

A STUDY OF THE CORRESPONDENCE
BETWEEN POINTS OF A SPACE OF THREE
DIMENSIONS AND LINES OF A SPACE OF
FIVE DIMENSIONS
THESIS FOR THE DEGREE OF M. A.
Margaret Grace Walcott
1932

Hygeropase.

LIBRARY
Michigan State
University

Malliemates.

RETURNING MATERIALS:
Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

ACKNOWLEDGEMENT

To Doctor Venon Guy Grove without whose eid and encourage ent this thesis would not have been completed.

A STUDY OF THE CORRESPONDENCE BETWEEN POINTS OF A SPACE OF THREE DIMENSIONS AND LIMES OF A SPACE OF FIVE DIMENSIONS

A Thesis
Submitted to the Faculty
of

WICHIGAN STATE COLLEGE of ACRICULTURE AND APPLIED SCIENCE

In Partial Fulfillment of the Requirements for the Degree of

Master of Arts

Vď

Margaret Grace Walcott

1932

A STUDY OF THE CORRESPONDENCE BETWEEN POINTS OF A SPACE OF THREE DIMENSIONS AND LINES OF A SPACE OF FIVE DIMENSIONS

INTRODUCTION

It is the purpose of this paper to discuss the correspondence between lines of a space \mathbf{S}_3 of three dimensions, and points of a certain hyperquadric \mathbf{Q}_4^2 in a flat space \mathbf{S}_5 of five dimensions. The dualistic transformation between points and planes of the same \mathbf{S}_3 is well known. However, it is impossible to make points and lines of the same \mathbf{S}_3 correspond unless they lie also in the same plane \mathbf{S}_2 .

The first part of this paper is devoted to a discussion of the general correspondence between lines of an \mathbf{S}_3 and points of an \mathbf{S}_5 . The second part is concerned with the correspondence between certain line loci in \mathbf{S}_3 associated with the transformation \mathbf{C} of nets and point loci in \mathbf{S}_5 .

Let there be given two points * and y, in S_3 with homogeneous projective coordinates $(*, *_2, *_3, *_4)$ and $(*_3, *_2, *_3, *_4)$ respectively. The homogeneous Plücker coordinates of the line ℓ jaining ℓ to y may be denoted by ℓ , ℓ , ℓ , ℓ , ℓ , ℓ , ℓ , where

(1)
$$l_{4} = x_{4} y_{2} - x_{2} y_{1}, \quad l_{2} = x_{1} y_{2} - x_{2} y_{1}, \quad l_{3} = x_{1} y_{3} - x_{3} y_{1}, \\ l_{4} = x_{4} y_{2} - x_{2} y_{4}, \quad l_{5} = x_{4} y_{3} - x_{3} y_{4}, \quad l_{6} = x_{2} y_{3} - x_{3} y_{2}.$$

* V.G. Grove, <u>Transformations of Nots</u>, Transactions of the American Lathematical Society, Vol. 30 (1928), p. 483. Hereafter referred to as Grove, <u>Nets</u>. These six Plücker coordinates satisfy

(2)
$$Q_{\mu}^{2} = l, l_{4} - l_{2} l_{5} + l_{3} l_{4} = 0.$$

identically for all values of ν_i and y_i , i = 1, 2, 3, 4.

We shall interpret the six ordered numbers $(l_1, l_2, l_3, l_4, l_5, l_6)$ as the six homogeneous projective coordinates of a point L in an S_5 . From (2) the point lies on the hyperquadric Q_4^2 . We shall say that the point L is the image in S_5 of the line ℓ in S_5 and conversely that ℓ is the image of L. If follows that every line in S_5 has an image on Q_4^2 in S_5 and every point on Q_4^2 in S_5 has an image in S_3 . These statements may be summarized in the following

Principle of Imagery: From any statement or theorem concerning the relative position of the lines of a geometrical configuration in ordinary projective space of three dimensions there can be obtained another statement or theorem concerning the relative position of the points of a geometrical configuration on a hyperquadric in a projective space of five dimensions.

PART I

Consider any four non-coplener points, ℓ , λ , μ , g, in an S_3 as forming a local tetrahedron of reference. Let the coordinated of these points with respect to a general tetrahedron of reference be ℓ (λ (λ), χ (

We may prove that the coordinates of any point z in this s_z may be expressed in terms of the coordinates of z, λ , z, γ .

Consider the equations

(3)
$$Z = t_1 t_1 + t_2 k_1 + t_3 k_2 + t_4 y_1$$
, $i = 1, 2, 3, 4$.

The four equations (3) may be solved for the four unknowns, t_1, t_2, t_3, t_4 in terms of t_1, t_2, t_3, t_4 . These solutions will be unique, since the four points, t_1, t_2, t_3, t_4 are non-coplanar and therefore the determinant $|t_1, t_2, t_3, t_4|$ are the coordinates of t_1, t_2, t_3, t_4 are the coordinates of t_2, t_3, t_4 with respect to the local tetrahedron of reference t_1, t_2, t_3, t_4 .

we shall denote the lines joining \mathbb{Z} to g, \mathbb{Z} to λ , \mathbb{Z} ,

- (4) $P = \mathcal{L}, \rho + \mathcal{L}_2 \xi + \mathcal{L}_3 \eta + \mathcal{L}_4 \xi + \mathcal{L}_5 \bar{\eta} + \mathcal{L}_6 h$, where $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4, \mathcal{L}_5, \mathcal{L}_6$ are coordinates of P with the pyramid $\rho_i \xi_i \eta_i \bar{\chi}_i \bar{\chi}_$
- 1. Images in $S_{\rm S}$ of the Lines of a Linear Congruence in $S_{\rm Z}$.

The points of ρ joined by lines to the points of ℓ in every possible way form a linear congruence in s_3 . We shall find the points in s_5 which correspond to these lines in s_3 . We may define the points ρ , on ρ and ρ on ℓ by the following expressions

The Plücker coordinates of the line ρ joining ρ , to R will be of the form

$$P = (P_1, P_2) = (\ell + \lambda y, \lambda + \mu \lambda)$$

$$= (\ell + \lambda + \mu \lambda) + \lambda (y, \lambda + \mu \lambda)$$

$$= (\ell + \lambda) + \mu (\ell + \lambda) + \lambda (y, \lambda) + \lambda \mu (y, \lambda)$$

$$= \ell + \lambda + \lambda + \lambda = \ell + \lambda + \lambda$$

The local coordinates of the point P defined by (5) are therefore

 $\mathcal{V}_1 = 0$, $\mathcal{V}_2 = 1$, $\mathcal{V}_3 = \mathcal{H}$, $\mathcal{V}_4 = \mathcal{A}$, $\mathcal{V}_5 = \mathcal{A}$ \mathcal{H} , $\mathcal{K}_6 = 0$. Eliminating \mathcal{A} and \mathcal{H} from the above equations, we find that $(3) \qquad \mathcal{V}_1 = 0 , \qquad \mathcal{V}_6 = 0 , \qquad \mathcal{V}_8 \mathcal{V}_4 = \mathcal{V}_2 \mathcal{V}_5 .$

The first two of equations (6) are the equations of two hyperplanes, each determining a space of four dimensions. These hyperplanes intersect in a space of one less or three dimensions. Equations (8) therefore represent a quadric lying in a space of three dimensions. We may, therefore, state the theorem:

The points in S₅ corresponding to the lines of a linear congruence in S₃ lie on two hyperplanes and an ordinary cuedric in an S₃ in those hyperplanes.

2. Images in S_5 of the Lines of a Special Linear Complex in S_3 .

Consider all of the lines in S_3 intersecting ρ . These lines form a special linear complex. Any point on the line is defined by an expression of the form χ_+/χ_2 ; any point in the plane determined by χ_+/χ_- is defined by an expression of the form $\chi_++\chi_-$. The Plücker coordinates of the line joining

these two points (any line intersecting ho) are therefore defined by

$$P = (X + \lambda y, y + \mu \lambda + \nu \lambda)$$

$$= (x, y) + \mu(x, \lambda) + \nu(x, \lambda) + \lambda \mu(y, \lambda) + \lambda \nu(y, \lambda)$$

$$= \rho + \mu + \nu + \lambda + \lambda \mu + \lambda \nu \bar{\nu}.$$

The local coordinates of the point P in \mathbf{S}_5 , the image of p in \mathbf{S}_5 , are therefore

 $\mathcal{V}_1=1$, $\mathcal{V}_2=\mathcal{U}$, $\mathcal{V}_3=\mathcal{O}$, $\mathcal{K}_4=\mathcal{L}\mathcal{H}$, $\mathcal{K}_5=\mathcal{L}\mathcal{O}$, $\mathcal{K}_6=0$. Eliminating $\mathcal{L}_1\mathcal{H}_2\mathcal{O}$ we find that

$$(7) \qquad \qquad \mathcal{V}_{\bullet} = 0 \quad , \qquad \mathcal{K}_{3} \mathcal{K}_{4} = \mathcal{K}_{5} \mathcal{K}_{5} .$$

The first of equations (7) is the equation of a hyperglane. The second is the equation of a hyperguadric. Together they represent a cone with vertex at ρ (1,0,0,0,0,0) and the quadric mentioned in section 1 as the base. We may, therefore, state the theorem:

Corres ending to the lines of a soscial linear conclex in S3 are the points in S5 which lip on one hyperplane and a cone with a point for its vertex and an ordinary quadric in an S3 for its base.

3. Images in S_5 of the Generators of a Cone in S_3 .

Consider the lines joining y to the points on the conic $V_1^2 = KV_2 V_3$, $V_4 = 0$ referred to the local tetrahedron V_1 , V_2 , V_3 . We may write the parametric equations of this conic in the form

$$V_1 = K \lambda$$
, $V_2 = K$, $V_3 = \lambda^2$, $V_4 = 0$.

Thus the comic $\chi_i^* = K \chi_i \chi_j$, $\chi_i^* = 0$ is the locus of the point defined by the expression

The Flücker coordinates of the lines p joining y to 2 are defined by

$$P = (y, \pm) = (y, K \land K + K \land + \lambda^{2} \Delta)$$

$$= -K \land (x, y) + K(y, \lambda) + \lambda^{2}(y, \lambda)$$

$$= -K \land \rho + K \ \ \} + \lambda^{2} \ \ \overline{\eta}.$$

The local coordinates of the point P, the image of the line p, are therefore

$$\mathcal{X}_1 = -K \lambda$$
, $\mathcal{X}_2 = 0$, $\mathcal{X}_8 = 0$, $\mathcal{X}_5 = \lambda^2$, $\mathcal{X}_6 = 0$. Eliminating λ we find that

(8) $V_2 = 0$, $V_3 = 0$, $V_6 = 0$, $V_7 = K$ V_4 V_5 .

The three hyperplanes $V_2 = 0$, $V_6 = 0$ intersect in a space of two divensions. Therefore equations (8) represent an ordinary conic lying in three hyperplanes. We may state the theorem:

The inages in So of a ruled cone in So is a point ornic.

4. The Images in $S_{\bar{5}}$ of the Lines of a Ruled Surface in $S_{\bar{3}}$.

The points

$$H = a_1 x + a_2 x + a_3 x + a_4 y,$$

$$B = b_1 x + b_2 x + b_3 x + b_4 y,$$

Wherein a_i , b_i are functions of t each describe a curve in S_3 . The lines p joining points of A to points of B generate a ruled surface. We shall find the image of this ruled surface in S_5 . The Plücker coordinates of P are defined by

$$P = (a, x + a_{2} h + a_{3} h + a_{4} y, b, x + b_{2} h + b_{3} h + b_{4} y)$$

$$= (a, b_{4} - a_{4} b_{1})(x, y) + (a, b_{2} - a_{2} b_{1})(x, h) + (a, b_{3} - a_{3} b_{1})(x, h)$$

$$+ (a_{4} b_{2} - a_{2} b_{4})(y, h) + (a_{4} b_{3} - a_{3} b_{4})(y, h) + (a_{2} b_{3} - a_{3} b_{2})(h, h)$$

$$= (a, b_{4} - a_{4} b_{1}) + (a, b_{2} - a_{2} b_{1}) + (a, b_{3} - a_{3} b_{1}) + (a, b_{3} - a_{3} b_{1}) + (a, b_{3} - a_{3} b_{2})(h, h)$$

$$+ (a_{4} b_{2} - a_{2} b_{4}) + (a_{4} b_{3} - a_{3} b_{4}) + (a_{2} b_{3} - a_{3} b_{2}) + (a_{4} b_{3} - a_{3$$

Hence the local coordinates of the image of p in S_5 are

From (9) we find

We may, therefore, state the theorem:

The points in S_5 corresponding to the generators of a ruled surface in S_3 lie on a curve on the hyperquadric Q^2_4 .

As a special case consider the images of the generators of a regulus. The point rows defined by the points $\mathcal{L} \neq \lambda y$ on ρ and $\lambda \neq \lambda \rho$ on ℓ are projectively related. The lines joining these points therefore generate a regulus. We shall find the points in S_5 corresponding to these lines in S_3 . The line p in S_3 is defined by the expression

$$P = (x + \lambda y, \lambda + \lambda x)$$

$$= (x, \lambda) + \lambda (x, x) + \lambda (y, \lambda) + \lambda^{2}(y, x)$$

$$= \begin{cases} 3 + \lambda & 1 \end{cases} + \lambda = \begin{cases} 4 + \lambda^{2} & \overline{y} \end{cases}.$$

The local coordinates of the image of p are therefore

 $\mathcal{V}_1 = 0 \,, \quad \mathcal{V}_2 = 1 \,, \quad \mathcal{V}_3 = \lambda \,, \quad \mathcal{V}_4 = \lambda \,, \quad \mathcal{V}_5 = \lambda^2 \,, \quad \mathcal{V}_6 = 0 .$ Eliminating λ we find that

Therefore, we have the theorem:

The points in S, corresponding to the generators of a regulus lie on an ordinary conic in three hyperglanes.

5. Irages in S_5 of the Tangents to a Conic in S_3 .

The conic, whose equations are

(10)
$$Y_1^2 = 1 \times Y_2 \times Y_3$$
, $Y_4 = 0$,

lies in the plane of V, λ , λ . The parametric equations of this conic are

A point on the tangent line to the conic has the coordinates

$$\mathcal{K}_{1}'=\mathcal{K}$$
, $\mathcal{K}_{2}'=0$, $\mathcal{K}_{3}'=2\lambda$, $\mathcal{K}_{4}'=0$.

The expression defining the line p, tangent to the conic whose equations are given by (10), is, therefore,

$$P = (K \lambda K + K \lambda + \lambda^{2} R, K K + 2 \lambda R)$$
$$= - K^{2} + K \lambda^{2} h + 2 K \lambda h.$$

The image of the line p has the local coordinates

$$\mathcal{X}_1 = 0$$
, $\mathcal{X}_2 = -\mathcal{K}^2$, $\mathcal{X}_3 = \mathcal{K}\lambda^2$, $\mathcal{X}_4 = 0$, $\mathcal{X}_5 = 0$, $\mathcal{X}_6 = -2\mathcal{K}\lambda$. Eliminating λ we find that

(11)
$$V_1 = 0$$
, $V_4 = 0$, $V_5 = 0$, $V_2 = V_3 = -K V_4^2$

Equations (11) represent a conic lying in one of the plane faces of the pyramid of reference. It passes through two of the vertices, the intersection of $\mathcal{K}_{2} \circ , \mathcal{K}_{4} = o$ and the intersection of $\mathcal{K}_{3} = o$, $\mathcal{K}_{4} = o$. It is also tangent to the edge $\mathcal{K}_{4} = o$. We may state the theorem:

The locus of the points in $S_{\bar{0}}$ corresponding to the tangents to a conic in $S_{\bar{0}}$ is an ordinary conic lying in three hyperplanes.

6. Condition Necessary for a Point P in \mathbf{S}_5 to have an Image in \mathbf{S}_7

Consider any point P in S_5 defined by the expression

(12)
$$P = t_1 p + t_2 \xi + t_3 \eta + t_4 \xi + t_5 \bar{\eta} + \ell_6 \ell_6$$

Consider also any line p in S_3 defined by the expression

(13)
$$P = (*+ \lambda y + \mu \lambda, *+ \lambda, y + \mu, \varkappa)$$

$$= (\lambda, -\lambda) \rho + H \xi + \mu, \eta - \lambda, \mu \xi + \lambda \mu, \pi + \mu \mu, h.$$

The image in s_5 of the line p in s_3 defined by (13) is therefore

(14)
$$P = (\lambda, -\lambda) \rho + \mu + \mu, n - \lambda, \mu \in +\lambda \mu, \bar{\eta} + \mu \mu, h.$$

Therefore the condition that p in S_3 be the image of P in S_5

is

(15)
$$t_1 = \lambda_1 - \lambda_2 = \mu_1, t_2 = \mu_1, t_4 = -\lambda_1 \mu_1, t_5 = \lambda \mu_1, t_4 = \mu_1$$
.

Eliminating $\lambda_1, \lambda_2, \mu_3, \mu_4, \mu_5$ from (15) we find

$$t_1, t_2 - t_3, t_5 + t_3, t_4 = 0.$$

We may, therefore, state the theorem:

The quadric Q_4^2 in S_5 has two distinct types of plane generators. We shall say that a plane generator is of the first kind if it is determined by the images of three concurrent but not coplanar lines in S_3 . We shall say that a plane generator is of the second kind if it is determined by the images of three coplanar but not concurrent lines in S_3 .

Suppose that the point P is in a plane generator of the first kind, say in the plane determined by ρ , ϵ , η . The point P is defined by an expression of the form

(16)
$$P = t_1 p + t_2 \xi + t_3 \eta$$
.

It is obvious that the image of P in S_3 is the line p defined by P = (x, t, y + t, x + t, x).

If the coefficients t; are functions of t, the locus of P in S defined by (16) is a curve lying on a plane generator of the hyperquadric. The locus of the image of P is a cone since it consists of the lines joining x to the points of the curve traced by the point x where x is defined by the expression

$$2 = t, y + t_2 k + t_3 s.$$

Knowing the type of curve generated by P we can describe the cone which is the image in \mathbf{S}_3 of the curve in \mathbf{S}_5 .

Suppose that the point P is in a plane generator of the second kind, say in the plane determined by the points f, h, k.

The point P is defined by an expression of the form

(17)
$$P = t_1 + t_3 + t_4 + t_6 + d$$
.

Consider also the line p in S_3 defined by the expression $P = (\chi + \chi \lambda, \chi + \mu \lambda)$

$$= -15 + M n + 1 M h.$$

If p is the image in S_3 of the point P defined by (17), we must have

$$-\Lambda = \lambda t_2$$
, $\mu = \lambda t_3$, $\lambda \mu = \lambda t_6$

Wherein & is a factor of proportionality. We find readily that

Therefore

$$\lambda = \frac{t}{t_a}, \qquad \mathcal{U} = -\frac{t_a}{t_a}.$$

The line p joining the points defined by

$$t_3 + t_0 k$$
, $t_2 - t_0 a$

is the image of the point P defined by (17). We may state our results in the following theorems:

The image in S₃ of a point curve in a plane generator of the first kind of the hyperquadric is a cone with vertex at the point of intersection of the images of the three points determining that plane generator.

The image in S₃ of a point curve in a plane generator of the second kind of the hyperquadric is a one parameter family of lines in the plane determined by the images of the three points determining that plane generator. We may, therefore, consider the image of the locus of P in such a plane generator as the envelope of this one parameter family of lines.

7. Relation between the Local Coordinates of Points in \mathfrak{S}_3 and \mathfrak{S}_5 .

Let the local coordinates of points of S_3 be, with respect to the local tetrahedron of reference, $\mathcal{V}, \mathcal{K}, \mathcal{K}, \mathcal{K}, \mathcal{G}$. Thus we may find the local coordinates of a line in S_3 , that is the Flücker coordinates referred to $\mathcal{V}, \mathcal{K}, \mathcal{K}, \mathcal{G}$. Using the pyramid ρ , \mathcal{F}, η , \mathcal{F}, η , \mathcal{F}, η , \mathcal{F}, η , \mathcal{K} as pyramid of reference in S_5 , we may set up a local coordinate system for points in S_5 . We shall find the relation between the local coordinates in both systems.

Consider the line in \mathbf{S}_3 joining the points $\overline{\mathbf{z}}$ and $\overline{\mathbf{y}}$ defined by the expressions

$$\overline{\mathcal{X}} = \mathcal{X}_{1} \mathcal{X} + \mathcal{X}_{2} \mathcal{X} + \mathcal{X}_{3} \mathcal{X} + \mathcal{X}_{4} \mathcal{Y}_{7}$$

$$\overline{\mathcal{Y}} = \mathcal{Y}_{1} \mathcal{X} + \mathcal{Y}_{2} \mathcal{X} + \mathcal{Y}_{3} \mathcal{X} + \mathcal{Y}_{4} \mathcal{Y}_{7}$$

The point in \mathbf{S}_{5} which is the image of this line may be expressed as follows

$$P = (x, x + x_2 k + x_3 k + x_4 y, y, x + y_2 k + y_3 k + y_4 y)$$

$$= (x, y_4 - x_4 y,) p + (x, y_2 - x_2 y,) \xi + (x, y_3 - x_3 y,) \eta$$

$$+ (x_4 y_2 - x_2 y_4) \xi + (x_4 y_3 - x_3 y_4) \overline{\eta} + (x_2 y_3 - x_3 y_2) k.$$

Therefore, we find that

$$t_{i} = k_{i} y_{4} - k_{4} y_{1}$$
, $t_{2} = k_{i} y_{2} - k_{2} y_{1}$, $t_{3} = k_{i} y_{3} - k_{3} y_{i}$, $t_{4} = k_{4} y_{2} - k_{2} y_{4}$, $t_{5} = k_{4} y_{3} - k_{3} y_{4}$, $t_{6} = k_{2} y_{3} - k_{3} y_{3}$.

PART II

Let

$$\mathcal{X}_i = \mathcal{X}_i(u, v)$$
, $y_i = y_i(u, v)$, i=1, 1, 3, 4. be the parametric equations of the surfaces S_x and S_y . Consider the parametric nets N_x and N_y on S_x and S_y as being in relation C. The functions y_i and v_i satisfy a system of differential

equations of the form

$$\mathcal{L}_{\alpha u} = d \times u + \beta \times v + \rho \times + L y,$$

$$\mathcal{L}_{uv} = \alpha \times u + b \times v + c \times + M y, \qquad m \neq m \neq 0,$$

$$(13) \qquad \mathcal{L}_{vv} = \gamma \times u + \delta \times v + g \times + N y,$$

$$y_{u} = m \times u + f \times f + f y,$$

$$y_{v} = m \times v + g \times f + B y.$$

The coefficients of (13) satisfy the following integrability conditions*

If the fourth and fifth equations of system (13) are differentiated with respect to u and v and the values of γ_{uu} , γ_{uv} , γ_{vv} from the first three equations of (13) are substituted we obtain the following system

^{*}Grove, <u>Nets</u>, p. 484.

$$y_{uu} = \overline{a} y_{u} + \overline{\beta} y_{v} + \overline{\beta} y + \overline{L} x,$$

$$y_{uv} = \overline{a} y_{u} + \overline{b} y_{v} + \overline{c} y + \overline{M} x,$$

$$(20) y_{vv} = \overline{Y} y_{u} + \overline{f} y_{v} + \overline{g} y + \overline{N} x,$$

$$x_{u} = \overline{m} y_{u} + \overline{f} y + \overline{A} x,$$

$$x_{v} = \overline{n} y_{v} + \overline{g} y + \overline{B} x.$$
wherein

$$I = \lambda + \frac{1}{2} + \frac{1}{2$$

The first derivatives of ρ , λ etc. are expressible as linear combinations* of ρ , λ etc. Since $\rho = (\#, \#),$

we find that

$$\rho_{u} = (x_{u}, y) + (x, y_{u})
= (x - f_{u}x, y) + (x, m_{x} + Hy)
= (x, y) + (H - f_{u})(x, y) + m(x, x)
= (H - f_{u}) + m - 5.$$

E.P. Lane, The Projective Differential Geometry of Systems of Linear Momogeneous Differential Equations of the first Order, Transactions of the American Mathematical Society, Vol. 30 (1928) p. 735.

In a similar manner we may find the first derivatives of $\{\!\!\!\}$, γ , etc. The explicit expressions for these are

$$\rho_{\mu} = (A - \frac{1}{2} \beta_{\mu}) \rho + m \xi - \overline{\xi},$$

$$\xi_{\mu} = \lambda \xi + \beta \eta + L \rho,$$

 $-\lambda_{v}=-(\mathcal{T}+\mathcal{R}+a)\,\lambda-\frac{M}{2}\,\mathcal{T}-M\,\mathcal{T}+\frac{N}{2}\,\mathcal{F}+N\,\mathcal{F}.$ From (21) we find that

Therefore the tangents to the curves v = const. on S_{ρ} intersect the line joining the points f and f in the covariant point

Since the lines ξ and ξ intersect in S_3 , the line joining the points ξ and ξ in S_5 lies on the hyperquadric Q_4^2 . To the covariant point in S_5 must correspond a covariant line in S_5 with the coordinates

$$m \xi - \overline{\xi} = m(\chi, \Lambda) - (\chi, \Lambda)$$
$$= (m \chi - \chi, \Lambda)$$

Thus the line joins the point x to the point $m \, \varepsilon_- \, y$, that is to

one of the focal points* of \(\rho \).

By symmetry we find that the tangent to the curve u=const. on S_{ρ} intersects the line $\eta\bar{\eta}$ in S_{5} in the covariant point

This point corresponds to the covariant line in S_3 joining the point ω to the other focal point of ρ . We may, therefore, state the theorem:

The tangent line to the parametric curve v = const. (u = const.)

on S_{ρ} at ρ intersects the line (f ($h\bar{\rho}$) in a point. The image in S_3 of this point is the line joining A (A) to the focal point of the second (first) rank.

We also have from (21)

Thus the tangent to the curve $v={\rm const.}$ on $S_{\bf f}$ intersects the line joining η to ρ in the covariant point

Therefore the image in S_3 of this point is the line joining 2 to $\beta \times + 4$. This latter point must be a covariant point also. We shall investigate the geometrical significance of this point.

We have from (18)

$$X_{uu} - d x_{u} - P x = \beta x_{v} + L y$$

= $\beta (x - 3x) + L y$.

Therefore

Thus the point β_{n+1} y is the intersection of the osculating

^{*}Grove, <u>Nets</u>, p. 486.

^{**} Ibid, p. 490.

Plane to the curve v = const. on S_x with the line $y \sim .$ We may, therefore, state the theorem:

The tangent line to the parametric curve v = const. on S_s at s intersects the line $h \rho$ in a point. The image in S_s of this point is the line joining s to the point of intersection of the osculating plane to the parametric curve v = const. on S_s at s with the line $v \circ s$.

Similar theorems may be stated for the tangent lines to the parametric curves on S_h , $S_{\bar{\ell}}$, $S_{\bar{k}}$.

From (21) we have

$$\xi_{v} - (\alpha - \frac{1}{4}) \xi = (6 + \frac{1}{4}) \eta + M \rho - k,$$

 $\xi_{w} - 4 \xi = \beta + \lambda + L \rho.$

If $L \neq 0$, that is, if the parametric curve v = const. on $S_{\mathcal{L}}$ is not asymptotic, we may eliminate ρ between the two equations above. The resulting expression is

Thus the covariant point

in S_5 lies in the tangent plane to S_5 at f and on the line h. Its image in S_3 is the line with coordinates

$$(b+\frac{1}{m}-\frac{m\beta}{2})(k,n)-(n,n)=[k-(b+\frac{1}{m}-\frac{m\beta}{2})k,n]$$

=[k-(b-\mathred{M})k,n]

The image is, therefore, the line joining a to the ray point on the line f of the point e with respect to the net K_{e} . We may state the theorem:

^{*} Grove, Nets, p. 489.

The image in S₅ of the line in S₃ joining to the ray moint of the point with respect to the net N_x is the point of intersection of the tangent plane to S_x at x with the edge N_x of the pyramid of reference.

We may find similar results by using the tangent planes to $S_\eta, S_{\bar{\eta}}, S_{\bar{\eta}}$.

We also have from (21)

Thus the plane determined by the points η_ω , η , ρ in S_5 intersects the line § & in the point

The image of this point in S_3 is the line joining λ to ψ_{ν} -a ψ . The latter point is the intersection of the line in Green's relation* R to ρ with η . Likewise we may find the point in S_5 which is the image of the line in S_3 joining s to the intersection of the line in Green's relation R to ρ with ξ . Similar results may be obtained using the expressions for $\overline{\eta}_{\omega}$ and $\overline{\xi}_{\nu}$. We may state the theorem:

The plane in S_5 determined by n_u , h, ρ intersects the line s_{ℓ} in a point. The image of this point in S_3 is the line joining ℓ to the intersection of the line in Green's relation R to ρ with h.

Using the expressions for \mathcal{L}_{ω} and $\mathcal{L}_{\varepsilon}$ from (21) we may eliminate in turn ξ , η , $\bar{\xi}$, $\bar{\eta}$ provided $\bar{N}\neq 0$, $\bar{M}\neq 0$, $\bar{M}\neq 0$. We may thus obtain eight expressions of the form

^{*}Grove, <u>Nets</u>, p. 401.

$$[\mathcal{A}_{u}, \mathcal{L}_{v}, \mathcal{L}, \xi] = \frac{[N-MM]}{mN} \eta + \frac{[N-M]}{N} \eta, \quad N\neq 0,$$

$$= [\frac{[N-MM]}{mN} \chi + \frac{[N-M]}{N} \chi, \chi]$$

Thus in S_5 the S_3 determined by the tangent plane to h and the point f intersects the line joining f and f in the point $\frac{LN-MN}{N} f + \frac{LN-M^2}{N} f$.

This point in S_5 corresponds to the line in S_3 joining \boldsymbol{a} to the point

IN-MM X+ LN-M'y.

The latter is a covariant point on the line ρ . We shall leave the geometrical interpretation of these points for some future date. If $M = \overline{M} = 0$, that is, if the given nets are F transforms, expression (22) reduces to

If the given nets are F transforms we may make a transformation of the form $\mathcal{L}=\lambda \mathcal{Z}$ such that it will make f=g=H=B=o, $p=\frac{L}{m}$. The first of equations (18) becomes $\mathcal{L}_{uu}-\mathcal{L}\mathcal{L}_{u}-\mathcal{L}\mathcal{L}_{u}-\mathcal{L}\mathcal{L}_{u}}=\mathcal{L}\mathcal{L}_{u}+\mathcal{L}\mathcal{L}_{u}$.

Thus if the given nets are F transforms the intersection of the three space determined by \mathcal{L}_{u} , \mathcal{L}_{v} , \mathcal{L} , \mathcal{L} with the line $\eta \bar{\eta}$ is the point of intersection of the plane determined by \mathcal{L}_{uu} , \mathcal{L}_{v} , with the line ρ .

- 2. Second Derivatives
- * L.P. Eisenhart, <u>Transformation of Surfaces</u>, Princeton University Press, (1923) p. 34.

We may also find second derivatives of ρ , r , η etc. with respect to u and v. In particular we find

$$\rho_{uv} = (H - \frac{1}{m})\rho_{u} + [H_{u} + m_{L} - \frac{1}{m} - \frac{1}{m} + P - \frac{1}{m} - \frac{1}{m} - P + (md + mu) + P - \frac{1}{m} - \frac{1}{m} + P - \frac{1}{m} - \frac{1}{m} - P + (md + mu) + P - \frac{1}{m} - \frac{1}{m} + P - \frac{1}{m} - \frac{$$

Using the expressions defining ρ_{ω} and ρ_{ν} from (21) we may eliminate $\bar{\eta}$ and $\bar{\xi}$ from the first two of equations (23) obtaining the following expressions

$$\rho_{uu}+()\rho_{u}+()\rho_{v}+()\rho=(mu-mH-f)\xi+(m-n)\beta\eta,$$

$$\rho_{vv}+()\rho_{u}+()\rho_{v}+()\rho=(nv-nB-g)\eta+(n-m)\gamma\xi,$$

wherein the coefficients of ρ_u , ρ_r , ρ are immaterial for our purposes. We may readily see that ρ_{uu} or ρ_{v_r} will be a linear combination of ρ_u , ρ_r , ρ that is the parametric nets v= constor v= cons

Case I
$$m_u - m H - f = 0$$
, $u - m = 0$,
Case II $m_v - n B - g = 0$, $n - m = 0$.
Case III $m_u - m H - f = 0$, $\beta = 0$,
Case IV $n_v - n B - g = 0$, $\gamma = 0$.

If n-m = 0 the nets N_{χ} and N_{χ} are radial transforms*. We * Grove, Nets, p. 486.

excluded this case at the beginning of the paper. We shall consider cases III and IV. The asymptotic nets on S_{τ} and S_{τ} , the focal surfaces of the congruence of lines ρ , are defined by the expressions.

$$(g - m_v + m B) du^2 - (n - m) \beta dv^2 = 0,$$

 $(f - m_u + m A) du^2 - (m - m) \gamma dv^2 = 0.$

For case III these equations reduce to

$$du^2 = 0$$
, $dv^2 = 0$.

Thus the asymptotic curves on the focal surfaces S_{τ} and S_{τ} . form only one one parameter family, i.e. these focal surfaces are developable. Case IV gives the same result. We may, therefore, state the theorem:

The parametric nets on S_{ρ} will be asymptotic if and only if the focal surfaces S_{τ} and S_{τ} , are developable.

We may eliminate χ from the third of equations (23) by using the value of f, from (21). We find

will be a linear combination of ξ_{*} , ξ_{*} , if $\beta = L = 0$. However, we must exclude this case since it reduces the second of equations (21) to $\xi_{*} = d\xi_{*}$. This equation indicates that the surface S_{ξ} is only a surve. ξ_{**} would also be a linear combination of the lower derivatives of ξ if L = M = 0, $2\beta b = -\beta \omega$. This case must also be excluded since it is the condition that the surface S_{ξ} be a developable. The obtain similar results using the expression defining ξ_{**} . We say, therefore, state

^{*}Grove, <u>Mets</u>, p. 431.

the theorem:

The parametric nets on S, cannot be asymptotic.

We obtain the same result for the surfaces S_{η} , $S_{\overline{\delta}}$, $S_{\overline{\delta}}$.

Using the expression defining f_L from (21) we may eliminate ρ from the third of equations (25) if L \neq 0. We obtain the following result

Thus a covariant point on the line joining \mathcal{L} to $\bar{\xi}$ in S_5 lies in the S_3 determined by the osculating plane to the curve $\mathbf{v}=\mathrm{const.}$ and the point \mathbf{h} . To this point in S_5 corresponds the line in S_3 joining the point \mathbf{k} to the point \mathbf{k} $\mathbf{k}+\mathbf{k}$ \mathbf{y} . The geometrical interpretation of the latter point was given on page 13 of this paper. Similar points may be found by using expressions involving $\mathbf{h}_{\mathbf{v}\mathbf{v}}$, $\mathbf{h}_{\mathbf{v}\mathbf{v}}$.

The functions \tilde{h} and $\tilde{\xi}$ may be eliminated from the fourth of equations (23). The resulting expression for ρ_{uv} is of the form

It is readily seen that the parametric nets on Sp can be conjugate, that is a linear relation can exist between $\rho_{\mu\nu}$, $\rho_$

The parametric nets on So cannot be conjugate.

Eliminating η from the last of equations (23) ($\beta \neq 0$) we find

まい+()まい+()ま、+()ま=[BN+LB-ニュ+Lv-な(BJ+B,+mL)]p-L方.

Thus a linear relation exists between $f_{\mu\nu}$, f_{ν} , f_{ν} and if and only if L=N=0, that is the parametric net on 3_{ν} is asymptotic. We may, therefore, state the theorem:

The parametric nets on the surface S, will be conjugate if and only if the parametric nets on S, are asymptotic.

Similar theorems may be stated concerning the parametric nets on the surfaces S_{h} , $S_{\bar{\xi}}$, $S_{\bar{\delta}}$.

3. Certain Congruences in S_5 and their Relation to the Asymptotics on $S_{\mathbf{z}}$ in S_3 .

Consider the line joining the points f and n in S_5 . Any point on this line will have coordinates of the form

$$(24) \qquad T = 8 + \lambda \eta.$$

The coordinates of any point on the tangent line to the curve traced by the point defined by the expression (04) will be of the form

If the tangent line coincides with the line joining f to η , that is if the surface generated by τ is a developable, the coefficients of ρ and L in (25) must be zero. In that case we find

$$(26) \qquad L + \Lambda M + (M + \Lambda N) = 0,$$

$$\Lambda - \frac{\partial U}{\partial x} = 0.$$

Eliminating A from equations (28) we find

(27)
$$L du^2 + 2 M du dv + N dv^2 = 0.$$

Likewise eliminating # from (23) we find

(28) $L + 2M A + NA^2 = 0.$

Thus the line joining the points f and h in S₅ generates a congruence, that is the lines may be grouped into two one parameter families of developable surfaces. From (22) we see that the developables of this congruence correspond to the asymptotics on S₂ in S₃. We may, therefore, state the theorem:

The line joining 2 and h in S₅ menerates a congruence. The image in S₅ of the asymptotics on S in S₃ are the curves on S and S which correspond to the developables of the congruence of lines \$h.

A similar theorem may be stated for Frand Sy.

^{*}Grove, Mets, p. 485.

BIRLIOGEARTY

- Eisenhart, L.P. <u>Transformation of Surfaces</u>. Princeton University Press, (1323).
- Grove, V.G. <u>Transformations of Mets.</u>
 Transactions of the American Mathematical Society, Vol. 30 (1928).
- Lane, E.P. The Projective Differential Geometry of Systems of Linear Morogeneous Differential Equations of the first Order. Transactions of the American Mathematical Society, Vol. 30 (1929).
- Mendel, C.W. <u>Correspondence between Points and Lines</u>.

 Master's Thesis, University of Chicago, (1923).

 Doctor's Thesis, University of Chicago, (1930).
- Sommerville, D.M.Y. An Introduction to the Geometry of N Dimensions. E.P. Dutton & Co. (1023)



