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ABSTRACT 

LAND-USE LEGACY EFFECT: COMBINING SPATIAL AND TEMPORAL DRIVERS IN 
STATISTICAL AND MECHANISTIC MODELS OF LAKE WATER CHEMISTRY 

 
By 

 
Sherry L. Martin 

 
Lake Classification: A classification system is often used to reduce the number of different 

ecosystem types that governmental agencies are charged with monitoring and managing. We 

compare the ability of several different hydrogeomorphic (HGM) classifications to group lakes 

for water chemistry/clarity. We ask three questions: (1) Which approach to lake classification 

(regionalization, landscape position, lake-specific, or some combination) is most successful at 

classifying lakes for similar water chemistry/clarity? (2) Which HGM features are most strongly 

related to the lake classes? and, (3) Can a single classification successfully classify lakes for all 

of the water chemistry/clarity variables examined? We use classification and regression tree 

(CART) analysis of HGM features to classify six water chemistry/clarity variables from 151 

minimally disturbed lakes in Michigan USA. We developed two CART models for each water 

chemistry/clarity variable: HGM characteristics alone and HGM characteristics combined with 

regionalizations and landscape position. The combined CART models had the highest strength of 

evidence (ωi range 0.92-1.00) and maximized within class homogeneity (ICC range 36-66%) for 

all water chemistry/clarity variables except water color and chlorophyll a. The most successful 

single classification in our study was on average 20% less successful in classifying other water 

chemistry/clarity variables. Thus, our results show that no single classification maximizes 

success for all lake variables examined. Therefore, we suggest that the most successful 

classification is (1) specific to one response variable, and (2) capable of incorporating 



 

information at multiple spatial scales and from a variety of different sources (regionalization and 

local HGM variables).  

 

Land use legacies: The recognition of legacy effects from historical land use/land cover (LULC) 

is a conceptual advance that has clarified the relationship between LULC and ecosystem 

responses. Legacy effects can be defined as effects which perpetuate beyond an expected or 

perceived endpoint in time. The goal of our research was to investigate LULC legacy effects on 

lake water chemistry. Water chemistry and five time steps of LULC data were collected from 35 

lakes in the Huron River Watershed, Michigan. We took both a correlational and mechanistic 

approach to represent how temporal changes in LULC influence lake water chemistry. We used 

principal components of LULC over time to build hierarchical regression models linking to 

water chemistry. We also created a mechanistic groundwater flow model to estimate spatially-

explicit groundwater travel times. The groundwater travel time was used to create a legacy 

LULC map for subsequent regression modeling. Our correlative models show that some water 

chemistry characteristics show a stronger link to legacy LULC than others and may be explained 

by the solubility and reactivity of the chemical. Our mechanistic models offer insights about how 

groundwater interacts with LULC change to create legacy effects and show how naturally 

occurring conservative tracers can provide a basis for comparison against nutrient relationships 

to the landscape. By categorizing the chemistry variables by their key characteristics of solubility 

and reactivity, we are better equipped to explore other mechanisms that are important for the 

physical transport and biogeochemical transformations of these chemicals. 
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CHAPTER 1: COMPARING HYDROGEOMORPHIC APPROACHES TO LAKE 

CLASSIFICATION: ISSUES OF SPATIAL SCALE AND PRACTICALITY 
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INTRODUCTION 

Ecosystem structure and function are controlled in large part by the hydrology, geology, 

land cover, and climate characteristics of that ecosystem. These natural landscape features have 

been used to identify similarities in temperate (Host et al. 1996) and tropical (Mora and Iverson 

2002) forests, rangelands (Kunst et al. 2005), streams (Frissell et al. 1986) and their riparian 

zones (Vidon and Hill 2004), wetlands (Brinson 1993), lakes (Winter 1977, Riera et al. 2000), 

and coral reefs (Rodgers 2005). Brinson (1993) outlined an approach to wetland classification 

based on hydrologic and geomorphic features such as precipitation, groundwater flow, and 

landscape position. This hydrogeomorphic (HGM) approach was intended to provide a flexible 

classification framework based on knowledge of how HGM factors drive ecosystem structure 

and function. The accumulation of HGM data and the advancement of analytical techniques 

capable of handling complex datasets have extended the capacity of the HGM approach, making 

it possible to include more characteristics in the ecological classification of more ecosystem 

types, beyond wetland classification (Host et al. 1996).  

Researchers have been classifying lakes since the early 1900’s; in fact, lake classification 

was the major focus of the International Congress for Limnology in 1956 (Moss et al. 1994), and 

interest in this topic has continued to the present. Although a wide variety of approaches to 

classification has been adopted, one feature common to many has been to group lakes based on 

the statistical similarity of specified water chemistry variables. Such a classification approach 

has been applied to lake water chemistry data in Canada (Pitblado et al. 1980, Zimmerman et al. 

1983), Northeastern U.S. (Hunsaker et al. 1986, Newton and Driscoll 1990, Young and Stoddard 

1996, Momen and Zehr 1998, and Jenerette et al. 2002) and Sweden (Hakanson 1996, Hakanson 

2005). However, this site-specific approach can group only those lakes for which water 
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chemistry data are available; therefore, it has limited application for other regions or where data 

are lacking.    

To move beyond this limitation, we apply an HGM approach to lake classification which 

groups systems according to relationships between important ecosystem characteristics (e.g., 

lake water chemistry) and HGM features. With technological advancements in remote sensing 

and coordinated data collection strategies, large stores of HGM data are readily available in 

geographic information systems (GIS) for many areas of the world (Johnson and Gage 1997). 

Because an HGM-based classification can be applied to previously unsampled lakes without 

logistically challenging and expensive field collections, its usefulness can be extended to 

encompass many more lakes than can be physically sampled (Brinson 1993, Young and Stoddard 

1996), thereby allowing inferences and predictions to be made for individual lakes across broad 

geographic regions.  

Regional land classifications (e.g., regionalizations) take advantage of the wealth of 

HGM data to group large geographic regions based on the similarity of physiographic, climatic 

and terrestrial features (Omernik 1987, Bailey et al. 1994, Albert 1995). Interestingly, unlike 

these land classifications, few classifications of aquatic systems have taken an HGM approach 

(but see Hakanson 1996, Hershey et al. 1999, Higgins et al. 1998, Wolock et al. 2004). One 

hydrologically driven example of regionalization is the USGS hydrologic units (HUC; Seaber et 

al. 1987). HUCs are delineated using topographical boundaries specific to a surface drainage 

area and have been used as management units by many agencies. More recent examples of 

HGM-based hydrological regionalizations include hydrologic landscape regions (HLR, Winter 

2001, Wolock et al. 2004) and ecological drainage units (EDU, Higgins et al. 2005). The concept 

of hydrologic landscapes provides an aquatic analog to the land-based regionalization 
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approaches, delineating land areas with similar HGM-drivers of surface and ground water 

movement and storage, specifically land-surface form, geologic texture, and climatic setting 

(Winter 2001, Wolock et al. 2004). Alternatively, Higgins et al. (2005) delineated EDUs by 

combining HUC watersheds with similar climate and landscape features. Although these 

regionalizations are conceptually appealing, the few studies testing such regionally-based lake 

classifications report that some critical lake water characteristics, such as productivity, are not 

always similar among lakes within these aquatic and terrestrial regions (Jenerette et al. 2002, 

Cheruvelil et al 2008).   

The concept of lake landscape position describes the local hydrologic landscape of a 

system. Lake landscape position quantifies the hydrologic connectivity and spatial arrangement 

of various aquatic systems to infer similarity in ground and surface water hydrology (Kratz et al. 

1997, Soranno et al. 1999, Riera et al. 2000, Martin and Soranno 2006). Several metrics of 

landscape position have been derived measuring various combinations of local hydrologic 

connectivity to other ecosystems (e.g., streams, lakes, wetlands). Each of these metrics of 

landscape position has shown significant relationships with important lake ecosystem 

characteristics, such as acid neutralizing capacity, dissolved organic carbon and nitrogen to 

phosphorus ratio (Kratz et al. 1997, Martin and Soranno 2006). However, many other measures 

of water clarity and productivity have not shown significant relationships with landscape position 

metrics (Riera et al. 2000, Quinlan et al. 2003, Martin and Soranno 2006).  

Although many of the above ecological classification schemes have demonstrated some 

success in classifying lakes, they do so with little regard to other important HGM features. For 

instance, although some regionalizations successfully group lakes with similar water quality, 

mechanisms that act though local scale variables, such as lake morphometry, are not 
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incorporated into such regionalizations and are likely important for lake classification success 

(Cheruvelil et al. 2008). Indeed, others have emphasized the importance of including both 

regional and local scale variables simultaneously in analyses of stream and lake characteristics 

(Seelbach et al. 1997, Goransson et al. 2004, Stendera and Johnson 2006) and call for an 

approach that combines regional and local features (Pyne et al. 2007, Cheruvelil et al. 2008).   

 A combined approach, however, has inherent technical demands; it must be able to 

incorporate both continuous and categorical data, and account for local scale variation 

concurrently with regional scale phenomena. To date, the majority of statistical techniques that 

have been employed for classification development have used traditional linear models, such as 

principal components analysis and clustering (Emmons et al. 1999, Bryan 2006). Classifications 

created with these linear methods are limited statistically when including categorical variables, 

such as regionalization or landscape position. By including such spatially-explicit categories into 

a larger classification framework, additional variation in water characteristics may be captured 

that local HGM data alone may miss. In addition, although linear approaches have been found to 

accurately represent some ecological relationships, these approaches may not effectively 

represent non-linear relationships and may mask the true character of the data by forcing it to 

conform to a linear arrangement (De’Ath and Fabricius 2000, Robertson et al. 2006, Soranno et 

al. 2008). To date, few classification efforts have taken advantage of advances in statistical 

methods that alleviate these shortcomings (but see Zimmerman et al. 1983, Emmons et al. 1999, 

Olden and Jackson 2002, Robertson et al. 2006).  

The goal of our study is to build an ecological classification for lake water characteristics 

that is built using variation in HGM features over multiple spatial scales. More specifically, we 

incorporate the phenomena captured by regional summaries of HGM features (i.e., 
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regionalizations) with local HGM features that are intrinsic to each lake (e.g., lake 

morphometry). We strive to create a classification approach that: (a) maximizes within class 

homogeneity and between class heterogeneity for lake water characteristics, (b) is developed 

from natural landscape features that are temporally stable on the scale of decades to centuries, (c) 

minimizes the confounding effects of non-natural landscape features (e.g., human disturbances), 

and (d) provides an example of a broadly applicable approach for other ecosystems. We ask three 

questions: (1) Which approach to lake classification is most successful at grouping lakes with 

similar water characteristics (regionalization, landscape position, lake-specific, or some 

combination)? (2) Which HGM features are most strongly related to the lake classes? and (3) 

Can a single lake classification successfully group lakes for all of the water chemistry 

characteristics examined?   

 

METHODS 

Our dataset includes 151 minimally disturbed lakes in Michigan, U.S.A. that are greater 

than 20 hectares in area. We define minimally disturbed lakes as those with no dam or water 

control structure and less than 25% human land use/cover (i.e., agriculture and urban) in the 

cumulative catchment (detailed below). Our study lakes had only an average of 8% human land 

use/cover in the cumulative catchment and were surrounded mostly by forest (mean 80% 

forested land use/cover). We chose to limit our dataset to these lakes in order to reduce the 

confounding effects of human disturbances and maximize our ability to detect relationships with 

HGM characteristics (D’arcy and Carignan 1997, Stoddard et al. 2006). 

We obtained data on lake water characteristics during the time period of 1975 through 

1982 from the U.S. EPA Storet database. The Michigan Department of Environmental Quality 
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sampled the epilimnion of each lake during summer stratification (July, August, and September) 

for a wide range of limnological variables: alkalinity, water color, Secchi disk depth, total 

nitrogen (TN), total phosphorus (TP), and chlorophyll a (Chl a). The study lakes vary widely in 

all variables (Table 1.1). 

 

Hydrogeomorphic characteristics 

We created a digital HGM database for our study lakes from geospatial data including 

bedrock geology, surficial geology, land use/cover, and climate/hydrology. These landscape 

features were summarized for each lake using a 500 m buffer. Bedrock geology data were 

obtained from the Geologic Survey Division of the Michigan Department of Environmental 

Quality. Sedimentary clastic is the dominant bedrock type in Michigan and for many of our study 

lakes, but our dataset also includes lakes dominated by other bedrock types (Table 1.1). Surficial 

geology data were provided by the Michigan Natural Features Inventory and Michigan 

Department of Natural Resources. Outwash and moraine surficial geology types dominate the 

study lakes (Table 1.1). Land use/cover data were obtained from the Michigan Resource 

Information Service (MIRIS 2000) based on aerial photo interpretation of photos taken between 

1978 and 1985. Average annual precipitation for the period 1971-2000 was obtained from the 

Spatial Climate Analysis Service (www.ocs.oregonstate.edu). Average annual runoff for the 

period 1951-1980 and mean base-flow index (BFI) were obtained from USGS 

(http://water.usgs.gov). Base-flow index provides an estimate of groundwater input relative to 

surface water input. Cumulative lake catchments (CUCA) were delineated to include the 

catchment area associated with all lakes and streams draining into the lake using 1:100,000 

resolution stream hydrography data, digital elevation models (30 m resolution) and topographic 
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maps. Using the above data, we also delineated local catchments (LOCA) as the portion of the 

cumulative catchment downstream from any upstream lake greater than 0.2 km2. Wetland land 

cover was summarized using the 500 m buffer as well as a 100 m buffer (to represent a lake’s 

riparian zone), and for the local and cumulative lake catchments.  

Lake area, perimeter, shape, mean depth, and maximum depth were gathered from 

bathymetric maps. Mean depth was calculated by taking the average depth of approximately 100 

points evenly spaced across each bathymetric map (Omernik and Kinney 1983). Lake shape was 

calculated as the ratio of shoreline perimeter to the circumference of a circle of the same area 

(Wetzel and Likens 2000). Water residence time (WRT) was estimated as: [(lake area*mean 

depth) ÷ (cumulative catchment area*runoff)]. Area, shape and slope were measured for both 

local and cumulative catchment.  

 

Classification frameworks  

 We included three regionalization frameworks: 1) USGS 8-digit hydrologic units (HUC, 

Seaber et al. 1987), 2) ecological drainage units (EDU, Higgins et al. 2005), and hydrologic 

landscape regions (HLR, Winter 2001). The location of each study lake within each region 

determined the class membership. Our study lakes were located within 19 HUCs, 6 EDUs, and 5 

HLRs (Figure 1.1).  

 We included three metrics of landscape position that can be easily measured from 

existing data using GIS (described in brief here, see Martin and Soranno 2006 for more detailed 

descriptions). Lake hydrology (LH; n=7 categories) is a general measure of lake surface 

hydrologic connections, incorporating both connections to streams and lakes. Lake network 

number (LNN; n=5 categories) measures the degree of surface connectivity to other lakes. Lake 
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network complexity (LNC; n=4 categories) is a measure of the complexity of connections to 

other lakes (e.g., dendritic or linear chain). 

We created two new classifications for each lake water characteristic using: 1) local 

HGM features for each study lake (HGM), and 2) local HGM features combined with 

regionalization and landscape position categories (HGM+). These classifications were created 

using classification and regression tree (CART) analysis. We chose to use CART models 

because they: 1) maximize class homogeneity, 2) do not penalize for including many 

independent variables, 3) handle high-order interactions among variables, and 4) accommodate 

both continuous and categorical data (De’ath and Fabricius 2000). All CART models were built 

using the recursive partitioning algorithm “rpart” in the R software system (R Development Core 

Team, http://www.R-project.org). CART trees were grown using 10-fold cross-validation and 

subsequently pruned using the 1-SE rule (Breiman et al 1984, Venables and Ripley 1999). 

Terminal nodes (i.e., lake classes) were required to have a minimum of five observations (i.e., 

lakes). The proportional reduction in error (PRE) for each split was summed to produce an 

overall PRE for each tree.  

Output detailing splitting decisions from each CART tree was reviewed to assess tree 

stability and correlations among independent variables. Independent variables maximizing class 

homogeneity and PRE were always selected as the primary splitter. The top five independent 

variables for a primary split, measured by class homogeneity, were considered as competitor 

splits. The top five independent variables grouping lakes into classes similar to the primary split, 

measured by percent similarity, were considered as surrogate splits (R Development Core Team, 

http://www.R-project.org). We assessed tree stability using information about competitor and 

surrogate splits, in combination. A split was considered 1) stable if there were no competitor 
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splits within 3% reduction in error from the primary splitter, 2) somewhat stable/unstable if there 

were competitor splits within 3% reduction in error from the primary splitter but these 

competitors were also surrogates, or 3) unstable if there were competitor splits within 3% 

reduction in error from the primary splitter but these competitors were not surrogates. Therefore, 

given small changes in input data 1) stable trees are not likely to change in tree structure or class 

membership, 2) somewhat stable/unstable trees may split on different independent variables yet 

yield similar class membership, and 3) unstable trees would likely yield different tree structure 

and class membership.   

 

Comparing classifications 

 We compared the success of the three regionalization frameworks, the three landscape 

position metrics, and our two CART models for classifying each of the six lake water 

characteristics included in this study. The HGM and HGM+ CART models were parameterized 

for each lake water characteristic independently, and thus, we could determine the success of a 

classification developed from one variable for another. For example, an HGM model and a 

HGM+ model were built specifically for alkalinity. Classification success of these two alkalinity-

specific models was then assessed for of each of the other lake water characteristics (e.g., water 

color, Secchi, TN, TP, and Chl a). However, because individual lakes are assigned to a category 

within the regionalization and landscape position classification systems, without respect to 

individual lake water characteristics, comparison across lake water characteristics was not 

appropriate. 

 Two model selection statistics were used to compare among the candidate classifications 

for each lake water characteristic. First, we took an information-theoretic approach for multi-
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model comparison, using the corrected Akaike information criteria (AICC) for small sample sizes 

(Burnham and Anderson 2002), computed in SAS (version 9.1) using PROC MIXED (SAS 

Institute Inc.). We compared the relative support for each classification using Akaike weights 

(ωi). These weights sum to equal 1 and are interpreted as the probability that a model is the best 

model relative to others included in the analysis (Johnson and Omland 2004). Secondly, we used 

the intra-class correlation coefficient (ICC) to compare the ability of each of the classifications to 

maximize class homogeneity for each dependent variable (Donner and Koval 1980, Cheruvelil et 

al. 2008). We calculated the ICC from the error terms of a one-way ANOVA with random 

effects:  

     Yij = γ00 + rij + u0j      

where, ijY = observation of dependent variable for lake i in lake group j, γ00 = grand mean of the 

dependent variable, ijr = random error term for lake i in lake group j, where )2,0(~ σNijr  and 

2
σ  represents the within-group error in the dependent variable, ju0  = random error term for 

lake group j, where )00,0(~0 τNju and 00τ represents the among-group error in the dependent 

variable.  The ICC is the amount of the total variance that is among groups: 

     ICC = 
∧

τ 00/ (
∧

τ 00 + 
∧

σ
2
)      

A successful classification has a high ICC, meaning that a large amount of the variation is among 

the groups created from the classification, maximizing class homogeneity. All variables used in 

linear techniques (i.e., ANOVA) were transformed to meet normality assumptions. 

 

RESULTS 
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Comparing classifications   

 Classification success, indicated by class homogeneity as represented by the ICC, ranged 

from 0% to 66% across all classification approaches and all lake water characteristics (Table 

1.2). Across lake water characteristics, alkalinity was classified most successfully (ICC mean 

42%, range 14% - 66%), followed by water color (ICC mean 21%, range 4% - 54%). Secchi disk 

depth and measures of lake productivity were classified least successfully (ICC mean <15%) 

with 6 classification failures (ICC = 0%).   

 For each lake water characteristic evaluated, we observed that one model received an 

Akaike weight greater than 0.9, and all other models received very low weights, less than 0.1 

(Table 1.2).  Thus, only one classification was supported by the data for each lake water 

characteristic, with supported models differing among lake water characteristics. No 

regionalization or metric of landscape position alone was supported as a suitable classification of 

our data, as AICC values were substantially higher than most CART models. Among all 

classification approaches and all lake water characteristics, CART models had the highest 

strength of evidence (ωi range 0.92 - 1.00) and were the most successful at maximizing within 

class homogeneity (ICC range 36% - 66%). HGM+ models had more AICC support for a 

majority of lake water characteristics. Only two lake water characteristics (water color and Chl 

a) had a higher weight of evidence for HGM models. The HGM+ model for Chl a did not differ 

from the HGM model and, therefore, was not included in comparisons of model fit (indicated by 

“n/a” in Table 1.2).  

 Class homogeneity (ICC) was not always maximized by the most parsimonious model, as 

indicated by AICC (Table 1.2). According to weight of evidence, the best classification for water 
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color, Secchi, and TP had ICC’s 12%, 4%, and 8%, lower, respectively, than the maximum ICC 

for that lake water characteristic.  

 

Relationships between hydrogeomorphic features and lake classes 

 HGM models divided the study lakes into between 2 and 4 lake classes, capturing 

between 16% and 53% of the variation among lakes (Figure 1.2). Measures of lake morphometry 

were the most frequent classifiers across HGM models (4 of 6 models). Mean depth, in 

particular, was the most important feature driving HGM models of lake productivity, with water 

residence time and maximum depth also included in some models. Various measures of 

catchment morphometry were important in classifying alkalinity and water color. The proportion 

of the local catchment in wetlands was the most important classifier for water color and Chl a. 

Geology and climate variables were present in only one model each (Chl a and alkalinity, 

respectively). 

 HGM+ models divided the study lakes into between 3 and 6 lake classes, capturing 

between 30% and 60% of the variation among lakes (Figure 1.3). All HGM+ models (except Chl 

a) explained more variation than HGM models: alkalinity by 10%, water color by 12%, Secchi 

by 11 %, TN by 29%, and TP by 8%. All HGM+ models (except Chl a) included the 

regionalization framework HUC as an important classifier (Figures 1.2 and 1.3). No landscape 

position metrics were included as important classifiers in any of these models. As with HGM 

models, measures of lake morphometry were frequently important classifiers across HGM+ 

models (4 of 6 models), followed by catchment morphometry and wetlands (2 of 6 models each). 

The proportion of clastic bedrock geology type was present in the HGM+ model for TN. Climate 

was not included as an important splitting variable in any of the HGM+ models. 
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 The tree structure for most lake water characteristics was similar when comparing among 

HGM models and HGM+ models (Figures 1.2 and 1.3). Most notably, the HGM+ model of Chl 

a did not include any regionalizations and was, therefore, identical to the HGM model. HGM and 

HGM+ models for Secchi and TP shared initial structure and classification variables, differing 

only by the addition of HUC as the last classifier. Alternatively, the HGM features driving the 

two CART classifications of water color were from the same broad categories; however, 

different variables represented these categories. More specifically, for HGM models of water 

color, catchment morphometry was represented by both the ratio of cumulative catchment area to 

local catchment area (CUCA:LOCA) and the ratio of cumulative catchment area to lake area 

(CA:LK), whereas in HGM+ models, catchment morphometry was represented by one variable 

(cumulative catchment shape, CUCA shape).   

 Despite these similarities, there were also some striking differences between HGM 

models and HGM+ models. For example, all HGM features included in the HGM model for 

alkalinity were completely replaced by regionalizations in the HGM+ model, with the 1st split 

(HUC) explaining 50% of the variation (Figures 1.2 and 1.3). In another example, the tree 

structure for the HGM+ model for TN is quite different than the HGM model, although lake 

morphometry is still important for classifying TN in both models. Catchment morphometry and 

bedrock geology are additional HGM features included in the HGM+ model of TN, increasing 

the number of classes created from 2 in the HGM model to 6 in the HGM+ model.  

 

Evaluation of CART tree stability   

 Evaluating competitor and surrogate splitting options available in the detailed output 

from CART analyses can give a sense of the stability of a classification model. Some 
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classification splits can be labeled as unstable (multiple competitors with none being surrogates, 

further detail in Methods), thereby indicating a sensitivity of the resulting classification to the 

particular study lakes used to build the classification. For example, HUC is the most important 

classifier in the HGM+ model for TN. However, two other variables explain approximately 3% 

less variation than HUC and do not serve as surrogates (data not shown). Using our methods, this 

split can be labeled “unstable” and highly dependant on the input data. In contrast, we label the 

2nd split in the TN HGM+ model as “somewhat stable” because mean depth explained only 

slightly less variation (approx. 2%) than maximum depth, the primary splitter at this node. In this 

case, however, mean depth acts as a surrogate for maximum depth since the majority (94%) of 

lakes would follow the same splitting path under either scenario. Therefore, this split is likely to 

be less dependent upon the specific dataset used in the analysis and can be considered stable. 

Over all 32 splits created in the CART models, 28% of splits were stable, 31% were somewhat 

stable/unstable, and 41% were unstable.  

 

A single classification for all lake water characteristics   

 Classification success of CART models was compared across lake water characteristics 

to determine the model most successful at classifying lakes for all lake water characteristics. The 

mean ICC across water characteristics for the Secchi-HGM model ranked highest at 38% (Table 

1.3). Class homogeneity varied slightly for most lake water characteristics when classified by the 

Secchi-HGM model in comparison to the variable-specific CART models. Homogeneity 

increased for water color (1%), Secchi (4%), and Chl a (2%), and decreased only a moderate 

amount for TN (6%) and TP (8%). However, the class homogeneity decreased much more for 
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alkalinity (50%). Simple correlations indicate that Secchi is significantly correlated to all lake 

water characteristics, except alkalinity (Table 1.4).  

 Although most lake water characteristics were significantly correlated with one another 

(Table 1.4), classification success varied widely when a single classification was used for all lake 

water characteristics (Table 1.3). For example, alkalinity was significantly correlated with water 

color, TP, and Chl a (Table 1.4). However, neither of the alkalinity CART models successfully 

classified any other lake water characteristic (mean ICC excluding alkalinity: HGM 6%, HGM+ 

5%; Table 1.3). In another example, water color had the highest correlation with all lake water 

characteristics (except TP, Table 1.4), yet water color CART models ranked low for overall 

classification success (HGM rank 8, HGM+ rank 5; Table 1.3). Therefore, correlations among 

lake water characteristics did not predict classification success across lake water characteristics.  

 

DISCUSSION 

 There are three main conclusions that follow from our research questions. First, although 

some lake water characteristics were classified most successfully by local HGM features alone, 

most lake water characteristics were best classified when models included both lake-specific 

information and one or more regionalization. Second, lake and catchment morphometry plays a 

dominant role in structuring the classifications for the lake water characteristics. Third, using a 

single classification severely erodes the classification success for most water characteristics. 

Overall, because it is important for management agencies to balance the logistics and the 

effectiveness of classification, we suggest that the most successful classification system is (1) 

specific to one response variable, and (2) capable of incorporating information at multiple spatial 

scales and from a variety of different sources (regionalization and local HGM variables). We 
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found that CART models effectively modeled the complex interrelationships among our 

explanatory variables and are thus a useful tool for the classification of ecosystems, particularly 

those with multiple data types and/or non-linear relationships 

 

Comparing classifications  

Our results agree with previous studies showing that most lake water characteristics are 

not similar within many areas delineated by regionalizations (Jenerette et al. 2002, Cheruvelil et 

al. 2008). Regionalizations alone had poor classification success for all lake water 

characteristics, except alkalinity, which was classified well by HUCs and EDUs. Moreover, our 

alkalinity HGM model split on some characteristics that are more indicative of regional-scaled 

processes, such as climate. In another study of Michigan lakes, the authors found strong 

relationships between landscape position and alkalinity (Martin and Soranno 2006). However, 

our results show that this relationship is comparatively weak in contrast to larger-scale 

regionalizations. For example, landscape position (specifically, LH), explained 21% less 

variation than HUC in the 1st split of the alkalinity HGM+ model. These results may indicate that 

as the spatial scale of the classifying feature grows (LH<HUC), the explanatory power for 

variation in alkalinity also grows (29% LH, 50% HUC). Therefore, while landscape position 

does account for some variation, alkalinity may be responding to phenomena that act over larger 

spatial scales, such as those captured by regionalizations (Griffith et al. 1987, Cheruvelil et al. 

2008). 

Although models combining regionalizations with HGM features successfully classified 

most lake water characteristics, in some cases, the addition of regionalizations did not change or 

even decreased classification success. For example, the HGM and HGM+ models for Chl a were 
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the same (discussed below). In another example, although adding HUC to the model of water 

color increased the ICC by 8%, this increase in classification success was also accompanied by a 

decrease in model parsimony, as indicated by the Akaike weights. Other lake productivity and 

water clarity variables, however, seemed to indicate a regional phenomenon not captured through 

local HGM characteristics. More specifically, the best classifications for Secchi, TN, and TP all 

included the HUC regionalization in addition to lake morphometry features. These results agree 

with previous findings suggesting that local HGM features, such as lake morphometry, are strong 

drivers of some lake productivity and water clarity variables (e.g., Vollenweider 1968, see Brett 

and Benjamin 2008 for a review). However, our results also show that most of these lake water 

characteristics respond to additional phenomena acting at larger spatial scales that are captured in 

regionalizations. Therefore, our results support the conjecture that a multi-scale classification 

system will be most successful for classifying lake water characteristics (Hakanson 2005, 

Stendera and Johnson 2006, Pyne et al. 2007).  

 

Relationships between hydrogeomorphic features and lake classes 

HGM features important for splitting lake classes in CART models are similar to what we 

would expect based on previous studies on the relationships between lake water characteristics 

and lake morphometry (Fee 1979, Halsey et al. 1997) and catchment morphometry (Wolock et 

al. 1989, Rasmussen et al. 1989, Hakanson 2005). Overall, we found that catchment features 

dominated the classification of alkalinity and water color whereas measures of lake morphometry 

were the most important classifiers of nutrients and Secchi.  

Studies have previously reported that catchment morphometry plays an important role in 

the variation of productivity (D’arcy and Carignan 1997, Hakanson 2005); however, none of our 
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classifications based solely on HGM features included any catchment morphometry features as 

1st tier primary splits for productivity variables. One measure of catchment morphometry 

(CUCA:LOCA) was included as a 3rd tier primary split in the HGM+ model for TN. However, 

this variable explained little variation (6%), and was in competition with wetland presence at two 

spatial scales (data not shown). Moreover, catchment morphometry was not a strong competitor 

to split HGM models for nutrients (TN: no competitor with mean depth, TP: weak competitor 

explaining 15% less variation than mean depth). Inconsistencies among studies may be due in 

part to differences inherent in the underlying ecological relationships of the study regions. For 

example, our study lakes were ten times larger in surface area and spanned a wider range of 

mean depth, maximum depth, and water residence time than the lakes studied by D’arcy and 

Carginan (1997). Our study lakes were also larger and deeper with a longer WRT than the lakes 

studied by Hakanson (2005). Therefore, further study is required to more fully describe the 

relationship between catchment morphometry and lake productivity.  

Wetland cover may be important for the dynamics of many lake water characteristics 

such as water clarity and productivity. In fact, previous studies report that wetlands act as a 

source of colored compounds (Detenbeck et al. 1993, Halsey et al. 1997, Prepas et al. 2001). Our 

results show a positive relationship between wetlands and water color (Pearson r range 0.28 to 

0.43 over all spatial scales, all p-values <0.01), supporting these studies. Moreover, wetlands 

were the strongest classifier of water color in our study lakes, explaining more than WRT and 

groundwater input. These results suggest that water color in these minimally disturbed lakes may 

be more affected by source wetlands rather than by internal processing or by groundwater 

delivery, which contrasts with other studies (Rasmussen et al. 1989, Hakanson 2005, Webster et 

al. 2008).  
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Surprisingly, we also found wetland land cover to be the strongest classifier of Chl a, 

showing a positive correlation (r = 0.34, p-value <0.0001). This relationship may be the result of 

an indirect link between wetlands and lake nutrients. Previous studies have shown that different 

wetland types (e.g., bog, fen) can play different roles in nutrient dynamics, with some serving as 

a source and others as a sink of phosphorus (Detenbeck et al. 1993, Halsey et al. 1997, Prepas et 

al. 2001). Our results may indicate that our study lakes are responding to the confounding roles 

that wetlands can play in lake productivity, by both facilitating productivity through nutrient 

production and by creating colored compounds that limit productivity through shading. 

However, finer-resolution data measuring the presence of different wetland types would be 

required to fully evaluate the role of wetlands in these lake dynamics. 

It is also interesting to note that the water color and Chl a lake classes were split on a 

very small amount of wetlands (local catchment wetlands at 4% and 3%, respectively). One 

study reports that a much greater presence of wetlands in a catchment (approx. >50%) is needed 

before detecting significant relationships with water chemistry characteristics (Prepas et al. 

2001). However, other studies report much lower thresholds (6-25%) beyond which wetland 

presence becomes important (Dillon et al. 1991, D’arcy and Carignan 1997, Canham et al. 2004).  

We also compared wetland cover measured over four spatial scales (cumulative 

catchment, local catchment, 500m buffer, and 100m buffer) and found that the proportion of 

wetlands in the local lake catchment was the only scale represented in any of the final CART 

classifications (water color and Chl a). However, analysis tree stability shows that other spatial 

scales act as competitor and/or surrogate splits for all lake water characteristics (except 

alkalinity).  In some cases, there were only small losses in explanatory power when choosing 

other spatial scales. For example, cumulative catchment wetland cover explained 2% and 0.5% 
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less than local catchment wetland cover in the HGM models for water color and Chl a, 

respectively. Moreover, cumulative catchment wetland cover had 96% and 98% classification 

similarity with local catchment wetland cover. Although our results show that wetland presence 

at the local catchment scale is the strongest classifier for our study lakes, our results support 

other studies finding little difference in explanatory power between wetland cover measured at 

different spatial scales (Gergel et al. 1999, Strayer et al. 2003, Canham et al. 2004). Therefore, 

additional investigations are needed to more fully understand the scale and magnitude of wetland 

presence important for lake ecosystem dynamics. 

 

A single classification for all lake water characteristics   

The ultimate lake classification would successfully classify lakes for all water 

characteristics. Our results show that such a classification likely does not exist as this approach 

severely erodes the success of lake classification for most water characteristics. We found that 

the most successful single classification (Secchi HGM CART) for the lake water characteristics 

that we analyzed was on average 20% less successful in classifying other water characteristics 

and as much as 50% less successful in classifying alkalinity. However, when compared to 

regionalizations, the Secchi HGM CART was on average 16% more successful in classifying 

characteristics and 29% better when alkalinity was not included in the analysis. Thus, our results 

demonstrate that no single classification scheme maximizes success for all lake water 

characteristics because each classification depends on a different suite of local and regional 

HGM variables. However, comparisons such as ours should help guide the application of 

different approaches to lake classification and allow for management agencies to make choices 

between logistical practicality and ecological robustness. 
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Applications to ecosystem management 

Our use of detailed CART ouput allows for the evaluation of tree stability and splitting 

decisions. Alternative splitting decisions can be compared to allow for an assessment of 

practicality to enter into the classification process. For example, our results show that 

susceptibility of lakes to acidification may be adequately captured at larger spatial scales, as 

lakes within regions had similar alkalinity. On the other hand, management of nitrogen inputs to 

lakes should benefit from a more complex classification combining regionalizations and local 

HGM features. This increase in classification success, however, comes at the cost of increasing 

the number of lake classes. Management agencies can use this information to evaluate the trade-

offs involved in choosing different models.  

Most importantly, our approach to lake classification combines the strengths of a 

regionalization approach and a local HGM approach with analytical advances in multivariate 

statistics. Our approach can fulfill the needs of management agencies for an ecologically-based 

classification system which will allow for robust trend detection through time by reducing 

variation in natural HGM features within each class. Therefore, any resulting trend may be 

attributed to other factors such as changes in land use/cover or resource use (e.g., public access). 

The classification of other ecosystem types should also benefit from taking a multi-scale HGM 

approach by building upon foundational relationships between ecosystem function and 

hydrogeomorphic setting which can be measured over different spatial scales.  
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Table 1.1.  Summary of lake water chemistry/clarity and hydrogeomorphic characteristics for 
151 minimally disturbed lakes in Michigan USA. Variables are arranged into broad categories. 
Abbreviations are listed in parentheses. PCU, platinum cobalt units. CA:LK, catchment area to 
lake area ratio. CUCA:LOCA, cumulative catchment area to local catchment area ratio.  
       

    units Min.  Max.  Mean SD 
Water chemistry/clarity      
 Alkalinity mg/L 1 206 72 55 
 Water color PCU 1 99 14 16 
 Secchi m 0.8 7.9 3.4 1.3 
 Total nitrogen (TN) µg/L 88 1044 461 192 
 Total phosphorus (TP) µg/L 1.0 32.0 11.7 6.0 
 Chlorophyll a (Chl a) µg/L 0.2 29.0 4.3 4.4 
Bedrock geology      
 Carbonate (B-Carb) % 0.0 100.0 12.5 32.3 
 Clastic (B-Clast) % 0.0 100.0 48.3 48.4 
 Hardrock (B-Hard) % 0.0 100.0 20.5 38.5 
 Iron (B-Iron) % 0.0 100.0 18.7 37.1 
Surficial geology      
 Bedrock (S-Bed) % 0.0 100.0 3.2 16.9 
 Dune (S-Dune) % 0.0 37.5 0.9 4.9 
 Glacial till (S-Till) % 0.0 100.0 17.6 32.8 
 Lacustrine (S-Lacu) % 0.0 100.0 9.8 27.4 
 Moraine (S-Mora) % 0.0 100.0 27.7 41.2 
 Outwash (S-Outw) % 0.0 100.0 36.0 42.5 
 Peat and muck (S-PeMu) % 0.0 36.4 0.6 3.9 
Lake morphometry      

 Lake Area  (LK) km2 0.20 70.38 2.84 9.34 
 Shape unitless 1.1 6.3 1.9 0.7 
 Mean depth m 1.2 21.8 4.9 3.3 
 Maximum depth (Max. Depth) m 3.0 58.5 14.4 9.2 
 Water residence time (WRT) year 1.2* 31.6 2.5 4.2 
Local catchment morphometry (LOCA)      

 Area  km2 0.2 1759.3 52.0 182.0 
 Shape unitless 1.1 3.0 1.7 0.3 
 Slope % 0.6 4.9 2.4 1.0 
Cumulative catchment morphometry (CUCA)     

 Area km2 0.2 1948.3 86.0 276.7 
 Shape unitless 0.0 2.6 0.6 0.4 
 Slope % 0.6 5.7 2.8 1.1 
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 CUCA:LK ratio 0.9 2655.1 63.5 247.1 
 CUCA:LOCA ratio 1.0 14.4 1.6 2.2 
Climate/hydrology      
 Precipitation cm/year 72.7 90.8 81.7 4.1 
 Runoff cm/year 20.3 50.8 35.8 5.5 
  Baseflow index (BFI) % 55 89 71 9 
Wetlands      
 CUCA % 0 25 5 5 
 LOCA % 0 23 4 4 
 500m buffer % 0 40 7 7 
 100m buffer % 0 53 8 11 

 

Table 1.1 (cont’).  
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Table 1.2. Summary of model selection statistics for candidate classifications per lake water 
characteristic. Classification type is indicated as regionalization, landscape position, or CART. 
Individual classification names are indicated within each classification type. Intra-class 
correlation coefficients (ICC) are presented as percent of total variance that is among the classes. 
A high ICC indicates high within class homogeneity and thus, high classification success. The 
number of classes per classification model (K) is presented. ∆AICC is the difference between the 
AICC for each model and the minimum AICC for each lake water characteristic. The ∆AICC will 
equal 0 for the best model per lake water characteristic. The Akaike weights (ωi) sum to 1 for 
each lake water characteristic and is interpreted as the likelihood that a given model is the best 
model relative to others included in the analysis. n/a, not applicable. 
 

        
Lake water 
characteristic Type Name ICC K AICC ∆AICC ωi 
Alkalinity Regionalization HUC 63 19 1545 30 0.00 
  EDU 50 6 1586 71 0.00 
  HLR 14 5 1626 111 0.00 
 Landscape Pos. LH 34 7 1598 83 0.00 
  LNN 32 5 1609 94 0.00 
  LNC 22 4 1617 102 0.00 
 CART HGM  56 4 1542 27 0.00 
  HGM+ 66 3 1515 0 1.00 
Water color Regionalization HUC 17 19 404 43 0.00 
  EDU 14 6 396 35 0.00 
  HLR 15 5 403 42 0.00 
 Landscape Pos. LH 9 7 402 41 0.00 
  LNN 4 5 409 48 0.00 
  LNC 9 4 401 40 0.00 
 CART HGM 46 4 361 0 0.92 
  HGM+ 54 4 366 5 0.08 
Secchi Regionalization HUC 0 19 522 68 0.00 
  EDU 4 6 523 69 0.00 
  HLR 0 5 524 70 0.00 
 Landscape Pos. LH 5 7 521 67 0.00 
  LNN 2 5 524 70 0.00 
  LNC 10 4 520 66 0.00 
 CART HGM 54 3 474 20 0.00 
  HGM+ 50 5 454 0 1.00 
TN Regionalization HUC 13 19 182 57 0.00 
  EDU 5 6 187 62 0.00 
  HLR 0 5 185 60 0.00 
 Landscape Pos. LH 2 7 187 62 0.00 
  LNN 0 5 185 60 0.00 
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  LNC 1 4 187 62 0.00 
 CART HGM 21 2 172 47 0.00 
  HGM+ 47 6 125 0 1.00 
TP Regionalization HUC 13 19 291 46 0.00 
  EDU 3 6 294 49 0.00 
  HLR 2 5 295 50 0.00 
 Landscape Pos. LH 7 7 291 46 0.00 
  LNN 0 5 293 48 0.00 
  LNC 8 4 291 46 0.00 
 CART HGM 47 2 250 5 0.08 
  HGM+ 39 3 245 0 0.92 
Chlorophyll a Regionalization HUC 13 19 382 27 0.00 
  EDU 9 6 378 23 0.00 
  HLR 7 5 382 27 0.00 
 Landscape Pos. LH 1 7 386 31 0.00 
  LNN 0 5 384 29 0.00 
  LNC 1 4 386 31 0.00 
 CART HGM  36 4 355 0 1.00 
  HGM+ n/a n/a n/a n/a n/a 

Table 1.2 (cont’).  
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 Table 1.3. Summary of the intraclass correlation coefficients (ICCs) for CART models across 
lake water characteristics.  CART models are listed by the original dependant variable and type 
of classification. Mean ICC across lake water characteristics is computed. Rank of mean ICC is 
listed. See Table 2 for acronyms. 
 

         

CART model 
Lake water characteristic 

Mean Rank 
Alkalinity 

Water 
color Secchi TN TP Chl a 

Alkalinity-HGM  56 7 5 12 5 1 14 11 
Alkalinity-HGM+ 66 9 0 5 5 8 16 10 
Water color-HGM  1 46 22 12 12 11 17 8 
Water color-HGM+ 22 54 50 7 9 11 26 5 
Secchi-HGM  16 47 54 41 31 38 38 1 
Secchi-HGM+ 25 39 50 31 29 27 34 2 
TN-HGM  5 14 19 21 26 12 16 9 
TN-HGM+ 22 38 36 47 40 12 33 3 
TP-HGM 13 31 29 24 47 23 28 4 
TP-HGM+ 17 28 23 18 39 24 25 6 
Chl a-HGM  6 31 19 15 20 36 21 7 
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Table 1.4. Pearson product-moment correlation matrix for lake water characteristics. 
*** p<0.001, ** p<0.01, * p<0.05, NS, not significant (p>0.05). 
 

       

Lake water 
characteristic 

Lake water characteristic 

Alkalinity Secchi Water color TN  TP  Chl a 
Alkalinity …      
Secchi 0.10NS …     
Water color -0.22** -0.66*** …    

TN -0.02NS -0.45*** 0.48*** …   
TP -0.17* -0.50*** 0.53*** 0.59*** …  
Chl a -0.21** -0.46*** 0.52*** 0.38*** 0.39*** … 
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Figure 1.1. Map of the upper and lower peninsula of Michigan. Lakes included in the analysis 
are shown as solid dots. Boundaries are shown for each regionalization: A) 8-digit USGS 
hydrologic units (HUC), B) ecological drainage unit (EDU), and C) hydrological landscape 
region (HLR). 
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Figure1.2. Results from the CART analysis of local hydrogeomorphic features (HGM) in 
classifying lake water characteristics: (A) alkalinity, (B) water color, (C) Secchi, (D) TN, (E) TP, 
and (F) Chl a. Each split is labeled with the splitting variable (see Table 1 for abbreviations), and 
proportional reduction in error (PRE). Branches are labeled with splitting value. Terminal nodes 
(rectangles) represent lake classes and are labeled with an alphabetical class, class mean, and 
number of lakes per class (in parentheses). 
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Figure 1.2 (cont’).  
 
E) TP (overall PRE 0.22)    F) Chl a (overall PRE 0.30)   
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Figure 1.3. Results from the CART analysis combining regionalization, landscape position and 
local hydrogeomorphic features (HGM+) in classifying lake water characteristics: (A) alkalinity, 
(B) water color, (C) Secchi, (D) TN, (E) TP, and (F) Chl a. Each split is labeled with the splitting 
variable (see Table 1 for abbreviations), and proportional reduction in error (PRE). Branches are 
labeled with splitting value. Branches split using categorical variables (e.g., HUC, EDU) are 
detailed in appendices. Terminal nodes (rectangles) represent lake classes and are labeled with an 
alphabetical class, class mean, and number of lake per class (in parentheses). 
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Figure 1.3 (cont’).  
 
 
E) TP (overall PRE 0.30)    F) Chl a (overall PRE 0.30)   
 
  

  

 A: 7.7 (50) HUC (0.08)

Mean depth (0.22) 

 B: 11.0 (38)  C: 15.3 (63) 

 > 5.1 m  < 5.1 m

A: 2.8 (74) 

B: 2.6 (22) 

C: 6.0 (46) D:12.0 (9) 

LOCA wetlands (0.11)

Max. depth (0.10)

S-Till (0.09)

> 3.2%< 3.2%

> 15.4 m < 15.4 m

> 41%< 41%

A: 2.8 (74) 

B: 2.6 (22) 

C: 6.0 (46) D:12.0 (9) 

LOCA wetlands (0.11)

Max. depth (0.10)

S-Till (0.09)

> 3.2%< 3.2%

> 15.4 m < 15.4 m

> 41%< 41%



34 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX   



35 
 

 
Appendix 1. Additional figures for Chapter 1 
 
Figure 1.4.  Details of HUC and EDU categorical splits in the alkalinity HGM+ model (refer to 
Figure 3): A) first node splitting further into class A and towards classes B and C, and B) second 
node splitting further to classes B or C. Grey areas indicate HUCs which split to the left. Striped 
areas indicate HUCs which split to the right. 
 

 

 

A. 

B. 
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Figure 1.5. Details of HUC categorical split in the water color HGM+ model (refer to Figure 3). 
Black areas indicate HUCs which were not represented at the node. Grey areas indicate HUCs 
which split to the left into class B. Striped areas indicate HUCs which split to the right towards 
classes C and D.  
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Figure 1.6. Details of HUC categorical splits in the Secchi HGM+ model (refer to Figure 3): A) 
left split from WRT splitting further to classes B and C, and B) right split from WRT splitting 
further to classes D and E. Black areas indicate HUCs which were not represented at the node. 
Grey areas indicate HUCs which split to the left into classes B or D. Striped areas indicate HUCs 
which split to the right into classes C or E. 
 

 
 

 
 
  

A. 

B. 
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Figure 1.7. Details of HUC categorical split in the TN HGM+ model (refer to Figure 3). Grey 
areas indicate HUCs which split to the left towards classes A, D, E, and F. Striped areas indicate 
HUCs which split to the right towards classes B and C. 
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Figure 1.8. Details of HUC categorical split in the TP HGM+ model (refer to Figure 3). Grey 
areas indicate HUCs which split to the left into class B. Striped areas indicate HUCs which split 
to the right into class C. 
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CHAPTER 2: THE LAND-USE LEGACY EFFECT - ADDING TEMPORAL 
CONTEXT TO UNDERSTANDING LAKE WATER CHEMISTRY 
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INTRODUCTION 

 The conversion of land to serve human purposes can alter lake ecosystems. In particular, 

many human activities drive lake eutrophication through direct (e.g. sewage and industrial 

wastes) and indirect (e.g. agricultural run-off) inputs of excess nutrients (Dillon and Kirchner 

1975, Omernik 1976, Holtan et al. 1988). Although many studies have related land use/cover to 

lake and stream characteristics, much variation remains to be explained (Allan 2004, Declerck et 

al. 2006). For example, agriculture is a known source of nitrogen and phosphorus to aquatic 

systems. However, large differences exist in nutrient export to streams among watersheds 

dominated by agriculture (Arbuckle and Downing 2001, Vanni et al 2001, Knoll et al. 2003) as 

well as forest (Findlay et al. 2001, Brett et al. 2005). In contrast, some studies report finding no 

relationship between riverine nutrient concentrations and watersheds with contrasting land cover 

(Pellerin et al. 2004, Burcher and Benfield 2006). Such inconsistencies indicate that the scientific 

understanding of ecosystem response to land use/cover (LULC) is still developing (Allan 2004). 

 The recognition of legacy effects from historical LULC is an important conceptual 

advance that has clarified the relationship between LULC and ecosystem responses in terrestrial 

(Foster et al. 1998, Foster et al. 2003,Chauvat et al. 2007), and aquatic systems (Harding et al. 

1998, McTammany et al. 2007). Legacy effects can be defined as effects which perpetuate 

beyond an expected or perceived endpoint in time. In other words, an ecosystem response to 

LULC disturbance depends on contemporary LULC cover as well as effects from prior LULC 

that are still propogating through the system. Harding et al. (1998) provide a prominent example 

of legacy effects in aquatic systems. They found that historic LULC had a stronger relationship 

with stream macroinvertebrate and fish community diversity than current LULC and called for 

further research investigating land use legacy effects.  
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 The value of adding a temporal component to analyses of LULC impacts has been 

discussed in many studies (Allan 2004, Pellerin et al. 2004, Opperman et al. 2005, Goodman et 

al. 2006, Burcher and Benfield 2006, Davies and Jackson 2006, Foy and Lennox 2006). 

Specifically, Goodman et al. (2006) report no differences in stream macroinvertebrate 

community diversity between forested and clear-cut sites, which they attributed to legacy effects 

from previous agricultural land use. In another example, Foy and Lennox (2006) indicated that a 

land-use legacy effect may be the mechanism driving increasing riverine phosphorus export 

despite temporally stable LULC and reductions in point source phosphorus input. Legacies have 

been suggested to play roles in other small scale (Reed-Anderson et al. 2000, Tomer and 

Burkhart 2003, Schilling and Spooner 2006) as well as global nutrient budgets (Bennett et al. 

2004).  

 Despite the many studies that suggest the importance of legacy effects, few studies have 

been designed explicitly to investigate these temporal effects of LULC changes on aquatic 

systems. Moreover, studies that have addressed legacies have thus far focused on biological 

endpoints, such as measures of community diversity. Because aquatic biological communities 

integrate environmental stresses over their lifetime and respond indirectly to some aspects of 

LULC change, measuring the effects of land use legacies on water chemistry may provide a 

more direct mechanistic link to aquatic ecosystem condition.  

 There are at least three potential mechanisms for land-use legacy effects in lakes: 1) 

import through surface water runoff, 2) delayed import through groundwater pathways, and 3) 

internal recycling from lake sediments. Knowledge of biogeochemical cycles can help 

differentiate among these mechanisms. Differences in biogeochemical activity and therefore 

cycling periods will likely produce different signals in the data for dissolved versus particulate 
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substances and for reactive versus conservative ions. Phosphorus tends to adsorb to soil, being 

delivered primarily as particulate matter though surface run-off (Wetzel 1983). In contrast, 

nitrogen is highly mobile, readily dissolved, and delivered through both surface and groundwater 

pathways (Wetzel 1983). Therefore, differences between nitrogen and phosphorus legacy signals 

may indicate differences between surface and groundwater delivery. Furthermore, because lake 

systems retain a majority of water column nutrients and export a majority of conservative ions 

(Larsen et al. 1981, Kling et al. 2000), comparing the legacy signals of conservative ions to those 

of nutrients can help differentiate between external delivery and internal recycling.  

 The goal of our research was to investigate temporal LULC effects (i.e. legacy effects) on 

lake water chemistry to increase understanding of how changes in LULC over time influence 

lake ecosystem responses, such as eutrophication. We used multiple linear regression, where the 

response variable was one of a suite of water chemistry variables and the predictor variables 

were time-specific LULC represented by principal components. We then compared model fit and 

model predictive ability between models using LULC from a single time, and legacy models, 

which use LULC from multiple time periods. By comparing the legacy signals from a wide range 

of limnological variables, we can better understand the processes that differentiate the legacy 

signal among these chemicals. 

 

METHODS 

Study area 

 This study was conducted within the Huron River Watershed (HRW) in Michigan (Figure 

2.1). This watershed is approximately 2,359 km2 in size and ranges from 390m to 173m in 

elevation. The HRW contains numerous rivers, streams and lakes supporting a diverse 
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assemblage of aquatic species (Hay-Chmielewski et al. 1995). Due to close proximity to major 

metropolitan areas, such as Detroit and Ann Arbor, and the development of interstate highways, 

many people live, work, and enjoy the recreational opportunities the area provides. The 

watershed has undergone extensive LULC change over the past century, shifting from an 

agrarian to suburban society (Hay-Chmielewski et al. 1995, Rutledge and Lepczyk 2002). 

However, numerous natural areas have been maintained in various publicly owned parks. These 

characteristics make the HRW a prime area to investigate legacy effects as the watersheds cover 

a range of LULC trajectories. 

 

Description of data 

 Water samples were collected from 35 lakes in the HRW during 2008 spring mixing. 

Lakes were chosen based on their accessibility, including both private and public lakes, and 

ranged in size from 0.05 to 2.6 km2. All water samples were taken from 1m below the surface at 

the deepest portion of the lake. Samples were analyzed for a range of limnological attributes. 

Cation (calcium, magnesium, potassium, and sodium) and anion (chloride, nitrate, and sulfate) 

concentrations were determined using membrane-suppression ion chromatography (Wetzel and 

Likens 2000). Silica concentrations were determined using the molybdate colorimetric method 

(Wetzel and Likens 2000). Total nitrogen concentrations were determined using the 2nd 

derivative of the absorbance curve at 224 nm following persulfate digestion. Ammonia 

concentrations were determined following the indophenol-blue method. Soluble reactive 

phosphorus (SRP) and total phosphorus (TP) concentrations were determined 

spectrophotometrically following persulfate digestion method.  



52 
 

 Water chemistry variables were organized into a priori groups based largely on 

biological reactivity and solubility (Appendix 1). Phosphorus species were the most highly 

reactive variables in our study (Wetzel 1983). Nitrogen species are also highly reactive, but less 

so than phosphorus due to the relative abundance of nitrogen versus phosphorus (Wetzel 1983). 

We group Ca, Si, and SO4 together under the heading of “reactive variables” due to their role as 

micronutrients in the metabolisms of macrophytes, diatoms, and bacteria, respectively (Wetzel 

1983). Conservative ions (i.e. Cl, K, Na, and Mg) play a much smaller role in biological 

metabolism and therefore are influenced more by external supply than internal conversions 

(Wetzel 1983).  

 Land use/cover data (30m resolution) were available from five time steps (1938, 1955, 

1968, 1978, and 1996), classified into six categories (urban, agriculture, open, forest, water, and 

wetland) based a modified version of the Anderson et al. (1976) LULC classification scheme. All 

data were compiled into a multi-temporal GIS database for analysis (full details in Rutledge 

2001). Briefly, digitized land use/cover data for 1978 were provided by the Michigan 

Department of Natural Resources Michigan Resource Information System (MIRIS) and served 

as a base for digitizing all other time steps. Aerial photos from each of the other time steps were 

scanned (150 dpi) to create digital images. These images were then registered and rectified to the 

1978 data using the placement of county roads. Land use/cover polygons were then digitized. 

This technique increased the consistency of polygon locations. Even though LULC data from 

more recent times were available for the study area, the source images and LULC classification 

techniques made the datasets incomparable to our historical data. The proportion of each land 

use/cover type during each time step was calculated for the surface drainage area (watershed) of 

each study lake.  
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Statistical analyses 

 The relationship between time-specific land use/cover and lake water chemistry was 

analyzed using a combination of principal components analysis and multiple regression. 

Principal components (PC) analysis on the covariance matrix of the six LULC types was used to 

reduce the dimensionality of the data, reduce collinearity among the LULC variables, and 

summarize the LULC composition for lake watersheds for each time step. Land use/land cover 

composition for the watershed of each lake (n = 35) entered the PC analysis separately for each 

time step, totaling 175 observations entering into the PC analysis (35 lakes by 5 time steps). The 

six LULC types were combined via PC analysis to represent each lake watershed for each time 

period, preserving changes in watershed composition through each of the five time steps as well 

as differences among watersheds. This approach to PC analysis of LULC shows differences in 

watershed LULC between lakes and between times, highlighting different LULC trajectories.  

We built regression models to test the effects of land-use legacies for each water 

chemistry variable following a chronological hierarchy of LULC following the general form:  

  yi = β0 + β1,t PC1t + β2,t PC2t + β3,t PC3t + εi 

where, yi is the value of water chemistry variable i, β1,t is the coefficient for PC axis 1 in 

time step t (1996 to 1938), and PC1t is the value of PC axis 1 at timestep t (1996 to 1938). Model 

building continued until all time steps were included in a single regression model (max 15 

independent variables) as shown below:  

Model 1: yi = β0 + β1,1PC11996 + β2,1PC21996 + β3,1PC31996 + εi 
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Model 2: yi  = β0 + β1,1PC11996 + β2,1PC21996 + β3,1PC31996 +  β1,2PC11978 + 

β2,2PC21978 + β3,2PC31978 + εi 

… 

Model 5: yi  = β0 + β1,1PC11996 + β2,1PC21996 + β3,1PC31996 +  β1,2PC11978 + 

β2,2PC21978 + β3,2PC31978 + β1,3PC11968 + β2,3PC21968 + β3,3PC31968 +  

β1,4PC11955 + β2,4PC21955 + β3,4PC31955 + β1,5PC11938 + β2,5PC21938 + 

β3,5PC31938 + εi 

 

By building the regression models in this way, our approach recognizes the contribution from all 

time periods and makes the explicit assumption that current LULC is a stronger driver of lake 

water chemistry than older LULC. It was not our intent to interpret the effect of individual 

LULC types over time, as represented by individual regression coefficients, but rather we 

focused on the aggregate effect over time (see Appendix 2). We used Akaike Information 

Criteria (AIC), AIC weights (ωi) and the coefficient of determination (R
2
) (following Burnham 

and Anderson 2002) to compare the performance among the five models for each water 

chemistry variable. We also used AIC weights to compare models built from two PC’ to models 

built from 3 PC’s (Appendix 3). All analyses were computed using 3 PC’s in SAS using PROC 

PRINCOM and PROC REG (SAS).  

 

RESULTS 

Changes in land use/cover  
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 Averaged across all lake watersheds, the largest changes in LULC occurred in the 

agriculture and urban categories (Fig. 2.2). Agriculture predominated in 1938, comprising an 

average of 40% of the study watersheds. Over time, agriculture steadily declined in area to 

represent only about 15% of the watershed areas by 1996. As agriculture declined, urban LULC 

steadily increased from less than 5% in 1938 to over 20% by 1996. Wetland LULC type also 

declined steadily from 12% to 8% over the study period. Both forest and open LULC types 

increased initially, reaching 23% and 21% of the watershed areas in 1968 and 1978, respectively. 

However, these LULC types then decreased for the remainder of the study period, comprising 

20% and 19%, respectively, of the watershed areas by 1996 (Fig. 2.2).  

 The first three PC’s explained approximately 89% of the variation in the dataset (Table 

2.1). The first PC represented almost half of the variation in the dataset and was weighted most 

heavily by agriculture and urban LULC types (Table 2.1). The pattern of urban expansion and 

agricultural contraction, seen using average watershed LULC (Fig 2.2), can also be seen using a 

multivariate representation of the LULC data (Fig. 2.3). Agriculture dominated the landscape in 

1938, shifting steadily to urban dominance between 1955 and 1968 (Fig 2.3). The second PC was 

weighted most heavily on urban and forest (Table 2.1), and showed a slight shift between forest 

and urban LULC between 1938 and 1968 (Fig. 2.3), as the pace of urban growth exceeded that of 

forest (Fig. 2.2). A more dramatic shift in forest and urban LULC types occurred between 1968 

and 1996, as the growth of urban increased as forest waned. The third PC was weighted most 

heavily on open and forest LULC types (Table 2.1). The pattern of LULC change represented 

with the third PC is more complex than what was seen in the first two PC’s. Open areas were 

slightly more prevalent than forest in 1938, switching to forest prevalence for 1955 and 1968. 

Forest and open areas were roughly equal for the last two time steps of the study.  
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 Plotting the change in LULC of each lake watershed over time showed that our dataset 

included lakes that vary in initial conditions, rate of change, and final composition (Appendix 4). 

The individual trajectories of LULC change represented by the first PC were nearly parallel, 

showing a change from agriculture to urban dominance. However, some of the lakes changed 

more rapidly than others, some changed more than others, and some changed very little. The 

second PC showed a narrower range of initial conditions then the first PC, but also showed 

largely parallel trajectories for the majority of the lakes with few divergences. The trajectory of 

the third PC was more erratic than the other two PCs, representing more lake to lake variation in 

the timing of shifts in open and forest LULC.  

 

Comparing regression models 

 The regression models using only current LULC provided the best model fit only for 

phosphorus species (Fig. 2.4). The explanatory power, as measured by R2, for these models 

ranged from 19% to 64%, but had low Akaike weights (mean 8%) for all other water chemistry 

variables. Our results showed that legacy models provided a better model fit for all other lake 

water characteristics. Including additional information about historical LULC in regression 

models always improved explanatory power (Fig. 2.5), but did not always improve model fit 

enough to account for the added complexity (Fig. 2.4). The explanatory power of the simplest 

model for TP and SRP (the 1996-only model) was only 25% and 22%, increasing to 45% and 

35%, respectively, when all of the time steps were included (Fig. 2.5). Among the five regression 

models evaluated, the only model supported by Akaike weights for TP or SRP was the 1996-only 

model (Fig. 2.4).  
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 All other lake water characteristics were best modeled by some combination of current 

and past LULC data (Fig. 2.4). All species of nitrogen were best modeled by including historical 

LULC information through the 1978 time step (Fig. 2.4), increasing the explanatory power from 

18-27% for the current-LULC-only regression approach to 38-43% for the model including 1978 

(Fig. 2.5). Calcium, silica, and sulfate were also best modeled by a 1978 legacy model (Fig. 2.4), 

accounting for 47-62% of the variation in the data (Fig. 2.5). Other legacy models for these 

variables also received some support by AIC weights. The 1968 legacy models for calcium and 

silica were supported by AIC weights of 0.27 and 0.25, respectively.  

 Conservative ions showed the longest legacy effect and the highest explanatory power of 

all water chemistry characteristics in our study. The best model for potassium included historical 

LULC information through the 1955 time step (Fig. 2.4), accounting for 93% of the variation in 

the data (Fig. 2.5). Explanatory power increased the most (approximately 30%) when 1978 

LULC was added to the regression model, but continued to increase through the addition of 1955 

(Fig. 2.5). Chloride, magnesium, and sodium were best modeled by the full legacy model that 

included LULC information for all time steps back to 1938 (Fig. 2.4). Although the 1996-only 

model for sodium was also supported with an AIC weight of 0.23, the full legacy model received 

the majority of support, with an AIC weight of 0.59. The 1938-legacy models of chloride, 

magnesium, and sodium improved explanatory power by 21%, 35%, and 20%, respectively, over 

the 1996-only model (Fig. 2.5). These models accounted for 82-85% of the variation in the data 

(Table 2.2).  

 All regression models show a roughly linear relationship (Appendix 5).  

 

DISCUSSION 
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 Among key ecological principles essential in sustainable land planning, Dale et al. (2000) 

describe the relevance of ‘time’ in terms of ecological legacies, time-lag feedbacks, and future 

constraints. Our study sought to quantify this temporal component of ecosystem response to land 

conversion (i.e. land use legacy effect). The method we used shows both the presence and 

timescale of legacy effects in models relating LULC to most lake water characteristics. 

Furthermore, by comparing lake water characteristics with vastly different biogeochemical 

cycles, our study gives mechanistic insight into legacies. We report finding the first evidence of 

land use legacy effects in lakes.  

 The traditional approach to studying ecosystem responses to LULC compares LULC 

from a single time period to a measure of ecosystem response from a similar time period. A 

legacy approach simply modifies the traditional approach by adding historical LULC to models. 

We found that taking a legacy approach improved model fits for total and dissolved nitrogen, 

reactive ions, and conservative ions. However, the added complexity inherent to legacy models 

did not substantially improve explanatory power for total and soluble reactive phosphorus. These 

results seem to support a conclusion that phosphorus responds most strongly to the most recent 

LULC. Another plausible explanation is that lake phosphorus concentrations are governed more 

by internal recycling from lake sediments rather than delivery pathways (Stauffer 1987, Soranno 

et al. 1996). The low explanatory power for our models of phosphorus also indicates that other 

mechanisms, such as internal recycling, should be considered in future analyses of phosphorus. 

Results from other studies linking watershed landscape context to phosphorus also show that 

external landscape factors fail to predict lake phosphorus well (Riera et al. 2000, Martin and 

Soranno 2006, Martin et al. In Review). 
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 In contrast to phosphorus, legacy effects were more apparent for nitrogen species. 

Nitrogen is also a highly reactive nutrient; however, nitrogen is readily held in multiple 

biologically available forms and remains dissolved much more easily than phosphorus. Previous 

studies provide evidence that nitrogen species are delivered primarily as dissolved forms through 

subsurface hydrologic pathways (Jordan et al. 1997, Vanni et al. 2001), whereas phosphorus 

binds to soils and is delivered primarily through surface runoff (Jordan et al. 1997, Johnes and 

Heathwaite 1997). Differences in the rate of delivery between these two routes, surface delivery 

being fast and subsurface delivery being slow, provide another potential mechanistic explanation 

for differences in legacy timescales for nitrogen and phosphorus. Carpenter and Turner (2000) 

discuss how interactions between the proverbial tortoises and hares of ecological processes work 

to structure ecosystem responses. Our results provide empirical evidence supporting the 

importance of both slow (soil saturation) and fast (surface runoff) processes in structuring lake 

ecosystem response to external nitrogen loads.  

 By grouping our water chemistry variables into a priori groups based on biological 

reactivity, we are able to show that the level of biological reactivity can also be used to 

understand differences in legacy timescales. As major nutrients for aquatic primary producers, 

phosphorus and nitrogen have high levels of reactivity. Calcium (Alstad et al. 1999), silica 

(Martin-Jezequel et al. 2000) and sulfate (Holmer and Storkholm 2001) are also important in 

biological processes, but less than nitrogen (Wetzel 1983). On the other hand, Cl, K, Mg, and Na 

are grouped as conservative ions given their low relative reactivity in aquatic ecosystems 

(Wetzel 1983). Our results indicate that legacy timescales are negatively related to biological 

reactivity: highly reactive elements, such as nutrients have relatively short legacy timescales and 

conservative ions have the longest legacy timescales. From these results, we can estimate that the 
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signal from nitrogen and reactive ions are still apparent from historical LULC occurring 30 years 

ago. In comparison, conservative ion concentrations, which are not as strongly linked to 

biological metabolism, are still responding to historical LULC from 70 years ago. It is possible 

that if LULC data were available prior to 1938, many of the conservative ions would have shown 

an even longer legacy. The few biogeochemical studies of legacy effects have found similar 

legacy timescales for nutrients (Harding et al. 1998, Chauvat et al. 2007) and conservative ions 

(Boutt et al. 2001).  

 We also see an increase in explanatory power as reactivity decreases, with forms of 

phosphorus explained poorly (R2 22 and 25%), nitrogen explained fairly well (R2 37-43%), 

reactive ions explained well (R2 47-62%), and conservative ions explained extremely well 

(R2>80%). Kling et al. (2000) found that biological reactivity was positively related to the 

coefficient of variation calculated from multiyear sampling on ten lakes, with higher reactivity 

showing higher interannual variability. This high variability may also explain differences in 

explanatory power of the legacy models, in that high interannual variability of a variable in a 

lake will likely reduce the predictability (hence model power) for that variable.  

 

Management Implications 

 A recent renewal of interest in eutrophication (Conley et al. 2009, Smith and Schindler 

2009, Wagner and Adrian 2009) and calls for nutrient reductions (Carpenter 2008) echo the calls 

of the past (Edmonson et al. 1956, Edmonson 1970, Schindler 1974). Many management 

strategies, such as changes in land use policies and reductions in point source inputs, have been 

put into place to reduce anthropogenic effects on lakes (Schindler 2006). Setting realistic 

expectations is important part of the management cycle and failure to recognize legacy impacts 
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may lead to unachievable expectations. While the occurrence of legacy effects may be more 

widely known or accepted, the quantification of legacy timescales is important for setting 

realistic goals for the restoration of ecosystem services (Chauvat et al. 2007). Our study shows a 

nitrogen legacy signal from more than a decade prior. On the other hand, our study did not show 

a legacy effect for phosphorus. Therefore, management actions aimed at reducing nitrogen 

impacts may take longer to show improvements than actions aimed at reducing phosphorus 

impacts. The long legacy that conservative ions exhibited may also be indicative of the legacy 

timescale of other soluble substances, such as persistent toxic chemicals 

 In conclusion, relationships between LULC and lake water characteristics go beyond that 

which is currently being measured. It is essential to include the temporal context of LULC in 

modeling important ecosystem dynamics. By adding an analysis of conservative ions to the suite 

of limnological variables, we were able to show differences in inferred legacy mechanisms that 

would have otherwise been missed. Furthermore, ecosystem responses to future changes in land 

cover and/or climate are likely linked to historic landscape context.  
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Table 2.1.  Eigenvectors and proportional variance explained from principal components analysis 
of land use/cover types. Extreme values for each PC are indicated in bold. 
 
  

  PC1 PC2 PC3 PC4 PC5 

Agriculture -0.8663 -0.1345 -0.0426 -0.0509 -0.2457 

Urban 0.3302 -0.7274 -0.0216 -0.4412 0.0075 

Forest 0.1567 0.5363 0.5599 -0.4196 -0.1779 

Water 0.2239 -0.1552 0.2985 0.7826 -0.2399 

Open 0.2416 0.3533 -0.7711 0.0099 -0.2355 

Wetland -0.0862 0.1276 -0.0231 0.1191 0.8916 

Eigenvalue 0.043 0.024 0.013 0.007 0.003 
% variance 
explained 48% 27% 14% 7% 4% 

 
 
 
  



63 
 

Table 2.2. Regression statistics for best models. Dependant variables are listed under broad 
categories. Details of regression models include: time step(s) represented in final model, number 
of regression parameters fit (p), Akaike Information Criteria (AIC), Akaike weight (ωi), and 
coefficient of determination (R2).  

  Dependant  Regression model p ωi R2 

Phosphorus 

TP 96 3 0.872 0.255 

SRP 96 3 0.930 0.216 

Nitrogen 

TN 96+78 6 0.639 0.376 

NO3 96+78 6 0.788 0.400 

NH4 96+78 6 0.722 0.435 

Reactive Ions 

Ca 96+78 6 0.494 0.496 

Si 96+78 6 0.611 0.471 

SO4 96+78 6 0.672 0.616 

Conservative Ions 

Cl 96+78+68+55+38 15 0.926 0.850 

K 96+78+68+55 12 0.870 0.933 

Mg 96+78+68+55+38 15 0.968 0.847 

  Na 96+78+68+55+38 15 0.593 0.815 
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Figure 2.1. Map showing the Huron River Watershed within the state of Michigan, including 
detailed hydrography features along with outlines for the cities of Ann Arbor and Ypsilanti. For 
interpretation of the references to color in this and all other figures, the reader is referred to the 
electronic version of this dissertation. 
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Figure 2.2. Average proportion of each land use/cover type for the study lakes calculated for 
each time step in the study. Solid fine line represents agriculture. Solid heavy line represents 
urban. Dashed fine line represents forest. Dashed heavy line represents open. Dotted fine line 
represents water. Dotted heavy line represents wetland.  
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Figure 2.3. Change in land use/cover over time represented by principal component 1 (PC1), 
principal component 2 (PC2), and principal component 3 (PC3). Each dot represents the average 
score for that time step.  
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Figure 2.4. Akaike weights (ωi) from chrono-sequence of regression models. (A) TP, solid 
circles with heavy solid line; and, SRP, open circles with dashed line. (B) TN, solid circles with 

heavy solid line; NO3, open circles with dashed line; and, NH4, X inside circle with dotted line. 

(C) Ca, open circle with heavy solid line; Si, open triangle with dashed line; and, SO4, open 
square with dotted line. (D) Cl, open with circle heavy solid line; K, open triangle with dashed 
line; Mg, open square with dotted line; and, Na, open diamond with fine solid line. 
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Figure 2.5. Coefficient of determination (R
2
) from chrono-sequence of regression models. (A) 

TP, solid circles with heavy solid line; and, SRP, open circles with dashed line. (B) TN, solid 

circles with heavy solid line; NO3, open circles with dashed line; and, NH4, X inside circle with 
dotted line. (C) Ca, open circle with heavy solid line; Si, open triangle with dashed line; and, 

SO4, open square with dotted line. (D) Cl, open with circle heavy solid line; K, open triangle 
with dashed line; Mg, open square with dotted line; and, Na, open diamond with fine solid line. 
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Appendix 2. Additional information for Chapter 2.  
 
Table 2.3. Characteristics of the study lakes including water chemistry variables as categorized 
into a priori groups and lake area. Minimum, maximum, mean, and coefficient of variation are 
shown for each variable.  

Lake characteristic Minimum Maximum Mean CV 

Lake area (km2) 0.06 2.60 0.65 0.93 
Phosphorus 

TP (µg/L) 5.4 45.0 24.1 0.37 
SRP (µg/L) 0.33 3.45 1.15 0.56 

Nitrogen 
TN (mg/L) 0.53 1.85 0.94 0.30 

NO3 (mg/L) 0.00 1.03 0.20 1.20 

NH4 (µg/L) 3 143 36 0.96 
Reactive Ions 

Ca (mg/L) 16 92 52 0.38 
Si (mg/L) 0.00 5.61 1.53 0.88 

SO4 (mg/L) 1.9 88.4 26.1 0.83 
Conservative Ions 

Cl (mg/L) 2 242 66 0.90 
K (mg/L) 0.58 7.53 2.09 0.57 
Mg (mg/L) 3.9 24.7 15.4 0.26 

  Na (mg/L) 0.9 77.3 24.0 0.88 
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Table 2.4. Regression coefficients from best models as reported in Table 2.2.  

 

 

 

Ca Cl K Mg Na NH4 NO3 Si SO4 SRP TN TP

Intercept 49 -44 1.4 17 -15 37 0.352 1.2 22 1.3 1.1 27
PC1_96 -42 -705 -13 4.7 -228 -416 -6.4 -13 135 -1.0 -8.3 -27
PC2_96 -145 -377 -11 -4.2 -129 -175 -2.2 -14 -61 1.1 -3.6 -2.4
PC3_96 335 491 14 24 352 -731 0.5 1.5 527 0.4 -0.6 -12
PC1_78 -23 1362 13 7.2 451 503 5.5 11 -212 7.2
PC2_78 147 5.6 11 -23 34 159 1.7 20 73 3.1
PC3_78 -353 338 -8.5 -11 -60 751 -0.2 -6.6 -536 1.2
PC1_68 -657 1.0 -11 -241
PC2_68 298 -3.3 27 107
PC3_68 -681 -2.6 -13 -232
PC1_55 590 -4.1 -20 245
PC2_55 -603 1.8 -27 -267
PC3_55 436 -0.1 -23 169
PC1_38 -746 19 -284
PC2_38 255 33 70
PC3_38 -471 37 -200
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Figure 2.6. Comparisons between regression results using 2 PCs and 3 PCs for calcium, chloride, 
potassium, magnesium, sodium, ammonium, nitrate, silica, sulfate, soluble reactive phosphorus 
(SRP), total nitrogen (TN), and total phosphorus (TP). Akaike weights (y-axis) were computed 
across regression results for each water chemistry variable from both 2 PCs and 3 PCs to total 
ten regression models.  
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Figure 2.6 (cont’). 
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Figure 2.6 (cont’). 
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Figure 2.6 (cont’). 
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Figure 2.6 (cont’). 
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Figure 2.6 (cont’). 
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Figure 2.7. Change in LULC over time as represented in multivariate space. Each line represents 
the LULC trajectory of a lake in the study. Each of the first three PC’s are shown.  
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Figure 2.7 (cont’). 
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Figure 2.7 (cont’). 
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Figure 2.8. Regression diagnostics for best models as reported in Table 2.2. Observed values (y-
axis) are plotted against values predicted from the regression equation (x-axis).  
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Figure 2.8 (cont’). 
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CHAPTER 3: THE LAND-USE LEGACY EFFECT - A MECHANISTIC INVESTIGATION 
OF HOW GROUNDWATER DELIVERY, WETLAND PROCESSING, AND 
RIPARIAN DYNAMICS AFFECT LAKE WATER CHEMISTRY 
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INTRODUCTION 

 There have been numerous studies linking land use/land cover (LULC) to ecosystem 

responses. The typical approach involves correlating current LULC within a specified area to 

current ecosystem condition(s). The main difference among these studies  is the way in which the 

contributing zone has been delineated, including fixed-distance (Strayer et al. 2003, King et al. 

2005) and  flow distance buffers around a sampling station (Brazner et al. 2007), fixed-distance 

buffers around a stream (Hunsaker & Levine 1995, Van Sickle et al. 2004, Floyd et al. 2009) 

with varying distance upstream of a station (Sponseller et al. 2001, Frimpong et al. 2005), and, 

finally, different variations on “watersheds” (Soranno et al. 1996, Hollister et al. 2008). 

Regardless of spatial scale, these approaches assume that materials originating from different 

cover types are delivered to the ecosystem over the same time period that the LULC is measured. 

This is likely a reasonable assumption for surface delivery. Burcher (2009) estimated that the 

maximum travel time for overland flow from precipitation was on the order of days. However, 

groundwater delivery often takes longer than a decade and can exceed a century (Pint et al. 2003, 

Pijanowski et al. 2007). Therefore, it is likely that much of the water delivered through 

groundwater pathways is not representative of the current LULC. In systems where groundwater 

provides the dominant source of water, this temporal mismatch can obscure relationships 

between LULC and ecosystem responses.  

 While there have been several studies that highlight the importance of representing 

groundwater geochemistry (Wayland et al. 2003) and transport delays in models of aquatic 

ecosystem response (Baker et al. 2006, Fraterrigo & Downing 2008, Kelly et al. 2008), few have 

linked the dynamics of changing LULC to a mechanistic understanding of flow paths and travel 

times (Boutt et al. 2001, Wayland et al. 2002). Pijanowski et al. (2007) coupled a land 
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transformation model with a groundwater travel time model to produce a temporally adjusted 

mosaic of LULC that they term the land-use legacy map. They found large discrepancies 

between current LULC and legacy LULC in their study watershed. For example, there was only 

a 22% agreement in urban LULC type between current and legacy maps. Additionally, 11% of 

their study area that was currently in a human dominated LULC type (i.e., urban and agriculture) 

was assigned to forested cover type in the legacy map. Using a legacy map of LULC, as 

described above, should improve models of ecosystem response to LULC.  

 In addition to groundwater flow paths, wetland processing and riparian zone dynamics 

modify how current LULC impacts aquatic ecosystem condition. Peterjohn and Correll (1984) 

showed that riparian forests can effectively capture surface and subsurface nutrient fluxes from 

adjacent agricultural land to stream systems. In recent reviews of riparian buffer characteristics, 

Zhang et al. (2009) and Yuan et al. (2009) agree that buffer width and composition are important 

in determining the flux of non-point pollutants. Other studies have shown that stream and lake 

water chemistry characteristics are related to wetland extent and proximity (Osborne & Wiley 

1988, Johnston et al. 1990, Detenbeck et al. 1993). However, the appropriate spatial scale for 

wetland measurement, whole watershed proportion versus proportion within a specified distance, 

remains an active area of inquiry (Gergel et al. 1999, Xenopoulos et al. 2003, Moreno-Mateos et 

al. 2008).  

 The goal of this study is to combine the knowledge of groundwater delivery, wetland and 

riparian processing in mechanistic and statistical models to better understand the relationship 

between LULC and lake water chemistry characteristics. We created a mechanistic groundwater 

flow model to estimate spatially-explicit groundwater travel times for a watershed to surface 

water bodies. We used this information to create a legacy LULC map, which accounts for delays 
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in materials delivered via groundwater pathways from past LULC. Three approaches for 

incorporating wetland processing were compared: 1) wetland extent, 2) area of wetland 

connected to rivers, and 3) length of wetland connected to rivers. Riparian processes are 

incorporated by adding measures of riparian LULC to the mechanistic groundwater legacy 

model. We use regression models to relate lake water chemistry variables to various LULC 

representations.  

 We applied these modeling approaches to twelve water chemistry variables, ranging from 

nutrients to conservative ions, to better understand the roles that biological reactivity and 

solubility play in connections between LULC and aquatic ecosystem function. We expect that: 

 1) chemicals of high solubility (e.g. SRP, NO3) will have a stronger relationship with 

groundwater flow paths than chemicals of low solubility (e.g. TP), which will be 

more dependent upon surficial transport processes, such as retention in riparian zones, 

than groundwater flow paths;  

2) chemicals of low biological reactivity (e.g. conservative ions) will have a stronger link 

to groundwater flow paths than chemicals of high biological reactivity (e.g. nitrogen 

and phosphorus), which will be more dependent on wetland processing than 

groundwater flow paths.  

 

METHODS 

Study Area 

 This study was conducted within the 2,359 km
2
 Huron River Watershed (HRW) in 

Michigan (Figure 3.1), which ranges from 390m to 173m in elevation. The HRW contains 

numerous rivers, streams and lakes supporting a diverse assemblage of aquatic species (Hay-
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Chmielewski et al. 1995). Due to close proximity to major metropolitan areas, such as Detroit 

and Ann Arbor, and the development of interstate highways, many people live, work, and enjoy 

the recreational opportunities of the area. The watershed has undergone extensive LULC change 

over the past century, shifting from an agrarian to suburban society (Hay-Chmielewski et al. 

1995, Rutledge and Lepczyk 2002). However, numerous natural areas have been maintained in 

publicly owned parks. 

 

Water chemistry data 

 Water samples were collected from 35 lakes in the HRW during 2008 spring mixing. 

Lakes were chosen based on their accessibility, including both private and public lakes ranging 

in size from 0.05 to 2.6 km
2
. All water samples were taken from 1m below the surface at the 

deepest portion of the lake and analyzed for major ions and nutrients. Cation (calcium, 

magnesium, potassium, and sodium) and anion (chloride, nitrate, and sulfate) concentrations 

were determined using membrane-suppression ion chromatography (Wetzel and Likens 2000). 

Silica concentrations were determined using the molybdate colorimetric method (Wetzel and 

Likens 2000). Total nitrogen concentrations were determined using the 2nd derivative of the 

absorbance curve at 224 nm following persulfate digestion. Ammonia concentrations were 

determined following the indophenol-blue method (Wetzel and Likens 2000). Soluble reactive 

phosphorus (SRP) and total phosphorus (TP) concentrations were determined 

spectrophotometrically following persulfate digestion. 

 Water chemistry variables were organized into a priori groups based largely on 

biological reactivity and solubility (Appendix 3.1). Phosphorus species were the most highly 

reactive variables in our study; nitrogen species are also highly reactive, but less so than 
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phosphorus due to the relative abundance of nitrogen versus phosphorus (Wetzel 1983). We 

grouped Ca, Si, and SO4 together as “reactive variables” due to their role as micronutrients in the 

metabolism of macrophytes, diatoms, and bacteria, respectively (Wetzel 1983). Conservative 

ions (i.e. Cl, K, Na, and Mg) play a much smaller role in biological metabolism and are thus 

influenced more by external supply than internal conversions (Wetzel 1983).  

 

Land use/cover data 

 Land use/cover data (30m resolution) from five available time steps (1938, 1955, 1968, 

1978, and 1995) were classified into six categories (urban, agriculture, open, forest, water, and 

wetland) based a modified version of the Anderson (1976) LULC classification scheme (Figure 

3.2). All data were compiled into a multi-temporal GIS database for analysis (full details in 

Rutledge 2001). Briefly, digitized land use/cover data for 1978 from the Michigan Resource 

Information System (MIRIS) served as a base for digitizing all other time steps. Aerial photos 

from each of the other time steps were scanned (150 dpi) to create digital images that were then 

registered and rectified to the 1978 data using the placement of county roads. Land use/cover 

polygons were then digitized. 

 

Groundwater travel time calculation and modeling 

 We modeled groundwater travel times following procedures similar to Boutt et al. (2001) 

and Pijanowski et al. (2007). This approach is based on Darcy’s Law of groundwater flow:  

  Q = -KAi 

where, Q is discharge in m3/day, K is hydraulic conductivity in m/day, A is the cross sectional 

area in m2, and i is the hydraulic gradient. Groundwater flow velocity (v, m/day) is calculated as:  
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An

v
Q

=  

where n is porosity. Travel time is then calculated by dividing the flow length by flow velocity.  

 We used the Groundwater Modeling System preprocessor (BYU 1994) to facilitate the 

discretization of geospatial data for input to MODFLOW-2000 (Harbaugh et al. 2000) to solve 

for the groundwater flow equations. We used a one-layer model, with 180,000 cells with 

approximately 109 x 109 m dimensions. We used elevations from USGS 1/3
rd

 arc second 

National Elevation Dataset (NED, resolution approx. 10m) to represent surface topography. We 

also used the NED surface elevations to model stream coverage using procedures and tools in 

ArcInfo 8.3 (ESRI, Inc): FILL SINKS, FLOW DIRECTION, and FLOW ACCUMULATION. 

The location of stream cells were defined according to a threshold of 15,000 cells using the 

STREAM DEFINITION tool, which produced stream cell locations comparable to known 

hydrography features. Stream cells were combined with cells along lake edges to create a 

complete representation of hydrography features. These features were modeled as drains in the 

groundwater model. Bedrock elevations were provided by MSU Department of Geography (D. 

Lusch personal communication).  

 Recharge was estimated using measured flows from the Ypsilanti USGS gauge on the 

Huron River (#4174800) for 1974-1994. Low flow values for each year in this period of record 

were averaged and divided by the drainage area, providing the recharge estimate of 0.00138 m/d 

(49 cm/yr). This is roughly 55% of the mean annual precipitation measured in the near-by city of 

Ann Arbor.  

 Static water levels from 15,581 wells recorded in the Michigan Department of 

Environmental Quality Statewide Groundwater Database, called Wellogic, were used to 
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interpolate water table elevations across an initial model boundary (HRW plus 1km buffer). We 

filtered this dataset to only include wells with the following characteristics: 1) physically located 

within the model boundary, 2) reported surface elevation within 2m of NED surface elevation at 

that location, and 3) casing deeper than the reported static water level. This groundwater surface 

was then used to delineate a groundwater sourceshed for all river cells upstream of Ypsilanti, as 

all of the study lakes were located upstream of Ypsilanti. We use the term sourceshed in parallel 

to how watershed is used for surface water drainage. Therefore, the groundwater sourceshed 

represents the area contributing groundwater to a particular point (e.g. study lake). The modeled 

groundwater sourceshed, which we will refer to as the Huron River Groundwater Sourceshed 

(HRGW), was then used as the model boundary for the MODFLOW-2000 groundwater model. 

The interpolated static water levels were also used as starting heads in the model.  

 A digital version of the Farrand and Bell (1982) map detailing the location of surficial 

geology types was obtained from the Michigan Geographic Data Library 

(http://www.mcgi.state.mi.us/mgdl). The area within the HRGW has some variation in surficial 

geology types, but is dominated by glacial outwash and end moraine deposits (Figure 3.3).  

 Hydraulic conductivity (K) values for each surficial geology type were optimized using 

PEST 10.0 (Doherty 2004) (Figure 3.3). Simulated groundwater elevations were in reasonable 

agreement with observations from the Wellogic database (Figure 3.4). We found that wells with 

high residual values were surrounded by other wells with groundwater elevations similar to the 

modeled values, had low influence on the R
2
 when removed, and therefore were kept in the 

welldataset despite being clear outliers. Groundwater flow velocities and travel times were 

calculated following Darcy’s Law, as described above, from the simulated groundwater 
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elevations and optimized hydraulic conductivity values, using FLOWDIRECTION and 

FLOWLENGTH tools in ArcGIS (Pijanowski et al. 2007).  

 

Creating the legacy map 

 The legacy map was created by combining simulated groundwater travel times with 

interpreted historical LULC categories for each model cell. Groundwater travel times were 

calculated using Darcy’s Law, as described above. The calculated travel times (Figure 3.5 – step 

1) were grouped around available LULC data (Figure 3.5 – step 2), with 1996 being the most 

recent land cover map available in this area. The mid-point between the LULC time steps was 

used to define category thresholds. For example, there is an eighteen year gap between the 1996 

and 1978 LULC maps, thus we assigned LULC from the 1996 time step to all model cells with a 

groundwater travel time of zero (1996) to nine years earlier (1987). These reclassified travel 

times (Figure 3.5 – step 2) were then combined with the LULC maps developed from air photo 

analysis for particular years to produce the legacy LULC map (Figure 3.5 – step 3). Therefore, 

the legacy map is a spatially explicit representation of the LULC, corresponding to groundwater 

delivery to each study lake. Finally, we compared the legacy LULC to the 1996 LULC, 

highlighting areas where the two differ (Figure3. 5 – step 4).  

 

Statistical analyses 

 The relationships between LULC and lake water chemistry variables were analyzed using 

multiple linear regression, implemented in PROC REG (SAS). Each water chemistry variable 

was regressed against the proportional cover of the six LULC classes within the study lake 

groundwater sourcesheds, following the equation: 
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yi = β0 + βurbxurb +  βagxag + βopenxopen + βforxfor + βwaterxwater + βwetxwet +  εi 

where, yi is the value of water chemistry i; β0 is the constant (y-axis intercept); βp is the 

regression coefficient for xp; xp is the proportional cover of LULC p; and εi is the error 

associated with the model of yi. The proportion of each LULC type within the sourcesheds was 

determined for the 1996 time step (current LULC) and the legacy map (GW legacy). 

 We modified the general regression equation (above) to incorporate wetland and riparian 

processes. Wetland processes were represented by replacing the single regression parameter 

describing wetlands (xwet) with two terms for wetlands: 1) proportional area of wetlands that 

border drain cells (xconwet), and 2) proportional area of wetlands that are unconnected to drain 

cells (xunconwet), following the form:  

yi = β0+βurb xurb+ βag xag+βopen xopen+βfor xfor+βwater xwater+βconwet xconwet+ βunconwet 

xunconwet+ εi 

Connected and unconnected wetlands were summarized within two spatial extents: 1) proportion 

within the groundwater sourceshed that represents processing by wetland area, and 2) proportion 

within a 30m river buffer that represents processing along the wetland length.  

 Riparian processes were incorporated by adding parameters to the general regression 

equation for the proportional cover of each of the six LULC classes as represented in 1996 

within a 50m river buffer. Therefore, the regression equations modeling overland flow has six 

LULC types measured over two extents, equaling twelve regression parameters, as follows: 

yi = β0 + LEGACY[βurbxurb +  … + βwetxwet] + RIPARIAN[βurbxurb +  …+ βwetxwet] + εi 
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 We used Akaike Information Criteria (AIC), AIC weights (ωi) and the coefficient of 

determination (R
2
) (following Burnham and Anderson 2002) to compare the parsimony and 

explanatory power of each model. Specifically, to understand if groundwater pathways are the 

dominant mechanism for legacy effects, we compared results from: 1) current LULC models, 2) 

GW legacy models, and 3) a correlative estimation of legacy land cover (as described fully in 

Chapter 2). Briefly, the correlative legacy models use regression to relate LULC, as represented 

through principal components analysis, to water chemistry variables. These models were built 

sequentially, starting with the most recent LULC then adding the next most recent LULC and so 

on until each of the five time steps of LULC were included in the model. For the current study, 

we limited our comparison to only the correlative models with highest support as demonstrated 

by AIC weights.  

 The correlative legacy models represented legacy effects through a correlational “black 

box”, in that no specific mechanisms were specified. In comparison, GW legacy models 

specified groundwater pathways as the dominant mechanism for legacy effects. The current 

LULC models represented the traditional approach linking LULC to ecosystem responses and 

hypothesizes that historical LULC has no consequence for our study lakes. Comparisons were 

also made with models measuring wetland and riparian processes. Hypotheses inherent to the 

models were: wetland presence throughout the entire lake watershed was important to lake water 

chemistry (wetland extent tested); the entire area of riparian wetlands was important to lake 

water chemistry (wetland area tested); only the area of riparian wetland in immediate contact 

with the river was important to lake water chemistry (wetland length tested); the LULC within 

only the riparian zone was important to lake water chemistry (riparian LULC only tested); there 

is an additive effect of riparian LULC to the watershed LULC (legacy + riparian tested) . 
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RESULTS 

Groundwater travel time 

 Modeled groundwater travel times in the HRGW ranged from <1 yr to >400 years, 

encompassing each of the six time classes of available LULC data (Figure 3.6). Just over half of 

the HRGW has a groundwater travel time between 0-9 years, following the surface drainage 

network in the watershed. The longest travel times occurred in the central and northeastern 

portions of the HRGW. In general, the groundwater travel times in the study lake groundwater 

sourcesheds match those of the larger HRGW, but have more area within the 0-9 yr travel time 

category than the overall watershed (Figure 3.6).  

 

Characterizing LULC 

 Urban and agriculture land cover dominated the HRGW in 1996, with open and forested 

land cover types comprising most of the remaining area (Figure 3.7A). The legacy LULC map 

shows agriculture as the dominant land cover, followed by urban, forest and open cover types 

(Figure 3.7B). The largest differences between the two LULC maps were in human dominated 

cover types, as agriculture increased by approximately 5% and urban decreased by 

approximately 4% of the model area, when legacy LULC was used.  

 The 1996 LULC within the studied groundwater sourcesheds also show an urban 

dominance (Figure 3.7A), however forest was the second most common LULC type in the 

groundwater sourcesheds, and there was 12% less agriculture cover than in the HRGW as a 

whole. Legacy LULC within the studied groundwater sourcesheds had almost equal 
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representation of forest, urban, and open LULC types, and agriculture was still underrepresented 

relative to the HRGW (Figure 3.7).  

 Overall differences in LULC composition between 1996 and the legacy map within the 

HRGW and the groundwater sourcesheds were relatively small (Figure 3.8), with only 10.5% of 

the area of the HRGW where legacy LULC differed from current LULC. This is mainly due to 

the high hydraulic conductivities of the sediments, coupled to the relatively small size of the 

watershed.  Differences in the studied sourcesheds were even less, at 8.5%.  

 

Relationships with lake water chemistry 

  Current LULC and GW legacy models had similar explanatory power (Figure 3.9). 

Across all water chemistry variables, the R
2
 values from these models differed by a maximum of 

4% (TN, NH4, and SO4) but were within 1.4% of each other on average. In general, models 

showed a pattern of high correlation with lower-reactivity soluble ions, such as Cl, K, Mg, and 

Na, and decreasing correlation for more biologically reactive chemicals such as nitrogen and 

phosphorus 

 Correlative legacy models received most support from AIC weights for 9 out of 12 of the 

water chemistry variables (Figure 3.9). Correlative legacy models for TP, NO3, and Si explained 

8-11% more variation than current LULC or GW legacy models. However, there were larger 

differences between the models for all other water chemistry variables. The correlative legacy 

model explained on average 21% more variation than the GW legacy or current LULC models 

for all other water chemistry variables, ranging between 19% and 28% more for TN and K, 

respectively. Models using current LULC or legacy LULC received more AIC support for NH4, 
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Ca, and SO4, and explained 11%, 21%, and 7% more variation, respectively, than the correlative 

legacy models. Overall, these results provide evidence that adding a mechanistic representation 

of land cover through delayed groundwater delivery was not sufficient to capture legacy effects 

for most water chemistry variables in our study lakes.  

 Adding different measures of wetlands (all wetland, wetland area, and wetland length) to 

the GW legacy model changed the explanatory power of most models very little, changing R
2
 

less than 3% in most cases (Figure 3.10). However, the explanatory power increased by 14% and 

11% for TP and SRP, respectively, when wetland connections were specified in the regression. 

Interestingly, the method for representing wetland processing differed between TP and SRP; 

adding the length of connected wetland performed better for the TP model, whereas the area of 

connected wetland performed better for SRP. Overall, our comparison of different ways to 

represent wetlands shows that there was little difference for most water chemistry variables. 

However, forms of phosphorus did show a stronger relationship to LULC when wetland 

connections were included in the regression.  

 Because wetland length provided similar or slightly better model fits for most water 

chemistry variables, we only show results for GW legacy models using this term in our analyses 

of riparian zones. However, wetland area was used in the GW legacy models for SRP. 

 In comparison to adding wetland processing to the GW legacy model, adding factors 

representing riparian processes increased R2 values for every water chemistry variable (Figure 

3.11). Models combining GW legacy with riparian processes improved R
2
 values by 15% on 

average and up to 26% (Si) and 43% (SRP) from models of GW legacy alone. Many of these 

models received more AIC support than correlative legacy models (6 out of 12), with the largest 
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increase in R
2
 for SRP (46% over correlative legacy). However, some nutrients (TP, TN, and 

NO3) and conservative ions (K and Mg) were still better described by correlative legacy models 

than GW legacy combined with riparian processes.  

 Models including riparian LULC alone have little support from AIC weights and had R
2
 

values similar to or lower than GW legacy for most water chemistry variables. Only SRP and Si 

show more explanatory power with riparian only models versus GW legacy models. Differences 

between GW legacy and riparian only models were greater for conservative ions than nutrients.  

 

DISCUSSION 

 Legacy effects have been shown to be important in terrestrial (Foster et al. 1998, Foster et 

al. 2003, Chauvat et al. 2007), stream (Harding et al. 1998, McTammany et al. 2007), and lake 

(Martin et al. Chapter 2) ecosystems. These studies have all used a correlational approach, 

relying solely on statistical relations to detect legacy effects. This study moves beyond a simple 

correlational approach by combining temporal and spatial changes in LULC with a mechanistic 

model of groundwater flow paths to create a process-informed representation of legacy LULC. 

We show how this legacy map can be used to connect changes in LULC to important ecosystem 

characteristics, such as water chemistry in lakes. We also incorporate other mechanisms known 

to be important, such as wetland and riparian processes, for a more complete analysis of the 

relationships between LULCs and lake ecosystem dynamics. This mechanistic approach is 

generalizable across ecosystem types and will likely increase the accuracy and predictability of 

other models linking LULC with ecosystem responses.  

 This study shows how delays in groundwater travel time can be successfully coupled 

with changes in LULC as a mechanism for land use legacies. Unfortunately, our study area was 
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not the ideal location for groundwater legacies to play a major role. Rapid changes in LULC 

occurred in the HRW between 1938 and 1968 (Martin et al. Ch2), a time period represented by 

only 17% of the groundwater sourceshed. LULC largely stabilized during the time represented 

by the majority of the groundwater, showing only small declines in agriculture (2%) and 

increases in urban (5%) area. Therefore, it is not surprising that our results show little difference 

in explanatory power between legacy LULC and current LULC. Legacy effects through 

groundwater delivery would be more apparent in 1) areas where groundwater travel times are 

long enough to “reach back further in time”, or 2) areas where LULC is currently undergoing 

rapid conversions within areas of shorter delivery times.  

 

Wetland processing 

 Wetlands are a particularly important land cover type in biogeochemical cycles, greatly 

altering the chemistry of water from input to output (Howard-Williams 1985). However, there is 

no consensus about the most appropriate method for representing the impact of wetland 

processing within the landscape. Most studies have measured wetland extent as the proportional 

cover within an area, usually a watershed. Whigham et al. (1988) offer an early meta-analysis 

showing the variable nature of nitrogen and phosphorus removal along a gradient of increasing 

wetland extent. Since then, other methods for measuring wetlands have been used, such as 

proportional cover within a specified distance of the target ecosystem (Johnston et al. 1990, 

Weller et al. 1996, King et al. 2005). We add to this research by offering a comparison of three 

measures of wetland influence: watershed extent, area of river connected wetland, and length of 

river connected wetland.  



104 
 

 Our results agree with previous studies that show a stronger relationship between 

phosphorus and riparian wetlands in comparison to wetlands located further from receiving 

bodies (Johnston et al. 1990, Weller et al. 1996). Furthermore, our analyses provide evidence 

that wetland area and wetland length are important in different ways for nutrient cycling. Models 

including the area of connected wetland had higher explanatory power for dissolved phosphorus 

(SRP) whereas models including the length of connected wetland had higher explanatory power 

for total phosphorus (TP, Figure 3.10). Given that dissolved forms move more freely through 

groundwater pathways, it makes sense that the entire area of a connected wetland will influence 

SRP. On the other hand, overland flow has been found to be the primary transport mechanism for 

particulate forms, such as TP (Banner et al. 2009, Hoffman et al. 2009b). Therefore, the length of 

riparian wetlands may act as a barrier reducing overland transport. This agrees with previous 

studies which show that overland flow is reduced considerably by wetlands (Weller et al. 1996) 

and that the spatial arrangement of riparian zones, particularly gaps between patches that 

function to reduce flow, is important for material flux (Weller et al. 1998).  

 In contrast to phosphorus, our analyses of nitrogen show that all three measures of 

wetland presence had similar model explanatory power. Groundwater pathways allow for the 

transport of dissolved substances over long distances. Because nitrogen is transported in 

dissolved forms primarily through subsurface pathways (Peterjohn & Correll 1984, Walsh and 

Kunapo 2009), wetland proximity may be less important for nitrogen concentrations in lakes. 

Previous studies report that nitrogen removal in wetlands varies with hydrologic flushing, 

showing low removal in periods of high flow (Johnston et al. 1990, Jordan et al. 2003). Because 

our samples were taken in the spring, it is possible that frequent rain events flushed nitrogen 

through the system (Inamdar et al. 2009).  
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 In addition to nutrients, which are commonly included in analyses of wetland processing, 

we compare the ability of wetland measures to explain patterns in a variety of other water 

chemistry variables. Our results show no appreciable difference in predictive capacity for models 

of reactive and conservative ions when wetlands are measured by extent, connected area or 

connected length. These results are in agreement with those from Johnston et al. (1990), who 

found that specific conductance, a surrogate for dissolved ions, was related to measures of both 

wetland extent and proximity.  

 

Riparian zones 

 Riparian zone dynamics are another mechanism affecting the relationship between LULC 

and ecosystem responses. Riparian LULC has been shown to be important for both surface and 

subsurface transport of materials to streams and lakes (Peterjohn and Correll 1984, Gregory et al. 

1991, Groffman et al. 2002, Groffman et al. 2004). We show that some lake water chemistry 

variables were predicted as well from either catchment scale LULC or riparian LULC, and in 

some cases, riparian LULC had higher explanatory power than catchment LULC. Specifically, 

the riparian only model of SRP showed greater explanatory power over the GW legacy model. 

Because SRP shows a stronger relationship with wetland area than wetland length, we believe 

that this is more an indication of wetland effects on SRP than riparian effects in general. On the 

other hand, the riparian only model of Si shows a riparian signal not present in the GW legacy 

models investigating wetlands. Recent work shows that biological processing of Si by plants is 

an important source of Si to freshwater systems (Derry et al. 2005, Struyf et al. 2009).Therefore, 

it is possible that the relationship between riparian LULC and Si we observe is due to 

biogeochemical cycling by riparian vegetation (Struyf et al. 2009).  
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 Riparian zones are recognized primarily for reducing nonpoint source pollution (Gregory 

et al. 1991, Groffman et al. 2002, Craig et al. 2008). Results from our comparison of individual 

mechanisms (GW legacy, wetland processing, and riparian LULC) with models combining these 

mechanisms provides further evidence that riparian zones are important to relate LULC to 

aquatic ecosystem characteristics. We show that when mechanisms are combined to offer a more 

holistic view, the explanatory power of the models increased.   

 Our study also provides a comparison across water chemistry variables not often included 

in studies relating LULC to aquatic ecosystem dynamics. In fact, we only found two other 

studies reporting results linking conservative ions to landscape features (Ryszkowski et al. 1999, 

Wayland et al. 2002). In a study of biogeochemical barriers within agriculture fields, termed 

shelterbelts, Ryszkowski et al. (1999) show the utility of using Ca and Mg as conservative 

tracers for comparison with concentrations of nutrients under trees that have been planted as 

windbreaks. Our results relating conservative ions to catchment and riparian LULC show that 

diffuse transport of these chemicals through groundwater pathways overwhelms a weaker 

relationship found with riparian zones. Future studies of landscape connections to aquatic 

ecosystems can benefit from the use of naturally occurring conservative ions as tracers.  

 To date, there have been numerous methods proposed to incorporate riparian zones, that 

mainly focus on defining the most appropriate spatial extent of measurement (Baker et al. 2006, 

van Sickle and Johnson 2008). In contrast, our emphasis was to model the impact of the riparian 

zone (however it is defined) jointly with groundwater and wetland influences. Our results 

support the early sentiment of Gregory et al. (1991) who say: 
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 “The importance of riparian zones far exceeds their minor proportion of the land 

base because of their prominent location within the landscape and the intricate 

linkages between terrestrial and aquatic ecosystems.”   

We built our models hierarchically by adding riparian processes to the model of GW legacies in 

an attempt to mathematically express the important role of riparian zones.  

 

Conclusions 

 This study investigated the roles of groundwater pathways, wetland processing and 

riparian zone dynamics for relationships with lake water chemistry. We offer insights about how 

groundwater interacts with land transformation to create legacy effects. We combine 

groundwater flow dynamics with other mechanisms known to influence relationships between 

LULC and lake water chemistry, namely wetland and riparian zone processing, to offer a more 

complete model of land-water interfaces. Our results show that incorporating all of these 

mechanisms is important for modeling lake water chemistry and that looking at them 

individually can lead to misinterpretations (e.g., SRP with riparian versus wetland) and lower 

predictive power overall. Through the use of naturally occurring conservative tracers, we provide 

a basis for comparison against nutrient relationships to the landscape. By categorizing the 

chemistry variables by their key characteristics of solubility and reactivity, we are better 

equipped to explore other mechanisms that are important for the physical transport and 

biogeochemical transformations of these chemicals.  
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Table 3.1. Size and water chemistry characteristics of study lakes, including minimum, 
maximum, mean, and coefficient of variation. Phosphorus species include total phosphorus (TP), 
and soluble reactive phosphorus (SRP). Nitrogen species include total nitrogen (TN), nitrate 

(NO3), and ammonia (NH4). Reactive ions include calcium (Ca), silica (Si), and sulfate (SO4). 
Conservative ions include chloride (Cl), potassium (K), magnesium (Mg), and sodium (Na).  

Lake characteristic Minimum Maximum Mean CV 

Lake area (km2) 0.06 2.60 0.65 0.93 
Phosphorus 

TP (µg/L) 5.4 45.0 24.1 0.37 
SRP (µg/L) 0.33 3.45 1.15 0.56 

Nitrogen 
TN (mg/L) 0.53 1.85 0.94 0.30 

NO3 (mg/L) 0.00 1.03 0.20 1.20 

NH4 (µg/L) 3 143 36 0.96 
Reactive Ions 

Ca (mg/L) 16 92 52 0.38 
Si (mg/L) 0.00 5.61 1.53 0.88 

SO4 (mg/L) 1.9 88.4 26.1 0.83 
Conservative Ions 

Cl (mg/L) 2 242 66 0.90 
K (mg/L) 0.58 7.53 2.09 0.57 
Mg (mg/L) 3.9 24.7 15.4 0.26 

  Na (mg/L) 0.9 77.3 24.0 0.88 
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Figure 3.1. Map showing the Huron River Watershed within the state of Michigan, including 
detailed hydrography features along with outlines for the cities of Ann Arbor and Ypsilanti.  
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Figure 3.2. Map showing land use/cover (LULC) from 1938, 1955, 1968, 1978, and 1996 within 
the Huron River Watershed. 
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Figure 3.3. Surficial geology zones and optimized hydraulic conductivity (K, m/d) values used in 
the final model. Glacial Outwash = glacial outwash sand and gravel and postglacial alluvium. Ice 
Contact = ice contact outwash sand and gravel. Percent of each type within the Huron River 
groundwater sourceshed (HRGW) upstream of Ypsilanti, and the mean percent for the study lake 
groundwater sourcesheds are shown. The HRGW is dominated by glacial outwash. The study 
lakes had similar geology as the HRGW, in general. 
 
 

 
 

Surficial geology type K (m/d) 
% within 
HRGW 

Mean % within lake 
groundwater sourcesheds 

 Glacial Outwash 7.3 39.9 46.9 
 Glacial Till - Fine 8.2 3.2 0.9 
 Glacial Till - Coarse 9.4 1.2 1.0 
 Ice Contact 9.4 5.8 24.9 
 End Moraine 14.6 31.4 15.6 
 Glacial Till - Medium 14.6 16.8 7.7 
 Water 500 1.6 2.9 
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Figure 3.4. Observed versus predicted water levels (m) recorded for 15,581 wells used to 
estimate values for hydraulic conductivity (K). The line of best fit and coefficient of 
determination are shown.  
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Figure 3.5. Steps to create a land use legacy map. Step 1: The simulated groundwater travel 
times in years were calculated for each model location down gradient to a discharge point (e.g. 
river) using Darcy’s Law, as detailed in Methods. Step 2: Groundwater travel time year was 
reclassified to bracket times with available LULC data (in this case, 1996, 1978, 1968, 1955, 
1938, or Pre-1900). Step 3: LULC type for each cell was assigned using time categories from 
step 2. Step 4: LULC from 1996, showing areas that differ with the legacy LULC with black 
cross-hatching.  
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Figure 3.6. Groundwater travel times reclassified to represent the 5 time steps of land cover data. 
Time classes span from midpoint to midpoint around a specified year. Percent of each 
groundwater travel time category within the Huron River groundwater sourceshed (HRGW), and 
the mean percent for the study lake groundwater sourcesheds are shown. The HRGW is 
dominated by groundwater needing less than 10 years to travel from it’s source to a surface water 
delivery pathway. The study lakes had similar groundwater travel times as the HRGW, in 
general. 

 
 

Groundwater 
travel time 

Assigned 
to time step 

% within 
HRGW 

Mean % within lake 
groundwater sourcesheds 

 0-9 years 1996 53.1 62.1 
 9-23 years 1978 22.5 19.1 
 23-34 years 1968 8.8 6.9 
 34-41 years 1955 3.6 2.9 
 41-96 years 1938 9.6 7.1 
 >96 years Pre-1900 2.4 1.8 
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Figure 3.7. Land use/cover within the model area showing A) 1996 and B) legacy land use/cover.  
Percent of each LULC type within the Huron River groundwater sourceshed (HRGW), and the 
mean percent for the study lake groundwater sourcesheds are shown. Maximums are shown in 
bold. The HRGW is dominated by urban LULC type in 1996, but agriculture dominates in the 
legacy map. The study lakes had similar LULC representation as the HRGW, in general.  
 
 

 
 
 

 1996 Legacy 

  
% within 
HRGW 

Mean % within 
lake groundwater 

sourcesheds 
% within 
HRGW 

Mean % within 
lake groundwater 

sourcesheds 
 Urban 27.0 22.2 22.8 18.9 
 Agriculture 25.4 13.7 29.7 16.3 
 Open 17.2 18.6 16.3 18.5 
 Forest 17.9 20.9 19.1 22.2 
 Water 5.1 14.4 5.1 13.9 
 Wetland 7.4 10.3 7.0 10.1 

 
  

B) Legacy land use/cover A) 1996 land use/cover 
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Figure 3.8. Areas within the Huron River groundwater sourceshed (HRGW) with differences 
between 1996 LULC and legacy LULC. The model boundary is indicated with the bold black 
line. Study lake groundwater sourcesheds are indicated with dark grey lines and light grey 
shading. Red areas indicate where legacy land cover differs from 1996 land cover (10.5% of the 
area within the HRGW, 8.4% of the area within the study lake groundwater sourcesheds). 
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Figure 3.9. Coefficients of determination (R
2
) from regression models of total phosphorus (TP), 

soluble reactive phosphorus (SRP), total nitrogen (TN), nitrate (NO3), ammonia (NH4), silica 

(Si), calcium (Ca), sulfate (SO4), chloride (Cl), potassium (K), magnesium (Mg), and sodium 
(Na) using correlative legacy models from Chapter 2, LULC characterized by the current time 
step (current LULC), and LULC characterized by the legacy map. Asterisks indicate model 
chosen by AIC weights. 
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Figure 3.10. Coefficients of determination (R
2
) from regression models of total phosphorus 

(TP), soluble reactive phosphorus (SRP), total nitrogen (TN), nitrate (NO3), ammonia (NH4), 

silica (Si), calcium (Ca), sulfate (SO4), chloride (Cl), potassium (K), magnesium (Mg), and 
sodium (Na) using LULC characterized by the GW legacy models measuring wetlands in three 
ways: all wetlands in the watershed (GW legacy), area of wetland connected to rivers, and 
length of wetland connected to rivers. Wetland area includes the entire area of the wetland 
polygons which connect to rivers. Wetland length differs from wetland area by only accounting 
for the area of the connected wetland polygons within a 50m buffer of rivers.   

 
 

 
 
  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TP SRP TN NO3 NH4 Si Ca SO4 Cl K Mg Na

R
2

GW Legacy
Wetland Area
Wetland Length

NO3 NH4 SO4 

R2 



119 
 

Figure 3.11. Coefficients of determination (R
2
) from regression models of total phosphorus 

(TP), soluble reactive phosphorus (SRP), total nitrogen (TN), nitrate (NO3), ammonia (NH4), 

silica (Si), calcium (Ca), sulfate (SO4), chloride (Cl), potassium (K), magnesium (Mg), and 
sodium (Na) using correlative legacy models from chapter 2, LULC characterized by the legacy 
map, LULC within the 50m riparian zone buffer only, and legacy LULC combined with LULC 
from the 50m riparian zone buffer. Asterisks indicate model chosen by AIC weights. The 
asterisk for nitrate indicates the correlative legacy model.  
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