III' III II I mm I I .II I I III , III I “A I I I I II III A STUDY OF THE CORRESPONDENCE BETWEEN POINTS OF A SPACE OF THREE DIMENSIONS AND LINES OF A SPACE OF FIVE DIMENSIONS THESIS FUR THE DEGREE 0F II. AT Margaret Grace WaIcott 193?. . 11¢} . .43. .- .1- 31.1. .I . “XIV. . . I y . . . . v o I A ‘ . : .| gm w .5 a, “5L *w MSU LIBRARIES “ RETURNING MATERIALS: PIace in book drop to remove this checkout from your record. FINES wiII be charged if book is returned after the date stamped below. ..‘ ~. , fl vv 1 v To D,.L et:. linear co:binations*’of{>,.k etc. f: (14(5), ue find that Pw= (T‘wflj) + (It, 3/») = (xi-£12,?)H-{4/m/Lffig) '3 (4, (a) + (fl-fiflagpm (14/1,) '=(H‘£Jp +maf'ff * v: * . - .2-.. -7\' no r . _ r N .4- . L.p. Lane, Tue Piolectr»: ulI-€L~ tldlgfiGQ eti¢ or ; cbegs o —. ‘oz- #1.. We: a 4-H u-A WW 3:” II— 5- Linear Feroreneoue D$J‘CILTbLCI 2o etione i tre -iie Cicer, Transactions of the American In 735. w In e si ti ar manner we nan find the first derivatives of f ,‘7, etc. he explicit e: :Iessi ns for there are P“ = (H‘£)€+m€-{, Tw=Jgf+p7y+Ltg 7)..=(b—£;)b+(o’+1:)€+h’\(2+fi, (2’1) 1,:(1- %)f+ 4335—5-13? M ) 14;; §*)b+m(oi+§)§'—mp\p+:éa «A, A“: (4+£~+b)L-%f-M?+£ 7+Lfi, 9.: (B-%)Pt’”’?"7h fly: InrY‘gi-Nf’ §,=(s-g)r+oct to u and v. In pa rt101lar \e fin ,0“;- (fl- 1:),olr [Hm‘rn—nL-fi fiz?+P- til/3+(m14mm); +MF);-(,4+1&+A){—fi}7 f,v=(B-9c)p1+tzava— 13%” emu/111111)); +mrE—(B+2;+z)>7-Y{, f“: at fw+(dw+fim+€-§;rmL)E+(51,—{3£ +{3111)77 *flL (23) —LE1-(@M+4L«g;§+L1)f, p1,: (B—é;)p..+£ 614+MM- %%-“4.15 +6 “139me +(mbv‘fitmfl’7HquH‘; few-4 AfV +(dv+(37)‘f +(G‘Tr/3V+L»w) 77 +(flm-f—L I3~—’:—,§ +Lv)f’ '"L’7o Using the expressions defir in: f“ and /» fron (21) we nay elin inate‘v and § £10111 he first two of equations (33) obtaining the following eXpressions ,owu )Fw+()fv+()/0=(/mw~mfl’/)f+ (mums: )7, Fvv+()(3w+( )[JVHHH (44.,- 4~8~g “7+ (m'w)>’ 5', wherein the coefficients Of,%.7m_af are immaterial for our :0 purposes. We may readily see that p .1. or ,0W will be a linear raietric nets v= const. :1: combination of WW , f’v 'f that is the p or u = const. on the surface SF at p will be asymptotic if CaseI ma—mH—feo, A9“””="a Case II ,mv-mB-a—eO, ”9-41.47 Case III mw~MH“/= 0, f3 :0: Case IV 41, V _ ,y, .3 ‘3 =0, 7 = a. If n-m = O the nets fly and 2-1 are radial transforms 1". We fix .. (-1 * ul‘OVC, Lets, n. 41.6. ‘ 3 - 1 5 j- ' r . - , ‘ ,-' - ». ' v. _, .0 J-L‘ . A“. 'Y? ‘1 eiclnoed this case at the DEfilJnlmb 01 the paoe1. as shall consider cases III and IV. he asymptotic nets on 3r ani 31., the focal surfaces of the coniruence of lin V (D U1 ‘5 U C), H (D C‘- (T) "I; {.J 8 Q: by the expressions' (g ‘40., +MB) ab»; ' (M'fl’w) fidu”:o (f— ”aw/mg) cat’- — (Mar/w) 7-1411 2 o. For case III these equations reence to JA~1=0 4/0’7-0. J (0 g“ H H) '1) O (D U.‘ (I) SD A) U) 1 Thus the asymptotic curves on the focal form only one one parameter fa ily, is. t are devzlopable. Case IV gives the same result. We may, there- fore, state the theorem; The parametric nets n.§P will ‘3 agygptotic if anl only if he focal surfaces s1 and s1“ are developable- W nag eli 1nate,¢ fion the t;1“C of equations (23) by using the value of {,from (El). Te find :11, +< ) t1,” )5 +1); = (apt: +p1.))7+(1,e~1+17L—z1{ flap-LE. u' €1.11. will be a linear combination of ’6‘“, 5: f if l3:(_= 0° Pica-"— ever, we must excluce ttis case since it reduces equations (El) to f~=¢ig . This equation infioates tLat the surface 3; is only a 3UTVG° ffifimnflfi also b: a linear con- 0 . , H N . 5L... .--,. “1 -' H-‘“1 'e surface a »1-leo e OJbCln s1m1lar *esalts . _‘. M .... _ _ “.7 ., . 1n1n1 g,,. ,x31rrx, ther11013, strte (or {Jae 'L"3 “1,". “"‘ LLu thao on; The r31_:et:ic nets on 3? 09? ot be PS“‘“tOfiC- e obta1n t1e s~ve result 10: the su11>c~s on, Of, :5. $7.: 4.“ ,q, .: - 1 .9: ..' .. “1 -. C \ .._. . -_. .—‘ :._..' .s1nc one exo1ession ce1lnin5 g; Iiom (kl; we ”a, ell inate from the third of eq Hat one (85) if L # 0- Te ootai: the P folloving result €11.11.+()€u_+c)§+()fz= fl /L-L f. C1 ‘s 1 ‘¢ T‘ s a covariant po i‘11t on the line joining,fi‘h)£’in.3~ lies in ct he 33 determined by the osculating plane to tne curve v = const. and the pointy). To th s point in 35 corresponds the line in S joining; the point ,4, to the point fl‘L'I'Lfl . The Leo ne trical inter r.) retation of the latter point was given on page 13 of this panor. Siniler points may be found by using eXpressions involvin; y)“, ’{u ’ va . The functions'fi and € may be eliminated from the fourth of eouations 85). The resulting err ~3ssion for pk, is of the forn Pam-k WW“ 1?,“ >p=7+ “Ht; H [4+(m§;)%1£+f@+xi+(e+fi+x)ggun +[L +AM +(M1'AN)§£]F +(A-7g2j“ If the tangent line coincides with the line joininfi f to n , that is if the surface generated by r is a develOWa ole, the coefficients of,: and L,in (25) must be zero. In that case #3 find L +x(ffl+-(hA+-K N’)%fi,= 0, A—éfi‘ :0. A [\‘1 O) V Elinineting A from equations (28) we find (27) LIL»; rammw+nue=a Liketise elimi11ati Mgfi,fronv (??) we find F J “’5 O (2.3) L.+ ZMA +N/l’20. w Thus tLe line joining ted points ? ana & in S, gene“ates a C“ ears eter faeelies of develoge*lc surfaces. From (22) we see that the develonables of this con ruence correspond to the 0 * ' 10v ‘ ..’.‘ -'—- ‘ as; ptotlcs on St 1n 8 . ae may, tnereJore, state tee tneorem: The line joinigg»§_and A in‘g generates §_Conqruedceo Ibe * — 5 1 €:e n.§5 f the agyrnto 108 3 §_ '; gs are the curves 0 "\ - r‘,* . ‘1‘ t .‘g/xyh‘ q ‘1‘ . q , I J? -T.‘ f age 3 muleu celreeéeua t t.e Qevelqgaoles o; the cei,ruence A SiILlar theorem may be stated for fZ'and S . I h“ -f. v d- ' 0 v0 va" " I '.'..L art, L'P’ Princeton .. C“ 5“; f‘ .4 “duh-.1 _ ews cel f e i ., S , I. I . VJ v. Lb C o t ND ”f 3 av 3i my my .1 .5. 0—K“ 3 Aug “v b 4 O S a L 3 Z T. . _ T D «J l +. .. . n ‘1 a C t 8 a C ... ..(. C .l C .v. .1 S t 8 , A I t 8 G 3 e E - I” .1 8 1L. 1 A O .u“ .u. a P o t 4.. .L 8 DJ Lb +u h.“ h“ t H H m. 1 t 3 C e, n‘. A I I :1 W R. e E O t f C r.-. 0T. B . O .l f f S b I .l .1 .fl . e D E nu. ) e .1 .1 Ce C A G S .T, be H V H» C .3 e e .1 D a l .C 2..“ II C Elk 1 .Tu C L A O 3 e a O P «I . .j K I 3 S 0) AU 0 T Op 8 T . .. S .1“ DI O. o l r “I 1; U... I O O O l e e V C . L./\ a“ I .0 t T a r 3 C O n... C I... . “a mu e“ In mu mu S . .1 t e . n . P L S .l a Tu ab 1 o r C I O Ef .1 J 7 )T V. C AT. A: .i. i e 8 «mm n .I. 8 C. r‘ 1 'k’C) 1 La Coo—Tl Itton & t. ‘ D .p. .4 1"! H TIS- {N (i? " .; H awn"- _ ...'\_“‘L_ cu‘d lle, Di ’"C’I’Vi ‘0“... v. .‘I omv a D .“v ’.c.. p‘.‘ ’ ‘. <. {’flf"" {“8'1‘sz : - _ ‘ I' 4 ‘ I ni-I“ ' f’ ‘7’)“ .l‘ h". " I't'v‘. k' Iti'w‘ .\\.\ ~\ k-‘ ,p .'."".".“:' 9"" “ )3 ’3 1 {£33. )' fut”; I. . '.~-. («51' 1 h.“ . “ ' ' v r . ' - , \ . ~I " 4 "‘0 .v v. V' v‘ a '10- \ ' ~ 1‘ ‘ . .«r,- K.- - ~ , ' ‘3"\*.15',,J"~,:4j’ .1 i'flr’ rt _. .'.3 J 1‘} “' -‘v u. ’3' ‘ «'1. IN: ' " -{ " ..-; , . J ‘u ._ ‘. 4“‘ k. )'< . ' u; 2" ' ‘ . . . . ’.’ .\ ‘ ,‘ 1.. , 14 K . 1.4 "f . ‘ .,‘ .. . ‘.'.\ g "I ' ‘1 ...u . .~.-. Nth . . ‘ '.‘ ‘ .‘ . . . ‘ 4' ‘~ _ 7... - 1:}: ; ,‘cw w ' ’=’\ I, z \ t , . M ' " . -' wk» é: . ‘: r. r’fi’wm" 5.13 :t j"; n, ".9’.' v'v'e‘J} " M , -~ "F“rb' , ,, 3- .. ‘t 44. {'1‘ «7“ 3. "1 \ ~ ‘ 0, . . ‘ x ' .\ " 'I , I O ‘ I t '- 1 _ _ ,- . w..-" ' 'r’wué-‘Jn'wé -« . _... * ' . $ ... ‘ ...-Lt: ,_,, [I 3:4? (Q‘I‘. 'f 4" . . ‘? I'J.‘ :n I" ' I .' . . ' ., . '. -9 J I 8 I ' . . _ ' 1' '(‘\ ... IL'L . ‘ . ...; ’ f,‘ ‘,‘A . . ‘ ‘ “‘ ‘¢- 1 | ’8 2.. A. y .g f ’ . \ I'v‘ .ji'el ‘ I {Wm‘é-“L ‘ *Q‘ ‘4}: “c "-1“ I. "' » g ’. t . ‘ “x ' '-,’ .- ,. j t t :5- .- m c , g I, V 4 ' ... ,’ v \ c ' | ,l ‘ . . ' .‘ .é‘t 3"... 1‘11‘ I r,~. 1,65 I’ V“ 9744‘; _ o‘ I‘m,» ' _, '. ' _ ~ ‘5‘. y . - -}‘3 ”3:14.333, v;-h.' l'» 1‘ ‘3. 1" Ill ‘ ‘ J I i. 'l " " _ t ' ' 'O * “ “,. I‘vi ‘3! mix." {A ~1 -' ' 1r “e - ~!‘-. .' - ' ’ \ ' ‘ .' ' . ‘ I .‘w a‘l‘ .1 -' c": 5' y'wlk'lp" "I ‘ H“ ..a‘yu r145}, :19“- .‘ . . “ I v , . 'N:f".'3 HI - {‘-,.’~-¢ ;“ . ..n _ . . . --‘ . .a t s " ‘ ‘ \ ' ' a ’ h ' “...‘r;.“’. .,-\ ’ i; ,".‘ I , . . ~ I. o ‘r‘l , i O . . vgz ~3-yp ~_ '_ '- ~‘wu : .u- 2;" . -. I ~. , ' ' . ' - . ‘ ' ’- 6'9 Ii‘ \_ 1 ' -_ '1_.?..,“," ‘ilf ” "» ,-' f (I:.It-k" ‘ \‘ ‘ I; .w .g,} ' . ' o ' D A r \ .v H z" z . .. 4): x |‘ 3."‘.‘~r“;; : l ‘.‘ .-,V .4 x .' ' -- ,( ‘ ‘ ' ’. ' 1' ’;~ H1; . . I ‘ “ ‘ I \ ' . - ' ‘iu', . ‘VA' _‘3‘ v ' i‘ >. ’ I .v.\ ‘.“‘ . . ‘ ‘ " V ‘ . ‘ :q-O- I . ‘ ' o ..- ‘ ' ' “hi ‘ ~ I"- ‘4. t. 4 ’ I. . .V v!" ‘ '\ l - a. I “~91"- . a of i” ‘ . 1 _ j‘ c!“ n '3" ‘u aft5v\ ' . 5._ 3t“ ( ",‘ré‘ ‘0‘ 91 ”'1 .: .‘ 3%.... .f 1‘ .' ‘ ~‘ . .‘ 2‘ . ‘ '. ' . O -. J, . (Qa' fa :, . kt. ' ‘ r I" . I , r "a". :7 . f‘f "'r V) .~ v" D 1 .7 '. . n . '. O:.“ ' - c ‘ . I ’. H) "-1pu" ' Vs " 1“'[. h I. -. - 3;} u, - , ‘K' ., v . v A? , ‘b; 1"». ‘>~.':., ‘; - .‘ 1 '. a ‘ - . !- ~ . I ‘ _n' ~p'- ‘. Q r ,‘ . * ‘0‘ ')._,- ... t 9‘ ‘ " ‘1 ‘1 I, u_ \ \ ‘I K’. .hl ‘5 _: y‘ " ‘. :“%(<:" ~_ u \ _> . '1" . 1’ . ‘ . {$1. I.' - . V . . ~ . -‘ ‘1‘- . ' ‘ ‘ . K 20’ III. ‘H a ‘I.!. u .:I ‘ ' | .,. ‘ \ .fl .1”, . ‘ 4 " ‘5 ‘ " a ' .‘l - L ' ' 4‘ ' ' ‘ ‘ J‘ ‘ Q i ‘ ' A ) "“1 . ‘1 . "‘ ... I ‘ _I— P'. s ' 'l d \ r ‘V. t ‘ . " x . ‘ ‘ - , ‘ ' _ ‘ I _' '. 2;,"-'):J ‘ "i ’, J t ”'2. . 2 {5; .' '3‘ '1 . 'ij ' ~ ’ r.‘ ' ' p " 0 4. 1‘, >'~. ’ - V f ' I“, r . I. ‘ . ‘ ..‘3 -“‘.v("‘r. H' "‘1 ,' .' - , _ 5‘- f! 9 * :, ’. . ~ « (a? “1‘7 '-' .a v ' J . Q I V. . l -, ' I . ' I"~.' ‘ "J, J ”f\.'.'1r"‘ 1. , . "r , 4' l' “m ; ‘ . iv ' \ ' u .'-_ "VA ’1, a, ’59} J. . I" T " {x‘ J . . ‘ “‘J .. . . . :r L. v { '¢." " :‘k‘ 1 a 4 ‘ I ‘ 4.3,. ‘ ‘ ‘ I“ ' ' "~_o ) ,\ "1": ' ,y;.?1‘.. ° . .1 ‘. ‘ . . .. ’ ' ’ ‘ ‘ ' " -‘ « ‘ .w . ,.. . r , .. . I» «we» I '.-.‘ .. . c ‘ r ‘,, I J ,. n, I“ ‘ \ .’ ' - o ~ ‘ - . | ‘ . _ ( ‘:~M?'.v'-‘_44 '1‘, ‘_‘ .'| w" ' ' I~ ' ' I I, y '- i I ‘o ‘ " t 1* "If “L’l'fl‘é-i'.“ ‘Kl‘r "' . t. {‘s b ‘3 " ." u .- 1"" " | . ‘I ‘4. ' l.a 7 may,» 1;“ ~ .. . .... » .. . ‘ ' ° . ,, " ..., " WW5” ‘ 4" fix. ~‘ ‘1 ' {I ' '1‘ " ' ~‘ 9 .1. ’. ' ‘ ‘ ,- .°-,, . r ,I .9 ”l '4’ .' ' y _‘ ‘k y ' I f ’0 | . ~ / ‘ - I 4-" . " . ' .I "Y' ' \l _.‘ 3 ‘4.""{'—4 ,, , ... Vt , , . 1 ‘l'm' . 1._- . .... - - . a . n . .V' "'1 ’ l. \ . ‘ . § :0 'A ). ‘ ' ‘ " . ' '- I ~ , ' I .1 five 4; ' (i 1‘! i. ’ ,' ~ ’ J‘ A. ' '\" o ' I ‘1 4. ' ‘ 7-. .' . n n; an- ' .-' - -. ~ -\ c . , .5 .- . g \m ' . f _ 2}, .. I“ ...!u *. 1 , . ' .r. , . ~. , \- ‘1’». 1‘ ._ 8‘ 3"?" I” § l ' .H‘ k .7 ‘ ‘ ' U ' ‘ . u' ' J, '.‘"‘ '1 I: ‘ ft" \‘ 0’.‘" ' -. ' ‘ I ‘HV. . \.4 " I .n ‘ ' ‘ ‘ 1 . , u; .... I — I A? ’. .‘l 3‘" ' "} '?|'-’ |.\,"‘ " I‘d f I ‘ '3 I ' +3. . I o\“.‘f ‘ ‘fic ) I. . v“. I. :~ ““ . r .1 .- ‘,; ‘ ' Mm {Hr " .-,-,.'..-.. 1"; l- 'r' J ‘ a ’ 3- ‘n ) ' ‘ - ’ ' w" I ‘ ' -' 1 *- . p" 1 ' 1": '31:; ‘ ~ ~9.ff." '1 A..- ‘ '..‘ ‘1 :3 ' 1‘ ”.4, . ' A. . K' : ',, )l ‘ '. -. ._ ‘ u ‘ . n H n " ‘ I ‘.\ ' ‘ ‘ ~ ’ ‘ "I I‘ ' _ .-~,' ‘ > g " ‘7." x (‘3‘ ’ 1.. ‘ ’ 11‘ M. .)..L ”I '4’. I ' "1“ 5 I ' J H ’.t I I ‘ I: v ' ' fl ‘2‘ .r‘ 5' \ 2f. ‘ I' ‘1' '0 '4 "f *. ' ~ ' ' ‘ , ~.' 1 .g, . ' ' f. ..- n z ¢ ‘ C _ ' . I _ol ‘ a}. t ':V , ' . ' \A‘ "u‘lr ‘ “-‘rd‘fiw' y -- I 2‘“ fl. ... «24 "' a ., My? A~ 'w ' ‘ I". 9‘ l‘, _ . 2"}: 2 ' ‘ r} ,..' A ‘| ' , ' 1*. | ’ .\,l"$" V ‘ (‘1‘ I P' ;'.l ‘1 ‘ fi' ‘ I I . n u \ T . J .' x3 l"l “V"; '- '4- ‘~ Q I )' ' ‘ “’ ‘ ' ' 1’ ,' ' .r '5. l I ' ,‘- a . , ' L ‘fil " s' “-r1““~.fl .il “ I ~ ' ' I ‘ " ’ ix ‘ \ ‘ (”1;— " ' v | I‘Ok . 'fil ‘ vw a a.» \n‘. ‘ : ‘ - ., ; , - ... r “ ._ , ,. L, V, . . , .PI. .| I L, j \‘ , ‘3‘ ‘l ' ’ ’1',“ ‘_ ' } .‘V “'5 t” . I ‘1 J 3-.“ . 3‘ 1:" ‘ I; ‘ I} ' .‘ ' r . “a . J t ‘9’ z .‘ u ~ I '1 'Ml 12} )3. " '7‘ y." 1. u ,I ’ I.“ _I".k ‘h .4 ' -. . . 'g 7"; ;\/| ‘g \_ ‘2‘.“7 J“! ’j 'l‘-‘..' div 5" ( “ J' u i ‘I ‘ ‘ I . ~" 5 L. ’ ‘ ‘ Id ° ‘ - 1". " r' ' ‘ ""’”"“‘ “’ V' ‘A “ » ~ , ‘ .... ",. '.. “-0 "r. be 5 ,L’N‘isw- 1%.!" ,3! " '-'-' ‘ $.21" ’ ‘ ",3 I ‘ 1' i. ' fi"‘r){”':~ 3“ ~.- ‘ ,‘ . u ' J '.’ J! " .r‘. "4, ' I .‘ ' 4‘ .‘ g1. ., L" .. J ‘ I ,.,‘l g _.‘ . ‘.- n.4, . I‘ .. '1. . _ , ,- _/‘ .. F V 2, _~ . .. ., ., . '7 's‘ "L W ’3 ~31 . .- -=‘ w' >\ " '*~’- '4 ~ -...,» ' w ,. v? .'...‘4.‘f-.-"‘ ” u‘ _ - "f‘ 1 "f ." V ' '. ‘sz'q..'," ' . f I , -‘ fl" ’ I.) 1 O '3‘ , .9. ”‘1. ‘. ' " ‘V . '.\»' Bf '- w.‘ —A ~ 12- . ,1 .. ' ",12 I ‘ ‘-‘ ' J" . 1"" '5:- HP}:- Wv‘“ I-u Ni x ’:‘ ' ‘.'v..-'u*7‘ 1 ' ‘5- ;"',., 4 .' .-' .w "Wt" v.1 is.“ .‘ ' 5 9' 3. ti lvgv 'y 7".7‘r ,‘1"'r" r"“«: z ' 5"",1 ". l‘, . 4' I' -'.‘ . ‘ -'»..'.“ ' {H ... ‘vta ' ‘3’ 'I ' . ' I_| . -.- '7 . a ..v' . y .‘ . .H , ,-‘ ‘_ y ‘. - \ .’ . . J "~ ' l a ‘ :fiér' ... . '1’ -';{‘V~1.’:\'i 0' J‘. -. . ‘ (‘2'. ,‘ z f :1; .0." 4" . . a 1‘ ‘.‘ \ '. ‘. . ‘t' q _v ' '36.,1 V 4 "¢ , -j an - . r . . _ v _ . . ’ _ 2 )34.JCI‘*Y1"‘I:'.'.‘l“, "' Q‘ n. 'f ‘3' 5 ” "n‘é." 1" ‘1 _‘FJ'J ‘ ' ‘h‘ h it ""'. ‘J‘T‘: ‘~ ‘I-I"*‘3‘ _'~ ._u" ‘ I '. . . ‘. .' ‘ ‘ . l.‘.‘ v .4 :.-_ A.“ ,“ o.‘ H".\..' y.. - l I, ,~ ‘ '6‘ , v. a - \ .. a.‘ , . I _ ‘ . . _ K ‘\ . f -.' ., ,.'~ "'.1"‘, '- [X‘.' ,1“: I . ’ L.2 4 " I. V1 ’ ' M ‘ - " ‘ h "'K’ '- 1’ WIB- fi-m‘3tw . : r.-.., . i .. t‘fi' . - m" -.'""“ .3 3: ”3' I“ ".‘J "|'\ x - II a .‘ .‘V' 04" -',‘ , . I I, ' . nfl .. .... .“.’. ..‘~“ .I "‘ 3-1394 . Ive“ ..Q - J i - .‘ 54. o ‘ ' v ‘ _ a. , v ' . . . - N" V I ' . ,p w v,» , “ .1394.) n v "' v A ‘ .- ‘~ 1 .- - “" ‘- .'\ -' "- ~ ~ 3' "- . ' 1 2 9. .' ' .“’ «fl-“i . “If!“‘Q’,’ '-. ‘ .1... f . ‘1'.» , ‘ d ‘- I . Pf . ' . ' . o _u \c. ’1 .“ . \-,.» .. .. _ 3‘...“ '.--"‘ .f- a ‘ :. P. 1' I ' -v' ‘nw V, .A" , "‘5; . ‘Infl-l . ‘. r""' . ”3“ a fir h v" . ‘L ‘ ‘I q , I. . 1 I A. .M.‘ .II A 3.3:... ; 4.", -. .v' 1 ;‘4 6 I h: . . I k... ' " ~.."'-[.v‘ I 3 . ’1‘. Y' . ('J’ fi'l. I, 4, p2. ~ I 8 f (I ' 0 P “ ‘ ‘ A 0’. V ' . ‘ ' I . rs.» - nab. . .4 w ~ ~' ' "-1 «,i’ "I” N? w ..v" '1, x '{ ‘ 1;.f$.rph “‘7'. "v ‘ ' 3",- . W ‘. .... ‘., ~ '-. t . 3" u ,. .3 ; I q I '. I", J. ~. ‘ g .; t1°,-«.' ‘,. "- ',. ". "I‘ ’ .r , ,. I, ' , ,.' ._ ‘ _ .; 'y|y1" (- l :‘I, ’t‘ - “NI." '.',‘ ' '. I!“ ... ¢ III . . '5‘ L'!’ ‘ u .1 . A Q ' ' ' I . '5 vfr': f’ ‘1 ‘ .- ‘ . ‘14 . . n “j Y ’: a‘l ‘.- I ;. 'I fi I ’ ‘ ' , ._‘ J ',' " ‘ I' '4' ". ‘ J ‘1'! .5" ;H ' .2 L ‘a‘fh’". " I 4‘ v | V ’ II J‘, *. .‘ I ., W .1_ . .' . q ' ' r- |.’ .~ 3. at I- ' ~ v . ‘ - 'I‘ c 0“"' ‘x'.d..ali “ .. 'v'. "A .A :L '7‘ “\4':—‘,‘nl"'l_:. I; . ‘ .3 . ’ 7-3. Rd,“ .tram I w _ A ‘5‘.)L‘ kfi'é 9’!\h‘. 33‘ f..." L}. / _. __ |__"f‘l_‘ » a. ‘ I :'.'_I I" In 4'. i" ,._,\u_7;;;> a" ‘ . 'I; " "\ "t. :1’.%.ffi" ( H 1' ‘9 a. «45‘