

INFLUENCE OF AKTIFICIAL BREEDING ON PRODUCTION IN SELECTED MICHIGAN DAIRY HERDS

Thesis for the Degree of M. S.
MICHIGAN STATE UNIVERSITY

Lyle Harry Wadell

1957

INFLUENCE OF ARTIFICIAL BREEDING ON PRODUCTION IN SELECTED MICHIGAN BAIRY MEROS

By
LYLE HARRY WARRILL

AN ABSTRACT

Submitted to the College of Agriculture Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Bairy

Year 1957

Approved Low D. Mc Gilliard

The 6,829 records collected under the D.H.I.A.-I.B.M. progrem in Michigan from October, 1954, to June, 1956, in herds having both A.I. and non-A.I. daughters were used to analyse the influence of artificial breeding on the genetic progress in production in Michigan B.E.I.A.-I.B.M. dairy herds. How artificial breeding sires have affected herds of different levels of production was also investigated.

The mean difference between the performance of the artificial daughters and the production of the natural daughters in which the difference from each hard was given a weight proportional to the reciprocal of its variance was calculated for Guernsey, Helstein, and Jersey breeds. The Helstein A.I. daughters exceeded the non-A.I. daughters by 124 lb, of milk and 3.7 lb, of fat. The Guernsey A.I. daughters exceeded the non-A.I. daughters by 5.9 lb, of fat but were 6 lb, of milk below the non-A.I. daughters. The Jersey A.I. daughters exceeded the non-A.I. daughters by 15 lb, of fat,

There was no significant trend for A.I. daughters to produce less than or more than contemporary non-A.I. daughters within herds at varying levels of production.

The regressions of the mean weighted differences between A, I, and meand, I, daughters in mature equivalent butterfat on the M.B. butterfat average of the older herd mates were for Guernseys 16, Holstein 1, and

...

• • •

• •

•••

.

ABSTRACT LYLE HARRY WADELL

Jorsey -16. Confidence intervals at the 5% level were Guernsey, -4 to 36, Holstein, -6 to 8, and Jorsey, -35 to 5.

The herd, sire, herd-sire interaction, and residual components of variance were obtained by equating mean squares to expectations in an analysis of variance of records from herds which had both artificial and natural daughters. He herd-sire interaction was found. In all breeds the component for herd-sire interaction was either negative or nearly zero. The components of variance obtained were similar to these reported previously by other workers.

INFLUENCE OF ARTIFICIAL BENEDING ON PRODUCTION IN SELECTED MICHIGAN DAIRY MEEDS

By
LYLE HARRY WARRIL

A THESIS

Submitted to the College of Agriculture Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Dairy

6/24/57

TABLE OF CONTENTS

	Jogo
INTRODUCTION	1
REVIEW OF LITERATURE	3
Mean Weighted Differences	8
Contemporary Comparison	4
Herd-Sire Intermetion	6
SOURCE OF DASA	8
METHODS AND RESULTS	•
Noan Weighted Differences,	9
Contemporary Comparison	11
Herd-Sire Interaction	13
DISCUSSION	16
SCHOLARY	22
APPRODIX	25
LITERATURE CIEED	27
A CONTRACT STRAINS AND A CONTRACT STRAIN	-

LIST OF TABLES

PABLE		Page
1.	Differences In Production Between A.I. Baughters And Their Non-A.I. Contemporaries In The Same Hord	. 10
2,	Bifferences Between A.I. Daughters And Their Matural Contemporaries In High And Low Producing Hords	, 18
3.	Analysis of Variance And Compensate For Guernseys	. 14
4.	Analysis of Variance And Compenents For Helsteins	14
5.	Analysis of Variance And Components For Jorseys	. 14
6.	Average 805-2m-H.E. Production For All Breeds	. 16

INTRODUCTION

Twenty-three percent* of Michigan's 925,000° dairy cows were bred artificially in 1954. Each year this percentage increases. In some states it has meared or surpassed the 50 percent level. The increasing importance of artificial breeding in Michigan's Dairy Industry is shown by comparison with five years earlier, 1949, when 91,416° cows or about 10 percent of the total dairy cow population of the state were bred artificially. Of this number Michigan Artificial Breeders Cooperative previded 100 percent of the services. Since that time the total number and percent of cows bred artificially have more than doubled. Seventy-three percent* of the artificial breeding service in Michigan is now provided by Michigan Artificial Breeders Cooperative. Several artificial breeding stude are now providing service in Michigan.

The purpose of this research was to survey and analyse the influence of artificial breeding on the production of Michigan D.H.I.A.-I.D.M. dairy herds to see if the use of artificial breeding has resulted in genetic progress in production. How artificial breeding sires have affected bords of different genetic composition was also investigated.

Salisbury and VanDemark (1952) point out that only a small percent of these of the cows are on production testing and only a small percent of these are artificially bred. These conditions limit the study of the influence of artificial breeding. Investigation is restricted to these herds which have recerds. The results of this study apply to this special group of tested herds. How these results relate to the influence of artificial

Wilk Foundation Bullotin and M.A.B.C. Annual Bullotin

breeding on untested herds which probably produce less than the tested herds is uncertain.

REVIEW OF LITERATURE

Nean Weighted Differences

Appraising the value of artificial breeding by mean weighted differences between the average production of heifers obtained by artificial insemination and the production of other heifers in the same herd was first used by Rebertson and Rendel (1964) in a study of 1435 artificial insemination daughters from 56 sires in 5 breeds. Their results for all breeds showed an advantage for artificial insemination heifers of one gallon with a standard error of five gallons. The largest mean weighted difference, twenty-six gallons, with a standard error of thirteen gallons, appeared in the Friesian breed. In Guernsey and Shorthorn breeds artificial insemination heifers produced less than contemporary heifers. The Shorthorn had a negative five gallons with a standard error of six gallons, and the Guernsey had a negative fourteen gallons with a standard error of ten gallons.

Rebertson and Rendel (1954) concluded that the milk yield of A.I. daughters was very little different from that of non-A.I. daughters. They explain these results in that the sires used naturally are either pedigree or have a pedigree sire. This implies that the sires obtained by the breeding stude from the elite herds are genetically little better than the sires used naturally by these herds previously. This is because the sires used naturally were obtained from herds equal in genetic potential to those from which artificial breeding sires were obtained. Robertson and Rendel (1954) concluded by saying, "This suggests that the elite group of herds in each breed is little, if at all, genetically su-

perior to other pedigree herds and that the big differences in performance are due to management."

Contemporary Comparison

Attempts have been made to answer the question, "Do artificial insemination daughters produce significantly different yields in herds with different production levels", by a regression of the production of the artificial insemination daughters on the herd average.

McGilliard (1952) points out that the usofulness of the hord average age depends on how much of the difference between averages is due to genetic variation. He adds, "The yearly herd average may be used offectively to correct records for yearly differences in environment by subtracting from each record the herd average for the year in which it was produced. When the ratio of genetic to total variation is about the same in the difference between herd averages as it is within herds, the usefulness of the herd average is negligible".

Luck (1964) found that the natural proofs of sires used artificially varied considerably due to the fact that each sire's proof was made in a different environment. However, there is little environmental variation between sires used artificially because the daughters of each sire represent a sample of many environments, with every sire getting a similar sample.

Rice (1954) believes "The herd level where the young bull is to be used is the greatest determining factor in how much the young bull's daughters will produce." He calls the comparison of artificial inseni-

mation daughters with their yearly herd averages the 'new look' in breeding, which makes a correction that has as its aim the levering or elimimation of environmental effects.

Robertson and Rendel (1954) compared the near weighted superiority of the artificial insemination heifers in herds at different levels of production with contemporary herd averages formed from the average preduction of the nature cows in the same herd-year. No general trend in the difference appeared as the level increased. They found the regression of the fat percent of artificial insemination heifers on the average of all other animals in the same herd-year to be 0.66 (£ 0.20) for all breeds. They, therefore, concluded that a fair proportion of the variation in fat percent between herds is genetic in origin. The regression of the milk production of artificial insemination heifers on the production level of the herd for all breeds was 0.96 (£ 0.09) indicating a smaller genetic difference in milk production between herds.

The regression of the production of individual records on herd production levels on an intra-sire basis should be 0.5 if all differences between herds are genetic and 1.0 if they are due to management. Henderson of all (1954) found the intra-sire regression of daughter on regressed contemporary herd average to be 0.6. For mean weighted differences between artificial insemination daughters and non-artificial insemination daughters and non-artificial insemination daughters are due to management and -0.5 if they are all genetic.

Hord-Sire Interaction

Mason and Robertson (1956) in a study of records from 15,000 cows bred by artificial insemination found no evidence of any hord-size interaction for yield, either within or between management levels.

Legates and Verlinden (1966) in a study of 24,754 daughters of Guernsey, Holstein, and Jersey sires found the herd-sire interaction to be of little importance. In all breeds the herd-sire interaction was zero or nearly so.

Some people think that specific breeding value and herd-sire interaction are one and the same. However, the herd-sire interaction can combain some interaction between heredity and environment. Luch (1948) defines specific breeding value or the process of nicking as the phenomenon whereby on some special sample of cows Bull A will do better than Bull B, while on another genetically different sample of cows Bull B may do better than Bull A. Luch goes on to say that, "...scanty evidence from dairy entile indicates that nicking is of minor importance. Probably it isn't quite zero, but it is of such small importance that we wouldn't go far wrong if we tossed the specific ability or the 'nicking' out of the window under present conditions." Regardless of whether they are or are not the same, present studies indicate that neither are of major importance.

Often it is useful to know what portion of the total variance can be attributed to herd effects (H²), sire effects (S²), herd-sire interaction (HS), and differences between daughters of same sire in same herd due to variation in dams and environmental causes (H²). Genut and Legates (1955) found H² to range from 28,1 to 37,6 percent, S² from 4,4 to 10,2 percent,

and B² from 52,2 to 62,2 percent of the total variation between single records of butterfat production in samples from 6,949 daughters of 836 Guernsey and Holstein sires. HS was negligible. Legates and Verlinden (1956) found the components of variance for 34,754 daughters of Guernsey. Holstein, and Jersey sires to be:

	Guernsey		Guernsey Helstein			SCY
	Kilk	Jat	Milk	Jat	Milk	Jat
ZS.	25.1%	29.36	20.1%	52. 3 6	19.95	84.9%
8 2	6.6%	5.46	5,9%	6.0%	7.66	6.35
ES.	0.0%	0.0%	2.1%	1.2%	0.0%	0.0%
3 ²	68, 25	65.3%	61.9%	59,7%	72.5%	58. 9%

Legates and Verlinden (1956) point out how the variance compenents can be used where there are a first daughters each in a different herd. The regression of future daughters in different herds on the first tested daughters can be written:

SOURCE OF DATA

The records used were part of 16,944 Bairy Herd Improvement Association records collected under the D.H.I.A.-I.B.M. program in Michigan from October, 1954, to June, 1956. Only completed records which were at least 180 days long were included. All records over 305 days were cut off at 305 days. These herds in which both artificial and natural daughters appeared were used. Only results for Helstein, Guernsey, and Jersey breeds will be reported because the numbers of records in the remaining breeds were insufficient to warrant any comparisons.

Questionnaire

It was decided that the information called for by questions 9-11 of the questionnaire would be helpful in analyzing the results. This information was unobtainable from the available records. Because of this a letter with a questionnaire was prepared and sent to the 340 herd owners whose herds were involved in this problem. Copies of this letter and questionnaire are found in the appendix. Bighty percent return was received and the results are shown on the questionnaire.

METHODS AND RESULTS

Mean Veighted Differences

The herds involved in the mean weighted difference comparison were those herds in which both artificial and natural daughters had first lactation records. Nean weighted differences were computed for actual milk, actual fat, mature equivalent milk, and mature equivalent fat, where a division was made between grade and registered herds, a herd with any grade animals in it was classified as a grade herd and a registered herd contained only registered animals. Where a herd was composed of several breeds, it was broken into herd-breed groups and each classified as a separate herd. The procedure followed in making the calculations was that set forth by Robertson and Rendel (1954). The mean weighted difference is a difference wherein the average performance of the artificial daughters and the average production of the natural daughters are each given a weight proportional to the reciprocal of their variance.

The mean weighted difference was calculated as shown below:

Where:

A:...is the sum of natural records in the 1th herd

B:...is the sum of natural records in the 1th herd

n::..is the number of artificial records in the 1th herd

n::..is the number of natural records in the 1th herd.

One hundred and seventy-six Helstein herds involving 1422 records of artificial and natural daughters gave for all characteristics studied a

·

-

,

.

:

positive difference for A.I. heifers. The difference for Holstein milk was 134 lb, and 5.7 lb, for Holstein fat. In Guernsey and Jersey breeds new-A.I. heifers exceeded A.I. heifers in milk and in fat, respectively. Three hundred and thirteen Guernsey records in 33 herds had a mean weighted difference for milk of -6 lb, and 5.9 lb, for fat, One hundred and twenty-seven records in 17 Jersey herds gave a mean weighted difference for milk of 16 lb, and -2.7 lb, for fat, Table 1 shows the mean weighted differences.

DIFFERENCES IN PRODUCTION RETAINS A.I. DAUGHTERS
AND THEIR MON-A.I. CONTEMPORARIES IN THE SAME HERD

		No. of				Differences	
	Ho.of	Artificial	Ketural		tual	X. I	
Brood	Herds	Records	Records	Kilk	Jat	Milk	Jat
All Helstein	176	558	864	96	2,9	124	3,7
Grade Helstein	143	447	678	25	0.6	60	1.7
Rog. Holstein	. 34	111	186	366	11.8	370	11.4
All Guernsey	33	116	197	-10	2,8	-6	3,9
Grade Guernsey	25	96	114	-31	1.6	~27	2,1
Rog. Guerasey	8	20	83	29	6,9	71	10,5
All Jersey	17	54	73	40	-0.7	16	-2.7
Grade Jersey	13	44	38	113	3, 3	45	-0.6
leg, Jersey	5	10	35	-73	-8, 3	~34	-6,6

The registered Helstein and Guernsey herds showed a larger positive difference than did the grade herds. In the case of the Jerseys, however, the grade herds had a larger positive difference for milk with little difference for fat.

These values fall within the range observed by Rebertson and Rendel (1954). The values obtained here substantiate the conclusion that there is little difference between the production of artificial and natural

daughters. It was found that nearly all the hords under study had been using a registered sire or a sire by a registered sire prior to using artificial breeding.

Contemporary Comparison

An analysis of variance was used to determine whether the mean weighted differences were significantly different at various levels of production of herds. The levels of production in this comparison are based on the mature equivalent fat average of the cows in the herd at the same time but not used in the previous comparison. The herds were divided into ranges of 50 pounds of mature equivalent butterfat, i.e. 250-299, 300-349, etc. Comparisons were then made of differences between A.I. daughters and non-A.I. daughters an actual nilk, actual fat, mature equivalent milk, and mature equivalent fat.

The differences in actual milk for the Guernesy breed are significantly different at the 5 percent level. In all other cases no significant difference appeared between the near weighted differences at different levels of production. The mean weighted differences at different levels of production are shown in Table 2.

These results show no significant trend for A.I. daughters to produce less than or more than contemporary non-A.I. daughters within herds at varying levels of production. In the case of the Holsteins the analysis of variance gave in all cases an F-value of less than one.

A regression analysis of these came data with the independent variable being the mature equivalent butterfat average of the elder herd mates

DIFFERENCES RETWEEN A. I. DAUGHTERS AND THEIR
MATURAL CONTINUORARIES IN HIGH AND LOW PRODUCING HERDS

K. 3.		Junder	of-	Mean	Veight	ed Diffe:		
Butterfat		Re	cords	Actual		и, в,		
Range	Herde	Batural	Artificial	Milk	Jat	Milk	Jat	
Quernsey								
250-299	1	1	1	-4366	-44	-4366	-32	
300-349	12	51	48	-169	-6	-195	-7	
350-399	9	43	25	-522	-12	-332	-10	
400-449	6	51	19	775	38	773	37	
450-499	5	51	25	73	\$	152	8	
Holotein								
250 -299	1	4	1	-2465	-111	-2634	-124	
300-349	11	28	30	501	28	679	37	
350-399	38	207	116	-38	-1	-30	-1	
400-449	45	236	165	98	3	144	4	
450-499	47	245	136	-164	0	-244	-1	
500-549	22	. 84	76	658	10	718	8	
550-599	. 8	38	28	124	-5	286	-2	
600-649	2	19	2	453	34	1071	63	
Jersey								
200-249	1	1	1	1744	96	2144	120	
300-349	3	10	12	169	23	148	25	
350-399	7	51 .	17	-321	-26	-461	-35	
400-449	4	18	20	430	9	403	<u>.</u> 5	
450-499	ì	•	1	-74	-33	28	-34	
500-549	ī	7	3	-576	1	-249	14	

and the dependent variable being the mean weighted difference for mature equivalent butterfat gave the following regression coefficients; Guernsey 16.17, Holstein 1.05, and Jersey -16.22. Standard errors of estimate observed were Holstein 79, Guernsey 78, and Jersey 54. The regression coefficients were tested by a F-ratio and found not to be significantly different from sero at the 5 percent level. Confidence intervals at the 5 percent level for the regression coefficients are; Guernsey (-4,28 to 36.62), Holstein (-6.40 to 8.50), and Jersey (-35.80 to 5.36). These results were tested for linearity and no evidence was found that

the relationship was not linear. There was no significant difference between the regression coefficients found and zero; but, nevertheless, there exists a slight linear relationship. The standard errors are so large that the equations are of little value in estimating possible improvement of A. I. daughters at various herd levels.

Herd-Sire Interaction

The herd-sire interaction and other compenents of variance were eltained by equating mean equates to expectations in an analysis of variance
of records from herds which had both artificial and natural daughters.

Buch artificial record was expressed as a deviation from the average of
all natural cows in the same herd. Repeated records of both artificial
and natural daughters were eliminated in a random manner. Computations
were completed on mature equivalent milk and nature equivalent fat.

We hard-sire interaction was found in this study in the form as previously defined. The results are shown in Tables 3-5. In all cases the herd-sire interaction was either negative or nearly zero. Negative interaction components are obtained when the herds and sires are found to be more alike them expected. These results compare favorably with those of Mason and Rebertson (1956), Legates and Verlinden (1956), and Lush (1949). These results show that sires will be ranked about the same regardless of the group of cows with which they are mated.

The variance compenents and percent of variance alleted to sires, herds, and error appear in Tables 3-5.

The variance due to herds ranged between 16 and 33 percent, variance

TABLE 5

AWALYSIS OF VARIANCE AND COMPONENTS FOR GUERNSEYS

		X.	8.	Variance Components			Percent of Total	
Source of Variance	D.P.	Milk	Tat		Kilk*	Pat	Kilk	Tat
Total	257							
Sire	78	3414**	6391**	82	330	340	14	6
Hord	58	5054**	10797**	H	794	1698	33	30
Registered vs Grade	1	12024**	31177**				*	
Between Herds vi/class	57	4931**	10439**					
Herd x Sire	67	-117	388	IS	10	-418	0	0
Sire x Registered; Grade	4	826	7408					
Remainder	63	-177	-57					
Brrer	59	1278	3620	12	1278	3620	53	64

TABLE 4
ANNLYSIS OF VARIANCE AND COMPONENTS FOR MOLSTEINS

					Vari		Perce	
Source of Variance	D.P.	Milk [®]	Jat .				of To	
Total	1496							
Sire	198	6950**	7034**			.46		. 1
Herd	281	9568**	11267**	ĦZ	1058	1161	21	17
Registered vs Grade	1	6028	13422					
Between Herds wi/class	280	9581**	11259**					
Herd x Sire	771	3200	4744	H\$	-467	-415	0	0
Sire x Registered: Grade	60	6918**	-31096					
Remainder	711	2887	6784**					-
Brrer	246	4233	5548	72	4233	5548	84	82

PARLE 5

AMALYSIS OF VARIANCE AND COMPONENTS FOR JERSEYS

₩ Copfe Sugar	•					ARCO	Perce	
		Д.	8.		Compo	ments	of R	tal
Source of Variance	D.P.	MILE	Pai_		MIL	7.1	Milk	10.5
Total	92							
Sire	24	2801	7478	82	454	1234	13	12
Bord	20	3805	10844	I,S	580	1689	17	16
Registered vs Grade	1	1048	143					
Between Herds wi/class	19	3948	11407					
Herd x Sire	17	-1260	-3707	IS.	-1280	-4302	0	0
Sire x Registered; Grade	4	1611	7586					
Remainder	18	-2141	-7182	_				
Brrer		2369	7490	13	2369	7490		72

Wilk multiplied by 18-5 **Significant at the 15 level

1.00 miles

with no herd-sire interaction. In all breeds H² falls below the upper bound of these figures obtained by Gaunt and Legates (1956) and Legates and Verlinden (1956). However, the Holstein fat H² and Jersey milk and fat H² falls below previously found figures. The results for S² indicate that the Helstein sires used were of almost equal genetical value, and that the Jersey sires used varied considerably in their genetical value. The variation due to the differences between daughters of the same sire in the same herd due to variation in dams and environmental causes (H²) accounted for the major portion of the total variance. Except for the Guernsey breed the H² found was much greater than reported before. The

DI SCUSSION

The hords involved in this study are above average hords of Kichigan which can be seen by comparing the production levels of these hords shown in Table 6 with the production of the average cow in Michigan, 6500 lb, of milk. The average production of these hords in all instances is well above this figure.

PARLE 6
AVERAGE 205-23-M.B. PRODUCTION FOR ALL REMEDS

	A11 D.E.	I.AI.B.M.	Herds	Her	de Studied	
Breed	Number	Milk	Jat	funber	Milk	Jet
Holstein	13,899	11,835	435	5,360	12,170	458
Grade	7,401	11,701	420	2,921	11,841	427
Registered	6,498	12,680	453	2,439	12,565	451
Guerasey	5,057	8,340	. 391	1,001	8,136	380
Grade	1,491	8,137	379	400	7,844	370
Registered	1,546	8,330	402	धा	8,400	407
Jersey	1,677	7,559	393	468	7,504	400
Grate	792	7,485	384	208	7,632	401
Registered	885	7,628	491	260	7,564	400

Seventy-five percent of these herds have been using artificial breeding for longer than 5 years and today 55 percent of them are using artificial breeding exclusively, 25 percent are using selective nating, and
14 percent of the herds report they are attempting to follow some form of
line breeding.

Although the resulting numbers from the questionnaire are small, there is some indication that the grade herds are breeding their better cove artificially more frequently than the registered herds. There is also a small portion of the grade herds that breed the registered animals in their herd artificially and the grade animals in their herd naturally.

The grade hards have a greater tendency to breed their heifers naturally than the registered herds. A larger portion of the grade herds claim to be trying to follow a linebreeding program.

The numbers are small, but there seems to be no indication that the hords at a low level of production are breeding their better cows artificially, and the better hords breeding their poerer cows artificially. This is shown by tabulating question 11 of the questionnaire according to level of production.

Seventy-two percent of the hords in this study have more than 20 sows and seventy-seven percent have been on a testing program longer than 4 years.

As shown proviously, the everall mean weighted difference between A.I. doughters and men-A.I. doughters is positive. However, nearly 50 percent of the herds in this study have negative mean weighted differences. The differences in production between A.I. daughters and men-A.I. daughters within the same herd seen to support the idea that the sires used by the breeding stude are little if any genetically superior to the sires proviously used naturally. Prior to using artificial breeding 85 percent of the herds included under this study were using a registered sire or a sire by a registered sire. Forty-four percent of these herds that today are using artificial and natural sires concurrently are using naturally a registered sire or a sire by a registered sire. The level of production of the herds in this study indicates that the source of the sires used naturally could have been the same as the source of the sires used by the breeding stude.

A few of the breeding bulls for the hords on B.H.I.A.-I.B.M. no doubt some from the best of those hords. The breeding stud however solden purchases a sire from one of the best B.H.I.A.-I.B.M. hords but would more likely purchase from an 'elite' breeding hord. An 'elite' breeding hord is a popular hord from which the dairyman is making it a business to sell breeding stock. The interesting point is that the better B.H.I.A.-I.B.M. hords may be as good genetically as the 'elite' breeding hords, the major differences falling to environment. Therefore, a portion of the hords on I.B.M. should also be included as the 'elite' hords of the state and would be as good a source for young bulls for the stud as the 'elite' breeding hords.

If the sires used naturally and artificially were actually equal in genetic potential, we would hardly expect a large difference between A.I. and non-A.I. daughters. However, if we assumed the sires used by the study same from herds at a higher plane of production than those in this study, we can still explain the results. As Rebertson and Rendel (1954) pointed out, the se-called 'clite' herds are not necessarily genetically superior to the herds under study since the major differences between herds seen to be due to environmental conditions.

The positive differences of A.I. ever non-A.I. are greater for registered than grades in the Guernsey and Holstein breeds. The reverse is true for the Jersey breed. In the Helstein and Guernsey breeds the registered animals have a higher average than the grade animals whether artificial or natural. In the Jersey breed artificial grades however empreduced the registered. The regression of the mean weighted different produced the registered.

ences en herd averages indicates an increase in mean weighted differences for an increase in herd average for the Helstein and Guernsey breeds.

However the Jerseys have a negative regression.

Previous to this study it had been thought perhaps that A.I. daughters would receive an increasing positive mean weighted difference to a certain plane of production and than level off, giving a curvilinear relationship between herd average and mean weighted differences. The study, however, showed a linear relationship with no tendency to become curvilinear. The mean weighted differences tend to get slightly larger as the herd level increases but not significantly so. At a low level of production the benefits of an artificial sire could be cancelled out by the environment giving a greater chance for a smaller or negative mean weighted difference.

The study supported, by sheving no herd-sire interaction, that artificial sires can be compared without taking into account the herds in which their daughters appeared. This does not mean, however, that it would not be a good idea to express the daughter's production as a deviation from the herd average in which it appears when comparisons are made. The expression of the daughter's production as a deviation from the herd average aids in climinating a portion of the variance due to yearly environmental conditions.

The body weight and age at freshening of the first lactation daughters were also handled by the mean weighted difference method. Neary times the following are listed as advantages for artificial breeding: 1) the ability to breed heifers at an earlier age and 3) the ability to breed heifers small in size. These two factors, size and age, do affect the

production of an animal and were studied to see if they had any affect on the differences observed. There was little difference between A.I. daughters and non-A.I. daughters in any of the breeds in age at first calving. There was no difference between Holstein A.I. daughters and non-A.I. daughters in body weight at first calving. The Jersey A.I. daughters were 50 lb. heavier than the non-A.I. daughters in body weight. The Guernsey non-A.I. daughters were 20 lb. heavier than the A.I. daughters in body weight. These differences are insignificant because of the variation that exists between animals. These results show that A.I. daughters or non-A.I. daughters should not have an advantage over the other because of body weight or age at first ealving and, thusly, affect the production near weighted difference results.

A study to see if these herds using selective mating are actually receiving better results than those herds using sires randomly obtained would be a good addition to these results.

these results can not apply directly to herds at a different level of production than those herds in this study. We have seen that the importance of environmental conditions over shadows the importance of the sires, herds, and herd-sire interaction. This explains thy there is not a larger advantage for A.I. daughters at the lower levels of production. Along with lower levels of production in many instances goes a poor environment. Assuming that the herds at the lower level of production are not at the same level genetically as the breeding herds, we could expect the A.I. sires to help those herds at a lower level of production to a greater extent if the environment is not such that it

will cover up the effects.

If the sires used by these herds are not genetically superior to these previously used naturally as the results tend to indicate, what can these herds do? The results show that the farmers plan on making an increased use of artificial breeding. If they are to make any significant genetic progress, the breeding study must formulate sire selection progress that will produce superior sires available to all of these herds.

SUDOLARY

The records used in this study were part of 16,944 D.H.I.A. records collected under the D.H.I.A.-I.B.M. program in Michigan from October, 1954, to June, 1956.

Comparisons were made between A.I. daughters and near-A.I. daughters for the Guernsey, Helstein, and Jersey breeds. The Helstein A.I. daughters exceeded near-A.I. daughters by 124 lb, milk and 5.7 lb. fat. The Guernsey A.I. daughters exceeded the near-A.I. daughters 5.9 lb. of fat but were 6 lb, of milk below the near-A.I. daughters. The Jersey A.I. daughters exceeded the near-A.I. daughters by 16 lb. of milk and the near-A.I. daughters exceeded the A.I. daughters by 2.7 lb. of fat.

Regressions of the differences between A.I. and non-A.I. daughters on the contemporary herd average were 1, 16, and -16 for Helstein, Guernsey, and Jersey, respectively. For each breed the regression coefficient was found not to differ significantly from sore. These relationships were not curvilinear.

An analysis of variance showed that there was no herd-sire interaction. The variance compensate obtained were similar to those proviously obtained.

APPRIDIX

The letter and questionnaire sent to the 240 herd owners involved in this study appear on the following three pages. The results on the questionnaire are expressed as a percentage of the total questionnaires returned. Where the percentages add to more than 100 percent, multiple answers were possible.

OF AGRICULTURE AND APPLIED SCIENCE . EAST LANSING

COLLEGE OF AGRICULTURE • DEPARTMENT OF DAIRY

December 14, 1956

This summer a study was started to determine what effects artificial breeding has had on Michigan D.H.I.A. herds. At this time we need your help to complete this research. There are certain items of information which can be obtained only from you. We would appreciate it if you would check the appropriate answers to the questions on the enclosed sheet and return the questionnaire in the prepared envelope.

Your hard will not be identified with this information nor will any of the results published mention your hard.

Thank you.

Sincerely yours,

Lyle H. Wadell Research Assistant

1.	What is the breed of your herd? Ayrehire 2 Helstein, 77 Brown Swise 5 Jersey 11 Guernsey 18 Red Dane 2	Shorthorn 0 So Respense 9
2,	No you have any grade cove in your her	
٤.	Her many cove do you have in your herd Less than 10 1 30-40 17 10-20 26 40-50 9 20-30 37 Nove Than 50 9	
4	Which testing progress de you use? DEIA 4 AR 0 DEIA-IM 89 Owner Sampler EIR 15 Other 0	No Response 2 None 4
5.	How long have you belonged to a testing Loss than 1 year 1 3-4 years 1-2 years 2 4-5 years 8 Here than 5 years	9 Be Respense 4
6,	From what study are you receiving your Michigan Artificial Breeders Cooperationation County Company Farms American Breeders Service Bedger Breeders Cooperative Other Be Besponse	11 18
7.	Appreximately that percent of your her year? 1005. 53 505 7 755 11 255 10	Loss then 10% 16 To Response 4
8.	How long have you been using artificing less than 1 year 2 3-4 years 1-3 years 2 4-5 years 3 Longer than	11 no 10 species 3
	Prior to using artificial brooking we Iss. 78 Ho 22 H If he was grade, was he by a register Iss. 15 Ho 3 H	o Response 0
10	Are you now using natural service ale Yes 45 No 53 N Is the bull used naturally, registere Yes 39 No 4 N If he is grade, was his sire register Yes 2 No 1	d? d Response 0

12.	Are you	using sele	etive :	stine?				
		23		73	Io Respon	100	<u> </u>	
13.	Are you breeding		a line	breeding	progress three	ough the	tse of	artificial
	Tes	14	No	82	No Respon	100	<u> </u>	
14.	If you !	have any ad	dition	al comment	s, please a	li then,		

11. If you are using both artificial and natural sires, what determines which females are mated to each?

LITERATURE CITED

- Scent, S.N., and Legates, J.B., 1955.
 The Relative Merits of Five Measures of a Dairy Sire's
 Transmitting Ability, Journal of Dairy Science, 38:1411,
 December 1955.
- Henderson, C.R., Carter, H.V., and Godfrey, J.T., 1954 Use of The Contemporary Herd Average In Appraising Progeny Tests of Dairy Bulls, <u>Journal of Animal Science</u>, 13:959, 1954.
- Legates, J.E., Verlinden, F.J., and Kendrick, J.F., 1956 Sire by Herd Interaction in Production Traits in Dairy Cattle, <u>Journal of Dairy Science</u>, 39:1055, July 1956.
- Lush, J.L., 1949
 Estimating The Breeding Value of Young Bulls, <u>Mineo</u>,
 Panel Discussion-The Job of Dairy Herd Improvement,
 American Dairy Science Association Neeting.
- Inch, R.H., 1954
 Improvement Through Artificial Breeding, Guernsey Breeders
 Journal, 90:1038, April 15, 1954.
- Mason, I.L., and Robertson, Alan, 1956
 The Progeny Testing Of Dairy Bulls At Bifferent Levels Of
 Production, The Journal of Agricultural Science, 47:4:567.
- McGilliard, L.D., 1952
 Usefulness of the Herd Average In Estimating Breeding Values of Dairy Cattle, Ph. D. Thesis No. 1830, Ioun State College, Ames. Ioun, 1952.
- Rice, V.A., 1954
 Artificial or Natural? Both! But to The Right Bulls?!,
 Guernsey Breeders Journal, 92:753, November 15, 1954.
- Robertson, Alan, and Rendel, J.M., 1964
 The Performance Of Heifers Got By Artificial Inscrination,
 Journal of Agricultural Science, 44:2, 1954,
- Salisbury, G.V., and VanDemark, W.L., 1953
 Is Artificial Insemination Doing A Good Job?, The Farm Quarterly, Autumn 1952, 7:3;38.

••••

•

• -

•

....

ACCOUNTABLE DESIGNATION OF STREET

I would like to express my appreciation to Dr. M.P. Ralston for making it possible for me to carry out this work. I am also greatly indebted to Dr. L.D. McGilliard for his assistance and guidance in the gathering, proparing, interpreting and writing of this material. I would like to extend many thanks to Dr. D.R. Madden and Mr. L.V. Specht for their advice and helpful suggestions. Appreciation also goes to Mr. A. Thelen and Mr. R. Vitte for their assistance and technical advice in the use of L.B.M. machines in the analyzing of the records. Finally, my sincere thanks goes to my parents and family who have made it possible for me to be here.

Date Due

Demco-293

MICHIGAN STATE UNIVERSITY LIBRARIES
3 1293 03177 7976