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ABSTRACT

Metzger, Robert W. , M. S. , Michigan State University, March 1957.

DEVELOPMENT OF REFINED MATHEMATICAL PROGRAMMING METHODS

FOR INDUSTRIAL ENGINEERING PROBLEMS. Major Professor: W. P.

Smith.

Mathematical programming is presented in a broader concept than

linear programming and as one facet of the broader field of Operations

Research.

The methods of mathematical programming namely; the modified dis-

tribution method, Vogel's approximation method and the simplex method are

presented in an easy to understand step by step manner, and further illus—

trated via typical though simple problems. Situations of degeneracy, unequal

supply and demand, and other miscellaneous restrictions are included in the

discussion of the distribution methods. Degeneracy and types of algebraic

relationships are included in the discussion of the simplex method.

Two larger problems, a production planning and a manufacturing problem

are presented and solved. The problems are formulated and solved in a logical

step by step manner to further illustrate the application of mathematical

programming in solving industrial problems. The production planning problem

is the first of its kind to be presented in its entirety.

Mathematical notation is simplified and minimized. No attempt is made

to prove the methods and their various theorems but liberal references are

provided for the student who wishes to pursue the subject.

The thesis is summarized by discussing the advantages, prerequisites

and limitations of mathematical programming as well as typical problem areas.

In the conclusions several possible areas for further research are presented

and discussed.
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MATHEMATICAL PROGRAMMING APPLIED TO

INDUSTRIAL ENGINEERING PROBLEMS

I. INTRODUCTION

Mathematics has always been a useful tool to industrial engineers. Yet,

until recently the full capabilities of certain mathematical techniques in solving

industrial engineering problems have not been realized. This thesis presents

a new and powerful tool called mathematical programming which offers a new

perspective in solving many industrial problems.

Mathematical programming is one facet of the larger field of operations

research. Operations research refers to the application of the scientific

methods of the physical sciences to analyzing and solving complex business

problems. Operations research, as such, had its beginning during World War

II when scientists were employed by the British armed forces to apply their

scientific knowledge to problems of strategy and tactics.

In many respects it is unfortunate that the work of an early operations

researcher, Thomas A. Edison, fell into obscurity. Mr. Edison, while

chairman of the Naval Consulting Board during World War I, became involved

in various tactical problems.1 It is interesting to note how many of his

developments had to be rediscovered to reach their full usefulness in World

War 11. Operations research was more effective in World War II primarily

due to organization. The Naval Consulting Board was a group of civilian

advisors reporting to a civilian, the Secretary of the Navy. Whereas operations

research groups in World War II usually worked for and reported to an

operational command. Therein lies the chief reason for the wider use and

general acceptance of operations research results by command personnel

during World War 11.

During the post war period, operations research personnel, usually called

operations analysts, entered industry to apply their military proven methods

 

1Scott, Lloyd N. Naval Consulting Board of £13 United States, Government Printing Office, Washington. 1920.

See also Wm. F. Whitmore, ‘Edison and Operations Research, [ournal 91 £3 Operations Research Society 31

America. Vol. 1, No. 2, February, 1953. P. 83- 5.



to solving industrial problems. Unfortunately many of the results derived by

the early operations research groups were little more than results that could

have been achievedlby the application of good common sense. This factor plus

the often highly sophisticated and complicated notation and writing of operations

analysts caused management to summarily dismiss operations research as

just a new name for the same thing industry has been doing by committee for

years. This explains the generally slow acceptance of operations research in

American industry.

Operations research actually differs from anything industry has done in

the past, chiefly in method and approach to a problem. Operations research

requires an exacting statement of the problem. All the variables and factors

with their proper interrelationships must be included. The tools of operations

research include some very advanced mathematical techniques which make

precise formulation a prime requisite. When this becomes an established

habit, then the new viewpoint of operations research is possible in attacking

industrial problems.

This thesis will be limited to that portion of operations research called

mathematical or linear programming. The term mathematical programming

will be used throughout the thesis since it implies a broader concept than

linear programming.

Mathematical programming has been defined from time to time as

follows:

". . a method for picking a best choice when choices

exist. . . . a formal method of calculating the best

solution to a problem or situation where many solutions

or management decisions are 2possible, depending on

certain limiting conditions. "

". . . a number of new procedures which make it possible

for management to solve a wide variety of important

company problems much faster, more easily, and more

accurately than ever before. "

". . . is used to find the optimum relationship between

a number of interdependent variables where the inter-

relationships are algebraically linear. "4

 

2Ferguson, Robert O. , Linear Programmirg, American Machinst Special Report No. 389. McGraw- Hill

Company, 1955.

3Henderson, A. and Schlaifer, R. Mathematical Programming: Better Information for Better Decision Making,

Harvard Business Review. V. 32, No. 3. May-June, 1954. Pp. 73-100.

4601—353. M. , and Koenigsberg, E. Operations Research: Scientific Approach to Management, Chemical Week.

McGraw-Hill Company, May 21, 1955.

 

 



". . . the theory by which activities -- independently variable

and subject to certain restrictions -- related to each other

in linear fashion . . . are arranged to obtain maximum

results. "5

". . . methods of solving a general class of optimization

problems dealing with the interaction of many variables

subject to certain restraining conditions. "6

In essence then mathematical programming consists of several methods

used to find the optimum combination of variables interrelated in linear

expressions. In general the number of variables exceeds the number of

significant expressions.

This thesis will consider the two primary methods of mathematical

programming, namely the Distribution and Simplex methods.

The Distribution methods will be considered first, since these are the

easiest to understand and use. These methods are applicable to problems of

product distribution and to transport problems. Hence the name distribution

methods. It is important‘to note though, that these methods can be successfully

applied to other types of problems. However, in these cases the problem can

be abstracted into a type of distribution problem.

The Distribution methods are, in reality, three methods. They are:

1. Basic Distribution Method or "Stepping Stone"

method.

2. Modified Distribution Method.

3. Vogel's Approximation Method.

One of the earliest approaches to solving distribution problems using

formal mathematical methods appeared in 1941.,7 During World War 11

significant improvements in the solution methods occurred. In 1951

 

5
Ibis,

6Arnoff, E. L. The Application of Linear Programming to Production Engineering and Scheduling, ASME

Paper No. 54- A-223 presented at the Annual Meeting, November 28-December 3, 1954.

7Hitchcock, Frank L. The Distribution of a Product from Several Sources to Numerous Localities, Journal p_f

Mathematics a_nd Physics, Vol. 20, 1941; Pp. 224-230.



considerable advance was given to operations research and mathematical

programming by the Cowles Commission8 and particularly to the solution

10
The

Basic Distribution Method is properly credited to G. B. Dantzig. However,

of distribution problems by G. B. Dantzig9 and T. C. Koopmans.

the methods were still difficult for a non-mathematician to understand.

The "stepping stone" method devised by W. W. Cooper and A. Charnes 11

essentially presented Dantzig's method. However, the terminology was such

that the "stepping stone" method could be very easily understood by the

average person. The solution methods were somewhat improved in 1954 12

and fulxgther refined to the Modified Distribution Method which appeared in

1955.

The Modified Distribution Method, while it is based upon the "stepping

stone" method, so improved the computation procedure that it has supplanted

the "stepping stone" method. Therefore, the "stepping stone" method will not

be discussed here.

Vogel's Approximation Method 14 permits a much better initial solution

than can usually be had by any other means. Vogel's Approximation Method

with the modified distribution method permits more rapid hand computation

of problems heretofore only practical to solve with electronic computors.

 

8I<oopmans, T. C. , Activity Analysis 21' Production a__n_d Allocation, ed. , Cowles Commission monograph 13;

John Wiley and Sons, Inc. , 1951.

91bit. Part 4, Chapter XXIII.

10lbid. Part 2, Chapter XIV.

11Transportation Scheduling by Linear Programming. W. W. Cooper and A. Charnes. Proceedings of th_e -

Conference on Operations Research i_n Marketing; Case Institute, January, 1953. See also "The Stepping

Stone Metho-d-of Explaining Linear Programming Calculations in Transportation Problems. " A. Charnes and

W. W. Cooper, Management Science, Vol. 1, No. 1, October, 1954.

 

12

Henderson and Schlaifer. Op. cit.

13Ferguson, R. 0. Op, cit.

14Credited to Mr, W. R. Vogel, Conference Leader, Ordnance Management Engineering Training Program,

Rock Island Arsenal, Rock Island, Illinois, Material as yet unpublished.



The second primary method in mathematical programming, the simplex

method,15 while it is not quite as simple as the name may imply, is the more

general method of mathematical programming. The simplex method will be

presented with the geometric interpretation of the typical linear programming

problem. The simplex method is applicable to a wider range of problems

than are the distribution methods.

Two typical industrial problems, production planning and product

allocation are presented. One serves to illustrate an application of the

modified distribution method while the other is solved Via the simplex method.

The production planning problem presented herein is the first such

problem recorded in written form. The material presented includes the step

by step approach to such a problem. Information previously published dis-

cusses the general case of the production planning problem and nowhere has a

specific problem been developed in its entirety as the one presented here.

 

15Charnes, A. , Cooper, W. W. , and Henderson, A. An Introduction t_o Linear Programming. Iohn Wiley

and Sons, New York. 1953. P. 74.



II. MATHEMATICAL PROGRAMMING METHODS

The Modified Distribution Method, Vogel's Approximation Method, and

the Simplex Method will be presented here. The mathematics will be presented

along with suitable terminology. The methods themselves are presented here

in terms of a general statement of the problem. The two subsequent sections

of the thesis develop and present typical problems solvable with these methods.

Modified Distribution Method

The Modified Distribution Method, more popularly known as the MODI

method, is applicable to solving problems of product distribution from several

sources or factories to various destinations, either warehouses or customers.

First, the general distribution problem will be formulated, and then the

Modified Distribution method will be developed.

If we let:

Xij = number of product dispersed from the i'th source

to the j'th destination

cij = cost per unit to distribute from the i'th source

to the J'th dest1nat1on

Si = the supply (in units) at the i'th source

Dj = the demand (in units) at the j'th destination

i = (1, 2, . . . m) the sources

j = (1, 2, . . . n) the destinations

then the distribution problem may be formulated in two sets of relations.





Briefly this means that what is distributed from the i'th source must be

less-than or equal-to the available supply at that source. Similarily the

product received by the j'th destination must be less-than or equal-to the

demand at that destination.

The objective is obviously to disperse the product at a minimum cost.

Hence the objective is:

n

m

i _ . .
i=1 Cij Xij - m1n1mum

i=1

Thus the distribution problem is expressed in a system of relationships

with an objective function (total cost) to be minimized.

At this point, for the sake of clarity, the discussion will consider the

particular case where supply equals demand. The more general case of

unequal supply and demand will be considered later. The problem is then to

minimize

subject to the following

m

i=1xij=Si

n

Zx..:D

Fl 11 J

Obviously then

m I1

Si = E D-.=1 .

H

(
.
4 l
l

H

¢
_
i



The problem can be organized into a matrix array m by n in size.

This organization, commonly called a route table is as follows:

Table I. Distribution Matrix (Route Table)

 

 

 

 

 

 

      

To . Des tinations

Supply

From 1 2 n- 1 n

Sources

1 "11 x12 x1,n-1 "in s1

2 "21 "22 "2, n- 1 "2n 52

m xml xm2 xm, n- 1 1‘mn Sm

Demand D1 D2 Dn- 1 Dn Z131': Zsi  
 

The computational method then determines the values of the xij's that

will minimize costs and still satisfy the demand. In doing this, reference

must be made to the costs cij's which can be most easily presented in the

form of a cost table. This is done in the basic distribution or "stepping

stone" method. The Modified Distribution Method combines both the

distribution matrix and the cost table into one tabular presentation thusly:



Table II. Distribution Matrix

(Route and Cost Tables Combined)

 

 

    

 

    
 
   

 

     

 

    

 

 

           
In this manner all the relevant information is readily usable in one

tabular presentation.

A Problem

The Modified Distribution Method can best be presented via a simple

problem. Consider an organization with warehouses in three locations,

Flint, Janesville, and St. Louis.

to most economically distribute a product from these three warehouses

(sources) to four customers (destinations).

An order dispatcher must determine how

following quantities of this product in stock:

‘ Warehouse Location
 

Flint

Janesville

St. Louis

Supply,

1 5 0 Units

40 Units

80 Units
 

270 Units

To Destinations

Supply

From 1 2 n

Sources 011 C12 Cm

1 (3‘11 x1n 81

C21 c22 -. °2n

2 321 l _ X22 X211 52

L_, ,__. _ ._

°m1 cm2 _ cmn _

m xml , xm2, xmn Sm

Demand D1 D2 Dn £8.43),-

The warehouses have the

10
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The four customers have the following requirements:

 

 

Customer Location Demand

Chicago 90 Units

Cleveland 70 Units

Dayton 50 Units

Minneapolis 60 Units

270 Units

It costs $. 10 per unit per mile to transport this product. The problem

is then -- what warehouse should ship how much product to what customers

so that the total distribution costs are minimum ?

The first step is to determine the distribution costs per unit (cij's)

from each of the three warehouses to each of the four customers. The

mileage between warehouses and customers can be obtained from a map or

suitable route tables and is as follows:

Table III. Mileage Chart

 

 

 

 

To

From Chicago Cleveland Dayton Minneapolis

Flint 270 230 310 690

Janesville 100 $50 400 320

St. Louis ~ 300 540 350 570        

Since it costs $. 10 per unit per mile to distribute this product then the

distribution costs per unit will be as follows:
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Table IV. Shipping Costs Per Unit (cij's)

 

 

 

 

      

To

From Chicago Cleveland Dayton Minneapolis

Flint $27. 00 $23. 00 $31. 00 $69. 00

Janesville $10. 00 $45. 00 $40, 00 $32. 00

St. Louis $30. 00 $54. 00 $35. 00 $57. 00

 

Mathematically the problem can be expressed as follows:

xi. = number of units dispersed from the i'th warehouse to

J the j'th customer

Cij = cost per unit to ship from the i'th warehouse to the

j'th customer

Si supply (in units) at the i'th warehouse

D1 = requirement (in units) of the j'th customer

1 = (1, 2. 3)

j = (1, 2, 3, 4)

The problem is then to minimize the distribution costs

+27x11 +23x1)2 +31x13+69x14 +10x21 +45x22 +40x23 +32x24

+SOX31 +54X32 +35X33 +57xg’4 = minimum

subject to the following restraints:

and

SI: 150 = X11 +X12 +X13 +X14

82: 40 = x21+x22 +x23 +x24

S3: 80 '-' X31 +X32 +X33 +X34

D1: 90 = x11 +x21 +x31

D2: 70 = X12 +X22 +X32

D3: 50 = x13 +x23 +X33

D4: 60 = x14+X24+X34
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This information can be organized into a distribution matrix as shown

in Table V.

Table V. Distribution Matrix

 

 

    

 

    

      
  

 

 

To

From Chicago Cleveland Dayton Minneapolis Supply

‘ - 27 - 23 -31 - 69

Flint
150

- 10 ~45 - 40 - 32

Janesville
40

- 30 - 54 - 35 - 57

St. Louis
80

2'70

Demand 90 '70 50 60 2'70        
 

It is important to note here that the costs are expressed as negative

numbers. The techniques of mathematical programming are algebraically

maximizing methods. Algebraically maximizing a negative quantity will

minimize the absolute value of that quantity. Hence to minimize, the

objective function is preceded by a negative sign. Mathematically this is:

minf (x) = max -{ (x)

The first step is to establish an initial solution.

may be an arbitrary one or very carefully obtained by inspection.

the better the initial solution the fewer the steps required to obtain the

This initial solution

Obviously

optimum answer.

For this discussion a rather arbitrary initial solution commonly called

the northwest corner initial solution will be used. The northwest corner

solution is one of arbitrary assignments beginning at the upper left corner

of the matrix and assigning consecutively to the right and down until all assign-

ments have been made. The northwest corner initial solution for this

problem is shown in Table VI.
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Table VI. Northwest Corner Initial Solution

 

 

     
   

 

      

 

    

 

To

From Chicago Cleveland Dayton Minneapolis Supply

-27 -23 ' -31 ' -69

Flint ’ 150

- 10 -45 -40 -32

Janesville .‘ 1 ' 40

- 30 - 54 - 35 - 5 '7

270

Demand 90 7O 50 60

2'70        
Several parts of Table VI can be named for easy reference. The supply

and demand figures are commonly referred to as rim conditions. The circled

numbers (assignments) are called stones. The squares containing a circled

number (an assignment) will be called stone squares. The squares with no

circled numbers (where xij = 0) will be called water squares. This terminology

is derived directly from the "stepping stone" method. Basically then the

problem is to move about the stones (circled assignments) until the distribution

costs are minimum.

. If row and column designations are used rather than specific customer

locations then the discussion will be more general. The common designation

is Ri for row and Kj for column with the subscript denoting the respective

row and column. Thus for this problem the row designations are R1, R2 and

R3 and the column designations are K1, K2. K3 and K4 respectively.

The initial step is to compute the various R and K values. To do this

one value must be assumed. In every case R1 will be set equal to zero.

This is rather arbitrary and it makes no particular difference what value is

assumed for any R or K. However for consistancy here R1 will always be

zero.



15

With R1 established then the remainder of the R and K values may be

computed by the following relationship:

R1 + Kj = cij (at a stone square)

Several R and K values will be computed to clarify this. Since there is

a stone (assignment) at R1K1 (see Table VI) then K1 can be computed.

Therefore:

R+K=c
1 1 11

There is also a stone at R1K2. Therefore:

R1 + K2 = C12

and similarly

R2 + K2 "' ‘322

R2 + K3 = c23

R3 +K3 . c33

R+K
4 G343

This exhausts the occurrence of stone squares and will permit all the

R and K values to be computed. If the initial solution is improperly established

or the problem is degenerate the R and K values cannot be computed. This

situation will be discussed later. The statement R1 + K4 = CM is not true

since R1K4 is not a stone square.

Note that the subscript notation in the preceding equations will double

check. The subscripts for c are first row and then column. In every case

the R subscript and the first subscript of c are the same and the K subscript

and the second subscript of c are the same. This guarantees that the cost

considered is the one at the point of intersection.

The respective costs can be read directly from the matrix and are:

011 = -27 c23 = -40

c12 = -23 C33 = --35

cm = -45 C34 = -57
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Since R1 is zero the successive row and column values may be calculated

from the preceeding six equations. The R and K values are:

R1 : 0
K1 = '27

R2 = ~22 K2 = -23

R3 = ‘17 K3 = -18

K = -40
4

It does not hold true that the R and K values will always be negative.

They may be positive, negative or zero depending upon the problem. The-

distribution matrix with the R and K values included is shown in Table VII.

Table VII. Initial Solution

R1 and Kj Values Established

 

 

    
 
 

 

 

   
     

 

   
 

 
 

 

To

K1 = -27 K2 = -23 K3 = -18 K4 2 -40 Supply

From

-27 -23 -31 -69 0

R1 = o 15

-10 -45 -40 -32

R2 :22 ® 6)) . 40

-3o -54 -35 I -57 '

270

Demand 90 '70 50 60

2'70        
 

Practice at computing Bi and Kj values will show that it can usually be

done mentally rather than writing out the equations.

With all the R's and K's computed the next step is to evaluate each

water square. This is accomplished in the following manner:

Ri + Kj - cij (COST) =

If the result is positive then no improvement possibility exists in that

water square. If the result is negative (-) then further improvement is

possible.
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Each water square can then be evaluated as follows:

 

 

Water Square Improvement

R1K3 R1 + K3 ' c13 =

O + (-18) - (-31) = +13 No

R1K4 R1 + K4 - c14 =

0 + (-40) - (-69) = +29 No

RzK1 R2 + K1 - c21 =

(-22) + (-27) - (-10) = -39 Yes

R2K4 R2 + K4 - c24 =

-22 + (-40) - (-32) = -30 Yes

R3K1 R3 + K1 - C31 =

-17+(—27)- (-30) = -14 Yes

R3K2 R3 + K2 " (:32 =

-17 + (-23) - (-54) = +14 No

This indicates that three water squares show improvement possibility.

Any of these three could be selected to improve the solution. However if

the water square with the most negative evaluation is selected then the best

solution will generally be obtained most rapidly.

Water square R2K1 has the most negative evaluation and will be used

to improve the solution.

The next step determines the changes that must occur to improve the

solution by making square R2K1 a stone square. For every unit that will be

assigned to square R2K1 (shipment from Janesville to Chicago in this

particular problem) one unit must be removed from square RlKl’ one unit

added to square Rle and one unit removed from square R2K2° If this

were designated by plus and minus signs it would appear as in Table VIII.

The "X" in square R2K1 merely serves as a reminder that this is the water

square being considered.
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Table VIII. Changes in Initial Assignments

 

 

To

K s -27 K a -23 K = -18 K4 8 -40 Supply

- * A fi-

-27 -23 I «if -69

150

-40 -32
R2 3 -22 +X L_-10_.JJ, -45 - ~ 40

R3 = -17 63 ~ 80

270

From

 

   

 

 
 

 

 

 

    
 

 Demand 90 70 50 60 2'70     
 

Another way to look at the changes that must occur in the solution is as

follows;

Starting with the selected water square and moving horizontally or

vertically (as a rook moves in chess) trace a closed path, stepping only on

stones, that returns to the selected water square. The arrows in Table VIII

show this path. Assign alternate (+) and (-) signs along this path beginning

with a (+) in the water square. Note that at every stone square stepped on a

right angle turn was made.

If the distribution matrix has been properly formulated then one and

only one such closed path exists for any water square.

The next step is to determine how many units may be moved. It makes

good sense to change as many units as possible. The largest amount that

can be changed is the smallest stone at a negative place (-) in the closed path.

In this case ten units is the most that can be changed. This quantity is then

added or subtracted from the other squares in the closed path according to

the assigned plus or minus signs.
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Table VIIIa. Changes in Initial Assignments

 

 

  

 

    

 

   
  

 

 

To

K1 8 -27 [(2 = —23 K3 s .-18 K4 2 -40 Supply

From

- f -27 + -23 -31 I -69

R1 "' ° , 150

+ —-—— _ _

-1o -45 -4o -32

“2"” 0 es ‘ 40e——.

l -30 I -54 I - -35 -57

a3 = -17 _ (20 > 80

- 27o

Demand 90 70 50 60 270       
 

The changes are then shown in Table VIIIa. Note that the initial

assignments have been crossed out and the new assignments made. Note also

that the rim conditions (supply and demand figures) are still met. Making

this change essentially involved adding and subtracting the same quantity

from each of two rows and two columns, thereby leaving the rim conditions

unchanged.

This improved solution may be checked to determine the amount of

improvement attained.



This improved solution shows a savings of $390. 00 over the initial

Initial N. W. Corner Solution
 

 

 

  

Square No. Units Cost/ Unit

RlKl 90 $27. 00

RIKZ 60 23. 00

RZKZ 10 45. 00

R2K3 30 40. 00

R3K3 20 35. 00

R3K4 60 57. 00

First Improved Solution

m No. Units Cost/ Unit

RlKl 80 $27. 00

R1K2 70 23. 00

RZKI 10 10. 00

R2K3 30 40. 00

R3K3 20 35. 00

R3K4 60 57. 00

Total Cost

$2, 430. 00

1, 380. 00

450. 00

1., 200. 00

700. 00

3, 420. 00

 

$9, 580. 00

Total Cost
 

$2,160.00

1,610.00

100.00

1,200.00

700.00

3,420.00

 

$9,190.00

20

N. W. Corner Solution. . Note that this amount is exactly equal to the number

of units moved times the water square evaluation for square R1K2.

RK
1 2

Water square evaluation

Number of units moved

-39

10

Net savings by improvement $390. 00
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Hence the water square evaluation can be used to predict the amount of

improvement step by step.

These are essentially the steps required in the Modified Distribution

Method. This iterative process is continued until all water square evaluations

are positive or zero, at which time the optimum solution is at hand. The

problem discussed here had balanced rim conditions and was not degenerate.

These two situations will be considered now.

Unequal Supply and Demand- When supply exceeds demand or vice versa,

it is desirable to allow the mathematics to determine which source retains

some of its supply or which customer must be short on his order. To do this

arbitrarily might defeat the solution to the problem.

This condition is easily accomplished if we consider the same problem

as above with the supply at Janesville increased to 55 units. The problem

then appears as in Table IX. The northwest corner solution indicates that 15

units will always remain in the St. Louis warehouse.

Table IX. Distribution Problem

Unequal Supply and Demand
 

 

        

 

        

 

    
    

 

To

From Chicago Cleveland Dayton Minneapolis Supply

-27 - 23 - 31 — 69

Flint 150

- 10 -45 -40 -32

55

Janesville

-30 -54 -35 -57

‘ 80

St. Louis ®

285

Demand 90 '70 50 60 2'70       
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It would be better if the problem were set up to allow the mathematics

to determine which warehouse retains a portion of its supply. This can be

accomplished by inserting a dummy customer with a demand of 15 units.

This will balance the rim conditions.

Table X. Distribution Problem

Balanced Supply and Demand

 

 

          

 

          

 

          

 

 

To

From Chicago Cleveland Dayton Minneapolis Dummy Supply

~ 27 ~ 23 ~31 - 69 0

150

Flint

- 10 ~45 -40 - 32 0

55

Janesville

~30 ~54 - 35 ~57 0

80

St. Louis @ ®

285

Damand 90 ’70 50 60 15 285
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The cost factors for the dummy customer are zero, since the dummy

customer represents a fictitious demand for units that will in reality remain

in a warehouse. In certain situations it may be desirable to insert inventory

costs for the various warehouses in the dummy column rather than zeros.

The problem will then minimize distribution and inventory costs.

Now that the problem is set up the modified distribution method may be

used to obtain the optimum answer.

Much the same approach is used when demand exceeds supply. Here

a dummy warehouse (row) is established and the problem developed in much i!

i.

the same manner as discussed above.

Occasionally it may be impossible to ship from a warehouse to a certain

customer. When this situation arises then the cost of shipment between the

two is considered as -M. The symbol ~M being defined as so large that it

dominates all else in the problem. Hence that shipment is mathematically

factored out of the problem.

This added technique permits a wide range of management restrictions

to be considered in a problem.

Degeneracy. This occurs in mathematical programming problems when

the problem begins to cycle (i. e. , return to the same solution), or when

an infinite number of steps are required to obtain an answer or when the

solution method begins to collapse before an optimum answer is obtained.

Obviously, all of these conditions can occur when errors are present in the

work. However they can also occur due to the nature of the problem.

In distribution problems degeneracy is most apparent when the rim

conditions are similar. Consider the previous problem with slight

modification in rim conditions as shown in Table XI.
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TABLE XI. DISTRIBUTION MATRIX

A DEGENERATE PROBLEM
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The initial northwest corner solution would then be as follows:

Table XII. Degenerate “Distribution Problem

An Initial Solution
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To

From Chicago Cleveland Dayton Minneapolis Supply

~ 27 ~ 23 ~31 - 69

Flint 160

~ 10 ~ 45 ~40 ~ 32

Janesville ® 40

~ 30 ~ 54 ~ 35 ~ 57

St. Louis 80

280

Demand 90 70 40 80 280   

The degeneracy would be evident when attempting to establish Bi and K.

J

values. If R1 = 0 is assumed then K1 and K2 can be determined. Here it is

impossible to proceed further.

west corner solution is missing. Actually the problem matrix (Table XII)

can be partitioned into three parts as it now stands.

Note that the stair step pattern of the north-

The degeneracy can be resolved by inserting zero stones (0) wherever

needed. This has no effect upon the real problem but does afford a useful

gunmick to permit solution of the problem.
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Now the remaining Ri and Kj values may be computed.

Actually there is considerable lattitude as to the placement of the zero

stones. However only the correct number of stones may be used. It can be

seen from the previous problems that m + n ~ 1 represents the number of

stones or assignments. If less than m + n - 1 stones exist then the problem

is degenerate.16 This applies similarly for any step in the solution method.

When more than m + n ~ 1 stones exist usually it implies that an error has

been made.

Alternate Solutions. The modified distribution method permits very

rapid evaluation of alternate solutions by way of the water square evaluations.

a
‘
A
-
e
—
s
r
-

:
6

The economics of alternate courses of action can be quickly evaluated for

both equally optimum or less-than-optimum solutions. The water square

evaluations predict the per unit increase or decrease in costs for any change

in the solution. Obviously then when one or more zero water square

evaluations exist in a final solution then many equally optimum alternate

solutions exist for the problem.

If for some reason management says that a particular solution cannot

be carried out, then an alternate solution can be developed. The difference

in costs resulting from such a decision is readily available and management

has then a concrete cost value for that decision. This presents some very

interesting and most useful information for management.

Summary. The modified distribution method presents a very simple

and useful means to solving distribution type problems. It is significant to

note that, while costs were used throughout the discussion, wherever the

word cost appeared the word profit could be inserted. Obviously the rational

executive wishes to maximize profits. Hence profits would be expressed as

positive numbers. This handling of costs as negative and profit as positive

numbers involves exactly the same mathematics to minimize costs or maximize

profits.

 

16See Dantzig. G. 8. Application of the Simplex Method to a Transportation Problem in Activity Analysis of

Production and Allocation, p. 360.
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Distance and time are two other factors that can conceivably be used in

distribution type problems.

It is entirely possible to have problems with both cost and profit

elements. Here the mathematics is unchanged and the optimum solution

will both maximize profits and minimize costs.

The steps of the modified distribution method can be summarized as

follows:

1. Set up the problem distribution matrix.

2. Balance the rim conditions (supply and demand).

3. Establish initial solution.

a. N. W. corner solution.

b. Inspection solution.

Note: The number of stones = m + n ~ 1

4. Establish R and K values. R1 = 0 '

R + K = Cost or profit at an intersecting stone square.

a. Resolve degeneracy as may be necessary with

zero stones (0).

5. Evaluate each water square.

R + K - (Cost or profit of water square)

a. If above is positive (+) then no further improvement

is possible. ~

b. If above is negative (-) then there is further

improvement possible.

6. Select the water square with the greatest negative value.

a. Establish a closed path (as a rook moves in chess)

from this water square via stone squares back to the

same water square. There will be one and only one

such path.

b. Establish alternate plus (+) and minus (-) signs on

this path starting with a plus (+) in the particular

water square. This should still permit balanced

rim conditions to exist.



7.

8.

9.

10.

29

Determine the amount to be placed in the selected water square

as the smallest stone at a negative place on the closed path.

Place that smallest stone in the selected water square.

Make the desired changes by adding or subtracting that

selected amount from every stone in the path.

Re-establish R and K values as may be necessary.

Repeat steps 5 through 10 until all water square values are

plus (+) or zero (0).

Interpretation of the water square evaluations:

1. A positive number indicates the per unit increase in cost or

reduction in profit that would result when a stone for one

unit is placed in the water square and the necessary adjust-

ments are made in the program so as not to violate the rim

conditions.

A negative number indicates the per unit decrease in cost

or increase in profit that would result when a stone for one

unit is placed in the water square and the necessary adjust~

ments are made in the program so as not to violate the rim

conditions.

When one or more water square values are zero and the

remaining water square values are all positive numbers

(greater than zero) there exists one or more equally

optimum alternate solutions to the problem.

Mathematically speaking if two equally optimum alternate

solutions exist then an infinite number of equally optimum

alternate solutions exist for the problem.

Vogel's Approximation Method 17

Vogel's approximation method is a technique for developing an initial

solution to distribution problems. In most cases this method will develop a

much better solution than could be developed by inspection. The work

required to successfully solve distribution type problems is materially

reduced when a better initial solution is obtained.

 

17 , .

Credited to Mr. W. R. Vogel. This material will be included in Mathematical Programming fgr Industrial

g9 Systems Engineers by N. V. Reinfeld and W. R. Vogel (in preparation).
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Vogel's approximation method can be applied when the distribution

matrix is established and the rim conditions balanced. The steps of the

method are:

1. For each row and column determine the difference between

the two most algebraically maximum cost or profit elements.

2. Select that row or column with the greatest difference and

assign as many units as possible to the square associated

with the most algebraically maximum element (lowest cost

or highest profit square).

3. Cross out that row or column that has been completely

utilized or satisfied.

4. Redetermine the differences as in step 1, neglecting the

row(s) or column(s) crossed out.

5. Repeat steps 2 through 4 until all assignments have been

made.

6. Check the assignments and improve the solution with the

modified distribution method.

Several supplementary steps may be required when the same difference

occurs in two rows or columns or in a row and column. These steps are:

7. When the same difference occurs in a row and a column and the

cost (or profit) element at the junction is the lowest (or highest)

then assign as much as possible in that square. If the junction is

not the lowest cost or highest profit then assign in either the row

or column wherever the lowest cost or highest profit prevails.

8. When the same difference is obtained for two or more rows

or columns then assign wherever the lowest cost or highest

profit element prevails.

It is possible to recognize and resolve degeneracy when applying Vogel's

approximation method.

9. If, when an assignment is made both a row and column are

fulfilled simultaneously the problem is degenerate. Resolve

degeneracy by placing a zero stone (0) in a remaining square

in either the row or column.

Experience with Vogel's approximation method indicates that the

optimum answer is usually obtained immediately in smaller distribution type
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problems. In larger problems it is safe to estimate at least seventy-five per

cent of the work is eliminated by using this method to obtain an initial solution.

It is felt by the author that Vogel's approximation method is superior to

the method offered by Mr. H. s. Houthakker.18 Mr. Houthakker's method is

limited to a class of problems possessing a unique cost pattern. Vogel's

approximation method can be applied equally well to any type distribution

problem.

The Simplex Method

The origin of the Simplex Method is properly credited to G. B. Dantzig.19

Various extensions have been made notably by Beale, Charnes, Cooper, Lemke,

Orden and Wolfe which have made the simplex method rather mechanical and

reasonably simple to understand and use.

The simplex method is a method of algebraic manipulations used to

solve systems of linear equations where one solution of an infinite number of

solutions is desired. The method is much like Gauss' scheme (Doolittle's

method) for solving systems of linear equations. Several other methods

. notably the relaxation method exist for solving systems of linear equations but

these are beyond the scope of this discussion.

This section will present the Simplex Method much like that offered

by Charnes and Cooper 20 except that the terminology employed here will be

less rigorous. The proof of the method and its various theorems will not be

presented here for three reasons: First, the proofs are well developed in

numerous publications, notably in the work by Dantzig and Charnes and Cooper;

secondly, an understanding of the theorems and their proofs is unnecessary to

effectively use the Simplex Method; third, the author lacks the high degree of

mathematical maturity required to successfully accomplish such a venture

without virtually copying from other authors.

 ls

Houthakker, H. C. "On the Numerical Solution of the Transportation Problem", Iournal gt: t_h£ Ogrations

Research Society 3f America, Volume 3, Number 2. May, 1955. Pages 210- 214.

19Koopmans, et al. Chapter XXI, pages 339-347. Op. cit.

20Chames, Cooper, Henderson. Op. cit.
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The Simplex Method can best be illustrated via a typical manufacturing

problem. The general mathematical statement of the problem will be

developed then a specific problem will be solved.

If we let

j = (1, 2, --- n) the commodities to be produced

i = (1, 2, ~~~ m) the machine tools or manufacturing processes

xij = number of units of the j'th commodity produced on the

i'th manufacturing process

tij = time required to manufacture one unit of the j'th

commodity on the i'th manufacturing process

i = total available time on the i'th manufacturing process

Pij = the profit derived from the sale of one unit of the j'th

commodity that was produced by the i'th manufacturing

process

and an assumption is made that all that is produced can be sold, then the

rational executive would want to manufacture the commodities so as to

realize the greatest possible profit. Mathematically this would be stated:

to determine the xij's so as to maximize

p11 x11+p12 x12 +. . . . +pij xij+° . . . +pmnxmn

subject to the following:

t11 x11 +t12 x12 . . . . +tljx1j+ . t1n x1n T1

t21X21 + t22 x22° ' + t23 23 + t2n x2n T2

h

t-
l

t +t . .+ . . .
m1 xm1 + m2 xm2 +° ' mj Xmj tmn Xmn m
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This set of relationships could also be expressed:

.x..=’T.

n

m

2 t.
1j 1j 1

H
H

i

J

In essence the above says to determine how much of each commodity to

manufacture so that the maximum profit can be realized and at the same time

not exceed the available time on the various manufacturing processes. The

Simplex Method can accomplish this.

. A Problem. Consider a specific problem much like the above general

case.

A manufacturer wishes to determine how to produce two products

(A and B) so as to realize the maximum total profit from the sale of the

products. Both products are made in two processes (I and II). It takes 7 hours

in process I and 4 hours in process 11 to manufacture 100 units of product A.

It requires 6 hours in process I and 2 hours in process II to manufacture 100

units of product B. Process 1 can handle 84 hours of work and prbcess II can

take 32 hours of work in the schedule period.

If the profit is $11. 00 per 100 units for product A and $4. 00 per 100

units for product B then how much of product A and B should be manufactured

to realize the maximum profit. It is assumed that whatever is produced may

be sold and that setup time on the two processes is negligible.

While this is a relatively simple problem it will serve to illustrate the

simplex method. In terms of the previous symbolism the problem can be

expressed thusly,

j‘ = l, 2 the commodities to be produced

1 = Product A, 2 = Product B

i = 1, 2 the manufacturing processes

1 = Process 1, 2 = Process II

x1 = number of units (x100) commodity A produced

number of units (x100) of commodity B produced
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ti. = time to manufacture one unit (x100) of the j'th commodity

J on the i'th process

Ti = total available time on the i 'th process

pj = the profit derived from the sale of one unit (x100)

of the j'th commodity

The problem is then to determine the value of x1 and x2 so as to

maximize

11x +4x

1 2

subject to the following:

7x +6x2584

1

4x1+2x2

In order to simplify the notation, since this is a two variable problem,

£32

let

x1 = x

x2 = y

then the problem is to maximize

11 x + 4 y ' (2. 1)

subject to

7x+6y584 (2.2)

4x+2y£32 (2.3)

It can be seen that expression (2. 1) represents the profit or objective

function. Expressions (2. 2 and 2. 3) represent the manufacturing time for each

of the two processes.

The first step is to make equations of the above inequalities. This is

accomplished with the addition of slack variables. A slack variable can be of
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any size (as long as it is positive) and merely causes equality to exist. This is

accomplished as follows:

84 (2. 4)

32 (2. 5)

7x+6y+W
1

4x+2y+W2

In the real physical problem the slack variables W1 and W2 would

represent idle equipment time on process I and II respectively. If no profit

or loss were associated with these slack variables then the profit function

(2. 1) can be amended to:

11x+4y+0°W1+0'W2=max (2.6)

It is possible to consider the burden costs for idle equipment if that is

desired. For simplicity here no costs will be associated with idle equipment

time.

Note that the problem as it now stands involves four variables in two

equations. Mathematically this means that an infinite number of solutions

exist.

The second step is to organize the equations in matrix form to begin the

first simplex tableau. Table XIV illustrates the equations in matrix form.

Table XIV. Problem Equations in Matrix Form

 

 

x y W1 W2

84 7 6 1 0

32 4 2 0 1

      

The simplex method requires an initial solution as did the distribution

methods. Here the initial solution is the trivial or worst possible solution.
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In this case the initial solution would be to produce nothing, having wholly idle

time on the equipment, and realize no profit. This is shown in Table XV.

Table XV. Initial or Trivial

 

 

Solutiong

x y W1 W2

w1 84 7 6 1 0

W2 32 4 2 0 1

       
 

Now it is necessary to evaluate this solution to serve as a guide for

further improvement. To accomplish this the objective (profit) function must

be included. The objective function is written in a row above the position of

the variables.

At this point it would be well to name some of the parts of the matrix for

easier reference. This is shown in Table XVI.

Table XVI. Initial Solution

Objective Function Included

 

 

 

 

11 4 0 0 Objective row

x y W1 w‘l Variable row

0 W1 84 7 6 1 0

0 W2 32 4 2 0 1         
 

Bod of the Identity of

ma ix the matrix

A new row called the index row can now be developed along the bottom

of the matrix. The numbers in this row are developed by the formula:

Index number = 2 (number in the column X the corresponding

number in the objective column) ~ number

in the objective row at the head of the

column.
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This is used to develop index numbers in the constant column and the

body and identity of the matrix. The index number in the constant column

would be:

Index number [84 - 0 + 32 . 0] - 0

(Constant col. )

= 0

The index number for the first column of the body of the matrix is:

(7- 0+2- 0)-11Index number

= - 1 1

The completed index row is shown in Table XVII. This illustrates the

first simplex tableau with all the various parts named.

Table XVII. Initial Simplex Tableau

 

 

 

 

       
    
 

Objective row

11 4 0 0

.a‘

Variable row
x y W1 W2

-—+

The problem

0 W1 84 7 6 1 0 equations

)

0 W2 32 4 2 0 1

1 ‘- 1. 1

L

// V i Index row

0 ~11 ~4 O 0 5""

Objective column

Variable column Body Identity

Constant column

It will be noted that the index row in this problem is the negative of the

objective row. This holds true only when all the slack variables have zeros

in the objective column.
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The initial solution is then:

x =0

y =0

W1=84

W2=16

Total Profit = 0

The index numbers point to possible improvement in the solution. In

essence $11. 00 profit (represented by the ~11) is being lost by not producing

any x and $4. 00 profit is being lost by not producing any y. Since x shows the

highest profit potential (the largest negative number) it is selected to improve

the solution. The column in which x appears may then be called the key column.

Obviously to bring x into the solution (have it appear in the variable

column) either W1 or W2 must be removed from the solution. The variable

that is to be removed from the solution is determined by dividing the numbers

in the constant column by the corresponding positive non- zero numbers in the

key column. The row with the smallest quotient becomes the key row and the

variable in that row is removed from the solution. This can be verified by

standard algebraic methods as the change that will permit the largest x that

still satisfies the system of relationships.

The number at the intersection of the key column and key row is called

the key number. This is illustrated in Table XVIII.

Table XVIII. Initial Simplex Tableau

Key Row and Column Indicated

 

~11400

 

   

 

  

 

0 W1 84 7 6 1 0

1 Key row

( 0 W2 32 . 2 o 1 2V

0 -11 4 0 0

        

icy Number

Key Column
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Now the improved solution can be developed. This entails developing

a new tableau or mathematically it is changing the basis of the matrix.

The key row is divided by the key number and appears in the same

position as the main row of the new tableau. The variable (x) and its

objective number (11) of the key column replaces the variable (W2) and its

objective number (0) of the key row. The remaining variables in‘the variable

column and their objective numbers remain unchanged.

Table XIX. Main Row of New Tableau

 

11 4 0 0

 

x y W1 W2

Tableau I 0 W1 84 p 6 1 0

Q W2 32 4 2 0 1) Key row

  

 

 
  

         
 

 

 

Tableau II

11 x 8 1 1/2 0 1/4 Main row

        
 

For the sake of brevity the variable and objective rows are not

rewritten in succeeding tableaus.

The remaining numbers of the new tableau in the constant column,

body, identity and index row, are determined by the formula:

New no. = Old no. - Corres. No. x Corres. No.

(i key row of key column

Key number
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The number in row one in the constant column would be determined as

follows:

 

New number = 84 - 16 x 7

2

= 84 ~ 56

= 28

Applying the same formula would develop the second tableau as shown

in Table XX.

Table XX. Simplex Tableaus I and II

Optimum Solution

 

 

 

 

 

         
 

 

 

 

11 4 0 0

x y W1 W2

Tableaul 0 W1 84 ,7 6 1 0

0 w2 32 4 2 0 1

0 ~11 ~4 0 0

0 W1 28 0 5/2 1 ~7/4

.11 x 8 1 1/2 0 1/4

Tableau II

88 0 .3/2 0 11/4           

The solution presented in tableau II is the optimum solution because all

the numbers in the index row are either positive or zero. If any negative

numbers still existed in the index row the entire process would be repeated,

and a further improved solution would be obtained. I
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The optimum answer to the problem is

x =8

y =0

W1=28

W2=0

Maximum Profit = $88. 00

In terms of the initial problem statement the answer is:

Product A ~ produce 800 units

Product B - produce 0 units

Process I ~ will have 28 hours unutilized time

Process II ~ will be 100% utilized

Profit = $88. 00

This optimum answer is easily verified. Any other solution will yield

a lower profit.

It is of interest to note that an economic significance can be attached to

the index row numbers in the final tableau.

Any numbers under the body of the matrix (3/2 for y in this case)

represents the reduction in the objective function per unit of that variable

introduced into the solution. In the case of the above problem the total profit

would be reduced by $1. 50 per "y" introduced into the solution. To introduce

one "y" would mean removing some "x" (in this case . 5x) hence the reduced

profit. This answer would be:

x =7.5

y =1

W1=27.5

W2=0

Profit = 7. 5 (11)+1 (4) = $86. 50

which can be easily verified with the initial equations.
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Any numbers in the index row under the identity (11/4 for W2 in this case)

can be considered to represent opportunity profit. This means that an increase

of one "W1" in the initial problem (i. e. , relaxing the restriction on the second

process by one hour) would permit an increase of 11/4 or $2. 75 in the profit

function. This can serve as a guide for equipment expansion or replacement.

It is necessary to have some means of checking the work since errors

can easily occur. One method of checking involves checking the numbers in

the index row. The same method used to establish the index row in the first

tableau can be used to check the index row of succeeding tableaus. This check,

however, is of limited value since it cannot detect an error in a row where the

objective number is zero.

A better checking device is to employ a check column. The numbers in

the check column are established in the first tableau as equal to the sum of the

numbers in the respective row. This includes the numbers in the constant

column and everything to the right. In succeeding tableaus the check column is

handled as a part of the problem matrix, just like the index row, and will

always represent the sum of the numbers in the respective rows. If the check

column does not tally then an error has occurred and can easily be found and

corrected.

The check column, while it does add another column to the matrix array,

is by far the easiest and best method for checking the accuracy of the work.

Of course as Charnes and Cooper21 mention, the all important check

though it may seem trite is in assessing the resulting solution(s) in terms of

its meaningfulness and practicability as a course of action to the problem at

hand.

It is well to note several useful short cuts in developing a new tableau.

These are:

1. A "+1" appears at the intersection of a row and column

containing the same variable. All other numbers of that

column are zero including the number in the index row.

 \

21Chames, C00per, Henderson. Ibid, page 18.
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2. If there is a zero in the key row of the previous tableau

or main row of the new tableau all figures in the column

in which the zero appears are unchanged and thus repeated

in the new tableau.

3. If there is a zero in the key column, that row containing

the zero is unchanged and thus repeated in the new tableau.

These short cuts can be easily verified by the previous formula for

developing the numbers of the new tableau. This will tend to substantially

reduce the hand calculation time.

Degeneracy. It is possible to have degeneracy in much the same

manner as in distribution problems. However, the resolution of degeneracy

 

is a little more involved in the simplex method.

Degeneracy can be recognized when determining the key row.

Degeneracy exists when two or more rows yield the same smallest quotient.

In this case a choice must be made. If the wrong choice is made the problem

may begin to cycle and hence never reach an optimum.

The degeneracy is resolved as follows:22

1. Divide each element in the "tied" rows by its number in

the key column.

2. Compare the quotients obtained term by term from left

to right only in the identity of the matrix array.

3. At the first place where the quotients are unequal the

tie is broken.

4. Select that row with the algebraically smaller ratio.

This is a perfectly general procedure and will resolve degeneracy very

effectively.

 

22Charnes, Cooper, Henderson. Ibid, pages 20- 25. This is the basis for the above discussion and includes

a very comprehensive appraisal of degeneracy.
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Several sources have indicated a rule of thumb method for resolving

' degeneracy much like the north west corner rule used in distribution problems.

It says to select the uppermost row if two rows are tied or to select the left

column if two columns are tied. This may work; however, it yields exactly

the opposite choice in the first tableau of Charnes and Cooper's nut mix

problem.23 This author solved the nut mix problem with this opposite choice

and obtained the same answer in the same number of steps. However, the

validity of the northwest rule to resolve degeneracy in the simplex method is

most certainly open to serious question.

Types of Relationships. In mathematical programming problems the
 

less-than-or-equal-to (5) relationship is not the only type that will be

encountered. It is possible to have some approximately-equal-to ("=’) and

greater-than-or-equal-to (é) relationships. Each of these must be handled

differently.

Consider the relationship:

5x + 3y 5 50

Add a slack variable and it becomes an equation:

5x + By + W = 50

This is in suitable form to be put into the simplex matrix.

Consider

5x + 3y "=’ 50

In this situation a slack variable is both added and subtracted to form the

equation

5x+3y~W1+W2=50

 

23Charnes, Cooper, Henderson. Lid, page 10,
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The slack variables are included in the objective function preceded by

a "-1". This will tend to minimize the slack variables and make

5x + 3y->50

In this case the "W1” would appear in the body of the matrix and the

"W2" in the identity.

Consider

5x 4- 33:2 50

which would be the same as

~5x ~3yé~50

This seems suitable except that all the numbers in the constant column

must be positive in order to yield meaningful solutions. If a slack variable

were subtracted fromjthe first expression an equation would result as follows:

5x + 3y - W = 50

This cannot be placed into the simplex matrix as yet. The simplex matrix

array requires that the identity be square (i. e. , same number of rows as

columns) and further, that it be a positive unit diagonal (i. e. , positive 1's

appearing in a diagonal from upper left to lower right).

As the expression stands now there is no variable that can be placed in

the identity. Here an artificial variable can be employed.

5x+3y~ W+U= 50

A factor ~M is attached to "U" in the objective function, since equality

existed before "U" was added, and since "U" has no economic significance

in the real problem. This "-M" factor, defined as so large that it dominates

all else in the problem, automatically assures that "U" will have no value in

the optimum solution. This means that the variable "U" is in essence a

computational gimmick that permits this type of relationship to be included in

H H H H

the simplex method. The variables x , y , and "W" would appear in the

body of the matrix. The variable "U" would appear in the identity.
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Geometric Interpretation. It is possible to attach a geometric inter-

pretation to the mathematical programming problem and the simplex method.

In the previous problem the relationships were

7x + 6yé. 84 (2. 4)

4x + 2yé-32 (2.5)

These linear relationships can be plotted as shown in the graph

(Figure 1).

 

  

4X+2Y= 32

7X+6Y=84

 
2 4 6 8 l0 I2 I4 I6 I8 20

. X .

FIG.I PROBLEM EQUATIONS GRAPH 
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The line AEC represents possible solutions to the equation, _

7x + 6y = 84

Thearea AECO represents the area of possible solutions to the

inequality,

7x + 6y £84

The line DEB represents possible solutions to the equation,

4x + 2y = 32

The area DEBO represents the area of possible solutions to the

inequality,

4x + 2y £32

Point E is the simultaneous solution to the set of equations,

7x + By = 84

4x + 2y = 32

The area CEBO represents the area of possible solutions to the system

of inequalities,

7x + Byé 84

4x + 2yé 32

and consequently is the area of possible solutions to the problem. The

profit function must be included in order to find that solution which yields

the maximum profit.

The profit function

1 1x + 4y

can be represented by a line with a -E slope.

4
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PROFIT FUNCTION

I I X 4- 4Y

7X+6Y=84

 
4 6 8 I0 I2 I4 l6 l8

X 
Fig. 2 Problem Equations Graph

Profit Function Included

The distance the line moves from the origin, represented by ray P,

is equivalent to an increase in the value of the profit function. The maximum

profit is obtained when the profit function moves to the farthest extreme

point of the possible solutions space (area CEBO in this problem).
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\aPROFIT FUNCTION

‘ I IX + 4Y= MAX.

 
2468\l0l214l6l8

X

Fig. 3. Optimum Solution

Figure 3 will verify the previously derived solution. The value of the

profit function can be obtained by scaling the ray P and computing the total

profit.

This graphical method can. quickly provide the answer to similar two

variable problems. However the accuracy of this graphical approach depends

upon the accuracy of the graph construction.
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The important point in the geometric interpretation is that it holds true

regardless of the number of variables. In essence the linear programming

problem in "n" variables can be thought of as forming a convex polyhedral

cone in an ”n" dimension space. The functional can be thought of as repre~

senting a hyperplane in this "n" dimension space. The simplex method then

proceeds to move the functional from an extreme point to an adjacent extreme

point until an optimum has been obtained (i. e. , the functional is moved as far

from the origin as possible and still intersects the convex polyhedral cone).24

In mathematical programming problems the optimum always lies on a boundary

and never within the solutions space.

Summary

The simplex method can be summarized in ten steps:

1. Develop the equations, including slack and artificial

variables as may be required.

2. Form the matrix, and establish the check column.

a. The numbers in the constant column (except in

the index row) must be positive.

b. The identity of the matrix must be square and

must be a positive unit diagonal.

c. The check column is the algebraic sum of all

numbers in the row, including the constant column.

3. Put the coefficients of corresponding variables of the

objective equation above the proper columns.

4. Develop index row values.

a. Multiply numbers of each column by corresponding

numbers in the objective column and total; from

this sum subtract the number in the objective row

at a top of the column. The value so found is placed

in the index row.

 

24Charnes, Cooper, Henderson. 111:}, part II, pages 41~ 62.
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. Select key column.

a. The most negative index number locates the key

column. In case of a tie, select either column.

. Select key row.

a. Divide the numbers of constant column by the

corresponding positive non~ zero numbers of the

key column. Select that row with the smallest

quotient. In case of a tie, see discussion on

degeneracy below.

. Select key number.

a. At intersection of key row and key column.

. Develop new tableau.

a. Main row of the new tableau is in the same position

as the key row of the previous tableau. The main

row is developed by dividing the numbers of the key

row by the key number. The key column of the

previous tableau appears in the new tableau with

a "+1" at the junction of the main row, all other

numbers in that column are "0".

b. The variable and its objective number from the key

column replaces the variable and its objective number

from the key row and becomes the objective and variable

for the main row of the new tableau.

c. The remaining variables and their objective numbers

associated with other rows and columns remain unchanged

and occupy the same position in the new tableau.

d. The remaining numbers in the identity, body, constant

column, check column, and index row are determined by

the following formula:

New Number = Old Number ~

Corresponding No. x Corres. No.

of Key Row of Key Col.

Key number
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. Check the accuracy of the new tableau by examination

of the check column.

(1) If an error appears, use step 4 to check numbers

of index row. This will isolate the error by

column and row.

f. Short cuts.

(1) These short cuts can easily be verified by

the equation in 8d preceding. A +1 appears

at the intersection of the row and column

containing the same variable. All other

numbers of that column are zero including

the number in the index row.

(2) If there is a "0" in the key row of the

previous tableau or main row of new tableau,

all figures in the column in which the "0"

appears are unchanged and thus repeated in

the new tableau.

(3) If there is a "0" in the key column, that row

containing the "0" is unchanged and thus

repeated in the new tableau.

9. If all the new index row numbers are "0" or positive, the

best solution has been reached. If negative numbers occur,

a new tableau is formed by repeating steps 5 through 9.

10. The best solution is reached when the index row contains no

negative numbers in the body and identity of the matrix.

The interpretation is as follows:

a. The number in the index row of the constant column

gives the value of the objective equation for that

solution.

. The other numbers of the constant column are the values

of the corresponding variables.

The numbers in the index row, below the body of the

tableau, represent the amount of reduction in the

objective equation if one unit of that variable is

introduced into the solution with the corresponding

changes in the other variables.



53

d. The numbers in the index row, below the identity of the

tableau, represent the ”opportunity profit" or the

increase which would occur in the objective function

if one more unit of that variable were available

(i. e. , if the restriction were relaxed by one more

unit).

e. Equally optimal alternate solutions are evidenced

by a zero in the index row under a variable not in

the solution.

In reality the simplex method is not as difficult as it is time consuming

and tedious. Actually the effort in applying mathematical programming must

be directed to defining and refining the problem statement, setup of the simplex

matrix and finally interpreting the final results and passing them on to manage-

ment for action. Applying the simplex method is in essence a means to an end.

The simplex method is another addition to the industrial engineer's tool kit ~-

a very powerful addition.

11. Degeneracy occurs when a tie occurs in selecting the key row

(step 6 above). Degeneracy may be resolved as follows:

a. Divide each number in the "tied” rows by the

number in the key column.

b. Compare the quotients obtained, column by

column from left to right in the identity of the

matrix array.

c. At the first column where the quotients are

unequal the tie is broken.

d. Select as the key row that row with the

algebraically smaller quotient.



III. A PRODUCTION PLANNING PROBLEM

At present the function of production planning in industry is a some-

what inexact activity that strives by various means to develop a broad overall

producing plan for an organization. This is management's grand strategy

planning. In developing such a plan an incomplete picture of the cost relation-

ships usually exists and in many cases it is difficult to obtain a factual

comparison between two or more production plans.

The production planning usually begins with what data is available and

works toward a manufacturing plan. This involves consideration of various

tangible and intangible factors and their effects upon the manufacturing plan

and vice versa. The application of mathematical programming can greatly

assist the production planning activity.

With mathematical programming the lowest cost producing plan can be

determined. 25 This lowest cost plan can then be tempered as necessary by

the several intangible factors such as employee relations, community

relations and other management policies. The resulting production plan should

certainly be the best plan possible.

This section will develop, solve and analyze a typical production planning

problem.

 

2'SThe author is indebted to Mr. N. V. Renfield of Executive Services, Cleveland, Ohio who suggested this

general approach to the production planning problem. A similar approach may be found in: Harrison, Jr. ,

Joseph 0. Linear Programming and Operations Research, I. F. McCloskey and F. N. Trefethen (eds)

Operations Research for Management. P. 231-33, Johns Hopkins Press, Baltimore, 1954, and Bowman,

Edward H. Production Scheduling by the Transportation Method of Linear Programming, Journal of the

Operations Research Society of America, V. 4, No. 1, February, 1956. Pages 100-103.

54
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The Problem

An organization, producing a variety of home workshop machines,

desires a manufacturing plan to be prepared for a combination disk and belt

sanding machine. The sales forecast and all pertinent cost and capacity data

are available. The planning is best accomplished by working with man-hour

data because this is the most reliable measure of producing capacity.

The problem is complicated to some extent because the manufacturing

plans are already prepared for all products except this sanding machine.

This means that a portion of the total factory capacity is already taken up in

producing these other products. Therefore, the available capacity shows a

considerable fluctuation during the year.

The problem is then to develop the best, not necessarily lowest cost,

producing plan to meet the sales forecast for the sanding machine.

Data
 

The following data is representative of data required to develop a

manufacturing plan:

1. Forecasted sales in units:

January 12, 500 July 25, 000

February 7, 500 August 27, 500

March 17, 500 September 32, 500

April 22, 500 October 30, 000

May 17, 500 November 22, 500

June 20, 000 December 15, 000

Total - 250, 000 units 26

 

6This forecast is by no means to be construed as representative of the actual demand for this type of product.

This is merely an illustrative problem.
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12.

13.
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The factory capacity already planned for the other products

is as follows:

January 46, 000 man-hours July 48, 000 man- hours

February 53, 000 August 41, 000

March 38, 000 September 30, 000

April 44, 000 October 48, 000

May 44, 000 November 48, 000

June 42, 000 December 49, 000

The factory normally works two shifts of 40 hours per week, 52

weeks per year. The two shifts are of equal size.

. In a normal two shift working day the total plant capacity is 3520

man- hours.

. Each, unit of the sanding machine requires 1. 5 man-hours of direct

labor. This includes necessary plant efficiency allowances.

The average direct labor costs are:

First Shift $1. 70 per hour

Second Shift $1. 75 per hour

The average factory burden is determined as 200% of the direct

labor costs. '

Each unit requires $10. 00 in direct materials.

Overtime is paid at time and one-half for work in excess of 8. 0

hours in one day and 40. 0 hours in one week. Overtime is paid

at double time for Sundays and holidays and for work in excess of

8. 0 hours on a Saturday.

Storage facilities are sufficient and cost $0. 20 per square foot per

month. Each finished unit occupies 1. 3 square feet of floor space

but they can be stacked four units high.

Inventory charges are 20 per cent per annum on the inventory

investment. Inventory charges are usually figured monthly.

Finished stock inventory at the end of the producing year must not

exceed 500 units.

Production and distribution are such that the total units produced

in January are available for sale in January. The lead time from

manufacturing to the consumer is zero.
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This is the type of data that should be available to the production planners.

The initial step of the problem is then to organize the data in some form that

is adaptable to analysis. This is accomplished for the straight time producing

capacity for the calendar year 1957 as illustrated in Figure 4, pagefliin the

Appendix, and summarized in Table XXII, page flin the Appendix.

Table XXII indicates a shortage in straight time producing capacity of

10, 296 units or 15, 444 man-hours. Since sufficient straight time producing

capacity does not exist it will be necessary to consider overtime production

capacities. Management must specify the desired maximum overtime con-

sistent with their policies. For this problem maximum time and one-half

overtime is considered as eight hours per Saturday and two hours per week

day. Maximum double time overtime includes eight hours per Sunday. This

is accomplished as shown in Figure 5, page 85 in the Appendix, and summa-

rized in Table XXIII, pageiLin the Appendix.

The cost information is then calculated in terms of cost per unit for

direct material, direct labor, factory burden, storage (floor space), and

inventory costs as shown in Figures 6 and 7, pages_8_6_ and iiin the Appendix.

The storage and inventory costs are summarized in Table XXIV, page_9_z_ in

the Appendix. Inventory and storage costs are calculated monthly and added

to the inventory investment. This, in effect, causes a cumulative or compound

inventory charge.

Formulation

Prior to considering the specific problem at hand the general statement

of the production planning problem will be developed and discussed.

If we let:

Pi = number of units of producing capacity in the i'th month

Qj = number of units of forecasted sales for the j'th month

x. = number of units produced in the i'th month and sold in

13 the j'th month

1. cost per unit to produce in the i'th month and inventory

J for sales demand in the j'th month

I” I
I
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i (1, 2, 3,---12)

j (1: 2s 3:---12)

then the production planning problem can be formulated in two sets of relation~

ships. The first set (restrictions) says that what is produced in the i'th month

and sold in that month and succeeding months is less-than-or equal to the

production capacity for the i'th month. Mathematically this is:

12

Z xi.-EPi

j=i J (3.1)

The second set of relationships (equations) considers the sales demand.

What is sold in the j'th month must naturally be produced in that month or

preceding months (since back orders are excluded from consideration).

Mathematically this can be stated as follows:

3

Z xii ‘ Q1
i=1 (3. 2)

The objective function is to minimize the producing and storage costs

and can be stated thus:

12

Z (a.. x. .) = minimum

1.] 13

p
a

I
I

I
I

1

1 (3. 3)

L
a

The total producing capacity is then:

.12

Z 13i = Ptotal

i=1 (3. 3)

and the total sales forecast is then:

12

Z Qj : Qtotal

j=1
(3. 4)

where:

Ptotal E Qtotal
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The total producing capacity (Ptotal) is always greater than the sales

demand (Qtotal)' This may always be obtained by considering overtime

producing capacity and/ or subcontracting. The latter can conceivably present

an unlimited potential capacity.

The summation limits of (3. 1) and (3. 2) factor out the possibility of back

orders, i. e. , February's production cannot be used to fulfill the January sales

demand. Back orders may be considered if management can provide factual

cost information. However, this general statement of the problem will not

allow back orders.

Since the problem at hand must include overtime production of at least

10, 296 units (see Table XXII, page 99 in Appendix) this should be factored into

the statement of the problem. For the sake of simplicity, subcontracting will

not be considered at this time.

In order to include this overtime consideration in the problem formulation

the symbols must be expanded as follows:

i' = number of units produced at straight time in the i'th month

J and sold in the j'th month

xi. = number of units produced at time and one-half overtime

J in the i'th month and sold in the j'th month

xi'. = number of units produced at double time in the i'th

J month and sold in the j'th month

i' = cost per unit to produce at straight time in the i'th

3 month and inventory for sales demand in the j'th month

ai. = cost per unit to produce at time and one-half overtime in

J the i'th month and inventory for sales demand in the j'th

month

a". = cost per unit to produce at double time in the i'th

1‘] month and inventory for sales demand in the j'th month

"
U II number of units of producing capacity in the i'th month

= number of units of forecasted sales for the j'th month

(1, 2, 3, --- 12)

h
i
s

H

i =(1,2,3,-~-12)
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The new form of the first set of restrictions involving producing

capacities can now be expanded to include the overtime consideration as

follows:

12

.. + .'. + 3'. .Z (x1J le le ) 5 P1

j:i
(3. 5)

The second set of relationships (equations) expressing the sales demand

can also be expanded thus:

3'

l " _
Z(Xi' + xij+ xij ) - Q.

J J

i=1 (3. 6)

and the expanded form of the objective function is now:

' g H II = - -

Z (aij xi]. + aij xij + ij xij ) m1nlmum

(3. 7)

This objective function (3. 7) can be simplified by deducting direct

material, straight time (direct) labor and factory burden costs, since these

are common to all units produced. The problem objective is then simplified

to minimize the labor overtime premium, storage and inventory costs which

are the basic variables in this problem.

The general production planning problem is thus represented by a

mathematical model containing 12 linear equations and 12 linear inequalities

involving 234 variables. At this point the problem would seem insurmountable

since the simplex setup would result in a 24 by 258 matrix array (24 equations

or rows plus 234 variables or columns plus a 24 x 24 identity).

The production planning problem lends itself to solution with the

distribution methods. The factory capacities month by month can be con~

sidered as sources of supply while the sales forecast can be considered as

demand. With this analogy it is possible to visualize a distribution matrix
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with monthly factory capacities for the rows and the monthly sales forecast as

the columns or vice versa. The distribution matrix form for this production

planning problem appears as Table XXV, page 94 in Appendix.

The production planning problem is now represented in a 13 by 36

distribution matrix array. This organization certainly makes the problem

appear more easily solvable and yet every relationship of the general statement

of the problem (3. 5, 3. 6, 3. 7) remains intact in the problem. The producing

capacity (3. 5) is represented as the columns and the sales demand (3. 6) is

ripresented as the rows. The simplified form of the cost factors (ai., aij ,

an. representing overtime premium, storage and inventory costs) appears as

the cost factors in the respective i'th columns and j'th rows. The quantities

' II

xij' xij: xij are to be determined subject to the rim conditions.

Note that the rim conditions have been balanced with the dummy row

(row 13) which represents fictious demand for the product. In the real physical

situation this represents unutilized producing capacity.

Note also that the cost factors for about half of the matrix are -M. Since

back orders are not considered practical in this problem the -M cost (defined

as so large that it dominates all else in the problem) accomplishes this

restriction. If management allowed back orders then a suitable cost factor

could be used. However, such a cost would be difficult if not impossible to

obtain.

Optimum Solution

The production planning problem can now be solved by any of the

distribution methods. Vogel's Approximation Method (VAM) and subsequent

improvement with the Modified Distribution Method yielded the answer in

several steps?7 by hand. The problem can also be solved with any of the

 

27This problem required the VAM plus six steps with the MODI method for solution. This required 10 hours.

However, it is felt by the author that the solution could be accomplished in fewer steps and a shorter time

period. This was verified by resolving the problem requiring the VAM + two steps with the MODI method.

This was accomplished in approximately 3 hours.
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digital computors. However, the cost of machine computation over hand

computation for a problem of this size might be difficult to justify.

The final optimum solution matrix is shown in Table XXVI, page 95

in the Appendix and is also summarized in Figures 8 and 9, pages 88 and 89

in the Appendix. This solution certainly appears to be a practicable one.

Analysis of the Optimum Solution

It is now possible to analyze the optimum (minimum cost) solution in

light of the various intangible considerations and management policies.

Two points about the problem should be borne in mind. First, this

problem assumes a zero lead time from manufacturing to consumer sales.

While this is seldom if ever the real case a suitable lead time can easily be

included in the problem formulation. Second, the inventory charges are

cumulative and calculated monthly for a full month's storage in inventory.

In an actual situation this may vary somewhat and could conceivably reduce the

inventory charges.

It can be seen from the final optimum solution (pagefl in the Appendix).

that a FIFO (first-in-first-out) inventory system is in effect. This is partly

due to the compound inventory charges that were used. In general a FIFO

inventory system will be more economical than a LIFO (last-in-first-out)

system when inventory charges are compounded.

Summary

Now for probably the first time management has a truly complete analysis

of a production plan. Alternatives brought about by any intangible factors can

easily be analyzed in light of the effect upon costs.

However, it is necessary here to present a word or two of caution.

This type of solution does not and cannot include costs associated with labor

fluctuations and turnover and other such non-linear items (costs that do not

vary directly with the production quantities). Nor can it include costs

associated with less than full budgeted utilization of equipment and facilities.

Then too, the production plan is only as good as the sales forecast. This

means that no matter how well a production plan is developed it is poor if

based upon an ill conceived sales forecast.
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In a real situation the greatest difficulty is not in obtaining the numerical

solution but in obtaining meaningful costs, capacities, and requirements.

If desired, alternative production plans can be based upon some

established upper and lower limits of the sales forecast. Comparison of

these alternative plans for the upper limit, the mean, and the lower limit of

the sales forecast will provide management with a guide as to the flexibility of

the production plan with a variable sales forecast. This additional information

can be very useful in such situations.

The problem can be expanded to include planning for the desired

inventories period by period. Here the problem matrix takes on more rows

as the various inventories are included. In many situations this would be the

more desired formulation of the problem.

The production planning may be accomplished on a continuous basis,

either monthly or quarterly, for the next twelve-month period. This type of

continuous planning means that a twelve-month plan is always available. While

this requires more work it means that more and better information is available

to management.

A once-per-year planning cannot include changes in sales demand from

the original forecast. Continuous planning can successfully accomplish such

changes. Less risk of sub-optimization (optimizing one year's plan at a

sacrifice in the next year's plan) would result in continuous planning.

The 13 x 36 distribution matrix array of the production planning problem

can be used as a standard form by most manufacturers. The problem setup

can be reduced to a routine and the solution can be accomplished either with a

computor or properly trained clerks.

The production planning problem may be expanded to include several

products. It is necessary, in considering such a problem, to express the

production and sales in some common unit such as man- hours or equivalent
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units or in terms of one hour's production as suggested by Mr. Bowman. 28

While this would increase the size (number of columns) of the distribution

matrix it still remains a solvable problem.

This application illustrates how time periods can be successfully

incorporated within the framework of a linear programming problem. A

useful extension of this can result in better analysis of product distribution

to various warehousing locations. In situations where factory output and/or

customer demand fluctuate through several periods a better product distribution

can result when considering several periods rather than just one at a time.

 

281313, pg, 101-2.



IV. A MANUFACTURING PROBLEM

In most manufacturing situations a number of courses of action are

possible. Usually the multi-facet nature of the problem defies solution by

inspection or intuition. Such a manufacturing problem will be considered

here.

The Problem

A manufacturer receives orders for two products (A and B). The

customers require 200 units of product A and 300 units of product B. Both

products are manufactured in two operations.

The first operation is performed in Process I and it requires two hours

and four hours per unit to produce products A and B respectively. The second

operation can be performed in either Process 11 or III. It requires four hours

per unit of product A and seven hours per unit of product B produced in Process

11. It requires ten hours per unit of product A and twelve hours per unit of

product B manufactured in Process HI.

There are 1700 hours on Process 1, 1000 hours on Process H and 3000

hours on Process III available in the schedule period. An additional 500 hours

is available on Process II in overtime.

The labor and burden costs are $3. 00, $3. 00 and $2. 00 per hour on

Processes I, II andI'II respectively. The overtime on Process 11 increases

the costs to $4. 50 per hour.

If no penalty is assumed for idle machine time then the problem is to

determine how to manufacture the products so the overall costs are a minimum.

Problem Formulation

If we let

x1 = number of units of product A manufactured in Process I and

at straight time in Process 11

number of units of product A manufactured in Process I andx

2 at overtime in Process II

M

II number of units of product A manufactured in Process I and

Process III
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x4 = number of units of product B manufactured in Process I and

at straight time in Process 11.

x5 = number of units of product B manufactured in Process I and

at overtime in Process II

x = number of units of product B manufactured in Process I and

Process III

the formulation is then

(Process 1) 2x1 + 2x2 + 2x3 + 4x4 + 4x5 + 4x6 ‘5 1700 (4. 1)

(Process 11 Straight Time) 4x1 + 7x4 £ 1000 (4.2)

(Process 11 Overtime) 4x2 + 7x5 ‘5 500 (4. 3)

(Process 111) 10x3 + 12x6 €3000 (4. 4)

(Product A) x1 + x2 + x3 = 200 (4. 5)

(Product B) x4 + x5 + x6 = 300 (4. 6)

Multiplying the time by the cost per hour will yield the following

objective (cost) relationship:

~36x = Minimum (4. 7)~43. 5x 6~24x ~26x ~33x
“18" 2 3 41 5

The problem is thus stated in four inequalities (4. 1_~ 4. 4) and two

equations (4. 5 and 4. 6) and the objective (cost) function (4. 7) is to be

minimized. The four inequalities represent process time on the three

66

processes. The two equations (4. 6 and 4. 7) insure that the required amount

of each product is made. The objective function represents the cost (in

dollars) to produce the two products by the various processes.
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The relationships must be prepared for solution by the simplex method.

This is accomplished by adding slack (w) and artificial (U) variables as follows:

‘ 2x1 +2x2 +2x3 +4x4+4x5+ 4x6+W1 = 1700 (4.8)

4x1 + 7x4 + W2 = 1000 (4. 9)

4x2 + 7x5 + W3 = 500 (4. 10)

10x3 +12x6 + W4 = 3000 (4. 11)

x1 + x2 + x3 +U1 = 200 (4.12)

x4 + x5 + x6+U2 = 300 (4.13)

The objective function now becomes:

~18x1 ~24x2 ~26x3 ~33x4 ~43. 5x5 ~36x6 + 0. W1 + 0.W2 + 0. W3 + 0.W4 -

~MU1 -MU2 = Minimum (4. 14)

The slack variables (W1 ~ W4) were added to make equations of the

inequalities. These can be thought of as representing idle process time. The

slack variables have zero weight in the objective function because no penalty is

assumed for idle process time.

The artificial variables (U1 and U2) are included to form a square identity

or basis for the simplex method. The ~M cost factor (defined as so large that it

dominates all else in the problem) is attached to the artificial variables to assure

that they will be zero, since equality exists without them. The problem is now

ready for the simplex method.

The initial simplex tableau is shown in Table XXI.
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All the relationships are included. The initial or trivial solution, the

index row, and check column are shown.

Solution

This problem was solved in five iterations, the details of which are

shown in Table XXVII ( page 96 in the Appendix, fold out for reference).

The optimum solution, in this case lowest cost solution in terms of the

formulation, is as follows:

x1=200 W =100

1

X2: 0 W2: 0

x3= 0 w3=350

X4=_2_0_Q W4: 0

7

x5=_1_§_9_ U1 = O

7

x6=250 U2 = 0

Minimum Cost = $14, 475. 00

These answers can be seen in Tableau V, Table XXVII and can be easily

verified by substitution in the original equations (4. 8 through 4. 14).

ProcessI 2x +2x +2x +4x +4x +4x +W =1700 (4.8)
1 2 3 4 5 6 1

2(200) + 2(0) + 2(0) + 4(200) + 4(150) + 100 = 1700

7 7

1700 = 1700

Process 11 4x1 + 7x4 + W2 = 1000 (4. 9)

Straight Time

4(200) + 7(200) + 0 = 1000

7

1000 = 1000
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Process 11 4x2 + 7x5 + W:3 = 500 (4. 10)

Overtime

4(0) + 7(150) + 350 = 500

7

500 = 500

Process 111 10x3 + 12x6 + W4 = 3000 (4. 11)

10(0) + 12(250) + 0 = 3000

3000 =3000

x1 + x2 + x3 = 200 (4. 12)

200 + O + 0 = 200

200 = 200

x4+x5+x6 = 300 (4.13)

2_0(_) + 1_5_0 + 250 = 300

7 7

300 = 300

(4. 14)

~18x1 ~24x2 ~26x3 ~33x4 ~43. 5x5 ~36x6 ~MU1 --MU2 = Minimum

.~18(200) ~24(O) -26(O) -33(200) ~43. 5(15_O)

7 7

~36(250) -M° O -M° 0 Minimum

14475 = Minimum

Analysis of the index row will provide some useful information about

alternate solutions (refer to Tableau V, Table XXVII, page _9_§_in the Appendix).

The index number for the second column is zero. This indicates that "x2

Thiscould be introduced into the solution without increasing the total cost.

would provide an equally optimum alternate solution.

solution is shown in Table XXVIII, page 97 in the Appendix.
 

The equally optimum

It is obtained by

introducing "x2" in place of "x5" from Tableau V, Table XXVII.

H
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The alternate solution is:

x1= 162.5 W1= 100

x2 = 37.5 W2 = 0

x3 = 0 W = 350

3

x4 = 50 w4 = 0

x5 = 0 U1 = 0

x6 = 250 U2 = 0

Minimum Cost = $14, 475. 00

This can be easily verified by the initial problem equations. The index

row also provides useful information about less-than-optimum alternate

solutions. The cost function would be increased by $8. 25 per unit of "x3"

introduced into the solution.

Opportunity profit is shown by the index numbers under the identity of

the matrix. These numbers can be interpreted as. follows:

The cost function would be reduced by $1. 50 per each

additional hour (W2) on Process II at straight time.

The cost function would be reduced by $0. 625 per

additional hour (W4) on Process III.

In other words, cost would be reduced if the restraints were relaxed

(available time increased).

Summary

The problem discussed here is a typical example of many manufacturing

problems. The simplex method was employed here for illustrative purposes.

In an actual plant situation a suitable approximation method would probably be

used. This would not necessarily result in the very lowest cost solution but

it would tend to reduce the combined computation and production cost.

As with any computational method the economics of the problem and the

method must be considered. If such a problem were encountered once per

quarter the simplex method would seem justified. If once per week a suitable
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approximation method can be employed. If the problem comes up several

times per day then either an approximation method or a high speed computor

can be used to obtain the necessary answers.

In many cases the solution is not as significant as the side results

obtained in the index row. These side results, for probably the first time,

provide management with factual comparisons between processes and

products. Then too, the requirement of an exacting statement of the problem

often uncovers other problems which heretofore were unsolved. In many cases

merely the attempt to apply mathematical programming will bring many

otherwise hidden problems to light.



V. SUMMARY

The material presented in this thesis is designed for the engineer.

Liberal references through the text and in the bibliography will provide

adequate material for the student interested in research and development in

this field. While a wealth of material has been published to date, a really

adequate primer in mathematical programming as yet does not exist, although

several are in preparation.

The mathematical programming type problems can best be summarized

in terms of what must exist in the problem to apply the mathematical pro-

gramming methods.

There must be:

1. A number of choices or ways of taking action.

2. An efficiency (or cost) differential between the

possible choices.

3. A set of restrictions or upper limits, 1. e. , that

which cannot be exceeded.

4. A set of requirements or lower limits, 1. e. , that which

must be accomplished (often implicit in the problem

statement).

5. An objective or policy statement, i. e. , the goal to aim

at; maximum profit, minimum costs, etc.

6. An interrelationship of the variables in significant

expressions.

7. A common unit of measure.

The preceding are necessary though not necessarily sufficient prereq-

uisites for the mathematical programming problem.

Some of the industrial applications of mathematical programming are:

1. Production allocation and scheduling.

2. Distribution and shipping.
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3. Market research ~~ locating outlets, warehouses, etc.

4. Salary and job evaluation.

5. Blending ~~ oils, gasolines, alloys, etc.

6. Product mix problems.

7. Materials handling (non-automated).

8. Production planning.

The mathematical programming approach to solving the above problems

is much superior to many of the present intuitive methods employed today.

It is interesting however to discover that often the intuitive solution by an

experienced person will be very close to the optimum solution obtained by

mathematical programming. This however does not discount the value of

the mathematical formulation and solution, since any individual with only

nominal experience can always obtain the very best answer with mathematical

programming whereas years of experience are usually required to develop any

valid intuitive method.

Mathematical programming was limited initially to static analysis. As

developments progressed the production planning problem was presented as

the first example of dynamic analysis (incorporating more than one period of

time) with mathematical programming. The planning problem presented in

this thesis is the first such problem shown in its entirety. It is possible now

to solve certain dynamic problems with mathematical programming. In fact,

a problem such as production planning can be made more dynamic by analysis

and solution periodically, perhaps monthly or quarterly. This approach can

accommodate changes or variations in product demand and available capacity

(inputs to the problem) as time progresses. While this presents more work

it provides management with more and better answers to an ever changing

problem.

Much the same type of dynamic analysis can be applied to problems of

product distribution. This applies particularly well when the demand varies
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from period to period. In fact, the danger of sub-optimization (optimizing

one problem or a part of a problem at a disproportionate sacrifice in another

problem or another part of the same problem) can only be minimized by

dynamic analysis in problems of this type.

Usually the most difficult task in mathematical programming is obtaining

the necessary factual information. Often the digging for the required infor-

mation will uncover previously hidden problems which when exposed can be

easily solved. It is not inconceivable that the gains derived in solving these

previously hidden problems may far outweigh the gains from mathematical

programming. In fact, the problem to be solved may be reduced to where the

solution is obvious thereby making mathematical programming unnecessary

for solution. This however does not discount the value of mathematical pro-

gramming since it involves more of a philosophy of problem approach rather

than merely the solution methods discussed in the thesis. In the final analysis

anything that forces a critical look at what is being done is of value to an

organization.

Mathematical programming is not a panacea for. solving all industrial

problems in that it has some very serious limitations. The biggest limitation

is that the relationships of the variables must be linear. Some work has been

done to circumvent this restriction 29however only limited progress has been

made to date.

Non-linear elements such as setup times in a manufacturing problem

cannot be included in a mathematical programming model. To date (a problem

like this may be handled by arbitrarily setting aside a portion of the available

equipment time for setup and solving the problem using run time only. The

setup time required by the solution is then checked against the time allotted

previously for setup. Any discrepancies are corrected by reallocating setup

time and resolving the problem. This technique, while it yields a usable

 m

29

See Saline, L. E. Quadratic Programming of Interdependent Activities for Optimum Performance, A. S. M. E.

Paper No. 54-A-58, November, 1954. 21‘ pp.
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answer, is very questionable from the standpoint ~ is the answer truly optimum.

The danger of sub-optimization exists in this type of problem approach.

However until non-linear elements can be treated more scientifically this is

about the only approach that can be made to such problems.

Mathematical programming requires the variables to be related in

meaningful expressions. This is often difficult though not impossible to obtain.

However, much difficulty will usually be encountered in establishing the

objective function. This is usually difficult for management to pin point. The

objective may be maximum equipment utilization, minimum cost, maximum

profit, maximum number of pieces, etc. Each of these objectives may yield

a different solution to the same model. The problem used toiillustrate the

simplex method (page 33) is just such a model where different solutions may

be obtained for maximum profit, maximum equipment utilization and maximum

number of pieces produced. If management cannot clearly envision and state

the objective then mathematical programming is stopped before it has even

begun.

It is well to point out here that digital computors may be used for solving

mathematical programming problems. The IBM type 701 computor can solve

distribution problems up tomx n = 3000, and simplex problems up to 50 x 100

in size. The newer IBM 704 and 705 will handle even larger problems,

primarily due to larger memory capacity.

In general computors will be employed either when the problem is very

large and an appropriate approximation is not available or of suitable accuracy,

or where the problem must be solved on a repetitive basis and the answer is

required rather quickly to be of use. In some cases a computor may be used

as a periodic check when an approximation method is regularly used.

This thesis contains recommended improvements primarily in the

terminology of mathematical programming. The presentation here has been
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in non-mathematical terms. Throughout the thesis the mathematics is

minimized though not completely ignored. The thesis presents the methods

for the first time reduced to an easy to understand step by step procedure.

This will permit more emphasis to be properly placed on problem formulation

and the interpretation of the answers rather than on the methods employed.

Actually the methods of mathematical programming are little more than a

means of cranking out an answer. The effort then must be channeled to the

remaining work in defining and solving a problem.

The thesis was limited to discussing industrial applications of mathe-

matical programming. However, many problems other than industrial can be

solved provided they have the above mentioned prerequisites.



VI. CONCLUSIONS

Mathematical programming is presented here in an easy to understand,

step by step method. This thesis records for the first time in one writing

all the methods of mathematical programming in simplified terminology.

Mathematical programming applied to production planning as discussed

in this thesis offers a new approach of scientific analysis to problems of this

type. The production planning problem exemplifies mathematical program-

ming as a tool for dynamic analysis of distribution type problems. Heretofore

the general production planning problem has been presented as an example of

dynamic analysis. This thesis presents a typical problem fully developed in

order to completely illustrate the phases of work required for such an analysis.

This analysis can be even more dynamic if solved for example every month

for the succeeding twelve month period. This would accommodate variations

in capacity, forecast, and sales and would provide better answers for manage-

ment. This problem also presents mathematical programming in its proper

perspective: As a tool of analysis that in many situations yields an initial

solution that may have to be modified in light of other intangible and/ or non~

linear considerations. However, this does not discount the value of mathe-

matical programming since, in addition to the optimum solution, much very

useful information regarding alternate choices of action is revealed. In the

case of production planning, mathematical programming is used to minimize

the tangible cost factors such as labor premium, inventory and storage costs.

However, intangible costs associated with labor turnover and low equipment

utilization cannot be included within the framework of mathematical program-

ming analysis.

Mathematical programming applied to the manufacturing problem pre—

sents a scientific approach to optimizing work allocation. While the problem

discussed here considered unlimited sales potential (usually an impractical

assumption) and no loss or penalty associated with idle equipment time, these

factors can be modified by a forecasted sales potential and idle equipment

charges (unabsorbed burden) and included in the analysis. The real signifi-

cance of this problem lies in the fact that for the first time costs are obtained

78



79

that reflect the interaction of the various jobs competing for the available

machines. At the same time profit opportunities are presented that reflect

the interrelationship of the equipment efficiencies in light of the products

manufactured.

Research is continually being conducted in this field but this thesis points

toward several possible research studies. Pure and applied research is re-

quired to expand the applications of mathematical programming and to develop

means of better coping with the problem of non-linear elements. Develop-

ments in both these directions should improve and expand the usefulness of

mathematical programming in industry.

Research could be undertaken to determine a mathematical basis for

Vogel's approximation method. This method was intuitively developed but

it seems that some logical mathematical basis exists. Once this is obtained

it may be possible to apply it toward obtaining a better initial solution in the

simplex method. This type of research can greatly expand the use of mathe-

matical programming and has the potential to materially reduce computation

time and cost.

This thesis can be considered as a primer in mathematical programming

and can serve as initial training for an individual interested in this field. The

references in the text and bibliography are provided for those interested in

further development in both mathematical programming and operations research.
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Month

 

January, 1957

Regular Working Days

22

Total Plant Capacity

77, 440 Man-hours3520 Man-hours/day x 22 days

Capacity not available 46, 000 Man-hours

Capacity available 31, 440 Man- hours

31, 440 Man-hours = 20, 960 Units
 

1. 5 Man- hours/ Unit

Required Capacity (Sales Forecast)

12, 500 Units

18, 750 Man-hours

Difference between available and required capacity

+ 12, 690 Man-hours

+ 8, 460 Units (Surplus over required capacity)

Number of employes

31, 440 Man-hours
1 = 179 employes

22(8) Hours/man

  
 

Figure .4. Straight Time Production Data

Sample Calculations
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Month
 

January, 1 95 7

Reglar Work Days
 

22

Overtime Work Days
 

Saturdays ~ 4

Sundays - 4

Number of employes
 

179

Units at time and one-half overtime

 

 

22 days at 2 hours/day = 44 hours

4 Saturdays at 8 hours/day = 32 hours

Total 76 hours

179 men at 76 hours = 13, 604 Man-hours

13, 604 man-hours = 9, 069 Units

1. 5 man- hours/ unit

Units at double time overtime

4 Sundays at 8 hours/day '= 32 hours

179 men at 32 hours = 5, 728 man-hours

5, 728 man-hours = 3’ 819 units
 

1. 5 man- hours/ unit  
 

Figure 5. Overtime Production Data

Sample Calculations
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*Note:
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Stratght Time Production Costs
 

Direct Material $10. 00

Direct Labor 2. 588

1. 5 man- hours/unit x $1. 725/man- hour

Manufacturing burden 5. 176

(200% direct labor)

Total unit cost $17. 764

Time and one-half overtime Production Costs
 

Direct Material $10. 00

Direct labor (including overtime) 3. 882

1. 5 man-hourslunit x 1. 5

($1. 725/man-hour)

Manufacturing burden* 5. 176

Total unit cost $19. 058

Double time overtime Production Costs
 

Direct material $10. 00

Direct labor . 5. 176

1. 5 man-hours/unit x 2 ($1. 725)

Manufacturing burden* 5. 176

Total unit cost $20. 352   
Figure 6. Unit Cost Calculations

Manufacturing burden rate would actually be lower at other than

straight time. For simplicity the same number of dollars of

burden is used. This reflects the lower rate.



 

Unit Cost $17. 764

One Month's Storage

Inventory Charges

.20/year( 1 year ) $17.764

mont 8

Floor space Costs

1. 3 square foot ($. 20/ sq. ft. /month)

4 units

.296

. 065

Total unit cost (including one month store) $18. 125 
Total inventory and floorspace charges . 361

  
Figure 7. Storage and Inventory

- Charges

Sample Calculations

Note: Inventory charges for the second month are based upon the unit

cost of $18. 125. Subsequent inventory charges are based upon

the unit cost including applicable storage charges.

87



 

January Produce 20, 960 units Sell 12, 500 in January

Sell 7, 500 in February

Sell 960 in March

February Produce 11, 600 units Sell 11, 600 in March

March Produce 23, 946 units Sell 4, 940 in March

Sell 19, 006 in April

April Produce 19, 946 units Sell 3, 494 in April

Sell 16, 452 in May

May Produce 22, 293 units Sell 1, 048 in May

Sell 20, 000 in June

Sell 1, 245 in July

June Produce 18, 933 units Sell 18, 933 in July

July Produce 19,627 units Sell 4, 822 in July

Sell 14, 805 in August

August Produce 24, 293 units Sell 12, 695 in August

Sell 11, 598 in September

September Produce 26, 933 units Sell 20, 902 in September

Sell 6, 031 in October

October Produce 21, 973 units Sell 21, 872 in October

Sell 101 in November

*Produce 2, 097 Sell 2, 097 in October

November Produce 14, 933 units Sell 14, 933 in November

*Produce 7, 466 Sell 7, 466 in November

December Produce 14, 267 units Sell 14, 267 in December

*Produce 733 Sell 733 in December  
 

Figure 8. Final Optimum Solution

*At overtime.
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PRODUCTION PLAN

COST SUMMARY

Manufacturing Costs

Direct material costs $2, 500, 000. 00

250, 000 units @ $10. 00

Direct labor costs

250, 000 units @ 1. 5 man-hours/unit 646, 875. 00

@ $1. 725/hour

Manufacturing burden @ 200% direct labor 1, 293, 750. 00
 

Total manufacturing costs

Additional Costs

Overtime premiums $ 13, 323. 02

Inventory charges 38, 632. 29

Floor space charges 8, 478. 34
 

Total additional costs

Total costs and charges

Average unit cost = $18. 005

$4,440,625.00

$ 60, 433. 65
 

$4,501,058.65
 

 

 

Figure 9. Final Solution

Cost Summary
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TABLE XXIV

AND STORAGE

UNIT COSTS FOR PRODUCTION
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17.764 19. 058 1.294 20.352 2.588

\First Month Storajg

Inventory cost . 296 . 318 . 339

Floor space cost , 065 , 965 , 065

18, 125 . 361 19. 441 1. 677 20. 756 2. 992

Second Month Storagg

Inventory cost . 302 . 324 . 366

Floor space cost . 065 , O65 . 065

18.492 .728 19.830 2.066 21. 187 3.423

Third Month Storage

Inventory cost . 308 . 331 . 353

Floor space cost _,_06_5 , 065 , 065

18.865 1. 101 20.226 2.462 21.605 3.841

Fourth Month Storagg _

Inventory cost . 3 14 . 337 .343

Floor space cost , 065 __._0fi3 __,_0_6_5

19. 244 1. 480 20. 628 2. 864 22. 013 4. 249

Fifth Month Storagg

Inventory cost . 321 . 344 . 368

Floor space cost , 065 . 065 . 065

19.630 1.866 21.037 3.273 22.446 4.682

Sixth Month Storagg

Inventory cost . 327 . 351 . 374

Floor space cost _.._Q.6.5. _..9_6.5 _._Q§.5

20. 022 2. 258 21. 453 3. 689 22. 885 5. 121

Seventh Month Storagg

Inventory cost . 333 . 358 . 381

Floor space cost . 065 . 065 _Lgfii

20.420 2. 656 21.876 4. 112 23.331 5.567  
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fighth Month Storag_e_

Inventory cost . 340 . 365 . 389

Floor space cost A . 065 . 065 . 065

20. 825 3. 061 22. 306 4. 542 23. 785 6. 021

Ninth Month Storage

Inventory cost . 347 . 372 . 396

Floor space cost . 065 _._Q§_5_ . 065

21. 237 3. 473 22. 743 4. 979 24. 246 6. 482

Tenth Month Storgge

Inventory cost . 354 . 379 . 404

Floor space cost . 065 . 065 . 065

21. 656 3. 892 23. 187 5. 423 24. 715 6. 951

Eleven Month Storage

Inventory cost . 361 . 386 . 412

Floor space cost . 065 . 065 , _LOQ

22. 082 4. 318 23. 638 5. 874 25. 192 7. 428
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Jan. Jan. Jan. Feb. Feb. Feb. Mar. Mar. Mar. Apr. Apr. Apr, May May May June June June July July July Aug. Aug. Aug. Sept. Sept. Sept. Oct. Oct. Oct. Nov, Nov. Nov. Dec. Dec. Dec.

Straight 1' 1/ 2 2 Straight 1- 1/2 2 Straight 1' 1/2 2 Straight 1' 1/2 2 Straight 1- 1/2 2 Straight 1- 1/2 _3 2 Straight 1- 1/2 2 Straight 1- 1/2 2 Straight 1- 1/2 2 Straight 1- 1/2 2 Straight 1- 1/2 2 Straight 1. 1/2 2 Demand

Time Overtime Overtime Time Overtime Overtime Time Overtime Overtime Time Overtime Overtime Time Overtime Overtime Time Overtime Overtime Time Overtime Overtime Time Overtime Overtime , Time Overtime Overtime Time Overtime Overtime Time Overtime Overtime Time Overtime Overtime Forec ast

‘.

I 0 41.294 12.588 -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M 'M 'M “M “M 'M 'M ‘M "M 'M 'M 'M 'M 'M 'M 12 500

I JAN. ~
’

o

‘ 12, 500

-. 361 -1.677 2. 992 0 1.294 -2.588 -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M * -M -M -M -M 7.500

FEB.
7, 500

.728 -2.066 3. 423 I—.361 1.677 {2. 992 0 91.294 14.588 -M -M -M -M -M -M -M -M -M " -M l -M -M -M -M -M -M -M -M -M 4.44 -M l -M -M -M _M _M [ .M

. 4 _. _. . - 17,500

‘1 MAR. 960 - 11, 600 4, 940

I 1.101 2. 462 93.841 r. 728 2. 066 3. 423 -.361 91.677 -2.992 0 -1.294 52.588 -M -M -M -M -M -M -M -M -M --M -M -M -M -M -M -M -M -M -M “M 'M -M -M -M 22 500

APR 1 9, 006 3,494

i

I b1. 480 2.864 ~4. 249 -1. 101 2. 462 ~3. 841 p. 728 ~2. 066 43, 423 p, 361 -1, 6'17 1-2, 992 0 ~1.294 -2.588 -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M 17 500

MAY

.

g . 16,452 1,048

I 1. 866 3. 278 94. 682 I-l,48C -2. 864 I -4. 249 91.101 #2462 -3. 841 r. 728 92. 066 18.423 9. 361 H.677 I2.992 0 1.294 -2.588 -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M _M _M ,M 20 000

JUNE 20, 000

2.258 13.689 95.121 H.866 r3273 14.682 .-1.480 r2864 -4.249 -1,101 -2. 462 I3.841 -.728 2.066 I3.423 —,361 51.677 -2.992 0 11.294 2.588 -M -M -M -M -M -M -M -M -M -M -M -M -M -M -M 25 000

JULY ' . .
.

1 1.245 18,933 4,822

2.656 4.112 5.567 2.258 -3.689 5.121 -1.866 13.273 84,682 .1.480 92.864 -4.249 {1.101 -2.462 I-3.841 .728 I2.066 -3.423 I.361 -1.677 I2.992 o 4.294 _2 588 -M -M -M -M -M -M -M -M -M -M -M ' -M 27 500

AUG.
- I

.-——-I. .
. .._—_—I. o

n
.

14, 805 12, 695'

I , -4061 .4542 6,021 82.656 4.112 -5.567 12.258 18.689 -5.121 1.866 8.278 “4.682 4.480 -2854 .4249 .1401 -2,462 -3.841 -.728 .1066 .3423 _.361 -1.677 ~2992 o 1.294 -2,588 -M -M -M -M -M -M ‘M 'M 'M ' 32 500

I SEPT. 11, 593' 20,902

3.473 *4-979 '6~432 3-061 “4542 '6-021 '2-656 '4-112 ['5-567 ”-258 3.689 -5.121 H.866 53.273 14.682 -1.480 -2.864 14.249 11.101 2.462 13.841 4, 728 -2.066 -3.423 -.861 1.677 12.992 0 11.294 2.588 -M -M -M -M -M 'M 30 000

' OCT. ' *5 — ’

f 6, 031 21.872 2,097

3,892 -5423 96.951 3.473 4.979 F6482 -3.061 -4.542 ~6.021 t2.656 ~4.112 15.567 ~2.25 -3.689 ~5.121 -1.866 13.278 -4.682 11.480 82,864 4,249 -1,101 -2.462 -3.841 -. 728 2.066 3.423 -.361 -1,677 -2.992 0 -1.294 -2.588 -M -M -M 22 500

Nov. . - , —- - - _ , .

. - ~ 101 14,933 7,466

-4.318 —5.87 7.428 -3.892 15.423 16.951 -3.473 -4.979 -6.482 -3.061 M542 1-6.021 ~2.656 14.112 -5.567 -2,258 -3.689 . -5.121 -1.866 _3,273 -4,682 -1.480' ~2,864 .4249 -1101 -246 3,841 -,728 -2,066 -3.423 ~ -.361 -1.677 -2.992 . 0 1-294 '2-583

DEC. ‘
j '--—' 14’ 267 733 15,000

7 0 0 0 0 ° ° ° ° ° 0 ° 0 0 0 0 0 0 o 0 0 0 o 0 o 0 0 0 o 0 0 o o o o 0 0

DUMMY -- w m — -- ' , , .4 , - 147,673

9. 069 3. 819 5. 170 2. 304 . _11. €99 5, 706 8, 781 3, 797 9.728 :4. 096 9, 493 4, 746 8, 461 3, 562 11, 592 4, 416 12, 077 6, 746 7, 211 3, 818 2, 986 5. 143 3. 253

2123153: I—" '
__ L— 3 253 397,673

20. 960 9.069 3. 819 11. 600 5.170 2.304 23. 946 1 1. 699 5. 706 19. 946 8. 781 3, 797 22, 293 9, 728 4, 096 18, 933 9, 493. 4, 746 19, 627 8, 461 3, 562 24,293 11, 592 4, 416 26, 933 12, 077 6, 746 21, 973 9, 308 3, 818 14, 933 7, 466, 2, 986 . 14. 267 5’ 376 '

 



 

  

 

 
  

  

    

 
       

                          

 

  

 

 

 

    
 

 

                      
   

 
 

 
 

  
  

 
 

      
 

 
                     

 

 
  

    
 

 

      

    

 
    

 
   

   
                   

  

  

   

   
  

    

  
 

                 
 

TABLE XXVII SIMPLEX SOLUTION TO

PRODUCT ALLOCATlON PROBLE M 
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Au 23 '5
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