 4 4 . - - -_- - 4 - - 4 , - - 4 -- --..;mm4- -1111-1.-1..- .14. 4 4 4 4 . ._ 44. . .4 .444 . 4 _ 4 _ 4 . 4 . . 4 . ,. . . . . 4 4H) 4 \ . . a ‘\ ..\ . x x .\J ..x. 44 4 R . . . 4 4. . 4 4 .4 4.»\\ ....Q\ 41x. .. K m-x Q14 {rk~.4\. . .3 \J! . ... .. . 1.3... 7.1.1-41-...1,».--111+1..11-4 . . . . . . 1 4 , 4 .. . . 4 4 4 . . 4 a. 4,1,. 1.. . l.\ _ 4 _ 4 ,. 1. 0 xxx .0 A». . . 0.. .- 1. 1 .- . .../4. . ...-J . . . -.. 1. . .4 4 . 4 ’91 I IL WNW-.- 1» I1 .1 111 I”. I1\ ...Hx/ T’Hfi‘P ..1 114er: ‘- Mali!» 1P1M11- 11 M' .F 11% uh 4.1"”.- 1.. “fl”. 4 H .. .. . .v\n“\~ 1. x 4 4 4 J4... .. - . . ..§ . 1 1.6 .1491 1 11 1 111 .1. 1 1 11 1 I. «11111 111111 1 1W1! I311 114-. 11) 1|. 1.144. 1 4 . .. 4 _. 4. 4 4.,- . . .. 4. ._ .4 It”); (1‘ 4. .. 4 .4 _ 4 ... .. .2; 4 4 . 4 4 ,4. . - .4 ............. .1 1, 1.--: 1 - -... - 1 -- -4 AK... ... _ 4 4 . 4 4 4 4 4 1 1 4 . ... .41. 4 4 . . 4 _ 4 , 4 4 . .4 4 . 111.4 1 1.11.1111 1.4 11. J 11. 11.4w1111..1..11 111“: {11111-11114 1 1 4 41/. .J 4 4 4. .4 .4 .4 4W .41 x 4 4. ..4 .. Am 44/ 4 .. 1 4.. 4 .4 4,. ”.... . .4 4 4 g st 31r1l3.1111|10.1.141111 11 1.1111 \le1 11 1 1.4.1.1 (114.13 1441111 111117.33... .1 . 4 4 4 .4 r 4,... 4 4 ._ 4 4 4 ,. .4...- T- 4 4 4,. ., 4 4 4 _ .7. 4 4 4 .4 . .. w. . x. L. . . . -. . . .. . . -. .. . .. - . .. . . . .- I 1 - ... . .. 4. . .1141111.11.11-143111-11.i4? 1 1 111.11 -1 1- 14.111111 114 _ W4 . 4 4 . 4 ... . .1. . 4 4 4 .5 _ .4- _ .4 4 .. . 4 .. 4 4 4 4 x..n4 .-111-4-1.-111.111.1.-11 # 11 4 . 4 t 4 4 r. . DH // .4. 4 4 '1 1 1 1 ‘1? ‘K ~+&0%~~7 :‘3 ‘Tfl/PEE ij /1/ zfifiMpx 1 I 4 ..-.44- 1 1 1 1 - l 4L4- 4 .. ‘ 1 -fis l AMA 1 go I 111 1.11 1 11411.111 11 1 L 4 4 . 94 - 4 ... ..- - ._. d .- r’! 1 11.? _ VL+ . 4 . 82 4 . 4 . 4 4 14M ...0 1. . . 4 . 1111.. 1.4 4 ..eL. 1.1.11-4.-- -11 111111.--- 1.4 1- 1-.- 1..-11.11.111.111 -44.- .- .............. // 7 1 L 1 I Y 4444-44.44- 444444 ' O i _ L— ... .. 1 i l l 4 I 1 I I D 1 .' 4.4-4.4444- 4 4» _ 4 1 FRA-M t" (SSH/1:” Y’ .4 5914 /V * A? (c; /_0 4127.19.54.50rfl/omenf 9f. Left/{x7 9.1.0:: \ r.- 4 . r — I 1 1 1 I I 1 J I 1 1 l I .57? ‘ 4 1 .1 . 4 4 11111 .11 11.1 1. 11 111.41 . 4 4 4 1 I 1411I . 4 . .11 1.3111111 11.. 1 .. 11111-4111- 411111141 1 1 .4 1 1-1- 141- 11.1.1.1.-- _ 4 . . 4 _ 4 .. 4 111111111 . F111 1111 111-11 111-11 4 4 4 4 II 11Iol| 1 1t . 4 . 4 4 4 . 4 . 5 Upp OKIWJ 4-4. mg / $14,. I 1 ’1‘. -24 114/ ‘1, I 1211:?- [:4— . / 44.44... A 1 14194155 7- 1 I I I ' I I I - 1 . .....444.4) . 1 - 1 4 . 111111419. 1ILIII11011 .IcLVII I 111.1... .1 . 11111111 I I . 1 I I 1 I 1 - I 1 I 1 1 15:30: 1 1 "1 1 1 .1 1 I I l 1 1W. 4... I 1 I I l ‘ 1 . 44.4444-.. .1». I 4.44.4444.-. _. 4. ...- 1 1 .. ...-44.444..-» . 4 44 .. .4 . 414.-...- . I +£04- 1 1 1 I 71545614 [/71 7.31.1 .. 14 Y 1 up f? 91-4 81R L I 1.? I. I 0.0/ I? H’FP QR V 1.75 26 4; 24 1 I 1 444—4444 ..-. 4 ._..‘4 4...“ 4 _.4 A 2.9.. -4 . .4 1 .H“ I 4....-. 4.4“. _ .4. W 75?: g/S-IS 5/55 0' o 1 X727 0795/5 - '5e1609/7c1/ 24/720/ 1 :7‘ ‘“ {“7777rd; z 1 I 4.4.4 4444.44 .' WW [(3 7‘ 1 I _-..-.4 I 1 I 1 1 - I I ‘ .44 .4 4444. 44444.44 44444 4 _ 4 44 4144.4 4- . - 77".“ 1. I I .1... I I I 1 1 1 I 1 1 -_..--44444 4 _ -— - 1 - I . I . , ..4 .- -44 444444.44 - - I ! "‘1'“ - I 4. 44‘. 1 I " 1 '14-. 4-..» .-,...~+._.._.. 44,. 4.. I I 1 4 I .1 1 11 I14 1..11_11.-1114 1 1 14 I 1 , flak/ace- 1 1 '- I 1. f I1 11.1. /(./. N191. 1 1 1 1 11 11.11.1111. 1111 1 1 . 4111111117. 1-1. I- . . _ .911 19 I .III 1 IYIIII L 1 i I 44111-111 - pom 1+5 _ 4 71A 1319/. L . v 1 .u. TWIIVIIIS 1 1 1 ‘4 4.. ....-44 1 b...‘ 1 1 .4... :11 .51.» l I a 1 ""? ‘51..." (_.g (._. ,I i .1,- ’1‘- 4 55" he“. ....5/ (3- I I [’7 In") 5 Q I J l 1 :RjG/D i .FRf-A M5 :FO I’; Mgr/0’50 / x9990 (fie-73;» - 577/525 5 . SPAM, I I I I 1 _ 7.11151111. 5 n 5 1' 5 _._ ._.—555 —-—A. ._-._.A55——.._ -. . ..- 5 l . 1. .7111} 111- 5 5555?... -- 517 {/5 I I 1 I 1070/30/15 ("x 5 V 5 I 1 .l.., . .11. _.ovl. 5. . . ,I. \ "I (a T .r V 1 , . .r‘ "_r } \ 1 1 - _ / / 1511’ -. ‘ I I, , 1 ::. ‘4"- 57. 8 ...-v >1... .. .115. r111. .1 1. m .5 5.1-.5 m. .- \ r454” {/2 “'~ 'K-owx' 1 . ! EV? Ce L //? 6? ,5 '1‘! ($11.“ 1 1 I ~ I 1 P . _Nflg ‘—M1—-“— 1 c 9 1»..ll|ll|. 55.55—'5. 5-5.1.5...- 555555155 .5 .5 5.5 5-5.55.5 -5 .555 t.1111.$1)l1l.11lv. . 5. . 5 . _ 5 5 H 5 1 . 3. .5 5 5 5 . . . 5 11.111.111' 1. 1| 1| 5 5 5 5 5‘93; .. 5 . 5 5 5 . 5 5 5 5 ,- 5 - :5 .5 . 5 5 5 ..... 111 .L. 07 r) ‘7‘ I l 1.. ._._. ...4....._5. . ' I ‘. ) 55.5-5 5.555-555.55- ' ' i - . . . . ‘ : I ...l“! 1:11.115 -.| El. 714.1. 1.1.11 11.111-11511-31! .5111 ...11. 5 111115-11 11 11.11.1111 ... 5 5 - 5 5 _ , .6. 5 11.51.1111 1-5..- 1 -1 . 5 z 1 .5 .5 . - ”f5. . . 5 5 5. 5 . 111.51 - - ...5-. - - 1.--11111511 . 5 . 5 . - 5 5 .5 5 5 5 . 5 .5 - , 5. . 5 5 . -. . .5 5 . 5. 5 5 5 . 5 5 .1 5 1. 5 . F 5 1r - 1 1 ~ .0165 I 1 1 5 52.50 - 1 j 1 I I 1 1. 1 l 1 1 I I 1 F 914/145 89/511145 5.5 .. 5’ 5.5.-. 5 .55... ,5555—_.... _5_ ....55. 55-5 555. .. 5 1 1 - I 1 55 5173.55.15.51: {AQEZC 7 I '_ 73/9455 1594M H/Gfi/a r I 1 "I" 2: - 1 i [521- 1 1 .1 1 1 - 1 -.....L . . _ 718:6R_51R l v 1‘? 81R VAC? 595/? 9 i 55.-.. _5..5__5._115-_..5_._.—.. 5.... . - 1 1 1 1 _T—. ._.—.54....— ppazfi y _. 5?»? HF? f3“ 1 .3 1 @5/ 711‘ 217177? 1 1 1 1 1 1 F155? 157/7 55.._.._._ 555 . 1,-5.5 - 321457727157“ 3' 1 45 -5 5 1 1 1 1 1 #611 fling/g5 I 1 1 I . d I I --l t I - I 1..—5.555...__ -555- l '1 5.555.... 5 I 1 I M‘d—“fl’b *’~ I . 1 . . i 1 1 I 1 1 71511 11111.1 1 . 5 -IL-SI1, -- 14.... 1 5 5 5 5 5 17m Md, ,ce _-.--5—p--5....- I W1 T ”215 2,6 I .1: I111. I141 II 111111-.- 5 . _ ..5. —~~—-—¢—.——.-..1_... - . ,.5 . . 1 ,.. . -...- -55-5 _.5._.....- 5. . . . _. l I -.. --.—o - _ _5- I I >— -5-.. - uh Y“ vzl'lb'I' 111.11 1- f1-1111. 57§“*_“ Ana¢up 9L 11111--- . 71I1 r1111 - III1I 1 7.. 11.5111 1 1|: Zlmczfii-JRENDYfS ~3Ug 35 I 1 y- 1 I . I 1 5515 714 I1. vita-I114 I . -..—_....— "_”"“*‘-‘_‘1"'—“’ ._— . I ,..5 / 5 -55. U. . 5H 5 5 5 m 5 . 5 5 5 OJ . _ 5 5 5/ .7 1.11 1111. ....1 1. ----11-511 -5. - 5.1- -, . m. 0. fl 5 1 -- 5 .15 . . _ 5 5 5 5 A . _ 5 m 5 . 5 . . 5M . _ 5. 5 5 5 5 5 111 1.1%.. I I- ”53. .11- II 1 ;. .15»- - I. m.- II- -. 55.. d% 11-11 II5r1I ...II ..11. II 1-15-111w111. 5 5: 5 _ 5 . 5 . 5..- n5»? ._ i..- . 5 5. 30? . . -7 1.5- M1- - I 1.1-UR.-- 511-51f If. 5--/..--- .- -1. I 1 -- 5 5 , n yd ,/ 8 5h 5 . . 5 .5 5 .gm -f,q5;/. 5 5 . 5 . . _ 5 5 . 5 5. _ 5 . bl RI.-- 1---MI- 2I:: 151--- --:. - .5 I :5. - .5 --.-151115 - 1 -..-1--. .:.-9 55 A - : 5 5 5 . 5 . 5 dwn M 5 5 5 5 5 5 - ..--1.5.115---- - :5- am I 1.5- 51:..-- - 5 -...55. 5 .- 5- H. 5 . A M _ . W .m. 5 - -.I5--- -5-----. ----wmm -5-.--;w --..-, .5- - --5-r---. - . . __ ./ 5 5 5 5 _ 5 i 5 . 5 a . 5 5 . .n 5 5 5 R 5 5 5 . 5 . 05 -- I5- 5-- .2. -5. - - .5 .. - 5. . 5 / 5 _ 5 5 . Dr 5 M ._ a n 5 5 _ 5 .. . . 5. 5 . .5 5 5 w 5 5 m 5 C43. E REES-3 _ _ a .a 0 Au 0 no 0 .u 0 .u o ,4 y. ,u a In a a. 4 :5 .a v“ a E ...... .. + 5. 5 5 . .. - .5 5 .- 15 /.\. 1 . . 1 . . - fl - 4 - .. ll I4;- xO 5 If: 1. _ Q,- 5. . E 5 T ...-.5 5 -5.- - . .5 ._ __ 5 - ,5 . E n _ 2 5 5 5 5 5 . ,1 5 .. .- 5 5 5 . .5 M./- , 5 5 _ 5 5 5 5 _. 5 .5. 4 -5 ..... .- .5- . .5 .5. 5 5 A m. _ g .. . 5 5 5mm 8 m 5 5 . 5 z /5 -. :a e . . . -¢ 5 5 . 5 5 5 . ma x 2 - 5 _ . _ 5 5 _ 5 5 5 _ 5 mm,m 5 .V\ 5 2 5 5 5 5 5 5 . 5 . . . . . . . . . 5 . \5 . 5 5 5 5 w 5 _ H 0m- 5 ,- .5. - - .5 5:1,. - ... _. . 5 5 5 - _ 5 Z . 5 . 4 5. 5 .- m 5 5. . 5 . . 5 H N ”M 5 5 ._ 5 . U 5 5 I. - I ._.- .-11 .I I -0 I I .-_ - .5 1” - I -15 5 A . 5 :- 2 5 5 5 5 5 5 5 5 P r 5 a . . , 5 5 _ 5 5 5c. 0 5 z . 5 _ 5 . 5 5 5 5 5- rfw - 5. :5/:,.?;:m w -,5 .5 5 .5 -:- 4--- 5- - 5 C5 5A 4 5 5 5 5 5 5 . 1r 2 _ . . -T-w----- I-w + 5 5 . w 5 % u, 5 _ 555 . - 5 _ 5 _ .. 5 . 5 5. . . C ..... . _ _5 .5- 5. 5. 5 5 e _ 5 . 5 5. _ . 5 5 .---fiii-e- ,.. - 5 .L ‘ 5 5 5 5 5 5 5 5 w - I1- 1 -5-,--.:3- ..:-.5-.- I--5..1- --.-1-5 1-5,. 1 -25-: 1- 5.,- - f / _ 5 x. 5 5 5 5 5 5 5 5 . .5 . _ .5 . .. .. .5. 5 . . _. [/5 :5 /5 5 , 55 5. 5. . 5 5 5 5 5 , as: .- .- a. ...... .....- 2,515 - -5, 15.1 5 I5 5 5 / 5 5 . 5 -5 5. . 5 - 5- 5 L 5 -I-I; I-II- .---5 -a / Ta ble 2'; 81.131111119120717. 9125:st 'I'RIFLE SEEN hluID b31213]: BRIDuE - b'IA'LSD SU'r’r’URTS 11251111319 .1201: 1116mm 8 W ’7 53'- Vertical Reactions W 5L +0.97 +0.02 -0.01 +0.02 +0.21 -0.09 ~0.06 -0.06 6L +0.91 +0.08 -0.05 +0.04 +0.41 -—0.20 —0.10 -D.11 7L +0.85 +0.17 -0.05 +0.05 +0.58 -0.52 -0.11 -0.15 8L +0.69 +0.54 -0.08 +0.05 +0.64 -O.44 -0.06 -0.14 9L +0.48 +0.58 —O.ll +0.04 +0.58 —3.55 +0.05 —0.08 101. +0.29 +0.82 -0.15 +0.02 +0.45 -0.54 +0.12 —0.01 11L +0.18 +0.95 -0.11 0.00 +0.28 -0.45 +0.15 +0.02. 12L +0.11 +0.97 -0.08 0.00 +0.17 —0.51 +0.12 +0.02 15L +0.05 +0.99 -0.04 0.00 +0.09 -0.16 +0.06 +0.01 18 -0.04 +0.99 +0.05 0.00 -0.07 +0.16 -0.07 —0.02 19 -0.08 +0.97 +0.10 0.00 -0.15 +0.51 -0.15 -0.05 20 -0.10 +0.92 +0.19 -0.0l -0.17 +0.45 -O.25 —0.05 21 -0.09 +0.80 +0.52 -0.05 -O.15 +0.52 -O.57 0.00 22 -0.06 +0.56 +0.56 -0.06 -0.08 +0.49 -O.49 +0.08 25 —0.05 +0.52 +0.80 -0.09 0.00 +0.57 -0.52 +0.15 24 -0.0l +0.19 +0.92 -0.10 +0.05 +0.25 -0.45 +0.17 25 0.00 +0.10 +0.97 -0.08 +0.05 +0.15 -0.51 +0.15 26 0.00 +0.05 +0.99 -0.04 +0.02 +0.07 -0.16 +0.07 15R 0.00 -0.04 +0.99 +0.05 -0.01 —0.06 +0.16 -0.09 12R 0.00 -0.08 +0.97 +0.11 --0.02 -0.12 +0.51 -0.17 118. 0.00 -O.11 +0.95 +0.18 —0.02 -O.15 +0.45 -0.28 10R +0.02 -O.15 +0.82 +0.29 +0.01 -0.12 +0.54 -O.45 9R +0.04 —0.11 +0.58 +0.48 . +0.08 -0.05 +0.55 -0.58 SE +0.05 —0.08 +0.54 +0.69 +0.14 +0.06 +0.44 -0.64 7R +0.05 -0.05 +0.17 +0.85 +0.15 +0.11 +0.52 -—0.58 6R +0.04 -0.05 +0.08 +0.91 +0.11 40.10 +0.20 «0.41 SR +0.02 -0.01 +0.02 +0.97 +0.06 +0.06 +0.09 -0.21 WWW __ W7 Le ' $251199 Point M1 Mg M 5 M4 M}: 5L +0.18 —0.72 —0.50 —0.70 .5.54 6L +0.52 -1.45 -0.92 -1.55 —6.55 7L +1.00 -2.24 -l.28 —l.65 -8.52 8L +1.70 -2.85 -O.67 -1.49 -8.96 9L +2.16 ~5.15 +0.09 -O.81 -7.56 10L +1.98 -5.08 +0.77 -0.05 -5.18 11L +1.61 -2.44 +1.02 +0.44 -5.10 12L +1.04 -1.74 +0.85 +0.42 -l.77 15L +0.55 -O.95 +0.42 +0.26 -0.81 Table LL ( cont.) Results for the Find“. Analysis (cont.) M e s m 0 93! t a e“ K 53;: Point. M1 M2 M5 M4 Mk 18 -0.46 +0.75 -0 48 --0.28 +0.84 19 —0.84 +1.55 4 .03 -O.50 +1.51 20 -0.97 +2.42 -1 55 -0.62 +1.88 21 -0.75 +2.76 --2 19 -0.54 +1.74 22 -0.07 +2.70 -2 70 +0.07 *1.29 25 +0.54 +2.19 -2 76 +0.75 +0.52 24 +0.62 +1.55 -2 42 +0.97 +0.11 2.5 +0.50 +1.00 -1 55 +0.84 0.01) 26 +0.28 +0.48 -—0 6.1 +0.46 0.00 15R -0.26 -0.42 +0 95 -0.5'5 -0.08 12R -0.4.‘<’ -0.85 +1 74 -1.04 —O.14 11R —-0.44 -1.02 +2 44 —1.61 ~J.15 138. -0.05 ~0.77 +5 08 -1.98 -0.22 9R +0.81 -0.09 +5 15 -2.16 —0.5:2 . BR +1.49 +0.67 +2 85 -1.70 -0.86 TB +1.65 +1.28 +2.24 -1.00 -0.88 GB +1.55 +0.92 +1 45 -—0.52 -0.68 53- +0.70 +0.50 +0 72 ~0.18 -0.? ___..lixztiqaLfleggtimfi... MWOnL..- P01nt_ V1 V2 V5 Y4..-__ E1..- 9. ‘12.---“ “.32.. {1. _ 5L +0.96 +0.05 -0.01 +0.02 +0.22 -0.09 -J.06 -0.~;)'7 6L +0.91 +0.08 -0.05 +0.04 +0.41 -0.20 -—O.10 —0.12 7L {-0.82 +0.18 -0.05 +0.05 +0.56 —0.52 -0.10 43.14 8L +0.67 +0.55 —0.08 +0.05 *0.65 -0.44 —0.06 -0.15 9L +0.47 +0.59 -0.11 +0.05 +0.57 -0.54 +0.05 -0.07 10L +0.29 +0.81 -0.12 +0.02 +0.41 -0.55 +0.15 ~0.L)1 11L +0.17 +0.91 -0.11 +0.01 +0.27 —0.44 +0.15 +0.02 12L +0.10 +0.97 -0.08 0.00 +0.17 -0.51 +0.12 +0.05 15L +0.05 +0.98 -0.04 0.00 +0.08 -0.16 +0.06 +0.02 18 -0.04 +0.99 +0.05 0.00 -0.07 +0.16 -0.07 -0.02 19 -0.07 +0.97 +0.10 0.06) -0.15 +0.51 -O.15 —0.05 20 —0.10 +0.91 +0.20 -0.01 -0.16 +0.45 -0.25 -0.05 21 -—0.10 +0.79 +0.54 —0.05 -0.15 +0.52 -0.57 0.00 22 -0.07 +0.57 +0.57 -0.07 -0.07 +0.48 -0.48 +0.07 25 —0.05 +0.54 +0.79 —0.10 0.00 +0.57 -0.52 +0.15 24 —0.01 "0.20 +0.91 -0.10 +0.05 +0.25 -0.45 +0.16 25 0.00 +0.10 +0.97 -0.07 +0.05 +0.15 -0.51 +0.15 26 0.00 +0.05 +0.99 -0.04 .+0.02 +0.07 -0.16 +0.07 m (66) «~‘-—.- ‘-----. - --..--“—‘ Table; 1; (cont;) .325011§.£0141h218a00nd.Aaallais CQQnL.) ___.lezittiqfl 130.49.01.an 40212100141154an ... Point __4VJ jg» __475--__-'V ~ .”__H1 -_-H2 -_;25----.331. 15R ~+o.00 -0.04 -+0.98 +0.05 —0.02 —0.06 +0.16 —0.08 123 -+0.00 -0.08 1+0.97 +0.10 -0.05 —0.12 1+O.51 -0.17 118 +0.01 —0.11 +0.91 +0.17 -0.02 -0.15 +0.44 -0.27 10R +0.02 -0.12 *0.81 +0.2 +0.01 -0.15 +0.55 -0.41 9R +0.05 -0.11 +0.59 +0.47 +0.07 -0.05 +0.54 -0.57 SE +0.05 -—0.08 +0.55 +0.67 +0.15 +0.06 +0.44 -0.65 7R +0.05 -0.05 +0.18 +0.82 +0.14 +0.10 +0.52 -0.56 6R +0.04 -0.05 +0.08 +0.91 +0.12 +0.10 +0.20 -0.41 SE +0.02 -0.01 +0.05 +0.96 +0.07 +0.06 +0.09 -0.22 _qugnt 5.51; fig 51109921. 5 . 1m 3.110.211 .11th Jim-2.9. Point _ 21--..-1E3 05 M4g» ’ Mk _- 5L +0.17 —0.77 ~0.54 —0.77 -5.54 6L -+0.46 —1.55 -O.91 -1.56 —6.37 7L 1+1.00 ~2.26 -0.99 -1.62 -8.57 8L +1.65 -2.99 -—0.65 -1.48 -8.81 9L +2.19 --5.54 +0.07 -0.75 -7.54 101. +2.15 -5.07 +0.78 +0.09 -5.08 11.1. +1.61 -2.15 +0.98 +0.45 -—5.04 12L +1.09 -1.8’) +0.81 +0.46 -1.81 15L +0.50 -0.94 '+0.41 +0.25 -0.84 18 -0.50 +0.72 -0.49 —O.52 +0.84 19 -0.86 +1.60 -1.00 —0.55 +1.50 20 -1.00 +2.54 -1.67 —0.71 +1.67 21 -0.64 +2.91 -2.50 -0.56 +1.74 22 —0.05 +2.84 -2.84 +0.05 +1.12 25 +0.56 +2.50 -2.91 +0.64 +0.55 24 +0.71 +1.67 --2.54 +1.00 +0.19 25 +0.55 +1.00 -l.60 +0.86 +0.05 26 +0.52 +0.49 -o.72 +0.50 0.00 158. -0.25 -0.41 +0.94 -0.50 -0.08 12R -0.46 —0.81 +1.80 --1.09 -0.14 11R -0.45 -0.98 +2.51 -1.61 -0.15 103 -0.09 -0.78 +5.07 -2.13 -o.22 9R +0.75 -0.07 +5.54 -2.19 -O.52 8R +1.48 +0.65 +2.99 --l.65 -0.69 7R +1.62 +0.99 +2.26 -l.00 -0.88 6R +1.56 +0.91 +1.55 -0.46 -0.68 SE +0.77 +0.54 +0.77 -0.17 —O.27 (67) ............... .............. ......... ............... Table 23; (0001:.) he Third Analysis “JMLWQDS.” __1142116554152444195L._ Point 71 v2 v35 74 H1 H2 H5 H4 5:. +0.97 +0.02 -0.01 +0.02 +0.21 -0.09 -0.06 —0.06 6L +0.90 +0.07 -0.02 +0.05 +0.40 -0.20 -0.10 —0.11 7L +0.82 +0.16 -0.05 +0.04 +0.55 .054 —0.10 -0.14 8L +0.67 +0.56 ~0.08 +0.04 +0.60 -0.44 -0.05 —0.12 9L +0.47 +0.60 -0.10 +0.05 +0.56 -0.54 +0.05 .0.07 10L +0.29 +0.80 .0.11 +0.01 +0.41 -0.54 +0.15 -0.01 11L +0.18 +0.90 —o.10 0.00 +0.28 -o.45 +0.14 +0.05 12L +0.10 +0.95 .0.07 0.00 +0.17 .0.55 +0.12 +0.05 15L +0.04 +0.97 .0.04 0.00 +0.08 -0.16 +0.06 +0.02 18 -0.04 +0.97 +0.04 0.00 -0.07 +0.16 —0.07 -0.02 19 -0.07 +0.96 +0.07 0.00 -0.12 +0.52 —0.15 —o.04 20 -0.09 +0.91 +0.19 -0.01 -o.15 +0.44 —0.25 .0.04 21 -o.09 +0.76 +0.52 .0.05 —0.15 +0.51 —o.56 .0.01 22 -—0.06 +0.57 +0.57 -0.06 -0.06 +0.50 —0.50 +0.06 25 —0.05 +0.52 +0.75 —0.09 +0.01 +0.56 —0.51 +0.15 24 -0.01 +0.19 +0.88 —0.09 +0.04 +0.25 —0.44 +0.15 25 0.00 +0.07 +0.96 .0.07 +0.04 +0.15 41.52 +0.12 26 0.00 +0.04 +0.97 —0.04 +0.02 +0.07 -0.16 +0.07 15R 0.00 .0.04 +0.97 +0.04 —0.02 -0.06 +0.16 —0.08 12R 0.00 -—o.07 +0.94 +0.10 -0.05 -0.12 +0.55 —0.17 112 0.00 -0.10 +0.90 +0.18 -o.05 —0.14 +0.45 -0.28 102 +0.01 -0.11 +0.80 +0.54 +0.01 -0.15 +0.54 -0.41 92 +0.05 -o.10 +0.60 +0.47 +0.07 —0.05 +0.54 -0.56 SE +0.04 -0.08 +0.56 +0.67 +0.12 +0.05 +0.44 -O.60 7R +0.04 -0.05 +0.18 +0.82 +0.14 +0.10 +0.54 -o.55 6R +0.05 -o.02 +0.07 +0.90 +0.11 +0.10 +0.2 -0.40 52 +0.02 .0.01 +0.02 +0.97 +0.06 +0.06 +0.09 -0.21 ___Mggents at. 3116 5110;291:113 MQJZEDLEJ: Left. Kngg Point M1 M2 M5 M4 Mk 5L +0.12 -0.77 -0.56 —0.75 -5.54 6L +0.56 -1.59 -0.90 —1.55 -6.42 7L +0.92 -2.42 —1.05 -l.67 43,27 8L +1.65 -5.05 -o.67 -1.45 -8.55 9L +2.26 -5.55 +0.12 -0.68 -6.95 10L +2.19 —5.25 +0.78 +0.14 -4.66 11L +1.75 -2.57 +1.02 +0.55 -2.95 12L +1.17 —1.88 +0.85 +0.54 -1.64 15L +0.57 -0.95 +0.45 +0.52 -0.74 (6 8) 15.21.2221 (£01111) Resglfig for the Third Analzglg (cont.) ~10“ Immunemmg r35... M om 5:11.251ng Point M1 M2 M5 M4 Mk 18 -0.51 +0.79 --0.51 .0.55 +0.67 19 -o.90 +1.75 -1.10 —O.66 +1.10 20 —1.01 +2.57 —1.75 —0.82 +1.48 21 -0.64 +2.86 -2.57 ~0.65 +1.50 22 +0.07 +2.97 -2.97 .0.07 +0.95 25 +0.65 +2.57 -2.86 +0.64 +0.42 24 +0.82 +1.75 -2.57 +1.01 +0.15 25 +0.66 +1.10 -1.75 +0.90 0.00 26 +0.55 +0.51 .0.79 +0.51 0.00 152 -0.52 —0.45 +0.95 -0.57 -O.16 122 -0.54 -0.85 +1.88 -1.17 -0.21 112 -0.55 -1.02 +2.57 -1.75 -0.22 102 -0.14 —0.78 +5.25 -2.19 -0.50 92 +0.68 —0.12 +5.55 -2.26 -0.45 82 +1.45 +0.67 +5.05 -1.65 -0.64 72 +1.67 +1.05 +2.42 .0.92 -O.67 62 +1.55 +0.90 +1.59 -o.56 -0.62 SE +0.75 +0.56 +0.77 -O.12 -0.22 2561:5111; 22213311512204}. MSULTS TRIPLE. 5212 21.12 222.11; 221062 _ 212020 50220225 Resultg for the First Analxsig Moment at P01nt V1 V2 V5 V4 H1 H2 H5 H4 Mk 5L +0.97 +0.04 -0.05 +0.04 +0.19 -0.08 -0.06 -0.05- -5.01 6L +0.87 +0.11 -0.05 +0.07 +0.54 ~0.16 .0.09 -0.08 —5.68 7L +0.78 +0.21 -0.09. +0.09 +0.47 —o.27 —0.10 -0.11 -7.85 8L +0.64 +0.59 -0.15 +0.10 +0.51 .0.52 -0.07 -0.11 -8.69 9L +0.47 +0.62 -0.17 +0.08 +0.45 -—0.57 +0.01 -0.09 -7.69 10L +0.50 +0.82 -0.16 +0.04 +0.52 .0.55 +0.08 .0.05 -5.55 ML +0.19 +0.95 —0.14 +0.02 +0.21 -0.29 +0.10 —0.02 -5.51 121. +0.11 +0.97 .o.10 +0.01 +0.15 .0.20 +0.08 -0.01 —2.17 15L +0.05 +0.98 —0.05 0.00 +0.06 —0.11 +0.05 0.00 —1.00 x - , 1 ___ ..... -- ”___, _ Table XII (cont.) Results for the First Analysis (cont.) ...- Moment at ____fl§xtinglufi§8 ’0 ...lkujgxuugfl.89891102511. léilnflnga P011113 V1 V2 V5 V4 H1 H2 H5 H4 MK 18 —0.05 +0.98 +0.05 0.00 -0.06 +0.11 +9.05 +0.00 +1.00 19 —-0.09 +0.97 +0.15 -0.01 -0.11 +0.20 —0.10 +0.01 +1.85 20 -O.l2 +0.95 +0.21 -0.02 —O.15 +0.29 —0.16 +0.02 +2.51 21 —0.15 +0.80 +0.56 —0.05 -0.15 +0.55 —0.2 *0.05 +2.51 2?. —O.10 +0.59 +0.59 -O.10 —O.11 +0.50 —0.50 +0.11 +1.85 2 -0.05 +0.56 +0.80 -O.15 -0.05 +0.25 -0.55 +0.15 +1.00 24 -—0.02 +0.21 +0.95 -—0.12 -0.02 +0.16 -0.29 +0.15 +0.55 25 —0.01 +0.15 +0.97 -0.09 -0.01 +0.10 —0.20 +0.11 +0.17 26 0.00 +0.05 +0.98 -0.05 0.00 +0.05 -0.11 ‘0.06 0.00 15?. 0.00 -0.05 +0.98 +0.05 0.00 -0.05 +0.11 -0.06 0.00 12R +0.01 --0.10 +0.97 +0.11 +0.01 -0.08 +0.20 -O.15 0.00 11R +0.02 -0.14 +0.95 +0.19 +0.02 -0.10 +0.29 -0.21 -0.55 10R +0.04 -0.16 +0.82 +0.50 +0.05 -0.08 +0.55 -O.52 —0.84 9R +0.08 -O.17 +0.62 +0.47 +0.09 -0.01 +0.57 -—0.45 -1.50 8R +0.10 -—0.15 +0.59 +0.64 +0.11 +0.07 +0.52 -0.51 +1.85 7R +0.09 +0.09 +0.21 +0.78 +0.11 +0.10 +0.27 -O.47 -l.85 6R +0.07 -0.05 +0.11 +0.87 +0.08 +0.09 +0.16 —O.54 -l.54 5R +0.04 -0.05 +0.04 +0.97 +0.05 +0.06 +0.08 -0.19 -0.84 §§g1__§,fbr the Second Ana1ysis ‘ Moment 8t .___Jkujdigfl4ikaxdfisuuL1._. ‘ ec *' ._.. L2£I_Kn§§ Point 1E1 V27 75 74_ H1_ H2, H5 H4» ME; L 4-0.98 -+0.05 -0.02 '*0.05 '+0.18 -0.09 -0.05 -0.04 +5.01 6L '*0.86 -+0.11 -0.05 +0.07 '+0.54 —O.16 ~0.09 -0.08 -5.68 7L +0.78 +0.21 -0.09 +0.08 +0.46 -0.25 -0.10 -O.10 +7.69 8L +0.65 +0.59 -0.15 +0.09 +0.51 -—O.52 —0.07 -0.10 -8.52 9L +0.47 +0.64 -0.17 +0.07 +0.44 -0.57 +0.02 -0.08 -7.55 10L +0.50 +0.82 -0.16 +0.04 +0.51 -O.55 +0.08 -0.04 -5.55 1.11. +0.19 +0.92 —0.15 +0.02 +0.21 —O.29 +0.10 -0.02 -5.51 12L +0.11 +0.98 -0.10 +0.01 +0.15 -O.21 +0.08 0.00 +2.17 15L +0.05 +0.99 -0.05 0.00 +0.06 -0.10 +0.04 0.00 -l.00 18 -0.04 +0.99 +0.05 0.00 —0.05 +0.10 -0.05 0.00 +1.00 19 -0.09 +0.98 +0.11 0.00 —0.10 +0.20 -0.10 0.00 +1.67 20 —O.l2 +0.92 +0.21 -—0.02 -0.14 +0.28 -0.16 +0.01 +2.54 21 —0.15 +0.80 +0.57 -0.05 +0.14 +0.55 -0.24 +0.05 +2.54 22 -0.09 +0.59 +0.59 -0.09 -O.10 +0.51 —0.51 +0.10 +1.67 25 -0.05 +0.57 +0.08 --0.15 —0.05 +0.24 -O.55 +0.14 +0.84 24 ~0.02 +0.21 +0.92 —0.12 -0.01 +0.16 -O.28 +0.14 +0.55 25 0.00 +0.11 +0.98 -0.09 0.00 +0.10 -0.20 +0.10 +0.17 26 0.00 +0.05 +0.99 —0.04 0.00 +0.05 -0.10 +0.05 0.00 (70) Table £1; (cont.) Secord, Anslvsis (cont .) Moment at YerticaltReactions ___jkujixuflgfllEfiasfidsumL_.- Léfiieineg Point V1 V2 V5 V4 H1 Ho H5 H4 MK 15R +0.00 +0.05 +0.99 +0.05 0.00 +0.04 +0.10 +0.06 0.00 12R +0.01 +0.10 +0.98 +0.11 0.00 +0.08 +0.21 +0.15 0.00 11R +0.02 +0.15 +0.92 +0.19 +0.02 +0.10 +0.29 +0.2 +0.55 10R +0.04 +0.16 +0.82 +0.50 +0.04 .0.08 +0.55 +0.51 +0.67 9R +0.07 +0.17 +0.64 +0.47 +0.08 +0.02 +0.57 +0.44 +1.54 8R +0.09 +0.15 +0.59 +0.65 +0.11 +0.07 +0.52 +0.51 +1.85 7R +0.08 +0.09 +0.21 +0.78 +0.10 +0.10 +0.25 +0.46 +1.85 6R +0.07 +0.05 +0.11 +0.86 +0.08 +0.09 +0.16 +0.54 +1.54 5R +0.05 +0.02 +0.05 +0.98 +0.04 +0.05 +0.09 +0.18 +0.84 Results for the Thirg Analysis Moment 9t Veggies; Reactions fiozizgntal fleegtigns Le?t Knee Point V1 V2 V3 V4 H1 H2 H5 H4 MK 5L +0.960 +0.055 +0.02O +0.055 +0.19 +0.09 -0.05 +0.04 +5.01 6L . +0.880 +0.100 +0.050 +0.060 +0.54 +0.16 +0.09 +0.08 +5.68 7L +0.780 +0.220 +0.080 +0.080 +0.46 +0.25 +0.10 +0.09 +7.52 8L +0.64O +0.59O +0.12O +0.09O +0.48 +0.52 +0.06 +0.09 +8.02 9L +0.460 +0.62O +0.140 +0.060 +0.41 +0.55 +0.01 +0.07 +7.02 lOL +0.5OO +0.820 +0.150 +0.050 +0.50 +0.54 +0.08 +0.05 +5.01 11L +0.190 +0.920 +0.150 +0.020 +0.20 +0.28 +0.10 +0.01 +5.18 12L +0.110 +0.97O +0.090 +0.010 +0.12 +0.19 +0.08 0.00 +2.00 15L +0.050 +0.990 +0.04O 0.000 +0.05 +0.10 +0.05 0.00 +1.00 18 +0.040 40.990 +0.050 0.000 +0.05 +0.11 +0.05 0.00 +0.84 19 +0.09O +0.960 +0.120 0.000 +0.09 +0.20 +0.10 0.00 +1.50 2O +0.110 +0.92O +0.210 +0.020 -0.15 +0.28 +0.17 +0.01 +2.17 21 +0.120 +0.800 +0.57O +0.050 +0.12 +0.55 +0.24 +0.04 +2.17 2 +0.090 +0.580 +0.580 +0.09O +0.09 +0.50 +0.50 +0.09 +1.50 25 +0.050 +0.570 +0.8OO +0.120 +0.04 +0.24 +0.55 +0.12 +0.84 2.4 +0.020 +0.210 +0.92O +0.110 +0.01 +0.17 +0.28 +0.15 +0.55 25 0.000 +0.120 40.960 +0.090 0.00 +0.05 +0.11 +0.05 +0.1? 26 0.000 +0.050 +0.990 +0.040 0.00 +0.05 +0.11 +0.05 0.00 15R 0.000 +0.040 +0.990 +0.050 0.00 +0.05 +0.10 +0.05 0.00 12R +0.010 +0.090 +0.97O +0.110 0.00 +0.08 +0.19 +0.12 0.00 11R +0.020 +0.150 40.920 40.190 +0.01 +0.10 +0.28 +0.20 +0.17 10R +0.050 +0.150 +0.820 +0.500 +0.05 +0.08 +0.54 +0.50 +0.50 9R +0.060 +0.14O +0.62O +0.460 +0.07 +0.01 +0.55 +0.41 +1.17 8R + 0.090 +0.120 +0.59O +0.64O +0.09 +0.06 +0.52 +0.48 +1.50 7R +0.080 +0.080 «0.220 +0.780 +0.09 +0.10 +0.25 +0.46 +1.67 6R +0.060 +0.050 +0.100 +0.880 +0.08 +0.09 +0.16 +0.54 +1.17 5R +0.055 +0.020 +0.055 +0.960 +0.08 +0.05 +0.09 +0.19 +0.84 (71) BIBL’IOCRLPHY Beggs, George E., "Indeterminate Structures Mechanically Analyzed", Proceedings, Amazigan.flnncrete Institute, Vol. 18, 1922. Beggs, George 12., "Discussion on Design of‘ a Multiple-Arch System", Griffith, James R., "Design Cost of Highway Bridges Reduced by { Measuring Deflections in Models", Hi5 33y Inleserzirg, Feb., 1928. Thompson, J. T., "Model Analysis of a Reinforced Concrete Arch", Public Roads, Jam, 1929. McCullough & Thayer, Elastic larch Bridge, John Wiley 8: Sons, Inc., New York City. kt", Hayden, Arthur 6., The Rigid Frame Bridge, John Viley'& Sons, Inc., New York City. Gottschalk, Otto, Esq., "Structural Analysis Based on Unloaded Models", Proceegigs, A.§_.§.§., Jan., 1957. Gottschclk, Otto, Esq., "Mechanical Calculations of El? stic Systems", Journal _o_§ the Franklgl Institute, July, 1926. Wilson, Wilbur M., "Laboratory Tests of Multiple-Span Reinforced Concrete Arch Bridges", Discussion by Carroll L. Mann, both, Transactions £._‘j.§_._E_., 1955. Werner, T., & Plummer, Fred L., "Home Made Deformeters for Model Analysis", Civil Engineerilg, June, 1956. (72) Approved: Major Professor Head of Department Dean of College of Engineering Dean of Graduate School Date Date Dete ' mmmw. 51:1 sun-qr» gap: .3an .' M'TITI'ITIMIMIUJHfliflilltfllllllflillfijllfl'ES