A SOLUTION QF A NUMBER OF TYPICAL INDETERMINATE STRUCTURAL PROBLEMS Thesis for the Degree of M. S. MICHIGAN STATE COLLEGE John Emést Meyer I992 ‘ THESIS IIJIuI 4 A SOLUTION CF A 11113:? OF TYPICAL INDETEREIHATE STRUCTURAL PROBIEIS by John Ernest reigr A THLS IS Submitted to the Graduate School of Michigan State College of Agriculture and Applied Science in partial fulfilment of the requirements for the degree of 118m 03:? SC Bil-TE Department of Civil Engineering 1942 TH 5515' Ackn0#ledfnmrnt m indebted to Irofeeeor C.I.A1]cn for ter of this 4.1 ' of! C S l I? o " r1 .- - o. obi-‘5': SUFFfigthQ thf Toth Trofeenor A1161 and have given me finch tirely critlczen and .e 1- tfle jr6f ration of this wanueoritt. 4 A can. 0 _L'. My CD .31 Table of Title ”hect $03720 16676.: Table of Introduov Solirtions Frizz-Cd r”trueturee in Grace Icflcctione of Structuree 01:0;1 Icthode of Continuous and long “F71 L\ -A Contents ion cc‘l us;;_.‘.l. C of“. J | ‘ an I ' q ." O n 2111;. .L "I 5’ l c» Ioder Jethous for Liflo 1 awe Ar,hee and Closed Pings TXflz mation of Synbols Iiitliogttqfigr lumbers in lower right co 1: we are 5 ~55 v I. - n ukhf rcic2enoee. ("I Totes on Contents Iiecue ion oi the Theor' of Thr an; Area omcznt lro o: ition Contents \ Pridges .5031"? H I: L . FF) (.9 ’— C) C!) m U) U} -19 39-51 51-102 103- 1 a1 1:4;- lxjfl; 155-171 17L-173 174 Introduction he fresentation of the su hiCct nutter concerned With thL 'lculation of the stresses irwlitrwwi structures has been 'flie princij l concerw1cfi‘2uu1'11rh<2 it iCs in the fieli.of Civil Engineerinf.ln hnnr instances t:ese ren huve been .1." limited to the Cytlication of particular theories in tie solution of conflicntei structur: TrohlerC.ThCy all recog nizcd trust the Trorei'tng to att: CITIYII’ indettrmfijugte st11 - 3. .-E.i~ tural froclems is to build a nodel,;nd tien to actually the Carticulur stresses.fnou§h work Ins been done in this directicni to allCWi'u c dCVEICWTWHlt and :qfnlicaticricrf the theo~iCs of structural stress e to the solution offarticuler fro‘ol ens. I’ovrever there is still a lz‘.r,r“e Car-iount of correlation to IC eccomrliChrd in the matter of the afflicttion of the classical theories to the solution of thee CO- C; lled, rrscticu inde,ttrrn2ntte SIJNICtHI€L_ Crotflmrus. iDCcn I; .Crinter,of the Illinois Institute of iccrnolCCnu 0-! A t \r n W 5"; 1’ 4 ’ I r v —-° a aclvui ltrlgri..untooi..tg 221 tnC‘ n ljs‘ie 01 strum: 1 e.1s. Ininis todk "”trCs es in :r ”Cd ”tructureC“ volume r .1. ' . - .. . ° 4. .. ‘I , C thcJ-;IIDDlCKS.CrlFI€1 212s n CC 1v the cl:ssioal 1:," 2—313 Ir} 1.). H m 0 he hes Tresented a nu ber of True homn, tCCt in Hair instunoes, C c;. T€th0d€ OI cJLIPM1lC to t“e solution of these V”OIlE\W.Tn the 'freC eni;,2t2n1coi.rgt 1;"CCC‘rteci..e1"i itil thtw=c FHLiCCTtthHlS In: a in nan? cas ,hCen CLIIlEd out. The anflic tion of sone of the siPClCr classical met303 to the solution oi problrfis concerned Witl res tiained beam .L I? U) and frames results in such an involved frooeoure thLL a more unique solution of such froblens seened Worth WhilC.This has 1 been done in this tFCsis in such cases Vnere it was felt thtt this method Cf Lttsc A sinjlified tht Co lution of the froolem. *‘ larticular attention is called to tle Ljylicution of tne Theorem of Three Ionents and to the frorosition of [LIFE Jon» ents to cases There tht oriinerf classical Ct od of uttack r7011]d not yield enough equations to render tLC problem det- Cr.*nate.-necc theorene,in combination with the benoing non- ent oiC Cram by :‘C.I‘tS,i’I;:,V€' rude 310s: i‘olC unirue solutions of ot7CW‘ isC 10T@"EJV1 cowrijcxttefi nrolflrvws.ln thft‘filites on (jontCnts" :hi'ttis thesis 217”ci {sf-p), {50 Illjdro I: /od¢/crmx};a/g 1/ (I'Fb)< (if-,0) I {be/Ijuro x‘: ”pa/oé/OJ on/ zy/riéjzéaj—[bj' 7‘5? //‘.70P¢ I3 dealer/7”» ofe. f:- ’70. o/ reoczl/ofi Comfiaoon/J. 6 3 ” éof'J. j .' ~ “ J70!” 7‘5 .9, 1.5, l6, [6. p a " " ' ' a//mem bent Cop/000’: -6.. Problem 2 , Page 16 Determine whether the structure Shown 1‘ _ ' erminate,statically indeterminate or unstaglgfatically dEt I I} ' n I E ,1 I I ' I / I I l / II I X / /1\ / \ I / \ I / \ ffb aSJ—p 6fi/z=ax6-$ /8 2/8 777/3 J/rac/are 1': 0’: l-erm/nav‘c. 8, 1.5, I6, 18 O " ‘ Prom... ‘ t .26 u W:V"‘ et—L5.Q Drayq [(an Problem 5,Page 16. Determine whether the structure shown is statically det- erminate,statically indeterminate or unstable. D14 goat/J Jbo w” 1"? {real {ace can/y. I? b . sj-p 61‘25 = 31/! "0 33-36 7/743 J/rari‘aI-c I}: ”6795/8 - 8, I5, /6./<3 'Problem 4,Page 16. ‘ ' Determine whether the structure shown is statically det- erminate,statically indeterminate or unstable. 7%.” w; #6 a»; {c fa; cam—d r+b= 5J-p 6 #57 a JxZO-o 65 =60 75/3 Ji‘rac :‘ore 1': Iha’c/(rm/oo/e. 8, /5. I6, ’6 Problem 5,Page 16. Study the layout of a typical four-legged tower and decide how it may be braced and made statically determinate. A three legged tower with battered legs is suggested. r+b=5j-P III-48: 3;: I6 '0 60: 48 771/3 J/rx/arc [:3 I006 t‘d’rmzoa/e . If /2 fl! rad: Cad/J be removed, ['7‘ would KM» éecam defer/77f” ofe. 2, 8, 9. 15, M, AB —10- Problem 6,Page 16. The dirigible frame shown is made up of decagonal rings. Allow for six reaction components and show that it's stress- es could be calculated by the equations of statics. ,fba3j.~,b 6*2/0: 317.!“0 2/6 . 2/6 7771.! J/rac $01-49 I3 a’e form/3' 074:. 8 16’, I6, /3 Problem.7,Page 30. Analyze for the note that although start the analysis stresses in the framed pedestal shown. there are more than six reactions,you can quite simply by observing that at each upper chord Joint all members except one,lie in a plane.~ [’1‘6 : 3J.-p V-reocv‘am a/ an» an: a axe-o #2 Corner. ”9/ ”/2,’ B A 24 = 2¢ 5 F4 5 " 73/3 J/rac {are 1:: ‘— Her/Z % 52v- d'}'P/”I.’70/e. IV 6 M731! £Fx=0, 1,330 29 26’ C (530 0//bIfl/J a; 159 11%? (Sat/f. I £5Fk=c7¢n‘zf 2 ZFg:a of " 3 25 so 5/ " 4 fix. a of}: .5 .ngn:o 4/”' 6 ff}: 0 4/ ” éFx: a o/G éFg:a of " 7 ZFzgaa/ " Io 2/}:0 o/x‘)’ // fry:007‘" _/z ([1100; n ’8 [a £5 fifi'yi’q'if-30 £3954 “53-1525 :0 25154-5355 “2575/ :0 Ag:3§?}q5;fi%}fif~5boo=o ‘ggilifi‘figfizFZH:o #3 .33ng xéfi/‘(ao .yé-gpé-§,66=o igiéungggzms so fgr}%D6 -,-§-,(6 =0 ‘Uéeg'éEAZ4i§%?fiflD':ca :5 H0 4% M4 =0 5,9,“ ifl-ggh’p‘jl‘g’ #4 8° Nltfflye Prob 7 "(on/3' W V “we 00.“.le %\ m » WW aw“: w kw“ . fix . Nx m. “w: an“- Wu? new“ kx a A $1 aw a“- :\u- n w V \I &N \ 000%: V\ . N\ .0\ ”\NM. \II M\ . ‘W I saw! NV m WW. .ww \\ . a“: «WW \I S\ w». .wsfi. \ a W”... WNW. Q W- \ .N w n \I “W «WNW w M. aw- .w.“ . w 2. W...“ o... u \ 000...... o. z \. an Ga _ h to . ‘ P” “w- 6.”. ~ \ . - \. .N .& .Votxfitsw mex Q\\ Q“ 3%. V0 Mk MK NR )0. KW 06. max kvflkxxvfi eoex 03km. hasua'sokfi. lie" I52. v! __..;. fixaminziL flaw: 7/? ,£7_/ -1 ' . £32 «$945-$555: 0. i ‘2 «- ‘ . f. / (2.5 %y4£'fi 4656: 2.551’: 23:00 ‘2, £8 -= lésoo 56: 5400 7- 2 [7,? $7”; .: $95 3:54” ’45: fl¢2o 6 £733 z,14¢g‘“/fla :5.” [#20 ' False 7 230/. IF = .5000 C "33.7 Iii-55525 : 5; 57.: %F8 =g5;c ”EMA 0’- I95 4‘6 619’ h a Q 786 76.9 Jaw/v 4’7 3?»on ”game."- 4420 t 200 54007‘ //, o h”: 0 fl 1% o .72": 0 AB 0 A"; 0 290106” /5¢oC 6D .3860 RD 33‘9 H 73c «27/- 0.3: 4:40 7. Sega 4570 Problem.8,Page SO Explain in detai1,why the analysis of this pedestal shown would be more difficult than the one of Problem.7.Can you write enough simultaneous equations from.the equilibrium of Joints E,F,G and H to obtain the value of any bar stress? Can any stress be determined from.1ess than 12 simultane- ous equations for any combination of Joints? (Tote) These questions form.a written discussion by Prof. Grinter in Proceedings A.S.C.E. for September 1934, pages 1086-1091. V'gggOD 0/6064 77" Ja/af/on 0/ {51:3 5 prob/em woo/J be More d://z¢u// {boa five freco d5»; am, because, I}? Rob Z 0/6155 (If/er (hardj'onvf, e//member3 p ‘ excepr‘ 1 //'c m 4 h’: #91 (am Mon filo/7e. In 5 H G‘m— 77195.8. a/ ov/blflr‘ I 7994?! are on? 2 0749/»er {110‘ //e I” 4 Com,» on Alone. :1; p A a c in“ J1, J/ma//oo a. a: P31“ P’ c;:«://:»:: {/2} (ca/d A, P419 . 1’36 Wr/X/o» /or :1 Av J'dIn/J [i F: 6,/-/ 004’ o .ro/u/I'on moo/e, beta/Jo f/ber-e are arr/y A? ””J’JOWI’J. Moves} wr/r’e I2 (felt/Io»: /J/or eacé J's/h/j 2?}. o, 45,... , 2'») . o , .01 40/?er w/’// a. fire wax/so, . Joe Egan-4&5: x9.5.(.£ Jc/a/ ”:4, page: /o“- I07/. 8 2 .m \« Illl .v! -15- Problem.9,Page 50. Analyze for the wind stresses in the 4 post water tower shown.This is a standard tower with tank of 100.000 gal. capacity.Wind pressure is obtained from.20 pounds per square foot on the dimetral plane of the tank and 200 pounds per vertical foot on the tower.Loads are given for the entire structure.Select rods to serve as diagonals at a working stress of.18000 pounds per square inch. DC.- 4830 7" cc: l¢o°o7' £&:=/32:o7' 67% Aofflrc 8/7: 26/007 Dé’ zesty-c 51" = Iasoo7' 6;.- ‘ozoor ~ 36 : //7£OC F6: 306cc 7' 162;:chv7' (SA/:1nmax.7‘ 1 _L777 (”tea 8700 (/165 . 22 my AZflur¢3bo zany:sxs .19: 23%! Dc .- 48.50 7" 1%:0 7&0 (.56 refine): 4&8: = soj- 235‘, 3t}.- /‘ I75 64/.- /7/0 a: /62.so7" 30’ 7 ?M/ . 5e: 6‘ C (”6 :o are. 1 3.3.85 r m». x aside» x.“ = JeZJAV 8‘50: if”, 6’”: J/Jo 3’9: 26/007- ; JFy-O ()5sz / f ‘ 1‘ 17:» afi'zmko 3’}: 7m 1;]: O 5/" :- 9330 6'6: 3‘90 r/r/osMo-ana BF;- /.ssoo 7' 36: l/ 720 C {if}: 0 ”do r (5" -/6 I”: o (5,: ”a «e: (5”: a?“ (f _- l4ooa 7- 1;], o 5 0000 ,- [6, r 9742 F6; .: 502.5: F6,.~ .53.” 2‘6: {0600 7" .19: ..fi.l.l ‘. -18- Bob 9 zed/- (7524/4 (Fat 3 0 /”¢ ‘5‘5 '0’: 0 06'.- A2456 £35}: 7004" IZ¢J'"ZJD : (7310/ .5 0/43 fo=0 0 /2¢4’-G€” .zx/ =0 0 F -- [15/ A"; : 60000 If: 60200 7" (fire F65. = Aéy 'f' 6% wave: Aévvfié/S/V fzofl: Iqagéy-éfi/y ‘, “ ’46”: /. I7A6V 6/4, .- . ”0-6/0 A6” .- Ion-o 296: Air/Jo 7‘ ’46: ”/50 lleo 0 BF.- lJSoO . 7.5"" /3009 (E: Aime _. , 77a /Jboo JFK: 0 ”72¢ «an» «'6’ v 6% = a J’fa’o a 1961.. 67/, ; 3’30: 4/7“, -. ”:61, 6/” $40600 6,44. .~ 4700 66/.- {43907. . 76:1 0,, ~4rlo / "fodg. 7N7 - (lac / ”rod/o;— M¢n Jo’- ’46 19/ all 0,4550% 0/74. 0.1! J4”! J/ze cad/rial 'J/or [46 0° «J! 4047’ J/ze 404/ 4654/ 4.1 ,4» 1613/" In... Ic Ext . .4. -19- .Problem.12,Page 34. Obtain an expression for the deflection under a concentr- ated load placed at the center of this simple span beam. Repeat for deflection under one concentrated load for a simple beam.carrying concentrated loads at the one third PO ints o p -’ P P z - a 7,1 7. t 4/, a 4 2‘ ‘ * .9 P 4 5 63:1 641:? 7w 3‘- 4,//””’/’///”’/ 'F2 \7 4174i £;A:/7?x% x44 xgxgxg 4:. PA’ Edna’s-aae-axss‘s vansjr 152147: 7*5’- 72" 24 /‘2 a, .- $21 _ 74’ y: 4,-4z 4.72‘ - znz’ -‘72’ .2zar Anna? emaaz :y: 45223 /62¢."I annSZ' .Aazsur H4 74x5 L L+EILIAI§A "T 4'2“: ‘ 2 . 3,, 3,8,0, 19/7 .Problem 13,Page 54. ~21)- Compute the deflection under the 300,000 pound load for the truss illustrated.Each member has an area of 15 square 20' 24 P791. Men: ber- 1903 M Alec P , 73/ 174‘" if / 33 9.36 15 ween» ‘2 943 r. 2/: .4 . .20 2 24¢ " #20000. f: ‘6 7 h/o 7 v‘ . 07/ J .. .. .. .. n ’5 ,7, 4 " ' “249009 '1“? ". l07 7‘. 07/ 5 3.39. 3‘ ' ”4/400 .1, 47/ I". /07 1“. m ‘ 480 .. weave“; in 3.33 " 1‘. 4’5 7 Jazsc " 74/4” 147/ ". xo 7 f .05. A; .518 Ibcées, 6, IS, 18, H 15:45.. F1, d. .u. ~......n— .‘n‘w.g1'.t . .I. 1:..slll..,. . . l .a .. -21- Problem l4,Page 34. Derive an expression for the internal work in a beam. Make use of the sketch that represents a differential length of beam over which the moment may be considered to be const- ant. (hint) First determine the value ofA. with the aid of the flexure formula. . . new/5 4 7341.- a cab/force .4, o/ 4»... 41,9, 4 arm/”kc 0’? ,4...” as. iv flea/ro/or/l! a/ /éo be”, and 0.130;”! // r‘o 40‘ 5d” [are] 5099 ap .5. My (:06: .Z' a 72' ”1.2315 .2" ‘ U: 22 . M’q’dfl’dx 2/75 24.: 5am _ it’d/95 yflyflfl—i— M22099” 4- M—i" axe/a.” 252" ff Problem 15 ,Page 54 Prove at the internal work in a beam of any type is equal to 1 .1. times the statical moment of the moment dia- gram about it‘s base. The loads are gradually applied. Jib/I‘d Mcai‘ Wl‘ ‘Moonw/ 0/” beat 0/ Mame/n“ (an/c. .: széxzf, = 212’ ’ ‘ W= jig/1' = PIa’I = gig/:9! a 251' 0 2T: ”‘5, /m’/:; 32 43 War/1’ =: 2%; (€27, ”fizz/7 II: 2% flare: ”)0 Jr‘o/xco/ 0700) on}. an“. I8, /9 Problem 16,Page 35. Wbrk Problem 12 by use of Castigliano's theorem. Problem.12 is stated as follows. Obtain an expression for the deflection under a concentrated load placed at the center of a sim- ple beam.Repeat the discussion for the deflection under one concentrated load for a simple beam carrying concentrated loads at the 1/3 points. .' . P r M: Rt ln.”‘ I E I 55 ‘ T?” 1 4 P / 77 2 4‘ x A orf "2" P 7"" I. M: 79x ’° L. 53’ ‘75 - 4 1J rf * W ‘ I 4 P P Z 25.: 41625.1- 6 O L PA a £2:- )2 = 2792’ .-. _Z’A ‘ 7 JX4‘ZII 0 3x3 1: (£11: Ix an!!! A = P43 (85!; 3f 3 3?" (12:19.1 :2 £1?" / ad: 3r . .112- “ .eer Px__'___'__d: +/732/:/§f¢(_ Aunt .252' ‘1'" n 33$ It :2 P‘x” +{PA/[ x =2PY’)+P‘A‘?"-§ 252:0 '7' i? 2:2, .muwu- ;' 4;;- 4§$fl2:..27’tz’ * 7’55’ 4): :572Z’ /32£ur .ffffi’ AflZAEZ' 4A5A3fl? 'Problem.17,Page 55. ‘Work Problem.13 by use of Castiglian'os theorem.When set- ting up the expression for internal work, let P equal the load. Problem.15 is as follows. Compute the deflection under the 300,000 pound load for the truss illustrated.Each member has an area of 15 square inches. A / ye {Ital Iced elf I”, 7 ‘V ’ a 4 ‘ 3 3. 7 to A ’ a 1 I” D ‘ A ' J _ 4 40 r ”? r | 21}; Z P2 ‘ P 1" 2775— Joe! 2?: (3ooooo+P)-§— 73fq/ 4944’: 30° coo f- P B: (300.0. 4?)"; 55' t (30900.4?) «473 (300 099 +'P)-945 5‘ . u . 333 5g: ‘ H .‘6‘ ~57 : .¢73 1%: " .666 4: fl . 6“ éU: H300. 00+P). 973 J33136 + 3[(30oooo¢-'P). 6761x240 f2[(Moi-7).7J 9%” Jon JOI’O‘ 3o '9’“ 30:: 30‘ + [(300000 +7).3--533 180 .39 x :03 $1, ._._. 5: Zéooooo+7joafx331$6 tlxsédmai-v 4431.2’0 JP J0 x Jo‘ JO n.).‘ + zufioouoflfl 22 x33736 f' 253009.». P). m: «a JO 1: Jo‘ Jo at .90 ‘ [0" P: O : 5: .20/4¢+.2/2lia-.o'!.r¢ «.OJrJz == .547 -25.. Eroblem.18,lage 35. Find the deflection under the 10,000 pound load for the cantilever beam illustrated.Let P equal the load when set- ting up the expression for internal work. IOO'DO - 5060 é ; [a 39.999.999 fl I: I999 é . / a O :_ fi ’L—d- é / 5099 4 X1 f 4 1 I 1 I r ‘70th: ‘5' Cufye a 51L»: ’ Era, ./ flax/(x, -x/ a: .. Mr 00/, o/xZ/‘éf -/-xx, :XVJJX i=7éf§zu 6,-142'+16 )693' 32/fo any = % pé-x‘} 6, s21: (JE—xj 6.4:: 6, /9r 5999 t 5,. 5ooaxf£ Kama-75] = ./04446" ‘X/ooo 11.30 W ‘ é} fir I9999 - 6' : /09925Zz (3106-45) .-. .09&5 “991(30): l0 ‘ 6, for-.5099 + 6, for Iowa _- 6' o /m '1‘. 073.5 .2 .2029” 6J8.” Problem 19 , Page I; C- . Compute the vertical deflection of the point A of the truss illustrated.Areas in square inches are marked on the members . Uni/4999’ a é F 5 D 3 UV / / fl 2 4 3 3 3 a 2 / 5F c 1 E 4 L I a, :— a ' r 4 box VIOA’ a - / ’ JdL/ Dor .5 Mp ("lo/A z " .504 ,9 ’9 AB 0 ‘7 76 o 0 DC -/a -/ ' " + m 4 21:0 2329 , r/4. I4 +1414 05. 5 ~27» 3 903 x90 9 o 96 9 " 9 a '70 -/ " r 959 ” .120 DF My ,. / " + ’60 5 ”2 (E ‘39 -2 " A1769 5 ”:2 76 A20. 26 .M414 I35. 5 $5420 f 4355 Jul 2 4 4/62 .5 l. 990 A [/8 :ZZE. = 4/621/ _ ./37 Joxm‘ lroblem.20,Page 40. Compute the angular rotation of the bar AB of the truss of Problem 19 . (Problem 19 on previous page) n -g, 7- , 5 D 4, " / 7% ¢ ; 1 a 3 8’ / / f 5 U 5‘ ’/l l C 7— 46 é ’_ 6' k fiL~l g "104’ ’04, Bar- J/f’zp at’offl" Z N A 4 I96 9 a 76 0 ' AC “/9 “ ’7‘ u f 2.: AD Mr. N 9 IJJZJ' 3 0 ED 9 0% 76 o u -’o o n 'I 0 PF #0 "' I n 5 2 (5 ‘39 " X“ " 5 6 I? mate 0 ’3‘” ‘- ¥ 0 Jal- ’ 2’ _.__fl _ /9. 5 .701- _ /a 5x ’0'“ 24" - Jo x/a ‘ are = 49! 5 x /999 :32; 13‘” .-.- 72.3 5‘5- a 15‘ x8 19 30 x /9‘ Problem 2:1,Page 40. Compute the maximum upward deflection of the 12 inch,.’51.8 pound I-beam supported and loaded as shown. 3:99 3299 I: "- 31.8" 5:0" 7 x, r ‘ \\ 1': 2/56 a. (.0 O E: 39 x 19‘ .39. 32.04 6: III/0‘ , M: 9949M)" of 3299x119 Aflmb’t i/Vy’a’x /Vv21’r=o * ‘éur .46; "6 ’30 A = 2‘ £3200xltojé, dx [1' 4 3 g [ “3299:: 1206657] A a .3299 x129 11.80:: L32 214:; xJox/o ‘ A .- 34P99 x [39 1:139:59 = . 427 " 2/92: x 30 x/o‘ 8, 16‘, I8, I? -29- .Pr°8%§§u%2’¥%§eb$3aing and the shearing deflection at the center of a 12 inch 50 pound I-beam acting as a simple span of 40 inches.The beam carries a concentrated center load of 100,000 pounds.Assume that the beam is restrained against lateral buckling and that the web carries all the shear. flr‘so'Unm— IocDOOO /' 20" .Z'-' 30/.‘ / . ’8"-69‘ é!" ’93 ‘67 f i‘ 43999 4 29 ”In '9” 500964, A a 9 a 2 9 $9999 X’a’x (I 09/. ‘ 1 39x19 ‘xl ' a... _ 59999 820’ a . 9/47 " 3X 3946;39:297 [4/96 area .- . 6071/: : I.2¢ J/uwr- : 21 [4/96 .. 2 ° 59999 9’5: «4:; z96hnz : $0 : 9 0/0/ ~ ’.2¢l 121/9 ‘ I. 2,8, lax? 4 -39- Problem 23,Page 41. Find the maximum vertical deflection of the Pratt truss shown as produced by a 20 degree increase in temperature of the top chord and end posts.Take the coefficient of expan- sion to be .0000065.Is the deflection up or down? Explain Why the cross sectional areas of the members are not needed.What would be the maximum.deflection if all the members of the lower chord were fabricated % inch too long? 9? v‘ofi/ (190" 1", /en, #19 °/ 60" - 0 V . . [d 7- “ [Case ,4 6- . 00099‘6' z - .3... a c ‘9 .r I' 46 iv ‘4 4 a: A J‘ a p O 4/ fl 1. K ”5’ / :£" . ( (95¢ A ‘ t" 3 73f9 / a.» .5». *' .5 (1- /" 1 92.4 e: #7.. Jam dubfgdfifl ’40 366. 8 *- ‘4‘ 380.8 . 932 6.: an . 9.1-9.1- .0312 1 £4 36 z¢c 74.8 («to .924964’4 . 93/2 CD " H2 ' " . c.3744!» " Di #6 ' . 0499194 °' [F 0: ffl‘ '0 or 00 Fé : " fl: " , 93744.54 " 616/ .. f .a " , 924 164-77 V .OJ'OJ’: [A { AU 308-8 #6“ Jean .aszuéw . an: 0 I! 988 éfibé «$333.62 A Vfl : Z ’4‘ a I = "2M1 0 /«//&w W/// 50 0;. % 9’9 ’29! 009 a’ r‘ée yup/ac of {be red of (7-9.5: Jecy‘zé” a: // (care/J 907‘ I.» r‘be {/h/ .59 4/193”. 8, [6/0, I? 3'65 23 Zoo/n .- -51.. (4:9 6 " Bar 515'”: ../¢r 4 Jaé 504/”; £1.51. Iriflx. strata ”no at (M / ,40 11.840 -, 240 " 4x240 «zfixI/v " ' 'I of ‘. I' 0! OP ‘ = . / ., 114-4 1.31.2.0 arrantrza 7’0 ".8 «(ma 4 :29: 6:4 : '2 n __ .. ’Ié'arnzxuo Int—4 (/Jm_' 3 O/V ”2 1% 11:0 «24» x457 ‘ ~ u " Ir N 4/»! .- .3 ~ llé'll.””¢ ’15,].3m0 M "; 6 4x2“ 4x24104299 ‘ ‘2 .. . ”4'4"“‘4’2‘! /:4-v7z. 9.1m 11" . 4x2“ 4ngxéy‘ '/ W I I (a u ” " = ./ JUL 2’ ------~ : /. 4 ., 4.5 -32- Problem 24,?age 41. . A steel pipe is bent as shown to provide for expansion. The pipe has a polar moment of inertia of 292 and a moment of inertia about a diameter of 146.Compute the deflection of the point A in the direction of the 1000 pound load by by taking into account flexure and torsion.NOte that the member CD is bent in a diagonal plane. New“, (B r .9 \\\// Xqflm \ ”43%” :°/;:oaxilx : 1000;139’ 3 . l3/" JtMXJoxm‘ r locoxéoa _‘ g , 0/64" It. . JXI4‘I30"° 75,5,“ 4=flJJJ:/‘oooo:t‘odx 6.7 " 6f 4: ‘OOOOKGOKIZO g 0/2) 0' [IX/b 529: a: lat/6.1 ’6'”. I? «'53.- flab 24 Zon/ " ”or 0 flip/V if 1 1\ 0 Iago Nov IV A! ‘35 \j ”7‘.” ”(If s C. ”6”: (0174,96; 3/74: . [‘0000/60dx 51' ’ 2‘9 A .-.- ‘oooo t6oxz¢o a, /97" /Vay43 /ooox$€r /“ 130.: /o‘ 62' 4.- Lwoxzvo’ : (.05 " 31/46 JJox/a ‘ Mcy: Cow/402‘ I“ I” A 1:" . MID/J ”04/4: 0 £60000)50dl 4"! 6.)" : Z‘wazzoxzco :: . 77" 4: 50°“ x‘ongo 245 lit at Jo Xio ‘ liar/o ‘x 2’) a, . 7329/ 174/9: fzm x” dire-c flow of A . 0/‘4 "' 148 "’ Acadia, mom, . I310 - ca - " " . I230 - CB ~ 733-479» /. or - 06'- 6taa’znf mm . 24 5 " 05- 73/3700 . / 7 7 ‘ DC “ 5000053 07007 75r9/- /. 76.? ” -34- Problem 25 , Page 41. Find the absolute deflection in space of point A of the pipe considered in the previous problem (Problem 24). fll/ oof/(J' are 75' 7" /3 I I k‘ I flu! . /, / \\\ '5 7 I, / \\\\ : ll, L\ \\\\' / \\\ 4\, \\\\ I \ / \\\ I \\ I \l .423: 7': 73:9/ lvhmz 1n7 07' 7' f’ 46:? ¢5ér .4 s /7EI 0' to c: o e ‘ ' v CB 0 a a a 42:13” i’ % CD (Sax/m x o .406 c? N 05 a (ax/000 240 . 785 #8 0 0 O a s 36 o, a o o a a 4.7,..7,» \ . ‘6 CD Max/m x 0 a .770 fi . t DE 0 a o a o 0 b \ Ax from flvé2¢: A76 A7": W?¥flJ’/‘f.7":Z-’8n a, 1.3, 15, l6, I8, I? Sick: Cc inch, load: inch -55.. Problem.26,Page 47. Compute the end slope and the maximum deflection of a 36 inch,230 pound WQF. beam.for a simple span of 60 feet when 9 loaded to it's allowable stress of 18000 pounds per square inch by a uniform load.Do not develop a formula. . :- / _ h h h H I:§; /: * mi: ' l 8 ‘ ‘k a ‘\ 5* B .360 -_L.[ -62.. ’ W1 4’ l - WI: .1. [:aioxzeaxazt zaoxsza'y 1 6 422‘ 4 a e z . co 7971-2415»: or . 456667" . flimsy/:60 -.- 01:73-2c” ‘0 " g - M! ‘_ I b AéoM’dxg-Z'L‘Ofl'z—x jug/Jr O Wlx" - War? 3 6’ :_L[Jaxgax375 .. 4304:3607 6 8 .0: £83” 8, 18. I? ZION : t .66» r 1r c. Jw r ~ 4 “I10 h EffEC so '11:“ .L R Iroblem 27,Page 47. A 24 inch,79.9 pound I-beam extends as a cantilever 15 feet long and carries a concentrated load of 10000 pounds at 10 feet from.the fixed end.Find the maximum.fiber stress and the slope and deflection at the free end.Inc1ude the effect of the dead load. fl mm 24 u- 7!! 7": atom :: A. \k\\:\\\\\:\\\ 9:411: #- flit ./"° 22. x 34x ’2‘ O: /o;oo th o 9.: 100021/22‘ ,. g: t I”, 2330!”, 1:002! ‘lJouo 1:002! \- 9 = . 00/2915231‘0 = O'-¢’~z678 " a“. /“l W}. 0/6000, 4 : 131x 4- ”VMK [I 4- -//oaooxlto' ,4 ’0: 1 lab‘ 03400110520822 1: “,ac,;;zz M: loeooxleo .- (:09... "r 30 1: /.rx '0 c loaooo A Joe, coo ”d" 5: M6 = 4303004.”: : 7:00 ‘0" I 208 2: /o’ 5' fig ,, Irv/perm}: 13 {0"- CO/o./oo/ ’4 ' — - _ _. ’- lflvqform ’001 \ O \ \ . \ = . 001/5 1» . aoOI¢ =./75 8. la -37- Iroblem.28,Page 47. A beam.fixed at both ends carries a total uniform.load of 1200 pounds per foot on a span of 20 feet.Compute the maxi- mum deflection if the section is a 12 inch WkF. beam having moment of inertia of 182.4.Compare with the maximum.deflect- ion caused by a center load of 16,000 pounds,which produces the same fiber stress.make a further comparison with the maximum.def1ections of simple beams loaded in the same man- ner to this fiber stress and having the same section. .4” WI»: MVC flt/fia/aeo’ be am June sec/,6» 3 - ”b" /6ooo 5 5 / I / $ \\\ 1200 ‘V , r I" \ § 5 It" , .13 5 p o ’ -.. V . '3 g E #0“ urea-«I E § \ léooa b 51mph Bea/27 a“ ‘c' l T f :0 7 am 0000" 20% I» Vflf/yo/e #0 see I}! “e Mn /.?00 7/ /oo/ cad/6000 ~ noon/0 (antenlroled /oad y,» #5.» June t“: And [3 gym Int/r1244 J44»: 00/7 41”“: 0» J01». I‘éo ko’ea/ 4/ lée co» /0- pm/é/ team. a"! Kenya/n" off/’4’. ’4ch 9/ Midyear» Av/wnn :44c4e zfiwozb 2o 0: limx/axs. .4 /o ”a -f lax/M x: M 3 - 10090 A _._ ’20“ 1/10! ‘0 '00 - “XIII/"(ia-ltm 1‘02“!” Jo 000 000 :Il2.4 A . /‘ ”‘ ' 618’ /5 Fr. Fri Par/ ficé 28 200/ " ”at IZO coo taro - flooooxza’ - I290 x zo : co : tvoooo Mo: We, ”on a/Je/flor/ = {lo 000 I”. 3‘0 n J: g6 : (4000916 : £5390 Ill»! Pr} “b .- MOr/Vom - ¥. ”0'” 0% fro" r‘oA/e W1. : l‘oooxato = ‘Ioooo 8 8 .. ~ 4m; .- W1: = flora”, .-. .2l" I?) l: 192,”; grant/0‘ For! 2" Jump/c Jean - (we. /uo’ 4/ cooler-(orch/oadraj /aod( 0-3/0" Jon! ”#0:: , Joana /0n’#6, M: 4:4 M: 480000 fro». [tr-f 3" {80009 g FL F : 8000 7 4: F43 = ’000‘2“, 3.42" 1049' fl:/€l.4tJo:N‘ For} .4 ,. erlA/e émp - .500" me3 - Jane /on_’ l/p - Corrcafififld’lny . /oo‘/ ”2 flfoooo ”‘5 M: $51. , W a /6ooo 3" car-0007(oov‘ A : Sta/4’ : it/Joooxza’ = .55 369%? 3341/8{.¢XJOXI0‘ -39... Problem 29,Page 47. Find the maximum deflection of the beam shown due to the concentrated loads alone.The beam is of wood,12 inches wide and 50 inches deep.Take the modulus of elasticity at 600,000 pounds per square inch. $000 7000 M 1:" l l ' ' .5 ' Ir ’3: -‘____ _____ ,_-.——-'T'7| / 43 are 1845‘ 12030 .- 30¢ 6000 3:336 \ono II" 4, = IIOsOJJOQIIQz 32:. - no. at 38611583278 - 7.00.3240 8’20X3~' dooooox 27000 - 7100 green: ”1334 ‘000 o x 27.09 4, = 3.23 .. O: 3.2! :- . 00“: I'd/Kr»: 33? 3 1. vi ‘000601270091.000¢2 3 12030_?_‘ —J'Doo m~40 - 70” 0"/¢d - 7000(07 ‘20 I I 2 135000999 :- ‘o/II» '2. 2a. a, "4 2400.00? - 5.7“. one - .3600”) 8*- /- 000. 000 " 72, :75, coo - stoop. ' .. /¢? Icon — /4¢:‘ 4'6, coo m t 3 7‘7 ’07 1» la’Joa .0 07- /7f, a! tile x7!" ”Jill—’0’. 8/"1521 xy/fl-[MA'II‘ (5%! xiii-PMXJOX 3.30. x161] I J A = . 94 " (“2.3/5 -45- Problem 30,Page 47. Since flexure formula for re-inforced concrete beams, f¢3 2M/(kjbd') ,must be equivalent to f=Mc/I,and since c-kd, we can readily show that I=Jfiifly2. Show the derivation of this formula and than determine the theoretical deflection of a concrete beam 12 inches wide and 18 inches deep to the stee1,which carries 4-3/4 inch square bars,if the simple span is 20 feet and the total load is 1000 pounds per foot. Let E 30,000,000 "a :I' 7'— F I ZZZZ7CW“"I"'/Wu‘ /§Cé?§ _fl_4g¢__u_ In" I l 2 ' - a ‘ ' 4-5 0 D D D --‘L AW ’ f4 = 2 - M6 6: Id A'J'H‘ I . 3 ‘ I - M 2m: .3 2M.- ’7 A, {/a-x/z 4-5- ....a/ MA. I: z. :- /a~.r : 12x‘ 1 2 f j ‘x’+J-£7rx -33. 73:49:.) x.- 261 .. A’s-K4 . : “fl : /€- ‘I¢ = ISCS J] I T Z!" I: fizrd‘xo -- (ivy: 27?; 12 = 5/70 2 2 a M“ t 3 Allow x20 xzoxl4¢= ‘00 000 8 8 I? M _- ‘60000 :: £81/0.J=-fl7 451' lit/0‘14?» A : I200, 13‘!- 11:0 -- Igor/”(é 11241:. 4 = 80 I‘ll/OVXIZO (a: .-. . 31" -41.. Problem 31,Page 48. Check the deflection of Problem 30 by computing a moment of inertia from the formula fl, H/pjbd . Explain why the act- ual deflection of such a concrete beam could not be expected to be as great as the theoretical deflection. Wm '#~/~’///// 10000 (a 2423:; I M fl, s- ,4. es- I: pjbd‘/d-de :.;.:‘.$ J'bJIKJ-Wj : '0’ 4‘ J ,1-J / 4’ / I: g pig/{IO-Zlsz 3‘0 A ___‘£O_gg_°___ a 52:6 :00" £1” Jot/0‘13“ 4: .5. 11293.3..‘(129 x3.5‘x/o.:= .335 ” 1' n D n n 4L— 4'} ”has ¢::fi3=Aad Ila: Li‘s afi3:7¢¢" 77): beer), w/// 00/ lc/vo/{y dell/cci‘ a mac/7 a: com/90M proboé/ , écccasc #6: .0013: Ca/cc/l‘y 0/ Kl): can crcfc fie lwoco fl)! J/cc/ 404’ {Ave A/ea/ro/ 4x13 11: 0/1/1294 #0 Jane (Jr/9’71“ I}? Car/yin} J/red’: from J/ec/ "6 Caner-tie . O //2 (om/breJJ/ofl. 8 -42- Problem.32,Page 48. Graphically determine the elastic curve and the.maximum. deflection for a simply supported beam of 50 foot span load- Ed by a uniformly increasing load from zero at one end to 600 pounds per foot at the other end. The beam is a 10 inch 35 pound standard I-beam.Neglect the weight of the beam and compare the deflection obtained with the maximum allowable deflection of 1/360 times the span. ‘5 3 r 0 8 o I. '% u’ah» lat-J .2‘ 5m P ‘ 411' L3. X 3 M M: 3.00!- on’: l0!(360-_&7 x J 3 3 87/0 6 12 /73oo A. £090; ”4'13 17728 g . It‘s ” ' 30 x [a ‘x I76 7 27 21750 A? ‘RB 3bzaa IS 75 .38 7:0 /8 la: 34-3.” 2/ I47 32/00 2‘ I?! 23700 27 24.3 Irina 29 (£0 5800 30 300 O - 42A- -43- Prob.35, Page 48 ' Determine the elastic curve and the maximum deflection for the beam illustrated. Kote that the funicular polygon must be drawn so that there will be a zero deflection at A and C. This may be accomplished by correcting the base line. Treat the uniform.load as a series of concentrations. 50/0190» 0/) net} abee/ 0/ fro/é ’96”: 14 0'" w 714.. .1. v '1‘! \A“! 41 _ . I‘L . L3 . «111 r lrob. 34, Page 48 Determine the % reduction in maximum deflection in the beam illustrated as produced by the increased depth near the ends. This is a rather difficult problem. You should take the simple beam.moment diagram, divide it by E.I. and plot the result. Then shift the base line to produce equal positive and negative areas. The fixed beam has no change in slope between ends. This true h/EI curve placed as a load on the conjugate beam is used to calculate the center deflection of the haunched beam. XVV: N '6' x 6': mckoi-ed I» feel. “\“\\\\\\\V n \\\\\\ \ to z; A ‘1' 3 ‘J Fz. gee/pm?! -WF JOx/o ‘1: .2 . 0/ x6 :- 5451/0“ #00 3;.0—4- x‘ : o/781’0.v 35.0 . I711: v-lor.‘ In”, .J’clglo «VI-get" -xox Ac? 2 £09 1": .09! away: /0(/2:.003 = .36 " 11/; I6“; I cad: w/e’caea’ 4 Max :E, = 30mo/480’L .-.- . 52¢ " ”’26-: fizz/loo ram-w ‘ \ Rafi/circa . 52¢--3‘o : . I6?! Z Raw/as . ./.g (100% =J/.3% '524 -45- Erob. 35, Page 48 Compare by use of the f/c curves, the relative amounts of the maximum deflections of 2 simply supported plate girders of the same span and depth. One of the girders is of con- stant section and the other is of constant strength. The loading is uniform and the depth is constant from.end to The value of the maximum.fiber stress is the same for end. the 2 girders. 25,4»; (”aloof (one/moi .30ch JrrCn’M 2f ‘ z~ ‘Wiloof 7 h/ ”/00" I _ 4] wz uz‘ wk [3P 1 'f, t kg; 4 :14 FT :éula:§g; lfiéFécz .Z' 510cc 1' 1: (annual, at VII-let 4: f7, uni/(é gave: a porn bo/z'c tar/c cog/'0’. {e be." ‘ 4I=§(-é'2‘-J§'%'§(§-é*§) f . ’ riggutéxg: :{zl-‘zz 2" /or 6004/04!" all-(0’3“ 5:0,»; aura/c 1'5 4 comfoor‘ (”J'u’o 3‘! Icon. _ “h. -46- -rob. 36, Page 51 _ The actual changes in the lengths of the various truss .nembers as caused by the load P are shown on the drawing . of the truss. Obtain the shape of the deflected lower chord by the method of angle weights. E=30,000,000 - C - 4’ «c b ‘0. 'o a ’ , 24 6" [9-0 i0. ’2 9 0.03 *0.” .a __!L__ 6 F 49 24: 96 V P II . ooo ¢/‘ 1%", . 000:0: xzfr.oo2¢zr7z—96£=o £= -W’= not! 9‘ }/0=/Vo= . aoz/rlzrzva .53" ems/a -47.. Erob. 37, Page 51 Determine the deflection diagram for the truss shown as caused by a dead load of 2000# per foot of the truss. The .dead load stresses are given in Fig.126 of Vbl.l. Areas are written on the members. Check the center deflection, obtain- ed graphically, by a single calculation of virtual work. E=30,000,000 ; ”I I, ’ ‘5 a V 10 It I! A. l .5 fret: 11% 44 Pct/i0 a l. and A0190! o ‘c 9.4 M5!» .5 41= "E r 7 ,-z.-z. g 1., e z. e z a 1.1: "I ’31-! .ozoO Jo." .MZJ /- - Tutti! "" ‘r .41.. " ” " ” / o — " '- "‘ 4.1. I‘M/o7 “ 3“ .W - l a "' ,mn —- 'ZJZQ . n n 300 .W’J _ — o -— — _ 4.”, '41.! ‘ gm 2/: .OOO/IJO I - -— ,oGOI/J "' —' My: '42.: , 0/73 34’: , 000049/ - / - '- 7uoo49/ - ”a”: ‘4‘3 .0!” JG. .0430on - - l "‘ "‘ 7000on (/Ju‘ u .. . u ,, _ _ I _ .___ H “A, "14" .012: 30. .4“. «I? 2-! - Tm!“ Tuna? -"' 2/: .acoo ”/ .5' “may; (£1; ~17 .0“: an maul/8 I f}; -' .man/ emu, — (/31, ' sax ‘ .oou- :oo .ooooon a." l l -- ran-cow naval!) 021, 159.1 .03” 2.3- ,00007/3 ‘1 l . " .atoo7v 700009” ”.31; O a O —— — _. (/41; rI-l .62” 2.3. ,om'fi '- ' / -- - rm f/l ”(lg an .002! J“ mom: " ' / . "’ '— .oooool3 e, 15: la -48... Prob. 42, Page 59 . A 10", 30-}? I beam acts as a simple span 25 feet long. Dem 'termine the maximum uniform load and the maximum fiber stress if the limit on deflection is 1/560 times the span. ”- V .2:- 64mm , ' W/I76/l/46J w/ o/ 66"" X" f'ooi‘ m 4 M, p d: .L .5”? ”'3“, ““71 .L 1100 s .033" J‘o ;" 1110: III. 5' .333 =‘123Wx/Ja (74‘1/00 - {- x/zd’h/x 73'1/5'0 47/24" j; ‘lO ‘ x l”. ’- .833 tense #135. s 2 2.343. 7: h/ N = 80001133.: (.83! = 380 316.}, Inc/via n4. 0/ Jam 2344. 7.1- Javawu'g.¢7szw';z?=;F1 2 5.- ”C a [4730!!!0 -¢7¢bx73/5 = £1400 “'0" 4? max: 6, 13, I6, I8. 19 Prob. 43, Page 59 A 30", 240# beam and a 36", 500# beam carry uniform loads over the same spans and have equal maximum deflections Determine the fiber stress in the 30" beam if the 56" beam is stressed to 18000# per square inch. Explain 5700/ Dc/lcc boa: .3."«g¢.".z-4~m , ‘1. ’rbem _ M f 14"”! A ”I #/~,‘ / MA I A “6/— m] g?' A '7' 1r .1 1r Tv zaaunuz * 1': [I412 . . M: if C J;- c - .Z' M‘ (dz-z: J: T '6' 42: JalgL‘ : /Moxlo:”.z F 292,02“ Javezr 4’ all '2:- /6: 32/400 “/1: /‘332/‘09 Z t 4;: ix "238/‘00 L: _. ngj¢/4l 30:1.” (MTIaazmz ”4:10:94? 41: 42 4/: .swuc‘ ,. aux/1' 3314': ”0202”: «1,1 ‘: [I xfilly‘xauza‘av/v/z g ‘flxJOX/O‘la.’ ”via-tuna: ‘ I «44‘ Jzals. J=T~46 seize: ”7‘ ‘3" I 1' army: “4 :: gill xJaA'IO ‘lrm 4:. j: x4/x301/0‘1.J63)x£1:43.37 a! .. - = 45300 ”Jim: I» 8 4 (’xl/fl! Jot)“ “51’1“". tanawanaxe -50- Prob. 44, Page 59 An I- beam.has a fixed deflection. A particular beam is found to be 5Q% overstressed when it is deflected the re- quired amount.‘What reduction in depth will produce the re- quired stress. Why does the moment of inertia of the beam not enter into this problems P 44-3500" bet” Mr ”7:24 .g £1A=anléxéx§‘é 3 P? Fixed/‘70”). 04': .5, a: Z} ol/ou/obk II C , " dl’v‘é 0/ WI 4.9- ace/n " Io 5 4//o art 5/: Jill-(4” I}? “and m»? ' Cg " dcpfié of oarraw 5:007 13: Pic. .5: 7Zc: " 'tr' ' 4a“ .5: ZPZCI I?!" ZPACI : P162. /2: 4-2- I (once/J 007‘ 404/ be: no 9%: l a» ”6,6!" 6/: ‘CI. = C '2' 1" " . O. (2 Mo:/ 50 } 0/6, or a rodvcl/oo °/ 5- °'_ ”5-7. caza -51.. Prob. 45, Page 59 The truss shown is to be erected by the cantilever meth- od. If the dead load is 500# per foot of truss and if there is a concentrated load of 4500# at Lsproduced by the erec- tion equipment, find the proper length of the erection tieback in order for L4to land on a seat at the same level as L.. Areas of all members are shown on the figure. If the lower chord members have excessive L/r values, how would you stiffen them.to permit erection. ~57.de x2: ("1' " 7‘07‘0/ a’e/ormor‘m 5.5’ g .5... x: .57" cMye in leoyfé 30 6.33 4:03.24 o/ Bvcka‘ky .-. 234632’ora/fi- 219 ” .3/ ’- 249 ”.— ..r/ ”= 3/1593 ” ar 3/ ’- 6 if 3, x3 -52- Prob. 46, Page 64 Draw the final moment diagram for the two examples given in Paragraph 47 2'1)? I‘K/emcal 0/ de/Offf “on. 10' 7 30' AL”. .an 3.»? d/ajn'm 1"." con/inaoaa éeom wk“ aaMr-f: 4// on Jone /cve/ 22! .Dva 3M 0’14me {or Coo/[bum Jaw» wé/é Joflkavan‘ 0/ ’40/6/00.‘ 1 VJ: yo/ae: ,4.- ZA/oa ,(oupa’ I}; ///w/ro {‘0’ Mike, . .Z‘ 1‘ (I: e/Jo ”area: 07 7‘0 cam/6a}: Jéeon: vol d/ww .5590,- dry-rm ”a :/%abe 522-8000” ”7: : M5 1.3. VJR ‘56600 =- a -540“. .s dd Zap ‘173300 a ‘56600 $.30 V0? Kw .~ 495.95 * VIP. - an. 1434 .- 2/4/5 Va..- .433» %= Me i- f‘ 4; -/ooo coo Va? .- 29:32 5 was V04: 206625 293-: ‘. l l "I. 3'” (45¢ 1 8N1: 20“. M“ . A . v“ on 42.6,8/0, //. A5 Prob 46 2'0"} " :- 6049 .2 " JOH/cmoo)‘ (we’ll/co. 8M5 km fro», z/fiuira’ed . ”06/9!" M5 : '/&m ”6 a -/¢7J¢o M4 M8 0 'm ”c 45.” Map IN ”M ”Q V“. WI. V6? VAj “"7 ”"31 It: '5‘; I 237:: 212‘ M0 = M4 ffo Kn? ~hoooo M: = ”a #305,? 74-24:» . a - cacao. ,. v: 1,44. 749:” .--mm sJqu. VIP: a la? Var.- loo 16;: 23013 V64.- #46 Mo : Mt: #- ¢0Jvek ”/aooooo 0- -/./m~ *1?qu ‘45P: 237-38 V04 -‘ 2’2‘2 (I78! I“ l O , | 21262 23:13 ‘ {was 13/070 lflm A7233. -54.. Problem 4.7, Page 64 Repeat the analysis of the example of Paragraph 47 with- out settlement where the ends of the beam are fixed against rotation. W I. I: C F F i am F I l '1 l loco {loaf . a ' 40 ' - so ' Va. 5 ’9 :37?» I62“ 5:) V441 ”“9”“ a?“ ””100 330 a Mk IV - vane -33,” ”3234-4 308820 lA/or/r a: a conf/booaa écom é) fbeory 0/ JMOmMJ’U’x“ ref/447'»? fixed end-5 A} deem: 0/ 0 2603/6 , 0/064 .1 M [a ’- ea/Va rfoMc .- -/‘,ooo.ooo I viz/Va :‘IfloMc #30/‘70: —/‘.oao.ooo 3 Jo MC x- /¢o A79 3‘ fife/‘74:: vac. 000.000 1 70/‘70 *50/‘75 f ”2:49 .3 ~30 coo coo Jo/y/bj e/aqX/ena l, 2, 3 , ¢ , we arr/me 07’ Me fi//0W ’.”.7 {lo/aces. ”5 .~ — ”32/0 Me = -J.sr79 Mo = - ’32.?«3‘1' ME '- “3068420 M = M0 f40 Veg -Jooooo /% : "70 $¢oléP‘/Oooooo “33:77: -/P.32/o — coo coo “b 16;? “340m : -/. l32”¢ auto V04, 14313 a #23 7.20 [Q .~ .4/6250 .164»: 2.9.5299 Kg: 299/ "(a : /% 7‘30 4? "/JZ.3~’¢ : - mac Moi/’4: VEP: «3273 - Iéz .- $32 93 l. 2. 6. 8, /o. //, I5 -55.. [ID/06 17 200/" 23m 20m ] 329.3 385 l‘ :60 19¢” 1794'8‘ 9842.3 0 f 0 333?? I38 m 1031 J to Problem 48, Page 64 Obtain the moment diagram for a continuous three span beam fixed at one extreme end and simply supported at the other, where the spans are of equal lengths and the load- ing is W'# per foot over the entire length. Such beams commonly are designed for maximum.moments of WL/l2 for interior spans and WL/lO for simply supported end spans. )- z 4 , mm A\ \\\\ w x... \\ \\ ,4 {SD /fl 0“ C L / g I .4 ; F 4 ; fi 4 A , '1 / / ‘ dug, a MD M 4.0.0.! I" 19'9”” Ab M: ”,8 no or ”to, do a éeomox/mflm *‘v Jim’ly Jofipo'r‘ed 6000' ”ivy/win 75¢re 0». 3e” #0»: 2‘0 be ”IVY/en. InJle-vd 0/4 Infra/ad 6:907, :Z'oaaamd 6: 0 log, {6 Siva cpl/904’. ”3.1. + avg/1.”) ”v.4 .. «:13- wt’ 4 0 2M»! * A104 . - wt’ M4: - wI‘. Ma 4 7;: 2 ML fzméz) and = ~ wz". W4 .-wz’ 4 v e Ml $4MJZ f-MCZ = -WZJ ‘7‘ Jabalz'fuf/oy ,ror Mp, - wz’ —/\?4 *4 Mat ”v.1 = - £54" rwt' «2mg I-JZ/‘faz “Md = -¢W£3 Q 26 M44 rank-z . -JWAJ 2‘ ”oz :- ‘ZWZ" M41 ;:/%/24/e744 : vvl" ”a: 22:5, - 8 I3 @ Ml r-drvcz s-WZ" I‘Zv : :42. ad" 3 244‘ I 2 6 a /0 @ 294,1 «8M1.- gm!" ”0 :o ,,, 5; ,6’ ’ l M'LW‘ Qt: Z/Val +8/V(Z : ~ by!" 7. 5 Problem.49, Page 70 . Use least work method to obtain the moment diagram for the beam shown. / F'wl’ Woof on» V a- Jo’M A g . x 1‘- ¢ ' ¢ V M”, = W‘ 8 ¢' 73‘ I at c Iafivbg m Mat: 27~tlor409 a Ilooo 3’ 900 Ma : 2700120 (zoo n 6000 ‘8' My =0 90 4’:.Z' A’A . £00 : /.57 4’5: 700 :2":- ‘4 I 20271 I246. 1r . .2... _ E 0 4m 4' 4 272’ in «bian o 05’ / w - - -‘ 311 - . - 2 -1 f: m — - . u.’ u‘ .. ._ w . MM: ,5; '8 '17 7.6 1 ’V ‘- ¢ " A —L’ _-.-f 4221 ' IN I. .6 ”4:0 , ”.3 9/30 Mt.- I!" ”a: ”(a 7;! W4} I"! ”6&6 Ml man '0 1‘: d/y/(c ”A," M! [VG/“J ate apofao/ /:” cam/bafoa’ 4.: /a//o w: ‘ l5: /‘ 1,4» 54: [M a /-‘7 = {0% 3'13"? lam-fa: ”‘7‘3” ~58— Iroblem 50, Page 70 Obtain a moment diagram for this bent with pin-end columns restrained against lateral motion. All members have the same cross-section. &- a/. ”Mo!!! a l 3 LC ”1'0 80 to MC '-' 5%4 : (20 = 20 M60:O U ” WW - ”V“ 3% («:36 ”0‘55 0 Jaye: lécAe 13 éor/z” fol. ”Jim/hf a! 6', {Ac Area/em o/J/o’e Jm’ 4’00: 007‘ e/I/er- be”. I: 6005*qu L50 So] I ‘2 £0] 9 *3“ 2a 9 WM an: " #2.:- vvf/o ‘33 ~14 15.9 “/J .02 -02 *0, fi‘ *3.‘ _.a -.‘ / ~A7-u7 ' is! a? - £4 $52 1’ a ‘0‘ la? la; ~J" #ZB f/dr ‘16 ”as. ..,/ r6. .‘4 '7‘ "'8 9.6 9.5 fl»: 7},» *5 f5? 0’905, m3 «fl as.) ' aflmn/o -59- Problem 51, Page 70 Analyze the pin-connected bent for the stresses caused by the 250 kip load. Ifirone Menéev- 4r ’5 1‘0: "Iva deaf/”enter, cor/3" pin/’00} Ike force I 1;? )Wbce.42&dqyzuzybéaf<2, fm j'oza f8, fée Jame» h/ J's: ’95»; I‘ém )‘60 r‘I-au; n49 /}oo’ 7‘69 Jab-ea! I}! o// mew dot-J, ‘_§¢L Z 73.11214: 2x g; J52 Ida .2 ZUb-nywzx ‘zybr wavw.sx BC 2 " -.7b7 ‘ 77a;- .Jx C D 2 . 747x -.7o7 .67 ED 2 35¢ - x ~ / 136's! u- x 1% 2 -x ’/ - f-x . “7.9 v.15): = o J A( : x: % _. 2034’ 5k3.2:b~=707zz43=na74f (0: . 70 7120.3 .2 “1M“ 146:1hfi-xv7n” age 50: .354 “203 a 457/)" Problem 52, Page 70 ‘ Analyze this mine head frame for the stresses caused by the forces which are produced by the cable pull. Areas of members are given on the figure. The joints are pin-connect- ed. Take the stress in the sloping back brace as the re- dundant stress S. M/en- MJ/I'NJ «3.1-7: 4:.“ im ”more tool/c» 2342‘ my 7‘: h I: J’ : (om/‘0‘: {0e JI‘MCJ I3 3“. AH J (WV/P 5/0/- o// Asa]: ' 1 creep! 7°an new, ,4»? I: ‘r g 7 . 4/004! ”/3 ll? of (90m .1 .. I’ #250 Jon? my m I: I. A I , ' (”fie/e d. 4 a: {a .55 £200: Jib-04.3 4 {P ’4 3? CD 454' 3.33 a o (a nut 2.44 o a De 7a.: -.‘9P 749 ‘16? “38/ f 3.777 495 /4¢ -I¢12> I. 7: 7.44 ~34? $3.52: P .34 -.3:./+.¢¢t7> 24¢ mfg ~39 $.45 73 as ”7-. Jar? 3.33 was- ”6" r-A/«P A: 70.2 - . a?!» 240 ~. ‘7 ~Jl/ rJ.77P £6 ’7’-/- 7”” ' A72 -/. 7: . , 442 ,. 3.77» [P 0 Zoo 0 0 £b9' 79 .195 -+/ Junr7= /7/7#2.10¢7°=o P: .4252. = 33347» 4’3.“ 4&An43/7 -51- Eroblem,53, Page 70 Analyze the trussed beam.for the stresses caused by a uniform.load over the entire length of 1400# per foot. How could the design be improved if the maximum fiber stress is limited to 10,000# per sq.inch. ? It! 4”" ' ‘LWJr—fi 5*" ’ , 7 - "A. r!“ .w -0'R- ‘; can. 13—.3P- o :3Mo~.:7P-/a-7.ra ”X 41 3 14; L4 7 4:355; 07 o 2 Mx .- ”7.9m: - 2.5-? II ' J“ —3 M Z 2” *I/ dex ([‘é &m-ny‘4x = 4/3231» ‘16?)‘1/31 /¢4‘ 3M, ,3.» 3n.» “'2' 452' I :4: ' W ‘ (gay/um I}. 8000', extras 6 1 3522.512! . Commas» X. ‘5’"7‘ 2: Fl 6. l4 . . I fl/lel/‘J'l/dj 730:” la P040 :13 " z 2. Mann = I’m ~2’H lay/«v. 447)? (Jar/cc .. r r 7r/cy -3! NIH/asnvc] £7297 tilt/€- ‘¢ 31:74.” 2:31: at "If 73y: -62- 30b 55 2'00} ' __<_’_M_/_ . egoc‘ga, 000 x we «2,362. 6'” lldbt?! ‘0”. P9920? 5:3? ‘- #191"; 0 «AR "Zp'd'a'oqoco rt 59.387r2 W: o T= 24546;). Problem 54, Page 70 Calculate the maximum fiber stress in the trussed beam. E:30,000,000# per sq.inch. Take Sxin the vertical strut as redundant. 44—39375' ‘KuanLr H 8- fl '“ Inspwfiv l76'P '7' I: Izrtz "0.1296 N" \_!L_. V "° 3 iw 1g’ 1 finsts .534 “4/4114: = Z 322 sums 8 " 7‘5' 5].!- bué J:%;.(rnnsf75ur%$)[3 I? 3 : (hw332wvyzfiar77fl)lézo M: =- [66317339 : szaP‘ ‘fizx/r/ 8 Wr: 2‘2“”sz rm 7:} .r/«r : .2207" 218 Ma. Z‘tsti .- 367" 21/0 JW 3 ~21/7‘ (I420 «Lem/420x? 31’ -= 6%879 2:28 79:4- ‘4979: 54.0000 7’: /45. 6’”); élhfiae Problem.55, Page 70 -54- Check the results obtained in Fig.62,page 68, by an- other analysis using the left hand reaction and the stress in the diagonal PC as the redundant forces. P: look F o 7‘ 3 O O J". ’3 gar ‘74' a ‘2. l I 20' C to “4' “placed” 304* ‘7 ,_ 7‘0‘0’ 39- 32. 21’: 3.5. :4- is Me,» ‘2' 97»er «3 Y 4x 4 a y I 4:: I95 2.0 " ’3 7 is o 1.36 y o ” 1737.13“, BC ~ 674143} in” ,3 fiIJJJA' IWIIJJ’ r 4204' CD " ”49337 )5 o 09.3 f.”ly o A .5 DE 2-! ‘33.? -%y o 17.: 5127”, o [p 2.0 ”3.7 All " 3 A8 Am, ‘(0661 -£ a“, v Aux [-39 3.5 "fiq ‘7; o 6.18" o 8.6 3.0 .45 y $.61 fzt "- 6 6.75:, “v.7: 2.7] + Act: 3! 5.0 “33"“ X -/ a 4/134 J'x (a 3.. 4'? w. 6! f/z 3‘. c . 7:, r. 9: .7, a z or: (F' ’ 670 ’7‘ y “X ‘75 "/ 3.¢7y r¢/‘r (M7 a 6‘: > W tau, r6573! 3-81 .7 "”‘fl 7Zl:--’12 . Ji'lfllz’f/fl724’ ”A!“ y i 8. b'x: ~¢¢l 1: ~51 5/" X: ”3/, 4’ 8/‘7/6 Iroblem 56, Page 74 The frame illustrated has all members of the same area. Use a direct application of virtual work to obtain the stress in the member in line with the loads. [cl AC 5: J‘k #0100!ch If)” 50-. “3"“. 1;? *6/3 C'Je' W! ”J jcf 1‘69 efw/A'}; 4"“ I _—| r .54 :ladr ar- 4'1..- fl“ 5!, '-' 72’. " “'2" A r; 501. 0 A : a 11 5 Joe {9 ‘1 'dvc 7‘0 50L 4" 4§Ezukr 7%.! 7%/' {éflf :44 ‘44 Ab . 707 . 2:7 .5 .5- /o .86 ' " ~ ” " (a " " ~ " " p” a o (I ,( II AC a loo 0 I4. /4 A! 14 60 / A» x4. /4 mg n! /4. A! 31/4 M2! ~5x1fl225’:wammp:3¢vv J: xworM sassy 45:J222" a l‘. 18, I? a 1.. .... -66.- Problem 61,Page 76. .Analyze for the stresses in the frame of Problem 56 by use of the general method of indeterminate structures. 7:: X: AX 7; 09/00.}!!! AXTn/c We /eoa/m~r and .450 efaov‘faw Ax}: 1.504, 73/Ma’ AX“, We go»? «at Atari/work, éor‘ v‘ée gravid»; [:3 Axe-2’42 . J: 4/"): dye {a /aao 7/0123. lo” £7 4 Mg». .5 a J21 42 ' ’0 AD 737 . 707 500 6‘ ~ BC or ' Ca 0' 0 DA ’0 I , (4.14 .96 a /.¢¢ ““ I4. 11' ” 30 Iooa ' Ago /4# /4,/¢ 23 -/ or .-. 34/4 76.28 = 4x" 34/1! at X: «a. 2.9 = 7‘ 7 8. I6. /J .67.. Problem 62,Page '76. Analyze for the stresses in the frame of Problem 52 by the general method of indeterminate structures. 3 . \ 45009 _ ' J 4 II 5 I 7. .-.}E_.. .1 3 l2 5 2 7 7 JL. / _”_ Wan“ IO - fi 12 By a c/oae Ina/«claw; 0/ run- hm ,L, 79.4» .92, we Orv-Ive .5 *kfi/éwzb; cope/alias. 1~ 739/ #6: Jab-u: Med 49, He I-co/ Ad ,3. 7"): a: par-f 0/ 1‘6! {or-or a» (If affix. 2- 7ZD/ fl: Qi—g' from a”!!! MC 4/ 3-7— 750} i449 /0rm % 3% 13 fl." rec/”7y ”1:4 * 51:4. {P} ”(I’M ’40-’39;- c‘oapfiov‘oi‘aivn: a»: oawocmory a: #5: melee: we we/n‘ coo J: 7691?» /nnm 7‘4 6/:- 0/ 77M 62 . 4x7:- /9/7 Joz”’.~23.o¢1{z/ 44k~ x» xx”; (0.5.: x ,3 Me ”40044072" ”4... ,3 P ’3. 77~é 52 74-671 :a-A—é—l : /7/7_. =- 83.34, x ’ £3.04 -68.. Problem 65,Page '76. Check the moments given in Problem 50.Use the general method of indeterminate structures. 7; spy/y .44.; mas-a: We wx}/ J/mQé/en Kée éoo)‘ oa)‘ Ie/o p L 6 c .1 (co/A}! (low .600” crev- fdwprfir’ 4% (om/co :‘e 7‘»! redaadoaf ' l9 .1!— W rear/aura, K400 #4? PM feet/M M ‘_‘L a gig" 401/9501} {/90 Mme»! are» 3‘19! ’0/C’f/OI' GOMIK,‘ ”6/;6 e700/ r99: mo.» 07/ of K4: Come/- of /”l 6907f I.“ 7’ Q! Weak P . A .6 l C 0 4! a 41120 3D I. .30 [4.37 [ 1 LG 4,77: 5.3090 ’4, =2€5 A: : (I! I?!» A CMJ’O’OIO ”7 m ’9: : ”5 ”c: 3’5 \ / L \ \ \ / / / . \ ~. J ‘3 ' «£3‘ 1:3. '3 7 rd 4! : 233449- (tor-anox o = (7.24 é a $- 43 ’3’: 3/513. -_; 1.30 4'? x31. x30 68% 9:4 ‘1" _ . 4x - 45 “9/9430 £1201} 3,35: xfxso- 5/65 JoéJl/ la/c I}: (fee/lo!) of Gran/ ”am e» f: {4.320 *1 . ¢7¢6 3". 476:: o -69- Bob 63 2017/" 5.3000 ry. so” .4 1.5/5.1». o ZMJPa-‘O = 3o:¢/~¢o.ra “urge .. 7.13:0 ZMazao a 20 x¢d+¢ora/-aoxa s 70?. :0 Ma: .6/3120 3 - /23¢o "' y: 4/ .r: «.9 MC =. .3/2 X30 = - 7340* 73:. 6/6‘ 75‘.- .3/2 -70- Problem 64,Page 76. Use the general method of indeterminate structures to ob- tain the stress in the redundant strut of Problem 54. T— 4377' 7 Jul . Pa 4 p‘ A f: 2’ ‘ am 493/ a! 0"“ 4° 2’2? " 52‘ a 0M- .zmc . 34 a __ an I: L... 3‘ ”I 46' Men» 5.1-” m' ”’ fi 4'1" If It 9: _,. A8 2 x lo g 1 ’° Joe 000 249.30 ,4( ' .86 a 1/2 140 " 502 a 2/7 (0 " Ac). 0 2/9 4B£> I 0 id? 4" 4 50¢ coo 37024; ’3’ J: 500000 - [44.5 ' . 34-6! A?” 4/3 -71.. Problem 65,Page '76. Take reactions as redundants and solve for the moments at B and C in the continuous beam of Fig.56,page 63.Neglect settlement. (SlOpe Deflection Method) ‘0 Z loco/f fl — , 1 2.3.0 on 11.1.:- c Juno 0 A A '3; l - 42 g - I ‘ (do: - % : ~ld33 (M :v‘l”.3 (co: ”(a a #9 r-Rfl (ac :(qzo MIC: 26’ .03/264o‘96} -/JJ.3 4G; a .OS‘ 6’:A'~ 40 M04: 25:. “(2‘6 *ij‘A-BJ ”a" o 26' I. orfioa r- &) ’ M46.- o : Mac A760: 26;. 06/?“ " ‘6.) ”76.0 I ”0‘: 0 Me: 24".”floc $9,) ~2Jb Ma n/‘éa:o ”a: .- 25" -OJ'/:'o «- 0e.) a)“ 50M/ :4»? 10 2’6: 450 we efa) {/4314 .2‘ J/MMX, @ 2414 v- 90 -/J‘J3=o @ 94 '1‘ floafioc $433.! a o “Vi/4294’ a, ,. ac +2oav2¢oo=o 77):.” are all-we m/ oz/yc 1 eyw/M: 1’ coo/(be 00:- - I720. 90 : - We do /r04 5; /m/J/awma. 9C: 4310 94: //00 M66 : 21. 03/397843’0]: ”4.7:: 58490 115. ' . M60 : 2r.o.s~(2x/J¢a»~/9¢vj ~24».- /7srooo "‘5‘ a, u, 0.16 Problem.65,Page 76. settlement. \ Take reactions as redundants and solve for the moments at B and C in the continuous beam of Fig.56,page 63. Eeglect (Balancing Angles Method) 0 / w» / M’//oo% , I ,9 .232 a i .z'./.5 c .232 D - 4b .4 Am; .‘ 4o - 0.0 . '06 = /mox¢o’ a 1,333, coo +1." ,f? (av/u/.-.od' 211214“ ' L 9’5; ~6¢ : a 9:. = 90 a 309°01'10": emcee /(.r?r4=' 4-" '6 7 +I7 xzzr '127 " ‘ 4unaa¢¢c.y{/aan/ - 74 1‘ A36 3 A Jo Jo I a J. I ‘ ’4” ~11; 33-4 0 f2“ -” _3 +l5 '— r”: ”Zea . ol/Z 2¢oooo — 940000] -133000 .0 ”AA 8 .//2/- ”Mi/l. I20 oooflfi/Jdooo : ~76m ,5/33990 - 57m A766 3 ole/£36o.m)$/v74aoao/ -.-.- /7aooo daAaAf -75- Problem 65,Page 76. Take reactions as redundants and solve for the moments at B and C in the continuous beam of Fig.56,page 65.Neglect settlement. (Balancing Mbments Pethod) 50.? 7a;// .Ltvyau‘ /<éé 1 13.2 a L .23“ C If: 5"} A 4. l , Jo _ - so 590 [9/06 ‘ $(by J/o/e def/«Imj/o’ con/03ft it {'5 /J' of Pro 6/9/77 I 6 C 0 r 36m, #3: we: a a «an '3’" -" ’3” 55E1 .scuisza a-vvaf was 4 * z 2 Afl- M44 /%v= - 74 % ~3— 1.1- 3“’”@ 11> A “ b I 41‘ .-. 7’6‘ ,11 , 45 2711111.— I V” a m, 014.1924... 76" taxaé 34¢u§§‘4%h(fi:JCFZ§£ 4*? Anv h?Afl5afi.slflh($=ZE§f}4z 461’, MK '1: 7354' '2" '75“ 2 @ K91 JHMI ’= PA ’ 0 x2 = 2449131‘6 Max‘. 2295’ 8, I5. 15.x: -88.. 7~é 7, 230/“ 1491’.- 3732 -2 7’5 ’ Ky: PfiI’Z'2éj o 43 4:», 1&4 '3» m4 .~. Zé " ~ .2 2 Pé‘pz~2é//_4f + M1.- 72*- 43 z 2 73%4-24/ .c 2/‘704‘: P52 3 P62 -2 7.6 tan/41‘: 2752 (4- a) = a 277.6? ~276’ : ~2Ma1‘ Zpéy~27>63= -/‘74 49* - 7306‘ 24'- ‘0' dating) ar—r E ”a 1; f%g w I»? LEE) ”£8535 #42194:th W‘.’ 2 2 1 2 a z —" wz‘ Hwy; : 144’ /c 2' ' 4: :wzirawv” = W13 J ”7/71: -£Wl = "' wzz 244 ’2 Problem.75,Page 81. Develop the expressions for fixed end moments for any beam from (d) to (h) as given in.Figure 69.Use any method discussed in this chapter or use the area moment proposition. \- 4‘ s « ——-I 5 /S [VI/cvl‘ 1 :1) \ b‘ "'5 @ S’Vfl v5, F \ v,z pg4f5~a&u.415ua’ '7’ ’3" 31/51‘1-‘MJ‘ = Wo’ V szzf‘.tooi- ‘AV’L we ‘7' Kym: -2Ma .3“ l— 1‘ 1‘. _L m’ I? raga-c734; 3 '3— x? 1613 fMa£'= M’ T 2 II?! 4V 1’; szvaz‘ M ‘ a a {(4 j/ff: -2M_2_§/+/2/‘7al: m‘ ””43 3146’- fiflvl 4n022’~37%b£’aa2v%341stub" 446?:1Wéf'fhz-wzd) .37: 4 24* {My - "de‘I/Zflfal‘: W4' 3 4uva€4 $1051§Z‘:‘Mfir .73.. 4W4? file ”at. ‘= am ‘ K91 ‘I n/ ’0‘ 0 Mn a1! [/41 “/a [-4ffi) I 41.- ”’5‘ 4,: J— “fa 4,, _l;’g"/4‘4) #:[Mfl-Sj- 42%“?! £13,162“ ”vb 75 ”(ao/ " 5m}: enm- 467mb «ea/“(bawdy Kvl",u‘/ol: m2 1354/15 MA"- way .. 5/3 ’ z T 2 6 ”-2—" z 354% Oval: 3%? ~J W43; 14/. {gnarl-4M 2»: We ’ 3561‘. aw? .. Wo’»Jua£'-‘/‘sz V”: M/a’-wa".«-Wa “2% .34: ¢ ‘2 €43; my: E/és *fl “s‘NJ/1-**a-/{“/“sj‘¥7’(5é1’ ‘ ‘. = o‘Zfzm‘Z vfl‘;nfl-og_flm4{3m2§3m’z -06“ «1 ¢ c c a 5' ' ‘7:— ‘2— "2" M94": ~WY".¢ W34 ”M4r Woz’~ 34‘ 6 4’ ‘ a g .2 4%(3; ~‘WZ'H‘¢WQJZ ~ Wo‘f- (W4£J~/2/Vo‘< 5/9.. ~3w‘» Wd’- m,‘ ,. M ~34» .1; 4.1 «a 4 147: l/fl ‘ £3- mam . 21-h .. Wo"~._3_w’-. gr: 9'» aqua” 34?- 4 T 4‘ .34 “I T J 4Wo‘fb x21» '2 "vlzmz ”£1144 i /.2 W4 ‘2 -/rw‘4 ‘E 3W: $425064 99%;? zz/lzgzg am ‘2 ~(u’. ‘2 Raw. " ”74.- - m 7.34.1.9.“ .mzj 42.4" Problem 76,Page 84. Re-analyze for the moments in the continuous beam of Fig- ure 70,u31ng only two simultaneous equations. 27“ / xM\\\\\m\\\\\w w 5 A a C 0/ I K32 7 4’8.) 45/ g n.-— 10 r l. 30‘ A '0 '——-¢ m '10” f“" .720” 4'64. fl”. 6“, 9‘... (‘030 M/ 01.9me Jzéec. ”744:0 ’a- 9 M15" J‘PIfiJ/f/sél . ”40-9 1%.. r (a I ("fig -‘ 6! 95 #4000 ”2009 g (to; xcooo M‘- = 24513 ((04 fl QJ-lzooo ‘3A249fl8vh‘dufi:-Avooo A740 .: III/la fit‘c/ f‘oaa .2 ‘f‘; d/IEQ f‘ooa Mao: 25r/é’ac v- 0011‘ o .- 4504: 75!». Map #/‘/0( .-.- o 660‘ $54.00 w/ziae ' alia -/:ooo: /Ifoa slick -‘000 = a /Vhar-/Vha:6’ 6:96 ans/ZIQc +6009 f4f‘c: o , 5596 ous/650‘ limo: a Mac ‘(Jzejs 6904 = 9/44 42é-0cr ~2¢aoo 69¢ a - ”/ fee: '52! 8,131: ~92b Rb 7‘ ?M/" /%&r:xg/bavybeézéyvz/-zznmoo.=-z«¢¢ Meg-.- /~.f7/I/2Jf 6/6294) #5000 .- 2270 /%&27: fQFak;=-—Aaeum¢ /Voc: 2(-o‘7_/j= ~//42 -95— IToblem 77 ,Pag;e 84. Analyze for the moments at B and C of the bent shown.Use II-values. afiéi O kaL C ‘ ;_ A’Z:1:/f/6‘: /J" L T 3 ' s l4fia‘ _‘9 J a' —-4 4’: 1'25 fi:& .-.- 21/:- 0:: 4 .2790 ’3’ M195 =Mot= -[£;J a? (bl-6) = '1f15bouerrvzu55rg.soooo =‘723‘35 7 I 2 (225 23 £904,957 Jet-Ire! I5 )0???” j/V' (”4’9 57""! ‘” 773/1 ”care: ZQJb -94- Iroblem 78,Page 84. T Analyze for the moments in the bent illustrated.The col- umns and girder are of the same section. ‘ E' f'“ 9. A V __;.la, nit—Q 22,35 fM/rrrzéu.’ ”If , M40: _Ma¢: 4—??? (20”) _L 2A7: : /J'?¢7, 41'!” 8&6 ' ”:fi. : 1066320 :1 4 TE? .Jfibza .zuu94r ’5' '3 /‘~0 ikamr6=.57zao ' e. 9 7 zuman7 9600 4-4“ M16: 42. 3.9 A”? 28.10 -95.; lroblem 79, Page 84 Repeat the analysis of Problem 77 with the bent changed to the condition of fixed end columns. J 1:; 8 L_ 4 5" “I W ‘ ’0' 4’; .1799 ‘ p c ‘7 ”by 78%|? -——‘ 10’ ’7: 42 .412 -Zhu> ans? [=2 41-2750 %6-‘- /%¢' : :2. £04 ‘j 03240:“. e 4v! 53 ’4' ”(6: ”a: 7;: 5f; *4) %as/%¢:Z_xr2¢x5:m _. 5.525% " ‘22:- /V€l: /%,' : J‘ooXl/N 42.».6') 333334 23‘" leAO -95- Iroblem 80, Page 84 Repeat the analysis of Iroblem 78 with the bent changed to the condition of fixed end columns. S 9 a" ‘3”;1 r €43.23.» FF c 4L3 it: 4 l-‘-——~| ”in r25/56‘3P) 3 259.. - 6 5:0 Awaoazuy$qbzaehw¢sub,-‘£7= M“ 3247/20, ,. oc)‘~ Jd-J'J'o : €596 r254: ~J¢rco Ma: Ziflfi $9,.) sauce : 450(- #25610 *23oaa M40: zsfle ~37) = «as ~55» M04..- 25/96 ~35?) 32£O¢ - 5:39 ”as: r ”a! : 0 died AZIOC ~ 65» - Jesvom© ”to 3’ My 3 a 2506 .n-éé'oc ~65)? range: a @ ”76.9 * "7’96 1‘ ”wot = o Jib, ~./26’P rue-cc = a Q .2b "0 ' .24-: A3503 +4794, £7490 24- c ‘ 503 f Aiic‘: - 46060 /68 £9< : - ‘éaéaa [as = «3730 A‘JuFibu:FUMumxa £90 .1: \5'4‘60 . 4 Prob 80 200/ .. Mo... 2(J-rcoj- 6539.?) -.- 37:0 A7,, = 4/5,“) - ‘ (394:) .~ x7370 Mac..- «(a-x») f4? [-3 7:0) +3153» = - 20:70 Me.- 43.39») Ire/rm) #23030.- a lie.” ”0 $6ij ”6(375) = ~/£€70 . Mar: 2/4719) - ‘(3faj): ~/o.!ao '0 "ho ""7 l7/\fl ’14:» no.” of («Av-v flora" ,5 Problem 81, Page 84 Obtain a moment diagram for the two bay bent illustratei Use equation (23) to simplify the work. Draw the deflected structure by use of the final moments,as a check on the reasonableness of the work. 6"" %‘£ " "am a We " c. .5 M 0' 0 Q0: #20909 I M, ‘3 .9 $5“ 1' D ‘%I J4 /. %,9 a fo/o/Oo -Pj : 3050‘ «30640 ”A: = 26‘! 5/296 fl 0‘) a?“ .: 60590 AJOAFQ -aaooo ”(as iii/’52.: r00) Macao a éaéjo‘ 5 30.509 rasooo Mo. 3:, ”/0. 4y .3 4559‘ - 41-er , Mr.- er/q/Zoc r» 95] : (of-o‘- 2‘2on 2'”: o, Iaéz:JhSnm(24#ruag/:¢hhfbaameodfim; . Jfiaahan:¢> afléuv.£EIanhw-Zy:m3aézk-mJoAfiD 0 70503 tioé'Q -Jo£P ~2eooo a c .@ 30.4.99, a maria: meet-o! -- Wipffi’oooo .-.- o 49 iznfék ”vbufib-fijalubafi? 0 30505 ,. «rm ,. 3050‘ ~ /o:£l>. o (‘l I 3@ 40.550: f 60505- ~ (03!?: - 90096 @ ‘ 2030‘ riot?! - lo 67’: c Q.- Q -@ /ao £0: -/o£¢6 $60679: ~2ooec @= 7@*@ 27/3450: I" 5.95 £7: ~ ur‘oooo ‘d?'€a*ifla sakhéitafldflixtfia::~/¢Uooo Z£L41A£JT -973- Pmé 8/ “(50/ ” {affoc - [P = - /oa8 /. M450: iip = ~ 3.77 ‘. 7.“ 50¢. -- NJ, [9: : “202 [P.- - .92: Fo; .- van/rat; [00 .- x 49.9.2 Mar.- “4/72 Maw.- ” 4926 MC’: {3749 /V.ar: - A1728 M60 : “53am: Mfl3/V0é3flzl'€= O ’yé'fi': ‘37I7 Mao :- IJJ “ «rut / ”u“ ‘flW? A * V V {L .] )3". m ,‘ fl“ re" -1o0- lroblem 82, Page 87 The building frame shown represents th qe 2nd, 3rd, and 4th ' stories of the Wilson-Laney bent. * Compute the wind mom- ents and check with these values: Mfi8'90,700fi1:3n3100,3003 I ',co=182 OOO; LI“. 187,5001n-1b. {gummnaéa/ omeflgf FL .Kawémfl5y a, liva- i} !z Jim 5 .:/.¢ 0 £2: :___4.... § 4 I a», (‘M 'c , f’ ‘1 awt : 5%; «J E "3 | W972 I db: 0" J]: n . ,' . , ”mm/”A's, mode ’3' ”qr-t 94 a A: 96 3 64" fa CW“. 9: = QJ' 90: 90 90 = 00 ' 9c .- Qc ’ 6000»./ 6404766” are 27y... o 2?}:0 Ct: o ’3Zh!=£5fit745%o:edzrayel-tfims fl/y/j/q} :14”:- ficb var omz/xn', :4- m o/vv're o r’ 27%:0 . $176K!” -3,oj max. «[20,, as.) m¢/¢’047 94 -a,oJ.~o _ : .azagpékpxdbm¢HQb $490¢19c-uéz3«79.¢> 12513,a’..iifiqcflagf6%71%2)fJugflAhagw%7IfizgflréqvaQQjao. = 2/2806 1* Jo: <2 <9» 2‘2; stac- ~24. 7,0: 0 f/Vc: axe/39c ~3/oj mam-(eag ao~agjxe1aflocaxfi9¢ ~937=o iburea,zeaaagrétchuwrék,‘2V14/una 1%:Jr4/26» 7‘4 ‘3’] Mafioo wije/st/é'ap *0 )W 2/390 :0 =2/4 Ga #06159: $37760 ~(6P20 4:28,/0,/~3L/6 . Rod ’2 "60/ ° Z6} :[l’fiuzc 304.4393 -00] f 36751- 10: #390 ~9j~7¢l27f £3!" .-. o -101- : lazggfi x3296 :vzaéL fl}. 3390 —“’la “33"30 7'; Jo/re Xieae yaw/Ava: alga/’4’; m, we arr/~40: 23¢»:- /.0 0 faé/e 00/ e/As-r/er/e (7’ 07:2: 16.437 (await/e426 44-1 Jaé kart/hf. 50. MI: up £94 £03 £0: £90 5,0 (wkaf / an! 35.9 Zflfl 0 ‘ZIJO 2 35:4 2/2: a 2/4 -2/a¢ J 2/.¢ O 342 ”\f- ‘21}.3 4 0 31¢ m (’20 1213.9 6‘ I32 x21 4.23 12.2: ‘15? #JJ #5 6 /- ’3'“; (2) 0 7.32.16 :01! . “0:12 I///o.o 7 ”‘21:“: (I) 0 "334 -3”? ”3“0 #57:.0 ‘ J 4 a 2&1 66:4" 2 ”o 1V3. a 7 ‘j‘fi‘f ‘5.) O -/&.‘a -/72‘ '2250 #572 "’ ‘A’bo /o 7,. 3‘ (1, / 0 var» - 30/ flat» “60¢” // 9"” 2/1? ”(I a {/0241 .43“ - ”7! " I2 ‘ 77”" (7 7} a “zozé “(62.1 ”/7 H A). My» fifl’l 0 J13” vac» "' 7. 2716. 0'0 /¢~ /r,‘;~'——;: (’0 ’0) 0 "I76.‘ fats! 197775 /.5' 7/53 15:72:54 630 'r /. 2.53; we Vial 2.97» 717 /2/£ 0:7; 2/“! -102- Prob a: 2...!" Mag. 2x3576(2xzo7bf9¢9 ~3itl‘ 1): “77:00 Man: 70.8(2X’49i207b -‘49zj = ~/aaooo Mao: 7/o(2x12/a $543.2 -£¢92j.- —/93.soo Mae: 7zo [Ix/.332 +l2/a-6stfzj = -/es 000 Mile-- 73:361/4/(163 cbeed’ back tan/6’}, /07. -103- Iroblem 90, Page 136 The influence for center reaction is given for the truss illustrated. Compare with the influence lines for a girder on the basis of 3 assumptions. (1 uniform I (2 triangular variation of I (3 parabolic variation of I 22F 90' {MR-‘0 /W//J /M4’ 47’ J/ecI/md/bay/J @ 52:23—91; #/a?5:0 Ra:'7‘ @ 5Lr$~a(/r/o?;. o ?4‘=.ses @ 5x85 ‘7l/r/ohao ?4c.~ .Zoo @ .54169‘ -‘x/r/ofi =o 23?, -‘./2o @ 51%“ “\fr/ y/aB..a 274‘. ooo Q $1.75 -¢X/7~/oR=o ‘ Rape.” @ 5’an ~3x/ r/oRu-v ?’o¢;:./aa Q $xfr~2x/ ,. MP, :0 79”,: .975— C:) saneaunanm*flafii=o 56$; =.o€f 2'8, 1.57/6 - 104- Iroblem,91, Page 156 The influence for end reaction is given for the truss illustrated. Compare with the influence lines for a girder on the basis of 3 assumptions. (1 uniform.I (2 triangular variation of I (3 parabolic variation of I Z;//oeoce //}re /0/ Wicca/Xv; 139 5r ”or/Iv» o’r'c/romv, Jee oer/ Jéfcr‘. “V {om/a! /t7‘ 10'4", ‘I/7 0/7 7‘5 l1! Jleei‘, ”II/’40» firm/,9» o/I "’ Gm/afl/Iéfis - g [4466»! ”(MW/«J ~er/J°d= 225m .. £1”""""7"’°’ . x. .. 2 ’0'.” Aer/2.- v 31/20 x50 fi/Z (60130 a . 75 w ate :9!» mi 'Nuo : ,5/7 211190. 320000 Zfol‘o 1* 704'“ (~30 " “50in“ .- .24? "/Zoxag xzano, . 072 23.70“ ' 2261300 ‘_§_613& rm: . a“ 220‘?» ‘fyy’gvuwvmmrifluzza ,5v 28. l5. /6 - 105- 731949 ?/ "(o/77‘ .. 7774’?! 0A»- lér/v I‘M 0/ .Z' .4? .40 040er 7.57.5.” who rm -.- 226290 t . .ég‘ . 70/76- v- .2; fl 3117* I~ . .23 Jade‘r 2 . ./2 g ' ‘9 229190 226'». fan...» /24‘ ‘0‘ J a 761/20 —:2‘ , ’03 73760" 3- _. , /2 71239— ”; = . 08 22:39 2mg 2m £52133; 12/; A,” J are be //'c Var/4 ’90” off dict/305:) —- 2.90 x 45-9.- /y7:o 3.x /.r A70 = A” 3 62.5130 $2.9. «xx: = . zzs ”7» 501.3]: - 7:139 rig; _., , 053::- /J7ib 7F: /oar?~g. : 376' 24: 2679 v \ .lro 7 ”IIT.>? , . a J; 5. a,“ 1 .lwlllol. I V To. ~106- Problem 95, Page 157 Use the influence lines for reaction shown in Fig.9? to sketch influence lines for stress in the bars man-o-p-q of the cantilever truss. Assume that the center diagonals can resist tension only. ’7 7 $7:er q,” we». ‘r \\\\\\~_ A‘g:",,,—””1T“‘v--‘____~3§It Xi. "r \J3e awvfflere%Z/ar afiwnvwépa‘ffir.éU{Zbaoce IQ?¢3. 7,3, [47/6 -10-'7- 7959A5$br2§w7/”' MJMXJVV // . «Rx , Ll :~:::: Nl3xamv. _.‘fl.'.L .-4-:fi~‘~:: \N\\-----.hfi‘l $5.3» IIZZZ: -108- 730A 25 "Co/7)" \\\\\\\N\Nj v .V \tV -169- Iroblem.97, Page 137 The following dimensions apply to the three hinged parabolic arch of Fig.99. L=l50 feet; hs40 feet; h350 feet obtain the maximum values of HASopand Sanfor a uniform D.L. of 3000# per foot and a uniform.load(L.L.) or 5000# per foot. ‘ f3,- 0 oar/brow /coq’ K49 191234 0/ )‘ée ”bf/com /»;7¢ ’0': 7‘1! V4/uc o/ 7%: foot/Arr. .'. M: /l /” (Axum .. fauna 4" vuvb 1? 3:471" £0: r:{7t/* 4": , 0.7/2 . I 5, .~ . 007/z/Mj‘ : xc' jg.» 007/z/JOJ: ‘4’ //:‘;¢ 11‘ (a N7)”- '-£-= ;: 41.dififi?: I‘ve“ 6k :3. L/éamce //;re /0» .019: (a: A”! ”an Oéoa/ C 29.4 444-4120 Pisa-4.7 =/£¢r f , °ri¥%¢a-—auvu:-€§§§L =44fu‘cs 5;aJv -110- Bob 97 204/ ” 6’ Zx¢5 “41/ . grad/a ,4» Influence //0€ D":- ”007 A126 7‘6/3: [foray/4, we 3a! #0: A w/a’é Mo 1r 0rd .- z. 0/5. C I P Q ' J. JvA/m. ’63., fl»: xiv/Azomc Av}. ’1”- My, um y: x Kéc ./J//0“€¢ 2”)! .50; £7“: AWE-dead . JO, [(0/- q’co/ /u«( a d/fld’l‘cficc A. row... 4; fl... «an, cams) K. 2- 0’4"”? - was... : .22..“3‘ 2 3 F2" mar //Vt' /~¥J/m *Ve maul/63V. flh/(tJI/W/k Aw/ 16v.» r‘l are 7/0 ryfopo’. 2.4/6 : g 31% == % /a.f (+4”.- Ara pic-44% .: 35a” same/9e43, «4’ d: /0/.4 d; L". : ‘M‘ .0!” MM =/.¢s::0 %\\\W ‘ 4' 5,, 8 414 c hf 0 3" v ‘ 20 -——¢-n—— (0' 05¢ oreocf'm of D lac/cod o/rQJ/m/In‘ a: JfitW/I. In— ” r5371 1:: ”I ‘1‘ 0 a we -.sr . ' tar may n¢7 - , . ¢a37s¢Jv flaw-ts: JV M70 ""'" _ ‘, #2..” saw AJ/ ’53? "J? 1".36" f.” $.14- ,‘J ‘-27 —.:7 L ~ "' 'Iz’t 4—,!- -.075' -. I1 7 72 c any rvz ~3.6/: fits/6‘ #928 l I .-; 1 ¥ ’ 923 I" " , - ,/.' ““~; .72 4 ; 3 fl :7" 3.6/4- l f. . ‘ 42,9, l5: /6,/8 -125- froblem llO,Iage 147. ~ Analyze the continuous beam shown and draw the final noment diagrams.Calculate the moments under each concentra- ted load and determine the values of the maximum.moments. locate points of contraflexure and Sketch the elastic curve for the beam. (ova/cor! I $90 .5130 IJ'DO 80' , 30' 30' J ' 1 his; 18 C ‘o' 40' “7 $7 6.2.; I. + ,5. .27 4427*‘011 A 2- ‘0 ‘0 fi ‘0 2900 =_z_; 4: ,0 JZUurzbaoo , #— -&ar "" lef ".2// “.4/ “-157 '6” *59‘ / —-—\ \l ‘ ‘\ /.‘ \ 5/4629: (av-re I. 2', 6,8, 15/6, 49 Problem 112,Page 147. Analyze the continuous beam shown and draw the final moment diagrams.Calculate the moments under each concentrat- ed load and determine the values of the maximum.moments. Locate the points of contraflexure and sketch the elastic curve for the beam. (”6' WZ‘ : oonoxzo = /0090 65¢ = £11000 (4126“31/OJ 20 to 1314'!sz Co. : 9;" ‘ 500120.?20 , ‘ 700 (‘5‘ a “00 O 3. (66': 5001/4»?! :- 26000 (:3 c . £00 {/4 ”a {dim ~dx/or2: f I X26726“) : /3;oo I: (all): A/o/en- f6: I’M/”(fli‘ 0/ {be over-60429;»; end A3 [(50de A; /fi€ 0300/ ”Io/rarer, 50" 47.4%! /4 (re 1:: I70 Int/”’3'“. 7’4: éo/oaccq’ Ilsa/area)“ A} daflvéas‘ed ml? {4 7‘69 a/éer J/é’e . I96 19 I who -‘ 7 9'“ HI. a- 7/ M7 .476 —.—. “'3’ -/¢ -/¢ *l’ ‘I' # fl '4‘ * an 010 m 3 l1. 6.8JJZ/‘J3 Problem.ll3,Page 149. . Analyze for the joint moments and draW'moment diagrams for the frame shown.There are no joint movements.Locate points of contraflexure and sketch the deflected structure. ’8" ___..' " loco If.” :1... __ , #297 3 . ‘ "g ;5- g T»: ' o - e ”v: .3...” ’ .41: 0 :4, «I? ,46‘.“ " I ”7: V“ V‘ 15' 0 Vi -33 't -/7 -3 ' O 67/ «III I 29‘ a L. A 30 ' fife/'2 7A.w=a~“’ 27' a \_l:_) 5420c 5M: J/I M .‘ Q V: 422.2149 sauna -/7:ov-wo=.fie5 " T 2. ”yam/01’1"].- #30 Ava: ~3/ap : .309!" I \ L—p-J/ :- 37/00 “5".) IV: ~20 '0 " —’\’& ' 'I \ I \ -20” I'lél’A ¢Im De/écM m0 Jf‘raer‘dre. 7, 8, I0,//, l4, . 15', M. to. -129- IToblem ll4,Page 149. Analyze for the joint moments and draw moment diagrams for the frame shown.There are no joint movements.Locate points of contraflexure and sketch the deflected structure. LL 7‘.—_ 5 I: E - g- 10.9 n——-‘——d I 1;: Coos!» a" sai l ., , ,1 L .Dc/kc )(co/J/Nc /0/~e J5 cry/'0’ . ab 3 g/o /J 0/ (M/fl/f/éflre. 3’ I 32.. 7’ 5‘. Afbo (4429‘.- 2‘57 71: ”r ‘ 7’44’ 315:0:2’28 . » 3:2 _ ‘2? = ’*’0°/:::¢‘.- x333 A ~12: , 4 gm- “ ‘Im' d3. "’0 IIIIIIIIIIr # -/d'D "'7” latest-m {mi—#:- 11‘ ‘7”, —2m I o \ More” affirm. 7.8/0, ll. I4, 1:, /(,z/ -l§O- Problem ll6,Page 149. Analyze for the joint moments and draw the moment diagram for the frame shown.There are no joint movements.Locate points of contraflexure and sketch the deflected structure. *( I 43-; e W 1: M3 [-3 40 ~ A :o M ”/7/ are lit Jim/lifted {rec/m/ 0/ ,ba'v col: . 75):: MM of red/«37’ #59 fro/ac: for fish 00 4’04 moméO/v éy 25% or ma/Klkér 6’ % called/«94.51%, #4: [(4rd 644’ memo/s 0/ lie 0/,6‘3/3’: :01 I}? 0/;(k )1!” 0.9" mine-'0" a/ J‘ée [lb cod/F5 :/V/l #34 NP) : J =- = M x = .3 ’- 4’” 4;" J A" 4’ 4x3 1..“ I796.- yxa = f /7 2 (413137 #441174"? 32,: Man/‘1“: £5382 : (26‘ Mpé : 2.7%? a /0.9 JM/a/e Mar 1'0 2/:- Jim/A.- ”an. I.» F6 .mg /o/.6' .2 Law a //.z 6’ ”I’M/'7 = /0/.3 " [11‘ $41.71 2 =/0/.3 «14.3 : .57 472/4 7am. II, /4. 15,20 79w //6 "(M21 " ~03: a‘zc “2:: ."-'~ ’- 32" .04 .m -25 “:3 «4/. 6 .. '-——-' '1’. 4 +135 . ’3’ 1‘ 43-6 ,4. [.5 fl“ 3:: .342 “’1' -5‘ 272 am a - a O ’32‘ I 2 ~22! vac .. as: .mp1 an; M 7 5 M / m Mme/If Day/w» I a/écéa’ W”: /w—c Problem.ll7,Iage 152. Assume that a landslide moves the joint D in.Figure 122 a distance of 2 inches down and 3 inches to the right. Comput the maximum fiber stress in girder and column. if." A$¢ _‘ c , +4 g“: —# ‘\-_“_’ __‘____ _ _ , .w - : 40' - a a): '33.! -IIO ' -II ”’-’ 35‘ \ 3° __-~ :3: :3" \ - I T; I210 In ' "I "2‘ ”42¢ ! “I'll-4 21 : 0’ a: 2% /‘7: ‘f/rflg 6430000000134'2 :2,24'D.000 4 {oz/z M: 6p0.0066001 ll3 3 a 2gfa¢c ”#1 20 (I: 4?. M. Coo (IO . fl‘ ” '0 ' .m (g/wav.: .Zvabaaax‘ :.94530 2“ 6, Z 8,/o, //, Af. 2/ -133- Froblem.118, Page 152 Determine the maximum fiber stresses in the frame of Fig. 122 caused by a clockwise rotation of 0.2 of the foot- ing at D. Sketch the shape of the deflected structure. a 0 ~39 -5:9_ ‘39 an?' I X fl ’\ def/or/oo’ j/I'uc fan: 99 -M = M1 2% #2- :5- y M- 4.671" 6 ., {fie .-. 41301/061/1 If; : £24000 A M]. fiéerJ/w xz'r (0/6395? : 39200416 .-.- flea '0” 2w g, 7, 3/0. //, M’ -134- Problem 119 Page 157 Locate the points of contraflecture in the columns of this simple bent for 3 cases of relative stiffness,(a) K9: 2K5 (b) K,.k$ (c) K9.Ke/2. Sketch the general shape of the deflected structure. irT-h C If m Ail/40 druc/a/‘e Arm £0 e 070? amy 0/4, #4:» I: 4’: ’48 FEM 3%: .- (5K4 4 1 “J. o . W “L" or I/m ki‘ C.- ‘55 4 ”A; =6 .I/ we (baa/o’er- /7"//( ’14! offer fill-o’er We 070.7% Ina/.41 /& r‘ée 4’ Vl/ae 6y 2 .1 414’ Jake {Jere Ar 4 la.» 4/ Me (ea/er, we mm/ (A... may.» 45y 34.47.46: 7‘5: reJa/I’J j/Ve’fl we! «Wt/y '59 ’” ”5"?”3’! 5! a (am/02f n1! my 64// o// /ée 6&4'd7’00/J 1‘0 yer/6:,- 14, 19. If: 9%. .y c 4 1:4 4 l Ajay? a " 1’3"?¢d%* 1 4;) . =312 l c; ' : - #5 ’J {c I! -——— V’It x" 3 C ' 13c Mir .1— Jud-Iv {C if ”I O Ziyfifiném/ (zufivfituuw“z .fiévrfibht .H» 8, /4, zo,z/ -135- Hub //7 “(”1 ’ 114: ‘ C @ * 46:41 C -8 :36 At 4' 4’: 42 Bill/J 0/ [M/N/A'IW’! 1 7015/: of {air/N/AVV/I' lroblem 120, lags 157 Check the following values for the moments in the bent shown. .1229...” ”=2 ‘ I lie re (Moo 7‘19 //(el Goa/J Moorelfi oréz'l/v/v'é’ ’0’ A1- , I. z /l/7¢. éa/ I3! fimfiw/Iéo 7‘0 "Je 4’ Vol 061', 3 i loo 0 0 Zoo -vb fl ‘3” 22.22 1‘" 7‘7 £13Q25Z' #80 h? we: ~62 ""7 77‘” EII’I: a? L- 2‘.Z ‘ ' lg 3’23 ‘ . Cora ”In = .5; «a: 100 loo “SD .7 :21 7A5 #57 mm —"""_ M 5—5—- ~ ' .- 49 ‘as_(fi%3-.Ao:r- l3ézi§§xrnaa=.av¢ .Azysdz_ 162:.f3m5 ’4Z3: 4;.xzmrazz7' *1" «a: :aaAa/e lroblem.12l, Page 157 -157- Check the following values for the moments in the bent shown. /‘7 ’ B 4::g C 20’ fi 5? \- ,.4 I _ W Irv: 3" ll m——£o'——a1 Je/ec/ 070/» (a {a lava/av- //c'wv/ /o .5 yokeJ . 4 /‘ I g/E :7 Jo, 400 14!» 40¢ a O! 600 ‘”V wakrunu -a _ IE! —” f/s éthfl 1:1;;12 2 '-3 #30 ‘3 7 ‘3 r o ‘a, azauuz :fl Jae.» z'a 45 = 3J1 arr-307. 44 A: ., u 800 (0.- 32;>‘5£5' -.- 22 7 “263' 30 #30 __J ua- (grrw/ #4795: : (‘7 a 2.- 27 7.3.7 ”/76: 505 ”5 ”6?: 7’0 '6 ”ca: 7515' 9’3 w,- /.!60 ”’5' 7.3, /o,/6 ~138- Problem 122, Page 157 Check the following values for the moments in the bent with leping legs as caused by a 1 inch horizontal side lurch where E=B0,000,000# per sq. in. Draw a moment diagram and sketch the deflected structure. f~¢fl gh/ flat/on)”, o / " /o lav-cl def/cc KIM, Icon/bu}: #50 Vo/uoa 0/6: ”.3751, 214? /orma/4 (g 654’4 . If 1‘66 /o/cro/morem00/ 45' Z / '1 ’41: afi/Ac/xo'o 4/61.} ace: (0’.- /, 0/5 z'a’xé' Acoaao:/ Ac:'_JL_.z 482/.I5‘ (u: (xaorm‘rz ”7/ .- 42‘ x» ‘ ld'a * (co: ‘xxzm‘z/n’o = A39r’v‘ 2‘0 77;: Ver heal de/kc/m [a 2 :1); 60311494751303 /. 732$ 47551.347 (’6 : (ca .- flJOI/O ‘I2.307 = 4.2‘1/0‘ /“ 7r 6! ’0’ /J Problem 124, Page 157 Obtain joint moments and sketch the shape of the deflect- ed structure for the 2 story bent shown. The members are all of the same cross-section,ie., K values of girders are twice the K'values of columns. Final column moments are given on the figure. \. Hi 30 ll -159- Cflg+624.zav aciy¢4} 80 a. (0:6;- :3“ (1922(g :7“ 6:6-27430 75 j‘ 7‘ o Jr/Ka- o/froz/moflpo, WI Xv cream: 7‘4? finer a” 7‘9 Adoooir1hflér¢a9fiu-%5~fiu~btake LE. ;| chm/e 65/ /o r‘o ’0/ WEE.- 7: :3: 4 A Q “‘3 l A = '. “ 7—,” 75;. 1% I: 3 42 6 7—..." ’3’?” c/Mfmj /Jom. a!“ » av ' v ‘9 =7; .9“ "I: if. ~fl'-qw *w‘ »/ 73“? 3 7:: ~- zwt * a 2“: f‘.; a: *5?" 757; fa” 2“ 42%. 2/3 4‘,” / «ti, = l/3 l o ’3 341-. .9 ,a~, -22f__c l1zze [E ‘fln war -23 ’2’ "‘ p 7, P I ;z“ ‘ /¢ fl: " ‘ s c 2:: -2 a7» ' ;un_ w¢ 'aKJ' anr “/‘2 7" g I” ‘3 AfiwlflZE' ~ an. ——-&nv ‘ "’ 1&323 ,4;=Z£r r-/ f. 7, -‘-—-—- ZIW: I670 - 2 film 7/¢ ’ 4 mw ”I *,~. Aw 70¢! .1 ‘2 i’f: '7; -__- ' fi” "8Vi “/64. We 07:45)! ”ya/)4}? A] /o )1. r/ //e ’c/atr/ l4z4hn£ 23, 10, I6 Hob /2{ 2”,]. Eye? 75: flea/v 4.: 4 reaa/f 0/ x4? é4/446/év‘9 W”: are 42: ‘“ :4 4/? z}. 2%.» 05‘” ax”, 00/ 457.9 *2); x49 f?’/ x}; af/O’ 1 AW” J/o/‘j . 73: dice/:5 aéaa /o’4wye Jae/7 6‘00 49/ .6290 ma/ac/IVe/j, I’imfi /l/‘mx 7/0)} Kée f6.) 2‘” I}, /}/j fire” 07M K/éwcq.’ Wit/w /A' In: Kro/é A‘VZ? [CI-cc: Md (om/ale ll: Maw/J (eggs-:53. ('3.ch (4:69:7sfa (4,-6.21’436340 I 740 0 o - n ‘1" 117;; ~21¢ 3g ‘ “3‘” - ‘2 #39 $17: :3 u 21.! — ’7 “‘3 f- / *""‘_ 2 £1. 13.. M' 532 J" ’ ..———— W-au/d’ 76‘2" =-"” 2.x ”2.2.:- JJoaldhw an 7¢ 7“ -u 7“ =3- =’:.’i’-; .. a :15- I ‘68 E2 ~12? ‘Efl l4 ‘5 ’7‘ $21 HI: '- - 2. _ 4‘ 77:- -—§—-" ' I 1‘ 47o “ " ‘ fl‘ " 4/7 an 49 ~ 12¢ ’10 £39! - A vivo :5]? //.’.Z.'a.8o~f 2' 2x3€:/7 " z ~99 Why/11hr? éuo 4 0 ~73 °z ‘27 L2. ‘ I '70 Jul!» aw- -14 1.. Boé £27 60/" 33:3 floated/by excel/y 44 écflro, we Jar: 74 /7I / o z ' . , . - ' Ago =J0/0/ ’w’9 ”’4'" .28 - Joxa/ rw/an/ 0/; a” /IW¢/ a", 0/9/0- d/a/y (fie: ae/ (or-Q:-2€0 afto._41, 693$: 00’ 20 z are 2' xwrelae 74o >¢ ”a is 2. .. a” o o _ I07 *9: to I 73 f 6" f- 9 #62 —£3-_2¢ M2 *3“? f‘"" :3. “202 ,9, _/’, “230 * ~16 _.._. - ”a l J/ —-——$ ¢ ~76 —-/z "(- 4 ”22" .——""' a 7/ - 226' f 7/ {-00 ’l' ’9 {/30 7‘1? “/39. f/a-z 73E; 0 v‘ 7 :3“ I25" /-// __ 3 a" ”a,” ,4/2 442- i fivé xzv Kn!" Eje¢ M W}// 0054/ Jan 0,6 :14: m», to :43, dwaM/by 7‘49/ m.- 54 V: zé/raX/mo/ea/ 11%.! ac 2494/ Va/acd- P/o 29/53 a” 7/646/04 aide . A2640 v avo- “to: / #2913 ’I / \\ ’000 70’0 .. a» 1‘ c‘ E .4- 47: ’4’ .. J5..." v‘ 5 71¢ ~’ I /?/¢4" / A...» 842;: 8;; a! Af/é.» 74:5..- Vo/ae: one opprozzaofié W/Véfié /0Z Jake 04(y J affrvI/zho/m Were 0251:, 04/ m aorta/.1 Wore an 7‘ év/oaaed p56 ‘ exec 7((7, Iroblcm 126, lage 152 Check the distribution of ~143- shears to the fixed end col- umns as given in Fig. 151 (b) and (f). :50 o ‘ —>;—-—¢‘-’-.——1 : ‘h— .0' z: -—""‘ 4' Me: ‘—..._ .arx ; _—-T 0 a ' "'5’"? In: .0 ‘—___ #5 w a' ”J: @ A1 4".Z' J/l/y. g a .1: 44 £8- ‘37r’vfl’307" C 2“ k— a .3”- a .fi' 4.,4. M; ‘—- Jr I /// CO.- £3.ZJ=JO ”0 DE: fl“: ,aJ/J :.J7J‘ flbo DI... £2...0‘x:o7n w M : I.” , .oovar:./// 7bo ‘7', (a: ‘9’ 1m x 2‘¢ .72; D£:.:zr x42“ : as: v“ .A/ M: -’—. :z‘¢: 6o .13; 7,8, ’6 -l'44- fioé fl?‘ 2w}! ' an!” oj'okz/f'ear‘roér?‘ 0/ /72 a: I9//m 54/? :4» 079 A} Jada/z :49)? /7.’.' A5 Iékce 0/ 5'00 ”'7 /o-/ 3' all zap/34,36! «7694“, {j €73 ~ I449: 237: x7: : J/ 25 : 4'03; x7: = 7a a.» no ('0: 3‘3: ’72 : 9/ F6 a 601/7: . .2; m We M/e- 14”? fire? 47‘ (L Jar/2M é/ér /o r‘zféfl- -1452- lroblem 127, Tags 1C; Check the distribution of shears to the fixed end columre as given in Fig. 131 (g). a C 3.0 coh— '—_‘AEL_ to :filjar «W .3331.37J‘».11/ ‘ :.67/ #4. ""-——“ .31! ”is: 'J . Ill ‘72;=12? anv.23 .819 ZZéV=1z€ quZf:77 0/9 <29: Lzz'4nznn-7o .817 195: ~60: ~70 7flfi/6 -l46- Iroblcm 128, lage 162 Repeat the analysis of the example of Fig. 131 by ad- justing shears in (d) by use of the upper correction ratio, 1.96. It will be found that this procedure simplifies the solution. lxrlain the discrepancy in final moments. 43 C r ‘73 ‘v ,7 no 0‘ 1' ‘” fisqnav 7 JB' 2» I '73? " w ’9, -—-€-/.$! »- ‘.___ "J -—u~5'7 A“ ' ILL/Q . 5L. .2baw-rvfle' .Jt all?» “ Izefl7 55' 7’? em” CLm~13+Ap £39.A96 I“ J.OI:'/ r” {Md .~ 0 m .J’. 4—...Ir’l‘33a’. J» was b—. —" A” p - . 5 1pm " é“: \ _ —w”’ ’5” ‘1‘ h an” J” - " L113 ”7"”;- 17.! "L, sane a ( 3.0 ‘ 1:625sz 3‘ 4 p .‘l’ .376" '3” ' (0: 5‘; 1.3.”.- I“ a... “a! ' I, f6 ”a: “(04' -/b‘ ‘ a... col 5 Jé fi- 7" . n!" E :fi 7'}, —..._* 3 ~I¢ _J.3 4.2. i 9 i -M ‘31 "' - 34- " ‘, 73' 7;.“ . -—_74 * I :5. ‘9‘ 70’ if: y: :33. - 1 :3: :1: m '0 - ‘ a '7‘: __.-r .3. 7*.” ‘m ”0 . I“ \ Bob 123 23.1" 72.9, 3 ‘7‘ £2? .241 Men’- ’23 B”; L“: /. I7 2483 _‘.'.£’_ E”'/ ml"!!! I": ‘8‘ ’m ”/0 fl“ 1221 ’4' -(7J ‘ -: v v: ”I. I‘D: £55 ’73 '71:! '13‘ ’2‘} f/‘V I”: j V30. 117.3 J - a? - 111: l-roblem 128, Page 162 Special method. -149- m : B C —-H l/ 0 @ £//ec% o/J'ow'vf [(0,103 a I a ,c WAN/fund 0,0;467‘ rofi/Aéo .rll O 4’11 -a:z w :7; *‘Tc' ~22: - ll ’—‘ ’-§: ‘7 :33 —-z"'_., a :— ‘M :— Lb * .1 ”a? ~ I M: ##f . -/I/ \ 25.31. 40 ‘0' 73' 117 , ,2 ”CZ IO ‘1” 7 O #4 53-" {£2 #7 .4 :11 *8 as: f”. at: .” ~ll‘ 0 11/0 *6 7 2.2. _a mu ”‘7 -7:r O ‘31 m," :1. 158 a M ”J”, .14 3‘ 7 -150- Boa xza Jpec/é/ KM»! " flje‘e 6’ ##fif 4 _&§_ “Flo-5 ll): {15' —_.A“‘ _;./‘ -L .J... @ (7510/)!!th aft/ac“ raK'I/o’r. _.q, 1‘ 3.0 A —.\// "w ‘7‘ “_ _¢t3 III-n -/// C ”* Prod 12: .pec/o/ “6,”! ' fan’e 3 O -151- Fmfljez 4: 42¢ lg: ”J. fitmflje‘a AZ: «2.4? 54/» .56.: 7-396: ix}: 7’1? A //o//o w/a'rj yaO/M o 3"" ‘W '7 ‘3‘ ‘flk T31 _¢.~ tag 5 NJ“ I]; "' fl .3; l y 3.1 ’3 #73 ” A' 3&- ,. -3‘ . r/J ’ ; - 41:- Elfl -2/ 3.,— ~32 —- ‘— 7'37 - up #3 “1 :6” fi‘ 2’: H ‘3' 7’ t 5: p967 - llo -/’ 234' :2, 1'- .9 ”fl” f,"— — I 3* #3.! .81: —-d M'— 3"— “. 55 E 421' 1*— __.+/¢7 .— u-Jr —"’ l'. "D III" 471% - 967% -‘ 6‘00 43:44-565755 o flflifiaflé ~Qav€é=52>o 5%: e40 Afr: 34° -152- Bob xza J/ec/o/ 254/" 704;... 1 flow/Momwrfifi = ”7,414 (aafi/Wxao m 7 22!. 5 "m I: 1'” -8/ 22 7 M7 #500 L" fifl‘ D r” f“ F at”! .22. £270 fl wr 7‘ ‘ I!“ I I” -//¢ 3 w W «)7 :L‘. W 6 a»; 777 Iroblem 146, lace 204 -153- Accurately determine the springing moment for the arch uniform vertical load of 100$ per ft. over the entire span. of Fig. 156 as caused by a Amuuu 0;: x )’ x‘ y’ I] #7., 4%; ”Jr / l 414 .zz “z ‘18 .7 no 4 22 2 I 2. 9 .r. 7 14 32,; fir 420 I“ 23 fl 3 / 5.6 28 4!. 6 60. 9 «z; 2/00 /¢J.' /7ao¢ 4 / Iaa 8.3 //‘. 8 724 it: 5110 ‘30" 51.992 4' / 1.3.2 3.8 23x: 77. 1 /Jfio // d74- lavm /ola‘o ‘ ./ zen in! 37‘s» 6a, 132‘ zgwbo .kwvzalwu‘¢o 7 I 23./ 4:; ~19). c an: 43/. 7 Jam «:56 /J"/ m a; v / mama ‘22 5630 ‘x: J23 .Hvuz aura» 72mg» 2 8 M0 4’0 /f‘¢.: 3.57.2 $37.7 712.4! 208W 5%? 9 ‘. 1%}? .~ «3922: 47‘3- Z'Ml}! .- «vows-r7 41‘;- fMJy—g: “-43.37 figs-I8 69 V”: 6y M”: (avg. am 66 Mai: 59 ”2’57””: if g: z - W I n-I. , 53 - a“! %:f/Mf JIM": 6323. .~ «137.: 5/"; 5/“.- fng: «927 5,0,14/7 ~154- Problem.160, rage £29 Determine the end momen+s for the fixed end beam of 30 foot span loaded with a uniform.load of 200# per foot over the left half of the span. L ‘ ' G: v . 30’ c :1J M clay. I‘.’ (mg-.2046; ._L'3/ ¢‘ZZ' ‘ . a” ’4: Jo tot/:34 "am. ://&9 lam - .JfiwyiagaZuuv9=.zeab ’ %. War/‘52:}; a £270,009 . /' Mag/r £22? .2", .. //2¢bo a. flaw (M: /2200 JD 224-. M3 .~ 374-. “”40: «no reafi.82mmawaflho=aeubo /%§. €996 a, // -15u5" 33b /60 ”(Ba)". Mk4 0/) mj/c 6&4»; c / V - 0 fl” 4/ 60. ./ i 3.. / f: Jot/4‘ / ? / V .2".- /m 29:42 . £2.93. - .42. Q aza‘l‘w Io. “W? “L M ‘II__0_/~ :. ”fl/VJ J77 7:” @z , w/ZJIAfI/z I’J-H—L I—A [hi/#3 ’4? Jail. 7 /‘Zy: . 00/73 [/0 ’ » Arr/e) fl£e xx: [Ari/z [/47 A? ’00 II" : /¢{/oo x We = w); ‘00 5' oa- «494. “‘5' 43: /¢m - mam: .~ 24;“ ”m ,,. «two «a 7’90.”- aoawe/u' on,- xiv car reef ref/6. a, N, 14' ~156- Problem.161, Iage 22 Compute the corner moments at B and D for the bent of Fig. 171 and complete the moment diagram. Sketch the shape of the deflected structure. From From/’4: flrao ‘ ' Vin/g J'aoo 40m, 4 _ . Ix: 3.3.3 rye-:33 5 c F 5/ “ M = 20800 My. vat-coo , X A0. Mo = {£29 I-zobooxs -2oaoox3x13 ca “357' 353 .‘l = ’73,; ‘gwlL- A10; €222 -g.ro..5 fawn 3:94”: 3 :3; m ‘AZB=‘amrd7r /x&-:zumrdvr a c in» H 0 Dc/kr/d .719“ {m £01 I! 3674’; amt/6 -157- Pro‘blem 162, Page .229 Obtain the moment diagram for the bent of Fig. 171 as caused by a horizontal load of 1000# at the mid-height of the left leg. Sketch the shape of the deflected structure. 'HH» . A: 30 III: 3,: 9 17”.- 4-63 x i 3" W: 'leJboo (5 :. 1.3.700 [.67 IO F H—L ‘flflmw [267Wfigx€/128530=:62630 ’227’ IQUbewhfiam:‘ZVBo M4: ¢m_/%°fl.° *6.‘7 5—2.? figfgg,;j ’3 47: M6: IZJ'oo - 62300 (3.33 - £526 ('3' 3" 333 .5293 Me: Asa-co .. 62519013..” -‘2U'Doxd' 3° 3.33 ’53 %: /?J'00 .c- ‘to‘box-6‘7 - 62:09:: 30 .733 #3 M7.- Jo oo ~(f/J. 3 3V2.” A318) ‘ ?~/ ”7:.- -/4/.3 ~ 625%4’16): «Jar zfiée..(Hka-;umrmsaefivnz¢a fife,- -/(/J M?» F and: -//-27 a, M /: -158- Problem 165, Page 229 Obtain the moments in a circular ring of 10 inch diameter supported on a point reaction and carrying a concentrated load at the top of 1000#. If the ring is made up of a sir: 'cular rod, find the diameter (required) of the rod to work at a fiber stress of léOOOf per sq.inch. hf y’ K ’2. X 9 9' d5: PJO M:JOO(/z-A €0.10) . Eafo/écro, 4fl1§j=/ar 4k6 4mwnunna54/zfichh’qjdb . r 2 Joooo 9‘3070 4 : 50000 1‘7 . a :: Joooo x2.37 ./ /EZ=:%¥3’~£§gu-:2ur7 : 7%0 Id 13. Ml /%5:‘évao -9Me:/uvb J = M: ,g ,0...” xz’. ”'70 g . w:- .z- '7MI/aooo a .3 o J ” d: ‘0 " I V B€C4VJ9 ”4“? MG Aer-.97: Coace/ Jae #4 vane/r3 .1 1‘ 5:8,I7 Problem 164, Page 229 Check the moments obtained in Art.163 for the elliptical arch by using a cantilever from the right end as a static structure. Hint. Slide rule accuracy will not be satisfactory here because of the difference of large quantities involved in the term If: X-x.’ -159- J g; Pf' .5: I r I. y. x.‘ y.‘ M: ”4/. Mar. / / . 4 1.: v2.5 v.9 #27 1.9.2. 2.: “3%.? 1.4- 2 I 1.; .517 -/o./ “.4 lo:.o .1 J I 6.5 7.8 -6.1 It 7 fl; 2. 7 4 / Io! 8.0 ‘21 #2.? 7-! Z, .5 I at: 8.8 $2.2 I 2.7 4.8 7. 3 4 / was 7.6 1"? ”A! 4/.0 2.? 7 / 21.3 .1: 7 *4/ :4 ‘ x02... . z a / aux 4e: anus it? xazr A32 2 /44 ‘120 (I3 a2: 2.:- ~31: 'lr M4: -23.???) way/3 *2: l‘./Z: —.¢b ‘IJ A7,. ‘43 J22 57'? M/e-c. ”Wt/err or 14.7 ”a A} frat (é ”I’ll/.6“ _ af—JAJ'I/J fiéJ‘x‘Je _: f .66 4? 9J7 -160- J? bl 16 s ro thrmin e miximum moment in the box culvert illustra- tedD when the lo, 000# wheel load is placed at the center of the span. The reaction under the box is assumed to be un- iformly distributed. .L.__a__.i [0000‘ I 1:, 6.»ch .1 HTTTTTTTTHTTTTT l ant/g: /l I w‘ I \Q M w/y/p/o (c lbh" 0/ o// 4Caraera . 7 4/31 A! J/IV/ Wt/lt‘l/é atria/"570:1? fir Jymme/r/c'o/ And/bf /7=2730*492b=/vo Iyy- {-219 v'Zaxxffja 43.530 er: afgg’ idol/09: 7330 W: 3(Joxd7d‘ooj 2‘ 7503*34 = 4374000 M”: Iafl/ZD ‘96 ~75? cool): /a f37oaoa) = 3.7”,000 ”7/ We» -/"_€___7°'°°° +gzzeeeguo/ /°° 7.3.3» I Ma: 75000 423200 : 52600 at 428/7 -161- Problem 167, Page 229 The symmetrically deepened beam illustrated carries a uniform vertical load of 450;}? per ft. Obtain the moment diagram. ”an: .5 .4. x, Eo//y do: {er/”1'44 7’.- éy plum}; ,0»): o :1 Xi.- é/MG. 59W! 0/ Jyawae/r’, 0449 #19 Tera? {abi . i 1%! ’10-,” ’3‘ firafl/ a} M at. a 7.51am}. xxx: 5.52900 «A 5255‘” ~[5’Jooox6j - 3122.52: (6 = if)” 4:: $300015 :4}: #225? 4’6 -.- 40000 I4: alarm] we”: x4“:- W: [/ihO/é fZflOJM/z 68950 /79a%: 4%??? 36/25” J28,” -l62- Problem.168, Page 230 Analyze the unsymmetrically deepened beam illustrated for the effect of the concentrated load. Obtain the moment diagram to scale. Choose a cantilever extending from the left hand end as the static structure. 77/- o [or/164' / ”I‘d/A: A.Aza,ér 434,4 .—L 62" ‘3 4’" J/za- ’3‘7 5?: eat/a at £7.) (zoxao {- exterio .-_ 92-38 = 4.). I yr” /e// cod ‘ 4’0 r- 31‘ .l /‘O 4’" __z J .23. .-. /50/ ‘7 #7411144 = x2470 : \ O _ 3 : at; [Ia/J 5-; [£731.20 - 70%! z - “ 3 _ .. za/JJJ/ {25-1/120 - 22.5190 ~ (2‘00 M /, .200. 00:: (go .2 AP. coo. 00° 2 . %j : I2I/0 ‘IJ‘.4¢ a ¢J7//o ‘ A 20"3’.‘ I/‘o : 2/¢‘ /‘Zva "léo ~ 43—7170 ‘ xfl/ ~ /4’//0 ‘ g - I20- 4".- - ”I 47: ”aroma Ilia/v60 M6;- ~fiZL/o ‘1/d7 #42421“ _- -/76 #59 .- -//74.’£ 42‘ oo o (Iv. ‘l/wa O76, /7 - 163- Problem 169,Page 257 Obtain a final moment diagram for the bent of Fig. 176 and sketch the shape of the deflected structure. [6'01” flé /x 29. /.6 Mac ”xx = “‘56.: /7/,: - ”2. 5‘ .2 xx: 5‘48 1}]: A50 Ixy: -2J" flip: 4.34 AV: 159 My: 0'[';—“ f26{‘12ff .529. - “2X4?! — 6.2 ~552me -//2.6‘12~5j ' 9-@:" anal/av, «max/mo. 7-. 52.: :—[1’2371‘ 7‘:‘/0.06]: ‘6. 964/1: ”7;.- [1 37- 2.51402) - 6.25(/.£12]: -[237~ 7. 65—10. a: = 8.33 47' %:[737 fizz/me) :l/JJI/A‘Ij]; ~[237~23 *22‘17 . -¢9. 574’!“ \ 6J1 -164- Special Problem. iAnalysis of an unsymmetrical bent by the conjugate beam 3X80 260° 4’75 5 I: 1.“.- e? 7 ) -w _ .._.”.___.._ .— mfle/In/Jvory Word" //.7 7‘4! 400.61,: 50.8., .27}: Ara .Z'zy: 25 4:4‘0 . \fe/ec/lly 41/21 a: xc'o/f/igyo/e err/Cr, 7,7,5: £412 a :33; = —~./‘t& 6. xad'- {way )0! A“ .23": /_Z'},- fl/(OJeo: pug“ £33: .97.? = ‘5‘)! . 17/ %/= W: /0.5' 7900: 12."- 9: 26.6“ 33‘ 9243‘ 32.9.32; JV); W.- 173 ¢= 36.06 ° 6:62.375 * . Mr)”: M’: /5/4.93‘ = — 7% 5M3 -155- 5/98 Cl'd/ Pro é/em "(oar 2‘ , C: //5 6.- ”1‘ _Z':"_' y: //J’ Jr}: 52 7‘.- 26’5 ¢“ ’7' 9 .27rr’ M1” 375 ‘/%*£Z2? #- fiZzir'y’ Ia! My: JZI-KAE .: .___.‘7" g—zaa' » 110-63-25- /‘ {53¢ Ara : 325- {9«3‘I‘/‘./1‘6‘.‘0)= ‘.¥¢A’F ~16"- Problem 170, Page 237 Make use of the column analogy and the eneral column flemre equation to check the moments as g ven for the ben of Problem 120. Place pins at B and C to produce Ms. Hint. Look for a possible negative column load. JA’ Li I ' _E_...’ 2'4" ’9 / In; C 4- a £2" 1? :l .0' 41», A": .4 :4 p #3 2 ’ 434'}? WM. .46 5.5 232.2 7;: [‘74' g: 3.354' L —b—' WIB=$ JP: 5 Ziaddgt’ lo‘ 74"". ' 8, M /4. 20, 2/ /Vo.- 3.2.3- 0 4 fled/:12 (2/. 7-0) fi/flsjfflz 3.513 a M: 0-0.6: {-[174'IJ/oaj: /<‘.’d‘”” /Va.~ flzxaxjfla. 7:) f-/.2 .- 2(”" /V.¢: ~/6.7/a?z ~A7: /o,¢’»" Bob /70 Gm" I ( . l‘bjl 7‘ I? I l9: 5/ fly 2; )3 M Mr ”@130 fwlry 3’0 lo M x o a 5' 5’ 4 mar 6.33 -/o¢ 12/.2 9.90 and «97 3( ID as '2“ J' 2.6“ II J was *dzf o o O 245' «sa- 1'23 .1. (0 m 29 z /o 5 .5- 2-6' €Zd mes-11.13 f-M “'52 4.91" /7.& ”3.? 2 2 25‘ A36" 0 a ”312 2/.” 3’.» :9.” 1‘: . = 3. J" : ’24’: 6.2.? 9’ 7 3‘ T xax/ fiaxorj : l7 7 " an: -168- Problem.172, Page 23? Repeat the calculations of Fig. 177 for a bent of ident- ical dimensions but where the moments of inertia of the vertical legs are interchenged. Check the results by use of principal axes. J_ ’5’ 13m ’0' lo! 24% .oo: o 0 25' .47 “IzMJ 19.5 as! 427 7.0 «3.73 sarawu was «at fluu'-£g7 3030/ 2020 a 0’3“?)5‘0 o aw‘a‘fia Map P6 57'.Zo 6» .z5 10 .z: 13¢ 31! 2? ant 727 Z X 449 226 ‘fizz 2&33nr1k£_4£usauzr;§5a* .as: Z I." = /Z y: _‘.2‘ , (.2: Ida %=/.5'—- 1...?” rf—Iz): 4/61/116-f-J/21-«23-3I¥zzww7vay~fiéfxg “5’ a.“ [Olaf-(23.2): : /.:~[:/z7»¢¢¢ug7 = Ar-fuwj = «a 45‘? a. x/. x4. 20. 3/ .4159- Problem 173, Page 238 Make use of the kern relationship in the column analogy to determine a general expression for the end moment in a fixed end beam carrying a concentrated load P at distances a and b from.the two ends. 7" A. 2 fl —_-‘- b 44 ‘B afé:z L Z-a: b /7 Mr.- 72414 (g. ~59} Mb ‘ a. J- 3 1:27-2éavzz -§é cane/«uazzx -l.70- Problem 175, Page 2.42 A fixed end bent 14 ft. high and 12 ft. Wide is made up of 10 in. 150-7}? I beams with their Webs placed in the plane of the bent. Find the maximum fiber stress produced by each of three movements of the left footings, namely x=lin. yzl in. and 9:0.1'. Use the dimensions given as center line dimensions. . , ! 'fl—‘ ’1’ —4 _ M. _ 5-“ Jot/0‘ I: ’33.: x .6 c _ -_ I 'z% = 26.7 ‘1 y K I .—_-‘ '—.P 9.] —J— 5 ”~34- adv» @ ”€07 A I A [9’ I ’41: y ”y 45 /4 ' An: Ail/2551‘ 7 a a 7 119 5c A: ' " 4902,452- 5 _ 5 .34 /¢ .94 CD 4’ /¢I/2.-'.4"2‘ 7 x: 84 7 4? 2 xzxxo‘a to /20 /32 3:6 “= M’z . 2/ ‘9 '3' —L 3 I _. .84” M [I Jox/a‘l/ua- ’0 ’6 fly/4.6.- /.2{o no“ .2}, 3(: A30: /a‘¢ ”707(- /?/I/zj 3/1/01- 223000 3‘5 1:7(5: A2¢01/o”¢ 1'72 5: £32262 - //ooo "'0" 1377 = 3.721%“ 26. 7 8.4 /¢, 24, 2/ v.1- - 17,1- fiué /7.5' 254/ " @ ”y'/" ”.7; :l 1} 26.0.; ”‘1/«1/2r mg] {(2166 [Air/e! 72 ) /0’ ’0’” ”(4-1/2 4'2. _g__7.r I ear/e / 2 /o’° [ J =/¢./J ’57”): 7‘ ‘2/0 z 4.76.5770" I”! ’4? )4 72 4/0 ‘; /¢é‘ooo ’3" £95.:- 5: /¢.5‘ooo = $492.: ““4" 24.7 © 9.: ./° a .OO/76f‘ld M17,- . 00/7a‘léx/2 Mar: . 00/7534' 2/172 14: A7470“: —2; : {7651/0-’ Iyx: :27ZA’I0-’ / {a o ,75-1/a’ a: [f 71/?) / 00/7: I7? I/o #7210WN12/1/a/J) st 7‘ a- J. 72 swdb f2¢920 3‘ 37400:.- $000 71“ 5_ 42:2- 4330 “'0" 257 A (delta) A 394:8 ,AC (if QHJH J J flog-Va ,...o 1’”. ’96 IBM, I”; Ix—y K L m or m' 3:46 —i: »~K J:5,J.-.o --t 1‘” 93-9‘7 I! 94 4" 17102191“; L. lxplanction o; irnLols deflection, usually c;us ed by the ma'n loads. hanges of angles of a tr ienfle 0: used by strerc. cl lange of t szg of a suspended cable. change in length of a member. deflect: on,ueually caused by a unit load. change in length of a small fiber. small change in . . end slope of a membe.r of a rigid irame. factor defining orange in stiffness due to end I'FS bralnto otation of a member summation sign. end anple change of a pin end member short length,usually.a part of a span. from joint translation. cross-sectioxial area,1:articularly of the anal- 0 gen .3 c o lur..n n areas of tne I and T diaerr1o. numbers of bars in a St: ce frame . extreme fiber distance for cross- ing bending. carry over factor used in balancing angles. fixed end moment at A of the beam KP. depth of a beam or of any cross-section. eccentricity of a loadgcoefficient of temperature change.- modulus of elasticity section resisr- unit stres s;eag of a cable in a suspension brifige shearing modu 11US 01 elasticity. height of a truss or story;rise of an arch. neutral toint fo 0 Ht rust,shear,moment. C slope dei‘lection) moments of inertia and product of number of joints in a space frame. polar moment of inertia. defined by the relationr a kL inertia. stiffness or I/l; subs pts 0 'nd 5 refer to column and girder. length as of a truss bar or of an entire scan. a structure. of member AB (slope deflection ; virtual moment at any point of moment at end A * about A3. fixed end m ment,eee C 11.51286 0 kern moment. for slope deflection static and indeterminate moments. total moment in a story,uind shear times story height. .oment of forces about x-x and axes. rionent of forcesin the xy or xz plane. cesienction of ti e neutral 1oint.used as a C‘u‘becriri’ v..-.r If k ) a.n?+1 H (‘1 (+- H O t! v-*alue V' Y',’ X0939 X,J ,4: X V " ,.~,L.J Txplnnation of Cynbols Continued number of ejace joints Vlere all bars lie in our J. l statical norent of the cross-section of the 5 'us of a moment center. . ese of columns to girders. total stress in a bar. change in temperature in dgpyegg p, torque moment caused by the virt a1 loading. restraint factor in moment distribution. total shear caused by the virtual loading. unit load. total load; Tds/EI load;tota vork. coordinates from the neutral point. distances referred to a centroid. redundant stresses or reactions. IEibliogrexlgr . 1,;nericen I.s itute of Cteel Con: t:uction-Ct el Constructior, - 3'0, CR-C7lq -btericcrl lrstiinrte of CIteel C 1u3 - ruct‘on,1e" Yo: 1:, 1C4l. L. 1bbitt E.T. and Poland J.J.- “.ater Supply Tngineerin{,4€6, TcGran-Yill,k W York, lCL9. o. * hlehem Steel Com: nV-L-taloeue 3-39,184-EO4,Iethlehem Steel Compan",-et lehem Ta.,l{;9. ..'ish p C.T.-Structura 1 Design, l-o-.-Z,Tokn Tiley & Con, Ye” York,193€. b.1cu--e" L.A.-keinforced Concrete,l€5-lCE,D.Van Yostrand, l'er' York, 19236 . 6.»r1nter l.:. “es ifn of Todern Steel Ctruetures,.C» 595, - o"illa-,-em York, lCél. I.T Bleory 0:? Iod61n Steel Ctructurcs Vol.1,77-100, lEE- lCC,~-€-.CA,Iac ille n,ZeW ‘fork,lC CE. l .2 Ir‘r' LIL} 7.—rinter .-Cleory of Loiern Steel Structures Vol.2, c-1llan,1e" York, 1937. 9.5001 G.A. and Iiinne Y.S.-Cteel and Timber Structures,4OC-4;”, ' chr'W- Hill, eW Y101k,lC£4. ' 10.Yool G.A. and Kinnc Y.C.- -Ctresses in Framed Ctructures, 4?6-445,448-46€,TcGraw—Iill,IeW Y1ork.lCL5. ll.Laurson I.G.znd Cox T.J.- Iechanics of materie s,LOl-E.OC, le- 0,279-u00,.Cl-.l.,.onn Yiley C Con,1eW York F.vrinter (“'ZC‘ .UL'. 15.”eeltgrl?.i3.and Tnsigr1ITJ aAnalrtic'1.1cxfluiiics for ne1neer 93-C9,99 -lOl,Job 0-1- -iley 8 Con,1 eW York, 753. m 13.9eeley F.B.- 1T;esistance of Tater1=ls,-€ -FF,L€€-£, ,.a.-.C€ 507-317,John ‘iley C Con,le eW York, lCSB. 16.3hedd T.C.-Structura Eesign in Steel,L4 4-LSS,CCS-79€, Joh Wiley 8 Son,Te eW York ,1954. lC.Ckcdd T :0. end Vawter J.- Tneor" of Simple Ctructures,lEZ-l. 0-4;3,440- /FU,.0vn Iiley 8 Con,Tew York,lC4l. l'. . ut-erla nd II.-nd IOWman T.l.-Ctructural Pesign,4—E4,Al-E7, 141-.Cfl7,JOIn1‘fileg'é‘f?on,3krr1ork,lCCJ3. 17.7utherlcnd 3.;nd Clifford T.Y.-Eeiniorced Concrete Design, ECG-uso,.0nu Yiley C Con,TeW York,l92€. lF.Timosh .K 3.. ‘§.4‘lau'."~‘.l ; ' .0‘ A." . I ‘ V ‘ I.-. V ‘ a J I ' ?‘ L.._"'I‘ 'N '» "173%. Vii-£3". - r a fairw- a. . ' A! \r‘ ,1.‘. .1: w...‘ gt. .Ju' ‘ t _ .‘Efv 1 Op . ‘ . \“Jafi -\ ‘ .-._ 7A :- 1" ’i o‘ ._ _‘ ua. ‘ . ..__ ,..; . :3. ‘1". .‘ ' , v". ‘ .‘_ Vfiiy‘a'z’ f ."a :1 £12.“. '( l ' ‘ '0. Raf . fi' .. \I' J.'€- J A” ~. *7? ‘ a was" . :4 “ T'A ",.- f'V-r . ‘ ' I o I . 3 "2" "‘- 3’35 ' 1*! an. .p f“ ‘ III III III I III I'll 'l' l Ill-ll l I I I. l l l l III I III II I I II III I II III I'll II III II II I l 3 1293 03177 4312