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ABSTRACT

AN ALGORITHM FOR SEPARATING UNIMODAL FUZZY SETS
ON A GRID AND ITS APPLICATION
TO OBJECT ISOLATION AND CLUSTERING
By
Robert Lewis Walton

The goal of object isolation is to separate a scene into ''regions of
interest', each of which corresponds to an object or a portion of an ob-
ject. The objective of this thesis is to develop a machine algorithm
capable of isolating objects in an image plane. Such an algorithm can
also be applied to the problem of clustering points in a feature space by
treating a ''density function'' of the points as the intensity function of a
scene and then finding the ''objects' present. These objects correspond
to clusters.

A basic approach to the object isolation problem was presented in
terms of a clustering algorithm developed by Gitman and Levine[1].
Their algorithm is capable of separating a fuzzy set into unimodal re-
gions and is capable of performing object isolation, provided each ob-
ject can be made to correspond to a unimodal fuzzy set. Usually, if
the input scene is preprocessed by low-pass filtering, each object can
be made to correspond to one (or perhaps several) unimodal sets. Nor-

mally, at least several hundred data points are required to represent
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the objects in a scene. If the assumption of a constant number of points
per symmetric subset [ 1] is made, the computational requirements
increase at least as rapidly as nz, where n is the number of data
points. For a typical number of data points, the computational require-
ments are too large to base a practical object isolation scheme on this
algorithm. In addition, the algorithm has deficiencies related to equal-
ly spaced points and points of equal magnitude.

Several attempts are presented in this thesis for overcoming these
deficiencies. As a result of these attempts, a new algorithm, the Uni-
modal Tree Algorithm, was developed. This algorithm assumes that
the data points lie on a uniform grid, which is usually the case when a
scene is scanned. It has computational and storage requirements which
increase linearly with the number of grid points. The regions the algor-
ithm generates are proven to be unimodal, and the union of any two
regions is shown to be non-unimodal. Furthermore, these unimodal
regions may be of any shape, There is no dependence upon spherical or
elliptical regions.

Several experiments involving the Unimodal Tree Algorithm were
performed. A scene containing three spheres and three ellipsoids was
scanned and processed using the algorithm. The result was six regions,
each of which contained one object. Another scene which was processed
contained two touching ellipsoids. These objects were also separated.
A third scene containing two mites in contact was run; three regions

regsulted. (One mite was light at both ends and darker in the center.)
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Several bivariate Gaussian point sets were run using the Unimodal
Tree Algorithm as a clustering scheme (in conjunction with a routine
to form a density function on a grid). Even severely overlapping Gaus-
sian clusters were separated. A crescent-shaped cluster with a Gaus-
sian cluster in its center was run to demonstrate the independence of
the algorithm with respect to cluster shape. These examples were all
run on a "mini-computer' (IBM 1800). Separation of a 25 x 25 scene
into unimodal regions required about one minute of IBM 1800 time. A
CDC 6500 (large computer) separated these same scenes in approxi-

mately 1.5 CPU seconds per scene.

[ 1] Israel Gitman and Martin D, Levine, "An Algorithm for Detecting
Unimodal Fuzzy Sets and Its Application as a Clustering Technique, "
IEEE Transactions on Computers, Vol. C-19, No. 7, pp. 583-593,
July 1970.
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CHAPTER I

INTRODUCTION

1.1 Object Isolation Problem

The process of classifying objects in an image using a machine
may be divided into four steps (Nagy [8]): image enhancement, object
isolation, feature extraction, and, finally, application of a decision
scheme. Image enhancement is normally necessary as a pre-proces-
sing step to put the raw input data into a suitable form for the steps
which follow. Object isolation separates the image into regions con-
taining one object or a portion of an object. This step will allow the
""background' to be discarded, thus potentially saving much computer
storage and computation later in the object classification procedure.
The feature extraction procedure extracts information useful in classi-
fying the objects, and the decision scheme determines the classification
of each object. This object classification procedure is illustrated in
Figure 1.

Separating objects in a picture is a relatively simple procedure for
the human mind. An example of such a problem is the separation of
ellipsoids resting on a dark flat surface, as shown in Figure 2. A
'simple'machine algorithm to separate ellipsoids might not work pro-
perly if the ellipsoids are of different size and orientations, or if some

of them are touching. Complex algorithms to accomplish object
1
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Figure 1: Object Isolation in an Object Classification Scheme
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Figure 2. Two Touching Ellipsoids.



isolation under such adverse conditions may be very costly to operate

in terms of computational requirements and/or storage requirements.

1.2 Machine Algorithms

A machine method applicable to object isolation has been suggested
by Gitman and Levine [5]. The method they discuss is capable of sepa-
rating touching ellipsoids, and is virtually unaffected by the size, shape,
or orientation of the ellipsoids. Their algorithm separates an image
into regions having only one '"hill" in the intensity function (brightness
level) of the image. Such a partitioning yields the separation required
for object isolation.

Separating a scene into ''unimodal' regions is useful in object iso-
lation, but Gitman and Levine's algorithm has some deficiencies. The
first deficiency is that special processing is required for equally-spaced
sample points. When images are sampled on a grid of some sort, all
the data requires special processing in the algorithm. The second
deficiency is the special handling required by points of equal intensity-
function value. If many such points occur, a large increase in compu-
tation time will result. Equal-intensity points will occur many times

in an image having only a few brightness quantization levels.

1.3 Objectives and Accomplishments of the Thesis

The primary objective of this thesis is to present an algorithm
capable of partitioning a rectangular grid into regions which are uni-
modal with respect to a function defined at each grid point, and to demon-

strate its utility by performing several object isolation experiments
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using the algorithm. Several properties which are desirable for an ob-
ject isolation algorithm to possess are the following:

1. The algorithm should be capable of detecting objects of gen-

eral shape.

2. Objects should not be skipped or missed.

3. Each object should generate one region, with no spurious

"extra' regions due to quantization of the intensity function.

4., Computation and storage requirements should increase at

most linearly with the number of grid points since a large
number of points (500 or more) are usually needed to repre-
sent the objects.

The algorithm suggested by Gitman and Levine [5] is capable of
generating the type of separation necessary for object isolation, but
objects may be missed by the algorithm if they have a ''flat peak' in
intensity value. Also, the computation time required by Gitman and
Levine's algorithm increases at least as fast as nz, where n is the num-
ber of data points (assuming a constant number of points per symmetric
subset). The amount of storage required for Gitman and Levine's algor-
ithm is not fixed with respect to the number of data points due to a num-
ber of variable-length lists which are formed. Storage requirements for
these lists may be several times the number of grid points. Several
modifications of this algorithm and some new ideas were introduced in
an effort to obtain an algorithm possessing the above properties.

The Subset Uniting Procedure was developed to eliminate the prob-

lem of skipping objects with a 'flat peak'. This procedure replaces the



last two steps of Gitman and Levine's algorithm, retaining only the first
step. This procedure did eliminate the skipping of objects, but the com-
putational requirements were still increasing rapidly with the number of
points. Gitman and Levine's algorithm and the Subset Uniting Procedure
are discussed in Chapter II.,

Some simplifications of Gitman and Levine's algorithm as well as
the Subset Uniting Procedure are possible when working on a grid, as is
the case in object isolation. A simplification of the first part of Gitman
and Levine's algorithm, called the Diamond-Function Procedure, was
developed. The Subset Uniting Procedure simrplifies very easily in the
case of a grid, so it was not re-named. The Diamond-Function Proce-
dure eliminates the need to compute and store the lists which are re-
quired by Gitman and Levine's algorithm, which gives the Diamond-
Function Procedure the property of having fixed storage requirements
for a given number of data points. The problem Gitman and Levine's
algorithm had with equal-distance points is also eliminated, but the
problem of handling points of equal magnitude remains. Equal-magni-
tude points are handled the same way in both procedures, so the Diamond-
Function Procedure inherited the large amount of computation associated
with the occurrence of significant numbers of equal-magnitude points in
Gitman and Levine's algorithm.

Another procedure, called the Potential Local Maxima Procedure,
was developed. This procedure replaces the first part of Gitman and
Levine's algorithm, and is applicable to a grid of data points. The

second procedure of Gitman and Levine's algorithm is retained, but in



a version which is simplified considerably because the data points lie on
a grid. The Potential Local Maxima Procedure has storage requirements
which are linear with the number of data points and computational re-
quirements which increase at a rate slightly greater than a linear rate
with the number of data points, This procedure, however, generates
spurious regions when ''flat spots'' occur in a scene, and is thus un-
suitable for object isolation. The Diamond-Function Procedure and the
Potential Local Maxima Procedure are described in Chapter III.

An algorithm which satisfied all four of the above criteria was
developed after a similarity between the Subset Uniting Procedure and
the Potential Local Maxima Procedure was noticed. This algorithm is
called the Unimodal Tree Algorithm. If each object can be made into a
unimodal st;bset by properly enhancing the image, the Unimodal Tree
Algorithm will generate one region for each object. The algorithm
operates only on data in a grid. Both computational and storage require-
ments are linear with the number of data points. Points of equal mag-
nitude have no adverse affect on the performance of the algorithm. The
Unimodal Tree Algorithm along with some statements about its perfor-
mance will be presented in Chapter IV,

Experiments us.ing the Unimodal Tree Algorithm are presented in
Chapter V. Object isolation was performed on three scenes, two of
which contained ellipsoids and spheres in various orientations. One of
these scenes contained two touching ellipsoids. The third scene was of

two mites. The Unimodal Tree Algorithm was also applied to the prob-



lem of clustering points in a space. Clustering experiments include the
Fisher Iris Data [ 3], bivariate Gaussian clusters, and ''ring''-type
Gaussian clusters. The Unimodal Tree Algorithm provides a 'fast'
(computation and storage requirements are linear with the number of
data and grid points) method of clustering large numbers of points into
clusters of very general shape. Mention is also made of a possible app-
lication in optimization of a function of several variables, but no experi-

ments have been carried out in this area.



CHAPTER II

GITMAN AND LEVINE'S FUZZY SET SEPARATION ALGORITHM

2.1 Definitions

Before describing Gitman and Levine's [ 5] algorithm, it is neces-
sary to define several important terms required to properly understand
the algorithm. The first concept needed is that of a fuzzy set. If X is
a space of points with elements x ¢ X, then '"a fuzzy set A in X is char-
acterized by a membership (characteristic) function fA(x) which associ-
ates with each point in X a real number in the interval [0, 1], with the
value fA(x) representing the 'grade of membership' of x in A". (Zadeh,
[9]). There is no need to restrict the value of fA(x) to the unit interval
in either Gitman and Levine's algorithm or in any of the algorithms pre-
sented in this thesis, A finite interval of either the real or the integer
line may be used instead. All the computer examples done in this the-
sis use positive integers as the range of the function.

Gitman and Levine denote by p a point where the maximum function

Sup[fA(x)].

value occurs in A; that is, fA(l*) =
x €X

A point y is called

the mode of A, Inorder to define 2 symmetric fuzzy set and a unimodal
fuzzy set, the following two subsets of X are defined:

I'xi = {x 3fA(x) 2 fA(xi)} and I‘xi,d = {x2d(y, x) < d(g, xi)}, where
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xi X and d(u, v) is a metric, or distance measure, between points u and
v; l"x is the set of points in X each of which have a function value
i

greater than the function value of X3 T is the set of points in X

xi,d
having distance from p not greater than the distance from p to X, . Note
that the terms "'symmetric set' and '"unimodal set' will be used instead
of "symmetric fuzzy set'" and "unimodal fuzzy set' when the context is
clear,

Definition: A fuzzy set A is symmetric if and only if, for every

point X, X, Fx = T This definition says that moving closer to

X, d’
the mode and increasing in function value are synonymous in a sym-
metric fuzzy set. (See Figure 3)

Definition: A fuzzy set A is unimodal if and only if the set I‘x. is
connected for all x, € X. If a fuzzy set is split up into region(s) ha\ting
a function value greater than a and at most one region results for all
a in the range of the function associated with the fuzzy set, then the
fuzzy set is unimodal, and visa-versa. (See Figure 4)

When working with a computational algorithm, it is necessary to
have a finite number of points in a discrete space. Gitman and Levine
denote a sample of N points from A by S = {(xi, fi)N}, where xi(__ X
ar;d fi is the function value corresponding to X, . A partition of S into
m subsets, each with maximum function value My is denoted by
{(Si’ pi)m}. For a point X, € Si’ let X, be defined by

d(x X xk) = min [d(xk x )]s x, 1is the closest point to X, not in Si'
xJe(S S
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Figure 3: Symmetric Fuzzy Sets
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Figure 4. Unimodal Fuzzy Sets
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Figure 4(%. A Unimodal (Left) and a Non -Unimodal Set in two dimen-
sions shown by contour lines, The small arrows indicate the contour
at the head of the arrow has a higher value than the contour at the tail

of the arrow.
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Definition: X is an interior point of Si if the set

{x;d(xt, x) < d(xt, xk)} includes at least one element of Si' In other
words, X is an interior point of Si if there is another point in S, closer
i

to ‘t , the point closest to x, but not in Si. (See Figure 5)

k

Note that there is an element of ambiguity in this definition of
interior point. If two or more points outside Si are found to have the
same minimum distance to x,, one of them might satisfy the criterion
to make x, an interior point and the other one not. For example, con-

sider the four points shown in Figure 6 with the indicated partition into

Sl and SZ' The distance between xt and xk is the same as the distance
1

, and is the minimum distance to X for x ¢ S,

between xt and xk
2

1
tl

x, is not closer to xt than X, is, however, which makes
2

X, not an interior point of Sl. Since a scene is ordinarily scanned on

X . is closer to x, than ’ﬁ( is to xt , making X, an interior point by
1

definition.

some sort of a uniformly-spaced grid, some method of deciding if a
point is to be considered interior or not interior in such a situation will
be needed. This problem will be discussed later. Gitman and Levine

do not treat this situation.

2.2 Gitman and Levine's Algorithm

The algorithm developed by Gitman and Levine consists of two
parts: procedure F and procedure S. (See Figure 7) In procedure F,
the local maxima of the fuzzy set are found. A local maximum in the

continuum becomes a mode T of subset Si’ subject to certain criteria
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Figure 5. Interior Points

The interior points of S, are 'barred'. The nearest point in S_ to
each '"barred' point has anogher point in S_ closer to it than the '"barred"
point. The '"'unbarred' points in Sl are no‘: interior points because they
do not satisfy the definition of interior point.

Figure 6. Ambiguity in Definition of Interior Points. Is X, interior?
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Figure 7. Flowchart of Gitman and Levine's Algorithm
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on the sampling used (theorem 1 in Gitman and Levine). All of the Si's
generated by procedure F are symmetric; My is a local maximum if My

is an interior point of Si' The criteria on the sampling reflect the fact
that there must be a symmetric subset of radius ¢ about each local max-
imum in the continuum, that the points in the sampling must be spaced

no further apart than ¢, and that local maxima must be sample points.

In general, none of these conditions are known to hold, but they should be
fairly well approximated for reasonable samples. Procedure S will be

discussed later.

2.2.1 Part One of Procedure F

Part one of procedure F requires generating a sequence

Ao = (y?, yg, ... ) of the points of the sample S in decreasing order of

magnitude (assume for now that there are no points of equal magnitude).

(See Figure 8). y(l) is the global maximum of the sample, yg is the next

1 1

21 Y3l"')°f

higher point, and so forth. Another sequence A1 = (y:, y
points in S ordered by increasing distance from Y(l) is generated (assume
for now that no pair of points is the same distance apart as any other
pair). The points in Ao shall all be inspected one at a time, in order,
and assigned to a symmetric subset, or group. Assign the points of

Ao, in order, to group | until some r is found such that yg # y:_, and
y? = yi1 for 0 <i<r. (The notation '""='"" means here '"is identically the
same point''). When this situation occurs, the next point down in mag-

. 0,.
nitude (yr) is not the same as the next point out in distance (yi‘). Group

one might not remain symmetric if yg was assigned to it, since there
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Figure 8. Flowchart of Part 1 of procedure FF', There are N data points.
This flowchart does not contain provision for equal-magnitude
and equal-distance points.
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is a closer point of lower magnitude. At this point group two is initiated

by setting yf = yg and forming the sequence A_ of points ordered by

2

increasing distance from yf. The list A_ may be terminated when a

2
point already assigned (y(;, 0 <i<r)is encountered, Future assign-
ment to group two would halt there anyway since the point can never be
found in list Ao again.

Now suppose that g groups have been initiated in the same manner
as groups one and two were initiated above. There are g sequences
Al' AZ’ .o Ag’ each of which has a candidate for assignment. These
candidates are each denoted by yi} where i is the group number, 0 <i < g,
Suppose y: is the current point to be assigned in the Ao list (points y(i)
for 0 <i < q have already been assigned). There are three cases:

i) No identity between yg and yi for any group.

ii) Equality between y: and yi for exactly one group.

iii) Equality for more than one group.

The action to be taken for each of these cases is as follows:

Case i): Form group g + 1 with mode y?ﬂ = Yc(; and the sequence
A . A consists of the points of the sample S in increasing dis-

g+l g+l

tance order from y%“

Increment g and q, determine which case
(i, ii, or iii) is present, and continue.

Case ii): Assign yg to the matching group, increment q, and con-
tinue.

Case iii): Assign yz to the matching group containing the assigned

point closest to y:.
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For an example of procedure F on a simple one-dimensional data
set, see Gitman and Levine [5]. This procedure will always generate
symmetric subsets. If, however, ambiguity enters into either the
ordering of the points by magnitude or by distance, or by both, the
procedure may generate many more symmetric subsets than are really
necessary. To see why this happens, consider the case of three equally-
spaced points of different magnitude. (See Figure 9). The points will be
ordered by magnitude correctly, but when the points are subsequently
ordered by distance, the second and third points could be placed either
way. One way will match up with the ordering in Ao and the other way
will not. If the lists do not match, another group will be formed, and
the distance ordering for this group will also be ambiguous. If one
choice is made, the mode of group one will be found, and the AZ list
will be terminated. If the other choice is made, the remaining point
will become the next candidate for group two. This point will be assign-
able to either group one or two, but the rule for case iii) will not tell
which. In such a case, assignment is arbitrary. Part one of procedure
F may generate either one or two symmetric subsets in this simple
example. In addition the procedure will enable the generation of a
minimum number of symmetric subsets in the case of distance equality,
Simply re-order all the equal-distance points in each of the lists Al'

A .., 80 that the order of these points is the same as their order in

2’
the A list.
o

Points having equal magnitude also cause the generation of more
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Figure 9. The Problem With Equal-Distance Points

Ay = (1,2,3)

A may be arbitrarily formed in either of two ways:

1
Al = (1, 2, 3)

1
1

y, = 1-group 1

= y; = 2-group 1

y; = 3—=group 1

A = (1, 3,2)
1
= yl = l->group 1

yl =» form group 2. A_ may now be formed as either:

- ] -
Az = (2,1, 3) or Az = (2,3,1)
2
=y, = 2-+group 2 yg = y; = 2--group 2
= y; = 3—+group 1 yg = y; and yg = y: » 3—+either group 1 or

group 2.

(Assignment to group 1 or group 2 is arbitrary
since the distance to the nearest assigned
neighbor is a tie.)
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symmetric subsets than necessary. For example, consider three
points having the same function value, but separated by different dis-
tances. (See Figure 10) An arbitrary ordering is selected for the Ao
list, and the Al list is generated unambiguously. The second element
of the two lists may match or not match, arbitrarily. Either oneor
two symmetric subsets may result.

It is desirable to generate a small number of symmetric subsets for
three reasons. First, the initiation of each subset requires the compu-
tation and ordering of distances between the mode of the new subset and
some of the data points (data points at a distance further than the mini-
mum distance from the mode to points already assigned need not be con-
sidered). Minimizing the number of subsets will reduce this computation.
Secondly, each time a point is assigned to a group, all the groups must
be searched for a candidate point identical to the point being assigned.
Reduction of the number of groups will also reduce the computation for
this search. A third reason is that a l.ocal maxix;xmum may be missed if
the symmetric set around it is terminated prematurely,

A modification of case i) may be made which enables the procedure
to generate a smaller number of symmetric subsets in the case of
equality in function values. If no matching points are formed as in
case i), continue the search using the points which have the same mag-
nitude as the first point. Initiate a new group only when none of these
equal-magnitude points satisfy either case ii) or case iii). Note that if

equal distance points are present, the equal-distance points in each of
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The Problem with Equal-Magnitude Points.

Six cases exist for the possible orderings of Ao.

AO=

A1=

l-group 1
2-»group 1

(1, 2, 3)
(1, 2, 3)

3-+group 1

Ao

Al
2-group 1

A2 = (3,2,1)

3—+group 2
l-group 1

2,3,1)
(2,1, 3)

AO=

Al=

l-+group 1

A, = (3,2,1)

3-+group 2
2—-group 1

(1, 3, 2)
(1,2,3)

A

A

3-+group 1

AZ = (1,2, 3)

1-+group 2
2--group 2

(3,1, 2)
(3,2,1)

A =

0 = 213
A =

L= (213)

2—-group 1
1-group 1

3-+group 1

Ao

A

3—+group 1
2-+group 1

(3,2,1)
(3,2,1)

1-group 1
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the Ai lists will have to be either re-ordered or searched for equality

during this procedure.

2.2.2 Part Two of Procedure F

Part two of Procedure F uses the symmetric partition generated by
part one as input and determines the local maxima of the sample function.
(See Figure 11). The procedure is as follows: if o is an interior
point of Si’ then My is a local maximum; otherwise, it is not. This test
is performed for each Si in the symmetric partition. In other words,
determine the minimum distance from W to the points not in Si' Call

the point where this minimum distance occurs X and assume X, is
i i
unique for now. My is a local maximum if there is a point in Si which

£ Otherwise,
i i
My is not an interior point of Si’ and hence is not a local maximum.,

has distance from xt less than the distance from W, to x

Note that part two of Procedure F has two inherent problems.
First is the problem in the definition of interior point which was men-

tioned earlier. The problem of a non-unique x, may be resolved three
i
ways: 1) the mode is interior only if all % satisfy the condition,
i

2) the mode is interior if any x, satisfies the condition, or 3) the

t.
i
mode is interior if an arbitrary one of the x, satisfies the condition

i
for the mode to be an interior point. The third scheme was used in the

implementation of Gitman and Levine's algorithm which was used for
this thesis.
The second problem associated with part two of Procedure F is the

occurrence of non-unique y. in S, for one or more groups. The problem
i i
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Figure 11. Part 2 of Procedure F.

Part 1 of
Procedure F

|

Set i=1, j=0

ﬁ‘l,

Xt = point having

minimum distance
between p; and
x3xecS - Si

there any
xe Si3d (x, xt)<

Yes

Continue with
procedure S
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arises because an arbitrary one of these equal-magnitude points was
selected as the mode of the symmetric set. If this mode is surrounded
by points of equal magnitude, it will be classified as a local maximum
even if this flat region is not a local maximum at all. An example of
such a flat spot is a level region on the side of a hill, as shown in
Figure 12. To prevent such a flat region from generating any local
maxima Gitman and Levine offered the following suggestion: ''To solve
this problem, we have modified part two of procedure F (in which a
search for the local maxima is performed) in the following way. Let
Sii be the subset of points in Si which have the same (maximal) grade

of membership as My then every point in Sii is examined as the mode of
Si' If at least one of these points is on the boundary of Si’ then By is
not considered as a local maximum.' Many counter-examples exist to
this solution. Consider the case of an elliptical flat region in two-
dimensional Euclidean space surrounded by lower values decreasing
with increasing distance from the edge of the flat region, (See Figure 13)
Part one of procedure F will pick an arbitrary one of these points in

the flat spot as the global maximum and start the first symmetric group
with it, The first group will be extended until a point in the distance
list Al but not in the flat region is encountered. Another group will
start on the flat region at a point of the flat region not in the first group.
Such a point will exist because there will be points in the ellipse not
included in the disk-shaped symmetric first group. This group will

grow until it hits either the edge of the flat region or the first group,
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Figure 12. Flat Regions Which are not Local Maxima



27

)

Figure 13, An Elliptical Flat Region Surrounded by Lower-valued Points,

r'd
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whereupon another group will be started. This process will continue
until the flat region is covered by symmetric groups. Group one and
other groups which hit the edge of the flat spot may be extended by a
point or two, and new groups will be initiated to cover the sides of the
"butte''. Now consider the first subset. There will be points along its
edge which are in the flat spot but are not interior points, The same
observation will hold for boundary points in each group having points
in the flat region. The result is that this region will be missed as a
local maximum. The only way this flat region could be kept as a local
maximum would be to include the entire flat region and some of the sur-
rounding area in a symmetric subset.

In object isolation the problem with missing flat local maxima
described above is intolerable. The intensity function is normally quan-
tized, perhaps into only a few levels. Occurrences of flat regions which
are local maxima will be a common situation in such images. A pro-
cedure for correctly handling the case of non-unique modal values is
mandatory if object isolation is to be perform'ed. Such a procedure will

be discussed after procedure S is described.

2.2.3 Procedure S

Using the local maxima generated by procedure F as input, proce-
dure S partitions the sample S into unimodal regions. Points which are
not local maxima are assigned in the order in which they appear in se-
quence Ao' (See Figure 14). Each local maximum will start a new uni-

modal group. The procedure is as follows: Assign the point y;) (in
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Figure 14, Flowchart of Procedure S. Mj is the jth local maximum.

Part two of
procedure F

L

j=1
Start group j.
Yes Assign y? to group
j. Set j=j+1
No
0

Assign y, to the
group to which the
nearest higher
A neighbor of y? Y
belongs S.

5

i=i+l

No
Yes
EXIT
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location j of sequence Ao) to the group in which its nearest neighbor with
a higher function value has been assigned, except for the local maxima.
When a local maximum is encountered, start a new group. ''Higher
function value' and ''previously assigned'' are synonymous in this pro-
cedure because of the decreasing-magnitude order of assignment.
Gitman and Levine prove a theorem which states that procedure S
may be replaced by a procedure which unites the symmetric subsets to
form unimodal groups if the maximum diameter of a disk in the contin-
uum containing no sample points shrinks to zero. (Theorem three in
Gitman and Levine)., Furthermore, they point out that if this uniting
procedure is used, procedure S reduces to an automatic classification
of the points, providing that for each mode the nearest point with a
higher grade of membership is recorded during part one of procedure F,
The procedure involved is to assign all the points in each subset whose
mode is not a local maxima to the group to which the nearest higher
neighbor to the mode of this subset was assigned. Assignment is done
by decreasing order of modal value for all the subsets. The points in
each subset containing a local maximum start a new group. This pro-
cedure suggests a similar procedure which replaces part two of proce-

dure F and procedure S.

2.3 The Subset Unitini Procedure

Since the data points can be assigned by selectively uniting symmet-
ric subsets, it should be possible to obtain a similar assignment of the

points by using a different rule for uniting these subsets., A requirement
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for uniting two subsets is that the subsets be "'adjacent' to one another,
A definition of adjacent symmetric subsets which satisfies the idea of
adjacency follows.

Definition: Let zij be the closest point (in case of ties in close-
ness, the highest of the closest points) in Si to any point in Sj' and let
zji be the closest point (or the highest of the closest points) in Sj to any
point in Si’ where Si and Sj are symmetric subsets. Si and Sj are

ad jacent if

d(z,.,, z,.) < max[d(z,, w), d(z,,, w)], whered(u, v)is a
1) Jl IJ n

wES - (SiU Sj)
metric function between points u and v. (See Figure 15). This inequality
has been termed the ultrametric inequality (Johnson [7]).

Assume i <j, Then My 2 p,j from part one of procedure F. The
following conditions must hold for Si and Sj to be united in order to
maintain a unimodal set as the result of this union and of previous
unions which may have been made using Si and Sj' and the subsets united
to them:

a) Si and Sj must be adjacent.

b) zji and p'j must have the same value.

c) The value of zij must be no less than that of zji'

d) My and B must have magnitude not less than the magnitude of

the mode of any of the subsets with which Si or S,, respectively,

i

has been united with in the past.

The order in which these subset pairs are checked to see if they
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Figure 15. Illustration of Adjacency

The circled points are the points in each symmetric subset S, and
Sz closest to the mode of the other subset of the pair. If no points in
S™- (S,US.) fall in the shaded region, S, and S_ are adjacent. Other-

wise, S1 and Sz are not adjacent. 1 2
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can be united is as follows: First try the pair (Sl’ Sz), then (Sl. 83),
(Sl, S4), and so forth to (Sl, Sg). Then (SZ, S3) are checked, then

(S

2’ -1’

S4), and so forth, until the pair (Sg Sg) has been checked. The
fact that checks b), c), and d) above are needed is verified in Figure 16,
When groups are united, it is not necessary to recall all the previous
unions these groups have experienced, as requirement d) would indi-
cate. Rather, a flag may be associated with each subset, and set if its
subset is united with another subset having a higher modal value. Two
subsets may not be united if both flags are set.

The above procedure will be termed the '"Subset Uniting Procedure'',
Note that since a single point is a symmetric subset, the Subset Uniting
Procedure is applicable to the data points individually before part one of
procedure F separates them into symmetric subsets. The Subset Uniting
Procedure requires ﬂg_—_l_)_ adjacency tests for g subsets, If each point

is considered as a subset in this procedure, and there are n points,

n(n-1)

> adjacency tests are performed. If each symmetric subset re-

sulting from part one of procedure F has about k points in it, then
g = n/k. The ratio of the number of adjacency tests necessary if pro-

cedure F is not used to the number required if procedure F is used is

-1 2 (n-
then about _o(@-1) r k —(P—ll, or approximately kz for n much larger
2E 1) (n-k)
k'k

than k. Use of part one of procedure F will thus reduce the number of
adjacency tests required for the Subset Uniting Procedure, Each adja-

cency test requires substituting each of the points not in either subset
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Figure 16. Illustration of the Conditions of the Subset Uniting Procedure

Each connected set of dots is a symmetric subset. Subsets are num-
bered by decreasing value of their mode. Dashed lines indicate
previously united subsets.

AN
=~

Ame—— asead —sessem—
%31
Case a). 1 and 2 may not be united because they are not adjacent. If

they were united, the result would not be unimodal because the union of
1 and 2 is not connected.

Case b). 1 and 3 may not be united because the value of z__. is not the
same as the value of Mg 2 and 3 may not be united for the same reason.

-

z

Z4s 54

Case c). 4 and 5 may not be united because Zyc < Zg g

Case d), 6 is united with 9 and 7 is united with 8. If 8 and 9 are united
(they satisfy conditions a), b), and c)), the result is not unimodal.
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being tested into the ultrametric inequality until either a violation of
adjacency is found or all the points are checked. The amount of com-
putation involved in an adjacency test is relatively independent of the
size of the two subsets. About n -2k substitutions into the ultra-metric
inequality are required if procedure F is used, and n-2 are required if
procedure F is not used, in the "worst case' where the subsets are
adjacent. In the case of a pair of subsets, each of size k, the closest
point in each subset to the mode of the other must be found. This oper-
ation will require 2k comparisons. These 2k comparisons may be con-
sidered to roughly ''make up for'' the 2k-2 substitutions into the ultra-
metric inequality saved when the two k-point subsets are tested for
adjacency. Thus, using part one of procedure F to generate subsets
containing about k points apiece will reduce the computation involved in
the Subset Uniting Procedure by about a factor of kz.

The amount of computation involved in part one of procedure F can
vary quite a bit depending upon the number of points of equal magnitude
which occur. Two major computational operations are involved, First
is the ordering of points by magnitude, which occurs only once, and the
ordering of points by distance from each modg', which occurs g times.
An ordering algorithm called TREEUP was used [2, 4]. Bertziss [2]
claims the worst case computation requirements for TREEUP are ap-
proximately ZN(logzN - 1) comparisons and N(logzN - 1) interchanges.
g + 1 orderings must be made, but not all of them involve all n data

points. Additional ordering is necessary if points of equal distance to
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some modes are present.
The second computational operation involved in part one of proce-
dure F is the actual assignment of points., If points of equal magnitude
are not present, g comparisons of yq (the point to be assigned) and yic
(the current candidate point for each group) must be made. Furthermore,
the closest neighbor point which has already been assigned must be
found if more than one match exists between yq and the yi. In the case
of equal-magnitude function values, many successive points may have
to be checked before assignment can be made or a new group can be
initiated. For example, consider thirty points of equal magnitude and
twenty groups. If yq is the first of these thirty points and Yq cannot be
assigned to any of the twenty groups, then 600 comparisons will have to
be made. If the next point cannot be assigned to any of the twenty old
groups or the group just formed from the first of the equal-magnitude
points, 609 more comparisons will be made, and so forth,
The storage requirements of part one of procedure F are not fixed
for a given number of points. In addition to the storage required for the
function value of each point is the storage for lists AO, Al, co., A,

g

The lengths of AO and A are fixed at n, but the lengths of A v oo Ag

1 2’ 73

vary depending upon the number of points which can possibly be included
in each subset. Gitman and Levine state that 5n storage locations were

usually sufficient for the lists Ao, A, Az, ..., and Ag in their work,

1

In addition, auxiliary working storage arrays are required during

ordering and to hold computed distances. 7n locations were found to be
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sufficient for these arrays.

The computational requirements of part two of procedure F and of
procedure S will not be discussed because local maxima may be missed
using these procedures. The use of part one of Procedure F and the
Subset Uniting Procedure requires so much computation for the large
number of points encountered in an object isolation problem that the
use of these procedures for object isolation is impractical on even the
fastest computers.

Several special functions defined on a 10 x 10 grid were run on the
M.S.U. CDC 6500 computer using FORTRAN EXTENDED for a pro-
gramming language. These 10 x 10 functions included a crescent-
shaped unimodal region and several simpler cases (see Figure 17). The
average execution time for these 10 x 10 scenes was about 5 central-
processor seconds., When the number of data points was expanded to
484 (a 22 x 22 scene of two mites; see Figure 18), the central processor
time increased to 197 seconds. All the groups generated in each trial
case were unimodal,

The cost associated with using part one of procedure F and the
Subset Uniting Procedure in an object isolation scheme is rather high,
especially when the object isolation scheme is viewed as part of a pro-
cedure to identify objects in a scene, as discussed in Chapter I. Even
when using a computer as powerful as the CDC 6500, only about 20
scenes per central-processor hour can be processed (assuming the rate

of one scene every three minutes is valid). Two attempts at obtaining
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Figure 18. Mite Scene.
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a faster method for object isolation in a scene sampled on a rectangular
grid are discussed in Chapter III. Each of these algorithms has serious
drawbacks. An algorithm which effectively overcomes the deficiency of
large computational requirements and still exhibits the properties re-

quired for object isolation will be discussed in Chapter IV,



CHAPTER 1II

TWO APPROACHES TO THE UNIMODAL SUBSET SEPARATION
PROBLEM FOR USE ON AN INTEGER GRID IN TWO DIMENSIONS

3.1 Introduction

Part one of procedure F with the Subset Uniting Procedure provides
the type of separation required for object isolation. As discussed at
the end of the last chapter, this method of separating unimodal subsets
defined on an integer grid is not practical for object isolation problems
because of the method's computational requirements. Two approaches
to the problem of obtaining an algorithm which accomplishes the same
results but requires less computation are presented in this chapter.
Both approaches make use of the known location and ordering of points

in a grid.

3.2 The Diamond-Function Procedure

The first approach is to replace part one of procedure F by another
procedure which utilizes the information contained in the location and
order of points on a grid. It was noted that on an integer grid, the dis-
tance from the mode of a symmetric subset to the next point which can
be added to that subset is a function of the number of points already in
the symmetric subset, as illustrated in Figure 19 and tabulated in

Table 1. Furthermore, note that if the Manhattan metric is used, this

41
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Figure 19. Symmetric Subsets on an Integer Grid

There are 10 points in the x-ed symmetric set. The next point
which can be added is at distance 2 (using the Manhattan metric). There
are three such points. This distance may be determined from the in-
equality

2d(d +1)2n > 2d(d - 1).

2d(d +1)210> 2d(d - 1) implies d = 2, giving 12210 > 4,
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Table 1. Distance to the Next Point Which Can be Added to a Symmetric

Fuzzy Set.
EUCLIDEAN MANHATTAN
DISTANCE DISTANCE
NUMBER OF TO THE NEXT NUMBER OF TO THE NEXT
POINTS IN ADDABLE POINTS IN ADDABLE
SUBSET POINT SUBSET POINT
0- 6 0.000 0- 0 0
1- 4 1.000 1- N 1
5- 8 1.414 5- 12 Vi
- 12 2,000 13- 24 3
13- 20 2.236 25-  4¢C I
21- 24 2.828 L1- 60 5
25- 28 3.000 €1- 34 C
29- 36 3.162 85- 112 7
37- L4b 3.6G65 113- 144 &
45- L8 h,000 145- 180 ¢
L9- 56 L.123 181- 220 10
57- €0 h,242 221- 264 11
61- €38 b.472 265- 312 12
69- 80 5.00¢ 313- 364 13
81- 83 5.099 365- 42¢ 14
29~ 96 5.385 4L21- 480 15
97-1C0 5.656 L81- 544 16
101-108 5.830 545- €12 17
109-112 6.000 613- €84 18
113-129 €.082 685- 760 19
121-128 6.324 761- 840 Z0
129-136 6.4C3 Jhkl1- 924 21
137-144 6.708 925-1012 22
145-143 7.000 1013-1104 23
149-160 7.071 1165-1200 Zh
161-163 7.211 1201-1300 2
169-17¢ 7.280 1301-1404 26
177-184 7.615 1405-1512 27
185-192 7.810 1513-1624 28
193-196 8.C00 1625-1740 29
197-212 2.062 1741-1860 30
213-220 6.246 1861-1984 31
221-224 8.u85 1985-2112 32
225-232 8.544 2113-2244 33

233-240 3.602 2245-2380 34



44

functional relationship between the number of points in a subset and the
distance from the mode of the subset to the next addable point is par-
ticularly simple. This relationship may be derived by noting that the
number of points at distance d from the mode of a subset is 4d using the
Manhattan metric, for d greater than zero and d an integer (only integer
distances occur), as shown in Figure 20. The number of points at a
distance not greater than d from a mode (excluding the mode itself) is
then ;4i = 2d(d +1). Thus, for a subset having n points (including
the n;:);e), the distance from the mode to the next addable point is a
number d such that 2d(d +1) 2 n > 2d(d - 1).

This relationship may be used in part one of procedure F to deter-

mine if the point to be assigned from the A list, yg, is assignable to

0
any of the existing groups by simply seeing if the distance from yq to
the mode of each subset is the same as the distance to the next addable
point of the subset., It is known that n < 2d(d + 1) because Yq has not
been assigned, and it is necessary only to test if d, the distance between
yq and the mode of the subset, satisfies the inequality n > 2d(d - 1). If
so, yq may be assigned to this subset; otherwise, it may not. This pro-
cedure is called the Diamond-function Procedure.

The Diamond-function Procedure eliminates the need to compute and

store the lists Al, A A3, etc., which gives the Diamond-function Pro-

2'
cedure the property of having fixed storage requirements for a given

number of data points. The problem Gitman and Levine's algorithm had

with equal-distance points is also eliminated, but the problem of handling
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Figure 20, Contours of Constant Distance Using the Manhattan Metric.

Figure 21. Crossing Connected Subsets Using an Extended Definition of
Connectedness,

X X X + + +
X X x 4+ + +
X X X + + +
+ + + x X X
+ + + x X X
+ + + X X X

Both the x-ed and the +-ed sets are connected using an extended
definition of connectedness.
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points of equal magnitude remains. The method of processing these
points is the same as in part one of procedure F. The computational
considerations are also the same, except that a simple comparison of
two points to see if they are identical is replaced by a distance compu-
tation, the computation of 2d(d - 1), and a numerical comparison to n.

Since the Diamond-function Procedure replaces part one of pro-
cedure F, either part two of procedure F followed by procedure S or the
Subset Uniting Procedure may be used to complete the separation into
unimodal subsets. The use of part two of procedure F and procedure S
will not be discussed at length because flat regions which are local maxi-
ma may be missed by part two of procedure F. It should be noted that
both part two of procedure F and procedure S can be simplified if the
data points lie on a grid.

The Subset Uniting Procedure may also be simplified when the data
points form a grid. The simplification is accomplished by noting that
two subsets on a grid are adjacent if there is a point in one subset at a
distance of one from some point in the other subset. This simplification
in the Subset Uniting Procedure results in reduced computatiopal re-
quirements for each adjacency test, because it is no longer necessary
to check all the points not in either subset for each adjacency test. The
amount of computation still increases rapidly with an increasing number
of symmetric subsets, however, because the required number of adja-
cency tests (g_ﬁgf-_l_)) remains the same. Doubling the number of sub-

sets increases the number of adjacency tests by almost a factor of four,
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an increase which leads to an unacceptable amount of computation for

large numbers of subsets.

3.3 The Potential Local Maxima Procedure

The second approach taken toward the problem of reducing the
amount of computation while maintaining the ability to separate a fuzzy
set into unimodal subsets is described here. This procedure replaces

procedure F while Procedure S is retained intact. The neighbor points,

or simply neighbors, of a point are all those points at a distance of one
from a particular point, using either the Euclidean or the Manhattan
metric. Note that if the case of equal-magnitude points is excluded, a
local maximum occurs at every point which has lower values at all four
neighbor points. All the local maxima can be found by comparing each
point with its neighbor points. If all the neighbor points have a lower
value, a point is a local maximum. Otherwise, it is not. This proce-
dure can replace procedure F, because both procedures do nothing more
than find the local maxima. The computation requirements for the

above procedure are fixed and are very low compared to the requirements
for procedure F. Less than 4n magnitude comparisons need be performed
to determine the local maxima, since the checking of the neighbors of
each point which is not a local maximum can be terminated as soon as a
higher neighbor is found. Also, the points on the edges of the grid will
have fewer than four neighbor points. Doubling the number of points will
roughly double the amount of computation.

Procedure S simplifies considerably in the case of a grid. Each
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point is either a local maximum, which causes a new group to be gen-
erated, or it has a higher neighbor which has already been assigned to
a group, due to the decreasing-magnitude order of assignment used in
procedure S. Each point with a higher neighbor is assigned to the same
group as was the highest of these neighbors.

This local-maxima procedure must be modified to handle the case
of equal-magnitude points, because flat regions which are local maxima
will be missed. The modification required is not as simple as requiring
that a point is a local maxima only if none of its neighbors are higher,
because that would generate many local maxima from each flat region.
Many more unimodal groups than necessary would result, The interior
points of each flat spot would each become a one-point unimodal region,
and the property of generating one unimodal subset for each local maxi-
mum would be lost. To avoid this, it is necessary to label each point
having no higher neighbor as a '"potential' local maxima. Once all the
potential local maxima have been found, a search for flat regions can be
initiated with an arbitrary one of these potential local maximum points.
Two potential local maximum points are linked if it is possible to step
from one to the other through pairs of potential maximum points which
are neighbors of each other. All the potential local maxima which are
linked to the starting point are invalidated as local maxima and assigned
to the same group as the starting point. The starting point is considered
to be the mode of the group. This procedure is repeated using an

unassigned local maximum point as the starting point each time until
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all the potential local maxima have been assigned. Each flat region
will generate only one mode in this procedure, since the potential max-
ima in a flat region will all be linked to each other. Procedure S will
remain the same as it was for the case of no equal-magnitude points.
Ties in the case of the highest-magnitude neighbor of each unassigned
point may be resolved arbitrarily. The procedure described here, in-
cluding procedure S, will be called the Potential Local Maxima Pro-
cedure,

Note that not all of the unimodal subsets generated by the Potential
Local Maxima Procedure actually correspond to local maxima, since a
flat region on the side of a '"hill' (or at the bottom of a ''valley'') will
generate potential local maximum points. One of these potential local
maxima will become the mode of a group which does not contain a local
maximum. The potential Local Maxima Procedure is thus not appli-
cable to object isolation problems. A scene which is quantized into
only a few intensity levels will contain '"bands'’ of equal-intensity points.
Each band will generate extra unimodal regions. This will decimate
each object into small meaningless regions, instead of isolating each
object as desired.

Before leaving the Potential Maxima Procedure, an interesting
extension of this procedure will be discussed. It was noted that occa-
sionally three equal-magnitude diagonally-positioned grid points with
lower-valued points around them would cause the generation of three

unimodal subsets, with any of the procedures previously discussed. A
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question arises as to whether each of these three points generate their
own unimodal set or "hill", or if they form a '"'ridge'' as one unimodal
subset. If no information is available about the continuous function from
which the grid sample was made (or if there is no such function), this
question would appear to be mostly a matter of individual preference and
which result is desired. If the function values are sample points from a
continuum, an increase in the resolution of the sample is probably indi-
cated.

The manner in which the above question is interpreted is that the
formation of symmetric subsets indirectly reflects upon the definition
of connectedness in the definition of unimodal set. Gitman and Levine
never directly mention anything about their concept of connectedness in
a discrete point set. If the concept of '"meighbor' point is extended to
include the eight points closest to a particular point using the Euclidean
metric, then the above would classify the three equal-magnitude
diagonally-positioned points as one unimodal subset, providing that the
d efinition of connectedness of the discrete grid is modified to accomodate
such sets as being unimodal. Such a definition of connectedness is not
particularly intuitively appealing because two connected subsets can
cross each other, as shown in Figure 21.

If the above idea is used, another problem has been created. Sup-
pose three points are diagonally situated as above and that all three are
potential local maxima, but not of the same function value. Three cases

exist: when the center point is highest, when it is lowest, and when it
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is in-between the value of the end two points. In the first and last cases,
one unimodal subset should be created, but in the second case, two sub-
sets must be generated. This suggests the necessity of adding a little

to the algorithm to prevent all three points from being included in one
subset in the second case.

By using somewhat the same idea as was used in the Subset Uniting
Procedure, the following additions will accomplish the desired result:
Consider all the points having no higher neighbor (including diagonal
neighbors) as potential local maxima. Start each group with the highest
unassigned potential local maximum point. A link from one local maxi-
mum to another may be performed only if the value of the second is not
greater than the value of the first, A slightly more general procedure
may be started from an arbitrary unassigned potential local maximum
point by specifying that the second point of a link may be greater than
the first point only if the magnitude of the first point is the maximum
magnitude which has been encountered so far in the formation of the cur-

rent group.

3.4 Conclusion and Maximal Unimodal Partitions

The Diamond-function Procedure is theoretically applicable to ob-
ject isolation, but in practice, the large amount of computation required
when many points of equal magnitude exist (which was inherited from
part one of Procedure F) makes the algorithm impractical. The Po-
tential Local Maximum Procedure reduces the computational require-

ments to slightly more than linear with the number of data points
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(Nlog (N - 1) operations are required for the initial magnitude ordering,
and the rest of the procedure is linear), thus basically satisfying the
linear computational requirement for an object isolation algorithm. The
Potential Local Maxima procedure and the extension of it discussed
above have not accomplished anything of interest to object isolation
since they cause the separation of flat regions when they should not be
separated. A procedure very similar to the procedure used in the ex-
tension will be the subject of Chapter IV,

Before proceeding to Chapter IV, the concept of a maximal unimodal

partition will be discussed. An obvious unimodal partition for any dis-
crete set is to consider each point as a unimodal subset. It is equally
obvious that there is a '"better'' partition; that is, a partition with fewer
subsets. By combining two of the closest points into one two-element
subset, one less unimodal subset will result. In this sense, there
should be a 'best'" unimodal partition in which the union of any two of
the unimodal subsets of the partition is not unimodal. In most discrete
fuzzy sets, there will be many such partitions, any of which shall be
termed a ""maximal unimodal partition'. One unimodal subset will
exist for each local maximum in the data set. The number of subsets
in any maximal unimodal partition is fixed for a given data set. The
property of always generating a maximal unimodal partition is a desir-
able property for a unimodal subset separation algorithm to possess.
The lack of this property was seen to make the Potential Local Maxima

Procedure unusable for object isolation.



CHAPTER IV

THE UNIMODAL TREE ALGORITHM

4,1 Introduction

Part one of procedure F, the Diamond-function Procedure and the
Subset Uniting Procedure all exhibit computational requirements which
increase at a rate significantly greater than a linear rate with the num-
ber of data points, as discussed previously. For this reason, these
procedures are not particularly applicable to the object isolation prob-
lem. The Potential Local Maximum Procedure generates spurious
separations when equal-magnitude points are present, and is therefore
not applicable to object isolation, Part two of procedure F will miss
most local maxima which consist of more than one equal-magnitude
point, and two objects may not be separated. For this reason, any
algorithm which uses part two of procedure F will not be well suited to
object isolation. In this chapter, an algorithm which is applicable to
object isolation will be presented. This algorithm was developed after
a similarity between the Subset Uniting Procedure and the extension of
the Potential Local Maxima Procedure was noted. Several definitions
and a theorem which are needed to properly understand this algorithm

will now be presented,

53
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4.2 Mathematical Preliminaries

Consider a finite n-dimensional grid of points S with integer grid
coordinates and a fuzzy set F in S with function value f. (S together
with F may be considered to be a sample from a continuum if desired.

If so, the integer grid points need not match with the coordinate system

of the continuum. The entire grid may be rotated, scaled, translated,

or otherwise transformed with respect to the coordinate system of the
continuum. The origin of the integer grid is immaterial to the algorithm.)
Let G be a graph having the set of all points in S as its vertex set and
having one edge between points in each pair (ai, bi) satisfying

0< d(ai, bi) < R, where d(ai, bi) is a metric, R is a constant, and a,

and bi are points in S,

Definition: Two disjoint subsets Si and Sj of S are said to be connected
if there is exactly one edge of G between some element of Si and some
element of Sj. If R = 1 and a Euclidean metric is used in the definition
of G, this definition corresponds to the intuitive notion of connectedness.
If R 2 N2, this intuitive idea of connectedness may be violated by al-
lowing connected subsets to cross each other in two dimensions. (See
Figure 21).

Let Sij be a subset of Si' Sij = {x3f(x) 2 f(xj)} for any xj in Si'

Definition: A unimodal fuzzy subset Fi exists in Si if and only if
the set Si’ is connected for all xj in Si' (Fi has the same function value,
f, as did F).

Definition: A partition of a set S is an assignment of each element
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k

of S to one of the k subsets Si in a manner such that L_)Si = S and
i=1

Siﬂ Sj = ¢ foralli,j = 1,2,...,k, i # j.

Definition: A partition of S is a maximal unimodal partition of S if

the partition separates S into k subsets Si’ i=1, 2,...,k, each of which
is unimodal, and if SiU Sj is not a unimodal subset for any i # j, i, j=1,
2, ..., k.

An endpoint of a graph is a vertex inciaent to at most one edge of
the graph. A tree is a connected graph containing no subgraph having
no endpoints. A pathis a tree with two endpoints. In a connected graph,

the graphical distance between vertices ) and Vo denoted by dg(vl’ vZ),

is the number of edges in the shortest subpath of the graph having vy and

v, as its end-points. (For a treatment of graph theory, see Behzad and

Chartrand [1].)

Definition: A path P in G is called a descending path if

dg(a, h) > dg(b, h) implies that f(a) < f(b) for all a and b which are ver-
tices of P and where h is one of the endpoints of P, termed the high
endpoint of P, The direction of the descending path is away from h,

Definition: A tree T in G is a unimodal tree if there exists a ver-

tex h of T such that every vertex of T is a vertex of a descending path
in T having h as its high endpoint.

Theorem: A unimodal fuzzy subset Fi exists in Si if and only if G
contains a unimodal tree spanning Si' (Fi has the same function value,
f, as does F),

Proof: The proof proceeds as follows: It is first shown that if
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Gij, the largest subgraph of G in sij (sij = {x2f(x) 2 f(xj)} for any x, in
Si) is connected for all xj in Si (i. e., Si is unimodal, from the definition),
then Gi’ the largest subgraph of G in Si’ has a spanning subgraph which
is a unimodal tree. (By the largest subgraph is meant the subgraph
having the greatest number of edges.) Second, it will be shown that if
Gi is spanned by a unimodal tree, then Gij is connected for all xj in Si’
which means that Si is a unimodal subset by definition.

1. If Gij is connected for all xj in Si’ then there is a path in each
Gij from every point to every other point in Gi" Since every connected
graph has a spanning subtree, it must be shown that at least one such
spanning subtree of Gi exists which is a unimodal tree. Order the ver-
tices in Gi by decreasing value of f. Put a spanning tree through the

point(s) in Gi This can be done because of the assumption that each

1
Gij is connected (from the assumption that Si is unimodal), This tree is

unimodal since all the vertices have the same value of f. Next, add the
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