A SPECTROPHOTOMETRIC AND SPECTROFLUOROMETRIC STUDY OF MORIN COMPLEXES 0F TRIPOSITIVE CERlUM, NEODYMIUM, PRASEODYMIUM, SAMAfllUM, TERBIUM AND IHUUUM Thesis for the Degree of M. 8‘. MICHEGAN STATE UNIVERSITY MARGARET E. TIERNEY 1968 _ _ _.. I A '_'Zk THESIS c-oralPr J" ," ' . r‘. .7 l: ” ‘ LIE» ‘1' . - § \ 1V1 .lChlg‘h . ‘ UnivCIsuy emanate av " HMS & SflNS’ BUM PFNDERV INC. 1, L 'W amozas no I ’f II-l‘g ABSTRACT A SPECTROPHOTOMETRIC AND SPECTROFLUOROMETRIC STUDY OF MORIN COMPLEXES OF TRIPOSITIVE CERIUM, NEODYMIUM, PRASEODYMIUM, SAMARIUM, TERBIUM AND THULIUM by Margaret E. Tierney Morin forms complexes with cerium (III), neodymium (III), praseodymium (III), samarium (III), terbium (III) and thulium (III). The effect of pH on the absorbance of these complexes and the nature of these complexes in 50 percent dioxane-SO percent water solutions were investigated. bknfix1formsl¢2 complexes (lanthanide (III):morin) with these rare earth ions at pH 5.0 as determined by Job's method of continuous variations and confirmed by Harvey and Manning's lepe-ratio method. The values of the equilibrium ratios for these complexes are 0.83, 4.5, 2.7, 7.9, 0.73 and 2.5 for cerium, neodymium, praseodymium, samarium, terbium and thulium, respectively. The complexes fluoresce only slightly more_than morin when exposed to 365, 456 mu- or there absorption maximum wave- length radiation, while the complexes of lanthanum, gadolin- ium and lutetium flouresce significantly under these conditions. Margaret E. Tierney The absorption band peak of morin occurs at 356 mu., while the complex absorption band peaks for cerium and praseodymium, neodymium, samarium, terbium, and thulium occur at 413, 414, 415, 417, and 423 mu., reSpectively. A single isoabsorptive point exists in the absorption spectra of each of the complexes. The isoabsorptive point occurs at approximately 377 mu. The absorbances for the complexes change linearly with change in lanthanide (III) concentration over the approximate concentration range, 0 to 2.3 x 10"5 M., in the presence of excess morin, 1.32 x 10‘4 M. A SPECTROPHOTOMETRIC AND SPECTROFLUOROMETRIC STUDY OF MORIN COMPLEXES OF TRIPOSITIVE CERIUM, NEODYMIUM, PRASEODYMIUM, SAMARIUM, TERBIUM AND THULIUM By yf I ‘u‘ . 2%“ Margaret E. Tierney A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Chemistry 1968 \f\ ‘ -—i’ ACKNOWLEDGEMENT The author wishes to express her appreciation to Dr. Andrew Timnick for guidance and encouragement throughout this investigation and to Mr. John F. Holland for construction of the fluorescence instru- ment. *************** ii VITA Name: Margaret E. Tierney Born: Sept. 21, 1943 in New Britain, Connecticut Academic Career: Regina High School, Hyattsville, Maryland (1957-1961) Chestnut Hill College, Philadelphia, Pennsylvania (1961-1965) Michigan State University, East Lansing, Michigan (1965- ) Degree Held: B. S. Chestnut Hill College (1965) iii TABLE INTRODUCTION . . . . . HISTORICAL . . . . . . EXPERIMENTAL . . . . . Instrumentation . Reagents. . . . . OF CONTENTS Preparation of Reagent Solutions. Experimental Procedures Method of Sample Preparation Instrumental Measurements. Nature of the Complex. DISCUSSION OF RESULTS. General . . . . . Effect of pH on Absorbance. Nature of the Complex . Equilibrium Ratios of the Complexes SUMMARY AND CONCLUSIONS. LITERATURE CITED . . . APPENDIX . . . . . . . iv Page 11 12 14 15 17 17 18 18 21 22 37 37 44 61 64 74 LIST OF FIGURES Figure Page 1. Block diagram of spectrofluorometer. . . . . . . 13 2. Absorption Spectra of morin and the complexes of morin with samarium (III) and praseodymium (III) in 50—50 DW at pH 5.0. . . . . . . . . . . 25 3. Absorption Spectra of the complexes of morin with neodymium (III) and thulium (III) in 50-50 DW at pH 5.0 O O O O O O O O C O O O O O O 0 O O 24 4. Absorption spectra of the complexes of morin with terbium (III) and cerium (III) in 50-50 DW at pH 5.0. . . . . . . . . . . . . . . . . . . . 25 5. Effect of pH on the absorbance of the complexes of morin with samarium (III) and praseodymium (III) in 50-50 DW. 0 o o o o o o o o o o o o o o 26 6. Effect of pH on the absorbance of the complexes of morin with neodymium (III) and thulium (III) in 50-50 DW. . . . . . . . . . . . . . . . . . . 27 7. Effect of pH on the absorbance of the complexes of morin with terbium (III) and cerium (III) in 50—50 DW . . . . . . . . . . . . . . . . . . . . 28 8. Fluorescence spectra of the complex of morin with lanthanum (III) in 50-50 DW . . . . . . . . 29 9. Fluorescence Spectra of the complex of morin with samarium (III) in 50-50 DW. . . . . . . . . 30 10. Fluorescence spectra of the complex of morin with praseodymium (III) in 50-50 DW. . . . . . . 31 11. Fluorescence spectra of the complex of morin with neodymium (III) in 50-50 DW . . . . . . . . 32 12. Fluorescence spectra of the complex of morin with thulium (III) in 50-50 DW . . . . . . . . . 33 LIST OF FIGURES - Continued Figure 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. Fluorescence Spectra of the complex of morin with terbium (III) in 50-50 DW. . . . . . . . . Fluorescence Spectra of the complex of morin with cerium (III) in 50-50 DW . . . . . . . . . Fluorescence Spectra of morin in 50-50 DW . . . Spectrophotometric isoabsorptive point for the complex of morin with samarium (III). . . . . . Spectrophotometric isoabsorptive point for the complex of morin with praseodymium (III). . . . Spectrophotometric isoabsorptive point for the complex of morin with neodymium (III) . . . . . Spectrophotometric isoabsorptive point for the complex of morin with thulium (III) . . . . . . Spectrophotometric isoabsorptive point for the complex of morin with terbium (III) . . . . . . Spectrophotometric isoabsorptive point for the complex of morin with cerium (III). . . . . . . Determination of the composition of the samar- ium (III)-morin complex in 50-50 DW at pH 5.0 by method of continuous variations. . . . . . . Determination of the composition of the praseo- dymium (III)-morin complex in 50-50 DW at pH 5.0 by method of continuous variations. . . . . Determination of the composition of the neodym- ium (III)-morin complex in 50-50 DW at pH 5.0 by method of continuous variations. . . . . . . Determination of the composition of the thulium (III)-morin complex in 50-50 DW at pH 5.0 by method of continuous variations . . . . . . . . Determination of the composition of the terbium (III)-morin complex in 50-50 DW at pH 5.0 by method of continuous variations . . . . . . . . vi Page 34 35 36 38 39 40 41 42 43 45 46 47 48 49 LIST OF FIGURES - Continued Figure 27. 28. 29. 30. 31.- 32. Page Determination of the composition of the cerium (III)-morin complex in 50-50 DW at pH 5.0 by method of continuous variations . . . . . . . . 50 Determination of the composition of the .samar- ium (III)-morin complex in 50-50 DW at pH 5.0 by lepe ratio method . . . . . . . . . . . . . 51 Determination of the composition of the praseo- dymium (III)-morin complex in 50-50 DW at pH 5.0 by slope ratio method . . . . . . . . . . . 52 Determination of the composition of the neodym- ium (III)—morin complex in 50-50 DW at pH 5.0 by lepe ratio method . . . . . . . . . . . . . 53 Determination of the composition of the thulium (III)-morin complex in 50-50 DW at pH 5.0 by slope ratio method. . . . . . . . . . . . . . . 54 Variation in absorption of terbium (III) and cerium (III)-morin complexes with variation in lanthanide (III) ion concentration in presence of large excess of morin. . . . . . . . . . . . 55 vii INTRODUCT ION The rare earths or lanthanides have been very difficult to separate because of their great similarities in chemical prOperties under usual conditions. These great similarities are due to the shielded nature of the 4f subshell which is filled with electrons as the lanthanide series progresses from lanthanum to lutetium. Before 1945 these elements were frequently determined as a group with a nonselective precipitant. The oxalate method was the most extensively studied. The lanthanides were precipitated as their oxalates with oxalic acid (1), ammonium oxalate (2), dimethyl oxalate (3), or diethyl oxalate (4). Occasionally they were precipitated as fluorides or hydrous oxides. Nonselective titrimetric methods have been used to determine the rare earth elements as a group. Ethylenedi- aminetetraacetic acid (EDTA) is the most frequently used titrant. Many indicators have been developed for this method (5-15). Complexone III (16—18) and Trilon B (19-22) are also common titrating agents. Better methods than the classical methods of fractional crystallization and fractional precipitation have been de- velOped for separating the rare earths. Some separations are effected by oxidation or reduction to anomalous oxida- tion states (states other than tripositive). Another method is liquid-liquid extraction, often with tributyl phOSphate. Extraction separations have been enhanced using reagents that form complexes with the rare earths. The most modern method is ion exchange chromatography. Ion exchange separations have also been sharpened using complexing agents such as morin (23), EDTA, (24-26) and 8-hydroxyquinoline (27). Several books summarize the advances in separation of the lanthanides (28-30). With more abundant quantities of high purity rare earths available, it is possible to study more effectively the individual elements and determine trends in the properties of the lanthanide series. The fluorescence Spectra of rare earth compounds have been known since the 1930's. However, analytical applica- tions have been few since the fluorescence spectra are weak. In qualitative detection tests, only lanthanum (III), gadolinium (III) and lutetium (III) formed fluorescent com- plexes with morin (2',4':3,5,7-pentahydroxyflavone) (31). The other lanthanide (III)-morin complexes did not fluoresce due to internal quenching caused by intramolecular energy transfer. There are two methods of SpectrOphotometric analysis for the rare earth elements. One method utilizes the band absorption Spectra of the colored ions. The spectra of aqueous solutions are complex, extending from the ultra- violet to the infrared region. The spectra of the lan- thanide (III) perchlorates (32-38), chlorides (33,34,38-43), nitrates (33,44,45) and acetates (33) are well known. The molar absorptivities of the lanthanide (III) ions are low, ranging from approximately one to ten (29). Thus the absorption bands are not applicable for the determination of micro quantities of lanthanides. The second Spectrophotometric method for lanthanide analysis utilizes the formation of intensely absorbing com- plexes. The formation of lanthanide (III) complexes in solution leads to modifications in the ligand absorption Spectra, since the complexes generally absorb light at dif— ferent wavelengths than the chelating ligands. A variety of chromOphoric agents are available for determination of the rare earths. These elements have been determined using Xylenol Orange (46-54), Alizarin Red S (55-58), 3-nitroalizarin (59), salicylic acid derivatives (60-63), Aluminon (57,63-65), naphthazarin (66), oxidized Haematoxylin (67), Chrome Azurol S (57,68-70), Pyrocatechol Blue (71), Methylthymol Blue (72-75), Thymolphthalexon (74), Erichrome Black T (75), Naphthyl azoxine S (76), Chromotrope B (57,77), Pontacyl Violet (78), Arsenazo (79-82), PAR (83), Stilbazo (84), dinitropyrylazo (85), 5,7-dibromohydroxy- quinoline (86) and Thoron (57). These elements have also been determined using EDTA and several related acetic acid derivatives (87-98). Morin has been used for spectrophoto- metric and spectrofluorometric determination of the rare earths and other elements (99-103). The purpose of this investigation is to extend the studies of the complexation reactions between morin and lanthanide (III) ions in 50-50 dioxane-water begun by Fleck (99),‘Weiler (100) and Van Eenenaam (101). A study was undertaken to establish light absorption and fluorescence characteristics of the complexes formed between morin and cerium, neodymium, praseodymium, samarium, terbium and thulium. HISTORICAL Several books have been published concerning fluores- cence phenomena. ,Pringsheim discussed the theoretical aSpectS of fluorescence, including a chapter on the lanth— anide elements (104). Fluorescence is also discussed by Bowen and Wokes (105). Hercules has edited a book on the topic (106). In addition, C. E. White reviews both organic and inorganic applications of fluorometric analysis in "Analytical Chemistry" (107,108). Poluektov and Kononenko also reviewed the fluorescence of rare earth chelates (109). Multitudinous references are cited in these review articles. The lanthanides form many complexes with 8-diketones (110-119). Prominent among these complexes are those with thenoyltrifluoroacetone, benzoyltrifluoroacetone and di- benzoylmethane. Major investigations of these complexes have been performed by Crosby and Whan (120,121) and Kononenko and Poluektov (122-124). Crosby and Whan propose the theory that the triplet state of the complex must be above the resonance level of the lanthanide for fluorescence to occur. Many of these complexes do fluoresce and this property has made them important in the development of lasers (125-129). Fluorescence is observed for morin complexes with lan- thanum (III), gadolinium (III) and lutetium (III) (31,99— 101,130). For the other lanthanide-morin complexes there is considerably less, if any, fluorescence. Katyal has reviewed the use of flavones as analytical reagents (103). The complex of morin with gallium has been studied by Akhmedli and Bashirov (131) and by Akhmedli and Glushchenko (132). Dombi and Kozema have studied the re— action of morin with aluminum (133,134). Mary Fletcher conducted a fluorometric investigation of the beryllium- morin system (135). Nowicka-Jankowska (136) and his co- workers have reported 1:1 complexes of morin with praseodymium (III), gadolinium (III), yttrium (III) and holmium (III). Milkey and Fletcher (102)conducted an investigation of the thorium (IV)-morin complex in Slightly acidic ethanol- water mixtures. Their investigation and the work of Fleck (99), Weiler (100) and Van Eenanaam (101) was used as a pattern for this study. A number of methods still widely used to determine the formulae and stability constants of complexes were originally designed for the case in which only one complex is formed. The method of continuous variations was first applied to the formation of complexes in solution by Job (137). Vosburg and Cooper (138) and Katzin and Gebert (139) have extended Job's method to systems in which more than one complex is formed. Bent and French (140) determined the composition and dissociation constant of ferric thiocyanate by varying the concentration of thiocyanate with a constant concentration of iron and then varying the concentration of iron with a constant concentration of thiocyanate. The stability constant is obtained by analyzing the interrelationship between the logarithm of the absorbance and the logarithm of the total thiocyanate ion concentration. The logarithm of the total thiocyanate concentration was plotted against the lograithm of the absorbance, constants having been added to both axes to give a line intersecting the origin. The mole-ratio method applicable to very slightly dissociated complexes is attributed to Yoe and Jones (141). The absorbance is plotted as a function of the ratio of total concentration of anion to cation. A break in the curve is obtained at the stoichiometric ratio of anion to cation. Equimolar solutions have been employed by several scientists to determine stability constants. Hagenmuller (142,143) developed a method using equimolar solutions that is restricted to 1:1 complexes. A series of mixtures of the two substances capable of forming complexes is prepared and an additive physical property determined. The position of the maximum of the curve representing the differences be- tween the observed values and those which correspond to the rule of mixtures indicates the mole ratio of the two origi- nal substances in the compound. The method of Betts and Michels (144) is similar to Hagenmuller's, but does not employ equimolar solutions. Shaeppi and Treadwell (145) also developed a method using equimolar solutions. Schwarzenbach (146) developed the restrictions for their method (145) when a 1:1 complex is formed. 10 Another method of establishing the composition of com- plexes is the Slope-ratio method of Harvey and Manning (147). The absorbance of the complex is plotted against varying concentrations of ligand holding metal ion concentration constant, and against varying concentrations of metal ion holding ligand concentration constant. The SIOpe of the line obtained in the presence of excess metal ion represents the change in absorbance per mole of ligand. The slope of the line obtained in the presence of excess ligand represents the change in absorbance per mole of metal ion. The ratio of the slope of the line representing the change per mole of morin to the slope of the line representing the change per mole of metal ion indicates the ratio of metal ion to ligand in the complex. EXPERIMENTAL 11 12 Instrumentation The spectrofluorometer used for this research is a double monochromator instrument designed and constructed by Mr. J. Holland of Michigan State University. Figure 1 shows a block diagram of the instrument which illustrates the excitation and fluorescent emission light paths. The spectrofluorometer consists of the following components: 1. 6. An Osram XBO-150 xenon arc lamp ultraviolet source powered by a Sola model 67-10—109 power supply with the lamp mounted in a standard Bausch and Lomb housing and cooled by an air circulating fan; Bausch and Lomb model 33-86-45-58 grating mono- chromators with both gratings blazed at 3000 3.; A custom made brass cell holder, with provision for constant temperature regulation, to hold Pyrocell clear-window 10 mm. silica cells made especially for fluorometry; An RCA 1P28 photomultiplier tube mounted in a light- tight housing attached to the emission monochromator as illustrated; The detector electronics system consisting of a Philbrick P25A operational amplifier used in a follower mode and an Analogue Device #210 operational amplifier used as a unity gain filter amplifier; A Sargent SR recorder. 13 ——L__J Photomultiplier ' Tube ‘-‘-_““-§.:EE I' Amplifier & Power Supply Recorder Bausch & Lomb Grating Monochromator ‘ I\ W Bausch & Lomb Grating Monochromator ‘Cell compartment Xenon Arc Source 4 I K“ C; L-fi Arc Power Supply Figure 1. Block diagram of Spectrofluorometer. 14 Cary Model 14 recording spectrophotometer was used for all absorption measurements. A matched pair of Beckman standard blue silica cells having a pathlength of 1.000.i 0.005 cm. was used for these measurements. A Sargent constant temperature bath employing a Princo- Magna-Set mercury temperature control was used to maintain the temperature of solutions at 25.0 i 0.020C. A Beckman Model 76 expanded scale pH meter equipped with a glass-saturated calomel microelectrode pair or with a micro-combination electrode was used for all pH measure- ments. The instrument was calibrated with Beckman or Fisher Certified pH 4 buffer. Reagents Ammonium Hydroxide Baker's Analyzed Reagent Grade, assay 29.9% as NH3, distilled and stored in a polyethylene bottle equipped with an ascarite protection bulb. Cerous Perchlorate (Hydrated) G. Frederick Smith's Reagent Grade. 2',7'-Dichlorofluorescein Eastman Kodak White Label. p-Dioxane Fisher Certified Grade. Eastman Kodak White Label. 15 Lanthanum Oxide Optical Grade, Heavy Minerals Company, Chattanooga, Tennessee. Morin Dihydrate Dr. Theodor Schuchardt, Munich, Germany. Neodymium, Praseodymium, Samarium, Terbium and Thulium Oxides Michigan Chemical Corporation , St. Louis, Michigan. Perchloric Acid Baker and Adamson's Reagent Grade, 70-72%. Mallinckrodt's Reagent Grade, 70—72%. Preparation of Reagent Solutions Ammonium Hydroxide The ammonium hydroxide used for pH adjustment was about 0.1 M and was prepared from the distilled material. Dichlorofluorescein A 0.4 7 per ml. solution in 4% ethanol was prepared by dilution of a stock solution prepared by dissolving a weighed quantity of the reagent in 95% ethanol. Dioxane A modification of the procedure of Hess and Frahm (148) develOped by Fieser (149) was used to purify certified grade dioxane. A mixture of 4 l. of dioxane, 400 ml. of distilled water, and 54 ml. of concentrated hydrochloric 16 acid was refluxed for 12 hours, during which time a Slow stream of nitrogen was bubbled through the solution to sweep out aldehydes. The solution was cooled, potassium hydroxide pellets were added Slowly with mixing until the solution became saturated and a second layer formed. The dioxane was decanted and treated with additional potassium hydroxide. The partially dried dioxane was then decanted into an amber screw-cap bottle containing a layer of an- hydrous calcium chloride. After standing at least overnight, the dioxane was filtered into a 5 liter round-bottom flask, refluxed over calcium hydride for 12 hours and distilled. A 50 ml. forecut and about 300 ml. heel were discarded.” The product distilled at 100.1 0.50C. It was stored in amber glass-stoppered bottles. Lanthanide Oxides Portions of the various oxides were weighed and dis- solved in a minimum amount of perchloric acid. For Ce(III), a portion of the perchlorate was weighed and dissolved in a minimum amount of perchloric acid. The above solutions were diluted and aliquots titrated with a 0.0503 M solution of primary standard disodium ethylenediaminetetraacetate (150) to the xylenol orange endpoint (87). Aliquots of these standardized solutions were taken for the preparation of the working solutions of 10.0, 1.0, 0.1 and 0.01 mg. of lanthanide (III) ion per ml. 17 Morin A weighed portion of morin dihydrate reagent was dis- solved in purified dioxane to produce a solution of 1.655 x 10"3 M morin. Perchloric Acid The perchloric acid used for pH adjustment was about 0.1 M and was prepared by dilution of the reagent acid. Experimental Procedures All experimental work was performed at 25.: 10C. All solutions were equilibrated in a constant temperature bath maintained at 25.i 0.02OC for a minimum of one-half hour before making measurements. Method of Sample Preparation The desired volume of morin solution was transferred into a 25 ml. volumetric flask. Pure dioxane was added to give a total dioxane volume of 12.5 ml. The desired volume of lanthanide perchlorate solution was added and then dis- tilled water until the total volume was 21-22 ml. The solution was transferred to a 30 ml. beaker where the pH was adjusted to 5.0 with dilute ammonium hydroxide and/or perchloric acid. The resulting solution was transferred back to the 25 ml. flask and the sample diluted to the mark. The pH of the sample was checked after equilibration in the thermostated water bath. 18 Instrumental Measurements Spectrgphotometric Measurements. The instrument was allowed to warm up for at least 20 minutes to insure instru- mental stability. The baseline was set to zero with light passing through solvent solution of 50-50 dioxane and water at pH 5.0 in both reference and sample beams. Spectrofluorometric Measurements. To standardize the instrument the excitation monochromator was set at 335 mu (one of the strong peaks of dichlorofluorescein), while the emission monochromator was set at 520 mu. The xenon lamp, power supply, amplifiers and detector were warmed up for at least 20 minutes to insure stability. The 0.5 7 per ml. dichlorofluorescein solution was placed in the cell, the shutter opened and the instrument adjusted to give a read- out of 60. The value of 60 was chosen so that a solution of lanthanum-morin complex at pH 5.0 would yield a fluores- cence spectrum (Figure 8) of the same magnitude as that obtained for the same concentration solution in previous studies employing a different Spectrofluorometer. Instru— mental readings were recorded as relative fluorescence intensities. Nature of the Complex Isoabsorptive Point. In order to determine the number of complexes formed and whether the reaction is stoichio- metric, a series of solutions containing 400 7 of morin and 19 amounts of lanthanide (III) varying between 0 and 100 y per 25 ml. were prepared and adjusted to pH 5.0. Method of Continuous Variations. Job's method of con- tinuous variations (137) was employed to determine the empirical formula of the complex formed. The absorbances for praseodymium (III) and cerium (III) systems were measured at 356, 390 and 413 mu, for the neodymium (III) system at 356, 390 and 414 mu, for the samarium (III) system at 356, 390 and 415 mu, for the terbium (III) system at 356, 390 and 417 mu, and the thulium (III) system at 356, 390 and 423 mu. The total concentration of lanthanide (III) ion and morin was maintained constant at approximately 54 x 10'6 M, the actual value differing slightly for each lanthanide (III) ion. Slope Ratio Method. To confirm the composition of the complexes, the slope-ratio method of Harvey and Manning (147) was employed. A series of solutions containing lanthanide (III) ranging in concentration from approximately 0.2 x 10'5 M to 2.3 x 10‘5 M in the presence of a large excess of morin, 1.32 x 10‘4 M , were prepared. The absorbances of these solutions, measured at the desired wavelength, were plotted against the concentration of lanthanide (III) ion, and the slope of the line determined. A series of solutions containing morin in the concentration range of approximately 0.6 x 10‘5 M to 5.3 x 10“5 M in the presence of a large 20 excess of lanthanide (III) ion were also prepared. The absorbances were plotted against the concentration of morin and the slope of the line determined. The ratio of the slopes of the two lines was then determined to obtain the ratio of lanthanide (III) ion to morin in the complex. DISCUSS ION OF RESULTS 21 22 General Morin (2',4',3,5,7-pentahydroxyflavone) forms complexes with cerium, neodymium, praseodymium, samarium, terbium and thulium. The absorption spectra of morin and the complexes are Shown in Figures 2-4. The complexing agent has an ab- sorption peak at 356 mp. 413, 414, 415, 417, and 423 mu. are the absorption peak wavelengths for the cerium and praseodym- ium, neodymium, samarium, terbium, and thulium complexes,. reSpectively. Figure 8 shows that the lanthanum—morin complex fluores- ces significantly when eXposed to ultraviolet radiation as Fleck (99) also observed. Weiler (100) observed fluorescence from the morin complexes of gadolinium and lutetium. Morin fluoresces to a Slight extent under the experimental condi- tions as illustrated in Figure 15. Figures 9-14 Show that the rare earth complexes under investigation do not fluoresce much more than morin. These results confirm the observa- tions of Pollard §£_§l, (31) who ran qualitative tests to determine whether lanthanide-morin complexes fluoresced when illuminated with ultraviolet radiation. Van Eenanaam (101) also demonstrated that the morin complexed dySprosium, erbium, europium, holmium and ytterbium fluoresced very weakly. Absorbance 23 1.00 5 1) 400 y morin 2) Samarium (III)-morin complex (100 7 Sm+++) 0.90-—— ,r\ 5) Praseodymium (III)- , 2 morin complex (100 7 I Pr+++) 0.80... / I \ I \ l \ O.70__ / \ I \ I \ o.eo_—- / \ \ / \ / \ O.50+—— / \ \ 0.4o_ / ‘ / \ / \ t’/ \ 0.30r— \ \ \ 0.80 __ \ \ \ 0.10r——- \ \ |\ 520 540 360 380 400 420 440 460 480 500 520 540 Wavelength in Mu. Figure 2. Absorption Spectra of morin and the complexes of'morin with samarium (III) and praseodymium (III) .in 50-50 DW at pH 5.0. Absorbance 1.00 0.70 0.60) 0.40 0.30 0.20 0.10 0 F 24 Neodymium (III)-morin complex (100 V Nd+++) ‘—_— ----- Thulium (III)-morin complex (100 7 Tm+++) ,___ //_\\ //\ ““ / \ ’ \ / ._ / \ /’ / \ I _/ \ ’ \ ../ \ \ \ .r__ \ \ "’ \ \ \\ lilllll —4-| 520 340 360 380 400 420 440 460 480 500 520 540 Wavelength in Mu. igure 3. Absorption spectra of the complexes of morin with neodymium (III) and thulium (III) in 50-50 DW at pH 5.0. Absorbance 25 1.00 Cerium (III)-morin complex (100 y Ce+++) 0.90 __. ----- Terbium (III)-morin complex (100 y Tb+++) 0.80,___ /' / / \ 0.70 / \ / \ O O I .6 / \ / / \ 0.50 \ /. /' \ ,/ 0.40 / \ ’ \ 0.50 \ \ \ 0.20 \ \ 0.10 \ \ . '\ o l l J I l I I \~ 320 340 360 380 400 420 440 460 480 500 520 540 Wavelength in Mu. Figure 4. Absorption Spectra of the complexes of morin with terbium (III) and cerium (III) in 50-50 DW at pH 5.0. Absorbance 26 400 y morin and 100 y R+++ . A4 1 5 Sm+++-morin system 1 00 o A413 Pr+++—morin ' "" system 0.90_- 0.80_—- 0.70_—— 0.60)—— 0.50_—- 0.40——- 0.30——- 0.20— 0.10—— O | l 0 1 2 Figure 5. Effect of pH on the absorbance of the complexes of morin with samarium (III) and praseodymium (III) in 50-50 DW. Absorbance 27 400 y Morin and 100 7 R+++ o A414 Nd+++-morin system +++ . ' o A423 Tm -morin system 1.00— 0.90)— /o——-O-- 0.80— O 14.:7 0.70_ ' ' 0.60—— O.50‘—— 0.40.— 0.50T—— 0.20—__ O-lO~—— o J J J J J J J l J J pH Figure 6. Effect of pH on the absorbance of the complexes of morin with neodymium (III) and thulium (III) in 50-50 DW. Absorbance 28 . +++ 400 y Morin and 100 y R o A417 Tb+++-morin system -morin system +++ A413 C8 0 O? O U1 0 pH Effect of pH on the absorbance of the complexes of morin with terbium (III) and cerium (III) in 50—50 DW. Figure 7. 29 .o.m mm um 3n omuom ca AHHHV Escmnucma nuw3 :HHOE mo memEoo may mo mnuommm mocmommuosam .m musmflm .12 SH numcmam>m3 omm 0mm own omm 00m omw Omw OSS CNS - - J ,o . J. oe II! ON II! on J, 04 III om J. 8 J. 2. II! om “mom +++mq > oo« H o +mq > ooe “33H 0 II! cm “mov +++mq r 006 H o 00d AquuequI eoueosexontg 30 .30 omlom SH AHHHV ESHHMEMm SDHB SHHOE wo xmameoo may no muuommm muomummuosam .m musmam .12 ca numcmam>m3 00m oem 0mm 00m 00¢ 00¢ oew CNS mQOH G CAHOZ % 00¢ povH 0 II! 0w P A mav +++Em 00d H O mnflH C afluoz % 00¢ omvH 0 ll! 0% new ++Em ? 00« H 0 + AquuequI soueosexonta 31 .SD omlom aw AHHHV EDHEhpommmum nufl3 canoe mo xmamfioo m£u mo muuummm mocmommuosam .0H musmflm .12 CA numcmam>m3 00m 0¢m 0mm 00m 00¢ 00¢ 0¢¢ 0N¢ - . - Jao 06. o.m me me. mmflH 0 demo: r 00¢ omvH 0 III 0m: ma¢ +++um to 0o.“ H o , 1! 0 INN/[J7 - . q .\ m 0H 0 0.¢ mm ma 0 ./ MOGH c %. mdfi . +++Hm OOH H Aqrsuequx soueosexontg 32 Enafimpomc SDAB .zn omnom :H AHHHV canoe mo xmamfioo on» mo manommm mocmommHOSHm .HH mnsmflm .12 CH Sumcmam>m3 00m 0¢m 0mm 00m 00¢ 00¢ 0¢¢ 0 ¢ ¢ _ _ L A A o U l mON o e :11 o.m ,0 o.m mm III m.> mDMH a :HHO2 P 00¢ o mowH 0 II. 0.0a o ¢H¢ +++UZ F 00H H 0 J0/ ‘J #0 o .. J 0.3 0 II! 0.0m o \\\\ 0.¢ mm . D .II! 0.0m... . O mOGH a :Huo2 r 00¢ omeH o II. o.o¢ vav +++UZ P 00d H O Aqrsuaqul eoueosexonxg 33 .3D 0mI0m CH AHHHV EDHHDSB SDHB SHHOE mo memEoo map mo muuommm mocmommnosHm .NH musmflm .12 SH sumcon>m3 00m 0¢m 0mm 00m 00¢ 00¢ 0.¢ 0 ¢ j A a — \ O O /.o ‘ 9 ' IIIL OH. / O ./ \. l 8 3 men H o )\ o , GHHO2 % 00¢ o- . om¢H 0 II. on EB a 00H mmvH o +++ . I Jlfl O “ ‘ 0 ‘ ‘\ II... On“ nll.0N .ll.0m 0.. / Ipl‘.\ 0.¢ mm J 04 mSMH 0 fine: > ooe 3:” o J om SE a 00H mmeH 0 +++ Airsuequl eoueoselontg 34 .30 omlom EH «HHHV EDHQHmu SDHB GHHOE Ho memEOU mnu Ho muuummm mocmommnosam .mH mHDmHh .12 SH numcmHm>m3 00m 0¢m 0mm 00m 00¢ 00¢ 0¢¢ 0N¢ . _ H _ _ ac. I I I|.0.m - J93 0 .d o.m mm Jo.mHm. o o O mom H 0 M :HH02 2 00¢ o o 09H 0 [0.0Nm bav u +++QB P 00H H 0 m I o c I l. C ( IOoOHw o H. _ A l ll.0.0N /. ozv mm J. . )l.\ mmflH 0 :HHo2 a 00¢ ome 0 ll50.0¢ * +++nH e 03 S H . 35 .30 omlom :H AHHHV EDHHUU nuHB CHHOE mo XmHmEoo wnu Ho muuommm mocmommuosHm .¢H,mHDmHm .12 SH Sumcme>m3 omm 0¢m 0mm 00m 00¢ 00¢ 0¢¢ 0 ¢ // J O.@ Ill 0.0H 0.m mm J 0.3 m MQGH 0 m - . e :HHO2 P 00¢ om¢H 0 III 0 0m x P mH¢ a +++mo 00H H o w - \ 0 a c 1 \\\\\\\\ H ‘ ‘ D .. ¢ .. J. 0.0H m S n. , III o.om.A / a D / 0.¢ mm IL, . p o 0 CM [0 mOMH 0 :HH02 0 00¢ ome 0 III 0.0¢ Maw +++m.o 0 OOH H o 36 .30 omlom SH SHHOE Ho muuommm SUSmommHosHm .mH musmHm .12 SH SumSmHm>mz 000 0¢m 000 000 00¢ 000 0¢¢ owe _ _ _ H _ _ JvJ J40 [OJ lm.oN J00 0.0 mm IJ.m..H mmmH 0 mm¢H o II!0.0¢_ SHHo2 a 00¢ moeH 0 .IIIIAYII JIATI. 1 c J\\\\\\\, Jmao O/ L0.m a 11.0.3 I . 0 o. \\\\!\\\\ 0 ¢ m Il-0.mH 0’ . m00H o 84H 0 J98 SHHo2 0 00¢ movH 0 Aqrsusqul eoueosexonTa 37 Effect of pH on Absorbance Figures 5-7 Show the effect that a change in pH has upon the absorbance of the complex. The absorption maximum of the complex shifts to longer wavelengths with increasing pH. A pH level of 5.0 was selected as the optimum pH for studying the lanthanide (III)-morin complexes as a group. Nature of the Complex Isoabsorptive Point Figures 16-21 Show SpectrOphotometric isoabsorptive ,pointS for the six lanthanide (III) complexes at pH 5.0. The formation of only one isoabsorptive point suggests the occurrence of a Single reaction (102) between the lanthanide (III) ion and morin. Method of Continuous Variations The empirical formula of the complex was determined In? employing Job's method of continuous variations. The total molar concentration of lanthanide (III) ion and morin was maintained constant for a series of solutions, while the individual concentrations of lanthanide (III) ion and morin were varied. The mole fraction of lanthanide (III) ion was plotted against Y, the corrected absorbance which is due only to the complex. 38 1.0 400 7 morin in 50-50 DW at pH 5.0 0.90__ 7 Cu:Ve 'Y 313+;+ 1 6 2 20:0 /\ 3 40.0 0.80H— / \ I: 28.8 / \ s 80.0 2 / 7 100.0 5 \ ’ \ / 5 \ ,/4\ \ / z/p’ 5 \\ / / \ J / \ 0.50—/ / / \ \ a, V / 5/ \ \ g ,/ /'7 \ g0.“ // \ 2 \\ m _’/ \ r3: \ \\ 0.30— \ \\ \ \\ \ 0.20__ \ \\ \ \\ 1 0.10.__ \ \\\ \ \\ \\\\ \\ 0 l l l l l l $4 I l 320 340 360 380 400 420 440 460 480 500 520 540 Wavelength in Mu. Figure 16. Spectrophotometric isoabsorptive point for the complex of morin with samarium (III); Absorbance 39 1.00 400 y morin in 50-50 DW at pH 5.0 7 Curve 7 Pr+++ 0°90— 1 0.0 2 20.0 1 ’2‘ 5 40.0 \ 4 50.0 0.80 I \ 5 60.0 / 6 80.0 I _, \ 7 100.0 2 0070— /\ I \ / \ / 4 \ / \ /\ \ 5 \ / / \ 0.60— / ',/ \ \ / \ \ / é ’ ‘ \ 0.50_7 // // \\ \\ / / 6/ \ \\ ,/ / \\ \\ Q'4O’—// \2 \\ .../ \ \\ \ \ 0.30-—— \ \\ \\ \\ \\ 0.20~—— \ \\ 1 \ \\ \ ‘\ 0 10,— \\ Q \ . \ \\ \‘§\ 0 J J J J J J I I I J 320 340 360 380 400 420 440 460 480 500 520 540 Wavelength in Mu. Figure 17. Spectrophotometric isoabsorptive point for the complex of morin with praseodymium (III). 40 1.00 400 y morin in 50-50 DW at pH 5.0 +++ Curve 7 Nd 0'90 7 1 0.0 2 20.0 5 40.0 1 4 50.0 O'BO— /§ 5 60.0 6 80.0 / \ 7 100.0 2“ / \ / x \ .70 O r-' / \ / \ / \ / / \ / 0.60— __ -4 \ / / ,/ \ \ 8 )l/5 3‘\ £0504 / / \ \ \ ‘4 / 6’ \ \ \ ° \ U) I \ .0 / \ d /' / \ \ 0.40. / \ \ / \2 ‘\ / \ \\ 0.50._ \ \ \ \ \ \ \ \\ 0.20— \ \\ 1 \\\\‘ 0.10__ \ \\ \\ \\‘ 0 J J J i J J \ --J-- J J 320 340 360 380 400 420 440 460 480 500 520 540 Figure 18. Wavelength in Mu. Spectrophotometric isoabsorptive point for the complex of morin with neodymium (III). 41 1.00 400 y morin in 50-50 DW at pH 5.0 0,90... Curve 7 Tm+++ 1 1 0.0 2 20.0 3 40.0 7 4 50.0 O-BOF 5 60.0 6 80.0 2 7 7 100.0 0.70_ /\ / \ \ 6 / 5 ,\ / 4. ‘ / 0.604 / \\ / \ m / / \\ / \ 6 2 / I ’/.'\ / 5 \ (U I / \ 0 / / ‘\ \ 3 / / \ 5\ \ S /' / \ 0.40_/ \ \ \ / \ \ \ \ \ \ \ 0.304—— \ 2 \ \ \\ \ \ \ \ \ \ \ 0.20~—— \ \ \ \ \ \ 1 \ \ 0.10— \ \ \ \ \\ \ \ \ J l J l | l ‘ I“ J 0 320 340 360 380 400 420 440 460 480 500 520 540 Wavelength Mu. Figure 19. SpectrOphotometric isoabsorptive point for the complex of morin with thulium (III). Absorbance 42 1.00 400 y morin in 50-50 DW at pH 5.0 0,90r_~ Curve y Tb+++ 1 0.0 1 2 20.0 3 40.0 0.80——- 4 50.0 7 5 60.0 6 80.0 7 100.0 0.70— /2\ 6 /\ \ / \ / 3 \\ /' 5‘\ 0.60}— 4, / / \\\ / \ — \ / I /’ \ \ 0.50—f / 6/ y , / 3 \ \ / 7 \ / \\ / 0.40 / \ \\ / \ \\ / \ \ \ \ 0.50— \2 \\ '\ \ \\ 0 20 ‘\ \ \ . \ \\ \ \\\ 0.10... 1 \ \\ \ <\ \ \ l l l l I _ ‘\ . 1 20 340 360 380 400 420 440 460 480 500 520 540 Wavelength in Mu. Figure 20. SpectrOphotometric isoabsorptive point for the complex of morin with terbium (III). 43 1.0 400 7 morin in 50—50 DW at pH 5.0 0 90 Curve 7 Ce+++ ° ‘—_' 1 0.0 7 2 20.0 1 5 40.0 4 50.0 0’80"' 5 60.0 .E 6 80.0 / \ 7 100.0 0.70,__ 64 / \ / \ \ / \ / 5 / \ / \ 5 / 4/-.1/’\ ‘ / / \ \ 230-50 / / 3 \ \ g / / §/’ \ \ \ '9. / , ‘ \\ 8 / / 7 \ \\ g 0.40 4 _’/’ \ \\ \ \\ \\ \\ 0.50~—— \\ \\ '\ \\ 0.20... \\ \ \ 1 \. Q 0.10_ \ \ \. \ \\ o J J J J J J 7‘ __ J J 520 540 360 380 400 420 440 460 480 500 520 540 Wavelength in Mu. Figure 21. Spectrophotometric isoabsorptive point for the complex of morin with cerium (III). 44 Both Job (137) and Vosburgh and Cooper (138) have shown that the value of Y at each wavelength is a maximum where the greatest amount of complex is formed. Figures 22-27 Show the results obtained when Y is plotted against the mole fraction of lanthanide (III) ion. The maximum, when the absorbance due to the complex is measured, or minimum, when the absorb- ance due to morin is measured, value of Y appears at a ratio of one mole of lanthanide (III) ion to two moles of morin, . . . + Indicating a general formula of RMg for the complex. Slope Ratio Method The composition of the complexes was also determined by the slope ratio method of Harvey and Manning (147). Figures 28-32 show that the absorbance at the maximum wavelength for the complex plotted against the moles of morin per liter, curve 1, and against the moles of lanthanide (III) ion per liter, curve 2. The slope of curve 1 represents the change in absorbance per mole of morin, and curve 2 represents the change in absorbance per mole of lanthanide (III) ion. The data obtained are summarized in the Appendix (Tables A-VII- A—XI). These data confirm that the general formula of the . + complex Is RM2 . Equilibrium Ratios of the Complexes The technique used by Milkey and Fletcher (102) in their investigation of the thorium (IV)-morin complex was employed Absorbance 45 Maximum for 1:2 complex 1 I l I 1 I 1 I . l o 0.2 0.4 0.6 0.8 1.0 Mole Fraction of Sm (III) Figure 22. Determination of composition of the samarium (III)-morin complex in 50-50 DW at pH 5.0 by method of continuous variations. Absorbance 46 0.4-— 0.3 _ 0.1-— Maximum for 1:2 complex 0 413 mu 0 390 mu 0 3561m1 1 1 1 1 1 1 1 1 Figure 23. 0.2 0.4 0.6 0.8 1.0 Mole Fraction of Pr (III) Determination of composition of the praseodymium (III)-morin complex in 50-50 DW at pH 5.0 by method of continuous variations. 47 Maximum for 1:2 complex 0.61- O 414 mu 0'5 — O 390 mu 0 356rm1 0.4 - . ,. . o 0.3 — . . Absorbance J l ‘1 I L 1 1 I I O 0.2 0.4 0.6 0.8 1.0 Mole Fraction of Nd (III) Figure 24. Determination of composition of the neodymium (III)—morin complex in 50-50 DW at pH 5.0 by method of continuous variations. Absorbance 48 Maximum for 1:2 complex 0 423 mu 0 390 mu 0 356Im1 -0051— -O.4 — 1 1.111 1 1 1 1 0 0.2 0.4 0.6 0.8 . 1.0 Mole Fraction of Tm (III) Figure 25. Determination of the composition of the thulium (III)-morin complex in 50-50 DW at pH 5.0 by method of continuous variations. 49 0 6 Maximum for 1:2 complex - r O 417 mu 0.5 — 0 390 mu 0 356Im1 0 0 S m Q 51.1 o m .0 <1 -005 '- —004 L 1 1 1 . 1 1 1 1 1 1 0 0:? 0.4 0.6 0.8 1.0 Mole Fraction of Tb (III) Figure 26. Determination of the composition of the terbium (III)-morin complex in 50-50 DW at pH 5.0 by method of continuous variations. Absorbance 50 Maximum for 1:2 complex 0.6" J 0 413 mu 0.5-— 0 390 mu 0 356 mp. 0.4'- . ,. . o 0.3-— . a o 0.2- . o 0.1J- 0 _001 '- ‘1 . "002 — C -0.3 - -0.4 — l l » l l J l I l 0 0.2 0.4 0.6 0.8 1.0 Mole Fraction of Ce (III) Figure 27. Determination of the composition of the cerium (III)-morin complex in 50-50 DW at pH 5.0 by method of continuous variations. Absorbance 415 51 Moles Sm+++ per liter x 106 (curve 2) 10 20 30 40 50 1‘3 1 1 I 1.11H—- 1.0‘F—' 0.4 -—- 1. Excess Sm+++ 5.32 x 10'3M 0-2 -- 2. Excess morin 1.32 X 10'4M 0 . J .10 20 50 40 50 Moles morin per liter x 106 (curve 1) Figure 28. Determination of composition of the samarium (III)- morin complex in 50-50 DW at pH 5.0 by slope-ratio method. Absorbance 413 52 Moles Pr+++ per liter x 106 (curve 2) 10 20 30 40 50 1'5 I I I 1 102 T— 1.1 ——— 1.0 ——- 0.9 ——- 0.8 -—— 0.7‘——- 0.6 L—— 0.5 -—- 0'4 _— +++ 1. Excess Pr 5.68 x 10-3M 0.5,___ 2. Excess morin 1.32 x 10-4M 0.21—— 0.1 ___ 0 J - V J 10 20 50 40 50 Moles morin per liter x 106 (curve 1) Figure 29. Determination of composition of the praseodymium (III)- morin complex in 50-50 DW at 5.0 by lepe—ratio method. Absorbance 414 53 Moles Nd+++ per liter x 106 (curve 2) 10 20 50 40 50 1. Excess Nd+++ 5.55 x 10‘3M 2. Excess morin 1.32 x 10'4M J 10 20 50 40 50 Moles morin per liter x 106 (curve 1) Figure 30. Determination of composition of the neodymium (III)-morin complex in 50-50 DW at pH 5.0 by SIOpe—ratio method. Absorbance 423 +++ Moles Tm 54 per liter x 106 (curve 2) 1.5 10 20 5? 4f 50 1.21——- 1.1 C) 1.0 2 1 0.9 0.8 0.7 _—— 0.6 __— 0.5 ——- 0.4 ~—- 0.3 "—— 1. Excess Tm+++ 4.74 x 10‘3M 0,2 ——— 2. Excess morin 1.32 x 10-4M 0.1 -—— C) O V J 10 20 30 40 50 Moles morin per liter x 106 (curve 1) Figure 31. Determination of composition of the thulium (III)- morin complex in 50-50 DW at pH 5.0 by slope-ratio method. Absorbance 417 55 +++ . +++ . Moles Tb per liter Moles Ce per liter x 106 (curve 2) x 106 (curve 2) 10 20 10 20 0.3 *- 2. Excess morin 2. Excess morin 0'2 — 1.52 x 10‘411 — 1.52 x 10-4 M 0,1 L_. ___ O 1 , - 1O 20 10 20 .Moles Tb+++ per liter Moles Ce+++ per liter x 106 (curve 2) x 106 (curve 2) Figure 32. Variation in absorption of terbium (III) and cerium (III)—morin complexes with variation in lanthanide (III) ion concentration in presence of large excess of morin. Absorbance 413 56 to estimate the equilibrium ratio of the various lanthanide (III) ion-morin complexes. The following information was obtained to calculate the equilibrium ratios of the complexes under the conditions of the investigation. Absorptivity of Morin. Solutions containing morin in the concentration range of approximately 1.0 x 10‘5 M. to 5.4 x 10'5 M., and no lanthanide (III) ions were prepared. The solutions were adjusted to pH 5.0 and the absorbances measured. The molar absorptivity was calculated from the absorbance, concentration and cell width. The molar absorp- tivity of morin at pH 5.0 and 415 mu. is 2.27 x 103 L/mole cm., and at pH 5.0 and 423 mu. is 1.85 x 103 L/mole cm. Absorptivity of the Lanthanide (III)-Morin Complex. The molar absorptivities of the praseodymium, neodymium, samarium and thulium complexes were calculated from the slope ratio data obtained in the presence of a large excess of lanthanide (III) ion. The large excess of lanthanide (III) ion insured the complete reaction of all of the morin added to form the complex. By running a blank containing excess lanthanide (III) ion, the contribution of the colored lanthanide (III) ion to the absorbance was determined and subtracted from the total absorbance. Assuming that for each two moles of morin added, one mole of complex is formed, the molar absorptivity of the complex is equal to the absorbance due to the complex divided by one-half of the morin concen- tration. 57 The molar absorptivities of the cerium and terbium complexes were calculated from absorbances measured for solu- tions containing varying amounts of the lanthanide (III) ion in the presence of a large excess of morin. The excess of morin insured complete reaction to the lanthanide (III) ion to form the complex. The observed absorbances are due both to morin and the complex. Assuming that for each mole of lanthanide (III) ion added, one mole of complex is formed, the uncom- plexed morin concentration was calculated and the measured absorbance was corrected for the morin absorbance contribu- tion. The molar absorptivity of each complex was calculated from the corrected absorbances. Concentration of the Componentsjn.Solution After Complex Formation. The calculation, as employed by Milkey and Fletcher (102) to determine the concentration of the compon- ents in a solution of the complex, was performed using the data obtained in the continuous variations investigation. In the lanthanide (III)-morin system at the concentra- tion level used in the continuous variations investigation only morin and the complex absorb radiation. If: X = moles of complex per liter (MH) = total moles of morin added per liter +++ (R ) = total moles of lanthanide (III) ion per liter Y = moles of uncombined morin per liter Z = moles of uncombined lanthanide (III) ion per liter 58 A = absorbance at the desired wavelength of solu- tions containing the complex b = path length in cm. (1 cm.) aMH = molar absorptivity of morin at the desired pH and wavelength aRM + = molar absorptivity of the complex at the 2 desired pH and wavelength then A aMH[(MH) - 2(X)] + aRM2+ (X) Solving for X A - aMH (MH) x = aRM2+ " 2 (aMH) The concentrations of uncombined morin and lanthanide (III) ion remaining in solution are calculated as follows: (MH) — 2(X) +++ Y (R ) - x and Z Calculation of the Equilibrium Ratio. Once the concen- trations of components present in solution have been calcu- lated, the equilibrium ratio, K'eq’ for the reaction, +++ + R + 2 MH = RMg + 2 H+ can be evaluated by substitution of the appropriate values into the expression (RM2+) (H+)2 K' — eq <8+++1 (MH)2 where 59 + RMa = X as calculated above +++ (R ) = Z as calculated above (MH) = Y as calculated above + (H) the hydrogen ion concentration calculated from the pH of the solution The data for the calculation of the equilibrium ratios are tabulated in the Appendix (Tables A-I - A-VI). The average values for K'eq are 0.83, 4.3, 2.7, 7.9, 0.73 and 2.3 for cerium, neodymium, praseodymium, samarium, terbium and thulium, respectively. The K'eq values are averages over the following approximate ranges of moles of lanthanide (III) ion to morin: for cerium, 1:1 to 1:2.3; for neodymium, 1:1 to 1:4; for praseodymium, 1:1 to 1:9: for samarium, 1:1.5 to 1:2.3: for terbium, 1:0.67 to 1:4 and for thulium, 1:0.1 to 1:9. The values for cerium, neodymium, praseodymium, and samarium are consistent with the values obtained by Fleck (99) for lanthanum, by Weiler (100) for gadolinium and lutetium, and by Van Eenanaam (101) for dySprosium, erbium, europium, holmium and ytterbium. The values for terbium and thulium are anomalous to a uniform trend in the lanthanide (III) series of complexes. 60 00H 0.66 000086 0H1606 666 000 66.0 00 000 6.06 8063 001606 600 000 0.6 00 00086 8066000 6.0 8063 0Hu606 666 606 0.6 SH 000 6.00 8063 001606 600 0H0 0.6 0m 000 0.00 8063 00-606 600 000 0.6 00 000 6.00 8063 H06> 001606 606 600 0.6 00 00086 8006600 60.0 8003 001606 006 800 0.6 SH 000 6.80 000086 0H1606 666 000 66.0 00 000 1-1 8063 H00> 001606 600 0.6 000 0.60 1-1 111 -11 600 6.6 00 00086 8006000 0.0 x003 0H1606 6H¢ 6H0 0.6 06 00086 8066000 6.0 8003 001606 000 000 0.6 02 00086 8006600 8.0 8063 006-606 600 680 0.6 00 H0086 8006600 66.0 8063 001606 600 600 0.6 60 00 6.0 000086 001606 666 000 6.6 00 moSmHmmmm 00.2 >8HmS08SH .HOSHHA .uHowa .meA mm S0H moSwomwuosHm moSmQHOmQ¢ mGOHUSHOm HOUMSIOCMXOHQ Omlom 0H mmmeQEoo SH0021AHHHV mflHSmnuqu 000 mmeHWQOHm Hmupommm USm.mmsHm> 00.2 .H 0HQMB SUMMARY AND CONCLUSIONS 61 62 A Spectrophotometric and spectrofluorometric investi- gation of the complexes of morin with cerium (III), neodymium (III), praseodymium (III), samarium (III), terbium (III) and thulium (III) in 50-50 DW solution was completed. The absorption band peak of morin occurs at 356 mu., while the complex absorption band peaks for cerium and praseodymium, neodymium, samarium, terbium, and thulium occur at 413, 414, 415, 417, and 423 mu., respectively. The complexes fluoresce only slightly more than morin when exposed to incident radiation of 365, 436 mu. or there absorption maximum wavelength. The complexes of lanthanum, gadolinium and lutetium fluoresce Significantly under the same conditions. The pH of the solution affects the absorbance of the complexes. A pH level of 5.0 was selected as the optimum pH for investigating this series of complexes. The absorp- tion maxima shift slightly to longer wavelengths with increasing pH. In the absorption Spectra of each of the complexes, a single isoabsorptive point exists. The isoabsorptive point occurs near 377 mu. The existence of an isoabsorptive point suggests that a single complex is formed. Job's method of continuous variations (137) and Harvey and Manning's slope ratio method (147) were employed to determine the empirical formula of the complex. These 63 studies indicate that a 1:2 complex, lanthanide (III):morin, is formed. An equilibrium ratio, K'eq’ for each of the complexes was calculated in the manner proposed by Milkey and Fletcher (102). The K'eq values for the cerium, neodymium, praseo- dymium, samarium, terbium and thulium complexes with morin in 50-50 0w at 2500 are 0.85, 4.5, 2.7, 7.9, 0.75 and 2.5, reSpectively. The absorbances for the complexes change linearly with changing lanthanide (III) concentration over the approximate concentration range, 0 to 2.3 x 10'5 M., in the presence of excess morin, 1.32 x 10‘4 m. The formation constants for lanthanide (III)-EDTA (151) complexes increase regularly from lanthanum to lutetium. In the present study, the concentration quotients for the terbium and thulium-morin complexes are anomalous. No ex— planation for this departure can be offered at the present time but the reaction between these two lanthanide ions and morin should be reinvestigated in greater detail. Furthermore, the acid dissociation constant for morin Should be evaluated so that the formation constant for the reaction R+++ + 2 M- ——\ RM2+ V. can be calculated. LITERATURE CITED 64 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 65 Fitch, F. T., and Russell, D. 5., Anal. Chem., 23, 1469 (1951). Clinch, J. and Simpson, E. A., Analyst, 82, 258 (1957). Willard, H. H., and Gordon, L., Anal. Chem., 29, 165 (1948). Hagiwara, Z., Technol. Rept. Tohoku Univ., 29, 77 (1955). . Bril, K. Y., Holzek, S., and Rethy, B., Anal. Chem., 31, 1555 (1959). Cheng, K. L., Chemist-Analyst, 41, 93 (1958). Crouch, E. A. C., and Swainbank, I. G., United Kingdom Atomic Energy Authority, Rept. AERE-C/R-2843 (Feb., 1959). Flaschka, H., Mikrochim. Acta., 1955, 55. Fritz, J. S., Abbink, J. E., and Payne, M. A., Anal. Chem., §§, 1381 (1961). Gimesi, 0., Rady, G., and Erdey, L., Periodica Polytech., .6. No. 1, 15 (1962): c. A., §§, 6167b (1963). Katsumata, S., Bunseki Kagaku, 1Q, 1259 (1961); C. A., .58. 6173b (1963). Lyle, S. J., and Rahman, M. M., Talanta, 1Q, 1177 (1963). Lyle, S. J., and Rahman, M. M., Talanta, 19, 1183 (1963). Sin, Peng—Joung, J. Chinese Chem. Soc. (Taiwan), Ser. 119, 41, (1962); c. A., 58, 2838e (1963). Tereshin, G. S., and Tananaev, I. V., Zh. Analit° Khim., 11, 526 (1962); c. A., 61, 144208 (1962). Kugai, L. N., and Nazarchuk, T. N., Zh. Analit. Khim., 16, 205 (1961); c. A., §§, 122999 (1962). Pershkova, V. M., Gromova, M. I., and Aleksandrova, N. N., Zh. Analit. Khim., 11, 218 (1962); N. s. A., 16, 18842 (1962). Pershkova, v. M., Gromova, M. I., Efimov, I. P., and Isachenko, A. V., Vestnik. Moskov. Univ. Khim., Ser. II 16, No. 4, 59 (1961); c. A., 56, 7980a (1962). Kugai, L. N., Tr. Seminara po Zharostoikim Materialam, Akad. Nauk Urr. SSR., Inst. Mettalokeram. i Spets. Splavov, Kiev, 1960; C. A., 12300b (1962). 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 54. 35. 66 Kuteninikov, A. F., and Brodskaya, V. M., (All-Union Scientific Institute of Mineral Resources, USSR), Zavodskaya Lab., 29, 792 (1962); N. S. A., 19, 26940 (1962). Onosova, S. P., Zavodsk. Lab., 29, 271 (1962); C. A., 51. 2836f (1962). Tikhonov, V. N., Tr. Vses. Nauchn.-Issled. Alyumin.- Magnievyi Inst., 1961, No. 47, 145; C. A., 91, 40101 (1962). "”" Moret, R., and Brunesholz, G., Chimia (Switz.), 19, 313 (1961): C. A., 99, 11354d (1963). Bruecher, E., and Szarvas, P., Acta. Chim. Acad. Sci. Hung., 92, 31 (1967): C. A., 91, 57728f (1967). Plaksin, I. N., Strizhko, V. S., and Fedotov, Y. S., Dokl. Nauk SSSR, 174, 162 (1967); C. A., 91, 6814k (1967). Powell, J. B., and Berkholder, H. R., J. Chromatogr., 29, 210 (1967): C. A., él, 96476s (1967). Sakodynskii, K. I., Zh. Neorg.thim., 12, 2171 (1967): C. A., El, 104796p (1967). Spedding, F. H., and Daane, A. H., editors, "The Rare Earths," John Wiley and Sons, New York, 1961. Trifonov, D. N., "The Rare Earth Elements," Prasenjit Basu translator, R. C. Vickery editor, Macmillan, New York, 1963. Vickery, R. C., "Analytical Chemistry of the Rare Earths," Pergamon Press, New York, 1961. Pollard, F. H., McOmie, J. F. W., and Stevens, H. M., J. Chem. Soc., 3436 (1954). Banks, C. V., and Klingman, D. W., Anal. Chim. Acta., ifi. 356 (1956). Moeller, T., and Brantley, J. C., Anal. Chem., 22, 433 (1950). Onstott, E. I., and Brown, C. J., Anal. Chem., 99, 172 (1958). Palmino, J. V., Castillo, F., and Cellini, R. F., Anales. Real Soc. Espan. Fiz. Quim. (Madrid), Ser. B, 99, 303 (1965); c. A.,,ég. 10758g (1965). 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 67 Schultz, C. G., U. S. Atomic Energy Comm. TID-6423, 6 pp., 1957, (declassified 1959). Stewart, D. c., AEC, Rept. AECD-2389 (Sept., 1948). Stewart, D. C., AEC, Rept. ANLr5624 (Oct., 1956). Ganopol'skii, V. I., Ganopol'skaya, T. A., and Barkovskii, v. F., Zh. Analit. Khim., 19, 729 (1963); c. A., §9, 8116c (1963). Holleck, L., and Hartinger, L., Angew. Chem., 91, 648 (1955). Scherbov, D. P., Mirkin, V. A., and Klimov, V. V., Tr. Kazarkhsk. Nauchn-Issled. Inst. Mineral'n Syr'ra, 1960, No. 5, 296; c. A., 91, 9194h (1962). Stewart, D. C., and Kato, D., Anal. Chem., 99, 164 (1958). White, J. C., and Apple, R. F., Talanta, 2, 176 (1959). Moeller, T., and Brantley, J. C., J. Am. Chem. Soc., 12, 5477-(1950). Rodden, C. J., J. Research Natl. Bur. Standards, 29, 265 (1941). Prajsnak, D., Chem. Anal. (Warsaw), 9, 71 (1963); C. A., 56, 13114c (1965). Sheka, Z. A., and Sinyavskaya, E. I., Zh. Analit. Khim., 2§J 460 (1963); C. A...§2. 2157g (1963). Tonosake, K., and Otono, M., Bull. Chem. Soc. Japan, .99, 1683 (1962); C. A., 99, 1902e (1962). Takahashi, K., Buneski Kagaku, 19, 343 (1964); C. A., 61, 1263b (1964). Munshi, K., and Dey, A., Chemist-Analyst,.9§, 105 (1964). Babko, A. K., Ukr. Khim. Zh., 92, 879 (1966); c. A., 66, 16182j (1967). Sheka, Z. A., and Sinyavskaya, E., Zh. Neorg. Khim., 12, 650 (1967); C. A., 61, 477632 (1967). Fomenko, L. D., Okun, A. E., and Yampol'skii, M. Z., Uch. Zap. Kursk. Gos. Pedagog Inst., 29, 216 (1966); C. A., fil, 104847f (1967). De Wet, W. J., and Behrens, G. B., Anal. Chem., 19, 200 (1968). 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 68 Rinehart, R. W., Anal. Chem., 29, 1820 (1954). Illner, E., 2. Chem., 1, 51 (1967); c. A., gg, 120366h (1967). Sangal, s. P., J. Prakt. Chem., §§, 126 (1967); c. A., 61, 10482a (1967). Sangal, S. P., Microchem. J.,._2, 321 (1967); C. A., 91, 113419V (1967). Admad, J., Ahmad, N., and Rahman, S. M. F., J. Ind. Chem. Soc., 11, 444 (1967); c. A., 99,7847u (1968). Holleck, L., Eckhardt, D., and Hartinger, L., Z. Anal. Chem., 146, 103 (1955). Kononenko, L. I., Mishchenko, S. A., and Poluektov, N. s., Zh. Analit. Khim., 21, 1592 (1966); c. A., 99, 51953h (1967). Poluektov, N. S., Vitkun, R. A., Tishchenko, M. A., and Kononenko, L. I., Zh. Prikl.~Spektrosk., 9, 625 (1966); c. A., §§, 89928s (1967). Dagnall, R. M., Smith, R., and West, T. 8., Analyst (London), 92, 358 (1967). Sangal, S., and Dey, A., Microchem. J., _2, 168 (1967); c. A., g1, 47728t (1967). Sinha, S. N., Sangal, S. P., and Dey, A. K., Chemist- Analyst, 99, 59 (1967). Moeller, T., and Telotsky, M., J. Am. Chem. Soc.,_ll, 2649 (1955). Sarma, T. P., and Rao, B., J. Sci. Ind. Research (India), 14B, 450 (1964). Sinha, S. N., Sangal, S. P., and Dey, A. K., J. Ind. Chem. Soc., 11, 203 (1967); C. A., 91, 28868w (1967). Ishida, R., and Hasegawa, N., Bull. Chem. Soc. Jap., 19, 1153 (1967); C. A., 91, 104879t (1967). Spacu, S. P., and Polostinaru, 8., Rev. Roum. Chim., 12, 388 (1967); C. A., 61, 35438e (1968). Takano, T., Bunseki Kagaku, 19, 1087 (1966); C. A., 61, 7708d (1967). 69 72. Mal'kova, T. V., Fateeva, N. A., and Yatsimirskii, K. B., Zh. Neorg. Khim.. ng 915 (1967); C. A., §1J 26380g (1967). 73. Akhmedli, M. K., and Gambarov, D. G., Zh. Analit. Khim., 22, 1183 (1967); C. A., 99, 18399a (1968). 74. Prafsnar, D., Chem. Anal. (Warsaw), 11, 1111 (1966); c. A., 61, 77289 (1967). 75. Takano, T., Bunseki Kagaku, 19, 27 (1967); C. A., 91, 3984w (1967). 76. Shimizu, T., Bunseki Kagaku, 19, 233 (1967); C. A., .91. 87476q (1967). 77. Negoiu, E., An. Univ. Bucharesti, Ser. Stiint. Natur., $2, 57 (1965); C. A., él. 78703j (1967). 78. Shigematsu, T., and Uesugi, K., Bunseki Kagaku, 19, 467 (1967); c. A., 61. 113452a (1967). 79. Budeninsky, B., Collection Czech. Chem. Commun., 29, 2902 (1963); C. A...§Q. 3478d (1964). 80. Fritz, J. S., Abbink, J. E., and Payne, M. A., Anal. Chem., 99, 1381 (1961). 81. Hiiro, K., Russell, 8., and Berman, S. 8., Anal. Chim. Acta., 91, 209 (1967); c. A., 99, 82104m (1967). 82. Akmaeva, N. L., Dedkov, Y. M., and Khramov, V. P., Zh. Anal. Khim., 22, 1482 (1967); C. A., 99, 56214u (1968). 83. Munshi, K., and Dey, A. K., Anal. Chem., 99, 2003 (1964). 84. Akhmedli, M. K., and Gramovskaya, P. B., Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Technol., 19, 271 (1967); c. A., 91, 113445a (1967). 85. Budeninsky, B., and Vrzalova, D., Anal. Chim. Acta., 99, 248 (1966). 86. Kirillov, A. I., Lauer, R. S., and Poluektov, N. S., Zh. Analit Khim., 22, 1333 (1967); C. A., 99, 26683d (1968). 87. Pribil, R., and Vesely, V., Chemist-Analyst, 91, 100 (1965). 88. Plaskin, I. N., Strikzhko, V. S., and Fedotov, Y. S., Dokl. Acad. Nauk SSSR, 174, 162 (1967); C. A., 91, 68141k (1967). 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 70 Milner, O. I., and Gedansky, S. J., Anal. Chem., 91, 931 (1965). Pribil, R., Talanta, 19, 1711 (1966). Pribil, R., Talanta, 11, 313 (1967). Pribil, R., and Vesely, V., Chemist-Analyst, 99, 23 (1967). Galaktinov, Yu P., and Astakhov, K. V., Zh. Neorg. Khim., 11, 2269 (1966); C. A., 91, 6220b (1967). Kovar, L., and Powell, J., U. S. At. Energy Comm. IS-1450, 54 pp., N. s. A., 29, 45623 (1966). Krishnamurthy, V. N., and Soundarajan, S., J. Less-Common Metals, 19, 263 (1967); C. A., 91, 78569v (1967). Adachi, G., Shiokawa, J., and Ishino, T., Kogyo Kagaku Zasshi, 19, 431 (1967); C. A., 91, 70155m (1967). Megal, P. K., and Chebotar, N. G., Zh. Neorg. Khim., 12, 1190; C. A.,.él, 76717t (1967). Kabachnek, M. I., Dyatlova, M., Medved, T. Y., Belugin, Y. F., and Sidorenko, V. V., Dokl. Acad. Nauk SSSR, 175, 351 (1967); C. A., El, 120502v (1967). Fleck, L. L., Ph. D. Thesis, Michigan State University, East Lansing, Michigan. Weiler, J. E., M. S. Thesis, Michigan State University, East Lansing, Michigan. Van Eenenaam, R. H., M. S. Thesis, Michigan State Univer- sity, East Lansing, Michigan. Milkey, R. G., and Fletcher, M. H., Anal. Chem., 29, 1403 (1956). Katyal, M., Talanta, 19, 95 (1968). Pringsheim, P., "Fluorescence and PhOSphorescence," Interscience, New York, 1949. Bowen, E. J., and Wokes, F., "Fluorescence of Solutions," Longmans, Green and Co., New York, 1953. Hercules, D. M., editor, "Fluorescence and PhOSphorescence Analysis," Interscience, New YOrk, 1966. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 71 White, c. E., Anal. Chem., 99, 116R (1964). White, c. E., Anal. Chem., 99, 155R (1966). Poluektov, N. S., and Kononenko, L. I., Sovrem. Metody Analiza, Metody Issled. Khim. Sostava i Shroeniya Veschchestv, Akad. Nauk SSSR, Inst. Geokhim. i Analit. Khim., 1965, 96; C. A., R2721d (1966). Kononenko, L. I., Lauer, R. S., and Poluektov, N. S., J. Anal. Chem. USSR, 19, 1279, Eng. Tr. (1963). Stanley, E. C., Kinneberg, B. I., and Varga, L. P., Anal. Chem., 99, 1562 (1966). Melby, L. R., Rose, N. J., Abramson, E., and Caris, J. C., J. Am. Chem. Soc., 99, 5117 (1964). Efryushina, N. P., and Poluektov, N. S., Zh. Analit. Khim., 29, 1073 (1965); C. A., 91, 5747e (1966). Yuan, K., Yao, K., Hu, C., and Chen, S. Hua Hsueh Hsueh Pao, 92, 169 (1966); C. A., 99; 13194b (1966). Onishi, H., and Toita, Y., Anal. Chem., 99, 1867 (1964). Lebedev, O. L., Magdesieva, N. N., Michurina, A. V., Ainitdinov, K. A., and YUr'ev, Y. K., Zh. Strukt. Khim., .1: 521 (1966): C. A., 99, 6842q (1967). Melent'eva, E. V., Kononenko, L. I., Koltunova, E. G., and Poluektov, N. S., Zh. Prikl. Spektrosk., 9, 328 (1966); C. A., fig, 60503 (1967). Derkacheva, L., Kudryavtseva, A. D., Peregudov, G. V., and Sokolovskaya, A. I., Zh. Prikl. Spektrosk, 9, 346 (1967); c. A., .61. 48795y (1967) . Butter, E., Seifert, W., and Holzapfel, H., Z. Chem., 1, 25 (1967); c. A., 61. 48803z (1967). Crosby, G. A., Whan, R. E., and Alire, R. M., J. Chem. Phys., 54, 743 (1961). Whan, R. E., and Crosby, G. A., J. Mol. Spectry., 9, 315 (1962). Kononenko, L. I., Lauer, R. S., and Poluektov, N. S., J. Anal. Chem. USSR, 19, 1279 Eng. Tr. (1963). Kononenko, L. I., Poluektov, N. S., and Nikonova, M. P., Zavod. Lab., 99, 799 (1964). 124. .125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 72 Kononenko, L. I., Tishchenko, M. A., and Poluektov, N. S., J. Anal. Chem. USSR. 12, 770 Eng. Tr. (1964). Lyons, H., and Bhaumik, IAA Accession No. A64-23435. Lempicki, A., Samuelson, H., and Brecher, C., Appl. Opt. Suppl., No. 2, 205 (1965). Brecher, C., Samuelson, H., Lempicki, A., and BrOphy, V. A., NASA Accession No. N65-15508, Rept. No. AD 447468, 19 pp. (1964); C. A., 99, 17356h (1965). Samuelson, H., Brecher, C., and Lempicki, A., J. Chim. Phys., 91, 165 (1967); C. A., 91, 489338 (1967). .Ross, D., and Blanc, J., Advan. Chem. Ser., No. 11, 155 (1967); c. A., 69, 34583m (1968). Alberti, G., Massucci, M. A., and Saini, A., Atti. Accad. Nazl. Lincei, Rend., Classe Sci. Fiz., Mat. Nat., 91, 173 (1963); C. A., 99, 12654h (1964). Akhmedli, M. K., and Bashirov, A. A., Uch. Zap. Azerb. Gos. Univ., Ser. Khim. Nauk, 1963, 39; C. A., 92, 189 (1964). Akhmedli, M. K. and Glushchenko, E. L., Zh. Analit. ,Khim., 19, 556 (1964); c. A.,91, 4934f (1964). Dombi, J., Ketskemety, I., and Kozma, L., Optika i Spectroskopiya, 19, 710 (1965); C. A., 99, 51289 (1965). Kozma, L., Acta. Univ. Szeged., Acta. Phys.-Chem., 9, 59 (1963); C. A., 99, 11566b (1966). Fletcher, M. H., Anal. Chem., 91, 550 (1965). .Nowicka-Jankowska, T., Szysko, H., and Minczewski, J. Acta. Chim. Acad. Sci. Hung., 95, 155 (1962); c. A., 6g, 2128b (1968). Job, P., Ann. Chim. (Paris), 9 (10), 113 (1928). Vosburg, W. C., and Cooper, G. R., J. Am. Chem. Soc., §§J 437 (1941). Katzin, L. I., and Gebert, E., J. Am. Chem. Soc., 12, 5455 (1950). Bent, H. E., and French, C. L., J. Am. Chem. Soc., .99, 568 (1941). 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 73 Yoe, J. H., and Jones, A. L., Ind. Eng. Chem. Soc., Anal. Ed., 19, 111 (1944). Hagenmuller, P., Ann. Chim. (Paris), 9 (12), 5 (1951). Hagenmuller, P., Compt. Rend., 230, 2190 (1950). Betts, R. H., and Michels, R. K., J. Chem. Soc., 1949, S286. Shaeppi, Y., and Treadwell, W. D., Helv. Chim. Acta., g. 577 (1948). Schwarzenbach, G., Helv. Chim. Acta., 92, 839 (1949). Harvey, A. E., Jr., and Manning, D. L., J. Am. Chem. Soc., 12, 4488 (1950). Hess, K., and Frahm, H., Ber., 11, 2627 (1938). Fieser, L. F., "Experiments in Organic Chemistry," 3rd Ed., Heath & Co., Boston, 1955, pp. 284-5. Schwarzenbach, G., "Complexometric Titrations," Interscience Publishers Inc., New York, 1957, pp. 55-6. Yatsimirskii, K. B., and Vasilev, V. P., Consultants Bureau, New York, 1960, p. 185. APPENDIX 74 75 .msam> mmmum>m may Mo COHpmHDUHmu mzu CH Umpsaucfl uoz * .wpsum mCOHumflum> mDOSCHucoo 0:» CH @005 mQOHusaom Eoum Umcflmuno 0003 mumo paw mmsam> mUGMQHOmnd Hmufla 00m GHHOE UmcHQEoucs mo mmaoz u w .HQHVHH .Hmm AHHHV EDHHMEMW UQCHQEOUCQ MO mmHO—Z. " N GHHOE " m2 -u- 000.0 00.0 In- 0.00 0.00 0.00 0.00 .00 00.00 000.0 00.0 0.0 0.00 0.00 0.00 0.00 .0 *0.00 000.0 00.0 0.0 0.00 0.00 0.00 0.00 .0 00.00 000.0 0.00 0.0 0.00 0.00 0.00 0.00 .0 00.0 000.0 0.00 0.0 0.0 0.00 0.00 0.00 .0 0.0 000.0 0.00 0.0 0.0 0.00 0.00 0.00 .0 0.0 000.0 0.00 0.0 0.0 0.00 0.00 0.00 .0 0.0 000.0 0.00 0.0 0.0 0.00 0.00 0.00 .0 In- 000.0 0.00 0.00 In- 0.00 0.00 0.00 .0 .u. 000.0 00.0 0.00 In- 0.00 0.00 00.0 .0 000 0000 000 x 0\z 000 x 0x: 000 x 0\2 000 x 0x: 000 x 0x: 000 x 0x: .12. . N .0 4 00... E., 000 +++ 00 0000 00 30 00-00 00 xmaQEOU GHHOZIAHHHV EDHHmEmm may mo mmsam> . .M .Oflpmm EDHHQHHHDvm Umumfifiumm .HI< manna 76 .ms0m> 0mmnm>m may m0 c00u00900mo may :0 UmUDHUC0 uoz * .mwsum 0:00um0nm> msosc0ucoo may c0 Umms mc00u900m Eonw Uma0muno 0003 0000 0am mmzam> mocmfluomflé Hmu00 00m :0008 Uma0nfioocs mo 00002 n M umu00 Hmm AHHHV ED06>©ommmum UmG0QEOUcS mo mmaoz u N CHHOE " m2. *Nmm m00.o 0m.m 0.0 m.m0 0.00 mm.m 0.0m .00 *0.00 000.0 00.0 0.o 0.00 0.00 0.00 0.00 .00 *m.00 0mm.o 00.0 0.0 o.mm 0.00 0.00 0.0m .m *N.m0 om0.o 0.00 0.0 0.mm 0.00 0.Nm 0.0m .m 0.0 000.0 0.m0 m.0 n.00 0.00 0.mm 0.mm .0 0.m omm.o m.m0 0.0 m.m 0.00 0.0m 0.Nm .0 N.N m0m.o m.m0 0.0 0.0 0.00 0.0m 0.00 .m m.m omm.o m.m0 0.00 m.0 0.00 m.0m 0.m0 .0 0.m mmm.o m.m0 m.m0 0.0 0.00 0.0m 0.00 .m 0.0 om0.o 0.00 0.0m 000 0.00 0.m0 0.00 .m 0.0 m0m.o 00.m m.o0 m.o 0.00 0.0m m0.m .0 000 0000 000 x 0\z 000 x 0\z 000 x 0\z 000 x 0\z 000 x 0\z 000 x 0\z +mazvum w 0 +0 00000 00000 00009 m: 00009 .H O +++ m 000 0 ill! 1'. U0 00mm um 3D omlom C0 meQEOU G0HOEIAHHHV ED0E>Uommmnm mzu mo 00500> . .& .O0umm ED0HQ0H0DUm UmumE0umm .HHI¢ 00909 .0s0m> 0mmu0>m 020 MO c00000500mo 030 :0 00050020 uOZ* .mwsuw 0:00u0000> 0903:0uc00 020 Q0 U00: 020005000 Eoum U0c0muno 0003 wumw 0cm 000:00000Q¢ H0000 00m :0HOE U0G0QEOUCD no 00002 H N H0u00 00m AHHHV 89052000: U0G0QEOUGD mo 00002 I N 77 :0002 H 22 In- 000.0 00.0 In- 0.00 0.00 00.0 0.00 .00 *00 000.0 00.0 0.0 0.00 0.00 0.00 0.00 .00 In- 000.0 00.0 0.0 0.00 0.00 0.00 0.00 .0 *00 000.0 0.00 0.0 0.00 0.00 0.00 0.00 .0 *0.0 000.0 0.00 0.0 0.00 0.00 0.00 0.00 .0 0.0 000.0 0.00 0.0 0.0 0.00 0.00 0.00 .0 0.0 000.0 0.00 0.0 0.0 0.00 0.00 0.00 .0 *0.0 000.0 0.00 0.0 0.0 0.00 0.00 0.00 .0 0.0 000.0 0.00 0.00 0.0 0.00 0.00 0.00 .0 0.0 000.0 0.00 0.00 0.0 0.00 0.00 0.00 .0 *0.0 9000.0 00.0 0.00 0.0 0.00 0.00 00.0 .0 00.x 0000‘ 000 x 0\z 000 x 0x: 000 x 0\z 000 x 0\2 M00 x 0x: 000 x 0\z ..A...z 0 . .. .2 00000 .. 00000 H. .. +++ 00 0000 00 so 00-00 :0 xm0meoo c0002IAHHHV ES0E>©00Z 030 Mo 00500> . .M .00pmm 5500000050m U0pmfi0u0m .HHHId 00908 .w0000 0c0000000> 0909000c00 000 C0 0005 000005000 8000 00000000 0003 0000 0:0 00500> 0000000004 78 00000 000 00005 00:00E0005 Mo 00002 H M 00000 000 AHHHV 8000000 00:00Eoocs mo 00002 n N CHHOZ " m: o.m 050.0 00.0 m.0 m.o¢ 0.00 00.0 w.mw .00 0.m om0.o 0m.m m.0 0.0m 0.00 >¢.m m.>m .m 0.N omm.o >m.m 0.m m.>m 0.00 N.¢0 0.mm .m m.m mom.o 00.0 ¢.m m.om 0.00 m.m0 «.mm .0 m.m o>m.o >m.m o.m n.00 0.00 >.mm >.mm .m O.N 000.0 n.00 m.~ m.m 0.00 ¢.mm m.m0 .m >.0 omw.o 0.00 0.00 m.m 0.00 m.0m m.m0 .0 0.0 m0¢.o N.O0 >.N0 0.0 0.00 0.mm N.¢0 .m 0.0 mmm.o m0.m m.0m mm.0 0.00 m.nm >¢.m .N III mmm.o mo.m m.mm III 0.00 m.mw 00.0 .0 v0 .0 0000 000 x 0% 000 x 0\z 000 00 0E 000 x 0\z 000 00 0% 000 x 0\2 002050 0 N 0 00000 00000 00000 + + 02 0000.0. 5.0. 0000.0. +++ 00 00mm 00 30 omlom C0 x00mEOU 0000210000v 5500008 000 00 00D00> . .M .0000m ES000000DUm 00008000m .>HI¢ 00009 79 .msam> mmmum>m mnu mo coaumHsono may cw @mUSHUcfl uoz* .avsum mCOfluMflum> msoscflucoo mnu ca 6mm: macausaom Eoum UmCHmqu mum3 mumn Ucm mmsam> mmuchHOmQ¢ umufia umm GHMOE UmCHQEoucs mo mmaoz u M Hmufla Hmm AHHHV Esanumu UmcHQEooc: Mo mmaoz n N afluoz n m2 * 5.0 000.0 00.0 0.0 0.00 0.0a 00.0 0.00 .HH * 0.fi 000.0 mm.m 0.0 0.00 0.00 a.0fi 0.0¢ .0fi *00.0 m0m.0 H¢.m 0.¢ 0.0m 0.0a «.00 0.00 .0 m5.0 mam.0 fi0.0 0.0 0.00 0.0a H.0m 0.00 .0 05.0 000.0 00.0 0.0 5.0a 0.0a 0.0m 0.0m .5 fi5.0 000.0 05.0 0.0a 0.00 0.0a N.0m a.0m .0 55.0 000.0 00.0 0.mfi 5.5 0.0a 5.mm 0.5a .0 55.0 000.0 00.0 0.0a 5.0 0.0a 0.00 0.0a .0 05.0 000.0 05.0 5.0a 0.0 0.00 m.mm fi.mfi .m 00.0 000.0 m0.5 0.¢N m.m 0.0a 0.0¢ H.0fi .m *flm.0 000.0 0H.¢ 0.50 0.0 0.0a 0.0¢ 00.0 .H 0m.& 5H¢¢ 00H x H\z 00H x a\z 00H x H\z 000 x H\z 00H x H\z 006 x H\2 NAEVQB w N +m 0m004 0m004 HMHHB + m2 Hmuoa +++ns Hmuoe vm 00mm um 3D omlom Cfl memEOU cfluozuAHHHv asflnuma map 00 mmsam> . .x .oaumm asflunflaflswm Umumeflumm .>:¢ magma 80 .msam> mmmum>m may mo coauwasoamo ms“ :0 UwUsHUCH u02* .mvsum mu0000000> 0509200300 may CH Umms mc00u500m 800m Umcflmuno mHmB mumc Ucm mm50m> mocmnuown¢ umufla 0mm GHHOE Umcflneoocs mo mmaoz I N Hmufla 0mm AHHHV Esanmu UmCHQEOch mo mmHOE u N c0002 u m: 0 0.0 000.0 00.00 0.0 0.00 0.00 05.0 0.00 .00 0 5.0 050.0 00.0 0.0 0.00 0.00 0.00 5.00 .00 0 0.0 000.0 00.0 0.0 0.00 0.00 0.50 0.00 .0 0 0.0 000.0 00.0 0.0 0.00 0.00 0.00 0.00 .0 0.0 000.0 0.00 0.5 0.50 0.00 0.00 0.00 .5 00.0 000.0 0.00 0.00 0.00 0.00 0.00 0.00 .0 05.0 050.0 5.00 5.00 0.0 0.00 0.50 0.00 .0 05.0 050.0 0.00 0.00 0.5 0.00 0.00 0.00 .0 05.0 050.0 0.00 0.50 0.0 0.00 0.00 0.50 .0 050.0 000.0 00.0 0.00 0.0 0.00 5.00 0.00 .0 000.0 000.0 00.0 0.00 0.0 0.00 0.00 05.0 .0 00.x 0000 000 x 0\z 000 x 0\z 000 x 0\z 000 x 0\z 000 x 0\z 000 x 0x: ..sz.o 0 0 .0 mg 00000 .0 00000 0.0.0 +++ Um 00mm um SQ omlom CH memEoo GHHOZIAHHHV Esanmu m5» mo mmsam> . .M ~oaumm Esaunflaflnvm Umumfifluwm .H>1< magma If!!! 81 00.m\00.0 00 000000 000 00 00000 000 .000 x 050.0 .m 0000 00 00000 0 00 x 050.0 .0 0000 00 00000 .00 000000 0000 GOHubQHHWGOU CHHOE wmeXQ MOM UmemHHOU wUGMQHOmQAN** COHuDQHHuCOU AHHHVEm mmmuxm How Umuumnuou mUCmQHOmn¢* hfim.o OO.m mN.HN .m mmO.H OO.m wm.Nm .m mmb.0 OO.m N®.md .5 Ofim.O OO.m Nm.m¢ .h mmm.0 OO.m mm.md .m mmb.o OO.m Ob.mm .m Ham.0 OO.m OM.MH .m mmm.0 OO.m mo.mm .m mhm.0 OO.m fim.OH .w mNm.O OO.m h¢.®N .¢ mMN.O OO.m mm.h .m O®M.O OO.m mm.mfi .m mNH.O OO.m mm.© .N m¢N.O OO.m MN.MH .N mm0.0 OO.m Nm.m .fi MfiH.O OO.m Nm.m .H **m00< mm 00H x H\Z HMHHB *m0¢¢ mm 00H x H\2 HMHHB A+++Emv ACHHOEV 2 0IOH N mm.H ~CHHOE mmmoxm EMIOH x mm.m sAHHHvEm mmmoxm 00mm um 3Q omlom CH memEOU CHHOEIAHHHV EDHHmEmm Mom wumn oHumm mmon .HH>I¢ mHQMB 82 .00.m\00.0 00 000000 000 00 00000 000 .000 x 050.0 .0 0000 00 00000 0000 x 00.0 .0 0000 00 00000 .00 000000 0000 COHusQHHuCOU CHHOE mmmuxm 00m Umuomuuoo mUCmQHOmQ¢** COHpSQHHpCOU AHHHVHm mmmoxm How vmuumunou mUCmQHomQ¢* 050.0 00.0 05.00 .00 000.0 00.0 00.00 .0 005.0 00.0 50.00 .0 000.0 00.0 00.00 .0 000.0 00.0 00.50 .5 000.0 00.0 00.00 .5 000.0 00.0 00.00 .0 005.0 00.0 05.00 .0 000.0 00.0 00.00 .0 005.0 00.0 00.00 .0 000.0 00.0 00.0 .0 000.0 00.0 50.00 .0 000.0 00.0 00.5 .0 000.0 00.0 00.00 .0 000.0 00.0 00.0 .0 050.0 00.0 00.00 .0 000.0 00.0 00.0 .0 000.0 00.0 00.0 .0 0 0000 00 000 x 0\z 00000 00000 00 000 0 0x: 00000 $01000 b00005 2 0:00 x 00.0 .0000: 0000xm 20100 x 00.0 ~000500 0000xm 00mm um SQ omlom CH memEoo CHHOEIAHHHV ECHfimvommmum 00% mqu OHumm mmon .HHH>I¢ mHQMB 85 .00.0\00.0 00 000000 000 00 00000 000 .000 x 00.0 .0 0000 00 00000 0000 x 00.0 .0 0000 00 00000 .00 000000 0000 COHuDQHHuCOU CHHOE ammuxw 00m @muomnuoo moCmQHomQ¢** COHuDQHHuCOU AHHHVUZ mmmoxm How Umuumuuou mUCmQHOmQ¢* 000.0 00.0 00.00 .0 mmm.o oo.m om.om .m 00m.o oo.m 0m.mm .m 000.0 00.0 00.00 .5 005.0 00.0 00.00 .5 mHm.o oo.m 00.0H .m mwm.o oo.m oh.mm .m mmw.o oo.m 0m.MH .m 00m.o oo.m mo.mm .m 000.0 00.0 00.00 .0 000.0 00.0 50.00 .0 00m.o oo.m mm.m .m omN.o oo.m mm.mH .m mmN.o oo.m mm.m .N mom.o oo.m MN.MH .N mmH.o oo.m >0.N .H mmo.o oo.m Hm.m .H 000000 00 000 x 0\z 00000 *0000 m0 000 x 0\2 0000B A++0wzv WCHuozv 2 0:00 x 00.0 000002 000000 20:00 0 00.0 00000002 0000xm 000m 00 30 00:00 00 x000000 000oz:00000 000000002 000 000C 00000 00000 .x0:< 0000a 84 .000 x 00.0 .N 0000 00 00000 .mm.m\00.0 00 000000 000 00 00000 000 0000 x mm.0 .0 0:00 00 0&000 .0m musm0m Eoum 000059000c00 GHHOE mmmoxm 000 000000000 mUGMQHOmQ¢** 000099000aoo AHHHVEB mmmoxm mom Umpomuuoo mUGMQHOmQ¢* 0mm.o oo.m «m.m0 .00 000.0. 00.0 00.00 .0 0m0.o oo.m 0m.m0 .m omo.0 oo.m 0m.mm .m mwm.o oo.m 0N.¢0 .0 omm.o oo.m mm.m¢ .0 mmm.o oo.m 0m.00 .m mm0.o oo.m 00.mm .m 0m¢.o oo.m >¢.m .m omm.o oo.m mo.mm .m Nmm.o oo.m 00.0 .0 omm.o oo.m 0¢.mm .0 mom.o oo.m mm.m .m own.o oo.m mw.m0 .m M00.o oo.m m0.w .m omm.o oo.m mm.m0 .N 000.0 00.0 00.0 .0 000.0 00.0 00.0 .0 000000 00 000 0 0x: 00000 00000 00 000 x 0x: 00000 A+++EWV kbfluofiy 2 0:00 N mm.d 0:0002 mmmoxm 2 030.0 x 00.¢ .AHHHVEB mmmuxm 00mm pm So omlom c0 XmHQEOU Q0HOZIAHHHV EDHHDSB How 0000 000mm mQOHm .xld magma 85 .Nm musmwm ca wmuuoam muma .:0Husnfluucou GHHOE mmmuxm Mom Umuomnuou mmoamnuomn4* mom.o oo.m wm.mm .ofi m¢m.o oo.m H¢.HN .m mmm. oo.m mm.mfi .m mm>.o oo.m mm.ma .m Ofim.o .oo.m mm.pfi .m mmm.o oo.m mfi.hfi .5 mnm.o oo.m oa.mfi .w mmm.o oo.m um.¢fi .m >mm.o oo.m mm.mfi .m Nm¢.o oo.m N¢.fifi .m mm«.o oo.m ”o.ofi .m «om.o oo.m mm.m .w ¢mm.o oo.m mm.p .w mwm.o oo.m ¢H.> .m ¢mm.o oo.m mm.m .m ana.o oo.m Hfi.m .m mmfi.o oo.m mo.m .m mwo.o oo.m mm.m .H mmo.o oo.m mm.m .a *mav< mm 00H x «\E HMHHB *hfl¢¢ mm 00H x H\E HMHHB I, “+++muv \%+++QEV 2 «led x mm.ax4cfluoz mmmuxm Z «IOfi x mm.a wafluoz mmmuxm ‘l 00mm um BO omlom CH CHHOZ mmmoxm mo mocmmmum CH coflummucmocoo AHHHV wwflcmnucmq maa>um> cmSB mmxmamfioo CHMOSIAHHHV Esaumo Cam AHHHV EDHQHmB Mom mmcmsu mucmnuomn¢ .Hxl¢ magma M'TITI'IWUSIIIEJUJTIIfliflillifflTLfll'lflMjlfiJWES