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ABSTRACT

In this thesis synthesis of n-terminal R-networks is considered.

It is assumed that the terminal representation.of the n-terminal

R-network is given by both the terminal graph and the terminal

equations. The object of this thesis is to calculate the element

values of the R-network directly from.the given specifications.

The method represented in this thesis does not require the tree

'transformation which, generally, is necessary to use in other existing

methods.

As a second topic, in this thesis transformation of a given

polygon R-network into a star R-network is discussed and a set of

necessary and sufficient conditions for the existence of such

transformation is established.
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1. INTRODUCTION

Synthesis of n-terminal R-networks are discussed in the literature

by various authorsl-L. If a complete representation of n-terminal

R-network is given in terms of a "terminal graph " and the corresponding

set of "terminal equationss ", the synthesis problem can easily

be solve by transforming the given terminal graph into a Lagrangian

tree. The element values are then detected directly from the

corresponding terminal equations. (See e.g., reference 3).

If the terminal graph is not given it must be determined as

a first step in the synthesis procedure. Cederbauml presents a purely

algebraic method for this determination while Guillemina and

Boiorce and Civallerih have developed "searching" procedures. Brown

and Tokad3 also consider this problem in certain special cases.

If the Coefficient Matrix in the terminal equations contain some

off diagonal entries which are equal to zero, the above methods

do not give a unique solution. To apply these procedures it is

necessary to replace the zero entries by +1 or -1.

In the first part of this thesis the synthesis of n-terminal

R-networks is considered, assuming the terminal graph is known. A

direct method for calculating the element values from the given

terminal equations is presented. The given terminal equations are

lag-y

It is shown thatacan be written easily from the given terminal graph.

put in a new form

Since a—l always exists, the column matrix,H, which contains the

element values of the R-network, can be found by direct solution of a

set of simultaneous linear algebraic equations.
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This new rearrangement of terminal equations offers the following

advantages over other procedures:

(a) Eliminates the tree transformation process;

(b) In a large R-networks where it is desire to use computering

facilities the above form is ideally suited.

In the second part of the thesis the existance of the polygon to

star transformation is considered along with application to synthesis.

Necessary and sufficient conditions for the existance of such a

transformation are stated in terms of two typaaof terminal representation.



2. A NEW METHOD FOR THE SYNTHESIS OF N-TERMINAL R-NEI'WORKS

2 . l Formulation

Consider the terminal representations of an R-network given in

Figure l .

b 2C4. d
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Figure l

The coefficient matrix 913 the product of three matrices of

the form

19 wedgedT (1)

whered is the submatrix of the corresponding cut-set matrix and

ye is a diagonal matrix containingelement conductance values.

If the order ofg is n x n [(n+1) - terminal R-network], then

R-network containes a maximum ofim = .‘igl'il elements, i.e., A is of

order n x m and ye has 111 rows and columns.

For a complete representation the terminal graph (TG) and terminal

equations (TE) are both given and thed matrix can be written easily

from the TG. For simplicity let us consider the example in Figure 1.

Since the R-network has only the vertices which are the terminal

vertices it is complete network as shown in Figure 2. If the elements

of the corresponding R-network are labeled as indicated in Figure 2,

the relevant submatrix A of the cut-set matrix reads
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The number of equations relating the entries ofjandé/e that

can be obtained is equal to m. If the entries ofye are considered as

unknown and the entries ofjare known then there are exactly m

unkown in m equations. let these equations be arranged in the form

CZ

311

822

  SIB-1,111

ll

Gin-1,11 J

where 813 's are the element conductance values and

 

(3)

G 'siare the entries

1.1

injanins a square matrix to be determined from’J . In order to

obtain Orromj , let us write the matrix in the form

.3

 n1

i 8ll “12

n2'8n3

813----
in ”I

 “J

(1+)



and

82

ii, = -

L gm

where the subscripts are consistent witl the previous conventions,

  

1.3., 31 = 811, 82: 822, 0.00, gm: %‘l’m. Equation (1) call now

be written as

     

   

Fall 512 ' " " Sin] 2‘1 _i E’ll " " ' Snl

g, . 32 812 She

s s - - - s ' g is
_ n1 n2 nm__ L as: _lm mi

rallgl 51282 " ' ' Elmer; Sll ‘ ' ' snl

= 812 8112

: , (5)

8nlgl Sn2g2 - - - smgm J 8Int 8mn 

We can consider the rows of matrix A as vectors (row matrix) i.e.,

(11: [811, s12, ..., 81m]. Therefore ,8 matrix has the form

‘F-

.
.
.

m
i
“
J
u
l

,1: (6)

  _%J

let us define a new set of vectors (row matrices) by use of 51's

as follows,

kiJ=aian=a xa1=k



where'-

13

kid =[

is given by

(7)

With this new notation equation (5) can be written as

kllg

5/

 

with g =
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ing

8  

(8)

(9)

Therefore, kijg is the sealer (or dot) product of two vectors, i.e.

k
136

m.

2 s s.

k=l ik 3k gi
(10)

a.

Equation (8) now can be rewritten by considering only the diagonal

and, say, upper off-diagonal entries. The lower off-diagonal entries

‘will give the same equations.

of9 yields .
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Hence, one arrangement of the entries
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or form (11)

C2“ . __.

  
where

53:,

n-l n

. ’ J  
This result represents an algorithm.for writingéCZfromv<f.

Example: As an example consider Figure

given by equation (2).

For this example we have

El = (l, o, o,

5% = (o, l, o,

6% = (o, o, 1,

an:

From equation (7) we have

W
I

I

ll

W
I

22

W

U
)

4
:
- l

Hence, the rows onmatrix are obtained (see equation 13).

  

FGn

G22

n—l,nj

i011 x a1

5% x 5%

5$_l x 65   

0, l, l; l, 0, 0; C )

O) “l: ‘1) "l: l: 1) O )

0) 02"1: 0) l: O: l )

(O: O: O: l: 0) O)‘l: 0: 11"1 )

~(1,0,0,0,l,l,l,0,0,0)

(0: l: 0: 0; l; l: l; l; l: 0 )

" (O: O: 0: O) O) O) O: O: 0.9-1 )

2, thej matrix of which is

(12)

(13)



Properties of the Qmatrix

Let the amatrix be partitioned in the form

[in ‘
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2i 3‘12

_ kn-l,nJ

and consider the properties of

- q a. q

ikll i h‘12. {

k22 : kl3
0’ = and a1: separately. (15)

b knnj kn-l’

L

Every row inc? 1 is of the form

' _ — « _ 2 2 2

kii z “i x i = (511’ Sie’ ’ Sim)

=(l811|’ '812l, e e e Isiml) (l6)

i.e., every entry of iii is equal to the corresponding squared entry

of 51. Therefore we have:

The entries of 01 are either 0 or +1.

To establish additional properties let '51 I be defined as the vector

(row matrix),

A

lair = [| Bill , ' 512' , ,[ sim'] (l7)



and the matrix [A I as

H51!“i

l 3h!

[3! -- 3

MW _
then 01 can be written as the form

fin " H 51H

0 = 12 | a2|

I

  

w

j Ll énH

Therefore we have the important result:

3
8
5
'     

The 01 matrix is obtained fromJby simply changing

the signs of all its negative entries.

let us consider now the other submatrix ofO i.e., r i:

ll

W

0 2 _ln (2°)

“
‘
1

0
0
0

  _ n-l‘JUi

It can be seen from equations (2) and (1+) that if i f J and l S i,

JED, then 81),: 0 for} B 1,2,000, i-l’ 1 + l, 000 110

This implies that in equation (7) the first n entries are equal to zero

under the above conditions (i.e., 1 ;£ .3 and l f i, .15 n).



Therefore we have a. second important result:

The O 2 matrix has the fol lowing form:

(n) nSn-l)

_2

02: [O K Jnn-l

-2

where K15 a square matrix of order

ngn-l)

“2

With the above results theymatrix in equation (13) can be written

as follows:

_ ., _ = _____ (21)
l

I V.

0, K O X

, -l , -1
In Section 2.2 it is snown that K exists and thereforeO always

exists and can be calculated as follows:

 

“-7—:‘— (m
0,)< _l

i.e., to invertO it is necessary to know only the inverse of )f

 

Existence of 0-1 permits us to write equation (12) or (3) as

 

f 811 - i Gll i

822 “I Gr22

g ==52 g (m

{gm-1:31} L Gn-i-1,nj   
Therefore from the given terminal presentation in the form of the

terminal graph and coefficient matrix% Ocan be written directly

and the element values of the R-network can be found directly by

10



equation (23).

A.

2.2 The Existence of )(ul and Related Properties

Consider thea matrix (21) in Section 2.1. It has already been

indicated in Section 24that existence orQ'l is implied by the

existence ofX'l.

The proof that x-1 exists is based on the induction method.

Let us consider an R~network whose terminal graph consisting of two

elements as it is shown in Figure 1 (For a simplest TG, which is a

single line-segment, the order ofxmatrix is zero, hence this case

is omitted).

 

The submatrix of the cut-set matrix is

1 l 0

A - 2 II

b
—

g.

2 O 1

From equation (21 ) in Section 2.1

  

’1 0| 1 ' 1b

' 3Q- 0 1| 1 null l
““‘”"T"‘ ...,.--

t0 0 i "ll. __° I 2_  

Therefore

det 7(2- --1 a -l;‘0

i.e.)<2 is a non-singular matrix.

For the terminal graph consisting of three elements we have

two possible configurations;

ll



a) If the terminal graph is in the form of a Lagrangian tree

then from Figure 2 we have

 

 

 

ll 22

l f l o

A = 2 O l

3 B O 0

Therefore

F l o o l 1

o 1 o i l

a O O l I O

= O O O I. l

O O O l O

_ o o o : 0

which gives 1 0 O

deity?) = o l o = -l ,é o

O O -l

and x3-1 exists .

33 12
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b) If the terminal graph is in the form of a path then from

Figure 3 we have

11

 

22 33 12
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and

  

[ l o o l 1 1 o ‘

o 1 o : 1 1 1

2-3-112_i_1

(:2 = o o o : l. 1 o

o o o I o 1 o

_ o o o | o 1 l ,

Therefore

r 1 1 o

det.>(g = o 1 o = 1 e o

o 1 1  
i.e., K34". exists.

Note here that labeling of the elements of the terminal graph

does not effect the existence of )‘(3-1. This can be seen as follows:

Suppose we have interchanged the labeling of any two elements of the

terminal graph, say 2 and 3. This changes will effect to the matrix

in such a way that only the second and third row of )Jare interchanged.

'This interchange will be reflected only as an interchanging in the

same rows of X3 (in this case first and second rows of X3 are

interchanged). Therefore det X3 is not alter except in sign.

Changing the labeling of the R graph elements does not alter the

det X3 except in sign, since it. corresponds to a change between

the columns of the matrix i.e., changes between the columns. of )13

matrix. It is obvious that the above preperty applies also for a

terminal graph having more than three elements. '

Proceeding with the induction proof, assume that )‘fn-l exists

-1
for a terminal graph having 11 elements. We shall show that K n+1

13



also exists.

Consider an R-network whose system.graph is represented by Gh and

the terminal graph by Tn, as in Figure h(a).

 
Figure A

Suppose a new vertex a.n+2 is added to the graph and all the

vertices a1(i = l, 2, ... n+1) are connected to this vertex by a set

of new elements (1, n+1), (2, n+1),...., (n+1, n+1), alsoa new element

(n+1) is added to the terminal graph Th. By doing this we here obtained

again a complete R-graph for which the terminal graph (Th+l) contains

(n+1) elements. Let the,<£matrix for Oh and Th be written as

 
 

l .

xi = : U. 11
n

then for the new graph Gn+1 and Th+1the matrix will have the form

' (n) (1) ( .213211_.) New elements (n)

1 f“ - * y -

. 11 I O 1 /<)_ l

g I ' l l l 12
: .. l . I 1.

. n ---:———%------ n ————— Q)
n+1 , [<8 , .

. O I 1-. ' 21 I A 22-]

Since the last cut-set corresponding to the element (n+1) contains

only the element (1, n+1), ..., (n+1, n+1), the last row of”a_has the

properties such that/2221 = O and/8.22 = i l 1 1 ... 1]. Since the

1%



element orientations of the new elements in Gn+l are chosen as in

Figure Mb) the entries of )3 22 are all +1. If we change some of

the orientations of these elements the corresponding entries ofA 22

becomes -1. It will be seen later that changes in the orientations

of these elements are immaterial as far as the inverse of ”n+1 is

concerned.

Now from equation (15) in Section 2.1 we can construct the

Kn+l matrix. It is easyto see that

Xn {112

l

X22

withX22 =A12 since/322 =[ 1 1 1 1].

' -1

If we can show that)5 12 is nonsingular thenx 22 exists. This

Xn+1 = I-..

0

implies that Xn+l is nonsingular, since by elementary transformation

matrix equivalent tOXn+l can be obtained in the form

>< ‘ 0n

0 K22

which has an inverse.

Now the problem is reduced to show thatA 12 is nonsingular. From

equation (1) it can be seen that,4 12 is a square matrix of order n.

Let us consider the R-network in Figure Ma). For this network we

can disregard Gn and consider only Tn since-2'3n and a set of

correSponding terminal equations constitute terminal representation

of Gn' Therefore, we have a system graph containing TnU (n+1) =
Tn+1

and the elements (1, n+1), --- (n+l,n+l) as in Figure ’+(b). If Tn+l

is chosen as a tree in this graph, then the cut-set matrix is of form

15



(l,n+l)...(n+l,n+l)

 

- I V ' l“

l t I ' x I0

2 I I A I0

C = . 2’[m-ll C12 = 2’414-1' '2' '3 (3)

3 I _ __.—19. -

n+lL I . Fl 1 000 1'1

-.Ji L. I I (L   
On the other hand, the chord-set in Figure 1+(h) also constitute

a tree of the graph, i.e. , all through and across variables of Tn+1

can be expressed in terms of the corresponding variables for the 1

elements (l,n+1), ..., (n+1,n+1), and vice versa. In other words

considering matrix (3) we have

U T

Q = 0 (4)

C

)- a

[u 6-2]
  

If Tn+1 is taken as chord set then we have

' TIQ c

[[21 012] § = 0 (5)

T _

L 1  
Equations (1+) and {5) give

3T=-C12Qc

QC {312%

respectively which imply that

CmeDm=Qm€12=ZL

Hence

. --1

C12 =0 i: or $12 =67 :1: , therefore [Q42] exists

and the proof that is a nonsingular matrix is established.

12

Ebcample 1: Six-Vertex Terminal Graph
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Figure 5

For Figure 5 the matrix is

53 51+5212 31 32 #1 he #3 515
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Example 2: Six-Vertex- Path Terminal Graph
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*“u “ ‘ ‘1
o o o I 1 o o | 1 o o o
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+-————l——————

o o o o o o ' 1 o o o

o o o o o o ' 1 1 o o
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o o o o o o I 1 1 1 1J  
General form of K-matrix and its inverse.

One can choose the labeling of the elements in the graph GH
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(-corresponds to R-network) such that the7< matrix assumes a simple form.

We already know that 7(n+l-can be written as in equation ( 3) by labeling

the new elements in Gn+ as discussed earlier i.e.,
l

_

—

Zrn a€n+l

= (6)
Xn—tl O 7<(n+1 )

  
where 7((n+l) is used to replace 7&2 in equation (3). If we do the

same thing for the vertices in Gn we would have e.g.,

[BI/ml 55h

“'1

7(n=

  __ ° 71?“?

Continuing this labeling process, Kn then can be put in the form

RI (1) 51(12 £13 ‘" 33h

0' X (2) aI023 "" 9621;

7< _ ' 0 31(3)

-P

I

I

l l

I l

O XII-1,1)

L. O O O x0204.

where the order of’}( (i) is exactly equal to 1. Also it has been

  
established that 7(a) has an inverse

The inverse of (Xn will be in the form

'r -1 t

7((1) 70 ----- 7Dln

-1

7. -1 . W a a.

o o o o 7((n)':  



Where<7C;J can be calculated in terms of‘3K(i) and but these
ij’

expressions for are not convenient to calculate the inverse of

13

~><g, since the complexity of these expressions increase as the indices

1 and 3 increase. For'example the expressions for some of thggaij in

-1

terms of;><(i) andéZZij are.

0.2 owl JR )(2'1

on 13 = Wit-€13 Xgl + X342 Xe'lefewgl

@ n- ‘X{12¢ n X151 + Xl'loire Xz'lofinX1'1

+ Xl-lb{13 X3'lcsZ3uX u-l

- X1-16812X2-12Z23 X52?311% h-1

03 23 " X2-10{ 23 X3.1

9 211 X{lieux {l + Xa-lsfla Xflgfln K 1:1

The Labeling of Graph Elements
 

In order to put:)<n in the form indicated in equation 7 the labeling

of the elements of the terminal graph as well as the R-graph elements

must be chosen carefully.

a) Labeling of the TErminal graph elements

Guilleminlo has described a method by which a tree can be assumed

to "grow". This procedure can be used effectively here. To illustrate,

let us consider the tree in Figure 7(a).

20



 

  
Figure 7

In Guillemin's terminology Figure 7(c) is called a "one-year-old treeV,

Figure 7(b) is called a "two—year-old tree". Therefore the tree in

Figure 7(a) is a "three-year-old tree". »The labeling of the latter

is obtained by first labeling Figures 7(b) and (c).

b) Labeling of the R-graph elements. .

To label the R-graph elements the following procedure is used.

1. Consider the end element of the terminal graph with the labeling

of highest number.' (This number in Figure 7(a) is 9).

2. Since the element considered in (l) is an end element, consider the

vertex of this element which is incident to this element only ( in

Figure 9(a) this vertex is a lo).

3. Consider the elements between the vertices alO and a1, a2, a3,..... a9

let us temporarily indicate these elements by the symbol (alo,ai)

P

cl



where i = l, 2, ...., 9.

h. Consider vertices a1(i # 10) which is incident to only one element

(e.g., a7, a8, ah, a9) and the correSponding elements'(a10, a7),

(a10,a8), ..... (alO’ a9). Label these elements as (g3). Where

5 is the labeling of the end elements at which the selected vertices

are incident. For example (alo, a7) is labeled as(g7) while

element (alO’ an) is labeled as (g3). ‘

5. Remove all the labeled elements and the corresponding end elements.

Repeat the same thing for the new end elements.

6. After labeling all the elements which are incident to the vertex

considered in (2), remove all these elements and the element considered

in (l). _

7. ~Repeat the same thing for the second highest labeled element

and continue to this process to establish a labeling for all the

elements of the R-graph.

 

 
Figure 8



3. POLYGON TO STAR TRANSFORMATION

3.1 Necessary and Sufficient Conditions

In this section the transformation of a.polygon-connected network

into an equivalent star-connected network is considered. A set of

necessary and sufficient conditions for the existence of such a

transformation is presented in terms of the relationships between

the entries of a matrix defined later. These conditions are also

interpreted in terms of the elements of the given polygon-connected

network. For the sake of simplicity in the proof only R-networks

are considered. ‘HOwever, the result applies more generally. An

alternate statement of necessary and sufficient conditions is also

stated.

Consider a.polygonal R-network having the nodes A1, A2, ... A.n

and the element conductance values G13, (1, J = 1, 2, . . . n; 1 #3),

where GiJ corresponds to the element between the nodes A1 and AJ'

To characterize the prOperties of this R-network, an additional isolated

, is chosen as the reference node. A star-like tree

5

node, A.n+1

(Lagrangian tree) terminal graph , T, having Ai's (i = l, 2, . . ., n)

as its end vertices is selected. This terminal graph is given in

Figure l, and the corresponding terminal equations are given in (l)

and (2) '

A. A

 

 



   

Iii“) I I311 ‘112 ° ' ° 8Lin 3 “(10:)"

12(t) al2 a.22 . . . a2n v2(t)

. : . . (l)

~in(t)J raln a.2n . . . ahn__ vh(t)J   
or

3s) sa’wt) (2)

If all the elements of T are oriented toward (or away from)

An+1’ it is well known6 that all the off diagonal entries in the

coefficient matrix, A, in Figure l, are negative and their magnitudes

are equal to the conductance values of the elements, i.e., -313 = G1J(if J).

The diagonal entries, aii’ are equal to the sum of the conductance

n

values of all the elements incident to node A,, i.e., QB. = 2 G .

More specifically, since a.ii = - Z aiJ, then the coefficient

* 3:1

matrix, A, is strictly dominant. jfl

Consider a star-connected R-network having the terminal nodes

Bl’ B , . . ., Rn and the element conductance values gi(i =1, 2, ...,n).

Where gi corresponds to the element between the nodes B~ and the
i

center node B . An additional isolated node B is chosen as

n+1 n+2

the reference node and a starlike tree terminal graph, Tl’ having

B1 (1 = l, 2, ..., n+1) as its end nodes is selected. It can be seen

easily that coefficient matrix appearing in the terminal equations

for this star-connected R-network is as follows

 

For:matrix.A since dominantcy condition is satisfied with equality

- n

sign, 2 a13 = O, the word "strictly cominant" is used. A.strictly

J=1

dominant matrix actu ly is an "indefinite admittance" matrix7 or an

"equicofactor matrix ."
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where Z a Z gk. In order to characterize the properties of this

' kal

R-network at the terminal nodes, Bi (1 a 1, 2, ..., n), corresponding

to a terminal graph, T , having the same form as T in Figure 1,
2

the current variable in+l(t) is set equal to zero. Therefore, from

Eq. (3) we obtain the coefficient matrix of the terminal equations

corresponding to T .

    

2

81 g1

82 82

- - l. ° [g . . . g 1 (h)
. Z . ‘ l g2 n

L. .L 8w M

Since terminal graphs T and Th are identical, the two networks are

equivalent when the matrices in Eqs. (1) and (h) are identical, i.e.,

CZZ:EZ§?7 - (5)

or

s s

a,=-%H-(i#n (@

and g 2

6‘ii = 31 ' 'IT’ (7)



The following relation is easily established from Eq. (6)

11:511.,

”13 '31 1‘1 (i = 1, 2, ..., n; 0% 5.1) (8)

where ai-l is a positive real constant. Since - 8'13 = G13 (1 f J)

Eq. (It) is actually Rosen's theorem9, i.e., Eq. (6) expresses the

element values of the polygon-connected network in terms of the

element values of the star-connected network. (Star to polygon

transformation). -

To establish the inverse relation, i.e. , the polygon to star

transformation, solve Eq. (8) for gi

g:L a (11-1 g:L (i a l, 2, ..., n) (9)

Hence, if the element vaiue gl is obtained the values of all other

gi follow from Eq. (9). ‘

Consider sq. (7) for i = 1 and substitute for z the identity

2 = gl (1 + (1"- + . . . + an-l)° We have then

‘11

l-

 

31 = (10)

Q
I
H

whereo=l+(x_|_+...+an_ Sinceo>l,andall<O,Eq.(10)1'

implies 81 > O. From Eq. (9) we also have in general g:L > O.

From the above discussion, the following theorem can be stated:

Theorem: For a given n-node R-network to have an I

equivalent n-branch star R-network the necessary and sufficient

conditions are: ' [assuming the terminal representations of this

network is given by the terminal graph as shown in Fig. l and the

terminal equations (1)]

H II

lpoooo’nsail

° (11)

2,....,n;i;é,j '

J -

C
4
.

l
l
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where 03-1 is a positive real constant.

Proof: Necessity: Follows immediately from the fact that gi > O

in Eq. (8).

Sufficiency: Given 01-1 >'O, we have from.Eq. (10), gl >’O

and from.Eq, (9), g1 >'O, i.e., there exists a unique star equivalent.

The condition (11) implies the following property of the

polygon connected network:

Let A1 and A.J be any two nodes of the network. The

ratio of the conductance of the elements between each one

of these nodes and any other node Ak (for k = l, 2, ..., n;

k # k, k f J) must be the same.

Take any vertex as reference node as shown in Fig. 2 by the heavy

line.

 

 
Figure 2

Denote the new terminal equation in matrix notation by

I I /

s=5 == (libr' (12)

where Ii'l I v'l

fi3': 5

    



i

To establish the coefficient matrix Q , apply a tree transformation

to take the original set of voltages to the new set. I

V= 77/"

From.the circuit equations of Fig. 2 we have

_— 'I ‘
1 o o..o'

o
o
o
o
H

[
—
1

7:

0
0
.
0
0 I
—
'

O o

0
.
0
0
0

0

Lo........ 0
    H

I
_

l I

It is well-known that

J ‘ 7:9 (13)

Hence from .Equations (12) and (13)

3= U ‘=7't.Q2/‘=7'tafy/

or a' s Th 7- (11+)

Let theQmatrix be written in the partitional form

Q = (15)

  

 

 

 

 

I' 2 "

g _a. __ ...... -8148-
1 z 2: * 2:

2

- as - Es. ...... - 82311-1
2 82 2 g:

I

where Q = I , : (16)

11 , I 2 _

8n-lgn _ g2gn-l _ _ _ _ _ gn-l _

z 2 8n-1 2 ~ 
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0-12 =

 I.

r glgn

 

Z

g2gn

Z

 

gn-lgn
 

2I

2

8

3 (222 = gn - -§%-

 
Thus for the coefficient matrix in Equation (1%) we have

where

 

t

a = 7&7- = .
t l 6:>

A Q12 22 O /

an anA + 12

t t t t

A 11 +412 “tau" (112)“ + A 412* 22

2 . \ 4' \ 8 a n V.

-E‘1_-§i§2%1 .I (-..-s... o
2: 2; 2: 2:-

2 s

- 5.6.2. .. EL _ gegn“1 1 - 82 n o
2: 82 2: z + 2:

s s s a s 2 s s
l n-l 2 n-l ... n-1 _ n-l r.

' 2: ' 2"- gn-l - Z I .lI I Z .01

 

U 0 6411012 UA

 

 

 

         
. . t t _

similarly A Q11 +Q12 ; [o o 0]

At Q12 + 22 - [0]

Equation (12) now reads

I11 I I I I Ivi ‘

3:2 all I 0 Y2

: = _.__ __'____ .. :

_iJn-l . Vn--l

i'n J O I O I I VI] J      

-2;;

 



and the last equation in the set of no concern, i.e. the nth element

can be deleted from.the terminal representation giving

q. r T

Ii'l v.1

' '

12 V2

5 =Q11 :

I

n-Jj LV n-l I

(2111 13 a submatrix 0fC:?, and is a dominant matrix but not strictly

    

dominant in the sense discussed earlier. An equivalent statement

of the theorem.for a given n-terminal complete polygon using an n—terminal

Langrangian tree can now be given. The necessary and sufficient

condition on the conductance matrix of an n-terminal polygon such

that the given polygon has an equivalent star network are:

(1) .Except for the diagonal element, all the ratios of the

‘ off-diagonal elements in the same row to the corresponding

elements in the first row must be the same, e.g.,

323': 32%.: ... = a2zn-l =

8-13 an ”Ln—1 “1

(2) The ratio of any row sum to the first row sum must give

the same ratio as the condition in (l)

e.g.

n-l

f ”‘211-1 _

n-l — al

2 a

J=l 13

If the above conditions are satisfied we can use Equation (10)

to calculate the corresponding star element values.. From Equation (16)

'we can determine 01’ 02 ... oh_2 as before and a%_l is obtained from

30



the ratio of any column sum to the corresponding absolute value of

the element value in the first row.

n-l

2 “J2

e.g. a g: ESL—_—

n'l I“.12

3.2 Applications

Example 1

Does the polygon in Figure 3 have

an equivalent star network?

Tb use the criterion

 
of Theorem.1 derive the

Figure 3

conductance matrix using an 5 vertex terminal graph with the 5th

vertex taken as the ccmmon vertex. Then we have

  

f 21L --12 4+ -8 \I

-12 21 -3 -6

Q = .. 1+ - 3 9 -2

-. a - 6 -2 16 I
§

It is easy to see that the condition of Theorem 1 is satisfied and

the element values in the equivalent 5 vertex star configuration are
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or g =--——— =—-—-=

l a .3.

1'5 s

g = g = 3 x ho = 30
2 0,11. E-

- 1 _g3=a2gl—Exho_1o

g4 = at3gl = %»x #0 = 20

and the equivalent star network is given in Figure h.

A:
A2

4-0 3°

 

 

Example 2

Does the polygon-connected

network in Figure 5 have

an equivalent star-connected

network?

  Using additional vertex

.A6 as reference node then the

conductance matrix.

(9 -1 -1 -I-I- -3 I

II I
H

I
H 0
'
.
)

I

4
:
-

I

[
D

  -3 -3 -2 -l2 2OI



We see immediately that the ratios between the elements of the first

and the second rows are not the same and we need not go further to

conclude that there is no equivalent star-connected network for this

given polygon-connected network

Example 3 A1 A2 . A3

2 e3

Given Terminal Graph I

and Terminal Equation Ah

as shown in Figure 6. Terminal

Graph

Can this be synthesized

as a star-connected R-network?

  

I

O
\

[10.5 -1.5‘I v I

   

1

-6 12 - 2 v2

I_-1.5 -2 n.5I v3J

Terminal Equation

Figure 6

In this condition we simply use the alternate theorem. Since

condition (1) and (2) of this theorem is satisfied there exists a

5.vertex star network the element values of which are given by

Equation (10).

 

 

E'11
g:

1 l__1_

0

now all — 10.5

-2 h

a].='105=-3-

-2 l
Q2=z=§

a _12-6-2_1I_2_

3‘1-61'6'3

.. i 2: 31.1.0.
0 — 1 + 3 + 3 + 3 3

_ 10.5 105

31 1.3- 7 -15

10 h

82=algl"§' 15:20

- -1 =
83-0331-3Xl5 5

sh=a3sl §x15 =10
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The star network is given in Figure 7.

h

/5

31+

‘
5
‘
”
1
1
1

4
:
1
1
.
.
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