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ABSTRACT

LAND-USE LEGACY EFFECT: COMBINING SPATIAL AND TEMPORAL DR/ERS IN
STATISTICAL AND MECHANISTIC MODELS OF LAKE WATER CHEMIFRY

By

Sherry L. Martin
Lake Classification: A classification system is often used to redugruthber of different
ecosystem types that governmental agencies are charged with moratatinganaging. We
compare the ability of several different hydrogeomorphic (HGM) ciaasibns to group lakes
for water chemistry/clarity. We ask three questions: (1) Which approaakdelassification
(regionalization, landscape position, lake-specific, or some combination) is mosssfut at
classifying lakes for similar water chemistry/clarifg) Which HGM features are most strongly
related to the lake classes? and, (3) Can a single classifications$ultgetassify lakes for all
of the water chemistry/clarity variables examined? We use fitasgin and regression tree
(CART) analysis of HGM features to classify six water chemidagity variables from 151
minimally disturbed lakes in Michigan USA. We developed two CART models for eaten w
chemistry/clarity variable: HGM characteristics alone and HGMatttaristics combined with
regionalizations and landscape position. The combined CART models had the highgsh stf
evidence ¢; range 0.92-1.00) and maximized within class homogeneity (ICC range 36-66%) for
all water chemistry/clarity variables except water color and oployll a. The most successful
single classification in our study was on average 20% less successasgsifyohg other water
chemistry/clarity variables. Thus, our results show that no single aasisih maximizes
success for all lake variables examined. Therefore, we suggest thaidhsuecessful

classification is (1) specific to one response variable, and (2) capable giaratorg



information at multiple spatial scales and from a variety of diffieseurces (regionalization and

local HGM variables).

Land use legacies: The recognition of legacy effects from historical lafidnegseover (LULC)
is a conceptual advance that has clarified the relationship between LULC ayste&mos
responses. Legacy effects can be defined as effects which perpetuatkdegapected or
perceived endpoint in time. The goal of our research was to investigate Lgac<y leffects on
lake water chemistry. Water chemistry and five time steps of LUlt&wlare collected from 35
lakes in the Huron River Watershed, Michigan. We took both a correlational and mechanisti
approach to represent how temporal changes in LULC influence lake watesttheviie used
principal components of LULC over time to build hierarchical regression maudleisg to

water chemistry. We also created a mechanistic groundwater flowl tooglstimate spatially-
explicit groundwater travel times. The groundwater travel time was useektie @ legacy

LULC map for subsequent regression modeling. Our correlative models show tleatvaten
chemistry characteristics show a stronger link to legacy LULC thamnsatine may be explained
by the solubility and reactivity of the chemical. Our mechanistic modeds ioBights about how
groundwater interacts with LULC change to create legacy effadtslaow how naturally
occurring conservative tracers can provide a basis for comparismstagarient relationships
to the landscape. By categorizing the chemistry variables by theihkegoteristics of solubility
and reactivity, we are better equipped to explore other mechanisms that atantioorthe

physical transport and biogeochemical transformations of these chemicals.
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CHAPTER 1: COMPARING HYDROGEOMORPHIC APPROACHES TO LAKE

CLASSIFICATION: ISSUES OF SPATIAL SCALE AND PRACTICALITY



INTRODUCTION

Ecosystem structure and function are controlled in large part hythtelogy, geology,
land cover, and climate characteristics of that ecosystem. These ratdsaldpe features have
been used to identify similarities in temperate (Host et al. 1996) and tr@yma and Iverson
2002) forests, rangelands (Kunst et al. 2005), streams (Frissell et al. 1986 )irarnplattan
zones (Vidon and Hill 2004), wetlands (Brinson 1993), lakes (Winter 1977, Riera et al. 2000),
and coral reefs (Rodgers 2005). Brinson (1993) outlined an approach to wetlaifid atiass
based on hydrologic and geomorphic features such as precipitation, grourftbmgtand
landscape position. This hydrogeomorphic (HGM) approach was intended to proviibla fle
classification framework based on knowledge of how HGM factors drive eeosgstucture
and function. The accumulation of HGM data and the advancement of anabgdluaigues
capable of handling complex datasets have extended the capacity of the HGMlappedkacy
it possible to include more characteristics in the ecological dlzgsiin of more ecosystem
types, beyond wetland classification (Host et al. 1996).

Researchers have been classifying lakes since the early 1900's; lakaclassification
was the major focus of the International Congress for Limnology in 1956 @e$s1994), and
interest in this topic has continued to the present. Although a wide variety of apgrtmche
classification has been adopted, one feature common to many has been to grougéakes ba
the statistical similarity of specified water chemistry &hkes. Such a classification approach
has been applied to lake water chemistry data in Canada (Pitblado et al. h@8@riZian et al.
1983), Northeastern U.S. (Hunsaker et al. 1986, Newton and Driscoll 1990, Young and Stoddard
1996, Momen and Zehr 1998, and Jenerette et al. 2002) and Sweden (Hakanson 1996, Hakanson

2005).However, this site-specific approach can group only those lakes for whieh wat



chemistry data are available; therefore, it has limited applicationtier atgions or where data
are lacking.

To move beyond this limitation, we apply an HGM approach to lake classificahich
groups systems according to relationships between important ecosystaoteristics (e.g.,
lake water chemistry) and HGM features. With technological advamtenmeremote sensing
and coordinated data collection strategies, large stores of HGM datadihg agailable in
geographic information systems (GIS) for many areas of the world (Johnsoragad €97).
Because an HGM-based classification can be applied to previously unddakele without
logistically challenging and expensive field collections, its useéslitan be extended to
encompass many more lakes than can be physically sampled (Brinson 1993, Young amd Stodda
1996), thereby allowing inferences and predictions to be made for individual lakes boad
geographic regions.

Regional land classifications (e.g., regionalizations) takerdadga of the wealth of
HGM data to group large geographic regions based on the similarity of ptaysag climatic
and terrestrial features (Omernik 1987, Bailey et al. 1994, Albert 1995). Imghgstinlike
these land classifications, few classifications of aquatic systauestaken an HGM approach
(but see Hakanson 1996, Hershey et al. 1999, Higgins et al. 1998, Wolock et al. 2004). One
hydrologically driven example of regionalization is the USG&blpgic units (HUC; Seaber et
al. 1987). HUCs are delineated using topographical boundaries specific to a drafaage
area and have been used as management units by many agencies. Moexaeuaet of
HGM-based hydrological regionalizations include hydrologic landseagiens (HLR, Winter
2001, Wolock et al. 2004) and ecological drainage units (EDU, Higgins et al. 2005). The concept

of hydrologic landscapes provides an aquatic analog to the land-based regfiomaliz



approaches, delineating land areas with similar HGM-drivers of suaiad ground water
movement and storage, specifically land-surface form, geologic textarelimatic setting
(Winter 2001, Wolock et al. 2004). Alternatively, Higgins et al. (2005) delineated E{pUs b
combining HUC watersheds with similar climate and landscape featutesugh these
regionalizations are conceptually appealing, the few studies testimgeszionally-based lake
classifications report that some critical lake water chamnatits, such as productivity, are not
always similar among lakes within these aquatic and terregigimns (Jenerette et al. 2002,
Cheruvelil et al 2008).

The concept of lake landscape position describes the local hydrologic laadéca
system. Lake landscape position quantifies the hydrologic connectivigpatdl arrangement
of various aquatic systems to infer similarity in ground and surface iwadeology (Kratz et al.
1997, Soranno et al. 1999, Riera et al. 2000, Martin and Soranno 2006). Several metrics of
landscape position have been derived measuring various combinations of locadigdrol
connectivity to other ecosystems (e.g., streams, lakes, wetlands). Eacle ohétess of
landscape position has shown significant relationships with important lakestssos
characteristics, such as acid neutralizing capacity, dissolved orgama @ard nitrogen to
phosphorus ratio (Kratz et al. 1997, Martin and Soranno 2006). However, many other measures
of water clarity and productivity have not shown significant relationshifislandscape position
metrics (Riera et al. 2000, Quinlan et al. 2003, Martin and Soranno 2006).

Although many of the above ecological classification schemes havendéated some
success in classifying lakes, they do so with little regard to other impbt@M features. For
instance, although some regionalizations successfully group lakesmiithr svater quality,

mechanisms that act though local scale variables, such as lake morphoreetoy, a



incorporated into such regionalizations and are likely important for lakefidassn success
(Cheruvelil et al. 2008). Indeed, others have emphasized the importance of including both
regional and local scale variables simultaneously in analyses of sirehlake characteristics
(Seelbach et al. 1997, Goransson et al. 2004, Stendera and Johnson 2006) and call for an
approach that combines regional and local features (Pyne et al. 2007, Cheral:e?068).

A combined approach, however, has inherent technical demands; it must lze able t
incorporate both continuous and categorical data, and account for local scalervariati
concurrently with regional scale phenomena. To date, the majority of sddtietthniques that
have been employed for classification development have used traditionahiogels, such as
principal components analysis and clustering (Emmons et al. 1999, Bryan 200§ficataens
created with these linear methods are limited statisticallynwwiguding categorical variables,
such as regionalization or landscape position. By including such spatxalicit categories into
a larger classification framework, additional variation in water chaetigtits may be captured
that local HGM data alone may miss. In addition, although linear appheakie been found to
accurately represent some ecological relationships, these approachest relgctively
represent non-linear relationships and may mask the true character obthg ttating it to
conform to a linear arrangement (De’Ath and Fabricius 2000, Robertson et al. 2006,0Szira
al. 2008). To date, few classification efforts have taken advantage of aduastasstical
methods that alleviate these shortcomings (but see Zimmerman et al. 1983, Enahal398,
Olden and Jackson 2002, Robertson et al. 2006).

The goal of our study is to build an ecological classification for lakervedtaracteristics
that is built using variation in HGM features over multiple spatial scalese Bpecifically, we

incorporate the phenomena captured by regional summaries of HGM features (i.e



regionalizations) with local HGM features that are intrinsic to each(kake, lake

morphometry). We strive to create a classification approach that: xanmes within class
homogeneity and between class heterogeneity for lake water chatiastgitiy is developed

from natural landscape features that are temporally stable on thefsdatmades to centuries, (c)
minimizes the confounding effects of non-natural landscape features (e.gn disturbances),
and (d) provides an example of a broadly applicable approach for other exesyAte ask three
guestions: (1) Which approach to lake classification is most succesgfolping lakes with
similar water characteristics (regionalization, landscape podidike;specific, or some
combination)? (2) Which HGM features are most strongly related tokbelasses? and (3)
Can a single lake classification successfully group lakes for aleaoi#ter chemistry

characteristics examined?

METHODS

Our dataset includes 151 minimally disturbed lakes in Michigan, U.S.A. thgteater
than 20 hectares in area. We define minimally disturbed lakes as those with no dater or w
control structure and less than 25% human land use/cover (i.e., agriculture amdrutbe
cumulative catchment (detailed below). Our study lakes had only an awvéi@@ehuman land
use/cover in the cumulative catchment and were surrounded mostly by forest (mean 80%
forested land use/cover). We chose to limit our dataset to these lakes in ocedeicothe
confounding effects of human disturbances and maximize our ability to désdicnghips with
HGM characteristics (D’arcy and Carignan 1997, Stoddard et al. 2006).

We obtained data on lake water characteristics during the time period atht8ugh

1982 from the U.S. EPA Storet database. The Michigan Department of Enviroh@eaility



sampled the epilimnion of each lake during summer stratification (July, AwgukSeptember)
for a wide range of limnological variables: alkalinity, water coBecchi disk depth, total
nitrogen (TN), total phosphorus (TP), and chlorophyiChl a). The study lakes vary widely in

all variables (Table 1.1).

Hydrogeomorphic characteristics

We created a digital HGM database for our study lakes from geogpetaincluding
bedrock geology, surficial geology, land use/cover, and climate/hydrolbggeTlandscape
features were summarized for each lake using a 500 m buffer. Bedrock gedogieta
obtained from the Geologic Survey Division of the Michigan Department of Environmenta
Quality. Sedimentary clastic is the dominant bedrock type in Michigan and forahanr study
lakes, but our dataset also includes lakes dominated by other bedrock tygedl (Ta Surficial
geology data were provided by the Michigan Natural Features Inventoryiahodh
Department of Natural Resources. Outwash and moraine surficial gegpagydominate the
study lakes (Table 1.1). Land use/cover data were obtained from the Michigamdees
Information Service (MIRIS 2000) based on aerial photo interpretation of photos takeete
1978 and 1985. Average annual precipitation for the period 1971-2000 was obtained from the
Spatial Climate Analysis Service (www.ocs.oregonstate.edu). Averagalannoff for the
period 1951-1980 and mean base-flow index (BFI) were obtained from USGS
(http://water.usgs.gov). Base-flow index provides an estimate of grourrdn@té relative to
surface water input. Cumulative lake catchments (CUCA) were dédithé¢o include the
catchment area associated with all lakes and streams draining intkethisitag 1:100,000

resolution stream hydrography data, digital elevation models (30 m resolutiopagdaphic



maps. Using the above data, we also delineated local catchments (9 @) portion of the
cumulative catchment downstream from any upstream lake greater than’0\@éttand land
cover was summarized using the 500 m buffer as well as a 100 m buffer (to reptakeist a
riparian zone), and for the local and cumulative lake catchments.

Lake area, perimeter, shape, mean depth, and maximum depth were gatimered f
bathymetric maps. Mean depth was calculated by taking the average deptlorinagialy 100
points evenly spaced across each bathymetric map (Omernik and Kinney 1983hdskevas
calculated as the ratio of shoreline perimeter to the circumferdémceirale of the same area
(Wetzel and Likens 2000). Water residence time (WRT) was estimatgtakes:area*mean
depth) + (cumulative catchment area*runoff)]. Area, shape and slope weneretefis both

local and cumulative catchment.

Classification frameworks

We included three regionalization frameworks: 1) USGS 8-digit hydolagis (HUC,
Seaber et al. 1987), 2) ecological drainage units (EDU, Higgins et al. 2005), and digdrolo
landscape regions (HLR, Winter 2001). The location of each study lake withineggah r
determined the class membership. Our study lakes were located within 189 6lHDUs, and 5
HLRs (Figure 1.1).

We included three metrics of landscape position that can be easily ndefasare
existing data using GIS (described in brief here, see Martin and Soranno 2006 atatadied
descriptions). Lake hydrology (LH; n=7 categories) is a general measaledurface
hydrologic connections, incorporating both connections to streams and lakes. tvad ne

number (LNN; n=5 categories) measures the degree of surface connectivitgritakées. Lake



network complexity (LNC; n=4 categories) is a measure of the compleEhitynnections to
other lakes (e.g., dendritic or linear chain).

We created two new classifications for each lake water chasticteising: 1) local
HGM features for each study lake (HGM), and 2) local HGM featwesmed with
regionalization and landscape position categories (HGM+). Thesdiclams were created
using classification and regression tree (CART) analysis. We chose to &SerGédels
because they: 1) maximize class homogeneity, 2) do not penalize for inahainyg
independent variables, 3) handle high-order interactions among variables, and 4) accemmodat
both continuous and categorical data (De’ath and Fabricius 2000). All CART maatel®uwilt
using the recursive partitioning algorithm “rpart” in the R softwareesygR Development Core
Team, http://www.R-project.org). CART trees were grown using 10-fold etagdation and
subsequently pruned using the 1-SE rule (Breiman et al 1984, Venables and Ripley 1999).
Terminal nodes (i.e., lake classes) were required to have a minimum ob&gerations (i.e.,
lakes). The proportional reduction in error (PRE) for each split was summed to produce a
overall PRE for each tree.

Output detailing splitting decisions from each CART tree was reviewed tesasse
stability and correlations among independent variables. Independent \anma{gnizing class
homogeneity and PRE were always selected as the primary sphigetod five independent
variables for a primary split, measured by class homogeneity, wesedered as competitor
splits. The top five independent variables grouping lakes into classes sonila primary split,
measured by percent similarity, were considered as surrogate Rdlis/glopment Core Team,
http://www.R-project.org). We assessed tree stability using informabiout Zompetitor and

surrogate splits, in combination. A split was considered 1) stable if therenwemmpetitor



splits within 3% reduction in error from the primary splitter, 2) somewhat staiskable if there
were competitor splits within 3% reduction in error from the primary spbtiéthese
competitors were also surrogates, or 3) unstable if there were comgglit®rvithin 3%
reduction in error from the primary splitter but these competitors wereimogates. Therefore,
given small changes in input data 1) stable trees are not likely to changg striicture or class
membership, 2) somewhat stable/unstable trees may split on different independbtds/get
yield similar class membership, and 3) unstable trees would likely yie&dtahtftree structure

and class membership.

Comparing classifications

We compared the success of the three regionalization frameworks, thatidscape
position metrics, and our two CART models for classifying each of thelawater
characteristics included in this study. The HGM and HGM+ CART modelspegegneterized
for each lake water characteristic independently, and thus, we could detdrensnetess of a
classification developed from one variable for another. For example, an HGM anoldz
HGM+ model were built specifically for alkalinity. Classification sess of these two alkalinity-
specific models was then assessed for of each of the other lake wateteclstics (e.g., water
color, Secchi, TN, TP, and C&). However, because individual lakes are assigned to a category
within the regionalization and landscape position classification systathsutwespect to
individual lake water characteristics, comparison across lake watactdrastics was not
appropriate.

Two model selection statistics were used to compare among the canthdaifcations

for each lake water characteristic. First, we took an information-ttheapgproach for multi-
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model comparison, using the corrected Akaike information criteriad)te® small sample sizes
(Burnham and Anderson 2002), computed in SAS (version 9.1) using PROC MIXED (SAS
Institute Inc.). We compared the relative support for each classificatiog Akaike weights

(wi). These weights sum to equal 1 and are interpreted as the probability that ssriwlbest

model relative to others included in the analysis (Johnson and Omland 2004). Secondly, we used
the intra-class correlation coefficient (ICC) to compare the abiligach of the classifications to
maximize class homogeneity for each dependent variable (Donner and KovaCh@8dvelil et

al. 2008). We calculated the ICC from the error terms of a one-way ANOWArandom

effects:

Yij = Yoo * Tij + Ugj

where,Yij = observation of dependent variable for lake lake group, ygo= grand mean of the

dependent variablerij = random error term for laken lake group, whererij ~N (0,02) and

o2 represents the within-group error in the dependariable,uoj = random error term for
lake group, Whereuoj ~ N (0,790 and rggrepresents the among-group error in the dependent
variable. The ICC is the amount of the total vacethat is among groups:

ICC =790/ (7 00+ (;2)

A successful classification has a high ICC, meatinag a large amount of the variation is among
the groups created from the classification, maximgzlass homogeneity. All variables used in

linear techniques (i.e., ANOVA) were transformedrteet normality assumptions.

RESULTS

11



Comparing classifications

Classification success, indicated by class homateag represented by the ICC, ranged
from 0% to 66% across all classification approacretall lake water characteristics (Table
1.2). Across lake water characteristics, alkalimms classified most successfully (ICC mean
42%, range 14% - 66%), followed by water color (I@€an 21%, range 4% - 54%). Secchi disk
depth and measures of lake productivity were diasiSieast successfully (ICC mean <15%)
with 6 classification failures (ICC = 0%).

For each lake water characteristic evaluated, bgewed that one model received an
Akaike weight greater than 0.9, and all other msdeteived very low weights, less than 0.1
(Table 1.2). Thus, only one classification waspsuted by the data for each lake water
characteristic, with supported models differing agntake water characteristics. No
regionalization or metric of landscape positiomalevas supported as a suitable classification of
our data, as Algvalues were substantially higher than most CARTas Among all
classification approaches and all lake water chiaratics, CART models had the highest
strength of evidencen( range 0.92 - 1.00) and were the most successfoaaimizing within
class homogeneity (ICC range 36% - 66%). HGM+ m®tad more Alg support for a
majority of lake water characteristics. Only twkdavater characteristics (water color and Chl
a) had a higher weight of evidence for HGM modelse HGM+ model for Ch& did not differ
from the HGM model and, therefore, was not inclushedomparisons of model fit (indicated by
“n/a” in Table 1.2).

Class homogeneity (ICC) was not always maximizagthk most parsimonious model, as

indicated by AlG (Table 1.2). According to weight of evidence, tlestclassification for water

12



color, Secchi, and TP had ICC’s 12%, 4%, and 8%elprespectively, than the maximum ICC

for that lake water characteristic.

Relationships between hydrogeomorphic featuredaltelclasses

HGM models divided the study lakes into betweem@ 4 lake classes, capturing
between 16% and 53% of the variation among lakiggi(€ 1.2). Measures of lake morphometry
were the most frequent classifiers across HGM no@ebf 6 models). Mean depth, in
particular, was the most important feature drivit@M models of lake productivity, with water
residence time and maximum depth also includedmmesmodels. Various measures of
catchment morphometry were important in classifyati@linity and water color. The proportion
of the local catchment in wetlands was the mosomamt classifier for water color and Ghl
Geology and climate variables were present in ony model each (Claland alkalinity,
respectively).

HGM+ models divided the study lakes into betweem@ 6 lake classes, capturing
between 30% and 60% of the variation among lakiggi(€ 1.3). All HGM+ models (except Chl
a) explained more variation than HGM models: alkgfibby 10%, water color by 12%, Secchi
by 11 %, TN by 29%, and TP by 8%. All HGM+ modedgcept Chh) included the
regionalization framework HUC as an important dfaess(Figures 1.2 and 1.3). No landscape
position metrics were included as important classfin any of these models. As with HGM
models, measures of lake morphometry were frequenportant classifiers across HGM+
models (4 of 6 models), followed by catchment morpbtry and wetlands (2 of 6 models each).
The proportion of clastic bedrock geology type wessent in the HGM+ model for TN. Climate

was not included as an important splitting variablany of the HGM+ models.
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The tree structure for most lake water charadtesisvas similar when comparing among
HGM models and HGM+ models (Figures 1.2 and 1.3)stvhotably, the HGM+ model of Chl
a did not include any regionalizations and was,dfae, identical to the HGM model. HGM and
HGM+ models for Secchi and TP shared initial stitesiand classification variables, differing
only by the addition of HUC as the last classif@lternatively, the HGM features driving the
two CART classifications of water color were fronetsame broad categories; however,
different variables represented these categoriese igpecifically, for HGM models of water
color, catchment morphometry was represented Ry thet ratio of cumulative catchment area to
local catchment area (CUCA:LOCA) and the ratio whalative catchment area to lake area
(CA:LK), whereas in HGM+ models, catchment morphtomeas represented by one variable
(cumulative catchment shape, CUCA shape).

Despite these similarities, there were also sdniersgy differences between HGM
models and HGM+ models. For example, all HGM fezguncluded in the HGM model for
alkalinity were completely replaced by regionaliaas in the HGM+ model, with the'split
(HUC) explaining 50% of the variation (Figures ard 1.3). In another example, the tree
structure for the HGM+ model for TN is quite diféat than the HGM model, although lake
morphometry is still important for classifying TN both models. Catchment morphometry and
bedrock geology are additional HGM features inctuotethe HGM+ model of TN, increasing

the number of classes created from 2 in the HGMahtwd6 in the HGM+ model.

Evaluation of CART tree stability
Evaluating competitor and surrogate splitting opsi@available in the detailed output

from CART analyses can give a sense of the stalofits classification model. Some
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classification splits can be labeled as unstabldt{ple competitors with none being surrogates,
further detail in Methods), thereby indicating asi@vity of the resulting classification to the
particular study lakes used to build the clasdifoca For example, HUC is the most important
classifier in the HGM+ model for TN. However, twther variables explain approximately 3%
less variation than HUC and do not serve as suresddata not shown). Using our methods, this
split can be labeled “unstable” and highly dependarthe input data. In contrast, we label the
2nd split in the TN HGM+ model as “somewhat staliletause mean depth explained only
slightly less variation (approx. 2%) than maximuepth, the primary splitter at this node. In this
case, however, mean depth acts as a surrogateafomuomm depth since the majority (94%) of
lakes would follow the same splitting path undéin&i scenario. Therefore, this split is likely to
be less dependent upon the specific dataset usbhd analysis and can be considered stable.
Over all 32 splits created in the CART models, 28%plits were stable, 31% were somewhat

stable/unstable, and 41% were unstable.

A single classification for all lake water charaggtics

Classification success of CART models was compacedss lake water characteristics
to determine the model most successful at clasgjfiakes for all lake water characteristics. The
mean ICC across water characteristics for the $¢¢GiV model ranked highest at 38% (Table
1.3). Class homogeneity varied slightly for mo&elavater characteristics when classified by the
Secchi-HGM model in comparison to the variable-gm€ART models. Homogeneity
increased for water color (1%), Secchi (4%), anta32%), and decreased only a moderate

amount for TN (6%) and TP (8%). However, the cla@mogeneity decreased much more for
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alkalinity (50%). Simple correlations indicate ttscchi is significantly correlated to all lake
water characteristics, except alkalinity (Table)1.4

Although most lake water characteristics wereificantly correlated with one another
(Table 1.4), classification success varied widehewa single classification was used for all lake
water characteristics (Table 1.3). For examplealalky was significantly correlated with water
color, TP, and Chh (Table 1.4). However, neither of the alkalinity BRA models successfully
classified any other lake water characteristic (mi€C excluding alkalinity: HGM 6%, HGM+
5%; Table 1.3). In another example, water color thachighest correlation with all lake water
characteristics (except TP, Table 1.4), yet watésrdCART models ranked low for overall
classification success (HGM rank 8, HGM+ rank 5hi€al.3). Therefore, correlations among

lake water characteristics did not predict clasatfon success across lake water characteristics.

DISCUSSION

There are three main conclusions that follow fimum research questions. First, although
some lake water characteristics were classified suacessfully by local HGM features alone,
most lake water characteristics were best clagsifieen models included both lake-specific
information and one or more regionalization. Sec¢dake and catchment morphometry plays a
dominant role in structuring the classificationsttoe lake water characteristics. Third, using a
single classification severely erodes the clas#ifim success for most water characteristics.
Overall, because it is important for managemenheigs to balance the logistics and the
effectiveness of classification, we suggest thatrtiost successful classification system is (1)
specific to one response variable, and (2) capafalecorporating information at multiple spatial

scales and from a variety of different sourcesi¢mgjization and local HGM variables). We
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found that CART models effectively modeled the cterpnterrelationships among our
explanatory variables and are thus a useful tadhie classification of ecosystems, particularly

those with multiple data types and/or non-linegatrenships

Comparing classifications

Our results agree with previous studies showingrtiast lake water characteristics are
not similar within many areas delineated by regi@ations (Jenerette et al. 2002, Cheruvelil et
al. 2008). Regionalizations alone had poor classifon success for all lake water
characteristics, except alkalinity, which was dfess well by HUCs and EDUs. Moreover, our
alkalinity HGM model split on some characteristilsat are more indicative of regional-scaled
processes, such as climate. In another study dfilyan lakes, the authors found strong
relationships between landscape position and alkgaliMartin and Soranno 2006). However,
our results show that this relationship is compaeit weak in contrast to larger-scale
regionalizations. For example, landscape positspecifically, LH), explained 21% less
variation than HUC in the®isplit of the alkalinity HGM+ model. These resuttgy indicate that
as the spatial scale of the classifying featurevgr.H<HUC), the explanatory power for
variation in alkalinity also grows (29% LH, 50% HJO herefore, while landscape position
does account for some variation, alkalinity maydsgponding to phenomena that act over larger
spatial scales, such as those captured by regranalns (Griffith et al. 1987, Cheruvelil et al.
2008).

Although models combining regionalizations with HG&&tures successfully classified
most lake water characteristics, in some casesdtigion of regionalizations did not change or

even decreased classification success. For exathplelGM and HGM+ models for Chlwere
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the same (discussed below). In another examplewdh adding HUC to the model of water
color increased the ICC by 8%, this increase issifecation success was also accompanied by a
decrease in model parsimony, as indicated by treek&kweights. Other lake productivity and
water clarity variables, however, seemed to indieategional phenomenon not captured through
local HGM characteristics. More specifically, thesbclassifications for Secchi, TN, and TP all
included the HUC regionalization in addition todakorphometry features. These results agree
with previous findings suggesting that local HGMtiges, such as lake morphometry, are strong
drivers of some lake productivity and water claxigyiables (e.g., Vollenweider 1968, see Brett
and Benjamin 2008 for a review). However, our ressalso show that most of these lake water
characteristics respond to additional phenomenagpat larger spatial scales that are captured in
regionalizations. Therefore, our results suppatdbnjecture that a multi-scale classification
system will be most successful for classifying |akster characteristics (Hakanson 2005,

Stendera and Johnson 2006, Pyne et al. 2007).

Relationships between hydrogeomorphic featuredaltelclasses

HGM features important for splitting lake classe€CIART models are similar to what we
would expect based on previous studies on thaaekitips between lake water characteristics
and lake morphometry (Fee 1979, Halsey et al. 188@)catchment morphometry (Wolock et
al. 1989, Rasmussen et al. 1989, Hakanson 200%&yahwve found that catchment features
dominated the classification of alkalinity and watelor whereas measures of lake morphometry
were the most important classifiers of nutrientd Secchi.

Studies have previously reported that catchmenphwnetry plays an important role in

the variation of productivity (D’arcy and Carignaf97, Hakanson 2005); however, none of our
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classifications based solely on HGM features inetldny catchment morphometry features as
1% tier primary splits for productivity variables. ®measure of catchment morphometry
(CUCA:LOCA) was included as d%3ier primary split in the HGM+ model for TN. Howes
this variable explained little variation (6%), ands in competition with wetland presence at two
spatial scales (data not shown). Moreover, catchmenphometry was not a strong competitor
to split HGM models for nutrients (TN: no competitith mean depth, TP: weak competitor
explaining 15% less variation than mean depth)nsstencies among studies may be due in
part to differences inherent in the underlying egatal relationships of the study regions. For
example, our study lakes were ten times largeuifase area and spanned a wider range of
mean depth, maximum depth, and water residencethiarethe lakes studied by D’arcy and
Carginan (1997). Our study lakes were also largdrdeeper with a longer WRT than the lakes
studied by Hakanson (2005). Therefore, furtherystsdequired to more fully describe the
relationship between catchment morphometry and pagductivity.

Wetland cover may be important for the dynamicsahy lake water characteristics
such as water clarity and productivity. In facgyous studies report that wetlands act as a
source of colored compounds (Detenbeck et al. 198B&ey et al. 1997, Prepas et al. 2001). Our
results show a positive relationship between wdaand water color (Pearsonange 0.28 to
0.43 over all spatial scales, pitvalues <0.01), supporting these studies. Moreavetiands
were the strongest classifier of water color in study lakes, explaining more than WRT and
groundwater input. These results suggest that water in these minimally disturbed lakes may
be more affected by source wetlands rather thantbynal processing or by groundwater
delivery, which contrasts with other studies (Rassen et al. 1989, Hakanson 2005, Webster et

al. 2008).
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Surprisingly, we also found wetland land cover éatle strongest classifier of Gl
showing a positive correlation € 0.34,p-value <0.0001). This relationship may be the tesul
an indirect link between wetlands and lake nutdgeRtevious studies have shown that different
wetland types (e.g., bog, fen) can play differehs in nutrient dynamics, with some serving as
a source and others as a sink of phosphorus (Dstkrdh al. 1993, Halsey et al. 1997, Prepas et
al. 2001). Our results may indicate that our stia#tes are responding to the confounding roles
that wetlands can play in lake productivity, bytb@cilitating productivity through nutrient
production and by creating colored compounds that productivity through shading.

However, finer-resolution data measuring the presaf different wetland types would be
required to fully evaluate the role of wetland$hase lake dynamics.

It is also interesting to note that the water callod Chla lake classes were split on a
very small amount of wetlands (local catchment aretk at 4% and 3%, respectively). One
study reports that a much greater presence of matlan a catchment (approx. >50%) is needed
before detecting significant relationships with @rathemistry characteristics (Prepas et al.
2001). However, other studies report much lowezgholds (6-25%) beyond which wetland
presence becomes important (Dillon et al. 1991rdy'and Carignan 1997, Canham et al. 2004).

We also compared wetland cover measured over fiatiad scales (cumulative
catchment, local catchment, 500m buffer, and 100ffeh and found that the proportion of
wetlands in the local lake catchment was the oodyesrepresented in any of the final CART
classifications (water color and Cijl However, analysis tree stability shows that opatial
scales act as competitor and/or surrogate splitalftake water characteristics (except
alkalinity). In some cases, there were only sheakes in explanatory power when choosing

other spatial scales. For example, cumulative ocag¢ctt wetland cover explained 2% and 0.5%
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less than local catchment wetland cover in the H@ddlels for water color and Ca)

respectively. Moreover, cumulative catchment wetlaaver had 96% and 98% classification
similarity with local catchment wetland cover. Adtigh our results show that wetland presence
at the local catchment scale is the strongestifiexs®r our study lakes, our results support

other studies finding little difference in explaoigt power between wetland cover measured at
different spatial scales (Gergel et al. 1999, Stra&y al. 2003, Canham et al. 2004). Therefore,
additional investigations are needed to more fuligerstand the scale and magnitude of wetland

presence important for lake ecosystem dynamics.

A single classification for all lake water charaggtics

The ultimate lake classification would successfualbssify lakes for all water
characteristics. Our results show that such ai@leestgon likely does not exist as this approach
severely erodes the success of lake classificktiomost water characteristics. We found that
the most successful single classification (SecdBMHCART) for the lake water characteristics
that we analyzed was on average 20% less succassfaksifying other water characteristics
and as much as 50% less successful in classif{kagraty. However, when compared to
regionalizations, the Secchi HGM CART was on averidg more successful in classifying
characteristics and 29% better when alkalinity watsincluded in the analysis. Thus, our results
demonstrate that no single classification schemamaes success for all lake water
characteristics because each classification depmnddifferent suite of local and regional
HGM variables. However, comparisons such as owsldhelp guide the application of
different approaches to lake classification andvalior management agencies to make choices

between logistical practicality and ecological retmess.
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Applications to ecosystem management

Our use of detailed CART ouput allows for the easin of tree stability and splitting
decisions. Alternative splitting decisions can benpared to allow for an assessment of
practicality to enter into the classification preseFor example, our results show that
susceptibility of lakes to acidification may be gdately captured at larger spatial scales, as
lakes within regions had similar alkalinity. On thémer hand, management of nitrogen inputs to
lakes should benefit from a more complex clasdificacombining regionalizations and local
HGM features. This increase in classification sesc@owever, comes at the cost of increasing
the number of lake classes. Management agenciassesthis information to evaluate the trade-
offs involved in choosing different models.

Most importantly, our approach to lake classifisatcombines the strengths of a
regionalization approach and a local HGM approaith analytical advances in multivariate
statistics. Our approach can fulfill the needs ahagement agencies for an ecologically-based
classification system which will allow for robusénd detection through time by reducing
variation in natural HGM features within each claBserefore, any resulting trend may be
attributed to other factors such as changes indaedcover or resource use (e.g., public access).
The classification of other ecosystem types shaldd benefit from taking a multi-scale HGM
approach by building upon foundational relationstiptween ecosystem function and

hydrogeomorphic setting which can be measured different spatial scales.
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Table 1.1. Summary of lake water chemistry/claaitgl hydrogeomorphic characteristics for
151 minimally disturbed lakes in Michigan USA. \abrles are arranged into broad categories.
Abbreviations are listed in parentheses. PCU, mplati cobalt units. CA:LK, catchment area to
lake area ratio. CUCA:LOCA, cumulative catchmemtzato local catchment area ratio.

units Min. Max. Mean SD

Water chemistry/clarity

Alkalinity mg/L 1 206 72 55
Water color PCU 1 99 14 16
Secchi m 0.8 7.9 3.4 1.3
Total nitrogen (TN) ug/L 88 1044 461 192
Total phosphorus (TP) ug/L 1.0 32.0 11.7 6.0
Chlorophylla (Chl a) ug/L 0.2 29.0 4.3 4.4
Bedrock geology
Carbonate (B-Carb) % 0.0 100.0 12.5 32.3
Clastic (B-Clast) % 0.0 100.0 48.3 48.4
Hardrock (B-Hard) % 0.0 100.0 20.5 38.5
Iron (B-Iron) % 0.0 100.0 18.7 37.1
Surficial geology
Bedrock (S-Bed) % 0.0 100.0 3.2 16.9
Dune (S-Dune) % 0.0 37.5 0.9 4.9
Glacial till (S-Till) % 0.0 100.0 17.6 32.8
Lacustrine (S-Lacu) % 0.0 100.0 9.8 27.4
Moraine (S-Mora) % 0.0 100.0 27.7 41.2
Outwash (S-Outw) % 0.0 100.0 36.0 42.5
Peat and muck (S-PeMu) % 0.0 36.4 0.6 3.9
Lake morphometry
Lake Area (LK) ki 020 7038 284  9.34
Shape unitless 1.1 6.3 1.9 0.7
Mean depth m 1.2 21.8 4.9 3.3
Maximum depth (Max. Depth) m 3.0 58.5 14.4 9.2
Water residence time (WRT) year 1.2* 31.6 2.5 4.2
Local catchment morphometry (LOCA)
Area knt 0.2 1759.3 52.0 182.0
Shape unitless 1.1 3.0 1.7 0.3
Slope % 0.6 4.9 2.4 1.0
Cumulative catchment morphometry (CUCA)
Area knf 0.2 1948.3 86.0 276.7
Shape unitless 0.0 2.6 0.6 0.4
Slope % 0.6 5.7 2.8 1.1
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Table 1.1 (cont’).

CUCALK ratio 0.9 2655.1 63.5 247.1

CUCA:LOCA ratio 1.0 14.4 1.6 2.2
Climate/hydrology

Precipitation cm/year 72.7 90.8 81.7 4.1

Runoff cm/year 20.3 50.8 35.8 5.5

Baseflow index (BFI) % 55 89 71 9
Wetlands

CUCA % 0 25 5 5

LOCA % 0 23 4 4

500m buffer % 0 40 7 7

100m buffer % 0 53 8 11
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Table 1.2. Summary of model selection statisticcémdidate classifications per lake water
characteristic. Classification type is indicatedegfionalization, landscape position, or CART.
Individual classification names are indicated witeach classification type. Intra-class
correlation coefficients (ICC) are presented as¢mrof total variance that is among the classes.
A high ICC indicates high within class homogenaityg thus, high classification success. The
number of classes per classification model (KyespntedAAIC is the difference between the
AIC¢ for each model and the minimum AJ@r each lake water characteristic. TX&ICc will
equal 0 for the best model per lake water chanatiterThe Akaike weightsu(i) sum to 1 for

each lake water characteristic and is interpresetth@ likelihood that a given model is the best
model relative to others included in the analysia, not applicable.

Lake water
characteristic Type Name ICC K AIC AAICc O
Alkalinity Regionalization HUC 63 19 1545 30 0.00
EDU 50 6 1586 71 0.00
HLR 14 5 1626 111 0.00
Landscape Pos. LH 34 7 1598 83 0.00
LNN 32 5 1609 94 0.00
LNC 22 4 1617 102 0.00
CART HGM 56 4 1542 27 0.00
HGM+ 66 3 1515 0 1.00
Water color Regionalization HUC 17 19 404 43 0.00
EDU 14 6 396 35 0.00
HLR 15 5 403 42 0.00
Landscape Pos. LH 9 7 402 41 0.00
LNN 4 5 409 48 0.00
LNC 9 4 401 40 0.00
CART HGM 46 4 361 0 0.92
HGM+ 54 4 366 5 0.08
Secchi Regionalization HUC 0 19 522 68 0.00
EDU 4 6 523 69 0.00
HLR 0 5 524 70 0.00
Landscape Pos. LH 5 7 521 67 0.00
LNN 2 5 524 70 0.00
LNC 10 4 520 66 0.00
CART HGM 54 3 474 20 0.00
HGM+ 50 5 454 0 1.00
TN Regionalization HUC 13 19 182 57 0.00
EDU 5 6 187 62 0.00
HLR 0 5 185 60 0.00
Landscape Pos. LH 2 7 187 62 0.00
LNN 0 5 185 60 0.00
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Table 1.2 (cont).

LNC 1 4 187 62 0.00

CART HGM 21 2 172 47 0.00

HGM+ 47 6 125 0 1.00

TP Regionalization HUC 13 19 291 46 0.00
EDU 3 6 294 49 0.00

HLR 2 5 295 50 0.00

Landscape Pos. LH 7 7 291 46 0.00

LNN 0 5 293 48 0.00

LNC 8 4 291 46 0.00

CART HGM a7 2 250 5 0.08

HGM+ 39 3 245 0 0.92

Chlorophylla Regionalization HUC 13 19 382 27 0.00
EDU 9 6 378 23 0.00

HLR 7 5 382 27 0.00

Landscape Pos. LH 1 7 386 31 0.00

LNN 0 5 384 29 0.00

LNC 1 4 386 31 0.00

CART HGM 36 4 355 0 1.00

HGM+ n/a n/a n/a n/a n/a
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Table 1.3. Summary of the intraclass correlatioefficients (ICCs) for CART models across
lake water characteristics. CART models are listgthe original dependant variable and type

of classification. Mean ICC across lake water ctiarsstics is computed. Rank of mean ICC is
listed. See Table 2 for acronyms.

Lake water characteristic

CART model

Water Mean Rank
Alkalinity  color Secchi TN TP  Chla

Alkalinity-HGM 56 7 5 12 5 1 14 11
Alkalinity-HGM+ 66 9 0 5 5 8 16 10
Water color-HGM 1 46 22 12 12 11 17 8
Water color-HGM+ 22 54 50 7 9 11 26 5
Secchi-HGM 16 47 54 41 31 38 38 1
Secchi-HGM+ 25 39 50 31 29 27 34 2
TN-HGM 5 14 19 21 26 12 16 9
TN-HGM+ 22 38 36 a7 40 12 33 3
TP-HGM 13 31 29 24 a7 23 28 4
TP-HGM+ 17 28 23 18 39 24 25 6
Chla-HGM 6 31 19 15 20 36 21 7
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Table 1.4. Pearson product-moment correlation sédrilake water characteristics.
*** n<0.001, **p<0.01, *p<0.05, NS, not significanp¢0.05).

Lake water characteristic

Lake water

characteristic  Alkalinity =~ Secchi ~ Water color TN TP Chl
Alkalinity

Secchi 0.18°

Water color -0.22**  -0.66***

TN -0.02'S  -0.45%*  0.48%

TP -0.17* -0.50*** 0.53*** 0.59***

Chla -0.21**  -0.46*** 0.52%** 0.38***  (.39***
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Figure 1.1. Map of the upper and lower peninsulllizhigan. Lakes included in the analysis
are shown as solid dots. Boundaries are showraftr eegionalization: A) 8-digit USGS
hydrologic units (HUC), B) ecological drainage ufiDU), and C) hydrological landscape
region (HLR).
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Figurel.2. Results from the CART analysis of Idgagdrogeomorphic features (HGM) in
classifying lake water characteristics: (A) alkaiin(B) water color, (C) Secchi, (D) TN, (E) TP,
and (F) Chhia. Each split is labeled with the splitting varialdee Table 1 for abbreviations), and
proportional reduction in error (PRE). Brancheslabeled with splitting value. Terminal nodes
(rectangles) represent lake classes and are labéledn alphabetical class, class mean, and
number of lakes per class (in parentheses).

A) Alkalinity (overall PRE 0.53) B) Water color (overall PRE 0.38)
CUCA Area (0.36) LOCA wetlands (0.17)
| 1 I 1
< 28.6 km? > 28.6 km? <4.4% > 4.4%
Runoff (0.11) LA 127 (39) A: 8.5 (89)] CUCA:LOCA (0.16)
| 1 y !
> 14 cmlyr < 14 cmlyr < |1-0 > 1.0
' | EETEI)
LOCA Area (0.06) | B: 86 (32) CUCA:LK ratio (0.05) |B:37.9 (16
1 ; :
<4.6 km*> >4.6km? < |8-1 > T-l
| C: 23 (42)|[ D: 58 (38)| [C:86(20)] [D:21.4(26)]
C) Secchi (overall PRE 0.33) D) TN (overall PREG)
Mean depth (0.24) Mean depth (0.16)
I I
<7.8m >7.8m
‘ >3.6m <3.6m
WRT(0.09) A: 5.2 (18)
I I
<1.1lyr >1.1yr
|B:2.8(70)] |C: 3.6 (63)] A: 392 (83 B: 546 (68
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Figure 1.2 (cont’).

E) TP (overall PRE 0.22)

Mean depth (0.22)

>51m <51m
A: 7.7 (50) | B: 13.7 (101) |
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F) Cal(overall PRE 0.30)
LOCA wetlands (0.11)
I 1

<3.2% > 3.2%

’_I_‘ I
A: 2.8 (74)] Max. depth (0.10)
1 1

>154m <154 m

B: 2.6 (22) |
S-Till (0.09)
I 1
< 41% > 41%

|C:6.0 (46)| [D:12.0 (9)]




Figure 1.3. Results from the CART analysis comlgniegionalization, landscape position and
local hydrogeomorphic features (HGM+) in classityiake water characteristics: (A) alkalinity,
(B) water color, (C) Secchi, (D) TN, (E) TP, and (Fhla. Each split is labeled with the splitting
variable (see Table 1 for abbreviations), and pridgaal reduction in error (PRE). Branches are
labeled with splitting value. Branches split usaagegorical variables (e.g., HUC, EDU) are
detailed in appendices. Terminal nodes (rectangégsesent lake classes and are labeled with an
alphabetical class, class mean, and number ofgekelass (in parentheses).

A) Alkalinity (overall PRE 0.59) B) Water colooyerall PRE 0.49)
HUC (0.50) LOCA Wetlands (0.17)
I 1
<4.4% > 4|.4%
A: 8.5 (89)| HUC (0.16)
EDU (0.09) A: 133 (43)
B: 14.0 §39i
CUCA Shape (0.16)
I 1
>0.384 <0.384
I
B35 (77)] [C:78(34)] [C:22.4 (15)| [D:56.6 (8)]
C) Secchi (overall PRE 0.45) D) TN (overall PREG)
Mean Depth (0.24) HUC (0.17)
| 1 |
<7.8m >7.8m Max. Depth (0.09)  Max. Depth (0.08)
I 1 |
WRT (0.09) ' A: 5.2 (18)] > 16.6m < > 104m <
I 1 .
<1l.lyr >1.1yr A: 298 (29 | C:. 681 (23
I I CUCA:LOCA (0.06) [g-
HUC (0.07)  HUC (0.05) : | B: 481 (23
<1.0 >1.0
D: 413 (56)| B-Clast (0.06)
C: 3.6 (20) E: 4.1(27) (56) | |
> 0.4% <0.4%

|B:2.4(50)] | D:3.2(36)]

|E: 4c;5 ®| [F: 65I7 (12)]
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Figure 1.3 (cont’).

E) TP (overall PRE 0.30)
Mean depth (0.22)
I I

>51m <51m
A: 7.7 (50) HUC (0.08)

| B: 11.0 (38)| [ C: 15.3 (63)]
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|
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Appendix 1. Additional figures for Chapter 1

Figure 1.4. Details of HUC and EDU categoricaltsph the alkalinity HGM+ model (refer to
Figure 3): A) first node splitting further into sl A and towards classes B and C, and B) second

node splitting further to classes B or C. Grey aiiedicate HUCs which split to the left. Striped
areas indicate HUCs which split to the right.
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Figure 1.5. Details of HUC categorical split in thater color HGM+ model (refer to Figure 3).
Black areas indicate HUCs which were not represkatéhe node. Grey areas indicate HUCs
which split to the left into class B. Striped ar@adicate HUCs which split to the right towards
classes C and D.
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Figure 1.6. Details of HUC categorical splits ie thecchi HGM+ model (refer to Figure 3): A)
left split from WRT splitting further to classesaBd C, and B) right split from WRT splitting
further to classes D and E. Black areas indicat€sllwhich were not represented at the node.
Grey areas indicate HUCs which split to the lefbiolasses B or D. Striped areas indicate HUCs

which split to the right into classes C or E.
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Figure 1.7. Details of HUC categorical split in fiid HGM+ model (refer to Figure 3). Grey
areas indicate HUCs which split to the left towarlisses A, D, E, and F. Striped areas indicate
HUCs which split to the right towards classes B @nd
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Figure 1.8. Details of HUC categorical split in fiie HGM+ model (refer to Figure 3). Grey
areas indicate HUCs which split to the left intasd B. Striped areas indicate HUCs which split

to the right into class C.
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CHAPTER 2: THE LAND-USE LEGACY EFFECT - ADDING TEMPRAL
CONTEXT TO UNDERSTANDING LAKE WATER CHEMISTRY
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INTRODUCTION

The conversion of land to serve human purposesitaniake ecosystems. In particular,
many human activities drive lake eutrophicatiomtiyh direct (e.g. sewage and industrial
wastes) and indirect (e.qg. agricultural run-off)uits of excess nutrients (Dillon and Kirchner
1975, Omernik 1976, Holtan et al. 1988). Althoughny studies have related land use/cover to
lake and stream characteristics, much variatioranesito be explained (Allan 2004, Declerck et
al. 2006). For example, agriculture is a known seuwf nitrogen and phosphorus to aquatic
systems. However, large differences exist in notxport to streams among watersheds
dominated by agriculture (Arbuckle and Downing 20@a&nni et al 2001, Knoll et al. 2003) as
well as forest (Findlay et al. 2001, Brett et &103). In contrast, some studies report finding no
relationship between riverine nutrient concentragiand watersheds with contrasting land cover
(Pellerin et al. 2004, Burcher and Benfield 20@)ch inconsistencies indicate that the scientific
understanding of ecosystem response to land use/goMLC) is still developing (Allan 2004).

The recognition of legacy effects from historit&lLC is an important conceptual
advance that has clarified the relationship betwd#inC and ecosystem responses in terrestrial
(Foster et al. 1998, Foster et al. 2003,Chauvak &007), and aquatic systems (Harding et al.
1998, McTammany et al. 2007). Legacy effects caddimed as effects which perpetuate
beyond an expected or perceived endpoint in timether words, an ecosystem response to
LULC disturbance depends on contemporary LULC casgawell as effects from prior LULC
that are still propogating through the system. Hay@t al. (1998) provide a prominent example
of legacy effects in aquatic systems. They fourad kthstoric LULC had a stronger relationship
with stream macroinvertebrate and fish communiaedity than current LULC and called for

further research investigating land use legacycedfe
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The value of adding a temporal component to aealg$ LULC impacts has been
discussed in many studies (Allan 2004, Pellerial €2004, Opperman et al. 2005, Goodman et
al. 2006, Burcher and Benfield 2006, Davies an#tskat 2006, Foy and Lennox 2006).
Specifically, Goodman et al. (2006) report no defeces in stream macroinvertebrate
community diversity between forested and clearsttets, which they attributed to legacy effects
from previous agricultural land use. In anothermegke, Foy and Lennox (2006) indicated that a
land-use legacy effect may be the mechanism driviageasing riverine phosphorus export
despite temporally stable LULC and reductions impsource phosphorus input. Legacies have
been suggested to play roles in other small s€ded-Anderson et al. 2000, Tomer and
Burkhart 2003, Schilling and Spooner 2006) as aglglobal nutrient budgets (Bennett et al.
2004).

Despite the many studies that suggest the impmetahlegacy effects, few studies have
been designed explicitly to investigate these tamaipeffects of LULC changes on aquatic
systems. Moreover, studies that have addresseddsgaave thus far focused on biological
endpoints, such as measures of community diveBagause aquatic biological communities
integrate environmental stresses over their lifetand respond indirectly to some aspects of
LULC change, measuring the effects of land usediegaon water chemistry may provide a
more direct mechanistic link to aquatic ecosystenudion.

There are at least three potential mechanismamokruse legacy effects in lakes: 1)
import through surface water runoff, 2) delayed amphrough groundwater pathways, and 3)
internal recycling from lake sediments. Knowled§®iogeochemical cycles can help
differentiate among these mechanisms. Differencdésageochemical activity and therefore

cycling periods will likely produce different sigisan the data for dissolved versus particulate
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substances and for reactive versus conservatige Ritosphorus tends to adsorb to soil, being
delivered primarily as particulate matter thoughHate run-off (Wetzel 1983). In contrast,
nitrogen is highly mobile, readily dissolved, aralidered through both surface and groundwater
pathways (Wetzel 1983). Therefore, differences betwnitrogen and phosphorus legacy signals
may indicate differences between surface and gneated delivery. Furthermore, because lake
systems retain a majority of water column nutriemtd export a majority of conservative ions
(Larsen et al. 1981, Kling et al. 2000), compatimg legacy signals of conservative ions to those
of nutrients can help differentiate between extedetivery and internal recycling.

The goal of our research was to investigate tealddJLC effects (i.e. legacy effects) on
lake water chemistry to increase understandingoaf thanges in LULC over time influence
lake ecosystem responses, such as eutrophicatemséd multiple linear regression, where the
response variable was one of a suite of water gdtggmiariables and the predictor variables
were time-specific LULC represented by principainpmnents. We then compared model fit and
model predictive ability between models using LUtGm a single time, and legacy models,
which use LULC from multiple time periods. By comipg the legacy signals from a wide range
of limnological variables, we can better understdr@processes that differentiate the legacy

signal among these chemicals.

METHODS
Study area

This study was conducted within the Huron River &vgtted (HRW) in Michigan (Figure
2.1). This watershed is approximately 2,35% kmsize and ranges from 390m to 173m in

elevation. The HRW contains numerous rivers, steeanu lakes supporting a diverse
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assemblage of aquatic species (Hay-ChmielewsHKi £085). Due to close proximity to major
metropolitan areas, such as Detroit and Ann Arand, the development of interstate highways,
many people live, work, and enjoy the recreatiamgdortunities the area provides. The
watershed has undergone extensive LULC changetlo@grast century, shifting from an
agrarian to suburban society (Hay-Chmielewski e1895, Rutledge and Lepczyk 2002).
However, numerous natural areas have been maidtain&rious publicly owned parks. These
characteristics make the HRW a prime area to inyegst legacy effects as the watersheds cover

a range of LULC trajectories.

Description of data

Water samples were collected from 35 lakes irHR&V during 2008 spring mixing.
Lakes were chosen based on their accessibilitiydimeg both private and public lakes, and
ranged in size from 0.05 to 2.6 kni\ll water samples were taken from 1m below théeme at
the deepest portion of the lake. Samples were aedlfor a range of limnological attributes.
Cation (calcium, magnesium, potassium, and sodamd)anion (chloride, nitrate, and sulfate)
concentrations were determined using membrane-ssgipn ion chromatography (Wetzel and
Likens 2000). Silica concentrations were determingidg the molybdate colorimetric method
(Wetzel and Likens 2000). Total nitrogen concerdret were determined using the 2nd
derivative of the absorbance curve at 224 nm fahgwpersulfate digestion. Ammonia
concentrations were determined following the indapii-blue method. Soluble reactive
phosphorus (SRP) and total phosphorus (TP) coratemts were determined

spectrophotometrically following persulfate digestmethod.
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Water chemistry variables were organized afariori groups based largely on
biological reactivity and solubility (Appendix Ihosphorus species were the most highly
reactive variables in our study (Wetzel 1983). dgn species are also highly reactive, but less
so than phosphorus due to the relative abundancirofien versus phosphorus (Wetzel 1983).
We group Ca, Si, and S@gether under the heading of “reactive variabtes? to their role as
micronutrients in the metabolisms of macrophytéstotns, and bacteria, respectively (Wetzel
1983). Conservative ions (i.e. Cl, K, Na, and Migyym much smaller role in biological
metabolism and therefore are influenced more bgraat supply than internal conversions
(Wetzel 1983).

Land use/cover data (30m resolution) were avadléioim five time steps (1938, 1955,
1968, 1978, and 1996), classified into six categgo(urban, agriculture, open, forest, water, and
wetland) based a modified version of the Anderdal.€1976) LULC classification scheme. All
data were compiled into a multi-temporal GIS dasabfar analysis (full details in Rutledge
2001). Briefly, digitized land use/cover data f&78 were provided by the Michigan
Department of Natural Resources Michigan Resourferhation System (MIRIS) and served
as a base for digitizing all other time steps. Algphotos from each of the other time steps were
scanned (150 dpi) to create digital images. Thesges were then registered and rectified to the
1978 data using the placement of county roads. usetcover polygons were then digitized.
This technigue increased the consistency of polygeoations. Even though LULC data from
more recent times were available for the study,dheasource images and LULC classification
techniques made the datasets incomparable to staribal data. The proportion of each land
use/cover type during each time step was calcufatetthe surface drainage area (watershed) of

each study lake.
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Statistical analyses

The relationship between time-specific land usecand lake water chemistry was
analyzed using a combination of principal composamalysis and multiple regression.
Principal components (PC) analysis on the covaeanatrix of the six LULC types was used to
reduce the dimensionality of the data, reducercedliity among the LULC variables, and
summarize the LULC composition for lake watershied®ach time step. Land use/land cover
composition for the watershed of each lake (n =e3&¢red the PC analysis separately for each
time step, totaling 175 observations entering theoPC analysis (35 lakes by 5 time steps). The
six LULC types were combined via PC analysis taegspnt each lake watershed for each time
period, preserving changes in watershed compogstiaugh each of the five time steps as well
as differences among watersheds. This approact @nBlysis of LULC shows differences in
watershed LULC between lakes and between timehl|igiding different LULC trajectories.

We built regression models to test the effectanéliiuse legacies for each water

chemistry variable following a chronological hierlay of LULC following the general form:
Yi = fo+ P11 PCL +f2tPCZ + 31 PC3 + ¢
where,yj is the value of water chemistry variablgj,; is the coefficient for PC axis 1 in

time stept (1996 to 1938), anBC1l;is the value of PC axis 1 at timestgfi996 to 1938). Model

building continued until all time steps were inakadn a single regression model (max 15

independent variables) as shown below:

Model 1:y; = fo + $1,1PCligge+ f2,1PC21 996+ f3,1PC31996+ éi
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Model 2:y; = fo + 1,1PCligge+ f2,1PC2 996+ f3,1PC31996+ f1,2PClig78+

B2, PC21978+ B3, PC31978+ i

Model 5:y; = fo + $1,1PCligge+ f2,1PC2 996+ $3,1PC31996+ f1,,PClig78+
P2 PC21978+ B3 2PC31978+ f1,3PCligeg+ f2,3PC21 968+ $3,3PC31068+
B1,4PCligss+ B2 APC21955+ 3 4PC31955+ f1,5PClig3g+ f2,5PC21938 +

B3,5PC31938" ¢

By building the regression models in this way, approach recognizes the contribution from all
time periods and makes the explicit assumptiondhaent LULC is a stronger driver of lake
water chemistry than older LULC. It was not ouemttto interpret the effect of individual

LULC types over time, as represented by individegression coefficients, but rather we

focused on the aggregate effect over time (see Agipe). We used Akaike Information

Criteria (AIC), AIC weights ¢;) and the coefficient of determinationz()F(foIIowing Burnham

and Anderson 2002) to compare the performance athenijve models for each water
chemistry variable. We also used AIC weights to para models built from two PC’ to models
built from 3 PC’s (Appendix 3). All analyses wementputed using 3 PC’s in SAS using PROC

PRINCOM and PROC REG (SAS).

RESULTS

Changes in land use/cover
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Averaged across all lake watersheds, the lardgestges in LULC occurred in the
agriculture and urban categories (Fig. 2.2). Adtice predominated in 1938, comprising an
average of 40% of the study watersheds. Over gegulture steadily declined in area to
represent only about 15% of the watershed ared99§. As agriculture declined, urban LULC
steadily increased from less than 5% in 1938 ta 8080 by 1996. Wetland LULC type also
declined steadily from 12% to 8% over the studyquerBoth forest and open LULC types
increased initially, reaching 23% and 21% of theéenshed areas in 1968 and 1978, respectively.
However, these LULC types then decreased for timaireder of the study period, comprising
20% and 19%, respectively, of the watershed argd996 (Fig. 2.2).

The first three PC’s explained approximately 8%the variation in the dataset (Table
2.1). The first PC represented almost half of theation in the dataset and was weighted most
heavily by agriculture and urban LULC types (Tablg). The pattern of urban expansion and
agricultural contraction, seen using average waset4 ULC (Fig 2.2), can also be seen using a
multivariate representation of the LULC data (A@). Agriculture dominated the landscape in
1938, shifting steadily to urban dominance betwE#sb and 1968 (Fig 2.3). The second PC was
weighted most heavily on urban and forest (Takl¢, Z2nd showed a slight shift between forest
and urban LULC between 1938 and 1968 (Fig. 2.3Mhapace of urban growth exceeded that of
forest (Fig. 2.2). A more dramatic shift in forestd urban LULC types occurred between 1968
and 1996, as the growth of urban increased astfwaased. The third PC was weighted most
heavily on open and forest LULC types (Table ZT'he pattern of LULC change represented
with the third PC is more complex than what wasisedhe first two PC’s. Open areas were
slightly more prevalent than forest in 1938, swinighto forest prevalence for 1955 and 1968.

Forest and open areas were roughly equal for gtévie time steps of the study.

55



Plotting the change in LULC of each lake waterstreglr time showed that our dataset
included lakes that vary in initial conditions,eatf change, and final composition (Appendix 4).
The individual trajectories of LULC change reprdsérby the first PC were nearly parallel,
showing a change from agriculture to urban domiaaklowever, some of the lakes changed
more rapidly than others, some changed more tharstand some changed very little. The
second PC showed a narrower range of initial carditthen the first PC, but also showed
largely parallel trajectories for the majority bktlakes with few divergences. The trajectory of
the third PC was more erratic than the other twe,P€presenting more lake to lake variation in

the timing of shifts in open and forest LULC.

Comparing regression models

The regression models using only current LULC ptedt the best model fit only for
phosphorus species (Fig. 2.4). The explanatory paagemeasured by’Ror these models
ranged from 19% to 64%, but had low Akaike weightean 8%) for all other water chemistry
variables. Our results showed that legacy modelgigeed a better model fit for all other lake
water characteristics. Including additional infotraa about historical LULC in regression
models always improved explanatory power (Fig.,28) did not always improve model fit
enough to account for the added complexity (Fid). Z'he explanatory power of the simplest
model for TP and SRP (the 1996-only model) was @BBt and 22%, increasing to 45% and
35%, respectively, when all of the time steps wectided (Fig. 2.5). Among the five regression
models evaluated, the only model supported by Akaikights for TP or SRP was the 1996-only

model (Fig. 2.4).
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All other lake water characteristics were best ebed by some combination of current
and past LULC data (Fig. 2.4). All species of rgea were best modeled by including historical
LULC information through the 1978 time step (Figd)2 increasing the explanatory power from
18-27% for the current-LULC-only regression apptotax 38-43% for the model including 1978
(Fig. 2.5). Calcium, silica, and sulfate were diest modeled by a 1978 legacy model (Fig. 2.4),
accounting for 47-62% of the variation in the d@t@. 2.5). Other legacy models for these
variables also received some support by AIC weidftte 1968 legacy models for calcium and
silica were supported by AIC weights of 0.27 ar@bQrespectively.

Conservative ions showed the longest legacy effiedtthe highest explanatory power of
all water chemistry characteristics in our studye Hest model for potassium included historical
LULC information through the 1955 time step (Figd)2 accounting for 93% of the variation in
the data (Fig. 2.5). Explanatory power increasedlost (approximately 30%) when 1978
LULC was added to the regression model, but cortirto increase through the addition of 1955
(Fig. 2.5). Chloride, magnesium, and sodium wes# bedeled by the full legacy model that
included LULC information for all time steps back1938 (Fig. 2.4). Although the 1996-only
model for sodium was also supported with an AlCgleof 0.23, the full legacy model received
the majority of support, with an AIC weight of 0.5Ehe 1938-legacy models of chloride,
magnesium, and sodium improved explanatory pow&1l8g, 35%, and 20%, respectively, over
the 1996-only model (Fig. 2.5). These models actamlifor 82-85% of the variation in the data
(Table 2.2).

All regression models show a roughly linear relasihip (Appendix 5).

DISCUSSION
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Among key ecological principles essential in sustiale land planning, Dale et al. (2000)
describe the relevance of ‘time’ in terms of ecadablegacies, time-lag feedbacks, and future
constraints. Our study sought to quantify this terapcomponent of ecosystem response to land
conversion (i.e. land use legacy effect). The meéthie used shows both the presence and
timescale of legacy effects in models relating LUloGnost lake water characteristics.
Furthermore, by comparing lake water charactesstith vastly different biogeochemical
cycles, our study gives mechanistic insight intgaldes. We report finding the first evidence of
land use legacy effects in lakes.

The traditional approach to studying ecosystemaeses to LULC compares LULC
from a single time period to a measure of ecosystamonse from a similar time period. A
legacy approach simply modifies the traditionalrapgh by adding historical LULC to models.
We found that taking a legacy approach improvedehbis for total and dissolved nitrogen,
reactive ions, and conservative ions. Howeveratlided complexity inherent to legacy models
did not substantially improve explanatory powerttial and soluble reactive phosphorus. These
results seem to support a conclusion that phosplresponds most strongly to the most recent
LULC. Another plausible explanation is that lakeopphorus concentrations are governed more
by internal recycling from lake sediments rathamtllelivery pathways (Stauffer 1987, Soranno
et al. 1996). The low explanatory power for our edf phosphorus also indicates that other
mechanisms, such as internal recycling, shouldbsidered in future analyses of phosphorus.
Results from other studies linking watershed laadsacontext to phosphorus also show that
external landscape factors fail to predict lakegptorus well (Riera et al. 2000, Martin and

Soranno 2006, Martin et al. In Review).
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In contrast to phosphorus, legacy effects wereerapparent for nitrogen species.
Nitrogen is also a highly reactive nutrient; howgvetrogen is readily held in multiple
biologically available forms and remains dissolwedgch more easily than phosphorus. Previous
studies provide evidence that nitrogen speciesl@meered primarily as dissolved forms through
subsurface hydrologic pathways (Jordan et al. 1987ni et al. 2001), whereas phosphorus
binds to soils and is delivered primarily througinface runoff (Jordan et al. 1997, Johnes and
Heathwaite 1997). Differences in the rate of dejMeetween these two routes, surface delivery
being fast and subsurface delivery being slow, ipeanother potential mechanistic explanation
for differences in legacy timescales for nitroged @hosphorus. Carpenter and Turner (2000)
discuss how interactions between the proverbitbises and hares of ecological processes work
to structure ecosystem responses. Our resultsqe@mpirical evidence supporting the
importance of both slow (soil saturation) and {astface runoff) processes in structuring lake
ecosystem response to external nitrogen loads.

By grouping our water chemistry variables iatpriori groups based on biological
reactivity, we are able to show that the leveliofdgical reactivity can also be used to
understand differences in legacy timescales. Asnmjtrients for aquatic primary producers,
phosphorus and nitrogen have high levels of rei@ti€alcium (Alstad et al. 1999), silica
(Martin-Jezequel et al. 2000) and sulfate (Holmret &torkholm 2001) are also important in
biological processes, but less than nitrogen (Wé2@3). On the other hand, Cl, K, Mg, and Na
are grouped as conservative ions given their Idative reactivity in aquatic ecosystems
(Wetzel 1983). Our results indicate that legacyeBoales are negatively related to biological
reactivity: highly reactive elements, such as reulttis have relatively short legacy timescales and

conservative ions have the longest legacy timesckl®em these results, we can estimate that the
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signal from nitrogen and reactive ions are stipaent from historical LULC occurring 30 years
ago. In comparison, conservative ion concentratishgch are not as strongly linked to
biological metabolism, are still responding to aigtal LULC from 70 years ago. It is possible
that if LULC data were available prior to 1938, manf the conservative ions would have shown
an even longer legacy. The few biogeochemical studf legacy effects have found similar
legacy timescales for nutrients (Harding et al.8,9%%hauvat et al. 2007) and conservative ions
(Boutt et al. 2001).

We also see an increase in explanatory poweraasivity decreases, with forms of
phosphorus explained poorly{R2 and 25%), nitrogen explained fairly welP(&7-43%),
reactive ions explained well {R7-62%), and conservative ions explained extremwely
(R>>80%). Kling et al. (2000) found that biologicahrtivity was positively related to the
coefficient of variation calculated from multiyesampling on ten lakes, with higher reactivity
showing higher interannual variability. This higariability may also explain differences in
explanatory power of the legacy models, in thahhigerannual variability of a variable in a

lake will likely reduce the predictability (henceodel power) for that variable.

Management Implications

A recent renewal of interest in eutrophication i@y et al. 2009, Smith and Schindler
2009, Wagner and Adrian 2009) and calls for nutnieductions (Carpenter 2008) echo the calls
of the past (Edmonson et al. 1956, Edmonson 193ttin8ler 1974). Many management
strategies, such as changes in land use polictesegluctions in point source inputs, have been
put into place to reduce anthropogenic effectsaied (Schindler 2006). Setting realistic

expectations is important part of the managemetie@nd failure to recognize legacy impacts
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may lead to unachievable expectations. While tlreiwence of legacy effects may be more
widely known or accepted, the quantification ofdegtimescales is important for setting
realistic goals for the restoration of ecosystemises (Chauvat et al. 2007). Our study shows a
nitrogen legacy signal from more than a decade.p@a the other hand, our study did not show
a legacy effect for phosphorus. Therefore, manageawtions aimed at reducing nitrogen
impacts may take longer to show improvements tletiorss aimed at reducing phosphorus
impacts. The long legacy that conservative ionskatdd may also be indicative of the legacy
timescale of other soluble substances, such astsnstoxic chemicals

In conclusion, relationships between LULC and laleger characteristics go beyond that
which is currently being measured. It is essemtiahclude the temporal context of LULC in
modeling important ecosystem dynamics. By addingraalysis of conservative ions to the suite
of limnological variables, we were able to showeatiénces in inferred legacy mechanisms that
would have otherwise been missed. Furthermore yst@s responses to future changes in land

cover and/or climate are likely linked to histdandscape context.
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Table 2.1. Eigenvectors and proportional variaeqaained from principal components analysis
of land use/cover types. Extreme values for eaclafeGndicated in bold.

PC1 PC2 PC3 PC4 PC5
Agriculture -0.8663 -0.1345 -0.0426 -0.0509 -0.2457

Urban 03302 -0.7274 -0.0216 -0.4412 0.0075
Forest 0.1567 0.5363 05599 -0.4196 -0.1779
Water 0.2239 -0.1552 0.2985 0.7826  -0.2399
Open 0.2416  0.3533 -0.7711 0.0099 -0.2355

Wetland -0.0862 0.1276 -0.0231 0.11910.8916

Eigenvalue 0.043 0.024 0.013 0.007 0.003
% variance
explained 48% 27% 14% 7% 4%
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Table 2.2. Regression statistics for best modedpelddant variables are listed under broad
categories. Details of regression models includee step(s) represented in final model, number
of regression parameters fit (p), Akaike Informatfriteria (AIC), Akaike weightd;), and
coefficient of determination @

Dependant Regression model p wj R?
Phosphorus

TP 96 3 0.872 0.255

SRP 96 3 0.930 0.216
Nitrogen

TN 96+78 6 0.639 0.376

NO3 96+78 6 0.788 0.400

NH4 96+78 6 0.722 0.435
Reactive lons

Ca 96+78 6 0.494 0.496

Si 96+78 6 0.611 0.471

SOy 96+78 6 0.672 0.616
Conservative lons

Cl 96+78+68+55+38 15 0.926 0.850

K 96+78+68+55 12 0.870 0.933

Mg 96+78+68+55+38 15 0.968 0.847

Na 96+78+68+55+38 15 0.593 0.815
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Figure 2.1. Map showing the Huron River Watershétiwthe state of Michigan, including
detailed hydrography features along with outlir@stifie cities of Ann Arbor and Ypsilanti. For
interpretation of the references to color in tmd all other figures, the reader is referred to the
electronic version of this dissertation.
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Figure 2.2. Average proportion of each land usefcoype for the study lakes calculated for

each time step in the study. Solid fine line repnés agriculture. Solid heavy line represents
urban. Dashed fine line represents forest. Daskadyhline represents open. Dotted fine line
represents water. Dotted heavy line representancktl
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Figure 2.3. Change in land use/cover over timeasgted by principal component 1 (PC1),
principal component 2 (PC2), and principal compd3e{PC3). Each dot represents the average
score for that time step.
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Figure 2.4. Akaike weightso{) from chrono-sequence of regression models. (R) Solid
circles with heavy solid line; and, SRP, open esalith dashed line. (B) TN, solid circles with

heavy solid line; N@, open circles with dashed line; and, NEX inside circle with dotted line.

(C) Ca, open circle with heavy solid line; Si, oggangle with dashed line; and, 3®pen
square with dotted line. (D) CI, open with circlealry solid line; K, open triangle with dashed
line; Mg, open square with dotted line; and, Nagrodiamond with fine solid line.
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Figure 2.5. Coefficient of determinationz(Rrom chrono-sequence of regression models. (A)
TP, solid circles with heavy solid line; and, SRPen circles with dashed line. (B) TN, solid

circles with heavy solid line; N§) open circles with dashed line; and, NPX inside circle with
dotted line. (C) Ca, open circle with heavy soirg| Si, open triangle with dashed line; and,
SOy, open square with dotted line. (D) Cl, open witicle heavy solid line; K, open triangle
with dashed line; Mg, open square with dotted lan@d, Na, open diamond with fine solid line.
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APPENDIX
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Appendix 2. Additional information for Chapter 2.

Table 2.3. Characteristics of the study lakes hiclg water chemistry variables as categorized
into a priori groups and lake area. Minimum, maximum, mean caedficient of variation are
shown for each variable.

Lake characteristic Minimum  Maximum Mean CVv
Lake area (km?) 0.06 2.60 0.65 0.93
Phosphorus
TP (ug/L) 5.4 45.0 24.1 0.37
SRP (ug/L) 0.33 3.45 1.15 0.56
Nitrogen
TN (mg/L) 0.53 1.85 0.94 0.30
NO3 (mg/L) 0.00 1.03 0.20 1.20
NH4 (ug/L) 3 143 36 0.96
Reactive lons
Ca (mg/L) 16 92 52 0.38
Si (mg/L) 0.00 5.61 1.53 0.88
SO4 (mg/L) 1.9 88.4 26.1 0.83
Conservative lons
Cl (mg/L) 2 242 66 0.90
K (mg/L) 0.58 7.53 2.09 0.57
Mg (mg/L) 3.9 24.7 15.4 0.26
Na (mg/L) 0.9 77.3 24.0 0.88
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Table 2.4. Regression coefficients from best modeleported in Table 2.2.

Ce [ CT | K | Mg | Na [ NH, | NO; SO, [SRF| TN | TP
Intercep] 49 | -44] 1.4 17 -1§ 37 0352 1P 22 13 {1 b7
PCc1 96| -42| -704 -13 47 -22B -416 -6}4 -13 185 -1.0 -B3 {27
Pc2 96| -145 374 11 4% 129 15 22 44 61 41 B6 P4
PC3 96] 335] 491 14 24 35p 731 o 15 5p7 4.4 b6 l12
PCc1 78] 23] 1362 13 7.4 451 503 55 a1 -di2 1.2
Pc2 78| 147] 56| 11| 29 34 18p 1 2p 31
Pc3 78] 353 338 -85 -11 60 751 -0]2 -66 -536 i2
PC1_68 657 _1.0[ -11] -24f
PC2_68 208 3.3 27] 107
PC3_68 681 -2.6 -13 -23p
PC1 55 500 -4.1] -2 24%

PC2_55 603 1.8 -27 -26f
PC3_55 436] 0] -23 169
PC1_38 746 19| -284
PC2_38 255 33 70
PC3_38 -471 37| -20(
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Figure 2.6. Comparisons between regression rassiltgf 2 PCs and 3 PCs for calcium, chloride,
potassium, magnesium, sodium, ammonium, nitrdieassulfate, soluble reactive phosphorus
(SRP), total nitrogen (TN), and total phosphoruB)(TAkaike weights (y-axis) were computed
across regression results for each water chemiatrgble from both 2 PCs and 3 PCs to total

ten regression models.
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Figure 2.6 (cont’).
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Figure 2.6 (cont’).
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Figure 2.6 (cont’).
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Figure 2.6 (cont’).
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Figure 2.6 (cont’).

TN

100%

80% -

60% -

40%

AIC weights

20% -

0%

TP

100%

80%

60% -

40%

AIC weights

20%

0% -

77



Figure 2.7. Change in LULC over time as represeimedultivariate space. Each line represents
the LULC trajectory of a lake in the study. Eaclitwd first three PC’s are shown.
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Figure 2.7 (cont’).
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Figure 2.7 (cont’).
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Figure 2.8. Regression diagnostics for best maaelgeported in Table 2.2. Observed values (y-
axis) are plotted against values predicted fronréigeession equation (x-axis).
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Figure 2.8 (cont’).
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CHAPTER 3: THE LAND-USE LEGACY EFFECT - A MECHANIST INVESTIGATION
OF HOW GROUNDWATER DELIVERY, WETLAND PROCESSING, AN
RIPARIAN DYNAMICS AFFECT LAKE WATER CHEMISTRY
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INTRODUCTION

There have been numerous studies linking landamsketover (LULC) to ecosystem
responses. The typical approach involves corrgatinrent LULC within a specified area to
current ecosystem condition(s). The main differesmo@ng these studies is the way in which the
contributing zone has been delineated, includirgdidistance (Strayer et al. 2003, King et al.
2005) and flow distance buffers around a samgtagon (Brazner et al. 2007), fixed-distance
buffers around a stream (Hunsaker & Levine 199%) S&kle et al. 2004, Floyd et al. 2009)
with varying distance upstream of a station (Splerset al. 2001, Frimpong et al. 2005), and,
finally, different variations on “watersheds” (Sorep et al. 1996, Hollister et al. 2008).
Regardless of spatial scale, these approaches aseatmaterials originating from different
cover types are delivered to the ecosystem ovesdhe time period that the LULC is measured.
This is likely a reasonable assumption for surfdelésery. Burcher (2009) estimated that the
maximum travel time for overland flow from precggibn was on the order of days. However,
groundwater delivery often takes longer than a de@and can exceed a century (Pint et al. 2003,
Pijanowski et al. 2007). Therefore, it is likelyathmuch of the water delivered through
groundwater pathways is not representative of tineent LULC. In systems where groundwater
provides the dominant source of water, this tempuoramatch can obscure relationships
between LULC and ecosystem responses.

While there have been several studies that hilghtltge importance of representing
groundwater geochemistry (Wayland et al. 2003)taanasport delays in models of aquatic
ecosystem response (Baker et al. 2006, Fraterrim&ning 2008, Kelly et al. 2008), few have
linked the dynamics of changing LULC to a mechanishderstanding of flow paths and travel

times (Boutt et al. 2001, Wayland et al. 2002)aRawski et al. (2007) coupled a land
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transformation model with a groundwater travel timedel to produce a temporally adjusted
mosaic of LULC that they term the land-use lega@pnThey found large discrepancies
between current LULC and legacy LULC in their stweBtershed. For example, there was only
a 22% agreement in urban LULC type between cuaedtlegacy maps. Additionally, 11% of
their study area that was currently in a human dabed LULC type (i.e., urban and agriculture)
was assigned to forested cover type in the legaxy. tdsing a legacy map of LULC, as
described above, should improve models of ecosysteponse to LULC.

In addition to groundwater flow paths, wetlandgaesing and riparian zone dynamics
modify how current LULC impacts aquatic ecosystemdition. Peterjohn and Correll (1984)
showed that riparian forests can effectively capsurface and subsurface nutrient fluxes from
adjacent agricultural land to stream systems. demereviews of riparian buffer characteristics,
Zhang et al. (2009) and Yuan et al. (2009) agratlbffer width and composition are important
in determining the flux of non-point pollutants.i@t studies have shown that stream and lake
water chemistry characteristics are related toameltlextent and proximity (Osborne & Wiley
1988, Johnston et al. 1990, Detenbeck et al. 1983)ever, the appropriate spatial scale for
wetland measurement, whole watershed proportiosugguroportion within a specified distance,
remains an active area of inquiry (Gergel et a9 Xenopoulos et al. 2003, Moreno-Mateos et
al. 2008).

The goal of this study is to combine the knowledfygroundwater delivery, wetland and
riparian processing in mechanistic and statistiwadlels to better understand the relationship
between LULC and lake water chemistry charactedgsiiVe created a mechanistic groundwater
flow model to estimate spatially-explicit groundematravel times for a watershed to surface

water bodies. We used this information to credeggacy LULC map, which accounts for delays
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in materials delivered via groundwater pathwaysifgast LULC. Three approaches for
incorporating wetland processing were compareeetland extent, 2) area of wetland
connected to rivers, and 3) length of wetland catetkto rivers. Riparian processes are
incorporated by adding measures of riparian LUL@Gh#mechanistic groundwater legacy
model. We use regression models to relate lakerwhtamistry variables to various LULC
representations.

We applied these modeling approaches to twelveneitemistry variables, ranging from
nutrients to conservative ions, to better undedsthr roles that biological reactivity and
solubility play in connections between LULC and atiiecosystem function. We expect that:

1) chemicals of high solubility (e.g. SRP, R@vill have a stronger relationship with
groundwater flow paths than chemicals of low sditybfe.g. TP), which will be
more dependent upon surficial transport processes), as retention in riparian zones,
than groundwater flow paths;

2) chemicals of low biological reactivity (e.g. camvative ions) will have a stronger link

to groundwater flow paths than chemicals of higsldgical reactivity (e.g. nitrogen
and phosphorus), which will be more dependent aitewe processing than

groundwater flow paths.

METHODS

Study Area

This study was conducted within the 2,3592H|=mron River Watershed (HRW) in

Michigan (Figure 3.1), which ranges from 390m t@m7in elevation. The HRW contains

numerous rivers, streams and lakes supportingeasthassemblage of aquatic species (Hay-

91



Chmielewski et al. 1995). Due to close proximitymajor metropolitan areas, such as Detroit
and Ann Arbor, and the development of interstaggways, many people live, work, and enjoy
the recreational opportunities of the area. Thesvged has undergone extensive LULC change
over the past century, shifting from an agrariasuburban society (Hay-Chmielewski et al.
1995, Rutledge and Lepczyk 2002). However, numenaiisral areas have been maintained in

publicly owned parks.

Water chemistry data
Water samples were collected from 35 lakes irHR&V during 2008 spring mixing.

Lakes were chosen based on their accessibilitiydneg both private and public lakes ranging
in size from 0.05 to 2.6 k%nAII water samples were taken from 1m below théase at the

deepest portion of the lake and analyzed for majws and nutrients. Cation (calcium,
magnesium, potassium, and sodium) and anion (cddpnitrate, and sulfate) concentrations
were determined using membrane-suppression iomatography (Wetzel and Likens 2000).
Silica concentrations were determined using theybuaate colorimetric method (Wetzel and
Likens 2000). Total nitrogen concentrations werkeaeined using the 2nd derivative of the
absorbance curve at 224 nm following persulfatestign. Ammonia concentrations were
determined following the indophenol-blue method {¥éeand Likens 2000). Soluble reactive
phosphorus (SRP) and total phosphorus (TP) coratents were determined
spectrophotometrically following persulfate digesti

Water chemistry variables were organized anfariori groups based largely on
biological reactivity and solubility (Appendix 3.17hosphorus species were the most highly

reactive variables in our study; nitrogen specresa#so highly reactive, but less so than
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phosphorus due to the relative abundance of nitregesus phosphorus (Wetzel 1983). We

grouped Ca, Si, and G@ogether as “reactive variables” due to their mdemicronutrients in the

metabolism of macrophytes, diatoms, and bactesgpectively (Wetzel 1983). Conservative
ions (i.e. Cl, K, Na, and Mg) play a much small@erin biological metabolism and are thus

influenced more by external supply than internalvasions (Wetzel 1983).

Land use/cover data

Land use/cover data (30m resolution) from fiveilatée time steps (1938, 1955, 1968,
1978, and 1995) were classified into six categduelsan, agriculture, open, forest, water, and
wetland) based a modified version of the Anderd®@76) LULC classification scheme (Figure
3.2). All data were compiled into a multi-tempo@IS database for analysis (full details in
Rutledge 2001). Briefly, digitized land use/covataifor 1978 from the Michigan Resource
Information System (MIRIS) served as a base fortidigg all other time steps. Aerial photos
from each of the other time steps were scanneddfbQo create digital images that were then
registered and rectified to the 1978 data usingotheement of county roads. Land use/cover

polygons were then digitized.

Groundwater travel time calculation and modeling
We modeled groundwater travel times following @aduwares similar to Boutt et al. (2001)
and Pijanowski et al. (2007). This approach is daseDarcy’s Law of groundwater flow:
Q = -KAi
where,Q is discharge in fidday,K is hydraulic conductivity in m/daw is the cross sectional

area in M, andi is the hydraulic gradient. Groundwater flow vetpdiy, m/day) is calculated as:
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- Q
An
wheren is porosity. Travel time is then calculated byiding the flow length by flow velocity.
We used the Groundwater Modeling System preproc€B¥ U 1994) to facilitate the
discretization of geospatial data for input to MQIQMV-2000 (Harbaugh et al. 2000) to solve

for the groundwater flow equations. We used a aye+l model, with 180,000 cells with

approximately 109 x 109 m dimensions. We used étavafrom USGS 1/? arc second

National Elevation Dataset (NED, resolution appr®m) to represent surface topography. We
also used the NED surface elevations to modelrstia/erage using procedures and tools in
Arcinfo 8.3 (ESRI, Inc): FILL SINKS, FLOW DIRECTIONand FLOW ACCUMULATION.
The location of stream cells were defined accordiing threshold of 15,000 cells using the
STREAM DEFINITION tool, which produced stream deltations comparable to known
hydrography features. Stream cells were combindd eells along lake edges to create a
complete representation of hydrography featuressé&lieatures were modeled as drains in the
groundwater model. Bedrock elevations were provige®SU Department of Geography (D.
Lusch personal communication).

Recharge was estimated using measured flows tenypsilanti USGS gauge on the
Huron River (#4174800) for 1974-1994. Low flow vedufor each year in this period of record
were averaged and divided by the drainage aregidimg the recharge estimate of 0.00138 m/d
(49 cmlyr). This is roughly 55% of the mean anmrakipitation measured in the near-by city of
Ann Arbor.

Static water levels from 15,581 wells recordethim Michigan Department of

Environmental Quality Statewide Groundwater Databaalled Wellogic, were used to
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interpolate water table elevations across an Imtadel boundary (HRW plus 1km buffer). We
filtered this dataset to only include wells witle tfollowing characteristics: 1) physically located
within the model boundary, 2) reported surface &iewn within 2m of NED surface elevation at
that location, and 3) casing deeper than the regatatic water level. This groundwater surface
was then used to delineate a groundwater sourcdéshell river cells upstream of Ypsilanti, as
all of the study lakes were located upstream ofil#ps. We use the term sourceshed in parallel
to how watershed is used for surface water drainBgerefore, the groundwater sourceshed
represents the area contributing groundwater trtécplar point (e.g. study lake). The modeled
groundwater sourceshed, which we will refer tohesHuron River Groundwater Sourceshed
(HRGW), was then used as the model boundary foMO®FLOW-2000 groundwater model.
The interpolated static water levels were also asestarting heads in the model.

A digital version of the Farrand and Bell (1982pdetailing the location of surficial
geology types was obtained from the Michigan GeaigiaData Library
(http://www.mcgi.state.mi.us/mgdl). The area witthie HRGW has some variation in surficial
geology types, but is dominated by glacial outwasth end moraine deposits (Figure 3.3).

Hydraulic conductivity (K) values for each surfitgeology type were optimized using
PEST 10.0 (Doherty 2004) (Figure 3.3). Simulatezligdwater elevations were in reasonable
agreement with observations from the Wellogic daselFigure 3.4). We found that wells with

high residual values were surrounded by other watls groundwater elevations similar to the

: 2 .
modeled values, had low influence on thewhen removed, and therefore were kept in the

welldataset despite being clear outliers. Groundwiddw velocities and travel times were

calculated following Darcy’s Law, as described afadvom the simulated groundwater
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elevations and optimized hydraulic conductivityued, using FLOWDIRECTION and

FLOWLENGTH tools in ArcGIS (Pijanowski et al. 2007)

Creating the legacy map

The legacy map was created by combining simulgtedndwater travel times with
interpreted historical LULC categories for each elazll. Groundwater travel times were
calculated using Darcy’s Law, as described abole.cglculated travel times (Figure 3.5 — step
1) were grouped around available LULC data (Figige— step 2), with 1996 being the most
recent land cover map available in this area. Thkpuint between the LULC time steps was
used to define category thresholds. For exampéeetis an eighteen year gap between the 1996
and 1978 LULC maps, thus we assigned LULC froml®@6 time step to all model cells with a
groundwater travel time of zero (1996) to nine gesarlier (1987). These reclassified travel
times (Figure 3.5 — step 2) were then combined thighLULC maps developed from air photo
analysis for particular years to produce the ledddlyC map (Figure 3.5 — step 3). Therefore,
the legacy map is a spatially explicit represeatatf the LULC, corresponding to groundwater
delivery to each study lake. Finally, we compatezllegacy LULC to the 1996 LULC,

highlighting areas where the two differ (Figure3- Step 4).

Statistical analyses

The relationships between LULC and lake water abynvariables were analyzed using
multiple linear regression, implemented in PROC RBE&S). Each water chemistry variable
was regressed against the proportional cover odistheULC classes within the study lake

groundwater sourcesheds, following the equation:
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Yi = Bo + BurbXurb + Baglag + Popertopen™ BrorXfor + Pwatewater + Pwedwet + &

where)y; is the value of water chemistrys is the constant (y-axis intercepf; is the
regression coefficient forgxxp is the proportional cover of LULE ande; is the error

associated with the model gf ¥he proportion of each LULC type within the sasieds was

determined for the 1996 time step (current LULQJ #re legacy map (GW legacy).
We modified the general regression equation (abimvimcorporate wetland and riparian

processes. Wetland processes were representeglaging the single regression parameter

describing wetlands«e) with two terms for wetlands: 1) proportional acdavetlands that
border drain cellsx¢onwel, and 2) proportional area of wetlands that amuanected to drain

cells &unconwek following the form:

Yi = BotBurb Xurbt BagXagtPopenXoperit Bor Xfort PwaterXwatert Bconwetconwet Bunconwet

Xunconwet €i

Connected and unconnected wetlands were summavig@d two spatial extents: 1) proportion
within the groundwater sourceshed that representepsing by wetland area, and 2) proportion
within a 30m river buffer that represents procegsilong the wetland length.

Riparian processes were incorporated by addingnpeters to the general regression
equation for the proportional cover of each ofshelL ULC classes as represented in 1996
within a 50m river buffer. Therefore, the regreasaguations modeling overland flow has six

LULC types measured over two extents, equalingugvedgression parameters, as follows:

Yi = fo + LEGACYPurpXurb + ... + Bwedwel + RIPARIAN[ByrpXurb + ...+ fwedwel + &
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We used Akaike Information Criteria (AIC), AIC vgits (o) and the coefficient of

determination (&) (following Burnham and Anderson 2002) to compthieeparsimony and

explanatory power of each model. Specifically, toerstand if groundwater pathways are the
dominant mechanism for legacy effects, we compegsedlts from: 1) current LULC models, 2)
GW legacy models, and 3) a correlative estimatidiegacy land cover (as described fully in
Chapter 2). Briefly, the correlative legacy modede regression to relate LULC, as represented
through principal components analysis, to watenubgy variables. These models were built
sequentially, starting with the most recent LUL@rtfadding the next most recent LULC and so
on until each of the five time steps of LULC weneluded in the model. For the current study,
we limited our comparison to only the correlativedals with highest support as demonstrated
by AIC weights.

The correlative legacy models represented legHegte through a correlational “black
box”, in that no specific mechanisms were specifieccomparison, GW legacy models
specified groundwater pathways as the dominant amesin for legacy effects. The current
LULC models represented the traditional approaakinig LULC to ecosystem responses and
hypothesizes that historical LULC has no consegeiémcour study lakes. Comparisons were
also made with models measuring wetland and ripgmiacesses. Hypotheses inherent to the
models were: wetland presence throughout the dakeewatershed was important to lake water
chemistry (wetland extent tested); the entire afegarian wetlands was important to lake
water chemistry (wetland area tested); only tha afeiparian wetland in immediate contact
with the river was important to lake water chenyigwetland length tested); the LULC within
only the riparian zone was important to lake wateemistry (riparian LULC only tested); there

is an additive effect of riparian LULC to the watleed LULC (legacy + riparian tested) .
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RESULTS
Groundwater travel time

Modeled groundwater travel times in the HRGW rahfyem <1 yr to >400 years,
encompassing each of the six time classes of &ailaJLC data (Figure 3.6). Just over half of
the HRGW has a groundwater travel time betweery@a9s, following the surface drainage
network in the watershed. The longest travel tioasirred in the central and northeastern
portions of the HRGW. In general, the groundwatavel times in the study lake groundwater
sourcesheds match those of the larger HRGW, b treore area within the 0-9 yr travel time

category than the overall watershed (Figure 3.6).

Characterizing LULC

Urban and agriculture land cover dominated the MRIG 1996, with open and forested
land cover types comprising most of the remaineggFigure 3.7A). The legacy LULC map
shows agriculture as the dominant land cover, Wl by urban, forest and open cover types
(Figure 3.7B). The largest differences betweernwteLULC maps were in human dominated
cover types, as agriculture increased by approxin&o and urban decreased by
approximately 4% of the model area, when legacy Ci\as used.

The 1996 LULC within the studied groundwater sesheds also show an urban
dominance (Figure 3.7A), however forest was thesgenost common LULC type in the
groundwater sourcesheds, and there was 12% lasslage cover than in the HRGW as a

whole. Legacy LULC within the studied groundwateurcesheds had almost equal
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representation of forest, urban, and open LULCgyped agriculture was still underrepresented
relative to the HRGW (Figure 3.7).

Overall differences in LULC composition betweer®@%nd the legacy map within the
HRGW and the groundwater sourcesheds were relatsvedll (Figure 3.8), with only 10.5% of
the area of the HRGW where legacy LULC differedvfrourrent LULC. This is mainly due to
the high hydraulic conductivities of the sedimentaypled to the relatively small size of the

watershed. Differences in the studied sourcestveds even less, at 8.5%.

Relationships with lake water chemistry

Current LULC and GW legacy models had similarlarptory power (Figure 3.9).

. . 2 : .
Across all water chemistry variables, the\Rlues from these models differed by a maximum of

4% (TN, NHy, and SQ) but were within 1.4% of each other on averag@edneral, models

showed a pattern of high correlation with lowereteaty soluble ions, such as ClI, K, Mg, and
Na, and decreasing correlation for more biologycedactive chemicals such as nitrogen and
phosphorus

Correlative legacy models received most supporhfAIC weights for 9 out of 12 of the
water chemistry variables (Figure 3.9). Correlatagacy models for TP, N§)and Si explained
8-11% more variation than current LULC or GW legaaydels. However, there were larger
differences between the models for all other weltemistry variables. The correlative legacy

model explained on average 21% more variation tharGW legacy or current LULC models

for all other water chemistry variables, rangingeen 19% and 28% more for TN and K,

respectively. Models using current LULC or legadyllC received more AIC support for NH
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Ca, and S@ and explained 11%, 21%, and 7% more variatispeetively, than the correlative

legacy models. Overall, these results provide exddehat adding a mechanistic representation
of land cover through delayed groundwater deliweag not sufficient to capture legacy effects
for most water chemistry variables in our studyekk

Adding different measures of wetlands (all wetlandtland area, and wetland length) to

the GW legacy model changed the explanatory poWverost models very little, changinng

less than 3% in most cases (Figure 3.10). Howdverexplanatory power increased by 14% and
11% for TP and SRP, respectively, when wetland eotions were specified in the regression.
Interestingly, the method for representing wetlpratessing differed between TP and SRP;
adding the length of connected wetland performettbéor the TP model, whereas the area of
connected wetland performed better for SRP. Overatl comparison of different ways to
represent wetlands shows that there was littledifice for most water chemistry variables.
However, forms of phosphorus did show a strondatiomship to LULC when wetland
connections were included in the regression.

Because wetland length provided similar or sligbgtter model fits for most water
chemistry variables, we only show results for G\galey models using this term in our analyses
of riparian zones. However, wetland area was usdéide GW legacy models for SRP.

In comparison to adding wetland processing to@k¢ legacy model, adding factors

representing riparian processes increasedaRies for every water chemistry variable (Figure

3.11). Models combining GW legacy with riparian ggeses improvedZR/aIues by 15% on

average and up to 26% (Si) and 43% (SRP) from nsaafebW legacy alone. Many of these

models received more AIC support than correlatagaty models (6 out of 12), with the largest
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increase in &for SRP (46% over correlative legacy). Howevemsamutrients (TP, TN, and

NOj3) and conservative ions (K and Mg) were still bettescribed by correlative legacy models

than GW legacy combined with riparian processes.

Models including riparian LULC alone have littlepport from AIC weights and hadZR

values similar to or lower than GW legacy for master chemistry variables. Only SRP and Si
show more explanatory power with riparian only medersus GW legacy models. Differences

between GW legacy and riparian only models weratgrgor conservative ions than nutrients.

DISCUSSION

Legacy effects have been shown to be importatarmestrial (Foster et al. 1998, Foster et
al. 2003, Chauvat et al. 2007), stream (Hardirg.et998, McTammany et al. 2007), and lake
(Martin et al. Chapter 2) ecosystems. These studies all used a correlational approach,
relying solely on statistical relations to detesgdcy effects. This studgyoves beyond a simple
correlational approach by combining temporal aratiapchanges in LULC with a mechanistic
model of groundwater flow paths to create a proag@®smed representation of legacy LULC.
We show how this legacy map can be used to comheciges in LULC to important ecosystem
characteristics, such as water chemistry in laWésalso incorporate other mechanisms known
to be important, such as wetland and riparian m®e® for a more complete analysis of the
relationships between LULCs and lake ecosystemrdigsa This mechanistic approach is
generalizable across ecosystem types and wilMikelrease the accuracy and predictability of
other models linking LULC with ecosystem responses.

This study shows how delays in groundwater tréwet can be successfully coupled

with changes in LULC as a mechanism for land ugadees. Unfortunately, our study area was
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not the ideal location for groundwater legacieplety a major role. Rapid changes in LULC
occurred in the HRW between 1938 and 1968 (Mattal.e€Ch2), a time period represented by
only 17% of the groundwater sourceshed. LULC largé&hbilized during the time represented
by the majority of the groundwater, showing onlyadirdeclines in agriculture (2%) and
increases in urban (5%) area. Therefore, it issagirising that our results show little difference
in explanatory power between legacy LULC and curtéh_C. Legacy effects through
groundwater delivery would be more apparent inréaga where groundwater travel times are
long enough to “reach back further in time”, ora2¢as where LULC is currently undergoing

rapid conversions within areas of shorter delivenes.

Wetland processing

Wetlands are a particularly important land coygetin biogeochemical cycles, greatly
altering the chemistry of water from input to outgidoward-Williams 1985). However, there is
no consensus about the most appropriate methadgoesenting the impact of wetland
processing within the landscape. Most studies hae@&sured wetland extent as the proportional
cover within an area, usually a watershed. Whigkaal. (1988) offer an early meta-analysis
showing the variable nature of nitrogen and phoamhcemoval along a gradient of increasing
wetland extent. Since then, other methods for nreggswetlands have been used, such as
proportional cover within a specified distancelod target ecosystem (Johnston et al. 1990,
Weller et al. 1996, King et al. 2005). We add tis tiesearch by offering a comparison of three
measures of wetland influence: watershed extea af river connected wetland, and length of

river connected wetland.
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Our results agree with previous studies that sa@vonger relationship between
phosphorus and riparian wetlands in comparisonetitewds located further from receiving
bodies (Johnston et al. 1990, Weller et al. 1996)thermore, our analyses provide evidence
that wetland area and wetland length are importadifferent ways for nutrient cycling. Models
including the area of connected wetland had highptanatory power for dissolved phosphorus
(SRP) whereas models including the length of coteukeeaetland had higher explanatory power
for total phosphorus (TP, Figure 3.10). Given thiasolved forms move more freely through
groundwater pathways, it makes sense that theeeart®a of a connected wetland will influence
SRP. On the other hand, overland flow has beendfémive the primary transport mechanism for
particulate forms, such as TP (Banner et al. 2B@¥man et al. 2009b). Therefore, the length of
riparian wetlands may act as a barrier reducingland transport. This agrees with previous
studies which show that overland flow is reduceasaderably by wetlands (Weller et al. 1996)
and that the spatial arrangement of riparian zquaasicularly gaps between patches that
function to reduce flow, is important for materflaix (Weller et al. 1998).

In contrast to phosphorus, our analyses of nimafew that all three measures of
wetland presence had similar model explanatory po@®undwater pathways allow for the
transport of dissolved substances over long disgr8ecause nitrogen is transported in
dissolved forms primarily through subsurface patysv@eterjohn & Correll 1984, Walsh and
Kunapo 2009), wetland proximity may be less imparfar nitrogen concentrations in lakes.
Previous studies report that nitrogen removal itlamels varies with hydrologic flushing,
showing low removal in periods of high flow (Johorset al. 1990, Jordan et al. 2003). Because
our samples were taken in the spring, it is posdiit frequent rain events flushed nitrogen

through the system (Inamdar et al. 2009).
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In addition to nutrients, which are commonly irdia in analyses of wetland processing,
we compare the ability of wetland measures to exgatterns in a variety of other water
chemistry variables. Our results show no appreeidifference in predictive capacity for models
of reactive and conservative ions when wetlandsreeasured by extent, connected area or
connected length. These results are in agreemémthase from Johnston et al. (1990), who
found that specific conductance, a surrogate fesalved ions, was related to measures of both

wetland extent and proximity.

Riparian zones

Riparian zone dynamics are another mechanismteigethe relationship between LULC
and ecosystem responses. Riparian LULC has beevmndlodoe important for both surface and
subsurface transport of materials to streams dwms|@Peterjohn and Correll 1984, Gregory et al.
1991, Groffman et al. 2002, Groffman et al. 200d% show that some lake water chemistry
variables were predicted as well from either catehinscale LULC or riparian LULC, and in
some cases, riparian LULC had higher explanatowepdhan catchment LULC. Specifically,
the riparian only model of SRP showed greater exgitay power over the GW legacy model.
Because SRP shows a stronger relationship witrangthrea than wetland length, we believe
that this is more an indication of wetland effemtsSRP than riparian effects in general. On the
other hand, the riparian only model of Si showgparran signal not present in the GW legacy
models investigating wetlands. Recent work showsltiological processing of Si by plants is
an important source of Si to freshwater systemsr{Det al. 2005, Struyf et al. 2009).Therefore,
it is possible that the relationship between rgallULC and Si we observe is due to

biogeochemical cycling by riparian vegetation ($tret al. 2009).
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Riparian zones are recognized primarily for redgaionpoint source pollution (Gregory
et al. 1991, Groffman et al. 2002, Craig et al.&0®esults from our comparison of individual
mechanisms (GW legacy, wetland processing, andaip&dULC) with models combining these
mechanisms provides further evidence that ripaz@ares are important to relate LULC to
aquatic ecosystem characteristics. We show thabwiechanisms are combined to offer a more
holistic view, the explanatory power of the modatseased.

Our study also provides a comparison across veamistry variables not often included
in studies relating LULC to aquatic ecosystem dyieanin fact, we only found two other
studies reporting results linking conservative immtgandscape features (Ryszkowski et al. 1999,
Wayland et al. 2002). In a study of biogeochemizatiers within agriculture fields, termed
shelterbelts, Ryszkowski et al. (1999) show thitytof using Ca and Mg as conservative
tracers for comparison with concentrations of muts under trees that have been planted as
windbreaks. Our results relating conservative tonsatchment and riparian LULC show that
diffuse transport of these chemicals through grexatdr pathways overwhelms a weaker
relationship found with riparian zones. Future sga@f landscape connections to aquatic
ecosystems can benefit from the use of naturaltyiwimg conservative ions as tracers.

To date, there have been numerous methods propmsezbrporate riparian zones, that
mainly focus on defining the most appropriate spaxtent of measurement (Baker et al. 2006,
van Sickle and Johnson 2008). In contrast, our esiplwas to model the impact of the riparian
zone (however it is defined) jointly with groundwatind wetland influences. Our results

support the early sentiment of Gregory et al. (39%10 say:
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“The importance of riparian zones far exceeds timemor proportion of the land
base because of their prominent location withinldinelscape and the intricate
linkages between terrestrial and aquatic ecosystems
We built our models hierarchically by adding rigariprocesses to the model of GW legacies in

an attempt to mathematically express the importatof riparian zones.

Conclusions

This study investigated the roles of groundwatghways, wetland processing and
riparian zone dynamics for relationships with lakater chemistry. We offer insights about how
groundwater interacts with land transformationreate legacy effects. We combine
groundwater flow dynamics with other mechanismswméo influence relationships between
LULC and lake water chemistry, namely wetland apdrran zone processing, to offer a more
complete model of land-water interfaces. Our ressiiow that incorporating all of these
mechanisms is important for modeling lake watemnabk#&y and that looking at them
individually can lead to misinterpretations (e$RP with riparian versus wetland) and lower
predictive power overall. Through the use of ndty@ccurring conservative tracers, we provide
a basis for comparison against nutrient relatigrsto the landscape. By categorizing the
chemistry variables by their key characteristicsatibility and reactivity, we are better
equipped to explore other mechanisms that are itapiofor the physical transport and

biogeochemical transformations of these chemicals.

107



Table 3.1. Size and water chemistry characterisfissudy lakes, including minimum,
maximum, mean, and coefficient of variation. Phasph species include total phosphorus (TP),
and soluble reactive phosphorus (SRP). Nitrogenigepénclude total nitrogen (TN), nitrate

(NO3), and ammonia (NJ). Reactive ions include calcium (Ca), silica (and sulfate (Sg).
Conservative ions include chloride (Cl), potassii)) magnesium (Mg), and sodium (Na).

Lake characteristic Minimum  Maximum Mean Ccv
Lake area (km?) 0.06 2.60 0.65 0.93
Phosphorus
TP (ug/L) 5.4 45.0 24.1 0.37
SRP (ug/L) 0.33 3.45 1.15 0.56
Nitrogen
TN (mg/L) 0.53 1.85 0.94 0.30
NO3 (mg/L) 0.00 1.03 0.20 1.20
NH4 (ng/L) 3 143 36 0.96
Reactive lons
Ca (mg/L) 16 92 52 0.38
Si (mg/L) 0.00 5.61 1.53 0.88
SO4 (mg/L) 1.9 88.4 26.1 0.83
Conservative lons
ClI (mg/L) 2 242 66 0.90
K (mg/L) 0.58 7.53 2.09 0.57
Mg (mg/L) 3.9 24.7 154 0.26
Na (mg/L) 0.9 77.3 24.0 0.88
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Figure 3.1. Map showing the Huron River Watershédiwthe state of Michigan, including
detailed hydrography features along with outlir@stiie cities of Ann Arbor and Ypsilanti.
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Figure 3.2. Map showing land use/cover (LULC) fr2@88, 1955, 1968, 1978, and 1996 within
the Huron River Watershed.
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Figure 3.3. Surficial geology zones and optimizgdrhulic conductivity (K, m/d) values used in
the final model. Glacial Outwash = glacial outwasind and gravel and postglacial alluvium. Ice
Contact = ice contact outwash sand and graveleReaf each type within the Huron River
groundwater sourceshed (HRGW) upstream of Ypsijlanti the mean percent for the study lake
groundwater sourcesheds are shown. The HRGW isrged by glacial outwash. The study
lakes had similar geology as the HRGW, in general.

% within Mean % within lake
Surficial geology type K (m/d) HRGW groundwater sourcesheds
Bl Glacial Outwash 7.3 39.9 46.9
[ ] Glacial Till - Fine 8.2 3.2 0.9
[ ] Glacial Till - Coarse 9.4 1.2 1.0
[ ] Ice Contact 9.4 5.8 24.9
] End Moraine 14.6 31.4 15.6
Bl Glacial Till - Medium 14.6 16.8 7.7
Bl Water 500 1.6 2.9
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Figure 3.4. Observed versus predicted water l§m@lsecorded for 15,581 wells used to
estimate values for hydraulic conductivity (K). Tiivee of best fit and coefficient of

determination are shown.
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Figure 3.5. Steps to create a land use legacy 8tap.1: The simulated groundwater travel
times in years were calculated for each model ionatown gradient to a discharge point (e.g.
river) using Darcy’s Law, as detailed in Methodte2: Groundwater travel time year was
reclassified to bracket times with available LUL&al(in this case, 1996, 1978, 1968, 1955,
1938, or Pre-1900). Step 3: LULC type for each el assigned using time categories from
step 2. Step 4: LULC from 1996, showing areas difégr with the legacy LULC with black
cross-hatching.
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Figure 3.6. Groundwater travel times reclassifedepresent the 5 time steps of land cover data.
Time classes span from midpoint to midpoint aroarspecified year. Percent of each
groundwater travel time category within the HurameR groundwater sourceshed (HRGW), and
the mean percent for the study lake groundwatercesheds are shown. The HRGW is
dominated by groundwater needing less than 10 yedravel from it's source to a surface water
delivery pathway. The study lakes had similar gdwater travel times as the HRGW, in
general.

Groundwater Assigned % within Mean % within lake
travel time to time step HRGW groundwater sourcesheds

B 09 years 1996 53.1 62.1

[ 9-23 years 1978 225 19.1

[ ] 23-34vyears 1968 8.8 6.9

[ 34-41 years 1955 3.6 2.9

[ ] 41-96 years 1938 9.6 7.1

- >06 years Pre-1900 2.4 1.8
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Figure 3.7. Land use/cover within the model areangiig A) 1996 and B) legacy land use/cover.
Percent of each LULC type within the Huron Riveowyrdwater sourceshed (HRGW), and the
mean percent for the study lake groundwater sohedssare shown. Maximums are shown in
bold. The HRGW is dominated by urban LULC type @9&, but agriculture dominates in the
legacy map. The study lakes had similar LULC regméstion as the HRGW, in general.

A) 1996 land use/cover

B) Legacy land use/cover

1996

Mean % within

Legacy

Mean % within

% within lake groundwater % within lake groundwater
HRGW sourcesheds HRGW sourcesheds

Bl urban 27.0 22.2 22.8 18.9

[ ] Agriculture 25.4 13.7 29.7 16.3

|:| Open 17.2 18.6 16.3 18.5

B Forest 17.9 20.9 19.1 22.2

B water 5.1 14.4 5.1 13.9

[ ] wetland 7.4 10.3 7.0 10.1
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Figure 3.8. Areas within the Huron River groundwateurceshed (HRGW) with differences
between 1996 LULC and legacy LULC. The model boupdaindicated with the bold black
line. Study lake groundwater sourcesheds are itetioaith dark grey lines and light grey
shading. Red areas indicate where legacy land abffers from 1996 land cover (10.5% of the
area within the HRGW, 8.4% of the area within thelg lake groundwater sourcesheds).
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Figure 3.9. Coefficients of determinationZQRrom regression models of total phosphorus (TP),
soluble reactive phosphorus (SRP), total nitrogem)( nitrate (NG), ammonia (NH), silica

(Si), calcium (Ca), sulfate (S chloride (Cl), potassium (K), magnesium (Mg)daodium
(Na) using correlative legacy models from Chaptdrl2.C characterized by the current time
step (current LULC), and LULC characterized by lggacy map. Asterisks indicate model
chosen by AIC weights.
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Figure 3.10. Coefficients of determinationZ]iFRrom regression models of total phosphorus
(TP), soluble reactive phosphorus (SRP), totabgén (TN), nitrate (Ng), ammonia (NH),

silica (Si), calcium (Ca), sulfate () chloride (Cl), potassium (K), magnesium (Mg)dan
sodium (Na) using LULC characterized by the GW tggaodels measuring wetlands in three
ways: all wetlands in the watershed (GW legacygaaf wetland connected to rivers, and
length of wetland connected to rivers. Wetland ameludes the entire area of the wetland
polygons which connect to rivers. Wetland lengfifieds from wetland area by only accounting
for the area of the connected wetland polygonsiwelb0m buffer of rivers.
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Figure 3.11. Coefficients of determinationZ][FRrom regression models of total phosphorus
(TP), soluble reactive phosphorus (SRP), totabgén (TN), nitrate (Ng), ammonia (NH),

silica (Si), calcium (Ca), sulfate (G chloride (Cl), potassium (K), magnesium (Mg)dan
sodium (Na) using correlative legacy models frorapthr 2, LULC characterized by the legacy
map, LULC within the 50m riparian zone buffer ordynd legacy LULC combined with LULC
from the 50m riparian zone buffer. Asterisks inticanodel chosen by AIC weights. The
asterisk for nitrate indicates the correlative tggaodel.
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