
o
.

.
"

‘
"
'

'
"
I

.
.
q

n
.

o
.
u

u
5
-

.
n
o
t
-

.
I
.
.
.

,
.

.
.

W
‘
"
\
I
\
I
fi
fl
.
l
"
‘
;
t
\

\
"
f
“
§
'
|
!
0
.
.
"
‘

I
_
\
I
;
'
\
"
A
.
’
I
I
|
|
\
I
I
.
-
.
'
.
.
3
.
.
.
I

.
\
»
.
\

.
.

.
‘
I
‘

I
I
-
‘
¢

-
\
c

'
‘
5

.
,
‘
v
.
'
,
.
'
.
.
.
.
.
.
.
‘

.
.

.
‘
—
"
.
-

.
'

.
.
.
.
q
J
‘
.
.
.
.
.
(
“
-
.
-
.
I
.
.
‘
-
.
o
.
.
.
A
'
~
I
.
‘
.
\
v

I
.

'
:

o
-

-
“
-

w
o

c
-
H
‘
v

"
-
0
-
'
-
‘
*

-
"
"
0
.

l
.
‘

.

v
.
.
.
‘
A
'
.

"
'
.
“
"
'
-
I
"
“
"
"

"
"

‘
“

.
.

.
.

.
.
-
b
.
-
0
‘

I
.
.
.

‘
.
'
|
n
.
'

.
.
.

.

'——— wry-".quv ...—cs...

AN ALGORITHM FOR SEPARAI'ING

UNIMODAL FUZZY SETS ON A GRID

AND ITS APPLICATION TO

OBJECT ISOLATION AND CLUSTERING

Thesis for the Degree of M. S.

MICHIGAN STATE UNIVERSITY

ROBERT LEWIS WALTON

197 3-

‘1 Mithigm $153.6:

W, University ,..

9Marianna-n. '

' m a saw I

BUUK amnm um. I
LIBRARY BINDERS

' GPO‘IIL unsung

ABSTRACT

AN ALGORITHM FOR SEPARATING UNIMODAL FUZZY SETS

ON A GRID AND ITS APPLICATION

TO OBJECT ISOLATION AND CLUSTERING

BY

Robert Lewis Walton

The goal of object isolation is to separate a scene into ”regions of

interest", each of which corresponds to an object or a portion of an ob-

ject. The objective of this thesis is to develop a machine algorithm

capable of isolating objects in an image plane. Such an algorithm can

also be applied to the problem of clustering points in a feature space by

treating a ”density function" of the points as the intensity function of a

scene and then finding the "objects" present. These objects correspond

to clusters.

A basic approach to the object isolation problem was presented in

terms of a clustering algorithm developed by Gitman and Levine[1].

Their algorithm is capable of separating a fuzzy set into unimodal re-

gions and is capable of performing object isolation, provided each ob-

ject can be made to correspond to a unimodal fuzzy set. Usually, if

the input scene is preprocessed by low-pass filtering, each object can

be made to correspond to one (or perhaps several) unimodal sets. Nor-

mally, at least several hundred data points are required to represent

Robert Lewis Walton

the objects in a scene. If the assumption of a constant number of points

per symmetric subset [l] is made, the computational requirements

increase at least as rapidly as n2, where n is the number of data

points. For a typical number of data points, the computational require-

ments are too large to base a practical object isolation scheme on this

algorithm. In addition, the algorithm has deficiencies related to equal-

ly spaced points and points of equal magnitude.

Several attempts are presented in this thesis for overcoming these

deficiencies. As a result of these attempts, a new algorithm, the Uni-

modal Tree Algorithm, was developed. This algorithm assumes that

the data points lie on a uniform grid, which is usually the case when a

scene is scanned. It has computational and storage requirements which

increase linearly with the number of grid points. The regions the algor-

ithm generates are proven to be unimodal, and the union of any two

regions is shown to be non-unimodal. Furthermore, these unimodal

regions may be of any shape. There is no dependence upon spherical or

elliptical regions.

Several experiments involving the Unimodal Tree Algorithm were

performed. A scene containing three spheres and three ellipsoids was

scanned and processed using the algorithm. The result was six regions,

each of which contained one object. Another scene which was processed

contained two touching ellipsoids. These objects were also separated.

A third scene containing two mites in contact was run; three regions

resulted. (One mite was light at both ends and darker in the center. I

Robert Lewis Walton

Several bivariate Gaussian point sets were run using the Unimodal

Tree Algorithm as a clustering scheme (in conjunction with a routine

to form a density function on a grid). Even severely overlapping Gaus-

sian clusters were separated. A crescent-shaped cluster with a Gaus-

sian cluster in its center was run to demonstrate the independence of

the algorithm with respect to cluster shape. These examples were all

run on a "mini-computer" (IBM 1800). Separation of a 25 x 25 scene

into unimodal regions required about one minute of IBM 1800 time. A

CDC 6500 (large computer) separated these same scenes in approxi-

mately 1. 5 CPU seconds per scene.

[1] Israel Gitman and Martin D. Levine, "An Algorithm for Detecting

Unimodal Fuzzy Sets and Its Application as a Clustering Technique, ”

IEEE Transactions on Computers, Vol. C-19, No. 7, pp. 583-593,

July 1970.

AN ALGORITHM FOR SEPARATING UNIMODAL FUZZY SETS

ON A GRID AND ITS APPLICATION

TO OBJECT ISOLATION AND CLUSTERING

BY

Robert Lewis Walton

A. THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Electrical Engineering and Systems Science

1973

£21“ ACKNOWLEDGEMENTS

I thank Dr. P. David Fisher for his invaluable help and suggestions

during the writing of this thesis. The large amount of time he devoted

to my instruction is greatly appreciated. The help of Dr. R. C. Dubes

and Dr. John Kreer in proof reading the document is also greatly appre-

ciated.

I also thank my working wife, Marsha, for her help and support

during the preparation of this thesis. Her understanding and sacrifices

have been of great help.

Finally, I thank Linda Swan for doing a fine job of typing the manu-

script.

ii

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGMENTS .

LIST OF TABLES .

LIST OF FIGURES

I.

II.

III.

IV.

INTRODUCTION. .

l.l Object Isolation Problem

1. 2 Machine Algorithm. . .

l. 3 Objectives and Accomplishments of the Thesis.

GITMAN AND LEVINE'S FUZZY SET SEPARATION

ALGORITHM

2.1 Definitions.

2 Gitman and Levine' 3Algorithm

2. 1 Part One of Procedure F .

. Z. 2 Part Two of Procedure F .

2. 3 Procedure 5. . .

3 The Subset Uniting ProcedureP
P
N
P
P

TWO APPROACHES TO THE UNIMODAL SUBSET

SEPARATION PROBLEM FOR USE ON AN INTEGER

GRID IN TWO DIMENSIONS .

3.1 Introduction . .

The Diamond- Function Procedure

The Potential Local Maxima Procedure .

Conclusion and Maximal Unimodal Partitionsw
w
w

$
0
0
M

THE UNIMODAL TREE ALGORITHM.

1 Introduction . . .

2 Mathematical Preliminaries .

3 The Unimodal Tree Algorithm

4 Implementation of the Unimodal Tree Algorithm .9
‘
?
?
?

APPLICATIONS OF THE UNIMODAL TREE ALGORITHM

5.1 ObjectIsolation.

iii

ii

l3

16

23

28

30

41

41

41

47

51

53

53

54

57

63

67

67

Object Isolation Examples 69

Clustering 82

Experiments with Clustering 86

Application to Optimization 99U
'
l
U
1
U
'
I
U
1

W
I
F
U
O
N

VI. CONCLUSION....................lOO

REFERENCES........................103

APPENDIX: FORTRAN LISTING OF THE UNIMODAL TREE

ALGORITHM..................104

iv

LIST OF TABLES

Table Page

1: Distance to the Next Point Which Can be Added to a Symmetric

FuzzySet........................43

Figure

10:

ll:

12:

l3:

14:

15:

l6:

17:

18:

LIST OF FIGURES

Object Isolation in an Object Classification Scheme .

Two Touching Ellipsoids .

Symmetric and Non-Symmetric Fuzzy Sets

Unimodal Fuzzy Sets

Interior Points .

Ambiguity in Definition of Interior Points

Flowchart of Gitman and Levine's Algorithm .

Flowchart of Part One of Procedure F.

The Problem with Equal Distance Points

The Problem with Equal-Magnitude Points

Flowchart of Part Two of Procedure F. .

Flat Regions Which are not Local Maxima .

An Elliptical Flat Region Surrounded by Lower-Valued

Points . . I

Flowchart of Procedure S

Illustration of Adj acency .

Illustration of the Conditions of the Subset Uniting

Procedure

Examples of Intensity Functions

Mite Scene . .

vi

Page

ll

12

l4

14

15

17

20

22

24

26

27

29

32

34

38

39

Figure

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

Symmetric Subsets on an Integer Grid .

Contours of Constant Distance Using the Manhattan

Metric .

Crossing Connected Subsets Using an Extended Definition

of Connectedness

Flowchart of the Unimodal Tree Algorithm .

Mite Scene

Scanned Mite Scene

25 x 25 Grid of the Mite Scene

Ellipsoid and Sphere Scenes.

Two Touching Ellipsoids After Averaging

Two Touching Ellipsoids as Separated by the Unimodal

TreeAlgorithm..............

Six-Object Scene After Averaging .

Six Objects Isolated by the Unimodal Tree Algorithm

Mite Scene After Averaging .

Mite Scene as Separated by the Unimodal Tree Algorithm

Enhanced Mite Scene Input and Output

A. "Smoothed" Mite Scene .

B. Separation of "Smoothed" Mite Sceneby the

Unimodal Tree Algorithm.

Bivariate Gaussian Clusters

A. Four Well- Separated Gaussian Clusters,

Unseparated.

. Four Clusters of A, as generated . .

Four Clusters of A, as separated by the Unimodal

Tree Algorithm.

Two Overlapping Gaussian Clusters, Unseparated .

Two Clusters of D, as Generated .

Two Clusters of D, as Separated by the Unimodal

Tree Algorithm .

p
u
n

S
P
F

vii

Page

42

45

45

58

68

7O

71

72

74

75

76

77

78

79

80

81

87

88

89

90

91

92

Figure Page

G. Two Elliptical Gaussian Clusters, Unseparated . . . 93

H. Two Elliptical Gaussian Clusters, as Generated . . . 94

I Two Elliptical Gaussian Clusters, as Separated by

the Unimodal Tree Algorithm 95

35: Gaussian "Ring-Type" Cluster

A. Gaussian and Ring-Type Cluster, Unseparated . . . 96

B. Gaussian and Ring-Type Cluster, as Generated . . . 97

C. Gaussian and Ring-Type Cluster, as Separated by

the Unimodal Tree Algorithm 98

viii

CHAPTER I

INTRODUCTION

1. 1 Object Isolation Problem

The process of classifying objects in an image using a machine

may be divided into four steps (Nagy [8]): image enhancement, object

isolation, feature extraction, and, finally, application of a decision

scheme. Image enhancement is normally necessary as a pre-proces-

sing step to put the raw input data into a suitable form for the steps

which follow. Object isolation separates the image into regions con-

taining one object or a portion of an object. This step will allow the

“background" to be discarded, thus potentially saving much computer

storage and computation later in the object classification procedure.

The feature extraction procedure extracts information useful in classi-

fying the objects, and the decision scheme determines the classification

of each object. This object classification procedure is illustrated in

Figure 1.

Separating objects in a picture is a relatively simple procedure for

the human mind. An example of such a problem is the separation of

ellipsoids resting on a dark flat surface, as shown in Figure 2. A

'simple'machine algorithm to separate ellipsoids might not work pro-

perly if the ellipsoids are of different size and orientations, or if some

of them are touching. Complex algorithms to accomplish object

1

2

Figure 1: Object Isolation in an Object Classification Scheme

START)

_L
INPUT

THE

SCENE

LL
IMAGE

ENHANCE-

MENT

LL
OBJECT

ISOLATION

K
W

FEATURE

XTRACTION

.L
DECISION

SCHEME

Figure 2. Two Touching Ellipsoids.

isolation under such adverse conditions may be very costly to Operate

in terms of computational requirements and/ or storage requirements.

1. 2 Machine Algorithms

A machine method applicable to object isolation has been suggested

by Gitman and Levine [5] . The method they discuss is capable of sepa-

rating touching ellipsoids, and is virtually unaffected by the size, shape,

or orientation of the ellipsoids. Their algorithm separates an image

into regions having only one "hill" in the intensity function (brightness

level) of the wage. Such a partitioning yields the separation required

for object isolation.

Separating a scene into "unimodal" regions is useful in object iso-

lation, but Gitman and Levine's algorithm has some deficiencies. The

first deficiency is that special processing is required for equally- spaced

sample points. When images are sampled on a grid of some sort, all

the data requires special processing in the algorithm. The second

deficiency is the special handling required by points of equal intensity-

function value. If many such points occur, a large increase in compu-

tation time will result. Equal-intensity points will occur many times

in an image having only a few brightness quantization levels.

1. 3 Objectives and Accomplishments of the Thesis

The primary objective of this thesis is to present an algorithm

capable of partitioning a rectangular grid into regions which are uni-

modal with reSpect to a function defined at each grid point, and to demon-

strate its utility by performing several object isolation experiments

5

using the algorithm. Several pr0perties which are desirable for an ob-

ject isolation algorithm to possess are the following:

1. The algorithm should be capable of detecting objects of gen-

eral shape.

2. Objects should not be skipped or missed.

3. Each object should generate one region, with no spurious

”extra” regions due to quantization of the intensity function.

4. Computation and storage requirements should increase at

most linearly with the number of grid points since a large

number of points (500 or more) are usually needed to repre-

sent the objects.

The algorithm suggested by Gitman and Levine [5] is capable of

generating the type of separation necessary for object isolation, but

objects may be missed by the algorithm if they have a “flat peak” in

intensity value. Also, the computation time required by Gitman and

Levine's algorithm increases at least as fast as n2, where n is the num-

ber of data points (assuming a constant number of points per symmetric

subset). The amount of storage required for Gitman and Levine's algor-

ithm is not fixed with respect to the number of data points due to a num-

ber of variable-length lists which are formed. Storage requirements for

these lists may be several times the number of grid points. Several

modifications of this algorithm and some new ideas were introduced in

an effort to obtain an algorithm possessing the above properties.

The Subset Uniting Procedure was developed to eliminate the prob-

lem of skipping objects with a "flat peak". This procedure replaces the

last two steps of Gitman and Levine's algorithm, retaining only the first

step. This procedure did eliminate the skipping of objects, but the com-

putational requirements were still increasing rapidly with the number of

points. Gitman and Levine's algorithm and the Subset Uniting Procedure

are discussed in Chapter 11.

Some simplifications of Gitman and Levine's algorithm as well as

the Subset Uniting Procedure are possible when working on a grid, as is

the case in object isolation. A simplification of the first part of Gitman

and Levine's algorithm, called the Diamond-Function Procedure, was

developed. The Subset Uniting Procedure simplifies very easily in the

case of a grid, so it was not re-named. The Diamond-Function Proce-

dure eliminates the need to compute and store the lists which are re-

quired by Gitman and Levine's algorithm, which gives the Diamond-

Function Procedure the property of having fixed storage requirements

for a given number of data points. The problem Gitman and Levine's

algorithm had with equal-distance points is also eliminated, but the

problem of handling points of equal magnitude remains. Equal-magni-

tude points are handled the same way in both procedures, so the Diamond-

Function Procedure inherited the large amount of computation associated

with the occurrence of significant numbers of equal-magnitude points in

Gitman and Levine's algorithm.

Another procedure, called the Potential Local Maxima Procedure,

was developed. This procedure replaces the first part of Gitman and

Levine's algorithm, and is applicable to a grid of data points. The

second procedure of Gitman and Levine's algorithm is retained, but in

a version which is simplified considerably because the data points lie on

a grid. The Potential Local Maxima Procedure has storage requirements

which are linear with the number of data points and computational re-

quirements which increase at a rate slightly greater than a linear rate

with the number of data points. This procedure, however, generates

spurious regions when ”flat spots" occur in a scene, and is thus un-

suitable for object isolation. The Diamond-Function Procedure and the

Potential Local Maxima Procedure are described in Chapter 111.

An algorithm which satisfied all four of the above criteria was

develOped after a similarity between the Subset Uniting Procedure and

the Potential Local Maxima Procedure was noticed. This algorithm is

called the Unimodal Tree Algorithm. If each object can be made into a

unimodal subset by properly enhancing the image, the Unimodal Tree

Algorithm will generate one region for each object. The algorithm

operates only on data in a grid. Both computational and storage require-

ments are linear with the number of data points. Points of equal mag-

nitude have no adverse affect on the performance of the algorithm. The

Unimodal Tree Algorithm along with some statements about its perfor-

mance will be presented in Chapter IV.

Experiments using the Unimodal Tree Algorithm are presented in

Chapter V. Object isolation was performed on three scenes, two of

which contained ellipsoids and spheres in various orientations. One of

these scenes contained two touching ellipsoids. The third scene was of

two mites. The Unimodal Tree Algorithm was also applied to the prob—

lem of clustering points in a space. Clustering experiments include the

Fisher Iris Data [3], bivariate Gaussian clusters, and "ring"-type

Gaussian clusters. The Unimodal Tree Algorithm provides a "fast"

(computation and storage requirements are linear with the number of

data and grid points) method of clustering large numbers of points into

clusters of very general shape. Mention is also made of a possible app-

lication in optimization of a function of several variables, but no experi-

ments have been carried out in this area.

CHAPTER 11

GITMAN AND LEVINE'S FUZZY SET SEPARATION ALGORITHNI

2. 1 Definitions

Before describing Gitman and Levine's [5] algorithm, it is neces-

sary to define several important terms required to properly understand

the algorithm. The first concept needed is that of a fuzzy set. If X is

a space of points with elements x eX, then "a fuzzy set A in X is char-

acterized by a membership (characteristic) function fA(x) which associ-

ates with each point in X a real number in the interval [0, 1], with the

value fA(x) representing the 'grade of membership' of x in A". (Zadeh,

[9]). There is no need to restrict the value of fA (x) to the unit interval

in either Gitman and Levine's algorithm or in any of the algorithms pre-

sented in this thesis. A finite interval of either the real or the integer

line may be used instead. All the computer examples done in this the-

sis use positive integers as the range of the function.

Gitman and Levine denote by p a point where the maximum function

Sup[fA(x)].

xGX

value occurs in A; that is, fAm) = A point p, is called

the mode of A. In order to define a symmetric fuzzy set and a unimodal

fuzzy set, the following two subsets of X are defined:

I‘xi = {x 3fA(x) .>_ fA(xi)} and I|xi,d = {x 3d(p,x) S d(p,, xi)}’ where

10

xi 55X and d(u, v) is a metric, or distance measure, between points u and

v; TX is the set of points in X each of which have a function value

i

greater than the function value of xi; F is the set of points in X
xi,d

having distance from p. not greater than the distance from p, to xi. Note

that the terms ”symmetric set" and "unimodal set" will be us ed instead

of "symmetric fuzzy set" and "unimodal fuzzy set" when the context is

clear.

Definition: A fuzzy set A is symmetric if and only if, for every

point xi 4X, I‘x. : Fx,, d' This definition says that moving closer to

the mode and inc reasinlg in function value are synonymous in a sym-

metric fuzzy set. (See Figure 3)

Definition: A fuzzy set A is unimodal if and only if the set Fx. is

connected for all xi 6 X. If a fuzzy set is split up into region(s) having

a function value greater than u and at most one region results for all

a in the range of the function associated with the fuzzy set, then the

fuzzy set is unimodal, and visa-versa. (See Figure 4)

When working with a computational algorithm, it is necessary to

have a finite number of points in a discrete Space. Gitman and Levine

denote a sample of N points from A by S 2 {(xi, fi)N}, where xi; X

and fi is the function value corresponding to xi. A partition of S into

m subsets, each with maximum function value pi, is denoted by

{(Si, pi)m}. For a point xk 6 Si' let xt be defined by

d(x , x = min [d(xk, xj)]; x is the closest point to xk not in Si.)

k xje(S- S) t

11

Figure 3: Symmetric Fuzzy Sets

fA(X)

A l I

I I 9 I

I

I

I I T '

I I ’

I 1 .1111
--—.-1I---Ir'--II-dr-I--I--'-1—-

' o

I

I

I

x

xi .1

< I“Kiwi 9

fAIXI Figure 3A. ASymmetric Set. 1"x = x d

i i,

I:
O

f

I I II?

1

I 9

l I

l d I in
—hpT—r_pi-—~-Tnhhg—p.T-p— -1.—

I

I

I I

I

I

I

x

x 1*
1

S rx,d >

Figure 3B. Non-Symmetric Set. Fx { Tx- (1' because the "boxed"
19

points are in in but noti in 1"», d

1

12

Figure 4. Unimodal Fuzzy Sets

a...

O I“

o 1‘.

___..___ --.. 1.1_.__
o I0

0 I o

o | o

. C

I

x

Figure 4A. A Unimodal Fuzzy Set. TX is connected.

i

0..
a... 9 1"

___._o__ _.._. '-___I‘fiil:._

“...-1......1113_____ :71.le

o : :.'

I 1

xi xj

Figure 4B. Non- Unimodal Fuzzy Set. I‘xi is in two "pieces". Note the

necessity for checking the connectedness of I‘Xi for every xi. I‘xj is

connected, but the set is not unimodal.

Figure 4 . A Unimodal (Left) and a Non -Unimodal Set in two dimen-

sions shown by contour lines. The small arrows indicate the contour

at the head of the arrow has a higher value than the contour at the tail

of the arrow.

13

Definition: xk is an interior point of Si if the set

{x3d(xt, x) < d(xt, xk)} includes at least one element of Si' In other

words, 1% is an interior point of Si if there is another point in Si closer

to Kt , the point closest to xk but not in 51' (See Figure 5)

Note that there is an element of ambiguity in this definition of

interior point. If two or more points outside Si are found to have the

same minimum distance to xk, one of them might satisfy the criterion

to make xk an interior point and the other one not. For example, con-

sider the four points shown in Figure 6 with the indicated partition into

S1 and 52' The distance between xt1 and xk is the same as the distance

between xt and x , and is the minimum distance to xk for x f S

2

x is closer to x than xk is to xt , making xk an interior point by

l

k 1°

1

t1

x1 is not closer to xt than xk is, however, which makes

2

xk not an interior point of 51. Since a scene is ordinarily scanned on

definition .

some sort of a uniformly-spaced grid, some method of deciding if a

point is to be considered interior or not interior in such a situation will

be needed. This problem will be discussed later. Gitman and Levine

do not treat this situation.

2. 2 Gitman and Levine's Algorithm

The algorithm developed by Gitman and Levine consists of two

parts: procedure F and procedure S. (See Figure 7) In procedure F,

the local maxima of the fuzzy set are found. A local maximum in the

continuum becomes a mode "1 of subset Si’ subject to certain criteria

l4

Figure 5. Interior Points

The interior points of S are ”barred". The nearest point in S to

each "barred" point has anogher point in S closer to it than the "barred"

point. The "unbarred" points in S are no interior points because they

do not satisfy the definition of interior point.

Figure 6. Ambiguity in Definition of Interior Points.- Is xk interior?

15

Figure 7. Flowchart of Gitman and Levine's Algorithm

C START)

__I__
Part 1 of

Procedure F.

Symmetric

Partition

is formed.

L
Part 2 of Proc. F

Determine the

local maxima

L
Procedure S

Assign Data Points

to groups.

EXIT

16

on the sampling used (theorem 1 in Gitman and Levine). All of the 51's

generated by procedure F are symmetric; pi is a local maximum if Iii

is an interior point of 51' The criteria on the sampling reflect the fact

that there must be a symmetric subset of radius 5 about each local max-

imum in the continuum, that the points in the sampling must be spaced

no further apart than c, and that local maxima must be sample points.

In general, none of these conditions are known to hold, but they should be

fairly well approximated for reasonable samples. Procedure S will be

discus sed later.

2. 2.1 Part One of Procedure F

Part one of procedure F requires generating a sequence

A0 = (YI' yg, . . .) of the points of the sample S in decreasing order of

magnitude (assume for now that there are no points of equal magnitude).

(See Figure 8). y? is the global maximum of the sample, y: is the next

1 l

2: Y3aoooIOf
higher point, and so forth. Another sequence A1 = (yi, y

points in S ordered by increasing distance from y? is generated (assume

for now that no pair of points is the same distance apart as any other

pair). The points in AC) shall all be inapected one at a time, in order,

and assigned to a symmetric subset, or group. Assign the points of

A0, in order, to group 1 until some r is found such that y: 7! yi, and

y? '2' yil for 0 < i < r. (The notation "E" means here "is identically the

same point”). When this situation occurs, the next point down in mag-

. 0
n1tude (yr) 13 not the same as the next pomt out 1n distance (yi). Group

one might not remain symmetric if y: was assigned to it, since there

17

- 0 0 0

FormlistA A0 : (Y11Y2.oo-.Yno)

ordered by

decreasing

ma nitude

'r—‘———f

Form list Ag of

points by increasing

distance from y?.

Setj =1

A
8

%

Set 1 to the

group to which

For noji the nearest

é assigned

neighbor of yCl

has been

_ assi ned.

For one ii 4__j

Assign y: to group i I

Set Ji=Ji+l

Set q=q+l

No X

Continue with

part 2 of

procedure F

Figure 8. Flowchart of Part 1 of procedure F. There are N data points.

This flowchart does not contain provision for equal-magnitude

and equal-distance points.

18

is a closer point of lower magnitude. At this point group two is initiated

by setting y: = y: and forming the sequence A of points ordered by

2

increasing distance from yf. The list A2 may be terminated when a

point already assigned (Y?) 0 < i < r) is encountered. Future as sign-

ment to group two would halt there anyway since the point can never be

found in list Ao again.

Now suppose that g groups have been initiated in the same manner

as groups one and two were initiated above. There are g sequences

Al’ A2, . . . , Ag, each of which has a candidate for assignment. These

candidates are each denoted by yid where i is the group number, 0 < i S g.

Suppose y: is the current point to be assigned in the A0 list (points y?

for 0 < i < q have already been assigned). There are three cases:

i) No identity between y: and y: for any group.

ii) Equality between y: and y: for exactly one group.

iii) Equality for more than one group.

The action to be taken for each of these cases is as follows:

Case i): Form group g + l with mode y?“ = y: and the sequence

A . A consists of the points of the sample S in increasing dis-

g+l g+l

tance order from y?“ Increment g and q, determine which case

(i, ii, or iii) is present, and continue.

Case ii): Assign y: to the matching group, increment q, and con-

tinue.

Case iii): Assign y: to the matching group containing theassigned

point closest to yg.

19

For an example of procedure F on a simple one-dimensional data

set, see Gitman and Levine [5] . This procedure will always generate

symmetric subsets. If, however, ambiguity enters into either the

ordering of the points by magnitude or by distance, or by both, the

procedure may generate many more symmetric subsets than are really

necessary. To see why this happens, consider the case of three equally-

spaced points of different magnitude. (See Figure 9). The points will be

ordered by magnitude correctly, but when the points are subsequently

ordered by distance, the second and third points could be placed either

way. One way will match up with the ordering in A0 and the other way

will not. If the lists do not match, another group will be formed, and

the distance ordering for this group will also be ambiguous. If one

choice is made, the mode of group one will be found, and the AZ list

will be terminated. If the other choice is made, the remaining point

will become the next candidate for group two. This point will be as sign-

able to either group one or two, but the rule for case iii) will not tell

which. In such a case, assignment is arbitrary. Part one of procedure

F may generate either one or two symmetric subsets in this simple

example. In addition the procedure will enable the generation of a

minimum number of symmetric subsets in the case of distance equality.

Simply re-order all the equal-distance points in each of the lists Al'

A2, . . . , so that the order of these points is the same as their order in

the A0 list.

Points having equal magnitude also cause the generation of more

20

Figure 9. The Problem With Equal-Distance Points

= 2A0 (1. .3)

I Al may be arbitrarily formed in either of two ways:

A1 = (1, 2, 3)

l

l

y = l»group l

y: = 2»group l

y; = 3->group l

15' = (1.3.2)

1

= yl=1»group l

f y; :5 form group 2. A may now be formed as either:
2

: I :A2 (2,1, 3) or A2 (2, 3,1)

2 0

= y1 ._..., 2+group 2 y2 = y; :9 2->group 2

l 0 l 0 Z .

= y2 = 3+group l y3 = y2 and y3 = y2 g 3+e1ther group 1 or

group 2.

(Assignment to group 1 or group 2 is arbitrary

since the distance to the nearest assigned

neighbor is a tie.)

21

symmetric subsets than necessary. For example, consider three

points having the same function value, but separated by different dis-

tances. (See Figure 10) An arbitrary ordering is selected for the Ao

list, and the A list is generated unambiguously. The second element

1

of the two lists may match or not match, arbitrarily. Either one or

two symmetric subsets may result.

It is desirable to generate a small number of symmetric subsets for

three reasons. First, the initiation of each subset requires the compu-

tation and ordering of distances between the mode of the new subset and

some of the data points (data points at a distance further than the mini-

mum distance from the mode to points already assigned need not be con-

sidered). Minimizing the number of subsets will reduce this computation.

Secondly, each time a point is assigned to a group, all the groups must

be searched for a candidate point identical to the point being assigned.

Reduction of the number of groups will also reduce the computation for

this search. A third reason is that a local maximum may be missed if

the symmetric set around it is terminated prematurely.

A modification of case i) may be made which enables the procedure

to generate a smaller number of symmetric subsets in the case of

equality in function values. If no matching points are formed as in

case i), continue the search using the points which have the same mag-

nitude as the first point. Initiate a new group only when none of these

equal-magnitude points satisfy either case ii) or case iii). Note that if

equal distance points are present, the equal-distance points in each of

22

2 = y

2

O

1=y 3=y3

O l .4

4

Figure 10. The Problem with Equal-Magnitude Points.

Six cases exist for the possible orderings of A

A0 = (l. 2. 3)

A1 = (l, 2, 3)

l->g roup 1

2->g roup 1

3+g roup 1

A0

A1

2»group 1

A2 = (3. 2. 1)

3->group 2

l->group 1

(2.3.1)

(2.1. 3)

A0 = (l, 3, 2)

A1 = (l, 2, 3)

l ->g roup 1

A2 = (3, 2,1)

3»group 2

Z-rg roup 1

A0

A1

3->g roup 1

A2 = (1: z: 3)

l-group 2

2->g roup 2

(3.1. 2)

(3. 2.1)

0.

A0 = (2.1. 3)

A1 = (2,1,3)

2»group l

l-egroup l

3->group 1

A0 = (3, 2,1)

A1 = (3, 2,1)

3->group l

2»group 1

l-vgroup l

23

the Ai lists will have to be either re-ordered or searched for equality

during this procedure.

2. 2. 2 Part Two of Procedure F

Part two of Procedure F uses the symmetric partition generated by

part one as input and determines the local maxima of the sample function.

(See Figure 11). The procedure is as follows: if “i is an interior

point of Si' then pi is a local maximum; otherwise, it is not. This test

is performed for each Si in the symmetric partition. In other words,

determine the minimum distance from pi to the points not in 81' Call

the point where this minimum distance occurs xt , and assume xt is

i i

unique for now. pi is a local maximum if there is a point in Si which

has distance from Kt less than the distance from “'1 to xt . Otherwise,

i i

pi is not an interior point of Si’ and hence is not a local maximum.

Note that part two of Procedure F has two inherent problems.

First is the problem in the definition of interior point which was men-

tioned earlier. The problem of a non-unique xt may be resolved three

1

ways: 1) the mode is interior only if all xt satisfy the condition,

1

2) the mode is interior if any x satisfies the condition, or 3) the

t.
1

mode is interior if an arbitrary one of the xt satisfies the condition

i

for the mode to be an interior point. The third scheme was used in the

implementation of Gitman and Levine's algorithm which was used for

this thesis.

The second problem associated with part two of Procedure F is the

occurrence of non-unique p, in S, for one or more groups. The problem

1 1

24

Figure 11. Part 2 of Procedure F.

Part 1 of

Procedure F

I

Xt = point having

minimum distance

between pi and

xsx C S - Si

there any

x q Sin (x, xt)<

A

Continue with

procedure S

25

arises because an arbitrary one of these equal-magnitude points was

selected as the mode of the symmetric set. If this mode is surrounded

by points of equal magnitude, it will be classified as a local maximum

even if this flat region is not a local maximum at all. An example of

such a flat spot is a level region on the side of a hill, as shown in

Figure 12. To prevent such a flat region from generating any local

maxima Gitman and Levine offered the following suggestion: "To solve

this problem, we have modified part two of procedure F (in which a

search for the local maxima is performed) in the following way. Let

811 be the subset of points in Si which have the same (maximal) grade

of membership as pi; then every point in Sii is examined as the mode of

Si' If at least one of these points is on the boundary of Si’ then I‘I’i is

not considered as a local maximum. " Many counter-examples exist to

this solution. Consider the case of an elliptical flat region in two-

dimensional Euclidean space surrounded by lower values decreasing

with increasing distance from the edge of the flat region, (See Figure 13)

Part one of procedure F will pick an arbitrary one of these points in

the flat spot as the global maximum and start the first symmetric group

with it. The first group will be extended until a point in the distance

list Al but not in the flat region is encountered. Another group will

start on the flat region at a point of the flat region not in the first group.

Such a point will exist because there will be points in the ellipse not

included in the disk-shaped symmetric first group. This group will

grow until it hits either the edge of the flat region or the first group,

26

Figure 12. Flat Regions Which are not Local Maxima

27

// M

Figure 13. An Elliptical Flat Region Surrounded by Lower-valued Points.

I

28

whereupon another group will be started. This process will continue

until the flat region is covered by symmetric groups. Group one and

other groups which hit the edge of the flat spot may be extended by a

point or two, and new groups will be initiated to cover the sides of the

”butte". Now consider the first subset. There will be points along its

edge which are in the flat spot but are not interior points. The same

observation will hold for boundary points in each group having points

in the flat region. The result is that this region will be missed as a

local maximum. The only way this flat region could be kept as a local

maximum would be to include the entire flat region and some of the sur-

rounding area in a symmetric subset.

In object isolation the problem with missing flat local maxima

described above is intolerable. The intensity function is normally quan-

tized, perhaps into only a few levels. Occurrences of flat regions which

are local maxima will be a common situation in such images. A pro-

cedure for correctly handling the case of non-unique modal values is

mandatory if object isolation is to be performed. Such a procedure will

be discussed after procedure S is described.

2. 2. 3 ProceduregS

Using the local maxima generated by procedure F as input, proce-

dure S partitions the sample S into unimodal regions. Points which are

not local maxima are assigned in the order in which they appear in se-

quence A0. (See Figure 14). Each local maximum will start a new uni-

modal group. The procedure is as follows: Assign the point y? (in

29

Figure 14. Flowchart of Procedure S. Mj is the jth local maximum.

Part two of

procedure F

Start group j.

Assign y? to group

j. Set j=j+1

Assign y? to the

group to which the

nearest higher

A neighbor of yio

belongs S.

30

location j of sequence A0) to the group in which its nearest neighbor with

a higher function value has been assigned, except for the local maxima.

When a local maximum is encountered, start a new group. "Higher

function value" and "previously assigned” are synonymous in this pro-

cedure because of the decreasing-magnitude order of assignment.

Gitman and Levine prove a theorem which states that procedure S

may be replaced by a procedure which unites the symmetric subsets to

form unimodal groups if the maximum diameter of a disk in the contin-

uum containing no sample points shrinks to zero. (Theorem three in

Gitman and Levine). Furthermore, they point out that if this uniting

procedure is used, procedure S reduces to an automatic classification

of the points, providing that for each mode the nearest point with a

higher grade of membership is recorded during part one of procedure F.

The procedure involved is to assign all the points in each subset whose

mode is not a local maxima to the group to which the nearest higher

neighbor to the mode of this subset was assigned. Assignment is done

by decreasing order of modal value for all the subsets. The points in

each subset containing a local maximum start a new group. This pro-

cedure suggests a similar procedure which replaces part two of proce-

dure F and procedure S.

2. 3 The Subset UnitinngroEedureg

Since the data points can be assigned by selectively uniting symmet-

ric subsets, it should be possible to obtain a similar assignment of the

points by using a different rule for uniting these subsets. A requirement

31

for uniting two subsets is that the subsets be "adjacent" to one another.

A definition of adjacent symmetric subsets which satisfies the idea of

adjacency follows.

Definition: Let zij be the closest point (in case of ties in close-

ness, the highest of the closest points) in Si to any point in Si, and let

zji be the closest point (or the highest of the closest points) in Sj to any

point in Si’ where Si and Sj are symmetric subsets. Si and Sj are

adjacent if

d(z, , 2,.) 5 max [d(zij' w), d(zji' w)], where d(u, v) is a

w ES - (S,US,)

1 J

metric function between points u and v. (See Figure 15). This inequality

has been termed the ultrametric inequality (Johnson [7]).

Assume i < j. Then pi 2 “j from part one of procedure F. The

following conditions must hold for Si and Sj to be united in order to

maintain a unimodal set as the result of this union and of previous

unions which may have been made using Si and Sj' and the subsets united

to them:

a) Si and Sj must be adjacent.

b) zji and “j must have the same value.

c) The value of zij must be no less than that of zji'

d) pi and ”j must have magnitude not less than the magnitude of

the mode of any of the subsets with which Si or Sj' respectively,

has been united with in the past.

The order in which these subset pairs are checked to see if they

32

m

Figure 15. Illustration of Adjacency

The circled points are the points in each symmetric subset S and

S2 closest to the mode of the other subset of the pair. If no points in

S - (S US)fall in the shaded region, S and S are adjacent. Other-

wise, S1 and S2 are not adjacent. l 2

33

can be united is as follows: First try the pair (51’ SZ)’ then (51’ S3),

(81' S4), and so forth to (SI, Sg). Then (52, S3) are checked, then

(S S4), and so forth, until the pair (Sg Sg) has been checked. The

2' -l'

fact that checks b), c), and d) above are needed is verified in Figure 16.

When groups are united, it is not necessary to recall all the previous

unions these groups have experienced, as requirement d) would indi-

cate. Rather, a flag may be associated with each subset, and set if its

subset is united with another subset having a higher modal value. Two

subsets may not be united if both flags are set.

The above procedure will be termed the "Subset Uniting Procedure".

Note that since a single point is a symmetric subset, the Subset Uniting

Procedure is applicable to the data points individually before part one of

procedure F separates them into symmetric subsets. The Subset Uniting

Procedure requires Mi)- adjacency tests for g subsets. If each point

2

is considered as a subset in this procedure, and there are n points,

n(n-l)

2 adjacency tests are performed. If each symmetric subset re-

sulting from part one of procedure F has about k points in it, then

g g n/k. The ratio of the number of adjacency tests necessary if pro-

cedure F is not used to the number required if procedure F is used is

.. Z -

then about AIL-L) r k 11—1-2, or approximately k2 for n much larger

2(2 - 1) (“'k'
k k

than k. Use of part one of procedure F will thus reduce the number of

adjacency tests required for the Subset Uniting Procedure. Each adja-

cency test requires substituting each of the points not in either subset

34

Figure 16. Illustration of the Conditions of the Subset Uniting Procedure

Each connected set of dots is a symmetric subset. Subsets are num-

bered by decreasing value of their mode. Dashed lines indicate

previously united subsets.

A

“:x.

A

z
31

Case a). l and 2 may not be united because they are not adjacent. If

they were united, the result would not be unimodal because the union of

l and Z is not connected.

Case b). l and 3 may not be united because the value of z is not the

same as the value of 113. 2 and 3 may not be united for the same reason.

I

Z

245 54

Case c). 4 and 5 may not be united because 245 < 254.

Case d). 6 is united with 9 and 7 is united with 8. If 8 and 9 are united

(they satisfy conditions a), b), and c)), the result is not unimodal.

35

being tested into the ultrametric inequality until either a violation of

adjacency is found or all the points are checked. The amount of com-

putation involved in an adjacency test is relatively independent of the

size of the two subsets. About 11 -2k substitutions into the ultra-metric

inequality are required if procedure F is used, and n-2 are required if

procedure F is not used, in the ”worst case" where the subsets are

adjacent. In the case of a pair of subsets, each of size k, the closest

point in each subset to the mode of the other must be found. This oper-

ation will require 2k comparisons. These 2k comparisons may be con-

sidered to roughly "make up for" the Zk-Z substitutions into the ultra-

metric inequality saved when the two k-point subsets are tested for

adjacency. Thus, using part one of procedure F to generate subsets

containing about k points apiece will reduce the computation involved in

the Subset Uniting Procedure by about a factor of k2.

The amount of computation involved in part one of procedure F can

vary quite a bit depending upon the number of points of equal magnitude

which occur. Two major computational operations are involved. First

is the ordering of points by magnitude, which occurs only once, and the

ordering of points by distance from each mode, which occurs g times.

An ordering algorithm called TREEUP was used [2, 4]. Bertziss [2]

claims the worst case computation requirements for TREEUP are ap-

proximately 2N(logzN - l) comparisons and N(logzN - 1) interchanges.

g + 1 orderings must be made, but not all of them involve all 11 data

points. Additional ordering is necessary if points of equal distance to

36

some modes are present.

The second computational operation involved in part one of proce-

dure F is the actual assignment of points. If points of equal magnitude

are not present, g comparisons of yq (the point to be assigned) and y:

(the current candidate point for each group) must be made. Furthermore,

the closest neighbor point which has already been assigned must be

found if more than one match exists between yq and the y:. In the case

of equal-magnitude function values, many successive points may have

to be checked before assignment can be made or a new group can be

initiated. For example, consider thirty points of equal magnitude and

twenty groups. If yq is the first of these thirty points and yq cannot be

assigned to any of the twenty groups, then 600 comparisons will have to

be made. If the next point cannot be assigned to any of the twenty old

groups or the group just formed from the first of the equal-magnitude

points, 609 more comparisons will be made, and so forth.

The storage requirements of part one of procedure F are not fixed

for a given number of points. In addition to the storage required for the

A .1,..., g

9 ABIo-ooAg

function value of each point is the storage for lists A0, A

The lengths of A0 and A1 are fixed at 11, but the lengths of A2

vary depending upon the number of points which can possibly be included

in each subset. Gitman and Levine state that 5n storage locations were

usually sufficient for the lists A0, A ,1 2. . . . , and A in their work.

In addition, auxiliary working storage arrays are required during

ordering and to hold computed distances. 7n locations were found to be

37

sufficient for these arrays.

The computational requirements of part two of procedure F and of

procedure S will not be discussed because local maxima may be missed

using these procedures. The use of part one of ProcedureF and the

Subset Uniting Procedure requires so much computation for the large

number of points encountered in an object isolation problem that the

use of these procedures for object isolation is impractical on even the

fastest computers.

Several special functions defined on a 10 x 10 grid were run on the

M.S. U. CDC 6500 computer using FORTRAN EXTENDED for a pro-

gramming language. These 10 x 10 functions included a crescent-

shaped unimodal region and several simpler cases (see Figure 17). The

average execution time for these 10 x 10 scenes was about 5 central-

processor seconds. When the number of data points was expanded to

484 (a 22 x 22 scene of two mites: see Figure 18), the central processor

time increased to 197 seconds. All the groups generated in each trial

case were unimodal.

The cost associated with using part one of procedure F and the

Subset Uniting Procedure in an object isolation scheme is rather high,

eSpecially when the object isolation scheme is viewed as part of a pro-

cedure to identify objects in a scene, as discussed in Chapter 1. Even

when using a computer as powerful as the CDC 6500, only about 20

scenes per central-processor hour can be processed (assuming the rate

of one scene every three minutes is valid). Two attempts at obtaining

9

I
T
.
)

6 5 2

9 I I 3’

9 ‘1 t

7 9 9

II 6 9

I) 7 n

7 .9 9

0 9 9

9 8 I

7 II 3

7 6 6

l f t,

7 7 6

7 7 6

I 7 7

I 8 8

7 8 8

7 7 7

C 6 G

6 6 6

Figure 17.

L
4

7
‘
.
)

6

6

Examples of Intensity Functions

1
‘
s
)

1
“
;

\
7

38

f
-
J

I
“
)

L
O

L
0

0
3

e
0

9

U
4

£
3
1

V
J

b
1

1
0

\
4
'
1

L
1

\
1

(I

L
)

7
‘
.
)

O
J

:
3

7
‘
0

C
3

1!

U
4

U
1

l
5
]

(
’
3

\
N

‘
4

p
a

U
J

P
O

{
“
3

39

Figure 18. Mite Scene.

40

a faster method for object isolation in a scene sampled on a rectangular

grid are discussed in Chapter III. Each of these algorithms has serious

drawbacks. An algorithm which effectively overcomes the deficiency of

large computational requirements and still exhibits the properties re—

quired for object isolation will be discussed in Chapter IV.

CHAPTER III

TWO APPROACHES TO THE UNIMODAL SUBSET SEPARATION

PROBLEM FOR USE ON AN INTEGER GRID IN TWO DIMENSIONS

3 . 1 Int roduction

Part one of procedure F with the Subset Uniting Procedure provides

the type of separation required for object isolation. As discussed at

the end of the last chapter, this method of separating unimodal subsets

defined on an integer grid is not practical for object isolation problems

because of the method's computational requirements. Two approaches

to the problem of obtaining an algorithm which accomplishes the same

results but requires less computation are presented in this chapter.

Both approaches make use of the known location and ordering of points

in a grid.

3. 2 The Diamond—Function Procedure

The first approach is to replace part one of procedure F by another

procedure which utilizes the information contained in the location and

order of points on a grid. It was noted that on an integer grid, the dis-

tance from the mode of a symmetric subset to the next point which can

be added to that subset is a function of the number of points already in

the symmetric subset, as illustrated in Figure 19 and tabulated in

Table 1. Furthermore, note that if the Manhattan metric is used, this

41

42

X
E
X

x

x o

o e o g e o

e e 0 e e e o

. e e e e o O

Figure 19. Symmetric Subsets on an Integer Grid

There are 10 points in the x-ed symmetric set. The next point

which can be added is at distance 2 (using the Manhattan metric). There

are three such points. This distance may be determined from the in-

equality

2d(d +1): n > 2d(d -1).

2d(d +1)?- 10 > 2d(d - 1) implies d = 2, giving 12 210 > 4.

43

Table 1. Distance to the Next Point Which Can be Added to a Symmetric

Fuzzy Set.

EUCLIDEAN MANHATTAN

DISTANCE DISTANCE

lWUNflIERJDF TOWTHIINIDCT NTHABEEICH? TC>THE3NEDFT

POINTS IN ADDABLE POINTS IN ADDABLE

SUBSET POINT SUBSET POINT

0- 0 0.000 0- 0 0

1- 0 1.000 1- k 1

5- 8 1.910 5- 12 2

9- 12 2.000 13- 2h 3

13- 20 2.236 25- 00 h

21- 2h 2.828 MI- 60 5

25- 28 3.000 61- 80 C

29- 36 3.162 85- 112 7

37- hh 3.605 113- lhh 6

b5- h8 h.000 1h5- 180 9

09- 56 0.123 181- 220 10

57- 60 h.2h2 221- 26h 11

61- 68 h.h72 265- 312 12

69- 80 5.000 313- 36h 13

81- 88 5.099 365- #20 1h

89- 96 5.385 h21- N80 15

97-100 5.656 681- Shh 16

101-108 5.830 ShS- 612 17

109-112 6.000 613- 68h 18

113-120 6.082 685- 760 19

121-128 6.32“ 761- 890 20

129-136 6.003 3&1- 92k 21

137-1hh 6.708 925-1012 22

195-108 7.000 1013-110h 23

1&9-160 7.071 1165-1200 20

161-168 7.211 1201-1300 2

169-176 7.280 1301-1h0h 26

177-18h 7.615 1&05-1512 27

185-192 7.810 1513-162h 28

193-196 8.000 1625-17h0 29

197-212 8.062 1791-1860 30

213-220 3.206 1861-1980 31

221-22h 8.h85 1985-2112 32

225-232 8.5hh 2113-2290 33

233-2h0 8.602 22h5-2380 3h

44

functional relationship between the number of points in a subset and the

distance from the mode of the subset to the next addable point is par-.

ticularly simple. This relationship may be derived by noting that the

number of points at distance d from the mode of a subset is 4d using the

Manhattan metric, for d greater than zero and d an integer (only integer

distances occur), as shown in Figure 20. The number of points at a

distance not greater than d from a mode (excluding the mode itself) is

then 2634i = 2d(d + 1). Thus, for a subset having 11 points (including

the rriSde), the distance from the mode to the next addable point is a

number (1 such that 2d(d +1) 2 n > 2d(d - 1).

This relationship may be used in part one of procedure F to deter-

mine if the point to be assigned from the A list, yg, is assignable to

0

any of the existing groups by simply seeing if the distance from yq to

the mode of each subset is the same as the distance to the next addable

point of the subset. It is known that n :5 2d(d + 1) because yq has not

been assigned, and it is necessary only to test if d, the distance between

yq and the mode of the subset, satisfies the inequality n > 2d (d - 1). If

so, yq may be assigned to this subset; otherwise, it may not. This pro-

cedure is called the Diamond—function Procedure.

The Diamond-function Procedure eliminates the need to compute and

store the lists A , A1 2, A3, etc. , which gives the Diamond-function Pro-

cedure the property of having fixed storage requirements for a given

number of data points. The problem Gitman and Levine's algorithm had

with equal-distance points is also eliminated, but the problem of handling

45

Figure 20. Contours of Constant Distance Using the Manhattan Metric.

Figure 21. Crossing Connected Subsets Using an Extended Definition of

Connectedness.

x x x + + +

x X x + + +

x x X + + +

+ + + X X X

+ + + x X x

+ + + x x x

Both the x-ed and the +-ed sets are connected using an extended

definition of connectedness.

46

points of equal magnitude remains. The method of processing these

points is the same as in part one of procedure F. The computational

considerations are also the same, except that a simple comparison of

two points to see if they are identical is replaced by a distance compu-

tation, the computation of 2d(d - l), and a numerical comparison to 11.

Since the Diamond-function Procedure replaces part one of pro-

cedure F, either part two of procedure F followed by procedure 5 or the

Subset Uniting Procedure may be used to complete the separation into

unimodal subsets. The use of part two of procedure F and procedure S

will not be discussed at length because flat regions which are local maxi-

ma may be missed by part two of procedure F. It should be noted that

both part two of procedure F and procedure S can be simplified if the

data points lie on a grid.

The Subset Uniting Procedure may also be simplified when the data

points form a grid. The simplification is accomplished by noting that

two subsets on a grid are adjacent if there is a point in one subset at a

distance of one from some point in the other subset. This simplification

in the Subset Uniting Procedure results in reduced computational re-

quirements for each adjacency test, because it is no longer necessary

to check all the points not in either subset for each adjacency test. The

amount of computation still increases rapidly with an increasing number

of symmetric subsets, however, because the required number of adja-

cency tests (gig—5:12) remains the same. Doubling the number of sub-

sets increases the number of adjacency tests by almost a factor of four,

47

an increase which leads to an unacceptable amount of computation for

large numbers of subsets.

3. 3 The Potential Local MaximaProcedure

The second approach taken toward the problem of reducing the

amount of computation while maintaining the ability to separate a fuzzy

set into unimodal subsets is described here. This procedure replaces

procedure F while Procedure S is retained intact. The neighbor points,

or simply neighbors, of a point are all those points at a distance of one

from a particular point, using either the Euclidean or the Manhattan

metric. Note that if the case of equal-magnitude points is excluded, a

local maximum occurs at every point which has lower values at all four

neighbor points. All the local maxima can be found by comparing each

point with its neighbor points. If all the neighbor points have a lower

value, a point is a local maximum. Otherwise, it is not. This proce-

dure can replace procedure F, because both procedures do nothing more

than find the local maxima. The computation requirements for the

above procedure are fixed and are very low compared to the requirements

for procedure F. Less than 4n magnitude comparisons need be performed

to determine the local maxima, since the checking of the neighbors of

each point which is not a local maximum can be terminated as soon as a

higher neighbor is found. Also, the points on the edges of the grid will

have fewer than four neighbor points. Doubling the number of points will

roughly double the amount of computation.

Procedure S simplifies considerably in the case of a grid. Each

48

point is either a local maximum, which causes a new group to be gen-

erated, or it has a higher neighbor which has already been assigned to

a group, due to the decreasing-magnitude order of assignment used in

procedure 5. Each point with a higher neighbor is assigned to the same

group as was the highest of these neighbors.

This local-maxima procedure must be modified to handle the case

of equal-magnitude points, because flat regions which are local maxima

will be missed. The modification required is not as simple as requiring

that a point is a local maxima only if none of its neighbors are higher,

because that would generate many local maxima from each flat region.

Many more unimodal groups than necessary would result. The interior

points of each flat Spot would each become a one-point unimodal region,

and the property of generating one unimodal subset for each local maxi-

mum would be lost. To avoid this, it is necessary to label each point

having no higher neighbor as a "potential" local maxima. Once all the

potential local maxima have been found, a search for flat regions can be

initiated with an arbitrary one of these potential local maximum points.

Two potential local maximum points areM if it is possible to step

from one to the other through pairs of potential maximum points which

are neighbors of each other. All the potential local maxima which are

linked to the starting point are invalidated as local maxima and assigned

to the same group as the starting point. The starting point is considered

to be the mode of the group. This procedure is repeated using an

unassigned local maximum point as the starting point each time until

49

all the potential local maxima have been assigned. Each flat region

will generate only one mode in this procedure, since the potential max-

ima in a flat region will all be linked to each other. Procedure S will

remain the same as it was for the case of no equal-magnitude points.

Ties in the case of the highest-magnitude neighbor of each unassigned

point may be resolved arbitrarily. The procedure described here, in-

cluding procedure S, will be called the Potential Local Maxima Pro-

cedure.

Note that not all of the unimodal subsets gene rated by the Potential

Local Maxima Procedure actually correspond to local maxima, since a

flat region on the side of a "hill" (or at the bottom of a ”valley") will

generate potential local maximum points. One of these potential local

maxima will become the mode of a group which does not contain a local

maximum. The potential Local Maxima Procedure is thus not appli-

cable to object isolation problems. A scene which is quantized into

only a few intensity levels will contain "bands" of equal-intensity points.

Each band will generate extra unimodal regions. This will decimate

each object into small meaningless regions, instead of isolating each

object as desired.

Before leaving the Potential Maxima Procedure, an interesting

extension of this procedure will be discussed. It was noted that occa-

sionally three equal—magnitude diagonally-positioned grid points with

lower-valued points around them would cause the generation of three

unimodal subsets, with any of the procedures previously discussed. A

50

question arises as to whether each of these three points generate their

own unimodal set or "hill", or if they form a "ridge" as one unimodal

subset. If no information is available about the continuous function from

which the grid sample was made (or if there is no such function), this

question would appear to be mostly a matter of individual preference and

which result is desired. If the function values are sample points from a

continuum, an increase in the resolution of the sample is probably indi-

cated.

The manner in which the above question is interpreted is that the

formation of symmetric subsets indirectly reflects upon the definition

of connectedness in the definition of unimodal set. Gitman and Levine

never directly mention anything about their concept of connectedness in

a discrete point set. If the concept of "neighbor" point is extended to

include the eight points closest to a particular point using the Euclidean

metric, then the above would classify the three equal-magnitude

diagonally-positioned points as one unimodal subs et, providing that the

definition of connectedness of the discrete grid is modified to accomodate

such sets as being unimodal. Such a definition of connectedness is not

particularly intuitively appealing because two connected subsets can

cross each other, as shown in Figure 21.

If the above idea is used, another problem has been created. Sup-

pose three points are diagonally situated as above and that all three are

potential local maxima, but not of the same function value. Three cases

exist: when the center point is highest, when it is lowest, and when it

51

is in-between the value of the end two points. In the first and last cases,

one unimodal subset should be created, but in the second case, two sub-

sets must be generated. This suggests the necessity of adding a little

to the algorithm to prevent all three points from being included in one

subset in the second case.

By using somewhat the same idea as was used in the Subset Uniting

Procedure, the following additions will accomplish the desired result:

Consider all the points having no higher neighbor (including diagonal

neighbors) as potential local maximm Start each group with the highest

unassigned potential local maximum point. A link from one local maxi-

mum to another may be performed only if the value of the second is not

greater than the value of the first. A slightly more general procedure

may be started from an arbitrary unassigned potential local maximum

point by specifying that the second point of a link may be greater than

the first point only if the magnitude of the first point is the maximum

magnitude which has been encountered so far in the formation of the cur-

rent group.

3. 4 Conclusion and Maximal Unimodal Partitions

The Diamond-function Procedure is theoretically applicable to ob-

ject isolation, but in practice, the large amount of computation required

when many points of equal magnitude exist (which was inherited from

part one of Procedure F) makes the algorithm impractical. The P0-

tential Local Maximum Procedure reduces the computational require-

ments to slightly more than linear with the number of data points

52

(N log (N - 1) operations are required for the initial magnitude ordering,

and the rest of the procedure is linear), thus basically satisfying the

linear computational requirement for an object isolation algorithm. The

Potential Local Maxima procedure and the extension of it discussed

above have not accomplished anything of interest to object isolation

since they cause the separation of flat regions when they should not be

separated. A procedure very similar to the procedure used in the ex-

tension will be the subject of Chapter IV.

Before proceeding to Chapter IV, the concept of a maximal unimodal

partition will be discussed. An obvious unimodal partition for any dis-

crete set is to consider each point as a unimodal subset. It is equally

obvious that there is a ”better" partition; that is, a partition with fewer

subsets. By combining two of the closest points into one two-element

subset, one less unimodal subset will result. In this sense, there

should be a ”best" unimodal partition in which the union of any two of

the unimodal subsets of the partition is not unimodal. In most discrete

fuzzy sets, there will be many such partitions, any of which shall be

termed a "maximal unimodal partition". One unimodal subset will

exist for each local maximum in the data set. The number of subsets

in any maximal unimodal partition is fixed for a given data set. The

property of always generating a maximal unimodal partition is a desir-

able property for a unimodal subset separation algorithm to possess.

The lack of this property was seen to make the Potential Local Maxima

Procedure unusable for object isolation.

CHAPTER IV

THE UNIMODAL TREE ALGORITHM

4. 1 Introduction

Part one of procedure F, the Diamond-function Procedure and the

Subset Uniting Procedure all exhibit computational requirements which

increase at a rate significantly greater than a linear rate with the num-

ber of data points, as discussed previously. For this reason, these

procedures are not particularly applicable to the object isolation prob-

lem. The Potential Local Maximum Procedure generates spurious

separations when equal-magnitude points are present, and is therefore

not applicable to object isolation. Part two of procedure F will miss

most local maxima which consist of more than one equal-magnitude

point, and two objects may not be separated. For this reason, any

algorithm which uses part two of procedure F will not be well suited to

object isolation. In this chapter, an algorithm which is applicable to

object isolation will be presented. This algorithm was developed after

a similarity between the Subset Uniting Procedure and the extension of

the Potential Local Maxima Procedure was noted. Several definitions

and a theorem which are needed to properly understand this algorithm

will now be presented.

53

54

4. 2 Mathematical Preliminaries

Consider a finite n-dimensional grid of points S with integer grid

coordinates and a fuzzy set F in S with function value f. (5 together

with F may be considered to be a sample from a continuum if desired.

If so, the integer grid points need not match with the coordinate system

of the continuum. The entire grid may be rotated, scaled, translated,

or otherwise transformed with respect to the coordinate system of the

continuum. The origin of the integer grid is immaterial to the algorithm.)

Let G be a graph having the set of all points in S as its vertex set and

having one edge between points in each pair (ai, bi) satisfying

0 < d(ai, bi) S R, where d(ai, bi) is a metric, R is a constant, and ai

and bi are points in S.

Definition: Two disjoint subsets Si and Sj of S are said to be connected

if there is exactly one edge of G between some element of Si and some

element of Si. If R = l and a Euclidean metric is used in the definition

of G, this definition corresponds to the intuitive notion of connectedness.

If R 2 42, this intuitive idea of connectedness may be violated by al-

lowing connected subsets to cross each other in two dimensions. (See

Figure 21).

Let Sij be a subset of Si' Sij : {x3f(x) Z f(xj)} for any xj in Si°

Definition: A unimodal fuzzy subset Fi exists in Si if and only if

the set 81’ is connected for all xj in Si' (Fi has the same function value,

f, as did F).

Definition: A partition of a set S is an assignment of each element

55

k

ofSto one of thek subsets Si inamanner such that kJSi = Sand

i=1

SmSj = ¢foralli,j=1,2,...,k, i 7! j.

1

Definition: A partition of S is a maximal unimodal Rartition of S if

the partition separates S into k subsets 81’ i = 1, 2, . . . , k, each of which

is unimodal, and if SiU Sj is not a unimodal subset for any i 7’ j, i, j=1,

2, . . . , k.

An endpoint of a graph is a vertex incident to at most one edge of

the graph. A SEES. is a connected. graph containing no subgraph having

no endpoints. A path is a tree with two endpoints. In a connected graph,

the graphical distance between vertices v1 and v2, denoted by dg(vl, v2),

is the number of edges in the shortest subpath of the graph having v1 and

v2 as its end-points. (For a treatment of graph theory, see Behzad and

Chartrand [1].)

Definition: A path P in G is called a descending path if

dg(a, h) > dg(b, h) implies that f(a) S f(b) for all a and b which are ver-

tices of P and where h is one of the endpoints of P, termed the high

endpoint of P. The direction of the descending path is away from h.

Definition: A tree T in G is a unimodal tree if there exists a ver-

tex h of T such that every vertex of T is a vertex of a descending path

in T having h as its high endpoint. I

Theorem: A unimodal fuzzy subset Fi exists in Si if and only if G

contains a unimodal tree spanning Si' (Fi has; the same function value,

f, as does F).

Proof: The proof proceeds as follows: It is first shown that if

56

Gij’ the largest subgraph of G in Sij(Sij = {x3f(x) 2 f(xj)} for any xj in

Si) is connected for all xj in Si (i. e. , Si is unimodal, from the definition),

then Gi’ the largest subgraph of G in Si’ has a spanning subgraph which

is a unimodal tree. (By the largest subgraph is meant the subgraph

having the greatest number of edges.) Second, it will be shown that if.

G1 is spanned by a unimodal tree, then 61' is connected for all x, in 51'

which means that Si is a unimodal subset by definition.

1. If Gij is connected for all xj in Si' then there is a path in each

G'j from every point to every other point in Ci" Since every connected

1

graph has a spanning subtree, it must be shown that at least one such

spanning subtree of Gi exists which is a unimodal tree. Order the ver-

tices in G1 by decreasing value of f. Put a spanning tree through the

point(s) in G1 This can be done because of the assumption that each1'

Gij is connected (from the assumption that Si is unimodal). This tree is

unimodal since all the vertices have the same ’value of f. Next, add the

point(s), if any, which are in Gi and not in Gil' (By definition all points

2

in Gij are in Gil ifj < I). The tree which was put through Gil is extended

(edges and vertices added) to include the points in 012' This can be

done because Gi is connected and includes Gi . The tree is still uni-

2 l

modal because only points of non-higher function value were added to the

tree. Continue this extension of the tree to include G, , then G, G

13 14’ i5'

and so forth, until all the points in Gi have been included in the tree. The

tree is still unimodal, and it can be formed since each Gi' is connected

and, for j > 1, contains G.1 j 1' Thus if Si is unimodal in the sense of

57

the definition, Gi contains a unimodal tree.

2. The fact G1 is spanned by a unimodal tree means that Gi is con-

nected. If one of the lowest-magnitude points (there may be more than

one in the case of equality in function values between points) which is

also an endpoint of the tree (there must be such an endpoint since the

tree is unimodal) is stripped from the unimodal tree, a unimodal tree is

left. Lowest—magnitude points may continue to be stripped from the tree

one by one until there are no points left in the tree. At some time during

this process, it will have been demonstrated that each Gi' is a unimodal

tree, and is therefore connected. Therefore, Si is unimodal by defini-

tion.

Q. E.D.

4. 3 The UnimodaleLee Algorithm

An algorithm which generates unimodal trees on an integer grid will

now be described. For each subset the algorithm starts with an arbi-

tra ry point which has not been assigned to a previously-formed group

and determines the largest possible unimodal tree which can be put

through the currently unassigned points. The first subset will have as

many points as possible, the second will be as large as it can be without

using points from the first subset, and so forth. The procedure is sum-

marized below, and a flow chart is shown in Figure 22.

Several arrays, pointers, a flag array, and a variable are needed.

It is assumed that the function value of each point is in one array.

58

Figure 22. Flowchart of the Unimodal Tree Algorithm.

(START)

1.1

IG=0

Set all points

as unassigned

2.

IG=IG +1 I

Are

there any

unassigned

o oint :

EXIT I

YES

Set CBT to an

unassigned point.

MODE=value(CBT)

NEXTC=NEXTO=O

GROUP(CBT):IG

4" NEXTOzNEXTOH‘

GROUP(NBT)=IG

NEXTC=NEXTC+1

NEXT(NEXTC)=CBT

YES

 NO

YES MODE=value(NBT)J ‘CBT=NEXT(NEXTO)

59

Another array, called NEXT, is needed to record branching points so

that other branches from each point not an endpoint of the unimodal tree

being formed may be found later. The array NEXT functions as a stack.

A first-in first-out stack was used here, but the order of removing points

which need to be checked for further branching is immaterial. Pointer

NEXTC points to the last entry in NEXT and pointer NEXTO points to

the last element removed from NEXT. Another array GROUP is needed

to hold the group number of each point as it is assigned. An array of

flags is necessary to tell which points have been assigned. Two points

which are linked by exactly one edge of G are said to be neighbor points.

It is assumed that a means exists for determining all of the neighbors of

a given point. A group counter IG is needed to count the number of

groups formed. A variable MODE which has the same value as the

highest point found in each group as it is being formed is required. A

pointer CBT, standing for Current Branch poinT, is needed to point to

the place at which the unimodal tree is currently being expanded, and

another pointer NBT, for Next Branch poinT, is needed to point to an

assignable neighbor of CBT.

The steps of the Unimodal Tree Algorithm follow.

1. (Initialization of the algorithm). Set IG to zero to indicate that

no groups currently exist. Set the assignment flag for all points to in-

dicate that every point is currently unassigned. Continue with step 2.

2. (Initialization of a new group). Set IG to IG + 1 in order to start

the next group. If possible, find an arbitrary unassigned point and set

1/—;.

60

CBT to point to it. (This will be the starting point for the new group).

If it was not possible to find an unassigned point, go to step 5. If it was

possible, set MODE to the value of CBT. (This is the highest value which

has occurred in this group). Set NEXTC to zero to indicate that no points

have been entered into stack NEXT. Set NEXTO to zero to indicate that

no points have been removed from NEXT. Set GROUP(CBT) to IG (this

assigns CBT to group IG). Continue with step 3.

3. (Linkage to an assignable neighbor). If possible, find a point

NBT such that NET is unassigned and a neighbor of CBT and, if the value

of CBT is less than MODE, such that the value of NET is not greater than

the value of CBT. (These conditions on NET are necessary to preserve

unimodality in the unimodal tree, as discussed below). If this is not pos-

sible, go to 4. If it is possible, set GROUP(NBT) to 1G. Set NEXTC to

NEXTC+1 and set NEXT(NEXTC) to CBT. (This enters CBT into stack

NEXT so that the point can be checked later for additional assignable

neighbors). If the value of NET is greater than MODE, set MODE to the

value of NET. (This maintains MODE as the highest value yet found in

the current group). Set CBT to NET and repeat 3. (This accomplishes a

linkage to NET).

4. (An old point which was branched from in step 3 is obtained from

stack NEXT and rechecked). Set NEXTO to NEXTO+1. If NEXTO >

NEXTC go to 2. (This gets the next old branch point location in stack

NEXT. If there is no such point left in NEXT, a new group is started in

step 2). Otherwise, set CBT to NEXT(NEXTO) and go to 3.

61

5. (Exit). The data is now partitioned into a maximal unimodal

partition.

To verify that this algorithm generates a unimodal partition, an

inductive argument is presented which shows that each group must be a

unimodal tree. If each group is a unimodal tree, it is then a unimodal

subset, using the theorem. The inductive argument proceeds by stating

that the starting point of each group is a unimodal tree and then showing

that whenever step 3 of the procedure is applied to one of the endpoints

of a unimodal tree (as CBT), a unimodal tree will result. Given a uni-

modal tree, each endpoint of the tree has either the highest magnitude

in the tree or it does not. If the particular endpoint in question, CBT,

has the highest magnitude in the tree, step 3 will allow any unassigned

neighbor point of CBT to extend the tree. Regardless of whether this

point is higher, the same, or lower in magnitude, the resulting tree is

unimodal. If it is higher, all the descending paths from point H ((one of)

the largest magnitude point(s) of the tree) to all the other points of the

tree may be extended to include the new point as a highest point of the

extended tree, which means the tree is unimodal. If the point is equal

to or lower than the mode of the original tree in value, the descending

path from H to CBT is extended by one edge to include the new point.

Thus all points in the extended tree are included in descending paths

each having (one of) the largest magnitude point(s) of the extended tree

as its high endpoint, and the extended tree is therefore unimodal. In

the case where CBT does not have the largest magnitude in the original

62

tree, step 3 allows extension of the tree only to points having value less

than or equal to the value of CBT. Since CBT resides on the low end-

point of a descending path from point H, this descending path may be

extended to include the new point. Thus the application of step 3 will

always generate a unimodal tree, providing the tree given to step 3 is

a unimodal tree. Since the starting point by itself is a unimodal tree, as

given to step 3 by step 2, the algorithm will always generate unimodal

trees, and consequently (by the theorem) unimodal subsets.

To verify that this algorithm generates a maximal unimodal pa rti-

tion, it is necessary to show that all the subsets are unimodal, which

has been done, and that the union of any two subsets genela ted is not uni-

modal. Note that the algorithm always follows descending paths as far

as they can possibly be extended, in either the ascending or descending

direction. This is ensured by saving each point along each descending

path as the path is extended, and rechecking the points later for further

branches. If further branches are found, the point is again saved and

later restored for further checking. Therefore, the particular unimodal

tree being formed is extended as far as possible. EXpansion of a uni-

modal tree stops only when every unassigned neighbor of every endpoint

of the tree violates the condition that the addition of that neighbor would

maintain a descending path from the mode of the tree to that neighbor.

Suppose Si and Sj are two unimodal subsets generated by the algorithm

and that SiUsj is also unimodal. Either Si or Sj must be generated first.

Suppose Si was generated first. Because SiUSj is unimodal, there must

63

be endpoints of the unimodal tree generated in Si which are neighbors of

some points in Sj. Furthermore, a descending path exists between the

mode of Si and Si, in the direction of the higher to the lower (or in either

direction if the modes are equal). The part of this path in Si may be re-

placed by a path between the mode and the boundary which was generated

by the algorithm, since the direction of a descending path is defined by

the relative magnitudes of its endpoints. At the crossover between the

two subsets, the path generated by the algorithm has a continuation into

Sj. The algorithm will then assign a point of Sj to 51' But the point is

in 5., so the assumption that the algorithm can generate two unimodal

subsets the union of of which is also unimodal has been contradicted.

The algorithm, therefore, always generates a maximal unimodal partition.

4. 4 Implementation of the Unimodal Tree Algorithm

The Unimodal Tree Algorithm has been implemented in FORTRAN

II, in machine-independent code. The implementation described here

is for R=l in the definition of graph G, using the Euclidean metric.

The starting point for each group is the highest unassigned point. After

a group has been completely assigned, there is no further use for the

magnitude of the points in that group; therefore, the number of the

group may be stored in place of the magnitude value. This technique

enables the GROUP array to be the same as the array which holds the

function values, and reduces the storage requirements by N, if there

are N data points. The magnitude value of each point cannot be discarded

until the point is observed not to have any assignable neighbors. Thus

64

the assignment flag for each point is turned on immediately when the

point is assigned, but the group number is not inserted until the point is

found to have no assignable neighbors; that is, the setting of GROUP(CBT)

to IG is removed from step 3 and inserted as the first thing in step 4.

This may be done since each point is rechecked through being entered

and re—entered in the stack NEXT until all assignable neighbors are

assigned. The assignment flag procedure was implemented by requiring

that the data be positive. All the data points were changed in sign be-

fore execution of the algorithm. A negative value for a point indicates

the point has not been assigned. When the assignment flag is set, the

data value is changed back to its original positive value. Then when the

necessarily positive group number is inserted into the data value location,

the assignment flag, which is the sign of the data value, remains positive,

indicating assignment of that point.

The storage requirement of the UnimodaliTree Algorithm as imple-

mented is 2N storage locations for N grid points, plus 3*NDIM locations

for an NDIM-dimensional grid, plus the program requirements. N of

these locations are needed to store the input data values and the output

group numbers. N more locations are used for stack NEXT. Note that

while some points may be entered more than once in stack NEXT, there

is a point for each extra entry into NEXT which does not get entered

into NEXT at all. This point is the last point assigned before the next

entry is taken from the stack. NDIM locations are required to store the

number of grid increments in each dimension, and NDIM more locations

65

are required apiece for two coordinate vectors, one for CBT and one for

NET.

The number of computations involved in this algorithm varies

slightly from scene to scene because of the variable length of searches

for an assignable neighbor for various points. All the points are searched

at least once and most of them twice. Each time a point is entered into

the NEXT table, it will be searched again in the future. The total num-

ber of searches performed is ZN-g where there are N points input and

g groups formed. This may be verified by noting that each duplicate

entry into stack NEXT is offset by a point which is not entered at all.

In addition, the point which was assigned just before the first point was

taken from the NEXT array is not entered into the NEXT array and is

not checked again. This happens g times so 2N-g checks are performed.

In the current implementation, all the neighbors of each point are checked

until an assignable neighbor is found, so the tests are of different lengths

depending upon which, if any, of the neighbors are assignable. If addi-

tional storage is available, the number of the next neighbor to be checked

for each point in stack NEXT could be recorded. Then each neighbor

position of each point would be checked exactly once and the number of

computations would be fixed. The added complexity and storage require-

ments to do this were prejudged as not justifiable, so no implementation

of this scheme was attempted. A savings in computation time may be

obtained at the expense of additional storage requirements. Note that

only a few bits are required to store the number of the next neighbor

66

(4 bits will accomodate up to 8 dimensions). A few bits of each data

word may be used to store this information, if a degradation in the reso-

lution of the data can be tolerated. If a large number of bits per word

are available, the data value, the assignment flag, an entry in the NEXT

stack, and the number of the next neighbor to be checked may all be

stored in one word, reducing the core requirements to N locations.

The principal feature of the Unimodal Tree Algorithm is the approx—

imately linear amount of computation and storage required by the algor-

ithm. In addition, the Unimodal Tree Algorithm is not adversely affected

by points of equal magnitude. The Unimodal Tree Algorithm generates

a maximal unimodal partition, which provides a great advantage over the

Potential Local Maxima Procedure followed by procedure S. The Uni-

modal Tree Algorithm thus appears to fulfill the requirements needed

for an object isolation scheme. Application of the Unimodal Tree Al-

gorithm to object isolation and to clustering of points will be discussed

in the next chapter.

CHAPTER V

APPLICATIONS OF THE UNIMODAL TREE ALGORITHM

5. 1 Object Isolation

Two applications of the Unimodal Tree Algorithm are presented

in this chapter. The first application is object isolation and the second

is clustering of points in a space. Object isolation means defining

"regions of interest" in a two-dimensional image. These "regions"

of interest" could correSpond to actual objects in a sampled scene or

to portions of the objects. Objects in a scene can be separated by this

algorithm only if each object corresponds to a unimodal set. Most

images contain far more data points than are needed, and they also

contain noise and many fluctuations in intensity which are meaningless

for object isolation. (See Figure 23.) Direct application of a sampled

image to the Unimodal Tree Algorithm would result in a myriad of

small meaningless unimodal subsets being generated. A procedure to

"enhance" the image for object isolation is thus necessary. Sucha

procedure is termed preprocessing of the image. The intent of pre-

processing an image before object isolation is to reduce the number

of data points so that the objects can still be distinguished but the de-

tails of each object, which are meaningless in object isolation, are

lost. If the resolution cannot be reduced so that the objects are dis-

67

68

Figure 23. Mite Scene.

69

tinguishable but object detail is lost, further "smoothing" of the reduced

image may be required.

5. 2 Object Isolation Examples

The scenes which were scanned and processed for this thesis were

scanned on a 100 x 100 grid, giving 10, 000 data points per scene. The

scanned scenes were reproduced on a line printer with eight distinct

brightness levels. (See Figure 24.) All scenes were then reduced to

a 25 x 25 grid by averaging square blocks of sixteen points each. (See

Figure 25.) Two photos other than the mite photo of Figure 23 were

also processed in this manner. They are shown in Figure 2 and

Figure 26. Figure 2 shows two eggs touching each other and Figure 26

shows three eggs and three ping-pong balls, none touching each other.

The original resolution of each of the 10, 000 data points in one of

these scenes was estimated to be eight bits (256 levels). This was

reduced to approximately 16 levels of brightness. This reduction of

the number of quantization levels of the image resulted in some

"smoothing" of the undesirable fluctuations in the scene.

The three scenes were then run through the Unimodal Tree Algor-

ithm. If the dark background level was suppressed, the two eggs of

Figure 2 and the six objects of Figure 26 were isolated. Two and six

unimodal groups were generated, respectively, and each group corres-

ponded to an object. The mite scene, which still retained some detail

of the mites, was separated into 21 unimodal regions. (This is the

Figure 24. Scanned Mit e Scene .

I
‘
l
l
/
I
l
l

o

I
.

e
a

I
n

o

.
.

l
/
l
/
l
/
l
/
‘
l

7

s
o
/
X
o

s
o
u
l

lilllIhl/lm

h////1/.//

.
I
l
l
/
Y
K
I
/

-
l
‘
X
X
X
K
/
o

[
I
X
N
I
/
l
l
o

70

Figure 25. 25 x 25 Grid of the Mite Scene

IIKI '11-"

I831 I") '(l

194N014!

x
i
x
x
x
x
x
/
I
I
I
I
I
I
I

”
N
!
I
"
X
/
/
/
/
/
’
/
/
‘

I
I
I
N
X
I
X
I
I
I
I
I
I
I
I
I
I
I
I
I
I

’
o

I
I
I
R
N
'
l
l
l
’
I
/
I
i
l
l
l
l
l
l
l
l
l
n

” x I

I
.

x i v
-

0 U o o O U o e o . e o

e e e

[
I
I
I
/
I
I
I
.

e o . n o
I

I
’
l
l
/
I
'
U
'
V
u

o

71

igure 26 . Ellipsoid and Sphere Scenes.

7
.
.
.
.
s
z

»
,
.
.

.
.
.
.
.
.
»
1

n
o
r
)
.
.
.
v
t
s
y
.
v
.
v
b

x
.
.
:
.
;
.
.
.
»

.
I
.
.
.

6
5
.
7

.
.
:
.
u
o
.
>
.
c
.
.
:
.
.
r
v
u
.

.

.
.
v
n

m
.
.
.
.
.
.
7
5
.
o
o
.
>
>
i
.

.
.
.
.
-
s

.
[
.
b
.
.

1
.

.
.

b
)
.
t
>
.
o
y
.
.

v
s
.
p
v
>
.
r
.
a
.
»

.
.
.

.
.
.

‘
7
:
U
s
»
.

.
.
.
.

.
u
.
.
.
»
.
.
:
.
;
L
.

y
e
l
p
-
.
.
.

.
.

e
.
.

H
E
m
u
.

~
.
.
.

.
e
l
3
..

O

o o

'72

73

mite scene upon which part one of procedure F and the Subset Uniting

Procedure were run as described in Chapter 2. Some of the background

was cut off to provide less than 500 points for that run.) The output

from these runs is presented in Figures 27, 28, 29, 30, 31, and 32.

Figure 27 shows the input to the algorithm for the touching eggs, and

Figure 28 the output, with the background set to zero. The integers in

Figure 28 indicate the group number of each point. Figures 29 and 30

show the input and output for the six-object scene, and Figures 31 and

32 show the input and output for the mite scene.

Additional ”smoothing" was performed on the mite picture. Each

point of the scene was replaced with a weighted average of itself and

its neighbor points ; that is, Iij’ the intensity of the ijth grid point (not

on the boundary of the grid), was replaced by [Wl * Iij + WZ TIT (I

i'loj

1m”. + Ii.j_l + Ii’j+l)]/(Wl + 4w2), where W1 and w2 are arb1trary

weighting constants (a similar average is us ed for the boundary points).

This process was carried out Nav times. "Smoothing" or averaging

action is displayed by this procedure when W l and W2 are both positive.

ForW :4, Wl = l, and Nav = 3 (these numbers are intelligent guesses
2

updated by trial and error), three subsets we re generated instead of 21.

(See Figure 33.) The three groups corresponded to the smaller of the

two mites and to the two ends of the larger mite. The larger mite was

split into two groups because the ends of the mite were lighter than its

mid -section.

INPU'I Bill

1

1

1

Figure 27.

1

1

1

1

1

1

1

111

21¢

216

113

111

P
I
’
U
-
I
-

u
n
fi
t
-
I
D

.
-

.
-

15

10

n
u
t
—
~
0
-

13

n
u
n
s
-
p
h
i

p
u
p
s
-
0
s
-

12

16

16

11

14

lo

16

12

p
u
n
-

74

fl
”
q
u
~

~
-
~
p

p
"
H
”
—

s
i
c
-
H
u
l
-

n
o
u
s
-
r
-

w
—
n
-
u
-

u
r
n
s
-
u
n
p
u
-

s
u
n
s
-
s
u
n
b
u
r
n
.
-

.
-

Two Touching Ellipsoids

1 1 1 1 1 1

1 1 1 1 1

1 l 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

l 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

Afte r Averaging.

75

OUT PUT GROUPS

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooooon:Iooooooooo

ooooooooooon1111110000000

00000000000111!1110000000

ooooooooooII1111110000000

ooooooooonn11111110000000

ooooooozzzzl1111100000000

ooooooozzzzzooooooooooooo

oooooozzzzzzzooooooosoooo

oooooozzzzzzzooooooo-ooooo

ooooooozzzzzzoooooooooooo

ooooooozzzzzooooooooooooo

ooooooozzzzzooooooooooooo

ooooooooozooooooopooooooo

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

oooooooooooooooooooo.ooooo

oooooooooooooooooo'oo'ooooo

Figure 28. Two Touching Ellipsoids as Separated by the Unimodal

Tree Algorithm.

INPUI DA‘IA

l 1 1 1 l

1 l l 1 l

l l l 1 1

1 l l 1 1

1 1 1 1 1

1 1 1 1 1

1 1 l l 1

I 1 1 l l

1 l 1 1 5

l l l 1 ll

1 l 1 1 ll

.1 1 1 1 6

1 1 1 l 1

1 1 1 1 1

1 l 1 1 1

1 l 1 1 l

1 l 1 l l

1 1 1 1 l

1 l 1 1 l

1 1 1 1 1

1 l 1 1 1

1 1 l 1 1

l 1 1 1 1

1 l l 1 l

1 l 1 1 1

Figure

1 1

1 1

1 l

1 1

1 l

1 1

1 1

6 11

16 15

15 15

15 16

16 15

5 7

1 1

1 1

1 1

1 1

1 1

1 3

1 6

1 3

1 1

1 l

1 1

1 1

29.

76

.
-

a
s

O 13 12 7 l 1 1 l 1 1 1 1 1 1 1 1

16 15 15 15 O 1 1 1 1 1 1 1 1 1 1 1

'
-

N
N

H U 15 15 15 16 2 1 l 1 l 1 1 1 1 1 1

2

11 10

~
'

.
-

.
—

u
.
-

u
—

15 10 l 1 1 1 l l l 1

15 10 1 1 1 1 1 1 l 1 1 1 1 — p p _ .
-

13 3 1 1 1 1 1 1 l l l 1 1 1 1 1 1 1

6 l 1 1 I 5 6 2 1 1 1 1 1 1 1 1 1 1

1 1 1 1 7 11 12 9 1 1 1 1 1 1 1 1 1 1

l 1 1 1 6 11 11 9 1 1 1 1 1 1 1 1 1 1

l 1 1 1 2 5 6 3 1 1 1 1 1 1 1 1 1 1

u
-

.
-

o
n
e

.
—

.
—

.
—

s
-

a
n

.
.
-

.
—

U N .
—

o
n

p o
n
!

.
-

o
n
e

231111112121~13321111

01111141115151511‘1111

101292111111014151514311

o .
-

.
—

~ p
l

.
-

.
-

N O .
.
-

U .
-

O a
n

N .
—

.
—

.
—

s
n
u
-

.
—

p u
—

a
—

.
—

.
—

p t
o

u
—

.
—

p u
-

.
—

'
—

h
e

.
.
.

.
.
.

H
U
I
'
H

Six-object Scene After Averaging.

7?

DUI PD? 690 UPS

OOOOOOOOOOOOOOOOO00000-000

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooozzzzooooooooo'ooo

oooooooozzzzzzooooooooooo

0000000022222220000000000

ooooooooozzzzzzooas~adooo

0000011100222200064660000

0000111110000000046660000

0000111110000000066640000

ooooIIIIIoooooooooooooooo

0000,111110000000000000000

0000011100005550000000000

ooooooooooossssoooooooooo

ooooooooooossssoooooooooo

ooooooooooossssoooooooooo

oooooooooodooooooaaoooooo

ooooooo'oooooo‘ooasaasaoooo

ooooooooosooooosaassa'oooo

oooooosossooooooaasaasooo

oooooooooooooooo:33330000

oooooooooooooooooosasoooo

ooooooooooooooooooooooooo

ooooooooo‘ooooroooo'ooopooo

oooooooooooooooooooopoooo

Figure 30. Six Objects Isolated by the Unimodal Tree Algorithm.

INPUI DAIA

Figure

2 2

l 1

1 1

1 1

l 1

1 1

1 1

5 6

1 1

5 3

6 1

1 1

1 1

1 6

6 3

1 1

1 3

1 2

1 1

1 1

1 1

1 1

1 1

1 1

1 1

31.

13

16

12

13

10

Mite Scene After Averaging

15

16

16

11

13

10

N
O
-
l

p

78

10

12

11

10

12

13

0

10

N
0
.

~

11

15

12

15

16

U
N
N
Q

H
“
.
-

.
.
.

u
n
u
s
-

OUT PUT GROUP 5

9 9 9 9

0 0 O 0

O 0 0 0

0 0 O 0

0 0 O 0

0 O 0 0

0 0 0 0

O 0 0 0

O O O 0

O 0 O 0

O 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

O O 0 0

0 0 O 0

0 0 O O

0 O O 0

0 O 0 O

0 0 0 0

O O 0 0

O 0 O 0

0 0 O 0

0 O 0 0

Figure 32.

0
0
0
0
0
0
0

p -

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0

0
0

0
0

O

p

0
0
"

u
—

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0
0
0
0
0
0

11

u 0
0
0
0
0
0
0
0
0
0
0

—

0
9
0
0
0
0
0
0
0

.
-

0
0

16

19

19

0
0
0
0
0
0
0

0
0
0

0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0

0
0
0
0
0
0

F
6
‘

\
I

O
O
O
G
O
O
O
O
u
-
J

0
0
0
0
0
0

.
-

r
o
e
»

N
0
0
0
0
0
0
0
.

79

O
N
N
N
O
O
O

.
0
5
0

U
'

10

0
0
0
0
0
0
0
0

N
N
N
N
O
O

0
0
0
0
0
0

U
0

0
0

0
0

0
0

0
0

0
«
D

O
0

0
0
-

Mite Scene as Separated

N
N
~
N
0
0

9 9 9 9 0 0 O 0 0 0 O

0 0 0 0 0 0 0 0 0V 0 0

2 0 0 0 020 0 0 0 0 0

2 0 02121 0 0 0 0,0 0

2 2 2 0 O 0 0 0 0 0 O

2 2 2 0 0 0 0 0 0 0 0

2 2 2 0 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0 0 0 0

1 l 0 O 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

016 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

6 O 0 0 0 0 0 0 0 0 0

0 0 0 U 0 0 0 0 0 0 0

0 0 0 0 O 0 O 0 0 O 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 '0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 O 0 0 0 0 0 0 0 0 0

by the Unimodal Tree Algorithm.

80

SIOO7HED 067A ["1 I. 6 1H2 I 1 HIV I 3

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

2

2

1 1 l 1 l 1 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 l 1 1 1 1 3 5 6 6 l l 1 1 1 1 1 1 1 1

l 1 1 1 1 1 1 1 1 1 l 6 7 9 6 6 2 1 I 1 1 1 1 1 1

l 1 1 1 1 1 1 1 1 1 3 6 9 10 11 9 6 1 l 1 1 1 1 1 1

1 1 1 1 1 1 1 I 1 3 6 I 9 9 9 6 3 l 1 1 1 1 1 1 1

l 1 1 1 1 2 I 2 3 6 I 10 9 I 6 6 1 1 l 1 1 1 1 1 1

1 1 1 l 1 1 I 2 6 9 12 11 10 7 6 2 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 2 3 9 12 12 11 6 3 l 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 I 2 6 9 10 9 6 1 l 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 I 1 1 6 7 9 9 6 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 3 6 I 10 10 5 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 6 7 9 10 10 6 2 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 3 7 9 9 10 6 2 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 3 7 6 I 6 6 1 l 1 1 1 1 1 1 1 1 1

1 1 1 1 I 1 1 1 2 5 6 7 5 2 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 2 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1

1 1

1 1

1 1 1 1 l 1

1 1 l 1

1 1

1 1

1 1

Figure 33. Enhanced MiteAScene Input and Output.

A. "Smoothed" Mite Scene.

0U7 PUT GROUPS

0 0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0

0
0
0
0

0
0

0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0

0
0
0
0

0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Figure 33.

B.

81

0 0 0 0 0 O 0 l 2 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 2 2 O 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 2 2 0 O 0 0 0 0 0 0 O 0

0 O 0 0 0 0 1 1 2 2 2 0 0 0 0 0 0 0 0 0

O O 0 0 O O 1 1 2 2 2 2 0 0 0 0 0 0 O 0

0 0 0 0 0 l 1 I 2 2 2 2 0 0 0 0 0 0 0 0

0 0 0 O l 1 1 l 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

O 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0 O 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 O 0 0 0 0

0 0 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0

0 0 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 O 0

0 O 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0

O 0 0 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0

O 0 0 3 3 3 3 3 3 O O 0 O 0 0 0 0 0 0 O

0 0 0 0 3 3 3 3 O 0 0 O 0 0 0 0 0 0 0 0

0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 O 0 0 O O

0 0 0 0 0 0 0 0 O 0 0 0 0 O 0 O 0 0 0 0

0 O 0 0 O O 0 0 0 0 0 O 0 O 0 0 0 0 O 0

0 0 0 0 0 0 0 0 O 0 O 0 O 0 O 0 0 0 0 0

O 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 O 0 0 O 0 O 0 0 0 0 0 O O O 0 0 0 0 0

Enhanced Mite Scene Input and Output.

Separation of "smoothed" mite scene by the

Unimodal Tree Algorithm.

82

The above three examples show that the Unimodal Tree Algorithm

is capable of performing object isolation providing that proper pre-

processing of the image is performed. There is certainly much more

to be done in the application of the Unimodal Tree Algorithm to object

isolation, but pursuing the matter further is not the intent of this thesis.

5. 3 Clustering

The second application suggested here is the clustering of points

in a space. The primary purpose of a clustering algorithm is to label

points which are ”similar“ according to some measure with the same

label, and to give points which are "not similar" different labelings.

(See Zahn [10] and Gitman and Levine [5].) The only input information

to a clustering algorithm is normally the location of data points in the

space and a few parameters which relate to the general form of the

expected clustering results. Examples of such parameters are the

number of clusters to be found and parameters relating to the resolu-

tion of the clusters. The clustering scheme which is presented here

will use an approximate ”density function" of the data on a grid covering

the range of the data. Conceptually, a density function should have a

”high" value where data points are clustered tightly together and a

"low" value where data points are Sparsely Spaced. In this sense,

many functions qualify as density functions. A density function which

is straightforward to compute has been selected for use in the examples

which follow. Given a grid lying in the range of the data, the density

83

function is formed by counting the number of data points closer to a

particular grid point than to any other, and assigning this count as the

function value of the grid point. This is done for all the grid points.

(Data points lying outside the boundaries of the grid should be excluded.)

It is necessary to determine the region of the data Space over

which the grid should extend. The grid selected will lie in a rectangular

hyper-parallelepiped. Two suggestions for selecting the size of the

hyper-parallelepiped are to include all the data points in the smallest

possible rectangular hyper-parallelepiped which has sides parallel to

the axes of the data Space, or to set the boundaries of the hyper-

parallelepiped to the centroid of the data set plus and minus several

standard deviations in each dimension of the data set. An advantage

of the second scheme is that Single points which lie far away from the

other data will be excluded. If these “outliers” are included, as in

the first method, a degradation of the resolution of the density function

in the "good" region of the data set will result, if the number of grid

points is held constant. More grid points could increase the resolution

back to the original level, but a lot of storage and computation would

be wasted on a few "outliers" which probably represent erroneous

points in the data set. On the other hand, if all the data is Hgood, "

Setting the boundaries to the centroid plus and minus, say, 3 standard

deviations in each dimension may set the boundaries further away frOm

the data set than they need be, which would also reduce the resolution

84

which may be obtained with a given number of grid points. A composite

suggestion is to select the boundary closest to the centroid of the data

set in each case. Note that if the computer on which this clustering

scheme is to be implemented has floating-point software in lieu of

hardware (that is, subroutines to perform floating-point arithmetic

instead of computer instructions), finding the boundaries using the

standard-deviation method may require more computation time than

the actual separation of clusters using the Unimodal Tree Algorithm.

Due to the random nature of most data sets used in clustering,

"smoothing" of the density function (which was formed by counting the

number of points closer to each grid point than to any other) is necessary.

The smoothing technique which was used for the preprocessing in object

isolation was applied to the density function. This smoothed density

function was run through the Unim0dal Tree Algorithm to determine

all the density "hills. " Data points were then labeled by assigning

each data point to the cluster corresponding to the unimodal subset to

which the nearest grid point belonged. Note that the case of distance

ties causes no trouble either in defining the density function or in

assignment of points to clusters. The choice is arbitrary in each case.

Some advantages to note about this clustering scheme are the

following: 1. The clusters formed are independent of cluster shape.

(See Zahn [10] for a discussion of cluster shapes.) 2. Computation and

storage requirements are both approximately pr0portional to the number

of grid points, except for the formation of the density function and the

85

labeling of the data points, where the computation requirements are

pr0portional to the number of data points. The data need not be in

high-Speed storage all at once if mass storage facilities are available.

Only one data point need ever be in core at a time, so that the total

core-storage requirements may possibly be less than the number of

data points. 3. Clusterings are independent of scaling changes in the

data. 4. Clusterings are independent of the input data order. 5. An

increase in the number of data points will help this scheme to cluster,

because if the data is thought of as being random samples from a govern-

ing distribution, the density function will approach the "true" density

as the number of data points grows large.

Some disadvantage of this scheme are: 1. “Good" clustering

results are obtained only when using "sufficient" resolution in defining

the grid and "enough" smoothing of the density function. 2. The number

of grid points needed for a constant resolution per feature increases astro-

nomically with the number of dimensions. A lO-step resolution for

each feature requires 100 grid points for two dimensions, 10, 000 for

four dimensions, and 1010 for ten features. The practical limit to the

number of features would thus appear to be four or five features. A

possible partial alleviation of this problem might be to take the number

of grid steps in each dimension in relation to a measure of the ”impor-

tance" of that dimension, 3. Results are dependent upon the number of

grid points and the smoothing employed. 4. Clusters of uniform den-

sity generate small random meaningless fluctuations in the density

86

function which are then separated into equally meaningless clusters.

A scheme to rectify this complaint might be to form a histogram of the

relative frequency of occurrence of each density magnitude on the grid.

Uniform clusters should generate spikes in this histogram. Each grid

point having a value lying in one of the spikes may be set to the mean

value of its spike. This should ”flatten out" the random fluctuations

of the uniform cluster, and enable the desired clustering to result.

5. 4 Experiments with Clustering

Several data sets were applied to this clustering scheme. The

most notable data which was run is the Fisher Iris Data [3]. This

data is four-dimensional, and was run in all four dimensions. For a

5 x 5 x 5 x 5 grid, with W1 = 6, W = l, and Nav = 1 (these numbers

2

are intelligent guesses updated by trial and error), 15 out of 150 Iris

patterns were misclassified. Several bivariate Gaussian data sets

were run, some of them having severely overlapping clusters. (See

Figure 34.) In all cases, the correct number of clusters were generated

with the prOper selection of the grid Size and the constants W , W

l 2'

and Nav' Usually, two or three runs were necessary to select good

parameter values. In addition, a bivariate data set containing a

Normal cluster surrounded by a crescent of points was run. (See

Figure 35.) All the 200 points in this data set were labeled into two

groups corre8ponding exactly to the original clusters. This last run

87

e e

e

as 0 etc o

e to o c

u so... to s

e u so 0 I too. a

to... o t e I |

e e at. one. so a o o s

e e e to o v o

a. e w s s e e

e e to e o o to e on to o

c e so 0 e so one. o

o e e e c o o e as. c o

a e e s so. as c o

e e one o

e o e so 0

o o c e n

e e o no.

0 U 0 0..

e

e s o

e

s

e to

to s o e

a o so... 0

c c e on o to

e a so 0 c to. a

‘
s so a o c u

cc. to e e e e e 0!

so to e e t e e no so.

out to e s 0 tee. to. e

e a so. to e o e o t 0

00.3.0... 0 a e e s e e e

s so one. u o as

e one o o e o s

e to. e o e c e o o

O I. o

e e e

0 t o

s

Figure 34A. Bivariate Gaussian Clusters.

Four well-separated Gaussian clusters, unseparated.

i

88

s

4.6

b

«s 6 see a

6‘ 6 4»

e «sets 6;

Is be t 4 sets a

#6446 s 4 4

I I6 a «as sees be

I I I I6 6 s so b

I I46

I I I Ie c es s a t
II I II II Is e «4

I I II IIII I4 s 6 s

I I I I III I Is

I I I III II I I

I I III I

I I I II Ie

I I I I

I I I III

I I I III

I

I I I

3

3

3 33

332 2

333332

3 32 2 22

3 3 3

3 33 3 3 322 22 2 2
3 322 22 2 2 2

3 33 333222 22 2

3 3333 333 32 2 222 22 2 2 2

3 3222222222 2 2 2 2

3 3 3 32 22 2222 2

3 332 222 2 2 2

3 32 222 2 2 2 2 2
. 3 32

33 32 2

32 2 2

3

Figure 34B. Bivariate Gaussian Clusters.

Four clusters of A, as generated.

89

A

A A

A

AA A AAA A

A A A

A AAAAA AA s

A A AA A A AAAA A

AAAAA A A A s r

A A AAA AAAA AA s s s s

A A A AA A s s

AA A s s s s

A A AA A A A as s as ss s

A A AA 0 s as ssss s

A A A A s s s s sss s s

A s s s sss so I s

s s sss s

B 31300 B

‘ s s as
s s s sss

s s s sss

l

b B 3

C

C

C CC

CC C C

o o
ccccc

o 0 cc

0 0 00 c cc

0 C CC CCC CC
000 Do 0 o c c c

so on o o o c c cc ccc

o 0° C cccc ccc co o 000 oo o o o c

000000000 0 o o o c c c c

o so 0000 s
cc

0 000 o o o
c c

0 000 o o o o o c c

0
CC c

o o
c

Figure 34C. Bivariate Gaussian Clusters.

Four clusters of A, as separated by the Unimodal

Tree Algorithm.

90

s

0 s

s

s s .

0 sss

s
ss

. ss

s . .

‘ s

.00. g

0 ss .

. . ' es .

O s .
.0

00.... . .

.0. . .

' 0s . .
ss s .

0 ss s .

' s
s

‘ s s .
.00 O

. ‘ .0 g .

. ' ' Oss s

° ‘ ss .

‘ sss

° ' ssss .O
0 0 s.

. . " 0 s s
0 0 .

° 0 ss . .
s . .

. s s0 . .

‘ s

so

ss

‘ s

s

' ' ' Clusters.F' ure 34D. Bivariate Gausman

1gTwo overlapping Gaussian clusters, uns eparated.

91

III! 1

I ll ,

l 1 2 .1 .

21 2 2

11 1| ’

IIII II I 2

H ' 2 2
l I n 2 2

III 2

I 111 I 2

1 g 2

I 1 2 2 2 2

2 2 2
22I I 2) 2 2

' 1 22 2

' I 2 222 2

I I 22 z

2 222

7 2 2222 2 2

' I I 22 22 222 22

2 2 2 22 2 2 z
2 2 2

9 2 22 2 z
2 2 2

2

Z 2 2

2 2

22

2
2

Z 2

2

Figure 34E. Bivariate Gaussian Clusters.

Two clusters of D, as generated.

92

A

AA A A

A

A A A

A AAA

A

AA A

A A AA

A A A A

A A

AA AAAA A

A AA A

A A A AA A

A A A A

AA A A A A

AAAAAA A A

AAA A A A

A A A AA A A

A AA A A

A AA A A I A

A A s

A A s I 0 II

A s s s

AAA A AA s s

A A ss 8

A A s sss II

A A s ss 0

s as s

- A s ssss I s

A A A As ss s as

A A s Is s 3 s

A A s s

A s ss s s

A s s

s s s

I s s

I s

ss

s

A

A s

A

Figure 34F. Bivariate Gaussian Clusters.

Two clusters of D, as separated by the Unimodal Tree

Algorithm.

93

s

s s

s

s s

ss s s

ss s

s

ss s s s

s s sss s

s s s

s s s s

sss s s s s s

s s ssss s s ss s

s s s sssss ss s

s s s s s s

s s s s s

sss

s s ss s

s ssss s

s s s s s sss

s s ss s

O 0 ss s

ss ss s s s s

ss s s s

s ssssss s

s s s

ss s

0 s

s s

sss

s ssss

0 s

s s s

s s

s s

s s

ssss

s s

s

s sssss

ss

s

s

0

ss s

s s

s

s

s s

s

s

Figure 34G. Bivariate Gaussian Clusters.

Two elliptical Gaussian clusters, unseparated.

94

2

1 1

2

I 11

11 1 1

12 1 1

2

21 1 1 1

2 2 111 I

I 1 1

2 1 1 1

222 1 11 1 11

2 1 1111 1 1 11 1

2 2 2 11111 11 1

l 1 1 1 1 1

2 1 2 l 1

111

l 1 11 1

22 1111 1

2 2 2 1 1 111

2 1 11 1

2 2 11 1

22 22 2 1 1 1

22 1 I

2 222222 1

2 11

22 2

2 1

2 2

222

2 2222

1

2 2 2

2 2

2 2

2

2222

2 2

2

2 22222

22

2

2

2

22 2

2 2

2 I

2

2 2

2

2

Figure 34H. Bivariate Gaussian Clusters.

Two elliptical Gaussian clusters, as generated.

95

A

A A

A

‘ A A

AA ‘ ‘

AA ‘ ‘

A

“ A A A

A ‘ AAA ‘
‘ ‘ I

A . A ‘

l“ ‘ ‘ A ‘ A

‘ ‘ ““ ‘ A AA A
‘ ‘ ‘ AA AAA AA .

AAA

‘ ‘ A. .

.‘ All! ‘

A ‘ ‘ ‘ A AAA

‘ ‘ AA ‘

‘ 3 AA ‘
58 as A ‘ ‘ ‘

as A ‘ ‘

B has AAA ‘

s A A
88 A

a A
B s

889

3 61388

8 Aa II a

B 8

B A

B

8883

8 s

O

3 88808

88

s

8

1|

08 g

6 B

A

B

6 3

A

6

Figure 341. Two Elliptical Gaussian Clusters, as Separated by the

Unimodal Tree Algorithm.

96

s

s
s

s s

O O.

. . s s s

s

0 CO. 0

s
. 0

C. O

s
s

" s

s s

s

s

0

0 I

s s

0

ss

Figure 35A. Gaussian and Ring-Type Cluster, Unseparated.

97

1

I 1

I 1

11

1 1

1 1 1

11 111

I 1

1 1

1 1 11

1 1 1.1

1 1

1 1

2 1 1

1 1 1

1 11 1

11 11 11

1 I

2 2 1

2 2 11 I

222 222 111

2 1 1

22 1 1111111 111

2 2 2 2 1 1 11

2 2 2 1111 111

2 2 2 2 1 111

2 1 111

22 2 1 11 11

2 2 2 1111 11

22 11 1

1 1 1

2 11 1

1

2 2 1

2 1

1 1

2 11

1 1

1 11 11

1 1

1 1 1

1 111

111 1 1

1

1 1 1

1

1

1 1

1

1

1

1

1

Figure 35B. Gaussian and Ring-Type Cluster, as Generated.

98

A

’ A

‘ A

AA

'I A

A A ‘

‘ A AAA

‘ A

A A

‘ A AA
A ‘ ‘ ‘

A A

A A
I ‘ ‘

‘ A A

‘ AA A

AA AA ‘.

‘ A

6 a ‘

a 8 A A ‘

as" ...8 AAA

8 ‘ ‘

a” A AAA AAAA AA.

0 a a 8 AA

8 B I AAAA AAA

0 a a 6 AAA

. AAA A

88 a ‘ “ A ‘

a a U M AA A
as u ‘

A ‘ ‘

. AA A

A

B B ‘

a A
‘ A

II “

‘ A
A “ “

A A

A ‘ A

I AAA

A AA A ‘

A

A A ‘

AA

‘ A

A

A

A

d b theFigure 35C. Gaussian and Ring-Type Cluster, as Separate y

Unimodal Tree Algorithm.

99

demonstrates the independence of the clustering scheme to cluster

shape.

5. 5 Application to Optimization

Another possible application of the Unimodal Tree Algorithm is

as an aid in finding the maxima and minima of a function of several

variables in a region. If the smallest distance between two maxima

which we desire to distinguish is known, a grid step size less than

half of this distance may be used. The function is sampled at the

points of this grid, and the resulting grid function is run through the

Unimodal Tree Algorithm. A conventional Optimization technique may

begin at the highest point of each subset thus obtained. While the

normal phiIOSOphy in procedures for finding a maximum of a function

is to minimize the number of function evaluations [6], the procedure

suggested here may be useful if it is susPected that more than

one maximum might exist, and all the maxima are desired. The Same

procedure may be applied to the negative of a function to obtain its

minima, or the algorithm may be apprOpriately modified.

CHAPTER VI

CONCLUSION

The major accomplishment of this thesis is the development of the

Unimodal Tree Algorithm. This algorithm can be used in both a scheme

for object isolation and a scheme for clustering of points. The algorithm

requires approximately twice the amount of storage and computation when

the number of grid points is doubled. In addition, the shapes of the ob-

jects and clusters which are generated may be quite general. The'amount

of computation and storage required is low enough that clustering and ob-

ject isolation may be performed on a ”mini"-computer such as the IBM

1800. The computer print outs shown in this thesis were generated

using the IBM 1800 at Michigan State University.

Several attempts were made to develop an algorithm applicable to

object isolation before the Unimodal Tree Algorithm was developed.

These attempts each attacked certain deficiencies in their predecessors,

but had deficiencies of their own. The Subset Uniting Procedure solved

the problem of missing local maxima in part two of procedure F, but

required an amount of computation roughly increasing with the cube of

2

the number of subsets (NB-2- subset adjacency tests each requiring ~n

tests of the ultrametric inequality) in the general case, or increasing

roughly with the square of the number of subsets in the case of a grid

100

101

(the adjacency test simplifies to testing for two points, one in each sub—

set, at distance one from each other). The Diamond-function Procedure

reduced the storage requirements for part one of procedure F to a fixed

amount, but inherited procedure F's difficulty with points of equal value.

The Potential Local Maxima Procedure reduced computational require-

ments to being almost linear with the number of data points present, but

generated Spurious regions from "flat" areas of the input scene. The

Unimodal Tree Algorithm has none of these deficiencies, as long as the

input scene is preprocessed in a manner such that all the objects become

unimodal regions.

As an object isolation procedure, the Unimodal Tree Algorithm has

the disadvantage of requiring each object to form a unimodal subset.

Small variations in the intensity of the input scene generate unimodal

regions just as do large variations. Of course, these small variations

can be "smoothed out" while the larger fluctuations are retained.

In a clustering scheme, the Unimodal Tree Algorithm has several

disadvantages, the most important of which is the astronomically large

number of grid points required for spaces of high dimensionality. An-

other disadvantage is the fact that uniform or nearly uniform clusters

cause small random ”hills" in the density function which are separated

into clusters by the Unimodal Tree Algorithm. This disadvantage may

be able to be overcome in some cases by the formation of a histogram

of the density function values. Uniform clusters will generate "spikes"

in this histogram. The uniform clusters may be made ”flat" by setting

102

all the values in each Spike to the mean of that spike. A further dis-

advantage of this scheme is that the parameters of grid size, w w

1’ 2'

and Nav must be selected before clustering is performed. It may be

possible to select these parameters automatically based upon the data

set.

Future work can be done in the application of the Unimodal Tree to

object isolation, clustering, and optimization. Automatic selection of

grid size and smoothing parameters in both object isolation and in

clustering would eliminate the necessity of finding usable parameters

by trial and error. In the clustering of regions having a uniform den-

sity, the histogram procedure suggested above may be tried. Touching

uniform clusters might be separable if smoothing is applied after the

histogram procedure. The narrow "neck" between two uniform clusters

would tend to "erode" downward in value while the clusters of the uni-

form clusters would stay about constant in magnitude, thus generating

one unimodal subset for each uniform cluster. It is hOped that the Uni-

modal Tree Algorithm will make object isolation and clustering involving

general shapes practical for use on "mini"-computers as well as on

large- scale machines .

REFERENCES

10.

LIST OF REFERENCES

Mehdi Behzad and Ca ry Chartrand, Intr()du£ti()n 1;“ Q‘QATQQUI'Y of

Graphs, Allyn and Bacon, Boston. 1971.

A. T. Bertziss, Data Structure Theory and Practice, Academic

Press, New York, pp. 190-191. 1971.

R. A. Fisher, "The Use of Multiple Measurements in Taxonomic

Problems"Annals of Eugenics, Vol. 3, Part 2, pp. 179-188,

1936.

R. W. Floyd, ”Algorithm Z45: Treesort 3, " Communications of

the ACM, Vol. 7, No. 12, p. 701. December 1964.

Israel Gitman and Martin D. Levine, "An Algoritlun for Detecting

Unimodal Fuzzy Sets and Its Application as a Clustering Technique,

IEEE Transactions on Computers, Vol, C-l9, No. 7, pp. 583-593,

July 1970.

Ronald L. Gue and Michael E. Thomas, Mathematical Methods in

Operations Research, MacMillan. p. 104. 1970.

Steven C. Johnson, "Heirarchical Clustering Schemes, " Psycho—

metrika, Vol. 32, No. 3, 241-254, September, 1967.

G. Nagy, "State of the Art in Pattern Recognition, " Proceedings

of the IEEE, Vol. 56, No. 5, pp. 836-862, May, 1968.

L. A. Zadeh, "Fuzzy Sets, " Information and Control, Vol. 8,

No. 3, pp. 338-353, June 1965.

Charles T. Zahn, "Graph-Theoretical Methods for Detecting and

Describing Gestalt Clusters, " IEEE Transactions on Computers,

Vol. C-20, No. 1, pp. 68-86, January, 1971.

103

APPENDIX

h

...;-

j 1

blr'

APPENDIX

FORTRAN LISTING OF THE UNIMODAL TREE ALGORITHM

SUBROUTINE UNIMDINoNDIM!IBNDS.CAND.NEXTI

c-_---

C -----PROGRAMMED BY ROBERT HALTON! DECEMBER 1972.

C

C-----THIS SUBROUTINE SEPARATES A FUZZY SET HHOSE MEMBERSHIP VALUE IS IN ARRAY

C-----CAND IN A UNIFORM GRID INTO UNIMODAL FUZZY SETS. THE NUMBER OF THE FUZZY

C ----- SET TO HHICH EACH GRID POINT BELONGS IS RETURNED IN CAND

C -----ALL COMPUTATIONS ARE OF ORDER N

C ----- THE MEMBERSHIP VALUE OF ALL POINTS MUST BE GREATER THAN ZERO

C ----- THE CODING OF THE SUBROUTINE IS COMPLETELY MACHINE-INDEPENDENT

C -----THIS SUBROUTINE HILL RUN CORRECTLY USING ANY FORTRAN-II COMPILER

c

C ----- SUBROUTINE UNIMD USES THREE OTHER SUBROUTINES FOR ADDRESSING AND INDEXING

C ----- THE INPUT DATA POINTS IN THE SPACE DESIRED.

C ----- SUBROUTINE COORD AND SUBROUTINE IAUDR ACT AS MULTl-DIMENSIONAL

C -----SUBSCRIPTING SUBROUTINES. COORD TAKES THE ADDRESS OF A DATA POINT IN

C ----- THE LINEAR ARRAY CAND AND COMPUTES THE GRID COORDINATES IN AN NDIM-

C -----DIMENSIONAL GRID HITH IBNDSIJI GRID STEPS IN DIMENSION J.

C ----- SUBROUTINE IADDR PERFORMS THE INVERSE OPERATION. IADDR FORMS THE LINEAR

C -----ADDRESS OF THE POINT FROM ITS COORDINATES OR SUBSCRIPT NUMBERS.

C ----- SUBROUTINE INCRM COMPUTES THE COORDINATES OF THE NEIHGBORS OF A POINT

C ----- INPUT AS COORDINATE VALUES. THE NUMBER OF NEIGHBORS IS DEPENDENT UPON

C ----- THE DEFINITION OF THE GRAPH G. THE NUMBER ALSO VARIES HITH THE NUMBER OF

C -----DIMENSIONS. THE CURRENT VERSION IS HRITTEN FOR G HAVING EDGES BETHEEN

C-----PAIRS OF VERTICES HAVING EUCLIDEAN DISTANCE I.

C -----THESE THREE SUBROUTINES ARE CURRENTLY HRITTEN FOR A SPACE OF ANY DIMENSION

C ----- LESS THAN ELEVEN. CONSIDERABLE SAVINGS IN COMPUTATION TIME MAY BE

C-----OBTAINED BY HRITING THESE SUBROUTINES SPECIFICALLY FOR THE NUMBER OF

C -----DIMENSIONS BEING USED! IF IT IS FIXED. SAVINGS ARE ACCOMPLISHEO BY

C -----ELIMINATING SUBSCRIPT OPERATIONS. THE CALLS IN UNIMD MAY BE MODIFIED TO

C -----ACCOMPLISH THE INCREASE IN EFFICIENCY.

C----THE PARAMETER SEQUENCES FOR THESE THREE SUBROUTINES AS THEY ARE HRITTEN IS

C----- CALL COORDICBT!IC!NDIM!IBNDSI

C ----- CALL INCRMIIX!IC!KK9NDIM,IBNDS!LI

C"""" CBTSIADDRIIX9NDIMyIBNDSI !

C -----WHERE CBT IS A LINEAR ADDRESS! IC AND IX ARE COORDINATE ARRAYS!

C -----NDIM IS THE NUMBER OF DIMENSIONS! IBNDS IS AN ARRAY HOLDING THE NUMBER OF

C----GRID STEPS IN EACH OF THE NDIM DIMENSIONS! KR IS THE NUMBER OF THE

C-----NEIGHBOR POINT DESIRED, AND L IS ZERO IF THIS NEIGHBDR POINT IS IN BOUNDS!

C -----AND IS NON-ZERO IF THE NEIGHBDR IS OUT OF BOUNDS.

Cc----

C““---CAND HOLDS THE INITIAL DATA! AND FINALLY THE GRUUPS

C -----NEXT KEEPS POINTERS TO ALL POINTS HHICH HAVE HAD ASSIGNMENT HITH BRANCHING

C

INTEGER CANDIIDOOI!NEXTIIDODI

C

C ----- IC HOLDS THE COORDINATES OF THE CURRENT BRANCH POINT

C---“'IX HOLDS THE CODRDINATES OF EACH SUCCESSIVE PROSPECTIVE NEXT BRANCH POINT

C ----- IBNDS HOLDS THE NUMBER OF GRID POINTS IN EACH DIMENSION

C

INTEGER ICIIDI!IXIIOI!IBNDSIIOI

C

C -----CBT HOLDS THE ADDRESS OF THE CURRENT BRANCH POINT. AND NBT THE ADDRESS OF

C -----THE NEXT BRANCH POINT

C

INTEGER CBT.NBT

c--..-

C-----COMPUTE THE NUMBER OF NEIGHBOR POSITIONS FROM EACH POINT IN THE GRID.

C ----- THE VALUE OF NEIGH DEPENDS ON SUBROUTINE INCRM! AND MUST JIVE HITH THE

104

105

C-----NUMBER 0F NEIGHBOR POINTS SUBROUTINE INCRM IS WRITTEN TO GENERATE.

NEIGH=2*NDIM

c-----

C-----THE SIGN OF EACH DATA HORD IS USED AS AN ASSIGNMENT FLAG. IF THE

C-'---DATA HORD IS NEGATIVE. IT HAS NOT BEEN ASSIGNED YET. IF IT IS

C-----POSITIVE. IT HAS BEEN ASSIGNED. FOR THIS REASON. ALL THE DATA

C -----VALUES PRESENTED TO THIS PROGRAM MUST BE POSITIVE.

c-----

C-----SET FLAG FOR NO ASSIGNMENT YET

C-----TEST TO SEE IF ANY OF THE INPUT DATA IS NOT POSITIVE.

DO I00 I=I!N

C-----GET THE INPUT FUNCTION VALUE FOR POINT I

MM=CANDIII

C ----- TEST TO BE SURE IT IS POSITIVE

IFIMM1560!540!IOO

C ----- IF A MEMBERSHIP VALUE HAS OUT OF RANGE! STOP 1 IS EXECUTED

540 STOP I

C--—--OTHERHISE. THE SIGN IS CHANGED.

100 CANDIIIS-MM

c -----

C----IC HILL BE THE NUMBER OE GROUPS DEFINED

IG-O

C----THE NEXT SECTION FINDS AN ARBITRARY POINT TO BEGIN GROUP 16 HITH.

c----THE POINT SELECTED HILL BE THE HIGHEST UNASSICNED POINT IOR ONE OF THEH.

c-----IN CASE OF TIES)

C -----NOTE THAT ANY UNASSICNED POINT COULD BE SELECTED HERE. CHOOSINC THE

C-----HIGHEST UNASSIGNED POINT HAS AN ARBITRARY DECISION ON MY PART.

C ----- THE ADVANTAGE TO CHOOSING THE HIGHEST POINT TO START EACH GROUP IS THAT

C-----THE HIGHEST GROUPS HILL HAVE THE MAXIMUM NUHDER OF MEMBERS.

C ----- INITIALLv. SET THE MAXIMUM VALUE YET FOUND TO ZERO

542 HAan

c----- SET THE CURRENT BRANCH POINT TO zERO AS A FLAG. IN CASE THERE ARE NO

C-----UNASSIGNED POINTS LEFT

CBT-O

C ----- SEARCH ALL POINTS FOR THE HIGHEST UNASSICNED POINT

DO 101 II'IIN

C----GET THE VALUE OF POINT II

MMUCANDIIII

C-----TEST FOR NOT ASSIGNED YET (SIGN BIT ON)

IFIMM150091019101 ~

C----IF UNASSIGNED. GET THE MAGNITUDE OF THE POINT

500 MMI-MM

C-.---TEST TO SEE IF HIGHER THAN ANY POINT YET ENCOUNTERED

IFIMM-HAXIIOI!IOI!SOI

C~----IF SO! RESET THE HIGHEST MAGNITUDE YET FOUND AND ASSIGN CBT TO THIS POINT

501 MAXIMM

CBTBII

101 CONTINUE

C----TEST IF A CBT HAS BEEN FOUND. IF NOT. ALL POINTS HAVE BEEN ASSIGNED

IFICBT15439563o564

c

C----IN THIS SECTION. A UNIMODAL TREE IS FOUND USING THE STARTING POINT FOUND

C---¢IN THE PREVIOUS SECTION

C----MDDE I VALUE OF HIGHEST POINT YET FOUND IN THIS UNIMODAL TREE. START MODE

C---AT THE VALUE OF THE FIRST POINT OF THE TREE

564 MODEi-CANDICBTI

C-~--SET THE ASSIGNMENT FLAG FOR THIS IST POINT OF THIS NEH GROUP

CANDICBTI-MODE

C----.NEXTC COUNTS THE NUMBER OF BRANCHING POINTS NHICH HAVE BEEN ENCOUNTERED'

106

NEXTC=O

C -----NEXTO COUNTS THE NUNBER 0F POINTS IN THE NEXT TABLE HHICH HAVE BEEN

C—----RE-CHECRED FOR ADDITIONAL BRANCHES. NEXTO POINTS TO THE LAST ENTRY

C-----HHICH HAS BEEN CHECKED IN THE NEXT TABLE.

NExTO=o

C -----UP THE NUNBER OF GROUPS BY ONE

IG-IG+1

C -----HERE DETERHINE THE INITIAL HAGNITUDE OF THIS LINK

502 HAG-CANDICBTI

C -----COHPUTE COORDINATES OF CURRENT BRANCH POINTS IN ARRAY IC

CALL COORDICBT.IC.NDIH.IBNDSI

C -----GO THROUGH THE POTENTIAL NEIGHBOR POSITIONS

C-----THERE ARE NEIGH OF THESE NEIGHBOR POSITIONS

DO 104 KK=1.NEIGH

C -----PUT THE COORDINATES OF THE KK—TH NEIGHBOR POINT IN ARRAY Ix

C -----L HILL BE RETURNED NON-ZERO IF NEIGHBOR POINT KK IS OUT-OF-BOUNDS

CALL INCRMIIX.IC.KK.NDIM.IBNDS.L1

C -----CHECK TO SEE IF IN BDUNDS

IFIL1104.5II.104

C----IF $0. GET ADDRESS OF NEIGHBOR POINT

511 NBTSIADDRIIX.NOIM.IBNDSI

C-----GET VALUE OF NEIGHBOR

MM-CANDINBTI

C-----SEE IF THIS NEIGHBOR CAN BE ASSIGNED

C ----- TEST FDR ALREADY ASSIGNED

IFIMMISIB.IO¢.106

C ----- TEST FOR RISE. FALL. OR EQUALITY

518 IFIMAG+MM1520.513.513

C-----IF RISE. BE SURE MODE OF GROUP HAS SAME MAGNITUDE AS THE CURRENT

C -----BRANCH POINT

520 IFIMUDE-MAG1530.SIS.IOA

C----THERE HAS BEEN AN ERROR IF THE CURRENT BRANCH POINT IS HIGHER THAN THE

C----MOOE OF THE GROUP. IF THIS IS THE CASE. EXECUTE STOP 2.

530 STOP 2

104 CONTINUE

C-----THE DO-LOOP FALLS THROUGH ONLY IF NONE OF THE NEIGHBOR POINTS HERE

C -----ABLE TO BE ASSIGNED

C-‘---IN THIS CASE. GO PICK UP AN OLD BRANCH POINT FROM LIST NEXT AND

C-----RE-CHECK IT FOR ADDITIONAL BRANCHES

GO TO 507

C-----IF AN ASSIGNABLE NEXT BRANCH POINT HAS FOUND AND IT HAS HIGHER THAN THE

C-----CURRENT MODE OF THE GROUP. RESET THE MODE OF THE GROUP TO THIS POINT

515 MODEI-MM

C----IF AN ASSIGNABLE NEXT BRANCH POINT HAS FOUND. SET ITS ASSIGNMENT FLAG

513 CANDINBTII-MM

C-----ENTER THE CURRENT BRANCH POINT INTO TABLE NEXT AND CONTINUE THIS BRANCH

C -----OF THE UNIMODAL TREE HITH THE NEXT BRANCH POINT (NBTI

C ----- INCREMENT NEXTC ’

NEXTC=NEXTC+I

C----SET NEXT(NEXTC) TO THE CURRENT BRANCH POINT

NEXT(NEXTCI'CBT

C----SET THE CURRENT BRANCH POINT TO THE NEXT BRANCH POINT

CBTtNBT

C----GO BACK AND PERFORM ANOTHER LINKING TO THE NEH CBT. IF POSSIBLE

GO TO 502

C--~-IF IT HAS NOT POSSIBLE TO ASSIGN ANY NEIGHBOR POINTS. ASSIGN THE CURRENT

C-----BRANCH POINT TO THE GROUP CURRENTLY BEING FORMED.

507 CANDICBTI'IG

C----HERE CHECK IF THERE ARE ANY UNPROCESSED OLD BRANCH POINTS LEFT

107

C ----- INCREMENT THE NEXT-OUT POINTER.

NEXTOINEXTO+I

IF(NEXTC-NEXTO)542.509.509

C-----IF THERE ARE. PICK UP THE NEXT ONE AS THE CURRENT BRANCH POINT AND CHECK

C ----- ITS NEIGHBORS

509 CBTSNEXTINEXTOI

C -----GO ATTEMPT TO EXTEND THIS BRANCH

GO TO 502

C -----HHEN THERE ARE NO POINTS LEFT. RETURN. A MAXIMAL UNIMODAL PARTITIONING

C -----OF THE INPUT DATA IS NOH IN ARRAY CAND.

543 RETURN

END

SUBROUTINE INCRMIIX.IC.KK.NDIM.IBNDS.LI

INTEGER IXIIO).ICIIO).IBNDSIIOI

C-----THIS SUBROUTINE INCREMENTS THE ADDRESS GIVEN TO IT IN IC TO ARRAY IX.

C ----- THE KK-TH NEIGHBOR POINT IS ENTERED INTO IX.

C----IF POINT IX IS IN BOUNDS. LID. IF IX IS OUT OF BOUNDS. L = I

C-----THIS PARTICULAR VERSION OF INCRM IS HRITTEN FOR AN NDIM-DIMENSIONAL GRID

C-°---HITH GRAPH G HAVING EDGES BETHEEN POINTS OF DISTANCE I.

LID

C-----OBTAIN DIMENSION TO BE INCREMENTED

JRIKK+11l2

C----OBTAIN NUMBER 1+ OR - I 1 TO INCREMENT DIMENSION BY

KIIKK-J‘21*2+I

C-----COPY THE CENTER POINT'S COORDINATES

DO 100 I'I.NDIM

100 IXIIIthIII

C-----INCREMENT THE PROPER DIMENSION BY THE PROPER AMOUNT

IXIJI'IXIJI+K'

C ----- TEST TO SEE IF OUT OF BOUNDS

IFIIXIJ11500.500.501

501 IFIIXIJ1-IBNDSIJ11502.502.500

500 L81

502 RETURN

END

FUNCTION IADDRIIX.NDIM.IBNDS)

INTEGER IxIIoI.IBNDSIIoI

C-----IADDR COHPUTES THE ADDRESS OF A POINT GIVEN ITS VECTOR 0F LOCATION

IADDR-I

RaI

C-—---UN-SUBSCRIPT THE COORDINATES INTO THE ADDRESS THEY INDICATE

C-----THIS MAKES CAND LIKE AN NDIH-DINENSIONAL ARRAY

DO 100 I.I.NDIN '

IADDRIIADDR+IIXIII-11*K

RthIBNDSIII

Ioo CONTINUE

RETURN

END

SUBROUTINE COOROIL.IC.NDIH.IBNDSI

INTEGER ICIIDI.IBNDSIIDI

C---SUBROUTINE COORD COHPUTES THE COORDINATES DR LOCATION OF A POINT GIVEN ITS

C---ADDRESS

H-L

J-NDIN-I

R-I

C----CONPUTE LARGEST BLOCK SIZE

DO 100 I'I!J

100 R-RtIBNDSIII

C -----GO THROUGH AND CONPUTE THE COORDINATES OR SUBSCRIPTS OF THE INPUT

C

500

101

108

POINT. THIS ROUTINE IS THE INVERSE OF IADDR

DO 101 I=I.NDIM

J=NDIM -I+1

IC(JI=IM-11/K+l

M:M-IIC(JI-I)*K

HATCH OUT HE DON'T DIVIDE BY IBNDSIDI

IFIJ-11101.101!500

K=KIIBNDSIJ’11

CONTINUE

RETURN

END

lllllilllllllli
49

II

