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ABSTRACT

In this thesis synthesis of n-terminal R-networks is considered.
It 1s assumed that the terminal representatior.of the n-terminal
R-network is given by both the terminal graph and the terminal
equations. The object of this thesis is to calculate the element
values of the R-network directly from the given specifications.
The method represented in this thesis does not require the tree
'transformation which, generally, is necessary to use in other existing
methods.

As a second topic, in this thesis transformation of a given
polygon R-network into a star R-network is discussed and a set of
necessary and sufficient conditions for the existance of such

transformation is established.
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1. INTRODUCTION

Synthesis of n-terminal R-networks are discussed in the literature
by various authorsl'h. If a complete representation of n-terminal
R-network is given in terms of a "terminal graph" and the corresponding
set of "terminal equationss", the synthesis problem can easily
be solve by transforming the given terminal graph into a Lagrangian
tree. The element values are then detected directly from the
corresponding terminal equations. (See e.g., reference 3).

If the terminal graph is not given it must be determined as
a first step in the synthesis procedure. Cederbanm; presents a purely
algebralc method for this determination while Guillemin2 and
Boiorce and Civalleriu have developed "searching" procedures. Brown
and Tbkad3 also consider this problem in certain special cases.

If the Coefficient Matrix in the terminal equations contain some
off diagonal entries which are equal to zero, the above methods
do not give a unique solution. To apply these procedures it is
necessary to replace the zero entries by +1 or -1.

In the first part of this thesis the synthesis of n-terminal
R-networks is considered, aséuming the terminal graph is known. A
direct method for calculating the element values from the given

terminal equations is presented. The given terminal equations are

L@-g

It is shown tha.taca.n be written easily from the given terminal graph.

put in a new form

Since (L™t always exists, the column matrix, }f, which conteins the
element values of the R-network, can be found by direct solution of a
set of simultaneous linear algebraic equations.

1



This new rearrangement of terminal equations offers the following
advantages over other procedures:

(a) Eliminates the tree transformation process;

(b) In a large R-networks where it is desire to use computering

fa.cilities the above fqrm is ideally suited.

In the second part of the thesis the existance of the polygon to
star transformation 1s considered along with application to synthesis.
Necessary and sufficient conditions for the existance of such a

transformation are stated in terms of two types of terminal representation.



2. A NEW METHOD FOR THE SYNTHESIS OF N-TERMINAL R-NETWORKS

2.1 Formulation
Consider the terminal representations of an R-network given in

Figure 1.
b 2 ¢ 4 d

[ 1 - ¢ -
1,(t) [ Gy1G1561 561y, vl(t)
| 3 1,(t) _ |- G, 00300, v,(t)
a e 13(1-,) . . G33c;3lL v3(t)
_ill'(t )-J | - ¢« th. L.Vk(t)J
Terminal Graph ’ Terminal Equations
Figure 1

The coefficient matrix ﬁis the product of three matrices of
the form
& =844 (1)
where,d is the submatrix of the corregponding cut-set matrix and
ﬁe 1s a diagonal matrix containing element conductance values.

If the order ofg is n x n [(n+l) - terminal R-network], then
R-network containes & maximm of m = Eﬁg;l)_ elements, i.e.,,Jis of
order n x m and ge has m rows and columns.

For a complete representation the terminal graph (TG) and terminal
equations (TE) are both given and the)J matrix can be ﬁritten easily
from the Td. For simplicity let us consider the example in Figure 1.
Since the R-network has only the vertices which are the terminal
vertices it 1is complete network as shown in Figure 2. If the elements
of the corresponding R-network are labeled as indicated in Figure 2,

the releva.nf. submatrix ,6 of the cut-set matrix reads



11 22 33 4 12 13 1k 23 24 34

1 1 0 0 0 1 1 1 0 0 0]

)3 _ 2 0 1 0 0 -1 -1 -1 1 1 o (2)
3 |o 0 1 0 0 -1 0 1 0 1| -
L Lo 0 0 1 0 o -1 0 1 -1]

The number of equations relating the entries of j a.ndfe that
can be obtained is equal to m. If the entries of y o 8re considered as

unknown and the entries of, f are known then there are exactly m

unkown in m equations. ILet these equations be anja.nged_ in the form

&1 ] [ G ]
G,
Az | = | ® (3)
gzn-l,m Gn-l,nJ

where g, J's are the element conductance values and G, J's are the entries

in j a.nins a square matrix to be determined from,J . In order to

obtein (7 from,f , let us write the, matrix in the form

-

(851 85 813 - = = = B

3=

(&)

mm

nl n2rsp3



and

g,-|

i €n

where the subscripts are consistent wit. the previous conventions,

1eee, 8] = 817 8= Bops ey &= &n-1,n° Equation (1) can now

be written as

8

11 5127 ° " %l |& Sl " " By
Y el & 812 5he
_Bnl 2 " " " ®mm &l | %1m énm

— — — p—

5128, S1028> = = = Bypfp 817 7 7 " 8y

- 812 8ho

H H
%181 5108 = 7 " B8y S1m 8 m

We can consider the rows of matrix ;A as vectors (row matrix) i.e.,

o= (8,1, 8yps <oe) sim]' Therefore ,5 matrix has the form

—

J -

BQ' see h?l '_Rll

let us define a new set of vectors (row matrices) by use of

as follows,

kiJ=a1an=a xai=k

¢
Ctis

(5)

(6)



where E;J is given by
kij = Fsilsjl’si2sj2’ o e simsjm] (7
With this new notation equation (5) can be written as
kllg k128 e o o king
R
7= s ®)
L knl kneg L] L] L] nngJ
- gl-
&2
with g =| . = gt (9)
Therefore, fijg is the scaler (or dot) product of two vectors, i.e.
-— m ’ -
k g = s 5. g (10)
iJ A=l 9 S ) S 8

Equation (8) now can be rewritten by considering only the diagonal

and, say,-upper off-diagonal entries. The lower off-diagonal entries

will give the same equations.

ofy yields.

11

Goo

'G -

n-1l,n

Il

[ ooe gwl R%m tpvl

3

n-l,nJ

Hence, one arrangement of the entries

(11)



or form (11)

a

K

where

A

n-1l,n

(12)

(13)

This result represents an algorithm for writing C? from ,J .

Example:

given by equation (2).

For this example we have

_F_Ql le l\)Ql I__PI

From equation (7) we have

<l

11

P

22

-

34

Hence, the rows

(1, 0, o,
(O) 1) o)

(0, 0, 1,

(O: 0) O; l) 0) O;"l)

(1, 0, 0, 0, 1,

(0) l) O’ o) l)

(0, 0, 0, 0, O,

6f Q matrix are

As an example consider Figure 2,

o, 1, 1, 1,
O,'l,-l,"l)
O) O)'l: O:

0,

1, 1, O,

1, 1, 1,

0, 0, O,

obtained

the )3 matrix of which is

c)
0)
1)
1,-1 )

0, 0)

1, 0)

01'1 )

(see equation 13).



Properties of the Qmatrix
Let the (Y matrix be partitioned in the form

=1

Q il (14)

a - na
2 kl2
i kn-1 »n]
and consider the properties of

[k, (%1

koo [ *13
a' = and a7.= separately. (15)
| knn.J kn-l ’

3
Every row ina 1 is of the form

- - : - 2 2 2
k = C!i X ai = (Bil, 812, eee Sim)

ii
(Isill’ |512|, . . e Isiml)
eq_ﬁa.l to the corresponding squared entr).r

(16)

i.e., every entry of iii is
of ai. Therefore we have:
The entries of 01 are either O or +1.

To establish additional properties let ,ai ' be defined as the vector

(row matrix),
18] = sl ool s oo ] ogal ) o)



and the matrix |§|as

1 |
||
1]
then Ol cen be written as the form
(¥ ] %]
k |
C?/ _ .12 _ °‘2|
Enn ] X I an”

Therefore we have the important result:

The & , batrix is obtained from )X by simply changing
the signs of all its negative entries.

=1

Let us consider now the other sutmatrix ofa i.e.,

=i

13

L )

Q2= &, ‘20)

“ffl

R'] eee

. "n-1,n]
It can be seen from equations (2) and (4) that 1f 1 # jand 1 <1,

J <n, then s ,,= 0 for A =1, 2, ...,i;l,i-l-l, ese N

ix
This implies that in equation (7) the first n entries are equal to zero

under the above conditions (1.&., 1#Jand 1<1, j<n).



Therefore we have & second important result:

The O 5 matrix has the following form:

@ 2
n(n-1
02 = Lo K ] 2
where X is a square matrix of order
ngn—lz
2

With the above results theﬁ metrix in equation (13) can be written
as follows: )

, (21)
o'K O, X |

In Section 2.21it is shown that K-l exists and thereforeo—l always

exists and can be calculated as follows:

0 | x-l (22)

i.e., to invertq it 1is necessary to know only the inverse of ){

Existance of Q-l permits us to write equation (12) or (3) as

(811 ] [ ¢ ]

&0 » Goo

: = : (23)
_‘gm-l,mj i Gn-l,,nj

Therefore from the given terminal presentation in the form of the

terminal graph and coefficilent matrixﬂ Oca.n be written directly

and the element values of the R-network can be found directly by

10



equation (23).

-~

2.2 The Bxistence ofl('l and Related Properties

Consider the (P m;trix (21) in Section 2,1 It has already been
indicated in Section 2. that existence ofCZ_'l is implied by the
existence of X .

The proof that }(-l exists is based on the induction method.
let us consider an R-network whose terminal graph consisting of two
elements as it is shown in Figure 1 (For a simplest TG, whiéh is a
single line-segment, the order orX:;m.trix is zero, hence this case

is omitted).

2
Figure 1

The submatrix of the cut-set matrix is

1 1 0

S

2 0 1
From equation (21) in Bection 2.1

1 o::. '
Q. 0 1|1-1:43_._l)$1
0 |

Therefore
det Xa- -l = <140
:L.e.)(2 is a non-singular matrix.
For the terminal greph consisting of three elements we have

two possible configurations;



a) If the terminal graph is in the form of a Lagrangian tree

then from Figure 2 we have

11 22 33 12 13

1 1 0 o | 1 1
A =2 | o 1 o I 1 0
3 0 0 1 : o 1
Therefore
1 0 o | 1 1 )
0 1 0 ll 1 0 1
Q 0 0 11 0 1 1
i o 0 0 : 1 0 o
0 0 o1l o0 1 0
o 0 0 : o o -1 |
which gives 1 o} 0
det H;= |0 1 of=-140
0 0 -1

and xs-l exists.

b) If the terminal graph is in the form of a path then from

Figure 3 we have

1 0 o | 1 -1
|

0 1 o | 1 -1

0 0 1o a

23



and

1 o o1 1 0
o 1 0:1 101
°o_o_r1 o _1_1
Q - o o OI' 1 1 o
o o o; o 1 o0
o o ol o 1 1]
Therefore
1 1 0

det}(3= 0 1 0 =1 # 0

i.e., }fé'll exists.

Note here that labeling of the elements of the terminal graph
does not effect the existence of )(3-1. This can be seen as follows:
Suppose we have interchanged the labeling of any two elements of the
terminal graph, say 2 and 3. This changes will effect to the ) matrix
in such a way that only the second and third row of‘x!are interchanged.
-This interchange will be reflected only as an interchanging in the
same rows of }(3 (in this case first and second rows ofv)fé are
interchanged). Thérefore det }{é is not alter except in sign.

Changiné the labeling of the R graph elements does not alter the
det ){3 except in sign, since it>corresponds to a change fetween
the columns of the matrix i.e., changes between the columns of )f3
matrix. It is obvious that the above property applies also for a
terminal graph having more than three elements. '

Proceeding with the induction proof, assume tham'>{n-l exists

-1

for a terminal graph having n elements. We shall show 't:ha:t:)’(n_'_l

13



also exists.
Consider an R-network whose system graph is represented by Gn and

the terminal graph by T, as in Figure k(a).

(l nt+l) dm’z

—n

Figure 4
Suppose a new vertex & o 18 added to the graph and all the
vertices ai(i =1, 2, ... n+l) are connected to this vertex by a set
of new elements (1, n+l), (2, n+l),...., (n+l, n+l), also é. new element
(n+1) is added to the terminal graph '.l‘n. By doing this we have obtained
é.ga.in a complete R-graph for which the terminal graph (‘1‘n +l) contains

(n+1) elements. let the ,.({matrix for G eand T_ be written as

- U4,

see |

o]

then for the new graph Gn+l and Tn the matrix will have the form
. . .
U o A

+1
‘ n+l | . ! /A
L 0 , 1. 21

@ (@) (282l ) yey elements (a)
Since the last cut-set corresponding to the element (n+l) contains

B eee

only the element (1, n+l), ..., (n+l, n+l), the last row 6f/A_ha;s the

properties such that,Xal =0 a.nd/X. o = [ 1 1 1...1]. Since the

1k



element orienteticns of the new elements in Gn+l are chosen as in
Figure 4(b) the entries °f,322 are all +1. If we change some of
the orieﬁté.tions of these elements the corresponding entries of,d o0
becomes -1l. It will be seen later that changes in the orientations
of these elements are immaterial as far as the inverse of }fn+l is
concerned.

Now from equation (15) in Section 2.1 we can construct the

Kn+l matrix. It is easy to see that

X, | L]

with X,p =A12 since/(gae =011 1..1l
) -1
If we can show that /X 12 is nonsingular then){ o0 exists. This

implies that Xn-i-l is nonsingular, since by elementary transformation
matrix equivalent to){ ., can be obtained in the form
Xn 0
n
0 I o

which has an inverse.
Now the problem is reduced to show t:qa.t A 12 is nonsingular. From
equation (1) it can be seen that /412 is a square matrix of order n.
let us consider the R-network in Figure 4(a). For this network we
can disregard Gn and consider only Tn sinc-:e".“n and a set of
corresponding terminal equations constitute terminal representation
of Gn. Therefore, we have a system graph containing T nu (n+1) = Tn

+1

and the elements (1, n+l), --- (n+l,n+l) as in Figure 4(b). If .1

1s chosen as & tree in this gral;h, then the cut-set matrix is of form

15



(1,n41)s..(n+1,n+1)

- I i ' I ]

t | ' , 10

2 | | )4 | 0
C = . umll C12 = 2'[n+l| 12 'é (3)
. | b — — =19

n+lL | ] i l 1 l'oo l:lj

On the other hand, the chord-set in Figure 4(b) also constitute
a tree of the graph, i.e., all through and across variables of Tn+l
can be expressed in terms of the corresponding variables for the |
elements (1,n+l), ..., (n+l,n+l), and vice versa. In other words

considering matrix (3) we have
Jr |
[u C 12] =0 Q-)

c

If Tn +1 is taken as chord set then we have
c
[Z/L DI;J é =0 (5)
> T '
Equations (4) and /5) give
3 T T Cl&’ Q c
é c - Dlz ‘S T

respectively which imply that

Cm@m‘@mCm:ZL

Hence

C 12 =D I-L-; or \Dle =C7 E’ , therefore [ A':Q]-l exists

and the proof that is a nonsingular matrix is established.

12
Example 1: Six-Vertex Terminal Graph

16



For Figure 5 the matrix is

51 52 53 5k

43

12 31 32 W L

5

o O

LO

from which

17



Six-Vertex Path Terminal Graph

‘Example 2:

Figure 6

For the g&-ma.trix we have

23 1 2k 34 15 25 35 45

13

and

0

o o o
o o o
o —~ o
— ~ —
o o o
.
o ~ | O
~ l_l
o 1_0
~ — o
---1
o o o

General form of K-matrix and its inverse.

n

One can choose the labeling of the elements in the graph G

18



(-corresponds to R-network) such that thex matrix assumes a simple form.
We already know that 7( n_'_l‘can be written as in equation (3) by labeling

the new elements in Gn+ as discussed earlier 1i.e.,

1

Xn ‘\’qn+l

= 6
Xn+l . X §n+1 )’ (6)

where X(nﬂ) is used to replace 7@2 in equation (3). If we do the

same thing for the vertices in Gn we would have e.g.,

E‘Tn-l 5n—1
Ka =

o ™
Continuing this labeling process, Xn then can be put in the form
- -
l .
7( (2) %Fla 513 T aq].n
2
° e x 23 =" Hen
I
KX - o 7{ 3 !
n

I
I
° af‘n-l ,D

| o 0 0 7((”)4

where the order of")( (i) is exactly equal to i. Also it has been

vo-‘-

established that 7‘((1) has an inverse

The inverse of '7( o Vill be in the form

- N -
7((1) Pp ----- “in
-1
Y DR O
n = | | '
0 0 0 0 ‘)((n)i




Where(7clj can be calculated in terms of ;ﬁ{i) and but these

137

expressions for are not convenient to calculate the inverse of

iJ

~)<;, since the complexity of these expressions increase as the indices

i and j increase. For example the expressions for some of th%gaij in

-1
terms ofi}((i) andéZiiJ are.

Pra=-X . Sop X,
P XLy X XL X L X
(P = XL X X oL S La X
+ X, L H L w0
- X LK L KN L w N
6023 - Xz-lo{ 23 X3
P a--Xetdady™ + X Lo X Lo KT

The Iabeling of Graph Elements

In order to putJ)(n in the form indicated in equation 7 the labeling
of the elements of the terminal graph as well as the R-graph elements
nust be chosen carefully.

a) Labeling of the Terminal graph elements

Guilleminlo has described a method by which a tree can be assumed
to "grow". This procedure can be used effectively here. To illustrate,

let us consider the tree in Figure 7(a).

20



Figure 7

In Guillemin's terminology Figure T(c) is called a "one-year-old tree",
Figure 7(b) is called a "two-year-old tree". Therefore the tree in
Figure 7(&) is a "three-year-old tree". The labeling of the latter
is obtained by first labeling Figures T(b) and (c).

b) Labeling of the R-gréph elements. )

To label the R-graph elements the following procedure is used.
l. Consider the end element of the terminal graph with the labeling
of highest number. (This number in Figure 7(a) is 9).
2. Since the element considered in (1) is an énd eleﬁent, consider the
vertex of this element which is incident to this element only ( in
Figure 9(a) this vertex is a lo). '

3. Consider the elements between the vertices alO and al, 8y Boyecees a9

let us temporarily indicate these elements by the symbol (alo,ai)

~

cl



vhere i =1, 2, «¢v., 9.

4, Consider vertices a.i(i # 10) which is incident to only one element
(e.g., 8y, 8g) a,, a.9) and the corresponding elements (a‘.LO’ a.r),
(alo,as), (alo, a.9). lLabel these elements as (g‘;). Where

j 1s the labeling of the end elements at which the selected vertices
are incident. For example (a.lo, a._() is labeled as(g,r) while

element (810’ ah) is labeled as (33). ‘

5 Remm}e all the labeled elemeﬁts va.nd the corresponding end elements.
Repeat the same thing for the new end elements.

6. After labeling .a.ll the elements which are incident to the vertex
considered in (2), remove all these elements and the element considered
in (1). ‘

T. ‘Repeat the same thing for the second highest labeled element

and continue to this process to establish a labeling for all the

elements of the R-graph.

Figure 8



3. POLYGON TO STAR TRANSFORMATION
3.1 Necessary and Sufficient Conditions

In this section the transformetion of & polygon-connected network
into an equivalent star-connected network is considered. A set of
necessary and sufficient conditions for the existence of such a
transformation 1s presented in terms of the relationships between
the entries of a matrix defined later. These conditions are also
interpreted in terms of the elements of the given polygon-connected
network. For the sake of simplicity in the proof only R-networks
are considered. However, the result applies more generally. An
alternate statement of necessary and sufficient conditions is also
stated.

Consider a polygonal R-network having the nodes Al’ A2, coe A.n
and the element conductance values GiJ’ (L, 3=1,2, . « . n; 143),
where Gij corresponds to the element bet&een the nodes Ai and AJ'

To characterize the properties of this R-network, an additional isolated

;, 1s chosen as the reference node. A star-like tree

5

node, Ah+l

(Lagrangian tree) terminal graph”, T, having A 's (1=1,2, ... n)
és its end vertiées is selected. This terminal gréph is given in
Figure 1, and the corresponding terminal equations are given in (1)

and (2)

Al AZ A_}




(1, (8) ] (81 g0 0 e ][]

12(1-,) a ., Byp ¢ o e &y ve(t)

. . ) ) (1)
~in(t)J L. &y - - - ahn_ vn(t)

or
S =AY (2)

If all the elements of T are oriented toward (or away from)
Ah+l’ it is well known6 that all the off diagonal entries in the
coefficient matrix, A, in Figure 1, are negative and their megnitudes
are equal to the conductance values of the elements, i.e., -8y = Gij(if 3.

The diagonal entries, a4y, &re equal to the sum of the conductance

n
values of all the elements incident to node A, i.e., 84 = z Gq,,.
More specifically, since &y = - z aij’ then the coefficient

% J=1
matrix, A, 1s strictly dominant. j£L

Consider a star-connected R-network having the terminal nodes
Bl’ 32, o o ey Bn and the element conductance values gi(i =1, 2, ...,n).
Where 8 corresponds to the element between the nodes Bi and the

is chosen as

center node Bn+ An additional isolated node Bn

1° +2
the reference node and a starlike tree terminal graph, Tl’ having
Bi (1=1,2, ..., n+l) as its end nodes is selected. It can be seen
easily that coefficient matrix appearing in the terminal equations

for this star-connected R-network is as follows

For matrix A since dominantcy condition is satisfied with equality

- n
sign, L aij = 0, the word "strictly cominant" is used. A strictly

J=1
dominant matrix actuglly is an "indefinite admittance" ma.trix7 or an
"equicofactor matrix®."

2k



Fgl : - g
&2 | "~ &
. I .
l
. | (3)
. |
: .
I
€n | -8,
—_—— o]
& & & | E
n
where Z = X A In order to characterize the properties of this
k=1

R-network at the terminal nodes, B, (L=1, 2, «vs, n), corresponding

to a terminal graph, T., having the same form as T in Figure 1,

2
the current variable in+l(t) is set equal to zero. Therefore, from
Eq. (3) we obtain the coefficient matrix of the terminal equations

corrésponding to Té.

& &
& &
. -1 . (g e . .81 (4)
. = . & & n
| =] 1%
Since terminal graphs T and Té are identical, the two networks are

equivalent when the matrices in Eqs. (1) and (4) are identical, i.e.,

C:Z;52§;7 ‘ ‘5)

or
g8
= -5t (LF£2) (6)
and . 2
%11 T8 ~ % (7)



The following relation is easily established from Eq. (6)

By &,
"y & 't (1=1,2 .., 00 =1) (8)

vwhere @, , is a positive real constant. Since - 8y = Gi,j (1 #3)
Bq. (4) is actually Rosen's theorem9, i.e., Eq. (6) expresses the
elemén‘é va.lue‘s of the polygon-connected network in terms of the
element values of the star-connected network. (Star to polygon
transformation). »

To eétablish the inverse relation, i.e., the polygon to star
transformation, solve Eq. (8) for g,

g =0 1 8 (L=1,2, «e., n) (9)
Hence, if the element vaiue 8, is obtained the values of all other
g, follow from Eq. (9). ’

Consider ﬁq. (7) for 1 = 1 and substitute for = the identity

L=g (1 Q.. +an_l). We have then

(10)

where 6 =1+ @& + ¢ ¢« « + Q& _ Sinceo>l,a.nda11<0,Eq.(10)

1°
implies & > 0. From Eq. (9) we also have in general g > 0.
From the above discuuion, the following theorem can be stated:
Theorem: For a given n-node R-network to have an |
equivalent n-branch star R-network the necessary and sufficient
conditions are: | [assuming the terminal representations of this
network is g;l.ven I;y the terminal graph as shown in Fig. 1 and the
terminal equations (1)]

a ) i = l, e o o oy n; a _=_ l
A @, ° (11)
alJ ,J = 2, e o o oy n; i f J '
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where Q&-l is a positive real constant.
Proof: Necessity: Follows immediately from the fact that g >0
in Eq. (8).
Sufficiency: Given @, , > 0, we have from Eg. (10), g >0
and from Eq. (9), g >0, i.e., there exists a unique star equivalent.
The condition (11) implies the following property of the
polygon connected nefwork:
let A1 and AJ be any two nodes of the network. The
ratio of the conductance of the elements between each one
of these nodes and any other node Ak (for k =1, 2, ..., n;
k # k, k # J) must be the same.

Teke any vertex as reference node as shown in Fig. 2 by the heavy

line.

Figure 2

Denote the new terminal equatioh in matrix notation by

- ay” | (12)

where ri'l ] v'
1 L
15 Vs
Y=|: | ¥
1 L
i n-1l n-1
i v!
n n




'
To establish the coefficient matrix Q » apply a tree transformation

to take the original set of voltages to the new set.

V-7V’

From the circuit equations of Fig. 2 we have

S }
1 0 o..o,1 i :
7,=c:J 1-\\0..?|J:. ulA
: ~O s e TTT T T
o ~1 1 O:I
Lo........oflJ i -

It 1s well-known that
\ t
=7 (13)
Hence from Equations (12) and (13) )
-7 = TRV - Fary
or Q' = 7'%2 7 (1)

Iet theQma.trix be written in the partitional form

Q = (15)

[ 2 T
& e - S !
€& =% 3 T
2
_&& - _ B
p & - 7% z
|
where Q = : | : (16)
11 , ! 5 ,
€n-18n S _Ba1
3 T 8p-1 " T
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alz =

r 8.8

e

1°n
z

gEgn
z

) sn_égr]

g 2
n
’ 6222 =&, T T

Thus for the coefficient matrix in Equation (14) we have

Where r

¥

a'=7227=(u olla. &e|fu A
-t 1
A 1 |Qe CellO 1
N aph + Uy
t t t t
Al + 03, Wl Qpn + 8GOy
2 N e? \ g - . w»
& &% C8%a ] 8%,
T T T o
2 g
_ &8 & JBEna |, [-52%R ],
3 82 ° 7% T 0
€18n-1 88n ... & g” N DL
z z &1 "7z JL7) ] .

. t t
Similarly A Qn +Q12 =[0 0...0]

£
NQp+Qy = Lo

Equation (12) now reads

| v ]
a,,: O W.f2
—_— - ‘1,-1
O, 0 Y




and the last equation in the set of no concern, i.e. the nth element

can be deleted from the terminal representation giving

[0 ] T
1 v
] 1
'y vy
: =Qll :

1] ]
n-a Lv n-1

Qll is a submatrix of(2, and is a dominant matrix but not strictly
dominant in the sense discussed earlier. An equivalent statement
of the theorem for a given n-terminal complete polygon using an n-terminal
Langrangian tree can now be givén. The necessary and sufficient
condition on the conductance matrix of an n-terminal polygoﬁ such
that the given polygon has an equivalent star network are:

(1) Except for the diagonal element, all the ratios of the

; off-diagonal elements in the same row to the corresponding

elements in the first row must be the s;me, e.g.,

- a,

fo3 _Z2h __Z2na
a3 By, e

(2) The ratio of any row sum to the first row sum must give
| the same ratio as the condition in (1)
e.g. 7

n-1
oy 2L
o i |
Y

If the above conditions are satisfied we can use Equation (10)

to calculate the corresponding star element values. From Eqpaxion (16)

we can determine ai, Gy eee 05_2 as before and 05_1 is obtained from
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the ratio of any column sum to the corresponding absolute value of

the element value in the first row.

n=-1
z a 32
C.8e. Q = .J;i—.—
n-1 %2
3.2 Applications

Example 1
Does the polygon in Figure 3 have
an equivalent star network?

To use the criterion

of Theorem 1 derive the

Figure 3
conductance matrix using an 5 vertex terminal graph with the 5th

vertex taken as the camon vertex. Then we have

( 2k -12 b -8

-12 21 -3 -6

62.‘ -4 -3 9 -2
-8 -6 -2 16 |

~

It is easy to see that the condition of Theorem 1 is satisfied and

the element values in the equivalent 5 vertex star configuration are
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or

g
1 2 3
-5 3

g. = Qg =3xh40 =30
2 = X8 =1 X%

g3=0231=7]th0=10

g, = Qégl = % x 40 = 20

and the equivalent star network is given in Figure k.
A |
Az
40 39

Example 2
Does the polygon-connected

network in Figure 5 have

an equivalent star-connected

network?
Using additional vertex
A6 as reference node then the

conductance matrix.

9 -1 -1 -l -3 ]

n
1
'—l
'
’_l
@
1
=
'
n

-3 -3 -2 -12 2OJ



We see immediately that the ratios between the elements of the first

end the second rows are not the same and we need not go further to

conclude that there is no equivalent star-connected network for this

given polygon-connected network

Example 3 A1 Aa , A3
2 )3
Given Terminal Graph '
and Terminal Equation Ah
as shown in Figure 6. Terminel
Graph

Can this be synthesized

as a star-connected R-network?

Fil 0.5 -6 -1.5 vy
il -— ‘6 12 -2 V2
i -1.5 2 k.5 v

R 3_}

Terminal Equation

Figure 6

In this condition we simply use the alternate theorem. Since

condition (1) and (2) of this theorem is satisfied there exists a

5-vertex séar netwérk the element values of which are given by

Equation (10).

%1
g-_-
1 1 - 1
o]
now all = 10.5
-2 L
Q=I5 °3
-2 1
(12:3=§
g o262 _k_2
3 1-61 63
- Bo1,2_10
o =1+ 3 + 3 + 3 3
10. - 105 -
1773 777 15
10 Y
g = XE = 3 X 15 = 20
- =X =
83"0381—3x15 5
gh=a3gl=%x15=10

33



The star network is given in Figure 7.

g
15
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