
DICHLOROMALEIC ANHYDRIDE AS A REAGENT FOR THE DETERMINATION OF CONJUGATED DICLEFINS

Thesis for the Degree of M. S.

MICHIGAN STATE UNIVERSITY

Janet Bradford Van Doren

1956

LIBRARY
Michigan State
University

PROPERTY OF

DICHLOROMALLIC ANNIHABIDE AS A REAGENT FOR THE DETERMINATION OF CONJUGATED DIOLETIES

By

Janet Bradford Van Doren

A THESIS

Submitted to the College of Science and Arts Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Chemistry

1-14-51 G-2-15

ACKNOWLEDGMENT

The author wishes to thank Dr. K. G. Stone for his guidance and assistance throughout this investigation. Dr. Stone's helpful suggestions and whole-hearted cooperation were of great value in completing the project.

希腊斯斯特特特特特特

DICHLOROMALEIC ANHIDRIDE AS A REAGENT FOR THE DETERMINATION OF CONJUGATED DIOLEFINS

By

Janet Bradford Van Doren

AN ABSTRACT

Submitted to the College of Science and Arts Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Chemistry

Year 1956

Approved	
	The state of the s

ABSTRACT

The use of dichloromalaic anhydride as a replacement for chloromalaic anhydride in the quantitative determination of conjugated dichlerins was investigated. The proposed method is based on the Diels-Alder reaction of dichloromalaic anhydride with only the conjugated elefin, even in the presence of other saturated and unsaturated hydromarbons. Chlorine on the adduct is then converted to chloride by refluxing in silver mitrate solution. The chloride is determined by the Volhard method. Chlorine on the unreacted anhydride should not be removed by this procedure.

Results indicate dichloromaleic anhydride reacts with numerous conjugated diclefins; however, the reaction did not appear to be quantitative for the systems studied. Both Volhard and gravimetric determination of chloride after refluxing the purified adduct of 2,3-dimethylabutadiene in silver mitrate solution indicated only one of the two available chlorine atoms was removed by refluxing. Recovery of chlorine was neither quantitative nor stoichiometric.

Sterie hindrance and inductive effects of the chlorine atoms of the dichloromalcie anhydride adducts were considered. The addition of the second chlorine atom vastly alters the chemical behavior of dichloromalcie anhydride as compared to chloromalcie anhydride. It is concluded that dichloromalcie anhydride is not a suitable replacement for chloromalcie anhydride in this type of determination.

TABLE OF CONTENTS

r de la companya de	ega
INTRODUCTION	1
EXPERIMENTAL	4
Preparation of Adducts	7
DISCUSSION	19
CONCLUSIONS	25
LITERATURE CITED	26
APPENDIX	27

INTRODUCTION

The Diels-Alder reaction offers a unique method for quantitatively determining conjugated diolefins. Since the reaction is specific for conjugated systems, it is possible to analyze for the conjugated claffins in the presence of both saturated and unsaturated hydrocarbons. Rumerous analytical methods have been developed using both maleic and chloromaleic anhydride as the discopline.

Haleic anhydride was first utilized for the estimation of isoprene by Bassett and Williams (1) in 1932. After allowing maleic anhydride to react with the sample at 100°C, the gain in weight of the crystalline anhydride represented the amount of isoprene present.

Birch and Scott (2) utilized the same reaction for the identification of various gasoline fractions. In this procedure the multing points of the crystalline adducts with maleic anhydride identified the various diolefins present.

Another variation of the same reaction was developed by Tropsch and Mattox (8) for the determination of butadiene in gases. A measured volume of gaseous sample was passed over molten maleic anhydride. The loss of volume due to absorption of the butadiene by maleic anhydride thus indicated the amount of diene present in the sample.

Putnam, Moss and Hall (7) developed a method in which chloromaleic ambydride was used as the disnophile in the Diels-Alder reaction.

Since the chloro group of the adduct is attached to a tertiary carbon,

it is possible to remove the group as chloride by simple refluxing with silver nitrate. The chlorine in the excess chloromaleis anhydride in the reaction mixture, however, is a vinyl chloride; therefore, silver nitrate does not attack the excess reagent. The quantity of silver nitrate consumed represents the amount of dielefin present.

Although titrating chloride removed from a tertiary carbon in the presence of vinyl chloride offers many analytical possibilities, chloromaleie anhydride is not ideally suited for the Diels-Alder reaction.

Disadvantages are:

- (1) Purified chloromaleic anhydride has a melting point of 32-34°C; alight impurities cause the material to liquify.
- (2) Purification is difficult, requiring vacuum distillation and yields are low.
- (3) The product is easily hydrated; therefore, it must be handled under mitrogen or carbon dioxide and stored in scaled amoules.
- (ii) Small amounts of chloromaleic acid catalyze polymerization of the diolefins.

Dichloromaleic enhydride is a likely alternative reagent for a quantitative Diels-Alder reaction with conjugated diolefins. This reagent offers the same possibilities as chloromaleic anhydride, but has additional advantages.

(1) Dichloromaleic anhydride is a crystalline compound melting at 117-120°C.

- (2) Impurities of dichloromaleic acid are easily removed by sublimation, recovering the anhydride from the acid.
- (3) Two chlorine atoms should be available for titration, thus increasing the sensitivity of the method.

The purpose of this investigation was, therefore, to study the use of dichloromaleic anhydride as a reagent for the quantitative determination of conjugated claffins and develop a method utilizing this reagent for the determination of butadiene and related compounds.

EXPENIMENTAL

The course of this study was directed at three main objectives.

- (1) Loss dichloromalaic anhydride undergo a Diels-Alder reaction with the common conjugated elefins?
- (2) Is the reaction with dichloromaleic anhydride quantitative, or can the reaction be made quantitative?
- (3) What conditions are necessary for the quantitative removal of chlorine from the adduct without affecting the chlorine of the unreacted anhydride?

In order to answer these questions a series of compounds was synthesized using dichloromaleic anhydride as the diemophile for reaction with various dienes. The most suitable of these adducts was then prepared in quantity and used for the systematic study of conditions necessary for complete removal of chlorine from the adduct.

Preparation of Adducts

Diels and Thiele (4) were the first to perform a Diels-Alder reaction with dichloremalcic anhydride. They obtained quantitative yields of the adduct when anthracene and dichloremalcic anhydride were heated together at 170°C. More recently, Clifford and Glein (3) formed adducts of dichloremalcic anhydride with butadiene, cyclopentadiene, dicyclopentadiene, cis-piperylene, 2-methyl-1,3-pentadiene and dipentene. In each case they used bensene as the solvent and performed the reaction in an autoclave at 300-500 pounds pressure. Reaction

temperatures varied from room temperature for cyclopentadione to 210°C for butadiene.

In view of this previous work, no solvent was used in the properation of the distilluronal size and their additions and the reaction temperature was varied from 150-180°C.

Furoic Acid Adduct: One gram of furoic acid (Natheson, Column and Bell) and 1.8 grams of dichloromalete amburiride (Nestwaco Chlor-Alkali) were heated together in a pressure bottle. The temperature was raised to 170-175°C and maintained there for 30 minutes. As the solution cooled, crystallization occurred at 130°C. The product was recrystallized first from dry ether and them again from carbon tetrachloride. Malting point of the purified material was 120-130°C.

Hosting a similar minture in an oven at 135°C for 3 hours, then 15 minutes at 155°C yielded no product.

2,5-Dimethyl-2,4-Texactions Adduct: Seven ml. of 2,5-dimethyl-2,4-hexactions (Nonemer-Polymer) and 10 grams of crude dichloromalets subydride were heated together in a pressure bottle. The temperature was raised to 160°C and maintained there for 10 minutes. A dark red liquid was obtained that crystallized upon cooling. The product was recrystallized from carbon tetrachloride. The first crop of crystals obtained had a melting point of 100-110°C. After further solvent evaporation crystals were obtained that had a melting point of approximately 75°C.

Since it appeared likely that solvent was still present in both crops of crystals, the products were dried at room temperature under

vacuum for 3 hours. The melting point of the first crop of crystals was raised to 122-125°C. The second crop of crystals still melted at 75°C.

Henne and Turk (6) found that 2,5-dimethyl-2,4-hexadiene did not form a normal Diels-Alder adduct with maleic anhydride, but yielded only an amorphous high melting product. Farmer and Warren (5) found the same to be true of other elefins which had doubly substituted terminal carbons. Therefore, it is possible that the material isolated from the reaction with dichloromaleic anhydride is a polymer of some sort, thus accounting for the inconsistent melting points.

2,5-Dimethyl Furan Adduct: One al. of 2,5-dimethyl furan (Eastman-white label) and 2 grams crude dichloromaleic anhydride were heated together in a pressure bottle. At 120°C extensive vaporization occurred. Heating was continued to 160°C where the vapors condensed onto the walls of the bottle. After 10 minutes at 160°C a black oil was obtained which was readily soluble in other. After complete evaporation of the ether, a dark oil remained that did not crystallize even after prolonged standing.

Isoprene Adduct: Three ml. of isoprene (Monomer-Polymer), h grams of crude dichloromalcic anhydride and h drops of p-(t-butyl)catechol were heated together in a pressure bottle. The temperature was raised to 180°C and maintained there for 15 minutes. The dark oily product obtained was recrystallized from ligroin (60-90°C) after standing evernight. Kelting point was 124-126°C.

2,3-Dimethyl-1,3-Butadiene Adduct: Twelve ml. of 2,3-dimethyl-1,3-butadiene (Monomer-Polymer) and 16 grams of crude dichloromaleic anhydride were heated together in a pressure bottle. The temperature was reised to 150-160°C and maintained there for 15 minutes. A red liquid was obtained that crystallised completely as it cooled. The product was recrystallised from ligroin (60-90°C). An off-white powder was obtained which malted at 154-135°C.

Purification of Michloromalete Anhydride

Putnam, Moss and Hall (7) found that small amounts of acid impurities in chloromaleic anhydride catalyzed polymerisation of diolefins, introducing significant errors into their method. Some trace of dichloromaleic acid was suspected to be present in the dichloromaleic anhydride obtained from Westvaco Chlor-Alkali. Therefore, two methods of purification were attempted.

Reagent grade carbon tetrachloride was heated to boiling, then saturated with crude dichloromaleic anhydride. After the solution had stood evernight, large needles crystallized out. The crystals were then filtered and washed with carbon tetrachloride. When a melting point was attempted, the material lost solvent at 100°C and then sublimed continuously.

Since dishloromaleic acid is known to lose water upon sublimation to form dichloromaleic anhydride, the crude material was sublimed under reduced pressure at approximately 115°C. Pure white plates were obtained which melted at 117-120°C.

Both the crude and resublimed dichloromaleic anhydride were titrated with an aqueous solution of potassium hydroxide using phenolphthalein indicator. The crude material assayed 99.01 percent dichloromaleic anhydride. The resublimed product averaged 99.19 percent dichloromaleic anhydride. (Complete data in Appendix.) In both cases the neutralization equivalent was 84.3; the theoretical neutralisation equivalent for dichloromaleic anhydride is 83.5, for dichloromaleic acid 92.5.

Sublimation was adopted as the standard method of purification of dichloromaleic anhydride. The procedure was not only simple, but also gave high yields of pure dichloromaleic anhydride.

Methods of Chloride Determination

Putnam, Moss and Hall's method utilizes the Volhard procedure to determine the quantity of silver consumed by the chloride present. In their method a measured excess of silver nitrate is refluxed with the reaction mixture, then the excess silver nitrate is back titrated with potassium thiocyanate using ferric alum as the indicator. In this study two methods were used in an attempt to quantitatively remove the chlorine from the adduct. They were: (1) refluxing in sodium bi-carbonate solution, and (2) refluxing in silver mitrate solution.

Sodium Bicarbonate (0.5N): An approximately 0.5N solution of sodium bicarbonate was prepared by dissolving 42 grams of sodium bicarbonate in 1 liter of distilled water.

Silver Nitrate (0.2%): One hundred twenty grams of reagent grade silver mitrate were dissolved in 3.5 liters of distilled water.

Potassium Thiscyanate (O.IN): Fifty eight grams of reagent grade potassium thiocyanate were dissolved in 6 liters of distilled water.

Forrio Alum Indicator: One hundred twenty five grams of reagant grade ferric autonium sulfate-dodecahydrate were dissolved in a mixture of 450 ml. water and 50 ml. concentrated nitric seid.

The silver mitmate and potassium thiocymnate solutions were first compared to each other and then the silver mitmate solution was standardised with reagent grade sodium chloride.

In the sodium bicarbonate method, shall samples of adduct were first dissolved in dicknee, then varying amounts of 0.5% sodium bicarbonate solution were added. The solutions were heated to boiling and held just below the boiling point for 1 to 2 hours. After cooling to room temperature, the solutions were acidified with mitric acid and a known excess of silver nitrate solution added. The silver chloride was allowed to settle, then was filtered from the solution. The remaining silver in solution was titrated with potassium thiocyanate using ferric alum indicator.

In the silver nitrate method, samples of added were dissolved in acctone. A known excess of silver nitrate solution and varying amounts of water were added, then the solutions were either reflexed for 2 hours or boiled without reflexing, adding water as needed to replace that lost by evaporation. After cooling, the precipitated silver chloride was filtered from the solutions, the solutions were addified with mitric acid and the excess silver in solution determined by ditration with potassium thiocyanate.

Regults with 2.3-Minethyl-1.3-Dutadiene Adduct

The adduct of 2,3-dimethyl-1,3-butadiene with dichloromaleic anhydride was found to be most suitable for further study. This adduct was easily obtained and could be recrystallized to yield a product of good purity. In addition, the adduct had a relatively high melting point. Since 2,3-dimethyl-1,3-butadiene is a liquid (boiling point 70°C), it too could be weighed accurately for any work beginning with this compound.

The normal Diels-Alder reaction of dichloremaleic anhydride with 2,3-dimethyl-1,3-butadiene should yield 1,6-dichlore-2,5-dihydro-3,4-dimethyl phthalic anhydride (I).

An analysis for carbon, hydrogen and chlorine and the neutralization equivalent of the reaction product of dichloromaleic anhydride and 2,3-dimethyl-1,3-butadiene were obtained. Table I shows analytical results for the adduct.

The neutralization equivalent indicates the adduct is the expected anhydride; however, the elemental analysis checks with the percentages expected if the anhydride were hydrolysed to its acid. Since the starting material was over 99 percent dichloromaleic anhydride and the

TABLE I

COMPARATIVE RESULTS FOR ANALYSIS OF 2,3-DIMETHYL-1,3-BUTADIENE ADDUCT

Results	Analysis	Theoret. Anhydride	Theoret, Acid
Neutralisation Equivalent	124	124.5	133.5
Elemental Analysis			
Carbon	45.00%	48.23	45.0%
Hydrogen	4.58	4.1%	4.5%
Chlorine	26.40%	28.5%	26.6%

Analysis by Micro-Tech Laboratories, Skokie, Illinois.

reaction occurred under anhydrous conditions, it may be assumed that the product obtained was the amydride. The small sample used for the elemental analysis could have been hydrolysed in the atmosphere when it was handled and shipped for analysis. The product used in all experimental work was even dried and kept in a desiccator.

The 2,3-dimethyl-1,3-butadiene adduct was first heated in sodium bicarbonate solution in an attempt to remove the chlorine from the adduct. Results of preliminary experiments are given in Table II.

In all cases the percentage recovery was low. Some correlation is apparent between the relative concentration of bicarbonate and the percentage recovery in that the higher the ratio of bicarbonate to sample, the higher the percentage recovery. The amount of bicarbonate medical for 100 percent recovery on this basis would be 60 milliequivalents of bicarbonate per milliequivalent of chlorine. This required excess of bicarbonate would be impractical for a useful mathod. Therefore, no further work was done with sodium bicarbonate media.

TABLE II

RECOVERT OF CHLORIES FROM 2,3-DIMUTHIL-1,3-BUTADIENE ADDUCT
IN SODIUM BICARDOMATE

Adduct Wt. grams	Meq. Adduct Taken	Meq. Cl. Found	Percent Recovery	Meq. Naucos
0.0621	0.1199	0.120	24.1	15
0.01:86	0.391	0.120	30.7	19
0.C417	0.335	0.115	34.4	22
0.0538	0.158	0.130	39.5	22

Conditions: Solvent-15 ml. of 1:1 cellosolve:unter, heating time-1 hour, heating temperature-130 C.

Test tube experiments indicated that, in acctone solution, the chlorine in the 2,3-dimethyl-1,3-butadiene addret reacted with an aqueous silver nitrate solution. Experiments were undertaken to determine the most favorable conditions for this reaction. Heating time, hydrogen ion concentration, silver ion concentration, and the appearance of an insoluble precipitate other than silver chloride were investigated.

A series of determinations was made in which the silver and hydrogen ion concentrations were kept relatively constant while the heating period was varied from 1 to 3 hours. The results are given in Table III.

In each case the percentage recovery impressed when the heating time was extended from 1 to 2 hours. Heating for 3 hours gave no improvement in recovery; therefore, 2 hours was adopted as the heating period for all further work.

In the preliminary work the accumulation of hydrogen ion during the course of the reaction appeared to hinder the reaction and lower

[&]quot;Neg. wt. - molecular wt. of adduct/2000.

TABLE III

EFFECT OF HEATING TIME

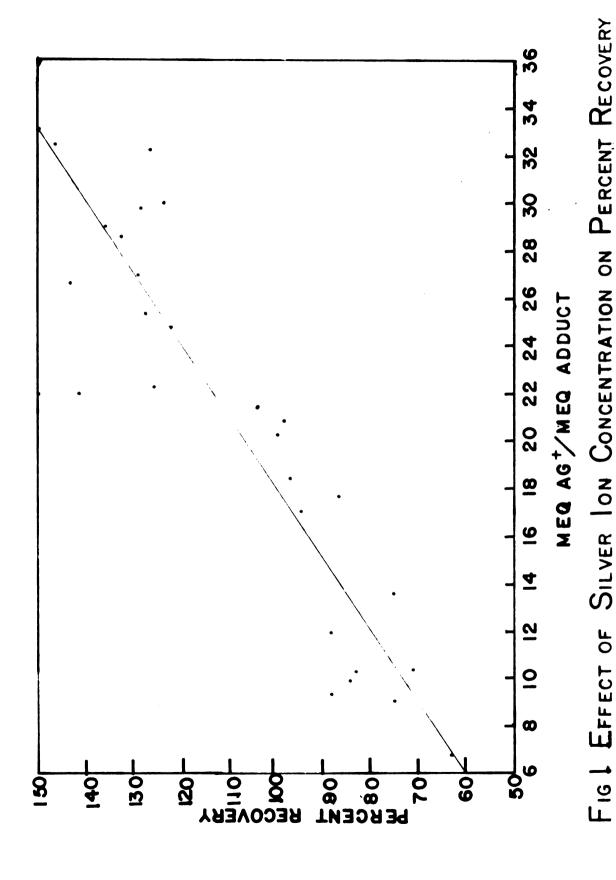
Meq. Addnot	Heq. Cl.	Percent	Heating	Hog. Ag
Taken	Found	Recovery	Time, hr.	liag. Adduct
0.326	0,245	75.1	3	12.2
0.334	0,294	88.2	2	12.0
0.292	0,170	58.2	1	10.0
0.277	0.220	80 .0	3	14.4
0.312	0.250	80 .0		12.8
0.730	0.260	53.0	2	8.2
0.730	0.220	15.0		10.2

[&]quot;Meq. wt. - molecular wt. of adduct/2000.

the percentage recovery of chlorine. It was found that if the hydrogen ion concentration, based on 100 percent removal of the chlorine, was kept below 0.01%, the recovery of chlorine depended entirely upon the relative concentration of the silver ion.

Early experimental results showed the concentration of silver ion to be the most important factor in improving the recovery of chlorine.

Numerous determinations indicated a large excess of silver ion, approximately 20 milliequivalents of silver per milliequivalent of chlorine, usuald be necessary to obtain 100 percent recovery of chlorine. A series of experiments using an approximate 20:1 ratio of silver to chlorine did give results approaching those calculated theoretically. However, the results were erratic and seemed to show an indeterminate error.


Still another series of determinations was run using approximately 30

÷

of these determinations were well above 100 percent of the calculated amount of chlorine present. A somewhat linear relationship, as shown in Figure 1, was found to exist between the silver ion concentration and the percent recovery. (Complete data in Appendix.) Because this relationship was linear above 100 percent, it suggested the possibility that the silver was undergoing another reaction in addition to combining with the chlorine of the adduct.

a precipitate formed immediately upon addition of aqueous silver mitrate to the acetone solution of the adduct. This precipitate dissolved as the sample was heated to reflux temperature and the characteristic silver chloride precipitate appeared. After heating, as the solution cooled, an additional precipitate again appeared in some samples. This additional precipitate was filtered from the solution with the silver chloride.

when it became evident that this additional precipitate contained silver, several solvents were tried in an attempt to dissolve the additional precipitate without dissolving the silver chloride. If the mitric acid used in the Volhard determination was added before the filtration, it further decreased the solubility of the precipitate. If mitric acid was added to the filtrate, it sometimes caused further precipitation to coour. Washing the combined residue of silver chloride and the additional precipitate with acctone did dissolve the additional precipitate and a positive test for silver ion was obtained in the

acetone wish solution. From the observations made it seems reasonable to suggest that the precipitate was an insoluble silver salt of the organic acid present in solution.

Results obtained by the Volhard method after washing the residue with acetone were still high. It was proposed that the silver might be complexed in some manner in the resulting acetone-water mixture. In a final effort to obtain quantitative results, a series of determinations was made in which the silver chloride obtained was dried and weighed.

For the gravimetric determination of chloride, the sample was dissolved in 20 ml. of acctone, 100 ml. of 0.2% aqueous silver mitrate added, and the solution refluxed for 2 hours. After refluxing the silver chloride formed was filtered from the solution, washed with acctone and water, dried, and weighed. Results for a series of determinations are given in Table IV.

TAPLE IV
RECOVERY OF CHLORINE USING GRAVINETRIC GLORIDE DETERMINATION

Adduct Wt.	Maq. *Adduct Taken	Heq. Cl. Found	Parcent Recovery	Hoq. Ag
0.0539	0.473	0.26h	55.8	42
0.0657	0.528	0.326	61.8	38
0.0975	0.703	0.394	56.1	28
0.1024	0.742	0.457	61.5	27
0.1032	0.823	0.443	53.5	24
0.1137	1.106	0.592	53.5	18
0.3447	2.768	1.67	60.5	7.2

[&]quot;Heg. wt. . molecular wt. of adduct/2000.

No correlation is evident between the percentage recovery and the relative concentration of silver ion, thus suggesting the correlation in the previous work could be due almost entirely to the presence of an additional silver compound. In all cases the percentage recovery is slightly above 50 percent, but results vary widely with no apparent reason based on silver ion concentration, hydrogen ion concentration, or heating time. The results suggest that only one chlorine atom is ionized and removed from the adduct entirely, since 50 percent recovery would indicate complete removal of one chlorine. The removal of one chlorine atom, however, is not stoichiometric under the conditions employed.

To determine whether or not the reaction of dichloromalede anhydride with 2,3-dimethyl-1,3-butadiene was quantitative, accurately weighed samples of 2,3-dimethyl-1,3-butadiene were allowed to react with an excess of dichloromalede anhydride. After the reaction was completed, the reaction mixture was dissolved in acetone and the shlorine recovered by refluxing in silver mitrate solution and weighing the silver chloride precipitated. Table V shows that under the reaction conditions used, less than 50 percent recovery was obtained. Those data indicate, therefore, that the reaction of dichloromalede anhydride with 2,3-dimethyl-1,3-butadiene is not quantitative under these conditions.

Finally, samples of the adduct were refluxed in 0.5% sodium bydroxide solution for 2 hours, then the chlorine which had ionized was precipitated as silver chloride and weighed. Even under these conditions

TAILS V

RECOVERY OF CHARMES FROM 2,3-EXPERIEN1,3-EUTADIENE REACTION NIKTURE

Wt. 2,3-Dimethyl- 1,3-Butadiene, grame	Heq. Sample Taken	Meq. 01. Found	Percent Recovery
0.706	17.2	7.21	142
0.505	14.5	6.51	145.5
0.0744	1.81	0.74	141

Mag. wt. - molecular wt. of 2,3-dimethyl-1,3-butadione/2000.

It was impossible to obtain 188 percent recovery of the chloring. Results are shown in Table VI.

RECOVERY OF CHLORING FROM ADDUCT AFTER REFLUXING
IN 0.51 SOUTH HYEROXIDE

Addust Wt.	Moq. Adduct Taken	Meq. Cl. Found	Percent Recovery
0.0777	0.624	0.159	73.6
0.0697	0.530	0.115	74.1

[&]quot;Mag. wt. - molecular wt. of adduct/2000.

Since the chlorine could not be quantitatively removed from the addrest with aqueous sodium hydroxide, it is unlikely that any procedure using silver nitrate could accomplish this removal.

DISCUSSION

Putnam, Noss and Hall (7) allowed isopreme to react with chloro-maleic anhydride to yield a mixture of 1-chloro-2,5-dihydro-4-methyl phthalic anhydride (II) and 1-chloro-2,5-dihydro-3-methyl phthalic anhydride (III).

By refluxing this mixture in 0.2% silver nitrate solution using a ratio of 2 milliequivalents of silver ion per milliquivalent of sample they obtained quantitative removal of chlorine. The 1,6-dichloro-2,5-dihydro-3,h-dimethyl phthalic anhydride (I) used in this study has a similar structure except for the replacement of hydrogen by chlorine on the bridgehead carbon. However, the results of this study indicate that only one chlorine atom of the two available in 1,6-dichloro-2,5-dihydro-3,h-dimethyl phthalic anhydride is removed even after extensive refluxing in silver nitrate or sodium hydroxide solution. This decrease in activity must be due in some manner to the additional chlorine atom in the structure.

Scale models were constructed of 1-chloro-2,5-dihydro-4-methyl phthalic anhydride (II) and 1,6-dichloro-2,5-dihydro-3,4-dimethyl phthalic anhydride (I). The models showed both molecules to be completely rigid with the tertiary carbon blocked to attack by a nucleo-philic reagent for an SN₂ substitution reaction. The rigidity of the structures also makes inversion at the tertiary carbon impossible.

Acid forms of these compounds could not be constructed with models due to steric hindrance of the two hydroxyl groups added in the cis-configuration.

Silver nitrate solution is not basic enough to favor an E_1 or E_3 elimination reaction. An SN_3 reaction is not a reasonable mechanism because of the steric factors involved. Therefore, the reaction apparently proceeds by an SN_3 mechanism, that is, first am ionisation step followed by a second step in which the carbonium ion is attacked by a moleophilic reagent.

For 1-chloro-2,5-dihydro-4-methyl phthalic anhydride (II) in aqueous silver mitrate the reaction may proceed:

In this reaction it is possible for the carboxyl group to furnish electrons to the chlorine because of mesomeric effects induced by the presence of silver ions in the solution. The hydrogen on the alpha carbon would probably have little effect towards either hindering or assisting the reaction.

For 1,6-dichloro-2,5-dihydro-3,4-phthalic amydride a similar series of steps would occur.

• 1 ٠.

Again in this reaction the carboxyl group could furnish electrons upon demand of the silver ion. However, the effect would be lessened because of the presence of two chlorine atoms each drawing electrons towards itself. The mesomeric effects of chlorine are not transferred through the alpha carbon. Therefore, there would be little contribution of electrons from one chlorine atom to the other. Since two chlorine atoms are available, any shift of the equilibrium would allow one chlorine to ionise and stops 1 through 3 could occur.

Date obtained support the argument that the extent of reaction was decreased by the presence of the second chlorine atom in the molecule, since a much higher eliver ion concentration was required to obtain even 50 percent removal of the chlorine. The date show that the extent of removal of the second chlorine is even further decreased, almost to the point of no further reaction.

comparison of the inductive effects in structures II and V offers a possible explanation for the decreased extent of reaction after the removal of one chlorine atom.

In structure II the chlorine may draw electrons from the adjacent controlly group with perhaps a small contribution from the hydrogen

replaced with a hydroxyl group which has a strong attraction for electrons. Mesomeric effects of electron contribution by the hydroxyl group are not transferred through the carbon chain, leaving only the industive effects of the hydroxyl group. This competition for electrons could decrease the extent of reaction substantially, saling quantitative recovery of the second chlorine atom difficult under the reaction conditions employed.

Dichloromalcie anhydride proved to be a convenient compound to handle. It was obtained relatively pure from the manufacturer and a single sublimation yielded a product of high purity. Since the compound did not hydrolyse readily in air, no special handling presentions were necessary.

Addition products were obtained when dichloromaleds anhydride was allowed to react with furois acid, isopreme and 2,3-dimethyl-1,3-butadiens. Reaction products were obtained from 2,5-dimethyl-2,4-butadiens and 2,5-dimethyl furan, but their behavior would lead to the supposition that the reaction had yielded only polymeric material. Clifford and Gledm (3) obtained reaction products of dichloromaleis anhydride with butadiens, cyclopentadiens, dicyclopentadiens, cis-piperylens, 2-methyl-1,3-pentadiens and dipentens.

The reaction products obtained by Clifford and Gleim and in these experiments were difficult to separate and purify. This would indicate some polymerization, making it difficult to obtain a quantitative reaction. Data for the 2,3-dimethyl-1,3-butadiene adduct show that

although the reaction proceeded smoothly, the addition was not quanti-

The 1,6-dichloro-2,5-dihydro-3,4-dimethyl phthalic anhydride model also showed that any addition to carbons 2 and 5 of the six membered ring, as in the case of the 2,5-dimethyl-2,4-hemadisms adduct, would make the reaction difficult because of the steric hindrance introduced by the two chlorine stems on the bridgehead carbons.

The reactivity of dichloromaleic anhydride for the Diels-Alder reaction should also be considered. Since the Diels-Alder reaction is believed to have an ionic mechanism, the addition of a single chlorine atom to the anhydride, as in chloromaleic anhydride, should assist this ionization by inductive effects and increase the reactivity. The two chlorine atoms present in dichloromaleic anhydride would oppose each other and tend to cancel any inductive effects. From this viewpoint, the reactivity of dichloromaleic anhydride would be similar to that of maleic anhydride with the added steric hindrance caused by the chlorine atoms.

CONCLUSIONS

The conclusions of this study may be stated briefly:

- (1) Dichloromaleie anhydride is a convenient material to purify and handle.
- (2) Dichloromaleic anhydride does form adducts with a number of diolefins, but its addition is restricted to compounds which offer no steric difficulties, i.e., no substitution on the terminal carbon of the conjugated system.
- (3) The reaction of dichloromaleic anhydride with the common diolefins is not quantitative under the reaction conditions employed.
- (4) The temperature necessary for the reaction of dichloromalsic anhydride with diclefins is in the range of 150-180°C. Butadiens at such elevated temperatures presents a safety hazard.
- (5) Recovery of chlorine from the 2,3-dimetry1-1,3-butadiene adduct is not quantitative or stoichiometric using mild reaction conditions.

Although dichloromaleic anhydride offers certain advantages ever chloromaleic anhydride as a reagent for the quantitative determination of conjugated dichefins, these results indicate it is not a suitable replacement. The steric factors and inductive effects introduced by the second chlorine atom in the molecule vastly alter the behavior of dichloromaleic anhydride as compared to chloromaleic anhydride.

LITERATURE CITED

- 1. Bassett, H. I. and Filliams, H. G., J. Chem. Soc. 1032, 232h.
- 2. Birch, S. F. and Scott, W. D., Ind. Eng. Cham. 24, L9 (1932).
- 3. Clifford, A. M. and Glaim, C. E., U. S. Patont No. 2,301,226, December 18, 1945. (C. A. 40, 3136).
- 4. Diels, O. and Thiele, W. R., Ber. 71, 1173 (1938).
- 5. Farmor, E. H. and Marren, F. L., J. Chem. Soc. 1931, 3221.
- 6. Renne, A. L. and Turk, A., J. An. Cham. Soc. 64, 826 (1912).
- 7. Putnam, S. T., Hoss, M. R. and Fall, R. T., Ind. Eng. Chem., Anal. Ed. 18, 628 (1946).
- 8. Tropsch, H. and Mattox, W. J., Ind. Eng. Chem., Anal. Ed. 6, 104 (1934).

APPINIDIX

I. Analysis of Dichloromaleic Anhydride

Samples dissolved in water, titrated with 0.8617% potassium hydroxide, phenolphthalein indicator.

Crude Pichloronaleic Anhydride

Sample Wedght, grams	2.5212
Ml. of Potassium Hydroxide	34.70
Percent Dichloromaleic Anhydride	99.01
Neutralisation Equivalent	84.3

Resublimed Dichloromaleic Anhydrida

Sample Weight, grams	2.6818	2.0930
Ml. of Potassium Hydroxide	37.00	28.83
Percent Dichloromaleic Anhydride	99.27	99.11
Mautralization Equivalent	84.2	8i4.3

Calculations

Percent Dichloromalede Anhydride =

Neutralisation Equivalent .

II. Effect of Silver Ion Concentration on Percent Recovery

Meq. Adduct Taken	Meq. Cl. Found	Percent Recovery	Meq. Accuset
0.305	0.132	43.1	13.1
0.334	0.274	89 .2	12.0
0.307	0.274	71.0	10.3
0.398	0.333	84.0	10.1
0.1.11	0.329	74.5	9.1
0.463	0.393	85.0	8.6
0.600	0.374	62.3	6.7
0.102	0.276	151	33.0
0.184	0.269	146	32.6
0.185	0.233	125	32.4
0.201	0.253	128	29.8
0.206	0.280	136	29.0
0.209	0.275	132	28.7
0.222	0.236	129	27.0
0.224	0.320	143	25.7
0,235	0.300	127	25.4
0.240	0.294	122	25.0
0.268	0.345	125	22.4
0.273	0.410	1 50	22.0
0.273	0.383	141	22.0
0.278	0.290	104	21.3
0.286	0.230	97 .9	20.9
0.292	0.290	99.3	20.4
0.324	0.314	96.9	18.5
0.336	0.238	85.7	17.8
0.348	0.329	94.5	17.2
6بنيا.0	0.335	75.1	13.5
0.542	0.408	76.6	11.1
0.580	0.481	83.0	10.4

Heating Time - 2 hours
Hydrogen ion concentration less than 0.01%

VITA

Name: Janet Bradford Van Doren

Borns Macomb, Illinois, June 24, 1933

Academic Careers

1945-47 Table Grove Community High School Table Grove, Illinois

1947-50 VIT Unit High School Table Grove, Illinois

1950-51 Western Illinois State College Kacomb, Illinois

1951-54 University of Illinois Urbana, Illinois

Degrees Held: Bachelor of Science, 1954 University of Illinois

Date Due

	-	
		i

Demco-293

CHEMISTRY LIBRARY

C. 2

Van Doren, Janet B. Dichloromaleic anhydride asra reagent for the determination of conjugated diolefins. M.S. Thesis 1956

Van Doren, Janet B. C.2 Dichloromaleic anhydride as a reagent for the determination of conjugated dielefins.

M. S. Thesis 1956

Date Due.	Name.	ISSUED TO

CHECKSTE? LIFRAR!

MICHIGAN STATE UNIVERSITY LIBRARIES

3 1293 03177 6531