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Abstract

WWN: Language Acquisition and Generalization using
Association

By

Kajal Miyan

Based on some recent advances in understanding and modeling cortical process-

ing for space [26] and time [55], we propose a developmental, general-purpose model

for language acquisition using multiple motor areas. The thesis presents two main

ideas: a) early language acquisition is a grounded and incremental process, i.e., the

network learns as it performs in the real world b) language is a complex perceptual,

cognitive and motor skill that can be acquired through associative learning and skill

transfer principles described in [57]. The network architecture is informed by the

existing neuroanatomic studies and the associative learning literature in psychol-

ogy. Through the ventral pathway, the “what” motor learns, abstracts and feeds

back (as recurrent top-down context) information that is related to the meaning

of the text. Via the dorsal pathway, the “where/how” motor learns, abstracts and

feeds back (as top-down context) information that relates to the spatial informa-

tion of text, e.g., where is the text on a page. This is a major departure from the

traditional symbolic and connectionist approaches to natural language processing

(NLP) — the nature of the motor areas, i.e., actions or abstract meanings, play

the role of “state hubs” in language acquisition and understanding. The “hubs”

correspond to multiple concepts that form the state of the current context. As any

human communicable concept can be either verbally stated (what) or demonstrated

through actions (how), this model seems to be the first general purpose develop-

mental model for general language acquisition, although the size of our experiments

is still limited. Furthermore, unlike traditional NLP approaches, syntax is a special



case of actions. The major novelty in our language acquisition is the ability to gen-

eralize, going beyond a probability framework, by simulating the primary, secondary

and higher order associations observed in animal learning through the generalization

of internal distributed representations. A basic architecture that enables such a gen-

eralization is the overall distributed representation: not only a retina image but also

an array of muscles is considered high-dimensional images. An emergent internal dis-

tributed representation is critical for going beyond experience to enable three types

of generalization: member-to-class, subclass-to-superclass, member-to-member, and

relation-specification. In our cortex inspired model, syntax and semantics are not

treated differently, but as emergent behaviors that arise from grounded real-time

experience.
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Chapter 1

Introduction

Humans often think in languages. It is known that languages assist in the mental

processes of perception, cognition, behavior, thoughts and intelligence in humans.

Although some animals are known to be able to communicate in certain ways yet

none of them are known to have a rich, detailed, specific and complex symbolic sys-

tem expression as humans do. Language, thus, indicates that humans have certain

special cognitive abilities that help them to not only express themselves in a more

unambiguous fashion but also develop into a powerful social community. Much of

our adult intellect is conveyed, stored and enhanced through natural languages. Nat-

ural language not only consists of sounds, symbols, syntax and semantics peculiar

to human communication, but more importantly, inside the brain it corresponds to

brain-organized traces of sensorimotor experience grounded in the physical world,

this could include seeing an object or hearing it or hearing about it or reading about

it or reading descriptions about it etc. [4]. This perspective is supported by modern

studies of language acquisition in developmental psychology. Hence, motor activities

play both a preparation and an operational role in language acquisition [25]. It has

also been shown that infants appear to use visual and auditory associations inherent

in social contexts to learn native-language phonetic categories [56]. However, after

50 years of extensive research in the field of Natural Language Processing (NLP) in
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Artificial Intelligence (AI), few efforts have been spent on simulating how an agent

acquires a native language from real-world interactive experience, in fact much work

in the traditional NLP community considers a language as a static set of symbols

with handcrafted atomic (unbreakable) meanings, syntactic and semantic rules.

In contrast, early acquisition of language in children, seldom includes any explicit

training of language rules. Children learn to pay attention to the desirable contexts

and carry out an unrehearsed conversations with the co-participation of other mo-

tors [43]. Despite the lack of explicit syntactic rules, children acquire language skills

interactively in ways similar to the acquisition of skills for other sensing modalities;

language comes naturally to humans yet such skills are not genetically coded. In his

‘Essay Concerning Human Understanding’ John Locke introduces the logic of em-

piricism, he argues that language and ideas are not completely innate but develop

from sensorimotor experience and the experience of reasoning [35].

Language acquisition is different from language processing. While the latter

focusses on how language can be processed, which might include division of the sen-

tences into grammatical chunks or tagging words as nouns, pronouns or adjectives

etc., language acquisition is the grounded way of language processing. It allows the

system to develop a deeper understanding of the subject as it more closely bound

with the surroundings of the learner. Language acquisition takes inspiration from

the way humans learn language through mere interactions in the beginning and later

refining through teaching and experience enabling the learner to be able to pick up

any language, native or non-native and to be able to effectively and easily communi-

cate with others who are familiar with the same language. Language processing has

been traditionally used many a times in order to solve several linguistic problems

and though it been effective yet there is also a great scope for improvement as we

will see in later sections this thesis explores and simulates language acquisition as

an alternative to the traditional methods of learning and understanding language.
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In the work reported in this thesis, we use a simplified cortex-like model to sim-

ulate the process of language acquisition via incremental, interactive, sensorimotor

interactions. The network is able to display the linguistic abilities of a 5-6 year old

child. Traditionally probabilistic or stochastic methods are used to determine the

word to word relationship that helps create various phases and sentences. In our

study we take a connectionists approach to not only learn to create relationships be-

tween the words occurring together but we mainly focus on creating new sentences

from the knowledge that the system gathers on its own from an external source,

which could be the environment or a supervisor, thus the term interactive learning.

The network also learns as it performs or lives thus learning incrementally. But it

will not be very efficient if one had to spoon-feed a child every information possible,

there are time when based on the environment the child forms his/her own belief

system. At the age of 5-10 this is a direct result of another major human brain capa-

bilities, namely generalization, thinking which in turn are a result of or are facilitated

by secondary association. Traditional linguistics does not use animal learning or pri-

mary and secondary association postulates in order to bind words/phrases/concepts

together. We try to explain all the above brain’s linguistic capabilities with the help

of secondary associations that can be converted into primary associations through

practice.

Our network focuses on learning via reading hence the network uses visual

“where” and “what” pathways. The “what” pathway focuses on the word or the

meaning of the word being read while the “where” pathway helps the system find

the location of the word on the page, i.e., whether it is on the top of the page or

the bottom or is it highlighted in some way. For tractability at this stage of sys-

tem development, we use insulated words as distributed inputs (patterns) and use

distributed motor outputs (also patterns). The model is not formally taught any

grammatical rules governing a language but learns implicit rules on-the-fly though

3



sensorimotor examples. It is also able to create new sentences using its learned rea-

soning and generalization capabilities. Theoretically the knowledge database of the

system is infinite and there is no restriction on the amount of data the system can

accumulate on its own.
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Chapter 2

Objective and Importance

2.1 Challenges in NLP: Language Processing vs.

Language Acquisition

The biggest challenge for the NLP community today is to connect concepts in com-

plex sentences. This requires a deep understanding of not just the words, through

surface grammatical structure, but also the semantic knowledge of the real world

experiences. Though the types of grammars and the languages, described in the

previous chapter, help us to study languages in a more systematic manner yet these

formal languages are very structured and have very strict set of rules restricting

improvisation, which is antecedent to human communication. Humans do not com-

municate within the bounds of rules nor have to have the knowledge of grammar in

order to express effectively. It must be noted that natural languages are not formal

languages. Though natural languages have grammatical rules to help formalization

of languages yet humans do not parse every word or phrase to see which grammat-

ical rule it fits to derive the context. Also the primary understanding of languages

in humans does not develop through any formal schooling but is picked up through

interaction and teaching of the parents and guardians. Humans do not follow a
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certain school of language, in fact language acquisition does not focus on syntax

at all, humans pick up languages without knowing the grammar or rules behind it.

Some children might pick up or acquire a second language in their childhood that

has an entirely different grammatical structure than their first learnt language never

realizing the actual grammatical difference or confusing between the rules for the

two. An explicitly stated grammar is clearly not required for learning language.

Computer linguistics follows two approaches to solving the problems of natural

language learning: symbolic and stochastic. Symbolic approach includes N-gram

methods, inductive learning or finite state machine. The common factor in all the

above approaches is the fact that all of them treat words only as symbols. The out-

put is hand-designed and pre-determined. The stochastic methods are a relatively

new approach in NLP. They are statistical antecedents of the symbolic methods and

include Hidden Markov Models and Maximum Entropy modeling. None of these

methods are neuromorphic but they do have a history of being successfully used for

solving many problems. These methods are capable of representing infinite number

of sequences and combinations of words but they have to be painstakingly designed

based on a grammar or “syntax”. Syntax is grammar, and grammar, as argued

above, is restricting as it follows rules and unless the language abides rules, it is not

considered correct.

The natural language processors involved in tagging or meaning analysis etc.

usually try to break down the problem into smaller bits and pieces therefore relying

more on text/speech segmentation or parse trees to try to understand the meaning

or the correctness of the sentences. They thus try to divide the problem into more

formal sub-parts and hope that those do not contain any ambiguities. Natural lan-

guages and their grammar, on the other hand, are not perfect they have anomalies

and irregularities. Due to which though they are effective in theory yet they fail to

do as well in practice. For e.g. anaphora like, We gave the monkeys the bananas
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because they were hungry, it is impossible for a computational linguistic system to

identify clearly what does they here stand for. Another examples being similes, like,

as brave as a lion or other figures of speech. On the contrary humans can easily

identify that they stands for monkeys, as bananas cannot be hungry. They are able

to understand syntactically wrong, semantically ambiguous, imperfect, grammati-

cally incorrect sentences. Humans do not have to be grammar or language gurus

to understand what is being said, in fact with ample experience they can even un-

derstand the meaning of unknown similes or expressions by merely following the

context. Thus, as far as NLP is concerned, syntax can only take you so far but to

be able to communicate like humans and to understand the real hidden meaning of

what is being said. The system should have three basic capabilities “semantics”,

“grounding” and “experience”. Our model makes use of the above to create a new

approach for language processing that takes inspiration from humans to “acquire”

language.

2.2 WWN: An Incremental Autonomous Language

Learner

Unlike NLP, where a human programmer entrusted with the task of designing the

system handcrafts each state and the outcome of a transition, in language acqui-

sition, the system learns to device these transitions on its own by learning them

autonomously from its surrounding environment that might or might not have a

human teacher. Our method uses the latter to develop an autonomous language

learner, it is unique in the sense that it is the first where-what network for language

acquisition that takes visual word input in order to produce the correct action, which

might include various language processing tasks, like, part-of-speech tagging, text
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segmentation recognizing syntactic ambiguity etc. The network need not learn ev-

erything before it starts performing, but instead should learn dynamically so that

it can be corrected early if it learns some wrong information. It is all the more

important as the network is not taught everything explicitly but instead draws as-

sociations and conclusions from what it has learnt so it becomes imperative that

if we come across any wrong information learnt by the system, we correct it, just

as small children are corrected by their teachers/parents if they say/do something

wrong. Our network is an incremental learner that learns as it goes focusing mainly

on language understanding. Hence unlike other systems that have to be trained or

programmed before they can do anything, our network not only learns what it is

taught but also learns as it is taught. The network can incrementally pick-up new

tricks as it lives on and so it grows stronger as it lives longer.

The other major novelty of the system is the use of animal learning concepts like

classical conditioning to develop links between words and corresponding concepts

and properties aiding the system in the process of reasoning. It should be noted that

early language learning is a skill and is acquired through sensorimotor interactions

with the environment and hence skill transfer principles should work for transferring

language skills just like any other motor related ones. This study tries to apply

the above concepts to language learning. It uses classical conditioning to form links

and associations between the various concepts of the world, formed through gener-

alization as described later, without formally or explicitly creating the concept and

distinction of “class”, “object”, “subclass” or “superclass” amongst the words. The

study also presents generalization as an important technique very peculiar of human

brain, helping in classification and more logical arrangement of knowledge.
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Chapter 3

Literature Survey on Language

Learning

Natural language understanding is an AI complete problem, it is not only hard to

solve but if solved we will be also solving the central AI problem of creating a machine

that passes the Turing test. Linguists have been trying to codify human language

for ages. Several different fields of study, ranging from psychology to biology to

neuroscience have studied the evolution and development of languages. There are

two major schools of thoughts when it comes to the theory of learning the first

language.

3.1 Language Schools of Thought

Nativists, led by Noam Chomsky believe that language is a human instinct, chil-

dren learn languages without conscious effort, before they are aware of reward or

punishment, or even before they can be formally taught. Chomsky argued that

language was innate and the underlying principles of language were universal and

inborn to all humans. He called it the Universal Grammar (UG) [8]. According

to Chomsky, UG contains an “initial state” of the human language faculty, prior
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to any linguistic experience. Smolensky’s Optimality Theory (OT) belonged to the

same school of thought. OT filters out the structures that don’t follow the universal

rules from the input such that only conforming grammatical structures remain in

the language. Chomsky-Schutzenberger, defined four kinds of grammars that result

in formation of four different kinds of languages: general rewrite, context-sensitive

grammar, context-free grammar and finite state. Together these grammars contain

rules that can define any language known.

Non-nativists or “emergencionists” supported by the likes of Piaget, Mac Whinney,

Bates and Snow, however opposed the idea of prior knowledge, or preference of a

certain precursory or antecedent affinity.

3.2 Computational Linguistics Models

Today with electronic media becoming more and more popular, humans see a grow-

ing need of interaction with the technology in a more simpler and humane way this

gave rise to a new field Computational linguistics, the latest study of language as

seen in conjunction with computational use of it. Several computational linguistics

models have been developed. The three main types of models are:

1. Symbolic AI: Handcrafted representation.

2. Neural nets: Emergent representation but weak with prior models.

3. Autonomous Mental development (AMD) model: Emergent representation but

can reason with the help of Brain-mind model.

10



3.3 Symbolic AI

The main focus of computational linguists till of late was on Natural Language

Processing (NLP) that for a long time used the grammars described later to solve

problems like speech segmentation, text segmentation, parts of speech tagging, pars-

ing and information retrieval etc. Soar [30], ACT-R [41], CYC [33] etc. are well know

NLP models map symbols to symbols through handcrafted pathways. Finite Au-

tomata (FA) that we later compare to our model, is also one such method, along

with its probability variants Markov Decision Processes (MDP), Partially Observ-

able MDP (POMDP) and Bayesian nets. But these models are handcrafted and

cannot evolve on their own. They are very restrictive and though all linguistic con-

cepts can be modeled into states they have to be painstakingly designed by human

programmers.

3.4 Language Hierarchy

Chomsky-Schutzenberger, in 1956, defined a containment hierarchy of classes of four

kinds of formal grammars. It is called “the hierarchy of languages” because each

successive type is a subset of the other. Type 1 general rewrite, that results in

the formation of unrestricted language of the form α → β that has no size or rule

restriction and is the largest class that can be recognized by Turing machines. Type

2 or context-sensitive grammar, forms context-sensitive language that are infinite

with rules like αAβ → αγβ, where α and β can be empty, A is non-terminal while

γ could be either terminal or non-terminal, these can be recognized by linear bound

automata. Type 3 or context-free grammar, generates context-free language with

single non-terminal on the left and a string of terminal or non-terminals on the

right of the form A → γ. This is a very rich category of languages. This category
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includes all the programming languages. This kind of language can be recognized

by non-deterministic pushdown automata. The final type of grammar is Type 4 or

finite state that generates regular language. These languages follow the rule like,

A → a and A → aB with a single nonterminal on the left-hand side and a single

terminal, possibly followed (or preceded, but not both) by a single nonterminal on

the right-hand side. These can be decided by finite state automata and obtained by

regular expressions.

3.5 Neural nets

Neural networks or connectionist approach, developed in 1980s, attempts to model

mental and psychological behaviors using networks with numeric, distributed in-

ternal representations. These networks have also been used to model distributed

language representation. Unlike symbolic approaches, representations in such net-

works are emergent. These models have two main motivations. First, there is a

need for parallel processing of knowledge from multiple sources in a systematic way

without specifying or knowing which input component represents what meaning.

Second, since the model is not symbolic the representation itself has a potential to

tolerate noisy inputs, irregularities and “fuzziness” of real natural language.

Hinton, 1981, published some seminal work on distributed semantic representa-

tions [23]. Rumelhart and McClelland, 1986, [47] used distributed representation

and semantic microfeatures to address the problem of case role assignment. Other

early related studies that use networks include Hanson and Kegl [5] syntactic pars-

ing, Allen [1] on question and answering, Sharkey [48] on prepositional attachment,

Lange and Dyer [32] on inference, Smolensky [49] on variable binding. More recently,

recurrent neural networks like Elman network [13] and Jordan network [9] use tem-

poral states in models with context units. ARTMAP [42] was based on the concept

of similarity measure for symbolic objects and can assign class labels to the objects.
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These methods are weak mainly because neural networks are weak in generalization

and reasoning.

3.6 Language Grounded in Real World

Along with all this, in recent times a lot of work has been done in the direction of

binding Physical grounding with language. Studies and models like that of Zwaan

et al. [58] and Roy and Mavridis [37] contributed to the understanding of grounded

acquisition of language skill. Weng et al. [55] recently developed a cortex-like tem-

poral processing model for incremental learning of text-motor behaviors for natural

language.

This work is unique as it models a process of language acquisition using both the

dorsal (where/how) and ventral (what) pathways so that words of the language not

only have their meaning in terms of “what”, but also in terms of “where/how”. This

is the first general-purpose model that is capable of dealing with multiple motor ar-

eas, including visual and auditory, for language processing. It shows how behaviors

within a motor area and between different motor areas are integrated in contrast to

the architecture with behavior-based robots [3] where a separate behavior arbitra-

tion module is used to determine the priority of inconsistent behaviors from different

behavior modules, the behavior integration in our model is tightly integrated into

the network itself.

3.7 Autonomous Mental development (AMD) model

Models like Multi Layer In-place Learning (MILN) [51], Where-what network 1(WWN-

1) [27], WWN-2 [28], WWN-3 [36] and Brain-mind Model [53] belong to this cat-

egory. These are also emergent models but can reason well as shown later in the
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thesis. [54] demonstrates the power of complex text processing using the framework

of a general-purpose developmental spatiotemporal agent called Temporal Context

Machines (TCM), demonstrating its power of forming online, active, abstract, tem-

poral contexts.
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Chapter 4

Psychological grounding of the

Model

Language is a complex means of human expression having varied components in-

cluding lexical-semantics, phonemes, grammar and prosody, just to name a few. Ac-

quiring language includes acquiring and developing the above mentioned skills along

with many others, but it all starts with the child starting to associate words through

imitation and generalizing and forming informal concept categories as he/she gains

more experience. In order to model language learning in humans we take inspiration

from the study of psycholinguistics. We focus on modeling the above two phases of

early language acquisition.

4.1 Early Language Acquisition

Piaget’s early work on cognition emphasized the role of active experience in devel-

opment of increasingly sophisticated mental structures for early language acquisi-

tion [15]. Humans learn natural language in the same fundamental manner as every

other acquired skill, through active repetition. In several ancient cultures overt rep-
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etition was used to impart knowledge of scriptures to children, including India were

children from the age of 5 would start reciting the Vedas aloud in order to memorize

them and is termed audiolingualism. This could be accorded for the preservation

of the more than 8000 languages in the world that do not have scripts. Even more

strikingly, this strategy of language acquisition is not species specific; animals too

learn all their life skills in a similar manner including being trained to respond to

human words.

4.1.1 Association

The basic representation form of the early language is speech, as infants are intro-

duced to language through listening and producing speech. According to [20], a

language can be characterized as a continuous sequence of sounds forming struc-

tures to which our ears after a certain time get accustomed to and develop a certain

amount of probability as to what word should/would follow a certain group of word,

thus forming a structure that is not explicitly taught to a person but is slowly ac-

quired as it listens to more examples or is taught and corrected by the teacher.

This is called “association” of phrases and words. For e.g., after certain real life

experience the sentence Baby eats food makes sense but Newspaper eats house does

not because Newspaper is never associated with house through eats. This can fur-

ther be modified to include the learner learning to associate/connect a word/phrase

with another word/phrase just like an animal makes a connection between a neutral

stimulus and a second rewarding/punishing stimulus based simply on the fact that

they occurred together. This is called “associative learning” which is also a concept

of classical conditioning as will be described in length later.
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4.1.2 Generalization

As the children come across more words they become more familiar with the objects

they start grouping similar objects and form certain notions about them. Cognitive

generalization is the ability to apply and test concepts and classification criteria

across a range of contexts and environments. For e.g. categorizing a brown col-

ored, Golden Retriever and a white colored, one-eyed St. Bernard in dog category.

Nathan Stemmer in [50] introduces this very powerful capability that the children

apply while learning languages as a particular class of stimulus generalization in

which the generalization process occurs through the semantic characteristics of the

stimuli also known as “semantic generalization”. Gomez [19] found that infants can

generalize when they are presented with different samples generated by the same

formal system thus being able to discern the structure if given sufficient evidence

to support it. Generalizing concepts follows a U-shaped learning curve in children.

Starting from the age of 2, taking a dip at the age of 5 when they start over-

generalizing and making errors. But then around the age of 10 they start learning

the concept well enough to be able to use it correctly.

But stimulus generalization is not sufficient, as it must be combined with correct

discrimination [6]. Discrimination involves the organism’s ability to detect differ-

ences among stimuli and respond correctly to a specific stimulus. It should be noted

that children also create their own concepts about the objects, e.g., they know birds

can fly and if told that penguin is a bird they will think that penguins can fly unless

and until corrected. This is another reason why the model must support dynamic

learning. Both generalization and discrimination together result in the complete

knowledge of an object.
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4.2 Written language

Of all the languages in the world there are very few that have a written form yet

most of the literature survives as written text. A lot of important knowledge has

been documented and stored as books, encyclopedias and scriptures. The biggest

knowledge bank, the whole world wide web is in the written form floating around

in the internet. The first forms of written languages were pictorial but as language

slowly evolved they became more and more conforming to the phonological word

representations. The words are written as they are pronounced. Thus making it

easier for children reading the text to be able to correlate the text with the phono-

logical sounds. Phonological sounds or speech, however, are the basic representation

of language because that is how infants are first introduced to languages. Hence it

helps children to understand the written word better if they can read it aloud to

convert the written codes into phonological representations. This leads to reading

and though in the beginning children associate written language with the phonetics

and phonetics to semantics, they slowly start associating written words to semantics

directly.
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Chapter 5

Network Architecture

As discussed earlier though imitation of speech and listening form a great part of

early language acquisition in children [16], yet audition is only half the story, a great

part of human cognitive capacity comes from association of auditory and visual

sensory modalities, this is possible due to the lexical-semantic area. The lexical–

semantic area is strategically located on the boundary between auditory and visual

association cortex, receiving inputs from both Wernickes area and primary auditory

cortex, as well as extrastriate visual cortex as noted by Hickok and Poeppel [24]

and Price [44]. Due to this, the area also responds to visual-linguistic stimulus [4]

so as to be able to relate words, heard or read, to an appropriate concept. Thus

the system realizes that hearing “cat” or hearing the meow of a “cat” or reading

the word “cat” or reading about a “cat” all provoke the same response as they are

referring to the same object, which is “cat”. We assume the input to our network

to be such visual-linguistic stimulus and hence as a major novelty of this work, we

introduce where-what pathways in the network simulating the brains dorsal and

ventral pathways, found by Mishkim et. al. [40] through their lesion studies.
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5.1 Neural Pathways

Our model is a simplified model of the lexical semantic area, and brings together

important portions of the story without delving into minute details:

a) The dorsal pathway processes the “where/how” information required by its end

motor — the arms. As an arm reaches a jingling toy, the location of the toy guides

the action of the arm, but not directly the type of the toy. For visual-linguistics, the

location of the text on a page is useful to understand the purpose. For example, a

text at the top of a page might mean the title. For our network, we call the where

motor as “placeholder motor” to identify the spatial characteristics of a page. To

draw an analogy with a webpage, some of the text could be tagged, description tag,

heading tag, emphasized, italicized or written in bigger font than normal.

b) The ventral pathway processes the “what” information required by its end motor

— e.g., the vocal tract, which helps articulating a sentence. This is like a child listen-

ing or reading a sentence and then repeating it or trying to remember the meaning,

at each time frame, with/without necessarily remembering the exact sentence and

other details such as the prosody.

5.2 Area

The model takes inspiration from the previous neuromorphic networks like MILN

[51], WWN-1 [27], WWN-2 [28] and WWN-3 [53]. The network has 3 main areas +

1 (computational layer), generic emergent area Y that is formed by sensory inputs

from area X and motor inputs from area Z as illustrated in the Fig. 5.1. These areas

are connected by bottom-up and top-down connections. Top-down connections are

important as they are used as the supervisory signals to the network. We do not use

error-back propagation as it is not biologically feasible, but top-down connections
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Figure 5.1: Architecture of the WWN network, consisting of 3 areas (X, Y, Z),
showing the dorsal and ventral pathways. The system boundary represents the
“skull-closed” architecture. The 1st layer is the Pre-processor Layer (Purely Com-
putational, Not Biological). The later areas form a part of a simplified version of
the lexical semantic area. The dorsal pathway, progressing from sensory area (X)
to placeholder motor in area (Z), processes the where/how information to identify
the spatial characteristics of a page. The ventral pathway, progressing from sensory
area (X) to structure motor in area (Z), processes the what information required by
its end motor the vocal tract which helps articulating a sentence (overt or covert
action). The network is taught the sentence, boy is eating, each word at the 1st layer
is an input to the network at a different time frame. Each input word provokes reac-
tion from the neurons from different layers arrows represent the synapse transferred
at a single instance of time. The dotted lines represent the top-down connections
while the bottom-up connections are shown with solid arrows. For interpretation
of the references to color in this and all other figures, the reader is referred to the
electronic version of this dissertation.
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have been known to exist between later to earlier cortical areas, e.g., V1 to LGN,

but few networks have been able to successfully make use of them [18]. Positive

feedbacks generally result in unstable systems (uncontrollable oscillations) hence

most networks use top-down connections only during testing while turn them off in

the training phase. Lateral inhibitions and lateral excitation can be used to solve

this issue. [52] describe Lobe Component Analysis (LCA) as a model for a cortical

feature level using lateral inhibitions to enable neurons to successfully detect different

features.

5.3 Architecture

In the proposed network, we have 4 area layers Fig. 5.1:

Pre-processor layer (purely computational, not biological): Helps translate each in-

put word into a binary encoding so that the representation takes up less memory

space. The number of neurons in the layer is n if the number of unique words taught

to the network is 2n.

Sensory-input layer (X): Could be considered to be the retina that receives visual-

linguistic stimulus in the form of words read, though for simplicity we do not model

the visual input explicitly in this paper. Instead we simply provide the network with

the canonical representation of the word in the form of the neuron/neurons excited

by the word as it is received in its binary form from the previous pre-processor layer.

Each word in the sentence is taken as input at a given instance of time in the order

in which it appears in the sentence, this is similar to reading one word of a sentence

at a time, from left to right in English or vice-versa in Persian. The network can be

trained more than once on the same sentences as practice and review, which is like

returning back to the beginning of the sentence if unable to understand. Number of

neurons in this layer should be able to accommodate all the unique “n” words + “.”,

where “.” indicates the end of each sentence/sequence, out of which we can create
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n× n sentences.

We do not take a “bag of words” approach hence the word sequence plays an im-

portant role here. Not all word sequences formed by permutation and combinations

of all words available will make complete sense in reality hence we discard those that

don’t and memorize or analyze the ones that do. Hence, e.g., if we are given two

words eats and cat we can only create one sensible sentence out of the two, which

is cat eats and hence we learn it while discarding eats cat.

Every word has a feature or a property. In our model this property is the place-

ment of the word (whether the word appears in the title of the document or as a

normal word etc.) or its font decoration (bold, italic etc.). The network tries to

make out the importance of the word based on its feature that is received along

with the input in this layer.

Visual Layer (Y): Neither the sensory input nor the human supervisor has a direct

access to this layer. The representations in this layer are formed purely through

the interactions between the neuronal synapses and signals coming in from the con-

nections from other neurons. This makes our model “skull-closed”, i.e., neither the

teacher not the environment can directly modify the brain or the encoding of the

system but can only manifest itself through sensory or motor inputs. Just as a

teacher does not surgically wire-up his/her pupil’s brain to teach it a concept but

instead teaches it through experience (providing input through various senses).

The layer takes bottom-up input from the earlier sensory-input layer along with

a supervised top-down input that could either be taught by a teacher through su-

pervision or learnt from the past experience, to develop an internal representation

of the knowledge so acquired, that involves learning a word sequence that might in-

clude the same words as the input or the word’s meaning. It is important to notice

that the network does not take a bag of words approach and only learns meaningful

sentences/phrases. Every sentence ends with a “.”, after which the network starts
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learning a new sequence.

Biologically, as depicted by the model of Hickok and Poeppel [24] and Price [44]

and explained earlier in the section, language understanding and production requires

two pathways the STG and the MTG. The STG connected to Broca’s area, that cre-

ates the phonological loop, is used for the early acquisition of language in children. It

only deals with phonemic speech output. Ferguson and Farwell [16] thought of this

pathway to be able to provide an anatomical substrate for the imitation of speech.

The MTG on the contrary, is important for carrying lexical-semantic information

during the spontaneous production of established speech. For its simplicity we have

not modeled all the brain areas supporting the above two pathways exactly as they

are represented at the cortical level.

Motor cortex (Z): Consists of the motor neurons of the network that drive muscles.

The placeholder motor could be the hand, reaching out to point the occurrence of a

word. Similarly the structure motor could be the vocal-track helping in articulating

thoughts in the form of speech (overt) or “self-talk” (intentional or covert).

Again, for its simplicity we have not modeled all the brain areas that along with

the cortical connections, as described in [29], help in mapping word to articulation

or mapping word to other language properties, e.g., semantics, grammar.

Skull-closed Cortical development : Before “birth” the network is not specialized in

performing any particular task, it can only do so when it is trained after birth. Dur-

ing training, the lower layer (X), receiving the input from the external world, and

higher layer (Z), receiving supervision signals from a human teacher, help the devel-

opment of the cortical layer (Y). Assuming, the input from X is {x1, x2, ..., xn} ∈ x,

representing n unique words that create the sentences taught and bottom up weights,

vx map each input word to Y. Similarly, if the output in (Z) is {z1, z2, ..., zm} ∈ z,

for m unique sequence of words taught. We attach top-down weights, vz , to map
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each output sequence to Y. Thus, the pre-action potential is,

y =
x

∥x∥
.
vx
∥vx∥

+
z

∥z∥
.
vz

∥vz∥

which measures the degree of match between bottom-up and top-down inputs. The

weight of the winning neuron is updated by a dually optimal Hebbian-like learning

mechanism,

vj = (1− ρ(nj))vj + (ρ(nj))yjp

where j is the winning neuron and v = (vx, vz) with yp being the product of

pre-synaptic and post-synaptic activity of the firing neuron. ρ(nj) is the learning

function that depends on n, age of the neurons, when a neuron wins its age is

incremented by 1. Lateral inhibitions in the cortex allow only few top-k neurons to

win. We can choose the number of winners or k, based on the amount of amount of

generalization we want the network to learn. Hence,

j = top-k-maxmi=1(yi).

Layer Z is updated similarly but it has no top-down input.

The network exists in time, if we represent time-stamps as t-1 , t, t+1, t+2, ...

, t+n. We must note that time is important but not critical for the function of the

network. We expect time to become flexible after training. At t-1, the network gets

bottom-up input as a word that is part of the sentence, it also receives the context,

i.e., sequences of words that came before the current word in the sentence, these

both inputs create a new state in t, to create top-down input for t+1; if t+1 is not

the end of the sentence. Thus, if Vx(t) and Vz(t) are the weight vectors of Layer X

and Z at time t respectively, and f is the area function, then,
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y(t) = f(x(t− 1), z(t− 1), Vx(t− 1), Vz(t− 1))

z(t+ 1) = f(y(t), Vz(t))

5.3.1 Creating new sentences through Generalization

Words representing similar concepts tend to excite the same neurons thus creating

a similar internal representation for words or phrases with similar meanings. This

could be deemed similar to the concept of “partition” in set-theory, now if W is the

set of all words and {p1, p2, ...pn} ∈ P be one of its partitions, where each member

has similar internal representation, then to create a new sentence, let P have a

“sequential” association with other partition {zi} ∈Z through R. Let us represent

this relationship between the members of P and Z as R(P,Z). Now taking up the

case for each member, if R(p1, zi) exists, then since {p1, p2, ...pn} is partition hence,

R(p2, zi), ...., R(pn, zi) also exist.

Further since, all members of P have similar representation,

yp1(t) = f(p1(t− 1), z(t− 1), Vp1(t− 1), Vz(t− 1))

⇒ yp2(t) = f(p2(t− 1), z(t− 1), Vp2(t− 1), Vy(t− 1))

Hence, yp1 = yp2 = top-k-maxmi=1(yi).

More relationships can be defined later on but for now the network only deals

with Equivalence classes and partitions, all members of the same partition have

sibling relationships.
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Figure 5.2: Demonstrating generalization: The network is taught the concept boy
is a human resulting in the neurons representing human and boy co-firing, thus
associating human with all the concepts that are associated with boy like eats. The
dotted lines represent the top-down connections while the bottom-up connections
are shown with solid arrows.

5.4 Derivation of Formulations

Many NLP methods are batch in the sense that all the training data are available as

a batch for training. However, development is an incremental process — the agent

must respond even while being trained.

In general, if x1, x2, ..., xn are the words in a sentence that act as a sequential

input to the network, then the joint probability density of this sequence will be

Pr(x1, x2, ..., xn) = Pr(x1)
n∏

i=2

Pr(xi|x1, x2, ..., xi−1) (5.1)

However, estimation of this joint probability is expensive, and it does not lead to

generalization required abstraction. Hence we introduce the concept of equivalent

classes. Two sentences belong to the same equivalent class if they have the same

meaning.
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Now we can write (1) as,

Pr(x1, x2, ..., xn) = Pr(x1)
n∏

i=2

Pr(xi|ϕ(x1, x2, ..., xi−1))

where ϕ(x1, x2, ..., xi−1) is the equivalence class for x1, x2, ..., xi−1. Traditionally,

the above has been used for NLP. However, according to our above discussion,

the purpose of cognition is to generate desired action, zn, at each time. Thus,

our formulation of a developmental agent is to focus on Pr(zn|ϕ(x1, x2, ..., xi−1))

instead of the sensory distribution Pr(xi|ϕ(x1, x2, ..., xi−1)). This is critical for

“skull-closed” development because the teacher does not manipulate internal “brain”

representation directly. Symbolic representation, on the other hand, corresponds to

a “skull-open” approach as it is handcrafted. Furthermore, zn is also general and

flexible as it can correspond to any property of the input context. For example, the

action can be directly related to the sensory class (e.g., state the name of input) or

to other property of the sensory input (e.g., its location for correct arm reaching).

Lastly, the agent learns zn recursively as the context that it needs to attend at the

n-th time frame from any point in the past. The intractable problem of estimating

very long temporal joint distribution above is converted into a single frame problem:

top-k-maxzn∈ZPr(zn|x1, x2, ..., xi−1) ≈ top-k-maxzn∈ZPr(zn|zn−1, xn)

where zn−1 = ϕ(x1, x2, ..., xn−1) and top-k means top-k actions to top matched

probabilities.
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Chapter 6

Comparison with Finite Automata

The two major schools symbolic AI and neural networks are divided ever since the

re-kindling of neural networks in the 1980s. Weng [53] has established that a neural

network can emulate any Finite Automata (FA) or its probabilistic variants such

as Hidden Markov models (HMM), Markov Decision Process (MDP), Partially Ob-

servable MDP (POMDP) and Bayesian nets (also called semantic nets and belief

networks). FA consists a finite set of states (Q) and transitions between the states

due to a finite and non-empty set of input symbols (Σ). A new state is the result

of the transition input at the current state, but there can be more than one transi-

tion paths that could be pursued from a current state, which could lead to different

states, this could lead to an indeterminism, this can be resolved if we deploy a human

who would choose between the transition paths and lead the logic to a particular

state. Now the FA is deterministic whose mathematical model could be written as

a quintuple, (Σ, Q, q0, δ, A), where q0 ∈ Q is the initial state, δ : Q × Σ 7→ Q is a

transition function and A ∈ Q is a set of accepting states.

Let us try to design an FA that learns a phrase/sentence, ... young cat looks.

Every transition, at a time instance, leads the current state to an intermediate/final

output state. Some states have equivalent states that can be reached from the cur-

rent state through a different transition, e.g. young cat can be called a kitten or
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Figure 6.1: Hand-crafted FA learning sentences. It should be noticed that the states
are pre-programmed and there is no brain that takes intellectual decisions about
tasks. z1 represents the start state, every sentence starts from z1. Here the network
has 6 states and 13 transitions between them. The dotted arrows show the error
conditions, the machine returns to start state if the input to a certain state is not
recognized.

looks can be replaced by a similar word stares. To define our states, z1 = q0, it

can transits to another state z2 if it receives an input, σ. Hence, z1
young−−−−−→ z2,

similarly, z2
cat−−→ z3. But instead the FA could reach z3 from z1 by following a

different transition path, z1
kitten−−−−−→ z3. Fig. 6.1 describes the transition between

the states in FA.

Our network can imitate all the actions of an FA. X and Z in our network corre-

spond to the Q and Σ of an FA, the human teacher has the required representation

of Z which means the human teacher knows the language and uses certain methods

to teach it to the network or the learner. By canonical conversion from a symbolic

set Σ = {σi | i = 1, 2, ...., n} to an n-dimensional vector space X, i.e., σi corresponds

to xi ∈ X where xi is the only i-th component of X vector matrix to be 1 while

all others are 0. We say they are equivalent, denoted by x1 ≡ σi, in the sense of

canonical conversion, similarly, the old state, qold ≡ zj , winner neuron in Z at time

t−1, at the next time instance the input weight vectors to the layer Y from layers X

and Z is (vx, vz). When the resulting neuron in Y fires, it stimulates a correspond-

ing neuron in Z linked to this neuron to fire. Thus leading to the new state, qnew,

which is the winner neuron in Z at time t. WWN hence learns the required behavior

30



 cat

      Eye
(Word input)

Visual cortex
(Internal 

representation)

Vocal track
(Structure 

Motor output)

young

young
cat

kitten young

 looks

kitten 
stares

young cat 
looks

young
cat stares

kitten
looks

Figure 6.2: “Skull-closed” WW-Network that can learn the very same sentences
as the FA but through autonomous learning. The network can use its previously
learned states and the prowess of generalization to equate young cat with kitten. In
the above figure the network learns few of the states shown in Fig. 6.1.

function f such that z(t) = f(z(t− 1), x(t)), where x(t) ∈ X, z(t− 1) ∈ Z, z(t) ∈ Z.

In mathematical notation, f is a mapping, f : X×Z 7→ Z, just like the FA mapping

of δ : Q × Σ 7→ Q. We can now conclude that if an FA has c transitions then our

network needs c neurons in Y to correctly map the relation qold
σi−−→ qnew. Fur-

thermore, equivalent transitions can be taken care of by our network through the

generalization and thinking theories described earlier.

FA and several of its probabilistic variants like MDP, POMDP, HMM etc. as

described in previous chapters have their states hand-crafted by humans. It is im-

portant to note, FA does not have a brain to learn of take any intelligent autonomous

decisions, it can be called a “brainless” system. The output in FA is deterministic

and static, i.e. a specific output symbol is attached to a transition or to a state. FA

and similar systems cannot remember the exact input and transition route taken

to reach a particular state. Our network on the other hand is dynamic with an

emergent internal representation, which is formed through the network’s exposure
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to the sensory and motor fields through its peripheral layers X and Y respectively.

As shown above WWN can learn all the states of an FA but can also reason to

create new unseen states. Therefore, WWN solves the weakness of neural networks

like types of agents in conducting goal-directed reasoning as pointed out by Min-

sky [39]. Furthermore, where FA is simply in the mind of the teacher it can learn

more if designed further, WWN is a non-task specific incremental learner. WWN

has both short-term memory and the capability to learn is able to do so thanks to

the internal representation at layer Y . The network for a brief amount of time stores

short history of qold
σi−−→ qnew.

The compendious Oxford English Dictionary lists about 500,000 words in En-

glish language and a further half-million technical and scientific terms remain un-

catalogued. Thus number of words is limited and the number of combinations that

can be created with the words can be at most 1,000,000 × 1,000,000. If we try to

design all the possible permutations and combinations in an FA we will soon realize

that not only is it a labor-intensive process but it also takes up a lot of memory.

Now consider the human brain. The number of neurons in an adult brain is 1011,

which is 10 times lesser than the total number of permutations that can be formed

with all the words possible. Hence it will not be very feasible to use finite state

machine to learn a language.

Keeping this in mind, let us question the logic of storing all the combinations

of words in our system. The fact is our goal is not to find all word combinations

possible but to know all sentences possible; the definition of a sentence states that

a sentence is a group of words that “makes complete sense”. There will be far less

word permutations that will result in the formation of such grammatically coherent

sequences. Also, sentences are of finite length. Hence, it only makes sense to store

the sequential phases. Our network does that in addition to having other means

of creating new sentences on its own which decreases the storage demand on the
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system to a great extent.
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Chapter 7

Machine Reasoning and Logic vs

Human Reasoning

Many traditional artificial intelligence groups have used logic in order to reach fea-

sible conclusions from known facts. The main strength of logic is, it is precise. It

can not be broken if the facts are true and unambiguous. In linguistics logic has

been used for similar reasons. But as language draws its main inspiration from

the day-to-day life common sense becomes a defining factor. John McCarthy in

his paper Programs with Common sense [38], creates a system that demonstrates

common sense by logically deducing expected actions from a group of sentences.

According to him a program has common sense if it automatically deduces for itself

a sufficiently wide class of immediate consequences of anything it is told and what

it already knows. But it is not very simple to model the real world in a computa-

tional system, for example to deduce the simple fact that “if you are in your car and

you drive from home to the airport, then you reach the airport” using the follow-

ing logical statement: canachult(at(I,car), go(home,airport,driving), at(I,airport)),

computationally one needs to define a lot of sequences and objects with a substantial

amount of logical scaffolding. McCarthy himself calculates the number of premises

needed to make a computational system to get up from its desk and reach the airport
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is 17. These premises have to not only be pulled out of the memory but should be

placed in correct order and interpreted correctly to proceed from the inspiration to

the goal.

Humans on the other hand, seem to be able to do this a lot more easily. In fact

humans do it more frequently as it is not possible to store the amount of information

they are exposed to during their waking life in a single brain. Had it not been for

common sense it would have been impossible for humans to be able to get anything

done. So what is common sense in humans?

Lakoff and Johnson’s prototype theory of human categorization [31], identifies

some properties to be more central than others in objects. For e.g., though all birds

have a beak, two eyes, two legs, yet of all these visual features feathers and wings

seem to be most significant as they describe the object better and therefore are

given more weightage than the other elements associated with the object. Similarly

the ability of flight is more defining of a bird than its ability to walk. Humans are

able to pay more attention to such central characteristics and group all objects into

categories. These categories are not strictly scientific with hard boundaries, instead

human categorization is more of a rough and fuzzy differentiation, not necessarily

based on logic and reason. This is precisely where a logical framework fails. More-

over, human knowledge does not consist of absolute truths and absolute fallacies,

and hence applying pure rules of mathematics cannot represent common sense. The

wealth of human knowledge and the ability of the human brain to be able to cate-

gorize increases their ability to reason.

The distinction between the logical and the human reasoning is, the former is

deductive, while the latter could be called as a combination of inductive reasoning

along with scholasticism, rationalism, empiricism and associations formed due to

experience.
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7.1 Inductive Reasoning

Inductive reasoning is one of the reasoning processes. In contrast to the deductive

reasoning, inductive reasoning does not support the logic that if the given premises

are used to arrive at a particular conclusion then if premises are true then the conclu-

sion if derived systematically and correctly will be true as well. Inductive reasoning

does not rule out the possibility that even though the premises might be true yet

the conclusions might not be so and that is because in inductive reasoning there is

no logical movement from premise to conclusion. For e.g., given sparrow is a bird

and birds can fly does not guarantee that kiwi too can fly, on the contrary there

are several birds that cannot fly despite having wings and feathers. Similarly, a bird

with a broken wing can not fly. Induction allows the system to doubt the correctness

of the conclusion.
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Chapter 8

Concept and Theme

8.1 Language Association to Assist Generaliza-

tion

The network uses the concept of “primary and secondary association” or classical

conditioning [12] to learn new concepts about objects. The occurrence of conditioned

stimuli, CS2 followed by CS1, and CS1 followed by a conditioned response (CR)

trains a subject to correlate the occurrence of CS2 to an otherwise unrelated CR.

CS2
p−→ CS1

p−→ CR =⇒ CS2
s−→ CR

(
p−→,

s−→ means “primary” and “secondary” associations respectively, =⇒ means

“results in”). Here the relationship between CS2 and CS1 and CS1 and CR are

primary relationships as they take place one after the other and in some case might be

a result of the previous stimulus, but the relation between CS2 and CR is secondary.

It slowly develops as the agent experiences the same temporal routine over and over

again. Thus transforming “primary” associations into “secondary”. The above

notation comes from psychology whereas the WWN-text network representation for

the above is shown in Fig. 8.1.
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Explaining the Pavlovian experiment in the above notation:

Tone
p−→ Food

p−→ Salivation =⇒ Tone
s−→ Salivation

Our network takes inspiration from the above theory. In our model, firing of neu-

X:

Z:

Tone Food

Salivation"Tone" "Food"

Figure 8.1: External network notation of WWN for classical conditioning. Only the
external layers are shown in the diagram. 2 areas of WWN are seen, X as input
and Z as output area. The red arrows show the progression in time. Words within
“” are concepts while the once without quotes are actions. The black arrows show
the learning loop in the network comprising of the primary associations only. The
dotted arrows are the learned associations.

Salivation

X Y Z

"Food"

"Tn-Fd"

"Tone"Tone

Food

CS2

CS1

CR

1

2

3

*

*

*

**

Figure 8.2: WWN network model for classical conditioning, as a special case of
general process - autonomous thinking. WWN network imitating the Pavlov exper-
iment. The dog hears a Tone each time the food is presented, after certain time the
dog starts salivating when it hears the tone even though no food is presented. The 3
areas of WWN are seen, the blue arrows represent internal reverberating signals that
make a sensation last in a neuron a little while longer than a single time step so that
it associates the earlier stimulus of Tone with the stimulus presented after it Food
and after sufficient training is able to associate Tone with Salivation (conditional
response). Words within “” are concepts while the once without quotes are actions.
* represents concepts being learned while ** represents concepts that have already
been associated to each other.

rons is equivalent to a stimulus or an event hence sequential firing of neurons could
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result in the emergence of a new patterns and concepts.

8.1.1 Parroting

Early language learning as described in chapter 4.1.1 is the primary way of language

acquisition. The learner is taught the language through speech or reading material,

the learner repeats the taught premise, through overt or covert behavior. The output

is supervised and both the input and the output come together to form primary

associations between the words that occur together more often in sentences.

8.1.2 Member to Class Generalization: Association Aided

by Associative Reasoning

The network is taught 3 concepts: object, class and feature. The object belongs a

certain class and has a certain feature. The network is expected to relate this feature

to the class and generalize the concept.

Co-firing of two neuron representing an “object” and its respective “class”

 
Sparrow

  bird beak

Secondary Association
Primary Association

s

s is generalization

Figure 8.3: Member to class generalization: A concept “bird” is defined along with
the concept of “Sparrow”, if Sparrow is a bird and Sparrow has a beak, the network
is then expected to figure out the generic knowledge that birds have beaks through
association.

can help form primary links between words. The network takes a word as input in

Layer X. At the same time, the word is introduced to its parent class if any, parent

class is actually a generalized concept of the word. E.g. the parent class of Sparrow
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X:

Z:

member class

feature"member" "class"

Figure 8.4: External network notation of WWN for member to class generalization.
2 areas of WWN are seen, X as input and Z as output area. The red arrows show
the progression in time. Words within “” are concepts while the once without quotes
are actions. The black arrows show the learning loop in the network comprising of
only the primary associations. The dotted arrows are the learned associations.

"Sparrow"

"bird"

Sparrow

"Sparrow-beak"

X Y Z

CS2

CR

1

2

3

bird-beak

*

*

*

**

beak

 bird CS1

Figure 8.5: WWN network demonstrating member to class generalization: The three
areas are shown X, Y and Z. The blue arrows show continuous reverberatory signals
within the neuron such that it is able to hold a state for a little while longer than a
single time step. The brown arrows from Z to Y represent the top-down connections.
Reverberatory signals also run continuously between and within the areas, resulting
in primary associations to be transformed into secondary associations as in classical
conditioning. In this case, the network is presented with the fact that “Sparrow has
a beak” and that “Sparrow” is associated with “bird” as “Sparrow is a bird”. The
network later is able to generalize from a specific example to a whole class to learn
“Birds have beaks”. Note that the network is never taught the concept of “class”,
“subclass” or “object”.
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could be bird. The parent class and the current word belonging to it co-fire. In

the next time step the parent class word is taken as top-down input by layer Y,

which is combined with the new bottom-up words (which might or might not have

a parent classes or equivalent words) resulting in a new sentence sequence in the

verbal motor. Thus both the word and the class combine together to form both

context and structural rules. This has been explained in detail earlier in chapter 5

in the section 5.3.1. Though in current network we will have to explicitly teach the

network that the parent-child relation is bidirectional, this could be considered as a

topic for future research.

8.1.3 Subclass to Superclass Generalization

The network is taught 3 kinds of conceptual objects: object, subclass and super-

class. The object belongs a certain class with is a subclass belonging to a different

superclass. Every member of a set is the child of the set and every child has the same

properties as the parent set. E.g., every girl is a human and can do everything that

a human can or have all the properties of a human. Also, all neurons representing

a “child/subclass” concept and its corresponding “parent/superclass” class co-fire.

So tracing the progression of time, we can see that,

X:

Z:

object subclass

superclass"object" "subclass"

Figure 8.6: External network notation of WWN for subclass to superclass gener-
alization. 2 areas of WWN are seen, X as input and Z as output area. The red
arrows show the progression in time. Words within “” are concepts while the once
without quotes are actions. The black arrows show the learning loop in the network
comprising of only the primary associations. The dotted arrows are the learned
associations.

The process is similar to classical conditioning [12] where simultaneous co-firing of
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 human

  girl  boy

Rachel   Emily    Joe Paul

Secondary Association
Primary Association

s

s s

s

s is generalization

Figure 8.7: Subclass to superclass generalization: A concept “human” is defined
along with the concept of “girl” and “boy”, the left branch of the tree is explained
thus, girl is a human and Rachel and Emily are two girls, the network is then
expected to figure out that Rachel and Emily are both humans through association.

neurons is similar to simultaneous occurrence of stimuli.

8.1.4 Member to Member Generalization and Classification

From Similarity

Network is taught to identify members of the same “partition”, as defined earlier,

and apply the property of one member to the other, while not confusing the mem-

bers of separate partitions to be similar. For this the network is again introduced

to a class and its two subclasses having different properties and features. But since

the two classes are different the objects belonging the two also defer in features, i.e.,

though Kiwi and Sparrow are both birds yet the network understands that they

have different flight capabilities. Thus we classify based on similarity.

The process involved in both the processes is association and not logical reason-

ing.

It should also be noted that in the current network we have to explicitly teach

the network if the relation between the concepts is bidirectional or unidirectional,
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"Rachel"

"girl"

Rachel

"Rachel-girl"

girl

X Y Z

CS2

CS1

CR

1

2

3

human

*

*

*

**

Figure 8.8: WWN network demonstrating subclass to superclass generalization: The
three areas are shown X, Y and Z. The blue arrows show continuous reverberatory
signals within the neuron such that it is able to hold a state for a little while longer
than a single time step. The brown arrows from Z to Y represent the top-down con-
nections. Reverberatory signals also run continuously between and within the areas,
resulting in primary associations to be transformed into secondary associations as
in classical conditioning. In this case, the first presented fact is that “Rachel” and
“girl” are related and the “girl” and “human” are related is the second fact. The net-
work is then able to connect the concepts to create a relation between “Rachel” and
“human”. Note that the network is never taught the concept of “class”, “subclass”
or “object”.

X:

Z:

obj

feature

1 obj2

"obj "1 "obj "2

Figure 8.9: External network notation of WWN for member to member classification
through similarity. 2 areas of WWN are seen, X as input and Z as output area. The
red arrows show the progression in time. Words within “” are concepts while the
once without quotes are actions. The black arrows show the learning loop in the
network comprising of only the primary associations. The dotted arrows are the
learned associations.
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 bird

flying  non flying

Cuckoo      Kiwi Penguin

Primary Association
Secondary Association

Sparrow

s is generalization

s
s

Figure 8.10: Member to member generalization: The concept of “bird” is taught,
along with the fact that a bird could be a “flight bird” or a “non-flight bird”,
explaining the left branch of the tree. Learned sentences are Cuckoo is a flying bird
and Cuckoo has the same properties as a Sparrow, the network tries to associate the
concept of “Sparrow” with that of a “bird” figuring out that Sparrow is a flying bird
too.

"Cuckoo"

 flies

Cuckoo

"Cuckoo-Sparrow"

Sparrow

X Y Z

CS1

CR

1

2

3

CS2

"Sparrow"

*

*

*

**

Figure 8.11: Member to member generalization: The three areas are shown X, Y
and Z. The blue arrows show continuous reverberatory signals within the neuron
such that it is able to hold a state for a little while longer than a single time step.
The brown arrows from Z to Y represent the top-down connections. Reverberatory
signals also run continuously between and within the areas, resulting in primary as-
sociations to be transformed into secondary associations as in classical conditioning.
In this case, the network has already learned that “Cuckoo flies”, in the time stamps
shown in the figure the model learns that “Sparrow” has similar properties as the
“Cuckoo” and hence later associates “Sparrow” to the property of flying.
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i.e., we have to explicitly tell the network that the bird is the parent of Cuckoo

and Cuckoo is the child node of bird. As the network gains more experience and

learns more about parent-child relationships, it is able to relate the two objects in a

bidirectional manner in its own. This could be used to create cause and effect and

vice-versa relations which can be very useful in question-answer like conversations.

This will result in the formation of various different kinds of relationships between

objects. Not only that, this could later be later used in the formation of relationships

between relationships. So, if the network is initially taught that Professor Snape is

the teacher of Harry Potter then if the network has enough training it would realize

that the pupil of the teacher is his student and if Professor Snape teaches Harry

then Harry Potter must be Professor Snape’s student or pupil.

8.2 Attention Allows Generalization

8.2.1 Grounding leads to generalization

According to Harnad [22], a symbol is grounded if the robot can pick out which

category of sensorimotor projections it refers to. This might include attaching var-

ious pre-existing notions to the object or creating new ones based on the systems

experience with it, these two major methods of acquiring grounded categories are

known as, symbolic theft and sensorimotor toil, respectively. Symbolic theft as the

nomenclature describes is the knowledge gained by the system from another source

or a teacher. The metaphor “theft” here should not be taken literally as the system

does not “rob” the teacher off his knowledge. Sensorimotor turmoil on the other

hand refers to the system developing its own knowledge of an object through trial

and error, learning in its own capacity. Of course to say the obvious, it is much

easier and faster process to acquire categories through symbolic theft.
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Thus grounding is an important precursor to a system developing an under-

standing of physical and metaphysical attributes of an object. But grounding is

only helpful and effective if the symbols in the teachings are already grounded. Har-

nad explains it very well in his writings as the concept of a “Peekaboo Unicorn”, to

explain it is Unicorn, or a white horse with a single horn, but it has the peculiar

property that it vanishes without a trace whenever senses or measuring instruments

are trained on it. Thus none of our senses can ever perceive it but a child can still

be made to understand what it is if the child knows the concepts of horse, horn and

vanishing. Children use the sensorimotor toil to gain first hand experiences about

various things around them until they are enough to understand the language of

parents to be able to gain from the experience of their elders. But parents can help

their children to understand their surroundings better by encouraging them to touch

a few things and play with them while discouraging them from playing with harmful

things.

When the system comes across more objects that confer to having similar prop-

vanish

white

horn

horse

Peekaboo

 Unicorn

Figure 8.12: The concept of how Peekaboo Unicorn looks is developed through
already grounded concept of horns, horse, white color and invisibility. If one under-
stands all the latter four concepts they would be able to understand what a Peekaboo
Unicorn is.

erties and behavior then grounding leads to generalization, which is a sensorimotor

capacity that allows us to sort the world around into relatively orderly taxonomic

kinds marked out by our differential responses to it [21].
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Our model focuses on this process in order to help the system learn generaliza-

tion. Though very crude this could be used to create grounding and associating

features to an object. To simplify matters, we introduce visual elements to the sys-

tem through linguistic statements. In the beginning, we use the phrase “has a” to

associate the corresponding object with the visual properties. E.g., horse has a tail

or horse has four legs. Hence if unicorn has a tail and unicorn has four legs then the

child would infer that the unicorn looks very much like a horse or in fact an animal.

object1{visual − element1} given−−−−→ class− A

object1{visual − element2} given−−−−→ class− A

object2{visual − element1}&object2{visual − element2} deduced−−−−−−→ class− A

8.2.2 Specific Relations: Attention Makes Prediction Possi-

ble

Human beings are able to communicate even in the most noisy places, furthermore

they do not have to listen carefully to every word being said but have to merely

pay attention to a few important words and concepts and how they are linked to

each other. Though at times it is important to remember the exact words of the

speaker, e.g. in highly crucial diplomatic meetings where quoting wrong ideas could

be dangerous for the international relationships of the countries. But normally all

the conversations that people indulge in, in day to day business are not as important

hence only attending to important words and a little help from earlier experience
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can help the system to arrive at the correct context. This is, though, not always true

but is deemed to be true in most of the circumstances. Computational linguistics

system use similar stochastic measures to try to associate words that are more or

less likely to appear together in order to decipher language in noisy backgrounds.

If the words familiar to the network appear in a sentence then the systems starts

linking the words appearing in the same sentence. E.g. if 2 sentences are taught to

the system, namely, peach is a delicious fruit and peach is a sweet tasting fruit then

when the system comes across different sentences about peach linking it the same

word fruit twice or more times, then it starts realizing that peach might be in some

ways related to fruit. The more the two words occur together the more strongly

bound are their concepts. That is, the neurons representing linked concepts, like

peach and fruit, normally would fire one after the other but if the network is aware

of the concept of fruit then after training it starts associating the concepts that do

not occur in immediate vicinity but in the same sentence or while explaining the

similar context. It is not necessary that the words should have a parent-child or

object-property relationship, the relationship could be anything or nothing at all,

but until the two words appear together they can be linked to each other.

Attention as described in [36] helps the network to be able to focus its intent

on certain specific text to form a certain context. Top-down signals to the network

can modify the course the sentence takes. As described earlier, our model uses as-

sociation to predict in exact order in which words are meant to occur. One kind of

phrase leading to a certain words while the other leading to something else. E.g.

the sequence, the man read the leads to newspaper, while another sequence, the man

ate the is more likely to be followed by hamburger. Thus the system tries to find out

the most likely of the words to be followed by the phrase given to the network. But

paying attention to the words ate and read can help the system to quickly identify

the more likely to the two choices. Thus attention helps prediction to derive correct
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"fruit"

X Y Z

"Peach-is-fruit"

"Peach-is"

"Peach"

fruit

Peach

is

"Peach-fruit"

CS3

CS2

CS1

CR

1

2

3

Figure 8.13: Imitating classical conditioning with the help of reverberating signals
between neurons to form link between words that occur together. Learned sentence
includes Peach is a fruit. When “Peach” and “fruit” concepts occur together in
sentences several times the neurons representing the two concepts get wired to fire
together. Hence as soon as the network gets “fruit” as input it is able to predict
the occurrence of “fruit” in near future. Thus, in a way predicting the forthcoming
word.

X:

Z:

P I

"P"

F

"P-I" "P-I-F" "F" "P-F"

Figure 8.14: External network notation of WWN for imitating classical conditioning
with the help of reverberating signals between neurons to form link between words
that occur together. WWN notation showing the learning of the concepts shown in
Fig. 8.13. P stands for “Peach”, I is for “is” and F for “fruit”. P-I-F in turn is a
sequence “Peach is fruit” which is a more specific relation than “Peach-fruit” (P-F)
relation.
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conclusions.

8.3 Word Representation as Sensory Vector

In visual perception, a word is a sub-pattern in a complex background, as illustrated

in our model. If a system that input computer words one at a time without back-

ground, we can map each word σ ∈ Σ to a binary vector x ∈ X of a fixed dimension

d. Suppose that each element of x is either 0 or 1 and x is not a zero vector. All

such binary vectors of dimension d can represent 2d − 1 words.

Given a fixed and sufficiently large d, it is beneficial to choose those binary

vectors that give lower normalized inner product r(xi, xj) = xi ·xj/(|xi||xj |) for all

xi ̸= xj . In the canonical mapping, we have r(xi, xj) = 0, for all xi ̸= xj . This

is too wasteful, as n words require a vector space of n dimension. This is also not

necessary.

Define a mapping mi : Σ → Bi ∈ B, where B consists of binary vectors. We can

define mapping m1 as the canonical mapping. Define mapping mi as a mapping

whose range Bi is such that Bi contain all the binary vectors in B that have exactly

i nonzero components. This canonical mapping is m1.

Define the inter-set distance d(A,B) between two sets A and B to be

d(A,B) = min
a∈A,b∈B

(
1− a · b

|a||b|

)
.

We have d(B1, B2) = 1− 1√
2
. In general d(Bi,Bj) = 1− min{i,j}√

i
√
j

. The larger the

inter-set distance the better, as the network can distinguish vectors from different

set using normalized inner products.
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Define the within-set distance d(S) to be

d(S) = min
a∈S,b∈S,a ̸=b

(
1− a · b

|a||b|

)
.

We have d(Bi) = 1 − i−1
i = 1

i . Likewise, the larger the within-set distance, the

better.

From the above analytical results, we should choose a large d allowed by the

computational resource. Then, we choose m1, m2, m3, ... in such an order till all

the words are mapped.

When we map Σ to B′ ⊂ B, it is desirable also to pay attention to the distances

between vectors in B′. Consider three words, “read”, “reader”, and “readership”.

As these three words are similar, it is desirable for their binary vectors in B′ to

keep such similarity in the distance space of the normalized inner product. For

example, one can assign (1, 0, 0, ...), (1, 1, 0, ...), and (0, 1, 0, ...) to these three words,

respectively. It is true that it is impractical for one to keep all pair-wise distances

intact in the new space B, but a good mapping tends to give better performance

with a limited amount of learning.
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Chapter 9

Experiments

9.1 Data

The data consists of 6 to 7 word sentences in English, the words are randomly

distributed. The problem space has a total of unique 1631 × 4 states, where 1631

is the number of “what” states while 4 is the number of “where” type. Thus the

input vector is two dimensional, first representing the input word and the second

representing the feature. This is different from the real input image, but is meant

to simplify internal visualization and internal maturity.

Few sentences are related to each other as they talk about the same object or

relate two objects, e.g., through “is-a” relationship. Bird eats worm and Baby eats

apple, here both the sentences are talking about “eating”. The network is trained

on the same sentences a multiple number of times. An “is-a” relationship is defined

in some sentences, to define an object-class relationship. For e.g., Sparrow is a bird

and Girl is a human, relate the objects “Sparrow” and “Girl” to more general classes

“bird” and “human” respectively. Needless to say objects in the same classes can

be called equivalent and are supposed to have similar properties, i.e., if “girl” and

“boy” both belong to the class “human” then both could share properties like “have

hands”, “can eat” etc. The network is taught 20 classes having at least 1 property
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each. Four type motors are “title”, “bold”, “italic” and the default type “word”.

Every word in a sentence should have certain type feature that helps the network to

identify the word more precisely.

The data set has been pre-synthesized, as we needed to ensure that certain

relationships existed between the words and the concepts presented in a sentence or

across various sentences, which could be used to demonstrate the capability of the

system to create new sentences as in experiments 2, 3, 4 and 5 (to be described later).

We wanted to demonstrate the capabilities of the system through the real world-like

examples just as a child and develop grounding through simulated experience of

language communication. For experiments 1, 6 and 7 that are only concerned with

learning simple associations between words through parroting we have used random

sentences that had been picked up from the certain online sources that catered to

child learning.

The input to the system consists of words in the order in which they appear in

the sentence, separated by ’.’s that indicate the ending of the sentence. Each time

the network encounters a ’.’ it realizes the sentence has come to an end and it re-

initializes the outmost layer ‘Z’. This allows the network to only learn the sequence

of words appearing in the same sentence but not the sequence of the sentences

themselves. The output consists of the word sequences/structural patterns or parts

of sentences, e.g. in a 4 lettered sentence, s = ABCD, where A, B, C and D are

4 words that are all essential to the sentence meaning, without meaning-irrelevant

words (e.g., stop words), here the word sequences learnt will be s1 = A, s2 = AB,

s3 = ABC and s4 = ABCD, s4 = s thus learning the sequential associations.

Furthermore, while learning a new 4 lettered sentence snew = ABCZ does not have

to re-learn s1, s2, s3 but can directly learn snew. As for the type motor, there are

four of them, represented by <b> for words in bold font, <i> for italic font, <sub>

for words in the title of the page and none for a simple word with no formatting or
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feature attached.

Total number of input sentences = 308.

Total distinct words in the sentences in the training set = 892.

Total number of states learnt = 1631.

Number of feature types = 4.

Number of classes = 20.

Hence, for experiment 1 the network dimensions are: X = [892× 4], Y = [1631× 4]

and Z = [1631× 4].

9.2 Experiments and Results

The following experiments show the major capabilities of the network. The configu-

ration of the network is as follows. The network has 4 layers. The top-down weight

= 0.7 and bottom-up weight = 0.3.

9.2.1 Parroting

The sentences had 1631 different word sequences/structural patterns or parts of

sentences. In 2 epochs the network is able to imitate structural learning or the Au-

dio/Verbal motor to perfection. The network is also able to learn the where/how

type motor with no error in 2 epochs. The network with “where/how” pathway was

found to be more efficient in recognizing the sequences than the network without it.

Input: Words (in the sequence in which they would appear in the sentence).

Output: Sequence of words learned.
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Table 9.1: Sequence of words learnt with the passage of time
Time Frame t1 t2

Input Eating habits
Output Eating Eating-habits

Table 9.2: Sequence of words learnt with the passage of time, with bold words
Time Frame t1 t2 t3 t4 t5

Input Baby likes to eat apple
Output Baby Baby-likes Baby-likes-to Baby-likes-to Baby-likes-to

-eat -eat-apple

Table 9.3: Sequence of words learnt with the passage of time, with italicized words
Time Frame t1 t2 t3 t4 t5

Input Bird likes to eat worms
Output Bird Bird-likes Bird-likes-to Bird-likes-to Bird-likes-to

-eat -eat-worms

In the given examples though the word “eat” is used in different contexts both

the times yet if tested on the word alone the network will be able to identify the

two based on the feature associated with the word, here the fonts italic (eat) and

bold (eat). Words in small caps represent title of the web-page. Results plotted

in Fig. 1.

It should be noted that conceptually the input and output are synchronous but

the programming model has a delay due to the computational requirements of the

layers.

9.2.2 Canonical Word Representation in Sensory Vector

The network was tested on the same set of sentences, with different Bi, such that for

the input vector to area X had i bit as 1 while the rest are 0. The network matrices

change as we go on increasing the number of bits to see the performance. The
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Figure 9.1: The graph plots the error rate of recognizing sequences, with and without
“where” pathway in the network. The network with “where” pathway is able to reach
100% recognition rate within 2 epochs of training in all the experiments as it is able
to identify words based on the additional feature.

network was tested on the task of parroting only, converged to 0 error rate within

2 epochs. We also plot the time and memory usage for all the various canonical

and non-canonical representation, i.e. B1, B2, B3 and B4 in order to compare the

performance. B4 proves to be the most superior as compared to the rest as it is

using the smaller matrix to represent the input vector.

9.2.3 Member to Class Generalization

The network is able to learn the properties of the objects and apply them to the

classes perfectly and reaches 100% performance within 2 epochs. It should be noted

that the concept of “class” or “member object” is not programmed into the net-

work instead the network is taught to associate the same sequences with all co-firing

neurons. Thus, if there is a sentence with n partitions in it, with each partition

containing m members then it can learn a total of nm sentences.
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Figure 9.2: Error rate for all output states is plotted against the epochs. Total
number of states is 1631. B1 is the canonical while B2, B3, B4 are non-canonical
representations of the words with 2,3 and 4 bits ‘on’ in the input vector. We test
only for the parroting task as explained in experiment 1. The epochs 0.2, 0.4, 0.6
and 0.8 mean that the network is trained on 20%, 40%, 60% and 80% of the data
while being tested on the complete data used for the whole experiment. Similarly
epoch 1.2 and so on mean that the network has been trained twice on 20% of the
data but only once on the rest of the data, the testing set always consists of the
complete data used for the experiment.
Network dimensions for B1: X = [892 × 1]; for B2: X = [44 ×4]; for B3: X =
[20× 4]; for B4: X = [15× 4].
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Figure 9.3: Time Result for Experiments 6: Time taken for the output error rate
for non-canonical input representations to reach zero error is plotted against the
corresponding respond density of input vector X. Bi has a response density i, i=1,
2, 3, 4. The canonical representation has a response density 1. B1 is the canonical
while B2, B3, B4 are non-canonical representations of the words with 2,3 and 4 bits
‘on’ in the input vector
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Input: Words (in the sequence in which they would appear in the sentence) and

corresponding classes if any.

Output: Sequence of words learned and new sentences created through generaliza-

tion of classes.

Example (Diagrammatically represented in Fig. 8.4):

Table 9.4: Training Sentence 1. Member to Class Generalization
Time Frame t1 t2 t3 t4

Input Apple is a fruit
Output Apple Apple-is Apple-is-a Apple-is-a-fruit

Table 9.5: Training Sentence 2. Member to Class Generalization
Time Frame t1 t2 t3 t4

Input Apple can be eaten
Output Apple Apple-can Apple-can-be Apple-can-be-eaten

Fruit Fruit-can Fruit-can-be Fruit-can-be-eaten

9.2.4 Member to Member Generalization

The network was able to successfully reach a 100% detection.

Total number of input sentences = 308. Total distinct words in the sentences in the

training set = 892. Total number of states learnt = 1631.

Input: Words (in the sequence in which they would appear in the sentence) and

corresponding classes.

Output: Sequence of words learned and new sentences created through member to

member generalization.
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Example (Diagrammatically represented in Fig. 8.9):

Table 9.6: Training Sentence 1. Member to Member Generalization
Time Frame t1 t2 t3 t4

Input Cuckoo is a bird
Output Cuckoo Cuckoo-is Cuckoo-is-a Cuckoo-is-a-bird

Table 9.7: Training Sentence 2. Member to Member Generalization
Time Frame t1 t2 t3 t4

Input Sparrow is a bird
Output Sparrow Sparrow-is Sparrow-is-a Sparrow-is-a-bird

Table 9.8: Training Sentence 3. Member to Member Generalization
Time Frame t1 t2

Input Sparrow fly
Output Sparrow Sparrow-fly

Bird Bird-fly

9.2.5 Subclass to Superclass Generalization

The network was found to be able to successfully associate the given objects to the

parent class of their subclass, without confusing the members of one subclass with

another within 2 epochs. Each “member to class” relationship is explicitly taught
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Table 9.9: Testing Sentence. Member to Member Generalization
Time Frame t1 t2

Input Cuckoo fly
Output Cuckoo Cuckoo-fly

Bird Bird-fly

to the network. Hence the network is taught both Apple is a type of fruit and Fruit

can be of type apple. With ample experience the network would be able to create

“member to class” and corresponding “class to member” relationships on its own.

Input: Words (in the sequence in which they would appear in the sentence) and

corresponding classes.

Output: Sequence of words learned and new sentences created through subclass to

superclass generalization.

Example (Diagrammatically represented in Fig. 8.10):

Table 9.10: Training Sentence 1. Subclass to Superclass Generalization
Time Frame t1 t2 t3 t4

Input Girl is a human
Output Girl Girl-is Girl-is-a Girl-is-a-human

Table 9.11: Training Sentence 2. Subclass to Superclass Generalization
Time Frame t1 t2 t3 t4

Input Rachel is a girl
Output Rachel Rachel-is Rachel-is-a Rachel-is-a-girl
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Table 9.12: Testing Sentence. Subclass to Superclass Generalization
Time Frame t1 t2 t3 t4

Input Rachel is a girl
Output Rachel Rachel-is Rachel-is-a Rachel-is-a-girl

Rachel-is-a-human

9.2.6 Classification from Similarity

Experiment 5 tested if the network could identify members of the same class based

on their features, without confusing the members of another class to be similar. The

training sentences for the experiment consist of “is a” statements that allow the net-

work to partition the objects into their perspective classes and the property training

statements, that consist of 3 words, the object, property and whether the object has

the given property, this is stated by “yes” or “no”. The network is then given the

unseen object and the property as inputs and tested by allowing it to predict the

output of the 3rd and the last time frame. The network predicts if the unseen mem-

ber of the class has a certain property, by answering “yes” or “no”. The network

was able to map the correct property to the correct object and hence classify based

on similarity of features. 100% performance was reached in 3 epochs.

Input: Words (in the sequence in which they would appear in the sentence) and

corresponding classes.

Output: Sequence of words learned and new sentences created through member to

member generalization.

Example:

Table 9.13: Training Sentence 1. Classification from Similarity
Time Frame t1 t2 t3 t4

Input Kiwi is a weakwingedbird
Output Kiwi Kiwi-is Kiwi-is-a Kiwi-is-a-weakwingedbird
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Table 9.14: Training Sentence 2. Classification from Similarity
Time Frame t1 t2 t3 t4

Input Sparrow is a strongwingedbird
Output Sparrow Sparrow-is Sparrow-is-a Sparrow-is-a-strongwingedbird

Table 9.15: Training Sentence 3. Classification from Similarity
Time Frame t1 t2 t3 t4

Input Ostrich is a weakwingedbird
Output Ostrich Ostrich-is Ostrich-is-a Ostrich-is-a-weakwingedbird

Table 9.16: Training Sentence 4. Classification from Similarity
Time Frame t1 t2 t3 t4

Input Cuckoo is a strongwingedbird
Output Cuckoo Cuckoo-is Cuckoo-is-a Cuckoo-is-a-strongwingedbird

In the testing phase the input at time frame 3 is left blank as we let the network

predict the output based on the inputs at the previous time frames.
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Table 9.17: Training Sentence 5. Classification from Similarity
Time Frame t1 t2 t3

Input Sparrow flies yes
Output Sparrow Sparrow-flies yes

Table 9.18: Training Sentence 6. Classification from Similarity
Time Frame t1 t2 t3

Input Kiwi flies no
Output Kiwi Kiwi-flies no

Table 9.19: Testing Sentence 1. Classification from Similarity
Time Frame t1 t2 t3

Input Cuckoo flies -
Output Cuckoo Cuckoo-flies yes

strongwingedbird strongwingedbird-flies yes

Table 9.20: Testing Sentence 2. Classification from Similarity
Time Frame t1 t2 t3

Input Ostrich flies -
Output Ostrich Ostrich-flies no

weakwingedbird weakwingedbird-flies no
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Graph in Fig. 9.4 plots the results of the experiments.
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Figure 9.4: Results of Experiments 2 to 5: Total number of states is 1631. The
network is able to reach 100% recognition rate within 2 epochs of training in all the
experiments
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9.3 Visualization of Layers X, Y and Z

The figure below shows visualization for areas x, y, z1 and z2 for 3 training sentences

for experiment 1, parroting. The network is trained on 3 “type” motors, namely,

bold, italic or simple words; if a word is not bold or italic it is a considered to be a

simple word by default. The network is tested on the training sample itself. The

input as discussed earlier is the sequence of words as they appear in a sentence.

Layer x in the figure consists of words and is not shown as a matrix representation

for the ease of understanding. Layer y, z1 and z2 on the other hand are the color-

coded visual representations of the corresponding matrices. The network follows

a winner-takes-all policy, the winner neuron is colored grey, while the non-firing

neurons are represented by white squares. Layer z1 represents the type motor while

layer z2 represents the structure motor.

italic

default
bold

Tom
Tom-likes

Tom-likes-eating
Tom-likes-eating-raw

Tom-likes-eating-raw-apples

Baby

Baby-wants-more

Sparrow-is

Sparrow-is-a-beautiful

start
Sparrow-is-a-beautiful-bird

Sparrow-is-a

Sparrow

Baby-wants-more-milk

Baby-wants

start

start

start

Figure 9.5: Visual representation of layers z1 and z2, each square represents a motor
concept that is marked by an arrow next to it
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Figure 9.6: Learning Sentence 1: “Tom likes eating raw apples”. Layer z and the
outputs can be interpreted from the key in Fig. 9.5
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Figure 9.7: Visualization for Pre-response vector while learning the word “eating”
in the sentence “Tom likes eating raw apples”. The top-down and bottom-up inputs
are shown to result in the evolution of the the Y layer of which only 1 neuron having
the highest response value is chosen to be the winner.
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Figure 9.8: Learning Sentence 2: “Baby wants more milk”. Layer z and the outputs
can be interpreted from the key in Fig. 9.5
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outputs can be interpreted from the key in Fig. 9.5
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Chapter 10

Novelty and Contributions

The main novelties of the model are enumerated below:

1. Multi Layer In-place Learning (MILN) has been used for LA problem. This is

the first computational model for language acquisition. Using multiple motor

areas, the network demonstrates early language acquisition with the help of a

neuromorphic, developmental, emergent general-purpose model.

2. The network simulates “where” and “what” concepts for language acquisition

(LA). Thus creating a grounded model of language. One must remember that

language does not only provoke vocal response, instead language could also

invoke a physical response like a hand gesture. For e.g., if someone asks one

to pass the salt on the table, the response of the person is not “yes, I will pass

you the salt” instead if the person does intend to pass the salt he/she might

merely reach out and pass the salt.

The network‘s “what” motor is assisted by “where” motor as shown in the

graph in Fig. 9.1.

3. Association based reasoning or generalization helps the network to create new

semantics. The network uses classical conditioning methods for language skill

transfer. Language is learned through the same principles as other physical
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activities. It does not use hand-crafted language structure but allows primary

and secondary associations, as seen in animal learning.

The network does not use logical reasoning instead uses generalization to create

new sentences and reasoning, thereby broadening its own knowledge base.

These new sentences might or might not be logically correct depending on

the prior knowledge of the network. Thus the network is able to achieve

better relation specificity. The following generalization methods help us model

relationships between concepts:

• Member to class generalization

• Subclass to superclass generalization

• Member to member generalization

4. WWN does not treat syntax and semantics separately. The network is a

general model of internal representation that integrates syntax and semantics,

or concepts in general.
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Chapter 11

Discussion

The model can be used not only for written language learning but for learning

through audition as well as structural learning will remain the same. Furthermore,

the model does not take a bag of words approach but is able to identify phrases that

make complete sense versus those who don’t. The network learns sequential word

association, it is able to generalize correctly and hence create its own sentences.

The network can also choose between multiple generalizations on the basis of what

partition objects have the properties closest to the object in question.

11.1 Language Processing Based On Grammar

Language is not merely a mesh of words weaved together instead it is governed

by rules that tie up the vocabulary called the grammar or syntax. Grammar aids

language processing. It makes the language more structurally sound allowing com-

putational linguists to take a statistical approach to solving problems of extracting

information from speech and written text.

The paper mainly tackles language understanding and not exactly language pro-

cessing. Language processing results only provide superficial solutions to linguistic
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problems. As explained earlier they are The machine might pretend to know what is

being said but will have no knowledge of the actual meaning or context of the con-

versation to be able to be of real help as it has no understanding of actual language.

Due to the above issue “semantics” becomes very important. In fact semantics is

one of the main keys to the in-depth understanding of the language along with the

other components like association and grounding. Through semantics we can actu-

ally understand the meaning while with the help of association and grounding we

can find the unambiguous context to be able to react perfectly to the situation.

11.2 Neural networks for language processing

Many neural networks have tried to solve the language processing problem yet their

complex nature seems to be overwhelming to most psycholinguists. Many have ac-

cused ANNs to be “black-boxes”. Further ANNs are also criticized in literature for

being “cognitively implausible,” and failing to “capture generalizations”. Velde

and Kamps in [17] have tried to model similar features; they call them productivity,

dynamics (learning while training) and grounding. They have a strong model that

divide a sentence into its grammatical constituents along with an ”agent” who causes

something to happen and a ”theme” that is usually what is affected by the agent

or its action. The network tries to deduce things by the agent and theme interac-

tions along with the grammatical phrases they appear in. The aim of the paper is

very similar to ours but its means are quite different. The main difference between

Velde and Kamps’ feed forward network and our model is that they consistently use

grammatical tags (nouns, pronouns etc.) to understand a sentence, which is very

much like concepts known to the network. Our model on the other hand knows only

two concepts; location and type, but type can represent any concept (e.g., noun,

verb, noun phrase, verb phrase, etc). However, our model works for earlier language

acquisition where the child has not learned any explicit formal grammar.

74



N-gram models are very commonly used for statistical modeling. They focus on

short-length predictions of sequences, be it phonemes, alphabets or words though

powerful they lack versatility as they cannot be used to model sentences of more

than a certain length. Chelba and Jelinek’s structured language model (SLM) aims

to resolve this shortcoming [7]. The model uses a parser to create syntactic word-

parse k-prefix of the word string to predict the next word and its POS tag while a

constructor builds a binary branching structure of the sentence. SLM is thus able

to capture long dependencies. SLM was first used for speech processing. Both the

above methods use syntactic modeling. The neural network described in [14] uses

SLM in a batch fashion to create a language predictor. This is very similar to the

prediction. Further it uses error back-propagation method to create a recurrent net-

work.

11.3 Language Acquisition

Language acquisition is a grounded approach to language processing. Unlike NLP,

where a human programmer entrusted with the task of designing the system hand-

crafts each state and the outcome of a transition, in language acquisition, the system

learns to device these transitions on its own by learning them autonomously from

its surrounding environment that might or might not have a human teacher. Our

method uses the latter to develop an autonomous language learner, it is unique in

the sense that it is the first where-what network for language acquisition that takes

visual word input in order to produce the correct action, which might include various

language processing tasks, like, part-of-speech tagging, text segmentation recogniz-

ing syntactic ambiguity etc. The network need not learn everything before it starts

performing, but instead should learn dynamically so that it can be corrected early

if it learns some wrong information. It is all the more important as the network
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is not taught everything explicitly but instead draws associations and conclusions

from what it has learnt so it becomes imperative that if we come across any wrong

information learnt by the system, we correct it, just as small children are corrected

by their teachers/parents if they say/do something wrong. Our network is an in-

cremental learner that learns as it goes focusing mainly on language understanding.

Hence unlike other systems that have to be trained or programmed before they can

do anything, our network not only learns what it is taught but also learns as it is

taught. The network can incrementally pick-up new tricks as it lives on and so it

grows stronger as it lives longer.

11.4 Future work

A few speculations could be made about the context and attention, context helps

attention and attention helps balancing generalization and discrimination. The ven-

tral motor pathway could be used to develop context such that if the network is

taught dog is an animal and sparrow is bird, then “bird”, “animal” and “not bird”,

“not animal” could be higher level concepts. The multiple levels of generalization

could help the network to focus on the correct class. Generalization could be further

used to fine tune our results through multiple muxel priming, as noted by [55]. We

can introduce a Pre-TM layer, between the V2 and TM layers, which is a part of

the motor hierarchy. The Pre-TM helps generalization when more than one motor

neuron primes on at one time, both the object as well as its class fire together each

time any of the object primes in Pre-TM, so that the network develops a concept of

the class. Hence the class and object do not compete at the Pre-TM layer and are

counted as the same, but they are perceived as individuals in the motor layer. Thus

we are able to strike a balance between generalization and discrimination.

But there are a few questions that still need to be answered. How fine or coarse

76



should the generalization be so that the network is able to create correct classification

model? Though for now the teacher decides the value of k i.e., how many neurons

should win in Layer Y, but ideally after ample experience the network should be

able to decide it on its own.
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Chapter 12

Conclusion

Although there are symbolic systems that model language acquisition [34], our sys-

tem appears the first recurrent connectionist model for language acquisition without

using any handcrafted internal representation. For e.g., traditional NLP systems

require the human programmer to handcraft a static vocabulary and hand designate

a word to each Hidden Markov Model (HMM). Further how such HMMs link with

others are also handcrafted. In contrast, our network fully automatically develops

all such Wirings and strengths through weight adaptation. In this sense, this seems

the first truly “autonomous” developer for language acquisition in the sense that

internal self-organization is fully autonomous after the “birth”.

Comparing the open-style connectionist language networks (e.g., those used by

Rogers and McClelland [46]) and many open-style symbolic network (e.g., [34]), the

most obvious characteristic of our architecture is that the network is highly recur-

rent between the internal layer and the motor layers. While some modelers turned

off recurrence during learning of their recurrent networks [10, 45], the major reason

for us to succeed in dealing with such a high degree recurrence during learning was

because of the series of cortex-like mechanisms of LCA [26]. The network is still at

a very nascent stage. It is needless to say that it is far from reaching its potential

in terms of richness, complexity and scale yet it does try to open new avenues by
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modeling a cortex like robust and efficient network and giving acceptable results.

Language acquisition is not a trivial task but there are a lot of psychological mo-

tifs behind it, by studying language acquisition more we might finally understand

concept about intelligence and thinking.
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