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ABSTRACT

DIRECTED INFORMATION FOR COMPLEX NETWORK ANALYSIS FROM
MULTIVARIATE TIME SERIES

by

Ying Liu

Complex networks, ranging from gene regulatory networks in biology to social networks in

sociology, have received growing attention from the scientific community. The analysis of

complex networks employs techniques from graph theory, machine learning and signal pro-

cessing. In recent years, complex network analysis tools have been applied to neuroscience

and neuroimaging studies to have a better understanding of the human brain. In this the-

sis, we focus on inferring and analyzing the complex functional brain networks underlying

multichannel electroencephalogram (EEG) recordings. Understanding this complex network

requires the development of a measure to quantify the relationship between multivariate

time series, algorithms to reconstruct the network based on the pairwise relationships, and

identification of functional modules within the network.

Functional and effective connectivity are two widely studied approaches to quantify the

connectivity between two recordings. Unlike functional connectivity which only quantifies

the statistical dependencies between two processes by measures such as cross correlation,

phase synchrony, and mutual information (MI), effective connectivity quantifies the influ-

ence one node exerts on another node. Directed information (DI) measure is one of the

approaches that has been recently proposed to capture the causal relationships between two

time series. Two major challenges remain with the application of DI to multivariate data,

which include the computational complexity of computing DI with increasing signal length

and the accuracy of estimation from limited realizations of the data. Expressions that can

simplify the computation of the original definition of DI while still quantifying the causality

relationship are needed. In addition, the advantage of DI over conventionally causality mea-



sures such as Granger causality has not been fully investigated. In this thesis, we propose

time-lagged directed information and modified directed information to address the issue of

computational complexity, and compare the performance of this model free measure with

model based measures (e.g. Granger causality) for different realistic signal models.

Once the pairwise DI between two random processes is computed, another problem is to

infer the underlying structure of the complex network with minimal false positive detection.

We propose to use conditional directed information (CDI) proposed by Kramer to address

this issue, and introduce the time-lagged conditional directed information and modified con-

ditional directed information to lower the computational complexity of CDI. Three network

inference algorithms are presented to infer directed acyclic networks which can quantify the

causality and also detect the indirect couplings simultaneously from multivariate data.

One last challenge in the study of complex networks, specifically in neuroscience applica-

tions, is to identify the functional modules from multichannel, multiple subject recordings.

Most research on community detection in this area so far has focused on finding the asso-

ciation matrix based on functional connectivity, instead of effective connectivity, thus not

capturing the causality in the network. In addition, in order to find a modular structure

that best describes all of the subjects in a group, a group analysis strategy is needed. In this

thesis, we propose a multi-subject hierarchical community detection algorithm suitable for

a group of weighted and asymmetric (directed) networks representing effective connectivity,

and apply the algorithm to multichannel electroencephalogram (EEG) data.
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Chapter 1

INTRODUCTION

Complex networks are abound in nature and engineering, ranging from neural networks and

protein interaction networks in biology to social networks in sociology and the internet in

communication [2, 3, 4]. A network is referred to as a complex network not only because

of its size, but also because of the nature of the interactions (e.g. nonlinear) between its

subsystems and the behavior of the individual network nodes (dynamic) [5]. The analysis

of complex networks employs techniques from graph theory, machine learning, statistical

physics, and signal processing [6, 7, 8]. Complex networks across a range of applications are

found to have similar macroscopic behavior such as small-world topology and scale-free dis-

tribution. However, these properties are not sufficient for a comprehensive understanding of

the network at an intermediate scale. There is an interest to understand how these networks

are structurally organized and change dynamically over time and frequency. In recent years,

complex network analysis tools have been applied to neuroscience and neuroimaging studies

and have resulted in a better understanding of the brain at a system level. In this disser-

tation, we focus on the analysis of the complex brain network using information-theoretic

measures and attempt to gain some insights into the functionality of the brain.

One common approach to analyze the brain as a complex network is to describe it as a

graph. Each node in the graph represents a particular region and the neuronal oscillations

associated with it. Different neuroimaging modalities, such as electroencephalogram (EEG),

magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), can

be used to record the brain activity and extract complex network characteristics from the

human brain. However, compared to other neuroimaing modalities, EEG is able to record

brain activity with higher temporal resolution and accuracy [9]. Once the neuroimaging

recordings are collected, the first goal for brain network analysis is to determine the edges
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between the nodes or connectivity from the observation of multivariate time series. Three

kinds of brain connectivity have been studied recently to determine and quantify the strength

of the edge: anatomical connectivity, functional connectivity and effective connectivity [5].

Anatomical connectivity is the set of physical or structural connections linking neuronal

units at a given time and can be obtained from measurements of the diffusion tensor [10].

Functional connectivity captures the statistical dependence between distributed and often

spatially remote neuronal units by measuring their correlations in either time or frequency

domain. Effective connectivity describes the set of causal effects of one neural system over

another [5, 11], which can reflect both the interaction and the direction of the information flow

in the system. These three types of connectivity help in the understanding of the functional

segregation and functional integration of the brain. Functional segregation refers to a cortical

area of the brain specializing for some aspects of perceptual or motor processing and this

specialization is anatomically segregated within the cortex [12]. When a function involves

different specialized areas, the union of these areas is mediated by functional integration [12].

The assessment of functional integration is important to understand how different areas of

the brain coordinate with each other for a particular task. Both functional connectivity and

effective connectivity can be used to describe the functional integration of the brain. In

fact, most of the research in the analysis of brain networks focus on functional connectivity

where the edges correspond to the pairwise correlation and result in undirected graphs, which

is not usually sufficient to describe the actual neurological processes. On the contrary, as

Friston pointed out functional integration of the brain can be better understood through

effective connectivity since it reflects the dynamic (activity dependent and time dependent)

characteristics of a system. In this sense, the brain network can be well described by effective

networks where the edges of the graph have direction and the corresponding association

matrix is no longer symmetric. Therefore, we expect that using effective connectivity would

reveal new topological characteristics of the brain. This dissertation focuses mainly on the

effective connectivity and the related network inference and community detection problems.
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Measures to quantify the effective connectivity can be categorized into three groups, dy-

namic causal modeling (DCM), Granger causality based measures, and information-theoretic

measures. Dynamic causal modeling employs a generative model to explain how activity in

one brain area is affected by activity in another by using differential equations in continuous

time [11, 13]. The parameters of these equations encode the strength of connections and

how they change with experimental factors. DCM tries to find the best model that explains

the data but it requires a priori knowledge of the system, such as the input of the system

and hidden states. In addition, DCM is limited to networks with small size [12]. Granger

causality is defined as a stochastic process X causing another process Y if the prediction of

Y at the current time point, Yn, is improved when taking into account the past samples of X.

Different from DCM, measures based on Granger causality assumes the data reflect states

that cause each other and capture the dependencies among the observations directly. There-

fore, Granger causality based methods are more viable and can be applied directly to any

time series without knowing any knowledge about how the generating data are structured.

However, in practice, Granger causality is usually implemented within a linear framework,

e.g. bivariate or multivariate autoregressive models, and yielding methods such as directed

transfer function (DTF), and partial directed coherence (PDC) [14, 15, 16]. These methods

are limited to capturing linear relations and suffer from the common problems of parametric

model, such as determination of the order. However, EEG recordings are simultaneously

recorded at different locations of the brain, and are known to have nonlinear dependencies

between recordings from different sites [17]. Measures that can address the issue of model

dependency are needed. Recently, information theoretic tools [18, 19, 20], such as trans-

fer entropy, directed transinformation, and directed information, address the issue of model

dependency and have found numerous applications in neuroscience [21, 22, 23]. Transfer

entropy (TE) proposed by Schreiber quantifies causality as the deviation of the observed

data from the generalized Markov condition. Transfer entropy is based on a Markov as-

sumption and the performance of transfer entropy depends on the estimation of transition
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probabilities, which requires the selection of order or memory of the Markov processes X and

Y [24]. Directed transinformation (DT) introduced by Saito [19] measures the information

flow from the current sample of one signal to the future samples of another signal given the

past samples of both signals. However, this measure does not discriminate between total-

ly dependent and independent processes [25]. Recently, directed information proposed by

Marko [26] and later re-formalized by Massey, Kramer, Tatikonda and others has attracted

attention for quantifying directional dependencies [20, 26, 27, 28, 29]. Directed information

theory has been mostly aimed towards the study of communication channels with feedback.

In recent years, new theoretical developments motivated the use of this measure in quantify-

ing causality between two time series. In particular, Amblard et al. [29] recently showed how

directed information and Granger causality are equivalent for linear Gaussian processes and

proved key relationships between existing causality measures and the directed information.

Therefore, there has been a growing interest in applying this measure to applications in

signal processing, neuroscience and bioinformatics. One major issue remaining with the ap-

plication of directed information is the estimation and computation of directed information

from limited amount of data [20, 26, 27, 30]. Therefore, a simplified expression to reduce the

dimensionality of DI estimation is needed. In addition, the comparison of DI with existing

measures, in particular the model dependent measures based on Granger causality, is needed

to verify its effectiveness for the analysis of neuroscience data.

Although directed information is effective at quantifying the relationship between pairs

of neuronal populations, it is not sufficient to reveal the actual network structure. The DI

value between two processes by itself can not reflect the true structure of the network. A

large DI value does not guarantee direct causality between two time series, i.e., one signal

may affect the other through the third signal [31]. Therefore, we use causal conditional

directed information introduced by Kramer [27] to address this problem and propose multiple

algorithms to infer the directed network. The inferred network can demonstrate the true

effective connectivity between two processes and the system topology.
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In most applications, discovering the global topology of the network is not sufficient.

Motifs that can reflect the local organizational features of the network have also been of

interest, using community detection and network classification methods [32, 33]. Previous

work has shown that functional brain networks exhibit scale free and small-world properties

and have a hierarchical structure [34]; and that the community structure of human brain

changes with age and the task at hand [35]. For example, Fair et al. showed that young

children and young adults have different community structures in functional brain networks

from the study of resting state fMRI data [35]. Similarly, Ferrarini et al. showed that the

resting-state human brain has a hierarchical functional module structure [36] and Meunier

et al. revealed age-related changes in the modular structure of human brain functional

networks from fMRI [37]. Chavez et al. pointed out that the modular structure of the human

brain provides important information on the functional organization of brain areas during

normal and pathological neural activities [38]. Therefore, in order to discover the underlying

organization of the network, the partition of the brain network into small functional modules

is needed. Traditional clustering algorithms require a priori knowledge about the number

of clusters [39]. Therefore, modularity based algorithms are widely used to choose the best

partitions of a network by maximizing the modularity. In many studies, it is important to

discover these functional modules across multiple subjects. In this dissertation, we extend

a greedy algorithm, Louvain method [1], to weighted and directed networks to find the

functional communities of the brain across subjects.

1.1 Measures to quantify the causality

In this section, we will give a brief introduction to some popular Granger causality and

information-theoretic based causality measures.
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1.1.1 Notations

Before introducing the various measures to quantify the effective connectivity, we will first

review some common notations and definitions that will be used throughout this dissertation.

LetX = Xn = X1:n = (X1, · · · , Xn) be a random process with length n and p(x1, · · · , xn) =

p(xn) = p(x1:n) be the joint probability of random variables (X1, · · · , Xn). DX
n = Xn−1 =

(0, X1, · · · , Xn−1) will be used to define the time delayed version of sequence Xn, which is

also equivalent to X1:n−1.

Given two continuous random variables X and Y , the mutual information (MI) is defined

as follows1:

I(X;Y ) =

∫ ∫
p(x, y) log

p(x, y)

px(x)py(y)
dxdy, (1.1)

where p(x, y) is the joint probability density function (pdf) of X and Y , and px(x), py(y)

are the marginal pdfs of X and Y , respectively. I(X;Y ) ≥ 0 with equality if and only if X

and Y are independent [40]. In information theory, mutual information can be interpreted

as the amount of uncertainty about X that can be reduced by the observation of Y or the

amount of information Y can provide about X, i.e., I(X;Y ) = H(X) − H(X|Y ). Since

I(X;Y ) ≥ 0, H(X|Y ) ≤ H(X) with equality if and only if X and Y are independent, i.e.,

conditioning reduces entropy [40].

Mutual information has a natural generalization to multiple variables defined as multi-

information (total correlation) [41]:

Ir[P1···r(y1, y2, · · · , yr)] =
∫
· · ·

∫
P1···r(y1, y2, · · · , yr) log[

P1...r(y1, y2, · · · , yr)
p1(y1) · · · pr(yr)

]dry. (1.2)

Multi-information captures more collective properties than just pairwise relations as

quantified by mutual information. The relationship between multi-information and mutual

information is as follows [42]:

I(XN , Y N ) = I(XN ;Y N ) + I(XN ) + I(Y N ), (1.3)

1All integrals are from −∞ to +∞ unless otherwise specified.
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where I(XN , Y N ) is the multi-information between 2N random variablesX1, · · · , XN , Y1, · · ·

, YN , and I(XN ), I(Y N ) are the multi-information betweenN random variablesX1, · · · , XN

and Y1, · · · , YN , respectively, while I(XN ;Y N ) is the mutual information between two ran-

dom vectors of length N .

For any three random variables X, Y and Z, if the conditional distribution of Z depends

only on Y and is conditionally independent of X, i.e. p(z|y) = p(z|yx), then X, Y and Z

are said to form a Markov chain, denoted by X → Y → Z. In this case, the conditional

mutual information between X and Y given Z defined as I(X;Z|Y ) = H(Z|Y )−H(Z|X, Y )

is equal to 0 [40].

1.1.2 Granger causality based measures

Granger causality is widely used to describe the causality between two time series. It is

defined as a stochastic process X causing another process Y if the prediction of Y at the

current time point, Yn, is improved when taking into account the past samples of X. This

approach is appealing but gives rise to many questions on how to apply this definition to

real data [43]. Granger causality has commonly been implemented within a linear prediction

framework using a bivariate autoregressive model. In this framework, the improvement of

predicting Yn is assessed by the change of the variances of the prediction errors when the

signals are fitted by univariate and bivariate autoregressive models. For two univariate signal

models,

X(n) =

p1∑
i=1

αxiX(n− i) + ηx(n), (1.4)

Y (n) =

p2∑
i=1

βyiY (n− i) + ηy(n), (1.5)

where p1 and p2 are the order of the random processes X and Y, respectively, αxi and βyi

are the autoregressive coefficients, and ηx (ηy) are the noise processes. In this model, the

prediction of the current sample of Yn only depends on the past samples of itself. While for
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a bivariate AR model,

X(n) =

p1∑
i=1

αxiX(n− i) +
p3∑
i=1

γxiY (n− i) + ηx(n), (1.6)

Y (n) =

p2∑
i=1

βyiY (n− i) +
p4∑
i=1

γyiX(n− i) + ηy(n), (1.7)

the prediction of each signal depends on the past samples of both signals.

Granger employs variance to evaluate the improvement of the prediction and the Granger

causality from X to Y can be quantified as:

GX→Y = ln

(
var(Yn|Y n−1)

var(Yn|Xn−1Y n−1)

)
, (1.8)

where if var(Yn|Y n−1) > var(Yn|Xn−1Y n−1), X causes Y. If the past of X does not

improve the prediction of Yn, GX→Y is close to zero.

The original definition of Granger causality is quantified in the time domain and is lim-

ited to bivariate models. Later, researchers introduced multivariate autoregressive (MVAR)

models for multiple simultaneously recorded time series analysis and proposed methods such

as directed transfer function (DTF), partial directed coherence (PDC) and directed partial

correlation [44, 14, 16] to quantify Granger causality both in the time and the frequency

domains in a multivariate setting. We will only brief introduce PDC here since it is the

most widely used measure and will be used for comparisons with DI for network inference

in Chapter 3.

Partial directed coherence

Consider an m-dimensional MVAR process with order p as follows:

X1(n)

X2(n)

...

Xm(n)


=

p∑
r=1

Ar



X1(n− r)

X2(n− r)

...

Xm(n− r)


+



u1(n)

u2(n)

...

um(n)


(1.9)
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where ui(n) with i = 1, · · · ,m represents independent Gaussian white noise with covariance

matrix
∑

, and Ar with r = 1, · · · , p is the m × m coefficient matrix. The PDC measure

from signal j to i is given by:

πi,j(f) =
ai,j(f)√

aHj (f)aj(f)
, (1.10)

where ai,j(f) is the i, jth entry ofA(f) = I−A(f) = [a1(f), · · · , am(f)], A(f) is the Fourier

transform of the coefficients, aHj (f) is the Hermtian transpose of aj(f). The computation

of πi,j(f) relies on the parameters of the MVAR model and thus the performance of PDC

depends on the fitness of the MVAR model to the signal, which requires a proper choice of

order p for the model and enough number of time samples to estimate the parameters.

Overall, all of these measures, e.g. Granger causality and PDC, are limited to capturing

linear relations or require a priori knowledge about the underlying signal models [23].

1.1.3 Information theoretic causality measures

Mutual information can be extended to random vectors or sequences XN and Y N as

I(XN ;Y N ), where I(XN ;Y N ) = H(XN ) − H(XN |Y N ) = H(Y N ) − H(Y N |XN ). How-

ever, mutual information is a symmetric measure and does not reveal any directionality

or causality between two random sequences. Information theoretic tools [18, 19, 20], such

as transfer entropy, directed transinformation and directed information, address the issue

of model dependency and evaluate the prediction improvement by ‘information (entropy)’

directly.

Transfer entropy

Transfer entropy (TE) proposed by Schreiber computes causality as the deviation of the

observed data from the generalized Markov condition and is defined as [18],

Tn
X→Y =

∑
yn,yn−l:n−1,xn−m:n−1

p(ynyn−l:n−1xn−m:n−1) log
p(yn|yn−l:n−1xn−m:n−1)

p(yn|yn−l:n−1)
,

(1.11)
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where m and l are the orders (memory) of the Markov processes X and Y, respectively and

p(ynyn−l:n−1xn−m:n−1) is the joint probability of random variables (Yn, Yn−l:n−1, Xn−m:n−1).

When n > max (l,m), transfer entropy can be expressed in terms of mutual information as

follows,

Tn
X→Y =

∑
p(ynyn−k:n−1xn−l:n−1) log

p(yn|yn−k:n−1xn−l:n−1)
p(yn|yn−k:n−1)

=
∑

p(ynyn−k:n−1xn−l:n−1) log
p(xn−l:n−1yn|yn−k:n−1)

p(xn−l:n−1|yn−k:n−1)p(yn|yn−k:n−1)

= I(Xn−l:n−1;Yn|Yn−k:n−1),

(1.12)

where the last equality follows the definition of conditional mutual information, i.e. I(X;Y |Z) =∑
p(xyz) log

p(xy|z)
p(x|z)p(y|z) . The relationship between transfer entropy and conditional mutu-

al information shown in the above equation has also been verified in [29]. It is important

to note that transfer entropy is usually defined for a physical recording system, therefore,

instantaneous information exchange is not considered. In addition, the definition of TE

implies a stationary Markov assumption for the underlying system such that the state of

Yn only depends on the past l states of itself and the past m states of process X, i.e.,

p(yn|y1:n−1x1:n−1) = p(yn|yn−l:n−1xn−m:n−1).

Directed transinformation

Directed transinformation (T) introduced by Saito [19] measures the information flow

from the current sample of one signal to the future samples of another signal given the past

samples of both signals. Directed transinformation is defined as,

DT (X→ Y) =
N∑
n=1

I(Xn;Yn+1:n+F |Xn−P :n−1Yn−P :n−1Yn), (1.13)

where Yn+1:n+F = (Yn+1 · · ·Yn+F ) are the F future samples of Y, the value of F and P

changes with the current time sample n constrained by F +P +1 = N where N is the length

of the signal. Different from previously introduced measures, directed transinformation mea-

sures the influence of the current sample of X on the future samples of Y. The definition

of directed transinformation does not make any assumptions about the underlying model
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for the interactions. However, the computation of each term of the above equation requires

the information of the whole time series, i.e. the joint probability estimation of 2N random

variables, which is computationally very complex. In addition, directed transinformation

can not discriminate between independent and identical processes since its value is equal to

0 for both cases [25].

Directed information

Massey addressed the issue of symmetry for mutual information by defining the directed

information from a length N sequence XN = (X1, · · · , XN ) to Y N = (Y1, · · · , YN ) [20] as

follows:

DI(XN → Y N ) = H(Y N )−H(Y N ||XN )

=
N∑
n=1

I(Xn;Yn|Y n−1),
(1.14)

where H(Y N ||XN ) is the entropy of the sequence Y N causally conditioned on the sequence

XN and H(Y N ||XN ) is defined as:

H(Y N ||XN ) =
N∑
n=1

H(Yn|Y n−1Xn), (1.15)

which differs from H(Y N |XN ) =
∑N

n=1H(Yn|Y n−1XN ) in that Xn replaces XN in each

term on the right-hand side of equation (1.15), i.e. only the causal influence of the time

series X up to the current time sample n on the process Y is considered.

An alternative definition of the directed information is proposed by Tatikonda in terms

of Kullback-Leibler (KL) divergence [28]. It shows that the difference between mutual infor-

mation and directed information is the introduction of feedback in the definition of directed

information [20, 29, 28]. Mutual information and directed information expressed by KL

divergence are written as:

I(XN ;Y N ) = DKL(p(x
N , yN )||p(xN )p(yN )), (1.16)

DI(XN → Y N ) = DKL(p(x
N , yN )||←−p (xN |yN )p(yN )), (1.17)
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where←−p (xN |yN ) =
∏N

n=1 p(xn|xn−1yn−1) is the feedback factor influenced by the feedback

in the system, i.e., the probability that the input X at current time is influenced by the past

values of both itself and Y. If there is no feedback, then p(xn|xn−1yn−1) = p(xn|xn−1)

and ←−p (xN |yN ) = p(xN ). In fact, p(xN , yN ) =←−p (xN |yN )−→p (yN |xN ), where −→p (yN |xN ) =∏N
n=1 p(yn|xnyn−1) and is defined as the feedforward factor affected by the memory of the

system. If the system is memoryless, then p(yn|xnyn−1) = p(yn|xn).

Entropy and mutual information are extensive quantities, which grow with the length of

the signal. Thus, Shannon introduced entropy rate for stochastic processes. The entropy

rate of a stochastic process {Xi} is defined as H(X ) = limn→∞ 1
nH(X1, · · · , Xn). In

addition, when {Xi} is a stationary stochastic process, the entropy rate is also the limit of

the conditional entropy [40], i.e.,

lim
n→∞

1

n
H(X1, · · · , Xn) = lim

n→∞
H(Xn|X1, · · · , Xn−1), (1.18)

When dealing with discrete valued processes, one can establish that, assuming stationarity,

the directed information rate can be written as [27, 29],

DI∞(XN → YN ) = lim
N→∞

1

N

N∑
n=1

I(Xn;Yn|Y n−1),

= lim
N→∞

I(XN ;YN |Y N−1).

(1.19)

which can further be decomposed into two parts as:

DI∞(XN → YN ) = lim
N→∞

I(X1:N−1;YN |Y1:N−1) + lim
N→∞

I(XN ;YN |X1:N−1, Y1:N−1)

= DI∞(DXN → Y N ) +DI∞(XN → Y N ||XN−1) (1.20)

where DI∞(DXN → Y N ) is the directed information rate from delayed version of XN to

YN , and DI∞(X1:n → Y1:n||X1:n−1) is the instantaneous information exchange rate.

1.1.4 Directed information versus other causality measures

Directed information has been mostly aimed towards the study of communication channels

with feedback. In recent years, new theoretical developments motivated the use of this
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measure in quantifying causality between two time series. Amblard et al. [29] recently

showed how directed information and Granger causality are equivalent for linear Gaussian

processes and proved key relationships between existing causality measures and the directed

information. Based on Granger’s definition of causality, Geweke introduced the Geweke’s

indices to quantify the causal linear dependencies under Gaussian assumptions [45]. Amblard

et al. proved that the directed information rate and Geweke’s indices are equal for Gaussian

processes [29] as indicated by,

DI∞(DXN → Y N ) =
1

2
log

ε2∞(YN |Y N−1)

ε2∞(YN |Y N−1XN−1)
= F

XN→Y N , (1.21)

where N is the length of the signal, DI∞(XN → Y N ) is the directed information rate,

ε2∞(YN |Y N−1) = limN→∞ ε2(YN |Y N−1) is the asymptotic variance of the prediction residue

when predicting YN from the observation of Y N−1, and F
XN→Y N refers to the linear feed-

back measure from random processes XN to Y N defined by Geweke [29]. Moreover, directed

information and Granger’s approach are equivalent for multivariate time series in the case of

Gaussian distributions [29]. In addition, Amblard et al. proved that for a stationary process

without considering the instantaneous information exchange, the directed information rate is

equal to DI∞(DXN → Y N ) and is equivalent to the transfer entropy when l = m = n−1 in

equation (1.11). Al-khassaweneh et al. derived the relationship between directed information

and directed transinformation that DT (X→ Y)−DT (Y → X) = DI(X→ Y)−DI(Y →

X), which indicates that both measures reveal the same information about the difference

of information flow in two directions [25]. However, compared to other measures, DI has

several advantages. First, different from Granger causality implemented in an AR setting,

DI is a model free measure and can quantify both the linear and nonlinear directional infor-

mation flow. Second, transfer entropy and directed transinformation are equal to 0 for both

independent and identical processes and they can not discriminate between these two types

of processes. For DI when the two processes are independent, DI = 0; and when the two

processes are identical, DI = H(Yn|Yn−1). Therefore, DI can discriminate between totally

dependent and independent processes. On the other hand, when we consider two time se-
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ries without instantaneous information exchange, DI is equal to DI(DX → Y ) and cannot

discriminate between identical and independent processes, either. However, in this case, the

two processes will never be identical and we do not have to worry about it not discriminating

between totally dependent and independent cases. Overall, DI can be applied to any class

of signals without assumptions about the signal model (e.g. stationarity) or the interactions

between signals (e.g. linear). Therefore, in this dissertation, we focus on the estimation and

computation of DI, and apply this measure to network inference and community detection

problems encountered in multichannel EEG recordings.

1.2 EEG data

With the advance of neuroimaging technology, EEG is able to record brain activity with

higher temporal resolution and accuracy than ever before. In this dissertation, we analyze

the brain network based on the EEG data provided by Dr. Jason Moser from the Department

of Psychology at Michigan State University. Here we give a brief overview of the methods

used for EEG data collection, which include subject recruitment, task and data reduction.

Participants

EEG data from ten undergraduates were drawn from an ongoing study of relationships

between the error-related negativity (ERN) and individual differences2. ERN is a brain po-

tential response that occurs following performance errors in a speeded reaction time task [48].

All participants retained for analysis made at least six errors for computation of stable ERNs,

as in [49]. No participants discontinued their involvement once the experiment had begun.

Task

Participants completed a letters version of the Eriksen Flanker task [48]. Stimuli were

presented on a Pentium R Dual Core computer, using Presentation software (Neurobehav-

ioral systems, Inc.) to control the presentation and timing of stimuli, the determination of

response accuracy, and the measurement of reaction times. During the task, participants

2Participants for the present analysis were drawn from samples reported on in [46, 47]
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were presented with a string of five letters. Each five-letter string was either congruent (e.g.

FFFFF) or incongruent (e.g. EEFEE) and participants were required to respond to the

center letter (target) via the left or right mouse button. Trial types were varied randomly

such that 50% of the trials were congruent. Letters were displayed in a standard white font

on a black background and subtended 1.3◦ of visual angle vertically and 9.2◦ horizontally. A

standard fixation mark (+) was presented during the inter-trial interval (ITI). Each trial be-

gan with the presentation of the flanking letters (i.e. EE EE). Flanking letters remained on

the screen for 35 ms and were followed by the target (i.e. EEFEE), which remained for 100

ms (135 ms total presentation time). Each trial was followed by a variable ITI (1200− 1700

ms). The entire experimental session consisted of 480 trials grouped into six blocks of 80

trials each. The letters constituting each string were varied between blocks (e.g., M and N

in block 1 and E and F in block 2) and response-mappings were reversed at the midpoint of

each block (e.g., left mouse-button click for M through 40 trials of block 1, then right-mouse

button click for M for the last 40 trials of block 1) in order to elicit a sufficient number of

errors for ERN calculation.

Psychophysiological Data Recording, Reduction and Analysis

Continuous electroencephalographic (EEG) activity was recorded by 64 Ag-AgCl elec-

trodes placed in accordance with the 10/20 system. Electrodes were fitted in a BioSemi

(BioSemi, Amsterdam, The Netherlands) stretch-lycra cap. In addition, two electrodes were

placed on the left and right mastoids. The electro-oculogram (EOG) generated by eye-

movements and blinks were recorded by FP1, as well as by electrodes placed below the right

eye and on the left and right outer canthi, all approximately 1 cm from the pupil. During

data acquisition, the Common Mode Sense active electrode and Driven Right Leg passive

electrode formed the ground, as per BioSemi’s design specifications. All bioelectric signals

were digitized at 512 Hz using ActiView software (BioSemi). Offline Analysis were performed

using BrainVision Analyzer 2 (BrainProducts, Gilching, Germany). Scalp electrode record-

ings were re-referenced to the numeric mean of the mastoids and band-pass filtered with
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cutoffs of 0.1 and 30 Hz (12 dB/oct rolloff). Ocular artifacts were then corrected using the

regression method developed by Gratton et al. [50]. Response-locked data were segmented

into individual epochs beginning 200 ms prior to the response and continued for 1000 ms.

Individual trials were rejected on the basis of excessive physiological activity: a voltage step

exceeding 50 µV between contiguous sampling points, a voltage difference of more than 200

µV within a trial, or a maximum voltage difference less than 0.5 V within a trial. Finally,

the response-locked EEG was averaged across trials to yield error- and correct-trial ERPs

for each site.

1.3 Overview of the contributions

The contributions of this dissertation can be divided into three parts: computation and

estimation of directed information, directed network inference using directed information and

conditional directed information, and community detection for multiple weighted directed

networks.

In chapter 2, computation and estimation of directed information are realized through

simplification of the definition of DI. The major contribution of this work can be summarized

as follows:

1. Present the time-lagged directed information and modified directed information to

reduce the computational complexity of computing DI while still quantifying the causal

dependencies. Prove the relationship between the modified directed information and

transfer entropy. Evaluate the performance of modified DI for quantifying causality

for various realistic signal models with linear, nonlinear, and dynamic interactions.

2. Introduce a new directed information estimation method based on multi-information.

Provide a quantitative comparison of various DI estimation methods.

In the second part of the proposed research, network inference algorithms based on di-

rected information and conditional directed information are introduced with the following
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contributions:

1. Derive time-lagged conditional directed information and modified conditional directed

information to reduce the computational complexity of estimating directed relation-

ships from real data.

2. Propose three network inference algorithms for linear and nonlinear network inference

and evaluate their performances on simulated network models.

In the third part of the proposed research, an improved community detection algorithm

for weighted and directed networks is introduced with the following contributions:

1. Extend a hierarchical community detection algorithm from undirected networks to the

directed case for identifying the modules in the effective brain network.

2. Propose a group analysis method to obtain a common community structure across

subjects.

3. Evaluate the performance of the proposed community detection algorithm on both

simulated and real EEG data sets for understanding the organization of the effective

connectivity networks in the brain.
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Chapter 2

QUANTIFICATION OF EFFECTIVE CONNECTIVITY BY DIRECTED

INFORMATION

2.1 Introduction

In this chapter, we will focus on the quantification of effective connectivity to get a better

understanding of the functional influence in the brain. The main approaches used to quantify

the effective connectivity between two time series are model based measures and information-

theoretic measures [51]. Granger causality based methods and dynamic causal modeling [13]

are two widely used model based measures. Granger causality is a widely used measure to

describe the causality between two time series. It defines a stochastic process X causing

another process Y if the prediction of Y at the current time point, Yn, is improved when

taking into account the past samples of X. This approach is appealing but gives rise to many

questions on how to apply this definition to real data [43]. Granger causality has been mostly

applied within a linear prediction framework using a multivariate autoregressive (MVAR)

model yielding methods such as directed transfer function (DTF), partial directed coherence

(PDC) and directed partial correlation [44, 14, 16, 52]. For example, Hesse et al. applied

time-varying Granger causality to EEG data and found that conflict situation generates

directional interactions from posterior to anterior cortical sites [14]. Kaminski et al. applied

DTF to EEG recordings of human brain during stage 2 sleep and located the main source

of causal influence [16]. Schelter et al. employed PDC to EEG recordings from a patient

suffering from essential tremor [53]. The extensions of Granger-causality based methods,

such as kernel Granger causality, generalized PDC (gPDC) and extended PDC (ePDC) have

also found numerous applications in neuroscience [54, 55, 56]. However, Granger-causality

based methods, especially those developed from MVAR models, are limited to capturing

linear relations or require a priori knowledge about the underlying signal models [23]. These
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approaches may be misleading when applied to signals that are known to have nonlinear

dependencies, such as EEG data [17]. DCM, on the other hand, can quantify nonlinear

interactions by assuming a bilinear state space model. However, DCM requires a priori

knowledge about the input to the system [13, 57] and is limited to a network with small

size [12]. Thus, a model-free measure detecting both linear and nonlinear relationships is

desired.

Information theoretic tools [18, 19, 20], such as transfer entropy [18], address the issue

of model dependency and have found numerous applications in neuroscience [21, 22, 23].

Transfer entropy (TE) proposed by Schreiber computes causality as the deviation of the

observed data from the generalized Markov condition. Sabesan et al. employed TE to i-

dentify the direction of information flow for the intracranial EEG data and suggested that

transfer entropy plays an important role in epilepsy research [24]. Wibral et al. applied TE

to magnetoencephalographic data to quantify the information flow in cortical and cerebellar

networks [58]. Vicente et al. extended the definition of TE and measured the informa-

tion flow from X to Y by introducing a general time delay u and showed that TE has a

better performance in detecting the effective connectivity for nonlinear interactions and sig-

nals affected by volume conduction such as real EEG/MEG recordings compared to linear

methods [57]. The performance of transfer entropy depends on the estimation of transition

probabilities, which requires the selection of order or memory of the Markov processes X and

Y [24]. Directed transinformation (DT) introduced by Saito [19] measures the information

flow from the current sample of one signal to the future samples of another signal given the

past samples of both signals. Hinrichs et al. used this measure to analyze causal interactions

in event related EEG-MEG experiments [23]. However, this measure does not discriminate

between totally dependent and independent processes [25]. Recently, directed information

proposed by Marko [26] and later re-formalized by Massey, Kramer, Tatikonda and oth-

ers have attracted attention for quantifying directional dependencies [20, 26, 27, 28, 29].

Directed information theory has been mostly aimed towards the study of communication
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channels with feedback. In recent years, new theoretical developments motivated the use

of this measure in quantifying causality between two time series. In particular, Amblard et

al. [29] recently showed how directed information and Granger causality are equivalent for

linear Gaussian processes and proved key relationships between existing causality measures

and the directed information. Therefore, there has been a growing interest in applying this

measure to applications in signal processing, neuroscience and bioinformatics. For example,

it has been successfully used to infer genomic networks [3] and to quantify effective connec-

tivity between neural spike data in neuroscience [4, 29, 59]. In order to detect both linear

and nonlinear relationships, in this chapter, we propose directed information as a powerful

measure to quantify the effective connectivity in the brain.

The theoretical advantages of DI over existing measures have been noted in literature [4,

29, 59]. However, until now the implementation and benefits of using DI for capturing the

effective connectivity in the brain through neurophysiological data have not been illustrated

thoroughly and formally. We will mainly address three issues in this chapter. First, one

major issue with the application of directed information is the practical computation from

limited data. Current studies of directed information focus on the stationary Gaussian

processes due to the fact that the DI of a Gaussian process can be easily obtained even

with longer time series and limited sample sizes [30]. However, most complex systems are

nonlinear and not all nodes of the network follow Gaussian distributions. In this case,

directed information can be expressed in terms of mutual information or joint entropy and

estimators such as k-nearest neighborhood based methods or m-spacing based estimators can

be used. However, when the length of the signal increases, the computational complexity and

the bias of the DI estimator increases immensely. Therefore, a simplified expression for DI to

reduce the dimensionality of estimation is needed. In previous work, DI measure was applied

either to limited time series such as every two time samples [2] or to a known parametric

signal model to overcome this problem [4]. In this chapter, we show that applying directed

information to short-time windows such as every two time samples may lose most of the
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causal dependencies between two random processes. In order to address this issue, we propose

modified directed information to simplify the expression of DI and reduce the computational

complexity while still quantifying the causal dependencies. In addition, we prove some

key relationships between transfer entropy and the modified directed information. Second,

since DI can be expressed in terms of entropy or mutual information, current applications,

such as genomic network inference and neural network inferrence, compute DI using either

entropy or mutual information based estimators [3, 60, 31]. However, traditional joint entropy

estimation methods of multiple random variables are inaccurate and inefficient when the data

space is sparse. In order to overcome the inadequacy of entropy estimators for DI estimation,

we introduce an alternative representation of DI in terms of multi-information, which can

be estimated by extending the mutual information estimator proposed by Darbellay [61]

to multiple random variables using an adaptive partitioning of the observed space [42].

Moreover, different applications put different constraints on the estimation methods, so it is

important to evaluate the performance of the estimators in terms of bias and variance, and

select an appropriate DI estimator for different systems or applications. In this chapter, we

offer an extensive analysis of different DI estimation methods in terms of the bias, variance,

computational efficiency and discrimination power through simulations.

Finally, once the problem for computation and estimation of DI has been addressed, we

focus on the application of DI on EEG data. Because of the relationship between Granger

causality and directed information, in this chapter, we will also compare the performance

of these two measures and investigate the advantage of DI over Granger-causality based

model measures. Theoretical developments only proved the equivalence between these two

measures for the case that the time series are distributed as Gaussian in a linear model.

However, to date there has not been much work that compares the actual performance of DI

and Granger causality based measures for realistic signal models, including both linear and

nonlinear interactions. This chapter addresses this issue by evaluating the performance of

DI and Granger causality based methods under a common framework without making any
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assumptions about the data distribution.

In this chapter, we first illustrate the problems related to the computation of DI. We

then propose a modified directed information measure that simplifies the DI computation by

reducing the order of the joint entropy terms while still quantifying the causal dependencies.

In addition, we provide a DI estimator based on multi-information. We then evaluate the

performance of DI for quantifying the effective connectivity for linear and nonlinear autore-

gressive models, linear mixing models, single source models and dynamic chaotic oscillators

in comparison to existing causality measures, in particular with Granger causality. Finally,

we apply our method to multichannel EEG data to detect the effective connectivity in the

brain.

2.2 Modified directed information

2.2.1 Problems with the implementation of directed information

To apply directed information to real data, the first issue we need to solve is the com-

putation of DI. According to the definition of DI in equation (1.14), in practice we need

to estimate the conditional mutual information I(Xn;Yn|Y n−1), where n = 1, · · · , N . In

fact, I(Xn;Yn|Y n−1) quantifies the causal information flow from X to Y at time point n,

since I(Xn;Yn|Y n−1) = DI(Xn → Y n) − DI(Xn−1 → Y n−1). In addition, as n → ∞,

I(Xn;Yn|Y n−1) is the directed information rate for a stationary process. I(Xn;Yn|Y n−1)

can be expanded using entropy, mutual information, and multi-information. Therefore, DI

can be expressed:

• In terms of entropy as:

DI(XN → Y N ) =
N∑
n=1

[(H(Y n)−H(Y n−1))− (H(XnY n)−H(XnY n−1))],

=
N∑
n=1

[H(XnY n−1)−H(XnY n)] +H(Y N ).

(2.1)
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• In terms of mutual information as:

DI(XN → Y N ) =
N∑
n=1

[I(Xn;Y n)− I(Xn;Y n−1)]. (2.2)

• In terms of multi-information as:

DI(XN → Y N ) =
N∑
n=1

[(I(Xn, Y n)− I(Xn, Y n−1))− (I(Y n)− I(Y n−1))],

=
N∑
n=1

[(I(Xn, Y n)− I(Xn, Y n−1))]− I(Y N ).

(2.3)

From the above equations, we can observe that the computation of DI requires the

estimation of joint probabilities of high dimensional random variables over time. If Xn

and Yn are normally distributed, the joint entropy can be estimated based on the covariance

matrices as follows:

DI(XN → Y N ) =
N∑
n=1

1

2
log
|cov(X1 · · ·XnY1 · · ·Yn−1)||cov(Y1 · · ·Yn)|
|cov(X1 · · ·XnY1 · · ·Yn)||cov(Y1 · · ·Yn−1)|

, (2.4)

where |cov(X1, X2, · · · , Xn)| is the determinant of the covariance matrix of n random vari-

ables X1, X2, · · · , Xn and N is the length of the signal. The complexity of computing the

original definition of DI through equation (2.4) is O(N4) (using LU decomposition [62]).

However, for EEG data, the distribution is usually not Gaussian. The non-parametric en-

tropy and mutual information estimators, such as plug-in estimator, m-spacing estimator,

and Kozachenko and Leonenko (KL) estimator, can be used to estimate DI [63, 61]. When

the length of the signal increases, the computational complexity, the bias, and the variance

of these estimators increase immensely with limited sample sizes. Methods that can reduce

the dimension and simplify the computation of DI are needed.

In order to simplify the estimation of DI, we first clarify the connection between the

definition of DI used in information theory and the definition as it applies to physical time

series. In a physical recording system, if X starts to influence Y after p1 time points or with

a delay of p1 samples, we need to record at least N + p1 time points to obtain N points of
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the time sequence Y that have been affected by X. The directed information rate from time

series XN+p1 to Y N+p1 can be defined as [27],

DI∞(XN+p1 → Y N+p1)

= lim
N+p1→∞

1

N + p1

N+p1∑
n=1

I(Xn;Yn|Y n−1) (2.5)

= lim
N+p1→∞

I(XN+p1 ;YN+p1
|Y N+p1−1) (2.6)

= lim
N+p1→∞

[H(YN+p1
|Y N+p1−1)−H(YN+p1

|XN+p1Y N+p1−1)] (2.7)

= lim
N+p1→∞

[H(YN+p1
|Yp1+1:N+p1−1)−H(YN+p1

|XN+p1Yp1+1:N+p1−1)] (2.8)

= lim
N+p1→∞

[H(YN+p1
|Yp1+1:N+p1−1)−H(YN+p1

|X1:NYp1+1:N+p1−1)] (2.9)

= lim
N+p1→∞

I(X1:N ;YN+p1
|Yp1+1:N+p1−1) (2.10)

= lim
N→∞

1

N

N∑
n=1

I(Xn;Yn+p1 |Yp1+1:n+p1−1) (2.11)

= DI∞(X1:N → Yp1+1:p1+N ), (2.12)

where equation (2.8) comes from the fact that Y1:p1 is independent of YN+p1
, and equation

(2.9) is derived using the fact that XN+1:N+p1
has no effect on YN+p1

because of the time

delay p1 between these two time series. For two physical recordings X and Y with length

N + p1 and a lag of p1, the last equation shows that DI rate for these two time series is

equivalent to DI rate for two random processes with length N that are not synchronized in

time. In fact, Yp1+1:p1+N may be indexed as Y1:N when using the information theoretic

indexing, which indexes the signal not according to the physical time point but based on

when the receiver receives its first piece of information. Therefore, directed information rate

computed by using physical time indices is equivalent to the directed information rate using

information theoretic indices for two systems that interact through a time delay. Moreover,

when the length of the signal is long enough, the directed information value using both

indices will be equivalent. Once the definition of directed information is extended from
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random vectors to two physical time series, we propose time-lagged DI and modified DI to

simplify the computation of DI.

2.2.2 Time-lagged directed information

As we mentioned before, when the length N of the signal increases, the computational

complexity, the bias, and the variance of estimating DI increase immensely with limited

sample sizes. In addition, the directed information defined for the physical system is actually

a DI with a lag of p1 samples over a time window with length N . Therefore, an intuitive

way to simplify the computation is to apply DI with lag p1 over a small window. For

example, in [2], the authors applied DI to gene X and Y at every two time samples, i.e.,

DIn(XnXn+1 → YnYn+1), with the assumption that the value of gene X is only influenced

by the values of the other genes at one previous time step, i.e. a first order Markov model

assumption. However, when X influences Y with a delay of p1, we apply DI to every two

samples of these two time series XN and Y N at the nth time sample with a time delay of

p1 (n > p1):

DIn(Xn−p1Xn−p1+1 → YnYn+1)

= I(Xn−p1 ;Yn) + I(Xn−p1Xn−p1+1;Yn+1|Yn)

= H(Xn−p1) +H(Xn−p1Xn−p1+1Yn) +H(YnYn+1)

−H(Xn−p1Yn)−H(Xn−p1Xn−p1+1YnYn+1),

(2.13)

where n = p1+1, · · · , N −1. However, in practice, the actual time lag of the two time series

is unknown, and the estimated time lag d is used to compute DI for every two samples, i.e.

replacing p1 with d in equation (2.13). Thus the main question we need to answer is how

much actual information flow is captured if the estimated time lag d is used in equation (2.13).

To answer this question, we first consider a single order bivariate linear autoregressive model
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with delay p1 (in this case, the maximum order of the model is also equal to p1) as,

xi = ui;

yi = bxi−p1 + vi

(2.14)

where ui and vi are white Gaussian noise samples following N(0, σ2) and the order (delay)

of the model is p1. The actual directed information value can be computed by estimating

the covariance matrix. For this model each term in the DI expression in equation (2.4) is

simplified as:

1

2
log
|cov(X1 · · ·XnY1 · · ·Yn−1)|
|cov(X1 · · ·XnY1 · · ·Yn)|

=


−1

2 log (b
2 + 1)σ2, n = 1, · · · , p1

0, n > p1

1

2
log

|cov(Y1 · · ·Yn)|
|cov(Y1 · · ·Yn−1)|

=
1

2
log (b2 + 1)σ2.

(2.15)

Therefore,

I(Xn;Yn|Y1:n−1) =
1

2
log
|cov(X1 · · ·XnY1 · · ·Yn−1)||cov(Y1 · · ·Yn)|
|cov(X1 · · ·XnY1 · · ·Yn)||cov(Y1 · · ·Yn−1)|

=


0, n = 1, · · · , p1

1
2 log (b

2 + 1)σ2, n > p1

(2.16)

Based on equations (1.19) and (2.16), when p1 ≪ N , the directed information rate is:

DI∞(XN → Y N ) = lim
N→∞

I(XN ;YN |Y N−1) =
1

2
log (b2 + 1)σ2 (2.17)

On the other hand, when DI measure is computed over every two samples of XN and

Y N , the time-lagged DI given by equation (2.13) when replacing p1 with d can be simplified

as follows:

DIn(Xn−dXn−d+1 → YnYn+1) =


0, d < p1 − 1 or d ≥ p1 + 1

1
2 log (b

2 + 1)σ2, d = p1 − 1

log (b2 + 1)σ2, d = p1

(2.18)
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The time-lagged DI rate per sample is defined as:

DId = lim
N→∞

1

2(N − d− 1)

N−1∑
n=d+1

DIn(Xn−dXn−d+1 → YnYn+1), (2.19)

where d is the delay variable, d = 0, · · · , p and p is the largest possible time delay (p ≥ d).

The factor of 2 is introduced since the time-lagged DI rate is averaged over samples. In

addition, when d = p1, DIp1 = 1
2 log(b

2 + 1)σ2, which is equal to the directed information

rate, i.e.,

DI∞(XN → Y N ) = DIp1 . (2.20)

Therefore, motivated by the model in equation (2.14), for any general autoregressive

model with a single order, we define the time-lagged directed information over the whole

time series as follows:

TLDId(X
N → Y N ) =

d∑
n=1

I(Xn;Yn|Y n−1) +DId × (N − d)

=
d∑

n=1

I(Xn;Yn|Y n−1) + lim
N→∞

N − d
2(N − d− 1)

N−1∑
n=d+1

DIn(Xn−dXn−d+1 → YnYn+1)

=
d∑

n=1

I(Xn;Yn|Y n−1) + lim
N→∞

1

2

N−1∑
n=d+1

DIn(Xn−dXn−d+1 → YnYn+1)

(2.21)

where d = 0, · · · , p. The first part of righthand side of above equation is the initial informa-

tion flow from XN to Y N when n ≤ d. The second part is motivated by the fact that when

the information flow becomes stable, DI along the time series can be approximated by the

time-lagged DI rate times the number of time samples. When d = p1, where p1 is the actual

time delay between X and Y, the first term in the righthand side of the above equation is

0. The TLDI will capture the same amount of information as computing DI over the whole

time series. Moreover, it performs much better than the two sample DI (d equals to 0) used

in previous work, especially when p1 is large. For example, for the model in equation (2.14),

when p1 ≥ 2, DI0 = 0, which does not capture any of the causal dependencies.
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Therefore, compared to equation (2.1), the computational complexity of computing DI

using equation (2.21) is highly reduced. If X and Y are normally distributed, we see that

the complexity of using the original definition of DI in equation (2.4) is O(N4) (using LU

decomposition [62]), while the complexity of computing TLDI for two time samples is O(N).

Therefore, time-lagged DI is more computationally efficient. However, the time-lagged DI is

equivalent to the original definition of DI when the estimated delay d is equal to the actual

time delay of the system p1, i.e. the signals X and Y follow a single order model, and Yn

only depends on one past sample of itself, Yn−1. However, these assumptions are not always

true. Therefore, we propose the modified DI to address these issues.

2.2.3 Modified directed information

Consider a general Markov model, where XN and Y N are time series with a lag of p1 and

p(Yn|X1:n−p1 , Yp1+1:n−1) = p(Yn|Xn−p2:n−p1 , Yn−p3:n−1), where p2 ≥ p1, p3 ≥ 1, p2 is the

order of the process X, and p3 is the order of the process Y. In this model, it is assumed

that X starts to influence Y with a delay of p1 samples and the order of the model is

max(p2, p3). When the length of the signal N is large enough, then equation (2.12) can be

further simplified as,

DI(XN → Y N ) = DI(X1:N−p1 → Yp1+1:N )

=
N∑

n=p1+1

I(X1:n−p1 , Yn|Yp1+1:n−1)

=
N∑

n=p1+1

[H(Yn|Yp1+1:n−1)−H(Yn|X1:n−p1Yp1+1:n−1)].

(2.22)

Since

p(Yn|X1:n−p1 , Yp1+1:n−1) = p(Yn|Xn−p2:n−p1 , Yn−p3:n−1), (2.23)

then X1:n−p2−1Yp1+1:n−p3−1 → Xn−p2:n−p1 , Yn−p3:n−1 → Yn follows a Markov chain.
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According to Markov chain property,

I(X1:n−p2−1Y1:n−p3−1;Yn|Xn−p2:n−p1Yn−p3:n−1)

= H(Yn|Xn−p2:n−p1Yn−p3:n−1)−H(Yn|X1:n−p1Yp1+1:n−1) = 0,

(2.24)

which means H(Yn|Xn−p2:n−p1Yn−p3:n−1) = H(Yn|X1:n−p1Yp1+1:n−1). Therefore,

DI(XN → Y N ) =
N∑

n=p1+1

[H(Yn|Yp1+1:n−1)−H(Yn|X1:n−p1Yp1+1:n−1)]

=
N∑

n=p1+1

[H(Yn|Yp1+1:n−1)−H(Yn|Xn−p2:n−p1Yn−p3:n−1)]

≤
N∑

n=p1+1

[H(Yn|Yn−p3:n−1)−H(Yn|Xn−p2:n−p1Yn−p3:n−1)]

=
N∑

n=p1+1

I(Xn−p2:n−p1 ;Yn|Yn−p3:n−1),

(2.25)

where the second equality uses the Markov property and the inequality comes from the fact

that conditioning reduces entropy. For a general Markov model, where XN and Y N are sta-

tionary statistical processes without instantaneous interaction, e.g. p(Yn|X1:n−p1 , Yp1+1:n−1)

= p(Yn|Xn−p2:n−p1 , Yn−p3:n−1), the modified directed information (MDI) is defined as the

upper bound of DI:

MDI(XN → Y N ) =
N∑

n=p+1

I(Xn−p2 · · ·Xn−p1 ;Yn|Yn−p3 · · ·Yn−1), (2.26)

where in practice we let p1 = 1, p = max(p2, p3) to reduce the number of parameters. Note

that letting p1 = 1 does not lose any of the information flow compared to using the actual

time delay, p1 > 1. The only drawback of letting p1 = 1 is that the computational complexity

of estimating the joint entropies increases since the length of the window to compute MDI

increases and the dimensionality increases. The main reason why we let p1 = 1 is because

estimating the actual value for the delay accurately is not practical when the amount of data

is limited. In a lot of similar work such as in [57], different values of p1 are tested to choose

the best one which is not computationally efficient either.

29



According to equation (2.25), modified directed information is the upper bound of direct-

ed information, i.e. MDI ≥ DI. Moreover, MDI is a more general extension of time-lagged

DI and has two major advantages. First, MDI considers the influence of multiple past sam-

ples of Y on the DI value. Second, it takes into account models with multiple orders, i.e.

Y is influenced by different time lags of X. The modified directed information extends the

length of the window from 2 to p, which is closer to the actual information flow. When X

and Y are normally distributed, the computational complexity of the MDI is O(p3N) and

is more efficient than that of the original definition of DI.

2.2.4 Modified directed information versus transfer entropy

Both the modified DI and transfer entropy are defined based on a Markov signal model.

Therefore, in this subsection, we will explore the relationship between them in detail. Based

on the definition of transfer entropy given in equation (1.11), we should note that transfer

entropy is defined for a physical recording system, therefore, instantaneous information ex-

change is not considered. In addition, the definition of TE implies a Markov assumption of

the system that the state of Yn only depends on the past l states of itself and the past m

states of process X, i.e. p(yn|y1:n−1x1:n−1) = p(yn|yn−l:n−1xn−m:n−1).

Therefore, to explore the relationship between transfer entropy and directed information,

the DI should be derived under the same assumptions of no instantaneous information ex-

change and a Markov model. For two random processes X and Y without instantaneous

information exchange, the directed information and directed information rate are expressed

as,

DI(XN → Y N ) = DI(DXN → Y N ) =
N∑
n=1

I(Xn−1;Yn|Y n−1),

DI∞(XN → Y N ) = DI∞(DXN → Y N ) = lim
N→∞

I(XN−1;YN |Y N−1).

(2.27)

Based on the assumption that the system can be approximated by a Markov process,

we derive a formula to show the relationship between the rate of directed information and
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transfer entropy as shown in the following theorem.

Theorem 1 If XN and Y N are two stationary Markov processes with p(yn|y1:n−1x1:n−1) =

p(yn|yn−l:n−1xn−m:n−1), then the upper bound of the directed information rate, i.e., modified

DI rate, is equal to the transfer entropy.

proof 1

Based on the Markov assumption of these two processes, i.e. p(yn|y1:n−1x1:n−1) =

p(yn|yn−l:n−1xn−m:n−1), X1:n−m−1Y1:n−l−1 → Xn−m:n−1Yn−l:n−1 → Yn follows a Markov

chain. According to Lemma 1,

I(Yn;X1:n−m−1Y1:n−l−1|Xn−m:n−1Yn−l:n−1)

= H(Yn|Xn−m:n−1Yn−l:n−1)−H(Yn|X1:n−1Y1:n−1) = 0,

(2.28)

implying H(Yn|Xn−m:n−1Yn−l:n−1) = H(Yn|X1:n−1Y1:n−1). Therefore,

I(Xn−1;Yn|Y n−1) = H(Yn|Y1:n−1)−H(Yn|X1:n−1Y1:n−1)

= H(Yn|Y1:n−1)−H(Yn|Xn−m:n−1Yn−l:n−1)

≤ H(Yn|Yn−l:n−1)−H(Yn|Xn−m:n−1Yn−l:n−1)

= I(Xn−m:n−1;Yn|Yn−l:n−1)

= Tn
X→Y,

(2.29)

where the last equality comes from equation (1.12). The inequality follows from the fact that

conditioning reduces entropy and the equality holds when Y1:n−l−1 is conditionally indepen-

dent of Yn given Yn−l:n−1, i.e. when l is large enough that the influence of Y1:n−l−1 on Yn

can be ignored, or when n ≤ l, i.e. Yn−l:n−1 = Y1:n−1.

The directed information rate in a physical recording system can be expressed as,

DI∞(DXN → Y N ) = lim
N→∞

I(XN−1;YN |Y N−1)

≤ lim
N→∞

I(XN−m:N−1;YN |YN−l:N−1)

= lim
N→∞

TN
X→Y.

(2.30)
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Therefore, when l = m = N − 1, DI∞(DXN → Y N ) = limN→∞ TN
X→Y, which is

aligned with previous work in [29]. For stationary Markov processes, when m and l are fixed,

limN→∞ I(XN−m:N−1;YN |YN−l:N−1) is equal to the rate of modified DI in equation (2.26)

with p1 = 1, p2 = m, and p3 = l. Moreover, in order to reduce the computational complexity,

we usually let l = m. In this way, in practice, the limit (rate) of transfer entropy is the upper

bound of directed information rate and is equal to the modified DI rate.

In summary, transfer entropy and directed information are very closely related to each

other. Transfer entropy quantifies the information gained at each time step by measuring the

deviation of the observed data from the generalized Markov condition. Therefore, the def-

inition of transfer entropy implicitly assumes a stationary Markov process [29]. Compared

to transfer entropy, directed information quantifies the sum of information obtained over

the whole time series [64] and does not make any assumptions about the underlying signal

model. Thus, theoretically, the original definition of directed information can be applied

to any signal model. In real applications, in order to simplify the computation of directed

information, we usually make certain assumptions about the underlying signal model such as

the modified DI proposed in this dissertation, which basically assumes a stationary Markov

process similar to transfer entropy. In addition, Amblard et al. proved that for a station-

ary process, directed information rate can be decomposed into two parts, one of which is

equivalent to the transfer entropy when l = m = n − 1 in equation (1.11) and the other to

the instantaneous information exchange rate [29]. In another words, for a physical system

without instantaneous interactions between its subsystems, the rate of these two measures,

directed information and transfer entropy, are equivalent asymptotically as the length of the

signal goes to infinity. When l or m is fixed and not equal to n− 1, transfer entropy rate is

the upper bound of directed information rate and is equal to the modified DI rate.
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2.2.5 Order selection

For the implementation of MDI, we need to determine the maximum order of the model

p. Criterions such as Akaike’s Final Prediction Error (FPE) can be used to determine the

order of the signal model p. However, this criterion is based on the assumption that the

original signal follows a linear AR model and may lead to false estimation of the order when

the underlying signal model is nonlinear. Therefore, model-free order selection methods,

such as the embedding theorem [65], are needed. For the simplification of computation

or parameter estimation, we are only interested in a limited number of variables that can

be used to describe the whole system. Suppose we have a time series (X1, · · · , Xn), the

time-delay vectors can be reconstructed as (Xn, Xn−τ , Xn−2τ , · · · , Xn−(d−1)τ ). Projecting

the original system to this lower dimensional state space depends on the choice of d and τ ,

and the optimal embedding dimension d is related to the order of the model p = d [57]. A

variety of measures such as mutual information can be used to determine τ . For discrete

time signals, usually the best choice of τ is 1 [66]. To determine d, Cao criterion based

on the false nearest neighbor procedure [57] is used to determine the local dimension. The

underlying concept of nearest neighbor is that: if d is the embedding dimension of a system,

then any two points that stay close in the d-dimensional reconstructed space are still close

in the (d+ 1)-dimensional reconstructed space; otherwise, these two points are false nearest

neighbors [66, 57]. The choice of d, i.e., the model order p, is important for DI estimation.

If d is too small, we will lose some of the information flow from X to Y. If it is too large,

the computational complexity of MDI will be very high, causing the bias and the variance

of the estimators to increase.
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2.2.6 Normalization and significance testing

Since DI(XN → Y N ) + DI(Y N → XN ) = I(XN ;Y N ) + DI(XN → Y N ||DXN ) and

DI(XN → Y N ) = DI(DXN → Y N ) +DI(XN → Y N ||DXN ) [27], then

DI(XN → Y N ) +DI(Y N → XN ) = DI(DXN → Y N ) +DI(XN → Y N ||DXN )

+DI(DY N → XN ) +DI(Y N → XN ||DY N ).

(2.31)

Therefore,

DI(DXN → Y N ) +DI(DY N → XN ) +DI(Y N → XN ||DY N ) = I(XN ;Y N ), (2.32)

where DI(Y N → XN ||DY N ) = DI(XN → Y N ||DXN ) indicating the instantaneous infor-

mation exchange between processes X and Y. For a physical system without instantaneous

causality, i.e. I(XN → Y N ||DXN ) = 0, then DI(XN → Y N ) + DI(Y N → XN ) =

I(XN ;Y N ) and 0 ≤ DI(XN → Y N ) ≤ I(XN ;Y N ) < ∞. A normalized version of DI,

which maps DI to the [0, 1] range is used for comparing different interactions,

ρDI(X
N → Y N ) =

DI(XN → Y N )

I(XN ;Y N )
=

DI(XN → Y N )

DI(XN → Y N ) +DI(Y N → XN )
, (2.33)

where for a unidirectional system X → Y with no instantaneous interaction between X

and Y, ρDI(X
N → Y N ) = 1 and ρDI(Y

N → XN ) = 0; otherwise, if there is no causal

relationship between the two signals, the values of ρDI(X
N → Y N ) and ρDI(Y

N → XN )

are very close to each other.

In order to test the null hypothesis of noncausality, the causal structure between X and

Y is destroyed. For each process with multiple trials, we shuffle the order of the trials of the

time series X 100 times to generate new observations X∗m, m = 1, · · · , 100. In this way, the

causality between X and Y for each trial is destroyed, and the estimated joint probability

changes [67]. We compute the DI for each pair of data (X∗m and Y). A threshold is obtained

at a α = 0.05 significance level such that 95% of the directed information for randomized

pairs of data (DI(X∗m → Y)) is less than this threshold. If the DI value of the original pairs

of data is larger than this threshold, then it indicates there is significant information flow

from X to Y.
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2.2.7 Performance of modified directed information

In this section, we compare the performances of three different approaches, computing DI

using the original definition, proposed time-lagged DI and modified DI. For the proposed

TLDI and MDI, the order of the model p is determined by the Cao criteria. TLDI is

computed over different time lags. The comparison is based on three different simulation

models. Without loss of generality, we repeat each simulation 100 times to quantify the

mean and variance of different computation approaches. In addition, for the linear models,

we obtain the bias by comparing the means of different approaches with the theoretical DI

value.

First, we test the performance of the proposed time-lagged DI for a bivariate linear

autoregressive model given as follows:

Xi = ui;

Yi = 0.5×Xi−2 + vi;

(2.34)

where ui and vi are white Gaussian noise samples following N(0, 1) and the order of the

model is 2. We generate 2048 realizations for each time series, and compute the DI value

using three different approaches over a N = 8 block of time samples, respectively. The order

of the model p is equal to 2. TLDI is computed over different time lags d = 0, · · · , 3. From

Figure. 2.1, we can observe that when d = 2, TLDI2 reaches its maximum value, which is

aligned with the order of the model. However, when d ̸= 2, the TLDId will lose most of the

causal dependencies. Therefore, computing DI over two samples with d = 0, as is done in

previous work [2], is not sufficient for high order models. In addition, from Table 2.1, we

can observe that TLDI2 and MDI have lower bias and are more computationally efficient

(less computation time) compared to the original definition of DI. MDI is larger than the

theoretical DI as anticipated by the theoretical bound in Section 2.2. DI using the original

definition has the largest bias, which is due to the fact that the bias of each term in equation

(2.4) increases with the length of the signal for limited number of realizations.
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Figure 2.1: Average information flow over 100 simulations for single order linear model
computed using the original definition of DI, TLDI and MDI. For interpretation of the
references to color in this and all other figures, the reader is referred to the electronic version
of this dissertation.

Table 2.1: Performance comparison for single order linear model

Bias Variance (×10−3) Computation time (s)

DI 0.0095 0.6032 0.0511

TLDI2 0.0032 0.6356 0.0233

MDI 0.0036 0.5937 0.0235

Next we test the performance of DI computation over different time windows on a multiple

order bivariate linear autoregressive model as follows:

Xi = 0.5×Xi−1 + 0.4×Xi−3 + ui;

Yi = 0.6×Xi−2 + 0.3×Xi−4 + 0.5× Yi−3 + vi;

(2.35)

where ui and vi are white Gaussian noise samples following N(0, 1) and the maximum time

delay between X and Y is 4. We generate 2048 realizations for each time series and compute

DI using different measures over a length of time samples N = 12. The causal information

flow from X to Y at time sample i (I(Xi;Yi|Y i−1)) is plotted in Figure. 2.2(a). We can
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observe that, beginning at time sample 4 when X starts to influence Y, the MDI at each

time point is larger than DI, which is aligned with the inequality in equation (2.25). The DI,

TLDI with different time delays d = 0, · · · , 4, and MDI (p = 4), averaged over simulations,

are shown in Figure. 2.2(b). We can observe that MDI is slightly larger than the theoretical

value of DI , because MDI is the upper bound of directed information. Moreover, we apply

the sign test to test whether there is a statistically significant difference between MDI and

the actual DI, and the hypothesis that there is no difference between the two measures can

not be rejected at the 5% significance level. Therefore, MDI can be used to replace DI to

reduce the computational complexity. From Table 2.2, we can observe that MDI has lower

bias and variance than TLDI, and is more computationally efficient than using the original

definition of DI with the computation time being cut in half. Moreover, for the TLDI, it is

hard to choose a proper d when the model is multi-order.
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Figure 2.2: Modified DI for bivariate linear autoregressive model with multiple time lags.
(a) The increase in the amount of information flow (I(Xi;Yi|Y i−1)) at time point i. (b)
Average total information flow over 100 simulations using the original definition of DI, TLDI
and MDI.

Finally, we evaluate the performance of MDI for a nonlinear autoregressive model,

Xi = 0.3×Xi−1 + ui;

Yi = 0.8×
√
Xi−1 +

0.2

0.1− 4× eXi−2
+ vi;

(2.36)
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Table 2.2: Performance comparison for multi-order linear model

Bias Variance Computation time (s)

DI 0.0216 0.0014 0.1037

TLDI2 0.3751 0.0029 0.0333

TLDI4 −0.2148 0.0022 0.0360

MDI 0.0699 0.0015 0.0458

where ui and vi are white Gaussian noise samples following N(0, 1) and the maximum time

delay between X and Y is 2. We generate 8192 realizations for each time series and compute

DI and MDI (p = 2) over a length of time samples N = 6. The results averaged over

100 simulations are shown in Figure. 2.3. We can observe that the MDI is larger than

computing DI using the original definition. Although the DI value computed over the whole

time series does not necessarily reflect the actual information flow, for a stationary model,

when i > 2, the information flow in the system becomes stable, i.e., I(Xi, Yi|Y i−1) should

not change much. However, using the original definition of DI, this value is not stable as

shown in Figure. 2.3(a). This is due to the MI estimator used for computing DI, which

has bias and variance that increase with the number of joint variables for a limited sample

size [61]. On the other hand, the dimension and the number of joint pdfs are fixed for

MDI as seen in equation (2.26), which also leads to the lower variance of MDI in Table 2.3.

In addition, the computation time of MDI is only one fourth of the original DI, which is

important for detecting the nonlinear causality of a complex network with large number of

nodes. Therefore, the MDI is preferred over DI computed over the whole time series because

of its reduced computational complexity and stable performance.

Table 2.3: Performance comparison for nonlinear model

Mean Variance Computation time (s)

DI 0.6109 0.0069 95.3133

MDI 1.2342 0.0010 24.4649
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Figure 2.3: Modified DI for nonlinear autoregressive model with multiple time lags. (a) The
increase in the amount of information flow (I(Xi;Yi|Y i−1)) at time point i. (b) Average
total information flow over 100 simulations using the original definition of DI and MDI.

2.3 Application of DI to bivariate signal models

After we address the computation problem of DI, in this section, we test the validity and

evaluate the performance of DI for quantifying the effective connectivity. We generate five

different simulations. We use these simulation models to compare DI with classical Granger

causality (GC) for quantifying causality of both linear and nonlinear autoregressive models,

linear mixing models, single source models, and dynamic Lorenz systems. The Matlab

toolbox developed by Seth is used to compute the GC value in the time domain. GC is

also normalized to the [0, 1] range for comparison purposes [68]. The performance of GC

depends on the length of the signal, whereas the performance of DI relies on the number of

realizations of time series. Therefore, for each simulation, the length of the generated signal

for implementing GC is equal to the number of realizations for DI. The significance of DI

values are evaluated by shuffling along the trials, while the significance of GC values are

evaluated by shuffling along the time series.
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2.3.1 Simulated signal models

Example 1: Multiple order bivariate linear autoregressive model

In this example, we evaluate the performance of DI on a general bivariate linear model,

X(n) =

p4∑
i=1

αiX(n− i) + σxηx(n− 1), (2.37)

Y (n) =

p3∑
i=1

βiY (n− i) + γ

p2∑
i=p1

X(n− i) + σyηy(n− 1). (2.38)

In this bivariate AR model with a delay p1 and order p2− p1+1, γ controls the coupling

strength between the signals X and Y. The initial values of X and Y, and the noise ηx and

ηy are all generated from a Gaussian distribution with mean 0 and standard deviation 1. All

coefficients (αi, βi, σx and σy) are generated from Gaussian distributions with zero mean

and unit variance with unstable systems being discarded. To evaluate the performance of

directed information, we generate the bivariate model 4096 times with the same parameters

but different initial values. γ is varied from 0.1 to 1 with a step size of 0.1, p1 = 1 and p2 =

p3 = p4 = 5, i.e. Y is influenced by X through multiple time lags. Without loss of generality,

we repeat the simulation 10 times, and average DI(XN → Y N ) and DI(Y N → XN ) over

10 simulations for different γ values. For each simulation, the threshold is evaluated by

trial shuffling and the average threshold is obtained. For GC, the length of the generated

signal is chosen as 4096, which is the same as the number of realizations for DI. The GC

values in two directions and the corresponding thresholds at the 5% significance level are

obtained. The DI value in two directions averaged across 10 simulations with different γ

are shown in Figure 2.4(a). The performance of GC is shown in Fig 2.4(b). The estimated

order of the model is p = 5, which is in accordance with the simulation model. We observe

that DI(XN → Y N ) is significant for all values of γ. On the contrary, DI(Y N → XN ) is

less than the threshold, which indicates the acceptance of the null hypothesis that there is

no significant causal information flow from Y to X. Since GC uses a linear autoregressive

framework for quantifying causality, in this example, GC detects the causality relationship
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between X and Y successfully, i.e. the information flow from X to Y is significant for all γ

while it is insignificant for the opposite direction. It is also interesting to note that GC and

DI exhibit similar behavior across different values of γ, indicating the equivalency of the two

measures for linear Gaussian signal models.
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Figure 2.4: Application of directed information and Granger causality to bivariate linear
autoregressive model. (a) Directed information with different γ. (b) Granger causality with
different γ.

Example 2: Multiple order bivariate nonlinear autoregressive model

In this example, we evaluate the performance of DI on a general bivariate nonlinear

model,

X(n) =

p4∑
i=1

αiX(n− i) + σxηx(n− 1), (2.39)

Y (n) =

p3∑
i=1

βiY (n− i) + γ

p2∑
i=p1

1

1 + exp(b1 + b2X(n− i))
+ σyηy(n− 1). (2.40)

For this bivariate nonlinear AR model, the setting for the coupling strength γ and the

generation of X, Y, ηx, ηy, αi, βi, σx, σy, p1, p2, p3 and p4 are the same as in Example

1. Y and X interact nonlinearly through the sigmoid function. Parameters of this function

b1 and b2 control the threshold level and slope of the sigmoidal curve, respectively. We set

b1 = 0 and b2 = 50. DI value and its threshold are averaged over 10 simulations for different

41



γ. The GC values in two directions and the corresponding thresholds at 5% significance

level are obtained. The performance of DI and GC for the nonlinear autoregressive model

in equations (2.39) and (2.40) averaged across 10 simulations with different γ are evaluated

as shown in Figure 2.5. The estimated order of the model is 5. We observe that when

γ is less than 0.3, the coupling strength between X and Y is weak and the DI value in

both directions is not significant. As γ increases, DI(XN → Y N ) increases and becomes

significant. DI(Y N → XN ) decreases with increasing γ and is still less than the threshold as

expected. The results indicate increased unidirectional information flow from X to Y with

increasing γ and show that detecting the information flow in nonlinear processes is more

difficult especially when the coupling strength is low. GC fails to detect the information flow

from X to Y for all γ. Since GC is implemented in a linear framework, the estimated order

and the model itself do not match with the nonlinearity of the signal. Therefore, it cannot

detect nonlinear causality.
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Figure 2.5: Application of directed information and Granger causality to bivariate nonlinear
autoregressive model. (a) Directed information with different γ. (b) Granger causality with
different γ.

Example 3: Linear Mixing model

In this example, we test the effectiveness of DI in inferring effective connectivity when

there is linear mixing between two signals. Linear instantaneous mixing is known to exist in
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human noninvasive electrophysiological measurements such as EEG or MEG. Instantaneous

mixing from coupled signals onto sensor signals by the measurement process degrades signal

asymmetry [57]. Therefore, it is hard to detect the causality between the two signals. For

unidirectional coupled signal pairs X→ Y described in equations (2.37) to (2.40), we create

two linear mixtures Xϵ and Yϵ as follows,

Xϵ(n) = (1− ϵ)X(n) + ϵY (n), (2.41)

Yϵ(n) = ϵX(n) + (1− ϵ)Y (n), (2.42)

where ϵ controls the amount of linear mixing and is varied from 0.05 to 0.45 with a step size

of 0.05, and γ is fixed to 0.8 for both models. When ϵ = 0.5, the two signals are identical.

Both DI and GC are used to quantify the information flow between Xϵ and Yϵ in the two

directions. The DI value and GC value averaged across 10 simulations with changing linear

mixing coefficient ϵ for both linear and nonlinear AR models are shown in Figure 2.6. The

estimated order of the model is 5 as before. When ϵ = 0.5, the two observed mixing signals

are identical and we expect to see no significant information flow in the two directions. We

observe that for the linear AR model, directed information detects the causality between Xϵ

and Yϵ when ϵ is smaller than 0.4. When ϵ is larger than 0.4, the causality between Xϵ

and Yϵ is hard to detect because of the strong mixing, i.e., Xϵ and Yϵ are almost identical,

and the information flow in both directions becomes insignificant. Compared to DI, GC

only detects the causality from Xϵ to Yϵ when the mixing is weak (ϵ < 0.2), indicating that

GC is more vulnerable to linear mixing. It is probably due to the fact that GC is sensitive

to the mixture of signals and the assumed signal model does not match with the original

signal [69]. For the nonlinear AR model, DI fails to detect causality when ϵ is larger than

0.1, which indicates that linear mixing of nonlinear source models makes it harder to detect

effective connectivity compared to mixing of linear source models. On the other hand, GC

fails to detect any causality even when ϵ = 0, since it cannot detect nonlinear interactions.

Example 4: Single source model
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Figure 2.6: Application of directed information and Granger causality to linear mixing for
both linear and nonlinear autoregressive models. (a) Directed information with different ϵ
for the linear mixing of linear AR model. (b) Granger causality with different ϵ for the linear
mixing of linear AR model. (c) Directed information with different ϵ for the linear mixing of
nonlinear AR model. (d) Granger causality with different ϵ for the linear mixing of nonlinear
AR model.

A single source is usually observed on different signals (channels) with individual channel

noises [57], which is common in EEG signals due to the effects of volume conduction. In this

case, false positive detection of effective connectivity occurs for methods such as Granger

causality [69], which means GC has low specificity. We generate two signals Xϵ and Yϵ as

follows to test the specificity of DI when there is no significant information flow from one
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signal to the other signal.

S(n) =

p4∑
i=1

αiS(n− i) + ηS(n); (2.43)

Xϵ(n) = S(n); (2.44)

Yϵ(n) = (1− ϵ)S(n) + ϵηY (n); (2.45)

where S(n) is the common source generated by an autoregressive model, order p4 = 5, αi

and ηS(n) are generated from a Gaussian distribution with mean 0 and standard deviation

1. S(n) is measured on both sensors Xϵ and Yϵ. Yϵ is further corrupted by independent

Gaussian noise ηY (n) with 0 mean and unit variance. ϵ controls the signal to noise ratio

(SNR) in Yϵ and is varied from 0.1 to 0.9 with a step size of 0.1, corresponding to SNR in

the range of −19 ∼ 19 dB. The DI value and GC value averaged across 100 simulations for

changing ϵ for a single source model are shown in Figure 2.7. The estimated order of the

model is 5. In addition, the false positive rate using both DI and Granger causality with

increasing ϵ is also calculated. We observe that the information flow in two directions using

DI are less than the threshold for all values of ϵ, which indicates the acceptance of the null

hypothesis that there is no significant causal information flow from Xϵ to Yϵ or Yϵ to Xϵ.

Note that DI is normalized by the mutual information. For a common source model, the

instantaneous information exchange between Xϵ and Yϵ contributes mostly to the mutual

information between Xϵ and Yϵ. Thus according to equation (2.32), DI(DXN
ϵ → Y N

ϵ )

and DI(DY N
ϵ → XN

ϵ ) normalized by mutual information are close to 0 and less than the

threshold from the randomized data pairs. The false positive rate of DI is 0 for all ϵ.

Therefore, DI is able to discriminate between instantaneous mixing from actual causality

and is very robust to noise. For GC, when ϵ is small (< 0.2) or large (> 0.9), the value of

GC is less than or very close to the threshold in both directions thus indicating that there

is no causal information flow between the two processes. However, GC fails to accept the

null hypothesis when ϵ is between 0.3 to 0.9 and detects a non-existing effective connectivity.

GC reaches its maximum value when ϵ = 0.5. This is due to the fact that GC is close to

45



0 when two processes Xϵ and Yϵ are independent or identical, i.e. when ϵ = 1 and ϵ = 0.

Based on the definition of GC, the prediction of Yϵ at the current time point will not be

improved by taking into account the past samples of Xϵ for these processes [58]. Therefore,

as ϵ increases from 0 to 0.5, Xϵ becomes the most different from Yϵ, therefore it can provide

more new information about Yϵ and the GC increases. As ϵ increases from 0.5 to 1, Xϵ

becomes independent of Yϵ, and the GC decreases. The false positive rate of GC is not

equal to 0 for all values of ϵ, which indicates that it has lower specificity compared to DI.

Therefore, GC is not robust to the effect of a common source and may infer false positive

effective connectivity. This simulation indicates that DI is more sensitive and discriminative

about the information flow patterns in the presence of volume conduction, which means it

is a more promising method to capture the effective connectivity for real EEG data.

Example 5: Nonlinear dynamic system

In this example, we illustrate the applicability of DI to coupled Lorenz oscillators with

a certain delay. The Lorenz oscillator is a three-dimensional dynamic system that exhibits

chaotic behavior. Synchronization of two Lorenz systems has been widely investigated for

the analysis of EEG data, because the dynamic interactions related to the behavior of the

cortex can be exemplified by these coupled systems [70]. In the following, we examined two

asymmetric coupled Lorenz oscillators (X1, Y1, Z1) and (X2, Y2, Z2) as follows [71],

Ẋ1(t) = −A(X1(t)− Y1(t)), (2.46)

Ẏ1(t) = RX1(t)− Y1(t)−X1(t)Z1(t), (2.47)

Ż1(t) = X1(t)Y1(t)−BZ1(t), (2.48)

Ẋ2(t) = −A(X2(t)− Y2(t)) + βX1(t− tp), (2.49)

Ẏ2(t) = RX2(t)− Y2(t)−X2(t)Z2(t), (2.50)

Ż2(t) = X2(t)Y2(t)−BZ2(t), (2.51)

where each equation is a first-order differential equation. A = 10, R = 28, B = 8
3 , and

tp = 0.02 represents the time delay between two coupled components of these two oscillators,
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Figure 2.7: Application of directed information and Granger causality to single source model.
(a) Directed information with different ϵ for the single source model. (b) Granger causality
with different ϵ for the single source model. (c) False positive rate for directed information
with different ϵ for the single source model. (d) False positive rate for Granger causality
with different ϵ for the single source model.

i.e. X1 and X2. β corresponds to the coupling strength and is varied from 0.1 to 1 with

a step size of 0.2. The differential equations are numerically integrated with a time step of

0.01 using Euler’s method [72], corresponding to a delay of 2 time samples between X1 and

X2. The initial conditions of these six components are randomly generated from a Gaussian

distribution with zero mean and unit variance. We generate 100 samples and the first 90

samples are discarded to eliminate the initial transients. We compute the information flow

in two directions over 10 time points and the significance of the obtained DI value is verified

by trial shuffling. The DI values and GC values between X1 and X2 of two asymmetric

coupled Lorenz systems are computed with coupling strength β being set from 0.1 to 1. The
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estimated order of the model is 3. Though this is larger than the actual model order, our

method will not lose any information except for the increased computational complexity.

The results are shown in Figure 2.8. The results show that DI values from X1 to X2

increase with the coupling strength β and are significant for all values of β. In addition,

there is no significant causal information flow from X2 to X1. Therefore, DI can effectively

detect the causality in a nonlinear dynamic system. On the contrary, GC can not detect any

significant information flow for all β values. It is due to the fact that the model selected for

implementing GC is not consistent with the dynamic characteristics of the system.
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Figure 2.8: Application of directed information and Granger causality to two asymmetric
coupled Lorenz oscillators. (a) Directed information with different β. (b) Granger causality
with different β.

2.3.2 Biological data

In this subsection, we examine EEG data from ten undergraduates at Michigan State Uni-

versity drawn from an ongoing study of relationships between the error-related negativity

(ERN) and individual differences1 such as worry and anxiety. ERN is a brain potential

response that occurs following performance errors in a speeded reaction time task [48]. All

EEG data are collected as described in Chapter 1. Once the data are obtained, for each

1Participants for the present analysis were drawn from samples reported on in [46, 47].
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subject, the EEG data are preprocessed by the spherical spline current source density (CS-

D) waveforms to sharpen event-related potential (ERP) scalp topographies and eliminate

volume conduction [73]. In addition, a bandpass filter is used to obtain signals in the theta

band. In this study we focus on 33 electrodes corresponding to the frontal, central and

parietal regions of the brain. For each pair of 33 electrodes X and Y for each subject, the

effective connectivity is quantified by computing the modified DI over 70 trials and a model

order of p in the theta band. The model order or the length of the time window p is deter-

mined by the Cao Criterion. We also apply Granger causality to the same data and compare

its performance with directed information.

Previous work indicates that there is increased information flow associated with ERN for

the theta frequency band (4− 8 Hz) and ERN time window 25− 75 ms for Error responses

compared to correct responses in particular between mPFC and lPFC regions [74]. In ad-

dition, Cavanagh et al. have shown that there is increased synchronization for error trials

between electrode pairs, such as FCz-F5 and FCz-F6, compared to the synchrony between

FCz-CP3 and FCz-CP4 [75]. The DI and GC values for each pair of electrodes averaged

over 10 subjects are computed over a time window of 53 time points (100ms). The estimated

order of the model for each electrode pairs is 3. In order to control the error rates for multiple

hypothesis testing for all pairs of electrodes, the method proposed by Genovese et al. is used

in this dissertation [76]. To implement this procedure, for two electrodes with time series X

and Y, we first shuffle the order of the trials of X 100 times to generate new observations

X∗m, m = 1, · · · , 100. The P -value of DI(X → Y) is obtained by comparing it with DI

values from randomized pairs of data DI(X∗m → Y), m = 1, · · · , 100. We then obtain the

threshold Pr for all P-values (33 × 33 × 10) by controlling the FDR bound q as 0.05. For

DI(X→ Y), if the P -value is less than Pr, then the directed information flow from X to Y

is significant; otherwise, it is not significant. Electrode pairs between which the information

flow is significant in at least one of the ten subjects are shown in Figure 2.9(b). We also test

the significance of Granger causality in the same way. When the FDR is controlled at 0.05,
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Figure 2.9: Application of directed information and Granger causality to EEG data. (a)
Pairwise directed information. (b) Electrode pairs with significant DI values. (c) Pairwise
Granger causality. (d) Electrode pairs with significant GC values. For (b) and (d), green
dots indicate the location of the particular node and white regions correspond to significant
information flow from that particular electrode to other electrodes. The name of each partic-
ular node in (b) and (d) is identical to the name in (a) and (c). The details of the significant
electrode interactions are shown in Table 2.4.

the information flow between electrode pairs is significant if the P -value of DI or GC is less

than 0.01. Electrode pairs that have significant causality relationship using both measures

are shown in Figure 2.9. In Figure 2.9(a) and Figure 2.9(c), each small circle shows the
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Table 2.4: Electrode pairs in the region of interest with significant DI values

From To From To

F5 F1 FC2 CPz CP4 P3 C5 F6 FC5 Cz CP4

F3 FC3 CP4 C3 FC2 C6 P1

F1 C1 Cz Pz C1 FC1 C6

FZ F5 CZ F5 C2 CP4

F2 FC3 FC6 C5 CP1 C2 FC6

F4 F6 C4 C4 P2

F6 F2 FC3 FCz Cz C6 Pz

FC5 Fz C3 C2 CP6 CP5 Cz C4 CP3

FC3 CP1 CP3 C5 CPz P4

FC1 F4 FC3 C2 CP1 CP4 CP1 F6 FCz P3

FCZ C3 CP1 CPz FC6 C6 CP5 CP4 P1

FC2 F3 C1 C6 CP2 CP4 P3 CP2 F6 FCz FC4 CP1

FC4 C5 CP4 FC5 FCz C4

FC6 C5 C4 CP1 CP6 F5

P3 P4

P1 F2 C6 CP2

Pz F5 F4 FCz

P2 FC4 C5

P4 F3 F4 FC3 FC2 FC4 Pz P2

directed information and Granger causality from a particular electrode to other electrodes.

In Figure 2.9(b) and Figure 2.9(d), each small circle shows electrode pairs that have sig-

nificant causality relationship. The details of the significant electrode interactions are also

shown in Table 2.4. The results indicate that DI detects strong information flow from the

frontal region (e.g. F5, F6) to the frontal-central region (e.g. FC2, FCz) corresponding to

the lateral prefrontal cortex (lPFC) and medial prefrontal cortex (mPFC). In addition, the

central-parietal region (e.g. CPz, CP1, CP2) around the midline, corresponding to the mo-
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tor cortex, has strong influence on the central and frontal regions (e.g. FCz, F6) since this

is a speeded response task involving the motor cortex. These results are aligned with the

previous work in [75], which shows that error processing is controlled by the communication

between the lateral prefrontal cortex and medial prefrontal cortex. When GC is applied to

the same data, the information flow pattern around the midline is similar to the DI. However,

the information flow from the lateral prefrontal cortex to the rest of the brain is significant.

On one hand, the similar patterns of connectivity using both measures verify the validity of

proposed DI computation algorithm. On the other hand, GC shows significance over a wide

region of the brain especially in the lateral areas compared to DI, which may be due to GC’s

low specificity to volume conduction in the form of a common source. Previous work and our

simulation in Example 4 have indicated that Granger causality based measures may infer er-

roneous effective connectivity in the case of the common source as seen in EEG data [69, 57].

However, without ground truth, we cannot confirm that some links reported as significant

by GC are spurious and due to volume conduction in a conclusive manner, but the results

from DI agree more with the suggestions in [75], that most of the increase in connectivity

during cognitive control, i.e. ERN, should be between medial prefrontal cortex and lateral

prefrontal cortex, compared to the results of GC. Therefore, DI is more sensitive and dis-

criminative about the information flow patterns compared to GC for real neurophysiological

data.

2.4 Estimation of directed information

2.4.1 Estimation based on entropy estimation

According to equation (2.1), for DI estimation, the entropy estimator should be applied

to both marginal and joint entropy estimation. In this subsection, we will review three

commonly used entropy estimators and comment on their applicability to DI estimation.

Plug-in estimator
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The entropy H(f) for a continuous probability density function f(x) is given by:

H(f) = −
∫
f(x) log f(x)dx (2.52)

The plug-in estimates of entropy are based on a consistent estimation fN of f and the

estimation of fN depends on N realizations (x1, · · · , xN ) of X. Ordinary histogram is

the most commonly used density estimation method. First the minimum to maximum of

N realizations of X is divided into bins, where Bk = [tk, tk+1) denotes the k-th bin and

h = tk+1 − tk, then the approximation of the pdf is given by [77]:

f̂(x) =
νk
Nh

for tk ≤ x < tk+1 (2.53)

where νk is the number of data points that fall in the k-th bin. The accuracy of this method

depends on both the proper bin size and sample size. When the samples are barely sufficient,

it has a large bias, which becomes worse as the dimensionality of the observed space increases.

An alternative to the histogram is Kernel density estimator (KDE) written as [77]:

f̂(x) =
1

Nh

N∑
i=1

K(
x− xi
h

) (2.54)

where K is the kernel function and h is the width of the kernel (the smoothing parameter).

Some common kernel types include Uniform, Epanechnikov, Gaussian, and Laplacian Ker-

nels. The quality of KDE depends on the choice of the smoothing parameter and the choice

of kernel. Although KDE becomes time consuming for joint entropy estimation, it can still

give an accurate estimate of DI if proper parameters are chosen.

M-spacing estimator

M-spacing estimator is a nonparametric estimator which estimates the entropy directly

from i.i.d data samples without approximating the pdf. Consider samples of a scalar random

variable X = (x1, · · · , xN ) rearranged in non-decreasing order x(1) ≤ · · · ≤ x(N). M -

spacing, is then defined to be x(i+m)− x(i), for 1 ≤ i < i+m ≤ N . If m is a function of N ,

one may define the mN -spacing as x(i+mN ) − x(i). The mN -spacing entropy estimator can
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be defined as [63]:

ĤN (x1, · · · , xN ) =
1

N

N−mN∑
i=1

log(
N

mN
(x(i+mN ) − x(i))). (2.55)

The m-spacing estimators of entropy are based on the intuition that sums of small random

intervals have consistent behavior. In order to estimate the joint entropies of multiple random

variables, multi-dimensional spaces with constant expected probability mass are generated

by constructing a Voronoi or Delaunay region [63]. Then the following estimator is used:

ĤHyper =
m∑
i=1

C(U i)

N
log

NA(U i)

C(U i)
(2.56)

where C(U i) is the number of (finite volume) Voronoi regions in a Hyper-Region U i, N =∑
iC(U

i), A(U i) is the d-dimensional volume of Voronoi region U i. The calculation of

volumes needed for equation (2.56) is exponential in the dimension. According to equa-

tion (2.1), estimation of H(Xk−dXk−d+1YkYk+1) which is a 4-dimensional problem makes

the calculation of volumes complicated and slow in DI estimation.

Kozachenko and Leonenko (KL) estimator

Nearest neighbor (NN) distances based entropy estimators was introduced by Kozachenko

and Leonenko, also known as KL estimator [78]. For a random variable X with N observa-

tions, X = (x1, · · · , xN ), the distance of each point (observation) xi to any other points xj ,

j = 1, · · · , N, j ̸= i, defined as di,j = ∥xi − xj∥, is found. Then the distance to the N − 1

neighbors of each point are ranked: di,j1 ≤ · · · ≤ di,jN−1 . H(X) can be estimated as the

average distance to the k-nearest neighbors, averaged over all xi. The KL entropy estimator

is defined as:

Ĥ(X) = −ψ(k) + ψ(N) + log(cd) +
d

N

∑
i=1

N log ϵ(i) (2.57)

where ψ(x) is the digamma function, d is the dimension of X and cd is the volume of the

d-dimensional unit ball, ϵ(i) is twice the distance from xi to its kth neighbor. The algorithm

spends most of its time in spatial queries, which is unacceptable for DI estimation because

the dimension of the point xi can be larger than four.
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As it can be seen from the above discussions, the nonparametric entropy estimators

are either complex or time consuming when applied to high dimensional data. Therefore,

methods with less complexity and high efficiency are needed for estimating DI.

Universal estimator

Recently, Zhao et al. proposed an universal algorithm to estimate directed information

for stationary ergodic processes by using sequential probability assignment and context tree

weighting [79]. For this estimator, DI is obtained by estimating H(Y) and H(Y||X) sepa-

rately and DI(X → Y) = H(Y) − H(Y||X). Given the realizations of X and Y and the

universal source code CY
n on Y and C

X,Y
n on (X,Y), the sequential probability assignments

QY and QX,Y induced by CY
n and C

X,Y
n are used to calculate the estimate of H(Y) and

H(Y||X). Zhao et al. employed the context tree weighting as the universal source coding

scheme and the universal probability assignments can be constructed from a universal cod-

ing scheme [79]. This algorithm requires both the realizations of the signal and an universal

source code scheme with low complexity and fast convergence rates. In addition, the original

context tree weighting is for binary sequences, and has to be extended for discrete signals

with continuous values and multiple realizations.

2.4.2 Estimation based on mutual information and multi-information

DI can also be expressed in terms of mutual information and multi-information, which re-

quire the estimation of the common information between two length N random vectors

(I(XN ;Y N )) or among multiple one-dimensional random variables (I(X1, · · · , XN , Y 1, · · · ,

Y N )). Estimators based on adaptive partitioning, which do not require parameter selection,

region construction and NN -search, are efficient for high dimensional data and are used in

both methods for estimating DI.

Mutual information estimation

According to equation (2.2), directed information can be written in terms of mutual infor-

mation. The most straightforward approach for estimating MI is partitioning the supports
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of X and Y into bins of finite size, and approximating equation (1.1) by the finite sum:

I(X;Y ) ≈ Ibinned(X;Y ) ≡
∑
i,j

p(i, j) log
p(i, j)

px(i)py(j)
(2.58)

Ibinned(X;Y ) is obtained by counting the number of samples falling into the various bins,

which is similar to the histogram. If we let N →∞ then all bin sizes tend to zero, and the

right hand side of Equation (2.58) will converge to I(X;Y ). If the distributions are fractal,

this convergence might no longer be true.

Darbellay presented a data-dependent nonparametric estimator of the mutual information

based on an adaptive partitioning of the observed space [61]. The basic concept of the method

is to build a succession of finer partitions of the high-dimensional observed space and stop the

refinement process on any hyperrectangle when the local independence has been achieved.

Multi-information estimator

In equation (2.3), we introduce an alternative representation of DI in terms of multi-

information, which can be estimated by extending the adaptive data-dependent partitioning

method to multiple random variables [42]. The procedure for multi-information estimation

is as follows:

• X1, · · · , Xd are d one-dimensional random variables with N observations (xi(1), · · · ,

xi(j), · · · , xi(N)), i = 1, · · · , d, j = 1, · · · , N . First, N observations of each random

variable are rank ordered separately. zi(j) is the rank of xi(j) with respect to the

other N − 1 samples from the same random variable, zi(j) ∈ {1, · · · , N}. Then the

estimation of multi-information among X1, · · · , Xd has turned into the estimation of

multi-information among Z1, · · · , Zd, which is the ranked sample space of X1, · · · , Xd.

• In the (Z1, · · · , Zd) space, a dyadic partitioning of the space is iteratively done until the

sample distribution of each hypercube is conditionally independent. Given N samples

of Z = (Z1, · · · , Zd) ∈ Zd, let Zd be the initial one-cell partition. Then every cell is

to be partitioned by marginal equiquantization and not partitioned further unless it

achieves conditional independence. For example, for a cell C, each edge (margins) of
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the d-dimensional cell is divided into α (α = 2 in general) intervals with approximately

the same number of the points in each marginal subintervals to obtain αd subcells Ck,

k = 1, · · · , αd. If α = 2, the partition point is the midpoint of each edge in the Z

space. The lower (L) and upper (U) bounds of each dimension of the subcell Ck are

zki (L) and z
k
i (U), i is the ith dimension of Ck, i = 1, · · · , d. The total number of points

in cell Ck and the marginal number of points in each dimension are:

NZ(Ck) = number of points z such that

zki (L) < zi < zki (U) for all i = 1, · · · , d

NZ1
(Ck) = number of points z such that zk1 (L) < z1 < zk1 (U)

...

NZd
(Ck) = number of points z such that zkd(L) < zd < zkd(U)

The χ2 goodness-of-fit test at the 3% significance level is applied to all subcells to test

the local independence of cell C, that is,

αd∑
k=1

(NCk
−NC/α

d)2

NC/α
d

≤ χ20.97(α
d − 1), (2.59)

where NC is the number of points in cell C, and NCk
is the number of points in

subcell Ck, k = 1, · · · , αd, respectively. If the condition in equation (2.59) is fulfilled,

the hypothesis of conditional independence is accepted and the cell C is not subjected

to further partitioning.

• Once the conditional independence has been achieved, it can be shown that:

Î(Z1, . . . , Zd) =
αd∑
k=1

PZ1,··· ,Zd(Ck) log
PZ1,··· ,Zd(Ck)

PZ1(Ck), · · ·PZd(Ck)

=
1

N

αd∑
k=1

NZ(Ck) log
NZ(Ck)

NZ1
(Ck) · · ·NZd

(Ck)
+ (d− 1) logN,

(2.60)

where PZ1,··· ,Zd(Ck) is the probability that the N d-dimensional points (z1, · · · , zd)

falls into each hypercube Ck, PZ1,··· ,Zd(Ck) = NZ(Ck)/N , and PZ1(Ck), · · · , PZd(Ck)

are the corresponding marginal probabilities, PZi(Ck) = NZi
(Ck)/N .
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Though the mutual information and multi-information offer two different ways to express

DI, the procedure for the two estimation methods are very similar. However, according to

equation (2.3), DI estimation based on multi-information has one more term I(Y N ) to

estimate, which makes it computationally slightly more expensive.

2.4.3 Performance comparison of estimators

In this section, we compare different directed information estimation methods using simu-

lated data to verify their effectiveness. In order to reduce the computational complexity for

each simulation, DI for every successive two time points are computed.

In the first example, we consider a first order linear autoregressive (AR) model defined

as:

Xi = 0.5×Xi−1 + ui;

Yi = 0.2× Yi−1 + 0.8×Xi−1 + vi,

(2.61)

where ui and vi are white Gaussian random processes with standard deviation of 0.3 and X

and Y have zero initial conditions. We generate 128 realizations of X and Y and compute

the DI over 20 time samples. In order to evaluate the bias and variance of each estimator,

the same model is replicated 100 times. From equation (2.61), it is obvious that X is the

driver of Y, so we expect the directed information from X to Y to be greater than from Y

to X. First, the averaged DI for each estimator at two successive time points is shown in

Figure. 2.10.

Second, in order to compare the performance of different methods and verify the advan-

tages of information based estimators, we take the average DI value along the whole time

sequence and evaluate the bias, variance, computational efficiency and discrimination power

of each estimator. The bias of each method can be obtained by comparing with using covari-

ance matrices, which has the closest result to the actual DI value since X and Y are normally

distributed in this simulation. The computational efficiency quantified by the average run

time of each method and the discrimination power (DP) quantified by the difference of mean

58



0 2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 

 

Covariance Matrix
Histogram
Kernel
M-spacing
Mutual Information
Multi-information

Figure 2.10: Averaged information flow for linear model using different estimators(128 real-
izations)

between the DIs in the two directions normalized by the standard errors defined as:

DP =
DI(X→ Y)−DI(Y → X)√

S2
DI(X→Y)

+S2
DI(Y→X)

N

, (2.62)

where DI(X→ Y) = 1
N−1

∑N−1
k=1 DIk(X → Y) and SDI(X→Y) is the standard deviation

of the DI values along the time sequence, DIk(X → Y) is the directed information value

from X to Y at a small time window k ∼ k + 1. In this simulation we use Gaussian kernel,

whose width is chosen by likelihood cross-validation (LCV) for KDE. As it can be seen

from Figure. 2.10 and Table 2.5, the histogram and m-spacing estimator have higher bias

compared to the other methods. The histogram is very dependent on the number of bins, i.e.,

if we use a smaller bin size such as 5, it will have a lower bias. Kernel method has a slightly

upward bias while MI and multi-information based estimation methods have downward bias,

but the absolute difference is nearly the same. However, the latter ones are faster than the

Kernel method.

We also increase the number of trials to show the dependency of each estimator on the

number of data samples. The result for 1024 realizations is shown in Table 2.6. When
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Table 2.5: Performance Comparison for linear model (128 realizations)

Mean Variance(×10−3) Time(s) DP

Covariance 0.7058 0.1264 0.0155 15.0449

Histogram 0.9856 0.0007 6.4049 2.7736

Kernel 0.7724 0.1607 8.6807 7.9381

M-spacing 0.9790 0.0006 55.6460 11.4727

MI 0.6185 0.4705 2.7546 5.3127

Multi-information 0.6382 0.7489 2.7355 4.8684

the number of trials increases, the bias of all of the estimators decrease. Moreover, the MI

and multi-information based methods outperform Kernel methods in bias and get very close

to the performance of the Covariance Matrix method without any prior knowledge of the

distribution of the data.

Table 2.6: Performance Comparison for linear model (1024 realizations)

Mean Variance(×10−3) Time(s) DP

Covariance 0.7009 0.0000 0.0113 19.9898

Histogram 0.9033 0.0000 11.6406 12.4591

Kernel 0.7622 0.0000 195.1709 22.6683

M-spacing 0.9809 0.0000 613.2450 27.2449

MI 0.7035 0.0000 8.0961 12.5346

Multi-information 0.7096 0.1000 7.6563 11.3131

In the second example, we consider a first order nonlinear autoregressive model given

below and compare the proposed method with the regular histogram estimation for every

two pairs of X and Y.

Xi = 0.5×Xi−1 + ui;

Yi = 0.2× Yi−1 + 0.8×X2
i−1 + vi,

(2.63)
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where ui and vi are distributed as in the first example. The performance of each estimator for

128 and 1024 realizations of X and Y are shown in Tables 2.7 and 2.8. We can observe that

the MI and multi-information based methods run much faster than the others. We should

also note that, the multi-information based method has much stronger discrimination power

than MI estimator, though the discrimination power is very low when the number of trials is

very small, which makes it hard to infer the causality between X and Y accurately. However,

the discrimination power becomes stronger when the number of trials increases to 1024.

Table 2.7: Performance Comparison for nonlinear model (128 realizations)

Mean Variance(×10−3) Time(s) DP

Histogram 0.9842 0.0018 2.5665 1.3349

Kernel 0.5503 0.6849 3.5845 2.9192

M-spacing 0.9631 0.0012 30.4351 4.1032

MI 0.3126 1.2990 0.7148 0.0802

Multi-information 0.3184 1.7980 0.6970 0.6136

Table 2.8: Performance Comparison for nonlinear model (1024 realizations)

Mean Variance(×10−3) Time(s) DP

Histogram 0.8633 0.0640 11.1156 3.0179

Kernel 0.5368 0.0809 191.9125 11.2326

M-spacing 0.9676 0.0001 602.7246 13.7146

MI 0.3507 0.2887 5.5128 2.1319

Multi-information 0.3494 0.5902 5.2984 4.0577

2.5 Conclusions

In this chapter, we presented the time-lagged directed information and modified directed

information to reduce the computational complexity of computing DI while still quantifying
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the causal dependencies. These simplified measures are derived for stationary statistical

processes with limited order and it is proven that the rate of modified DI is equal to the

transfer entropy rate. The simulation results presented above indicate that the MDI measure

is more suitable for the approximation of DI when the order of the model is unknown or

when there are multiple time lags compared to TLDI. Even though the MDI is shown to be

an upper bound for the actual DI, it achieves a better performance compared to TLDI in

terms of bias and is comparable in terms of the computational complexity. Moreover, we

also introduce a new directed information estimation method based on multi-information

and provide a quantitative comparison of various DI estimation methods. Considering vari-

ous factors including bias, variance, computational speed and discrimination power, the MI

and multi-information based DI estimation methods have similar performance and are better

than the others. Moreover, the multi-information based estimator outperforms MI estimator

in discriminating nonlinear causal relationships. Finally, in order to illustrate the advan-

tages of DI, we applied directed information measure to identify the causality relationships

for both linear and nonlinear AR models, linear mixing models, single source models and

Lorenz systems, and compare its performance with Granger causality. Directed information

is shown to be more effective in detecting the causality of different systems compared to

Granger causality. We also applied the directed information measure on EEG data from a

study containing the error-related negativity to infer the information flow patterns between

different regions. The results showed that the directed information measure can capture

the effective connectivity in the brain between the mPFC and lPFC areas as predicted by

previous work.

There are still remaining issues with the implementation of directed information. First,

the performance of directed information relies on accurate estimation from limited sample

sizes that introduces bias to the estimated values. This problem can be addressed by ei-

ther using parametric density models or improving existing mutual information and entropy

estimators. Recently, Zhao et al. proposed an universal algorithm to estimate directed in-
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formation for stationary ergodic processes by using sequential probability assignment, which

may be used to improve the effective connectivity results discussed in this dissertation [79].

Current applications of this algorithm are for binary sequences, therefore, it has to be ex-

tended for discrete signals with continuous values and multiple realizations. Second, the

performance of directed information relies on the selection of the model order. If the order

of the model is too small, it will lose the information from X to Y. If it is too large, the

computational complexity is very high. In addition to classical embedding dimension deter-

mination methods such as the Cao criterion used in this dissertation, Faes et al. proposed a

sequential procedure to determine the embedding dimension of multivariate series [80]. This

method is based on an information-theoretic technique and shows promising performances

for various signal models, which may be extended to DI computation in the future. Third,

directed information does not discriminate between direct and indirect interactions among

multivariate time series. However, this is not a shortcoming of DI since DI does not assume

any particular signal interaction model: bivariate or multivariate. Similar to other infor-

mation theoretic measures, such as mutual information, whether the particular measure can

identify interactions between multiple processes depends on how the measure is applied. For

example, in the case of mutual information, though the original definition is for two random

processes X and Y, it is possible to extend it to multiple processes [60]. Similarly, we can

apply DI over multiple processes using conditional directed information such as the definition

given by Kramer. We address this issue in the next chapter by using conditional directed

information and develop algorithms to infer the actual network. Similarly, GC originally

is defined for two time series that a stochastic process X causing another process Y if the

prediction of Y at the current time point, Yn, is improved when taking into account the past

samples of X. However, in application it has been extended to multiple processes through

the use of multivariate AR models, such as PDC. We also compare the performance of our

algorithm based on conditional directed information with PDC in the next chapter.
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Chapter 3

DIRECTED NETWORK INFERENCE BASED ON DIRECTED

INFORMATION

3.1 Introduction

In many complex systems, such as the brain network, another interesting problem is to re-

veal the actual causal structure of the network, i.e. effective network inference, rather than

quantifying pairwise causal relationships which is not sufficient to discriminate direct inter-

actions from indirect interactions. Effective network inference algorithms can be categorized

into three groups: pair-wise algorithms, equation-based algorithms and network-based algo-

rithms [81], which are based on different measures to quantify the causality. The pair-wise

algorithms try to find pairs of variables that are correlated and influence the behavior of

each other. Cross-correlation and its extension in the frequency plane, i.e. coherence, are

the most traditional measures to capture the causal relationships in neural networks, brain

networks and so on [82, 83]. However, these approaches have two drawbacks: (1) they as-

sume the linearity of the relationship between the variables, which is not always true, e.g.

EEG signals are known to have nonlinear dependencies [17]; (2) they quantify the relation-

ship between two variables without considering the effect of the third variable, which may

generate false positive connections in a network. Equation-based algorithms use a model,

such as multivariate autoregressive model (MVAR) and dynamic causal model, to relate

the values of variables [44, 84]. For example, partial directed coherence (PDC) and direct

transfer function (DTF), derived from MVAR, are widely used to determine the neural net-

works from multivariate recordings [44, 85]. However, these equation-based methods require

a priori knowledge of the dynamics of the data generating systems (models) and sufficient

time samples to build the model. The network-based algorithms are dedicated to finding the

best network, such as Boolean networks or Bayesian network, to describe the observation-
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al data [81]. One of the representative algorithms, i.e., Dynamic Bayesian network (DBN)

inference algorithm [86], was first developed to infer nonlinear transcriptional regulatory

networks and was later used successfully at reconstructing nonlinear neural information flow

networks [81, 87]. One major issue with this kind of algorithms is that the computational

complexity to learn the structure of a network proves to be NP-hard [88]. Therefore, it can

only be applied to relatively small networks [89, 90].

Recently, information-theoretic approaches have been widely used for the inference of

large networks in the bioinformatics community [91]. Most of these methods rely on es-

timating the mutual information between variables from data to quantify the dependency.

Unlike correlation-based algorithms, information-theoretic approaches can quantify the non-

linear dependencies [92, 60]. The Chow-Liu tree algorithm is the first to adopt the mutual

information in probabilistic model design with minimum spanning tree, which has a low num-

ber of edges even for non-sparse target networks [91]. The Relevance network (RELNET)

extends these ideas by determining the relevant connections such that a pair of nodes X and

Y is connected when the mutual information is above a threshold. However, this method

may infer false connections when two nodes are indirectly connected through an intermediate

node [93]. The algorithm for the reconstruction of accurate cellular networks (ARACNE)

addresses this problem by using the data processing inequality for mutual information [92].

Zhao et al. also address the same problem using conditional mutual information [60]. How-

ever, since mutual information is a symmetric quantity, all of these methods are limited to

inferring undirected networks. Quinn et al. extend the Chow-Liu tree for random variables

to the causal dependence tree for random processes, and show that the best causal depen-

dence tree approximation is the one which maximizes the sum of directed information on its

edges [94]. Similar to the Chow-Liu tree, this method also has a low number of edges since

not all real networks follow the tree structure, and requires a priori knowledge of the root

in some implementations. In this thesis, we propose a directed acyclic network inference

algorithm based on estimating directed information between signals over time in order to
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quantify both the connectivity and causality in networks. Since we addressed the problem of

computation and estimation of DI in the previous chapter, one major problem remains with

the application of the directed information to infer the directed network, i.e., discriminating

between direct and indirect connections in the network [95]. We propose time-lagged con-

ditional directed information and modified conditional directed information based inference

algorithms to address this problem.

The organization of this chapter is as follows. First, we introduce the concept of condi-

tional directed information. Then we propose time-lagged conditional directed information

and modified conditional directed information to reduce the computational complexity of this

measure. Finally, three different network inference algorithms are given and the comparison

with existing methods are shown through simulated network models.

3.2 Conditional directed information

3.2.1 Background

Based on the definition of directed information, if X is the direct cause of Y, then the value

of DI(X → Y) is significant indicating causality between the two processes. However, a

significantly large DI value does not guarantee that X directly causes Y; X and Y may

interact indirectly through other nodes [31]. Kramer extended the directed information to

three variables using causal conditional directed information (CDI) DI(XN → Y N ∥ ZN ),

which measures the information flow from XN to Y N when causally conditioned on sequence

ZN [27]:

DI(XN → Y N ∥ ZN ) = H(Y N ||ZN )−H(Y N ||XNZN )

=
N∑
n=1

[H(Yn|Y n−1Zn)−H(Yn|Y n−1XnZn)]

=
N∑
n=1

I(Xn;Yn|Y n−1Zn),

(3.1)
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where I(X;Y |Z) is the conditional mutual information between two random variables X and

Y given Z. This definition differs from the conditional mutual information I(XN ;Y N |ZN )

only in that Xn and Zn replace XN and ZN in each term on the right of equation (3.1).

When H(Yn|Y n−1Zn) = H(Yn|Y n−1XnZn), DI(XN → Y N ∥ ZN ) = 0, i.e., given the

observation of the third time series Z up to the current time point n, X does not provide

any information about Y.

3.2.2 Motivational example

Directed information can reveal the causal dependencies between two variables, but it can

not distinguish between direct and indirect causality. Indirect interactions will cause false

positive connections for network reconstruction. To address the problem, we first specify how

conditional directed information can help in network inference problems using two simple

motivational models. Then, time-lagged conditional directed information and modified con-

ditional directed information are introduced to solve the computational complexity problem

while still being able to remove the indirect connections.

First, consider the following two trivariate models: a hub and chain model. A trivariate

autoregressive model following a hub pattern is as follows:

Xi = ui,

Yi = bXi−m + vi,

Zi = cXi−n + wi,

(3.2)

where ui, vi and wi are i.i.d processes following a Gaussian distribution N(0, σ2). In this

model, nodes Y and Z are indirectly connected through a hub (parent) node X, and X

interacts with them with different time delays (Figure. 3.1). The trivariate model following
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a chain pattern is given as:

Xi = ui,

Yi = bXi−m + vi,

Zi = cYi−(n−m) + wi,

(3.3)

where n > m, ui, vi and wi are i.i.d processes following a Gaussian distribution N(0, σ2). In

this model, X interacts with Z through intermediate (proxy) node Y .

For both models, the time lags between X → Y, X → Z and Y → Z are m, n and

n−m, respectively. The directed information rate between any two variables is larger than

0. The DI values and time lags between all of the pairs are shown in Figure 3.1. For network

inference, if we determine there is a connection between two nodes when the DI value is larger

than 0, then the inferred network for both hub and chain models will be the same. Therefore,

only employing DI, it is hard to discriminate between the direct and indirect connections

which may cause incorrect network inference. We introduce conditional directed information

to remove the indirect connections. For the hub case, there is no information flow from Y

to Z directly and DI(Y N → ZN ||XN ) = 0. While for the chain case, X interacts with Z

through intermediate (proxy) node Y and DI(XN → ZN ||Y N ) = 0 (See Appendix A for

details). Thus, CDI helps to discriminate between the two connection patterns.

3.2.3 Computation of conditional directed information

Similar to directed information, the computational complexity of computing conditional

directed information also increases with the signal length. Thus, we proposed a simplified

approach to compute CDI, while still reflecting the actual information flow from X to Y

influenced by Z. In order to reduce the computational complexity, in practice, estimation of

CDI is limited to every two time samples of three processes X, Y and Z. We can define the
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Figure 3.1: The DI value and time lag for both hub and chain models. (a) X drives Y
and Z with different time delays; (b) X drives Y, Y drives Z. Solid line indicates an
actual connection in the real network and dash line represents no connection. The values
shown inside and outside the triangle are the DI value and time lag between two processes,
respectively.

time-lagged CDI resembling the time-lagged DI as follows:

DIk(Xk−dXk−d+1 → YkYk+1||Zk−lZk−l+1) = H(Xk−dZk−l) +H(YkZk−l)

−H(Xk−dYkZk−l)−H(Zk−l) +H(Xk−dXk−d+1YkZk−lZk−l+1)

+H(YkYk+1Zk−lZk−l+1)−H(YkZk−lZk−l+1)−H(Xk−dXk−d+1YkYk+1Zk−lZk−l+1).

(3.4)

where Xk−d and Zk−l refer to the (k− d)th and (k− l)th time samples of random processes

X and Z, respectively, k = max [d, l] + 1, · · · , N − 1, d, l = 0, · · · , L− 1, which are the time

lag variables, and N is the length of the signal.

When X, Y and Z are not normally distributed, the conditional directed information
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can be expressed and estimated in terms of mutual information as follows:

DIk(Xk−dXk−d+1 → YkYk+1||Zk−lZk−l+1) = I(Xk−d; (YkZk−l))− I(Xk−d;Zk−l)

+ I((Xk−dXk−d+1); (YkYk+1Zk−lZk−l+1))− I((Xk−dXk−d+1); (YkZk−lZk−l+1)).

(3.5)

To quantify the same amount of causally conditional dependency and be able to dis-

tinguish the indirect connections from direct connections, proper values of d and l should

be chosen for the computation of time-lagged conditional directed information. Actually,

when the time delay between any two variables is known (time delay between X→ Y is m,

X → Z is n and Y → Z is n−m), then for the hub model, DIk(Yk−(n−m)Yk−(n−m)+1 →

ZkZk+1||Xk−nXk−n+1) = 0. While for the chain model, DIk(Xk−nXk−n+1 → ZkZk+1||

Yk−(n−m)Yk−(n−m)+1) = 0 (See Appendix B for details). Thus the time-lagged conditional

directed information can detect the indirect connections with the CDI value being equal to

0, which is aligned with what we expect from the model. Therefore, to remove the indirect

connections in a network inference problem, we need to calculate the time-lagged conditional

DI for both chain and hub cases respectively. For three connected nodes with significant DI

values, if we do not know whether it is a hub or chain pattern but know the time lags between

any two nodes, e.g. the time lag from X to Y is m, X to Z is lc, and Y to Z is lh, then we

can calculate the time-lagged CDI (TLCDI) for both chain and hub cases along the whole

time series as follows:

• For the hub case:

TLCDIY,Z||X =
1

2

N−1∑
k=max [lc,lh]+1

DI(Yk−lhYk−lh+1 → ZkZk+1|Xk−lcXk−lc+1),

(3.6)

where N is the length of the signal.
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• For the chain case:

TLCDIX,Z||Y =
1

2

N−1∑
k=max [lc,lh]+1

DI(Xk−lcXk−lc+1 → ZkZk+1|Yk−lhYk−lh+1),

(3.7)

where N is the length of the signal.

Once the time-lagged conditional directed information is obtained for both cases, it can

be applied to the network inference problem.

3.2.4 Modified conditional directed information

The TLCDI is less computationally complex than the original definition of CDI, but is lim-

ited to trivariate autoregressive models with single order. Similar to the modified directed

information in the previous chapter, we propose the modified conditional directed informa-

tion. Consider a general Markov model, where random process Y N is influenced by XN and

ZN such that p(Yn|X1:n, Y1:n−1Z1:n) = p(Yn|Xn−p2:n−p1 , Zn−p4:n−p3Yn−p5:n−1). In this

model, it is assumed that X (Z) starts to influence Y with a delay of p1 (p3) samples and

this influence lasts for p2 − p1 + 1 (p4 − p3 + 1) time samples, where p2 ≥ p1 and p4 ≥ p3.

p5 is the order of Y . The upper bound of each term of conditional directed information is

as follows:

I(Xn;Yn|Y n−1Zn) = H(Yn|Y n−1Zn)−H(Yn|Y n−1XnZn)

= H(Yn|Y n−1Zn)−H(Yn|Xn−p2:n−p1 , Zn−p4:n−p3Yn−p5:n−1)

≤ H(Yn|Zn−p4:n−p3Yn−p5:n−1)−H(Yn|Xn−p2:n−p1 , Zn−p4:n−p3Yn−p5:n−1)

= I(Xn−p2:n−p1 ;Yn|Zn−p4:n−p3Yn−p5:n−1),

(3.8)

where the second equality comes from the Markov property and the inequality is true since

conditioning reduces entropy. Therefore, similar to modified directed information, we define

the upper bound of the conditional directed information as the modified conditional directed

information (MCDI) with p1 = p3 = 1 and p = max(p2, p4, p5) to reduce the number of
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parameters,

MCDIX,Y ||Z =
N∑

n=p+1

I(Xn−p:n−1;Yn|Yn−p:n−1Zn−p:n−1). (3.9)

Note that letting p1 = p3 = 1 does not lose any of the information flow compared to using

the actual time delay, p1 > 1 and p3 > 1. The only drawback of letting p1 = p3 = 1 is that

the computational complexity of estimating the joint entropies increases since the length of

the window to compute MCDI increases and the dimensionality increases. The main reason

why we let p1 = p3 = 1 is because estimating the actual value for the delay accurately is not

practical when the amount of data is limited.

For the hub case, when p(Zn|Zn−p:n−1Xn−p:n−1Yn−p:n−1) = p(Zn|Xn−p:n−1, Zn−p:n−1),

then

MCDIY,Z||X =
N∑

n=p+1

I(Yn−p:n−1;Zn|Zn−p:n−1Xn−p:n−1)

=
N∑

n=p+1

[H(Zn|Zn−p:n−1Xn−p:n−1)−H(Zn|Zn−p:n−1Xn−p:n−1Yn−p:n−1)]

=
N∑

n=p+1

[H(Zn|Zn−p:n−1Xn−p:n−1)−H(Zn|Zn−p:n−1Xn−p:n−1)]

= 0.

(3.10)

For the chain case, when p(Zn|Zn−p:n−1Xn−p:n−1Yn−p:n−1) = p(Zn|Yn−p:n−1, Zn−p:n−1),
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then

MCDIX,Z||Y =
N∑

n=p+1

I(Xn−p:n−1;Zn|Zn−p:n−1Yn−p:n−1)

=
N∑

n=p+1

[H(Zn|Zn−p:n−1Yn−p:n−1)−H(Zn|Zn−p:n−1Xn−p:n−1Yn−p:n−1)]

=
N∑

n=p+1

[H(Zn|Zn−p:n−1Yn−p:n−1)−H(Zn|Zn−p:n−1Yn−p:n−1)]

= 0.

(3.11)

Therefore, the modified CDI can discriminate the direct connection from the indirect

connection. MCDI is a general extension of TLCDI, which takes the influence of multiple

time samples into account.

3.3 Network inference algorithms

In the previous section, we proposed simplified version of directed information and condi-

tional directed information with minimal computational complexity to quantify the causal

dependencies. In the following section, we propose three algorithms for directed network

inference based on DI and CDI. As discussed before, using directed information alone will

cause false connections. Any three nodes in a network can interact with each other through

two possible scenarios as equations (3.2) and (3.3) show: three nodes interacting through a

hub node Y ← X→ Z or interacting as a chain X→ Y → Z. As discussed in the previous

section, in both cases, if three pairs (X,Y), (Y,Z), (X,Z) all have large DI values, they will

infer the same directed network. Therefore, directed information fails to discriminate be-

tween direct and indirect dependencies. This leads to two questions to address the problem:

(1) If we can determine the time lag between any two nodes, can we infer the network based

on the time lag information? (2) Since the conditional directed information can evaluate the

amount of information flow from X to Y given Z, can we use this information for network
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inference? We introduce three approaches to remove indirect causal connections in a network

based on the time lag and conditional directed information.

3.3.1 Algorithm based on directed information and conditional directed infor-
mation

The first inference algorithm uses directed information and conditional directed information

with no time lag to infer the direct interactions between nodes [95]. In the first step (lines

3− 14) of Algorithm 1 in Figure 3.2, we calculate the TLDI between two nodes i and j with

d = 0 in equation (2.21), which corresponds to applying DI to every two time samples of

i and j without time delay. To test the significance level of the obtained value of DI, the

p-value is determined by using the distribution of DI values computed from trial shuffling

data sets. If the p-value of DI(i → j) is less than the threshold of p-value, i.e. α, which

is determined by controlling the FDR bound q as 0.05, the information flow from node i

to j is assumed to be significant. In order to identify the direct vs. indirect connections

(lines 15 − 25), for each node pair i, j, we evaluate the conditional directed information

given any other node k for all k ̸= i, j. If node k does not interact with nodes i and j, then

DI(Xi → Xj |Xk) should be close to DI(Xi → Xj). Otherwise, if k is an intermediate or

hub node between i and j, DI(Xi → Xj |Xk) should be close to 0. Therefore, we compute

DI(Xi → Xj |Xk)/DI(Xi → Xj), which is close to 1 when there are no interactions between

k and i, j. We rank order this quantity from high to low for all k. The connections with the

highest ranks are kept until a desired number of connections, ec, is achieved.

3.3.2 Algorithm based on time lag

From equation (2.18), we can see that in some cases when d = 0, applying DI to every two

time samples of X and Y can not capture the same amount of information as the actual

causal information. Therefore, the proposed Algorithm 1 (Figure 3.2) based on DI and CDI

(d = 0) without considering time lag will encounter the problem of not being able to capture
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1: Input time series for M nodes, ec is the expected number of connections;
2: Initialize D ∈ Rn×n, C ∈ [0, 1](n×n), cD ∈ Rn×n as zero matrices;
3: for i = 1 to M do
4: for j = 1 to M do
5: Di,j ⇐ TLDI0(i→ j);
6: Shuffle the trials of the time series of node i;
7: Calculate the p-value of each node pairs Pi,j ;
8: if Pi,j < α then
9: Ci,j = 1;
10: else
11: Ci,j = 0;
12: end if
13: end for
14: end for
15: for i = 1 to M do
16: for j = 1 to M do
17: if Ci,j == 1 then

18: cDi,j ⇐ min

(
DI(xi→xj |xk)

Di,j

)
, k ̸= i, j;

19: else
20: cDi,j ⇐ 0;
21: end if
22: end for
23: end for
24: ca = cD(:);
25: cb = sort(ca) in descending order and keep the top ec connections

Figure 3.2: Algorithm 1: directed network inference based on DI and CDI

the causal dependencies between two random processes when there is a nonzero time lag.

Therefore, we propose an inference algorithm which utilizes time-lagged directed information

and time lag to infer the direct interactions between nodes. We first show how time lag can

be used to infer connections and then introduce the algorithm. In a complex system, if we

assume that any node pair exchanges information through the fastest available path, then

the indirect causal relationships can be detected by determining the time lag between two

variables in the system. According to equation (2.18), for the single order linear model, the
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time lag between two time series can be found as follows:

TL(X→ Y) = argmax
d

N−1∑
k=d+1

DI(Xk−dXk−d+1 → YkYk+1). (3.12)

where d = 1, · · · , L and N is the length of the signal. In order to illustrate the inference

of causality using time lag, we will consider two trivariate autoregressive models considered

in equations (3.2) and (3.3). For both cases, the time lag and the corresponding DI values

of direct and indirect connections are shown in Figure 3.1. We can observe that although

the DI value of any two of the random variables is significant, the value for the indirect

connections (Y → Z in Figure 3.1(a), X → Z in Figure 3.1(b)) are smaller than the direct

connections. Moreover, it is obvious that in these two models, the three time lags show

a linear relationship. Therefore, in a real system with the assumption that any node pairs

exchange their information through the fastest available route, for the chain case (X→ Y →

Z), if TL(X→ Z) ≥ TL(X→ Y)+TL(Y → Z), then Y is the intermediate node and there

is no direct causal relationship between X and Z. While for the hub case (Z ← X → Y),

if TL(Y → Z) ≥ TL(X → Z) − TL(X → Y) > 0, there is no direct causal relationship

between Y and Z.

Based on this observation, we introduce an algorithm based on time-lagged DI and time

lag to infer the directed network which is shown in Figure 3.3. In practice, for the model

with maximum order p > 1, the time-lagged DI is obtained by averaging across different

lags, i.e. 1
p+1

∑p
d=0 TLDId(X

N → Y N ). In the first step (lines 3 − 15), we calculate the

time-lagged directed information DIi,j between two nodes i and j and the corresponding

time delay TLi,j based on equations (2.21) and (3.12), respectively. p-value of DIi,j is

determined for each pair of nodes. Connections with p-values less than the threshold α are

kept with α determined by controlling the FDR bound q. In order to identify the direct vs.

indirect connections (lines 16−27), for each node i, we consider connected triplets. For node

i, if TLj,k ≥ TLj,i + TLi,k and DIj,k is smaller than both DIj,i and DIi,k, then i is the

intermediate node (j → i, i→ k) and there is no connection between j and k. Otherwise, if
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1: Input time series for M nodes;
2: Initialize D ∈ Rn×n, TL ∈ (0, L − 1)n×n, P ∈ (0, 1)n×n, C ∈ [0, 1](n×n), as zero

matrices;
3: for i = 1 to M do
4: for j = 1 to M do
5: DIi,j ⇐ TLDI(i→ j);
6: TLi,j ⇐ TL(i→ j);
7: Shuffle the trials of the time series of node i;
8: Calculate the p-value of each node pairs Pi,j ;
9: if Pi,j < α then
10: Ci,j = 1;
11: else
12: Ci,j = 0;
13: end if
14: end for
15: end for
16: for i = 1 to M do
17: for j = 1 to M do
18: for k = 1 to M do
19: if Cj,i = 1 and Ci,k = 1 and Cj,k == 1 and TLj,k ≥ TLj,i + TLi,k and

DIj,k < min (DIj,i, DIi,k) then
20: Cj,k = 0;
21: end if
22: if Ci,j = 1 and Ci,k = 1 and Cj,k == 1 and TLj,k ≥ TLi,k − TLi,j and

DIj,k < min (DIi,j , DIi,k) then
23: Cj,k = 0;
24: end if
25: end for
26: end for
27: end for

Figure 3.3: Algorithm 2: directed network inference based on TLDI and TL

TLj,k ≥ TLi,k − TLi,j > 0 and DIj,k is smaller than both DIi,j and DIi,k, then node i is

the hub node (i→ j, i→ k) and the connection between j and k should be removed.

3.3.3 Algorithm based on modified time-lagged directed information and con-
ditional directed information

Algorithm 2 (Figure 3.3)based on time-lagged directed information and time lag information

can capture more causal dependencies than Algorithm 1. However, when the relationship
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between two variables is complex, e.g. nonlinear or multi-order, it is hard to detect the

exact time lag because of the complexity of the underlying model and limited sample sizes.

Therefore, we propose an inference algorithm of using MDI and MCDI. To explain the

algorithm clearly, we consider the hub and chain cases again. For triple connected nodes i,

j, k (i → j, i → k, j → k), if j is the intermediate node, DI(i → k|j) = 0 for the ideal

case. However, because of noise and the bias of the estimator, it will not be exactly equal

to 0. Therefore, in order to confirm j is the intermediate node and remove the indirect

connection i → k, two conditions should be satisfied: (1) DI(i → k|j) < DI(j → k|i); (2)

DI(i → k) < DI(j → k). Similarly, if i is the hub node, then DI(i → k|j) > DI(j → k|i)

and DI(i → k) > DI(j → k). If the two conditions contradict each other, we remove the

connection with the smallest value of DI.

Based on this analysis, our Algorithm 3 (Figure 3.4) is described as follows: First (lines

3−14), we calculate the modified time-lagged directed information Di,j from i to j according

to equation (2.25). If the p-value of Di,j is larger than α, then there is no directed path

from i to j. To remove the indirect causality (lines 15 − 39), for each connected triplet

nodes i, j and k without a loop (i → j, i → k, j → k), which include both chain and hub

connection patterns, we calculate the modified time-lagged conditional directed information

(hub: cDjk|i, chain: cDik|j). If cDjk|i and Dj,k are less (greater) than cDik|j and Di,k,

respectively, we keep connection i → k (j → k). Otherwise, if Di,j is the largest value,

we remove both connections i → k and j → k; if not, we remove the connection with the

smallest DI value.

3.3.4 Validation

In order to evaluate the performance of the different network inference algorithms, F-score

is adopted [91]. The F-score can be interpreted as a weighted average of the precision and

recall and is defined as:

F =
2pr

p+ r
, p =

TP

TP + FP
, r =

TP

TP + FN
. (3.13)

78



1: Input time series for M nodes;
2: Initialize D ∈ Rn×n, P ∈ (0, 1)n×n, C ∈ [0, 1](n×n) as zero matrices;
3: for i = 1 to M do
4: for j = 1 to M do
5: Di,j ⇐MDI(i→ j);
6: Shuffle the trials of the time series of node i;
7: Calculate the p-value of each node pairs Pi,j ;
8: if Pi,j < α then
9: Ci,j = 1;
10: else
11: Ci,j = 0;
12: end if
13: end for
14: end for
15: for i = 1 to M do
16: for j = 1 to M do
17: for k = 1 to M do
18: if Ci,j = 1 and Ci,k = 1 and Cj,k == 1 then
19: Hub: cDj,k|i =MCDIY Z|X ;
20: Chain: cDi,k|j =MCDIXZ|Y ;
21: if cDjk|i < cDik|j AND Dj,k < Di,k then
22: Cj,k = 0
23: else if cDjk|i > cDik|j AND Dj,k > Di,k then
24: Ci,k = 0
25: else
26: if Di,j > max (Di,k, Dj,k) then
27: Ci,k = 0;Cj,k = 0;
28: else if Di,j < min (Di,k, Dj,k) then
29: Ci,j = 0
30: else if Di,k < Dj,k then
31: Ci,k = 0
32: else
33: Cj,k
34: end if
35: end if
36: end if
37: end for
38: end for
39: end for

Figure 3.4: Algorithm 3: directed network inference based on MDI and MCDI

79



A positive label predicted by the algorithm is considered as true positive (TP) or false positive

(FP) depending on whether there exists a corresponding edge in the true network or not.

Similarly, a negative label can be a true negative (TN) or false negative (FN) depending

on the true network. In this dissertation, we will compute the F-score before and after

introducing CDI or time lag for each algorithm.

3.4 Results

3.4.1 Synthetic data: Linear network

In order to test the effectiveness of the proposed algorithms, we first consider a linear mul-

tivariate autoregressive model to reduce the impact of DI estimation on the accuracy of

network inference. The following linear autoregressive model is considered [96],

Y1(n)

Y2(n)

...

Yr(n)


=

p∑
i=1

Ai



Y1(n− i)

Y2(n− i)

...

Yr(n− i)


+



e1(n)

e2(n)

...

er(n)


(3.14)

where Y(n) = [Y1(n), Y2(n), · · · , Yr(n)] is the nth sample of a r-dimensional time series gen-

erated by r variables, with eachAi being a r-by-r matrix of coefficients (weights), coefficients

are in the range of 0 to 1 and also keep the system stable. en = [e1(n), e2(n), · · · , er(n)]

is additive white Gaussian noise with zero mean and unit variance. In this dissertation,

we generate a synthetic network of 18 nodes (r = 18) with the maximum time lag p = 4.

The network contains only linear dependencies as shown in Figure 3.5(a). We generate 1024

realizations of the 18 different time series for each node and the results are averaged across

10 simulations. The order between any two time series is determined by the order selection

criterion. We then compute the time lag and modified time-lagged DI over 12 time samples
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according to equations (3.12) and (2.25) and compute the p-value for each DI value under

the distribution of the null hypothesis. If the p-value of DI is less than the threshold α = 0.01

for each pair of nodes with α found by controlling the FDR bound q as 0.05, we keep the

connection. Both time lag and time-lagged conditional directed information are used to e-

liminate the indirect connections. The F-scores using three different algorithms before and

after applying CDI, time lag and MCDI are shown in Figure 3.5(b). We can observe that,

Algorithm 3 (Figure 3.4) reaches the highest F-score 0.9351 and it improves the network

reconstruction when introducing MCDI to remove the indirect causality relationship. The

introducing of time lag information to remove the indirect connection leads to slight change

in F-score. It is due to the difficulty of estimating the time lag accurately for a multi-order

model in particular when the number of realizations is limited. Algorithm 1 has lower F-

score compared to the other two algorithms, because it can not capture the whole causal

information between two variables or among multiple variables. However, introducing CDI,

though without considering the time lag information can still remove parts of the indirect

causality relationship.

Without loss of generality, we permuted the matrices A1 and A2 50 times to compare the

performance of different algorithms further, and we let A3 and A4 equal to all zero matrices

to reduce the order and computational complexity. Only the location of the connections were

changed with the additional constraint that there are no connected triplets in the permuted

networks. More important, in practice the realizations of each random processes is limited.

Therefore, we only generate 256 realizations of 18 different time series. The average F -score

for each algorithm is shown in Table 3.1. We also compare the proposed algorithms based

on DI with model based methods, such as PDC. Matlab toolbox for PDC developed by

Baccala is used [44]. In practice, the implementation of PDC depends on the length of the

signal and the performance of DI based algorithms relies on the number of realizations of

time series. Therefore, to compare the two measures, the length of the generated signal for

PDC is chosen as 256, which is the same with the number of realizations for DI. The results
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Figure 3.5: The performance of proposed algorithms for linear network inference. (a) The
synthetic linear network. (b) Average F-score of Algorithm 1 before and after applying
causally conditioned directed information without considering time lag information; average
F-score of Algorithm 2 before and after applying time lag; average F-score of Algorithm 3
before and after applying MCDI.

Table 3.1: Average F -score for three proposed algorithms and PDC for linear network

Algorithm Mean

1 DI+CDI 0.8270

2 TLDI+TL 0.7903

3 MDI+MCDI 0.8301

4 PDC 0.7351

are shown in Table 3.1. We observe that Algorithm 3 outperforms the other algorithms.

The performance of Algorithm 1 is slightly worse than Algorithm 3, because DI without

considering time lag information will not lose all causal information when the order of the

model is low. The failure of Algorithm 2 is due to the inaccurate estimation of time lag.

PDC is based on MVAR model and is expected to have better performance, but since the

length of the signal is limited and there is not enough time samples to reconstruct the model,

PDC fails to reveal the network structure compared to other algorithms.
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3.4.2 Synthetic data: Nonlinear network

In this subsection, we test our algorithm on a synthetic nonlinear network of 14 nodes in [95].

The network contains both linear and nonlinear causality as shown in Figure 3.6(a):

X1(n) = 0.7X1(n− 1) + w1(n);

X2(n) = 0.29X2(n− 1) + 0.65X1(n− 1) + w2(n);

X3(n) = 0.15X3(n− 1) + 0.79X2(n− 1) +
0.9X14(n− 1)

1 + e−6X14(n−1)
+ w3(n);

X4(n) = 0.17X4(n− 1) + 0.7X3(n− 1) + 0.7X6(n− 1) + w4(n);

X5(n) = 0.6X5(n− 1) + 0.8X4(n− 1) + w5(n);

X6(n) = 0.12X6(n− 1) + 0.8X7(n− 1) +
√
0.7X8(n− 1) +

0.6 + 0.8X9(n− 1)

1 + e−2X7(n−1)
+ w6(n);

X7(n) = 0.8X7(n− 1) + w7(n);

X8(n) = 0.7X8(n− 1) + w8(n);

X9(n) = 0.77X9(n− 1) + w9(n);

X10(n) = 0.4X10(n− 1) + 0.4[X11(n− 1)]2 + w10(n);

X11(n) = 0.7X11(n− 1) +
0.7X14(n− 1)

1 + e−6X8(n−1)
+ w11(n);

X12(n) = 0.4X12(n− 1) + 0.8X11(n− 1) + w12(n);

X13(n) = 0.4X13(n− 1) + 0.9X11(n− 1) + w13(n);

X14(n) = 0.65X14(n− 1) + w14(n);

(3.15)

where w1, · · · , w14 are white Gaussian random processes. We generate 512 realizations of the

14 different time series for each node and compute the time-lagged DI over 12 time samples.

The p-values of each DI value were computed and the connections with p-values less than α

are kept. To remove the indirect connections, algorithms based on time lag and MCDI were

used, respectively. We generate this simulation 10 times and the averaged F-score before

and after applying CDI without lag information, time lag and MCDI for each algorithm are
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shown. From Figure 3.6(b), we see that the proposed algorithm using both MDI and MCDI

has better performance compared to other two algorithms, and obtains a F-score of 0.9455,

which effectively detects all linear and nonlinear dependencies. Algorithm 1 using DI and

CDI without considering any time lag information performs worst since it may lose important

causal information to reveal the structure of the network. Algorithm 2 performs better than

Algorithm 1 but worse than Algorithm 3, which is due to the inaccurate estimation of the

time lag in a complex network with nonlinear interactions. Therefore, we observe that time-

lagged directed information and modified directed information can effectively detect most

of the causal interactions, and time-lagged conditional directed information and modified

conditional directed information are able to effectively removes most of the false positive

connections.
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Figure 3.6: The performance of proposed algorithms for nonlinear network inference. (a) The
synthetic nonlinear network. (b) Average F-score of Algorithm 1 before and after applying
causally conditioned directed information without considering time lag information; average
F-score of Algorithm 2 before and after applying time lag; average F-score of Algorithm 3
before and after applying MCDI.

Similarly, to verify the effectiveness of our algorithms further, we permuted the matrices

A ten times, which only changes the location of the connections with the additional constraint

that there are no connected triplets. The average F -score for each algorithm is shown in
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Table 3.2: Average F -score for three algorithms of nonlinear network

Algorithm Mean

1 DI+CDI 0.6580

2 TLDI+TL 0.7798

3 MDI+MCDI 0.8175

4 PDC 0.7087

Table 3.2. Similarly, we also apply PDC to the randomized networks and the length of the

generated signal for PDC is set to 512. The performance of PDC is also shown in Table. 3.2.

Our proposed algorithm has the highest F score among all the algorithms, indicating more

efficient and stable performance for nonlinear networks. The performance of PDC is worse

than Algorithm 2 and 3, because PDC is implemented under a linear AR frame work, which is

not aligned with the actual model of the signal and fails to reconstruct the network correctly.

3.5 Discussions

3.5.1 Problems with current algorithms

The proposed algorithm based on modified directed information and modified conditional

directed information can effectively infer the directed network. However, there are still some

issues remaining with the current algorithms. First, the bias and variance of DI estimator

depends on the sample size, which may affect the significance testing of the DI value and in

turn may increase false negative connections. Second, the algorithm is based on the assump-

tion that the network is acyclic and has no triple connected nodes. The algorithm considers

connections in a connected triplet and break at least one of the connections. Therefore, if a

particular connection does not connect any triplets, the algorithm will keep it without apply-

ing conditional directed information on it. In fact, algorithms in this thesis can be extended
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to cyclic networks by stopping before the step of removing the connection with the smallest

DI value. Third, the detection of time lags is limited to linear models with single order.

When the model is complex, the effectiveness of determining the time lag according to the

maximum time-lagged directed information needs to be further proven. Finally, the proposed

algorithms just consider the scenario that there is only one intermediate node between two n-

odes. If there are two or more intermediate nodes betweenX and Z, i.e., X→ Y →W→ Z,

the algorithm may fail to remove the indirect connection by computing the CDI from X to

Z only conditioned on either Y or W. In this case, DI(XN → ZN ||Y NWN ) needs to be

considered to remove the false positive connection X → Z. However, the computational

complexity of CDI increases with the number of nodes involved, which is hard to implement.

3.5.2 Comparison with existing algorithms

The major contributions of this chapter are using the directed information and conditional

directed information to infer a directed network. We propose modified conditional directed

information for both chain and hub cases to remove the indirect causality and at the same

time to reduce the computational complexity.

Model-dependent methods such as PDC have been widely used for effective network in-

ference. Though they have good performance when the system is linear, there are two main

issues with model dependent measures. First, model-dependent measures fail to detect the

strong time-lagged nonlinear couplings, which might be the case for most complex systems.

Second, the number of parameters to be estimated increases with the order of the mod-

el, which requires a large sample size. When the sample size is limited, model-dependent

measures may fail to model the system accurately and detect the directed connectivity. On

the other hand, because DI is a model free measure to capture the causal information in a

system, our algorithms based on DI are easier to implement for complex systems with strong

nonlinear relationships and high orders. Though the performance of our measure is also

influenced by the sample size, the modified version of DI and CDI address this problem.
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3.6 Conclusions

In this chapter, we pointed out the drawback of only using directed information for net-

work inference and introduced the conditional directed information to address this problem.

Moreover, time-lagged conditional directed information and the modified conditional direct-

ed information are proposed to reduce the computational complexity. Three algorithms are

proposed for network inference and the results for both linear and nonlinear networks are

shown. The simulation results show that our methods outperform the existing measures.
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Chapter 4

COMMUNITY DETECTION FOR DIRECTIONAL NEURAL NETWORKS

4.1 Introduction

A remaining issue with the analysis of the brain network is to reveal the underlying commu-

nity structure. The complex network theory has been used to show that both the functional

and structural brain networks follow a small world topology characterized by a short mini-

mum path length between all pairs of nodes in the network together with a high clustering

coefficient [97, 34]. Although small-worldness summarizes key aspects of complex networks

at both global (the whole network) and local (each node together in relationship with its

most immediate neighbors) levels, it does not provide any information about the interme-

diate scale of network organization which is more completely described by the community

structure or modularity of the network [35, 98]. The modules of a complex network are

subsets of nodes that are densely connected with each other but sparsely connected to nodes

in other modules. Module detection also allows one to obtain simplified reduced representa-

tions of complex networks in terms of subgraphs or communities. In this chapter, we address

the issue of community detection for effective brain networks.

In recent years, a lot of work has been done on applying community detection algorithms

from graph theory to the study of functional brain networks [99, 35, 36, 37]. Functional

brain networks are usually described by undirected graphs with corresponding symmetric

association matrices, where each entry indicates the pairwise functional connectivity between

two regions. Therefore, most of the work on community detection for the study of brain

networks has focused on undirected networks. For example, Fair et al. showed that young

children and young adults have different community structures in functional brain networks

from the study of resting state fMRI data [35]. Similarly, Ferrarini et al. showed that the

resting-state human brain has a hierarchical functional module structure [36] and Meunier et
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al. revealed age-related changes in the modular structure of human brain functional networks

from fMRI [37]. Chavez et al. pointed out that the modular structure of the human brain

provides important information on the functional organization of the brain during normal and

pathological neural activities [38]. However, in the study of brain networks, it is important to

quantify both the dependency between different nodes or neuronal populations in the brain

as well as the causality between these nodes, i.e. effective connectivity as we mentioned

in the previous chapters. Friston pointed out that functional integration of the brain can

be better understood through effective connectivity since it reflects the dynamic (activity

dependent and time dependent) characteristics of a system [12]. In this sense, the brain

network can be better described by an effective network where the edges of the graph have

direction and the corresponding association matrix is no longer symmetric. As Kim et al.

claimed approaches that ignore the direction of links may fail to understand the dynamics

of the system, and similarly any community detection approach on these networks may

fail to reveal the actual community structure [100]. In addition, Leicht et al. also states

that abundant useful information about a network’s structure will be lost if we ignore the

directions of the edges [101]. Therefore, we expect that using effective connectivity would

reveal new topological characteristics of the brain network [102]. In this chapter, we propose

a multi-subject hierarchical community detection algorithm for weighted directed networks

in order to reduce effective brain networks involved in cognitive control into a small number

of functional modules.

The approach outlined in this chapter advances the current study of brain networks in

several key ways. First, the pairwise relationship between two processes is quantified by

effective connectivity, which can reflect both the interaction and the direction of information

flow of the network. Second, we employ recent work in the area of community detection

in directed networks for infering functional modules. Although most of the literature on

community detection focuses on undirected networks, a significant amount of information

about a network’s structure will be lost if we ignore the directions of the edges [101]. In
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order to discover the underlying organization of the network, traditional clustering algo-

rithms such as Kernighan-Lin algorithm, agglomerative (or divisive) algorithm and k-means

clustering, have been widely used. However, these algorithms need to pre-determine the

number of clusters [103, 104, 105, 106]. Therefore, modularity based algorithms are widely

used to choose the best partition of a network by maximizing the modularity, which include

greedy techniques, spectral optimization, etc. [39]. Recently, Blondel introduced a greedy

approach for the modularity optimization for weighted graphs, which is proven to be effi-

cient, multi-level and close to the optimal value obtained from slower methods [1]. In this

chapter, we extend this algorithm to weighted directed networks to find the functional mod-

ules. Third, we extend community detection algorithms developed for single networks to a

group of networks in order to find a modular structure that best describes all of the subjects

in a group. Traditionally, two broadly used approaches are employed for group analysis,

i.e., ‘virtual-typical-subject’ (VTS) approach and ‘individual structure’ (IS) approach. The

former approach pools or averages the group data to obtain one community structure for

the whole group. The latter one applies the proposed algorithm to each individual subject

and finds the common structure for all of them by employing different strategies, such as

averaging the community structures across subjects, voting for the community structure

that the majority of the subjects agree on, or finding the most representative subject whose

structure is the most similar to the other subjects in the group. However, both VTS and

IS approaches ignore the between-subject variability and the results may be influenced by

outliers [34]. In this chapter, instead of dealing with individual results from each subject, we

focus on modifying the community detection algorithm itself by combining all of the infor-

mation from the data. To be specific, instead of maximizing the modularity and identifying

the communities of each subject separately, we detect the community structure of a group

by maximizing the total modularity of the group. Our proposed method has the advantage

of being more computationally efficient than IS, because IS spends a large amount of time in

detecting the community structure for each subject. Finally, the algorithm proposed in this
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chapter is applied to multivariate EEG recordings which offer a better view of the dynamic

change of community structure with high temporal resolution compared to fMRI.

4.2 Background

4.2.1 Modularity

The concept of modularity is motivated by the idea that nodes in the same module have very

dense connections and nodes in different modules have sparse inter-module connections [101].

Modularity was proposed as a quality function to choose the best partition of a network such

as in the Girvan-Newman algorithm [98] and is widely used as an optimization criterion in

many graph clustering methods [107, 34, 1, 101, 108]. A good partition of a network has

high modularity Q with Q=(fraction of edges within communities)-(expected fraction of

such edges) [98], where the expected fraction of edges is evaluated for a random graph. The

original expression of modularity for undirected binary networks is given as,

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δci,cj , (4.1)

where A is the adjacency matrix with Aij = 1, if i and j are connected, and Aij = 0

otherwise, ki is the degree of vertex i, δci,cj is equal to 1 when i and j are in the same

community and is equal to 0 otherwise. For a directed network, the probability of a directed

edge relies on the in-degree and out-degree of the vertex. Leicht et al. extended the definition

of modularity to directed binary networks as [101],

Qd =
1

m

∑
i,j

[
Aij −

kouti kinj
m

]
δci,cj , (4.2)

where kini (kouti ) is the in-degree (out-degree) of vertex i. Arenas et al. gave a more general

expression of modularity for directed weighted networks [108],

Qgen =
1

W

∑
i,j

[
Aij −

souti sinj
W

]
δci,cj , (4.3)
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where Ai,j is the weight of edge ei,j , s
in
i (souti ) is the in-degree (out-degree) of vertex i,

and W =
∑

i,j Ai,j . In this chapter, Ai,j is quantified by the directed information measure

introduced in Chapter 1.

4.2.2 Overview of community detection methods

Uncovering community structure is a key step to the understanding of a complex network.

The idea of community detection is closely related to graph partitioning in computer science

and hierarchical clustering in sociology. Therefore, traditional approaches in these two ar-

eas can be employed for community detection [109, 39]. Kernighan-Lin algorithm is one of

the representative heuristic algorithms in graph partitioning [103]. It starts with an initial

partitioning of the graph into two clusters with pre-defined sizes and tries to maximize the

differences between the number of edges inside the modules and the number of edges lying

between modules. However, the pre-defined size of a cluster is usually unknown and the

performance of this algorithm is highly dependent on the initial partition of the graph [39].

On the other hand, hierarchical clustering algorithms do not require any a priori knowledge

of clusters and try to group nodes into the same community (agglomerative) or split nodes

into different clusters (divisive) by quantifying the similarity between pairs of nodes. The

results are presented in a dendrogram or tree, but the algorithms fail to express the best

level of partitioning during the processes. To find the optimal partitioning, Girvan-Newman

algorithm proposed to not only use the ‘edge betweenness’ measure to remove edges from

the network, but also to use the modularity function Q as a stopping criterion to choose the

best level of partitioning [98]. In addition, the proposition of modularity function Q leads

to the development of another category of community detection algorithms which is based

on the optimization of modularity. To optimize modularity, greedy techniques, simulated

annealing, extremal optimization and spectral optimization are widely employed. Unlike

simulated annealing and extremal optimization, which may encounter the problems of high

computational complexity and not being applicable to large networks [110, 39, 111], the

92



greedy strategies and spectral optimization are more commonly used for finding the commu-

nity structure of a network with the maximum modularity. Newman was the first to propose

a greedy strategy to maximize the modularity [112] and since then several improvements of

the algorithm were proposed to improve the detection accuracy [39, 113, 114]. Later, New-

man proposed a more efficient approach based on the bipartition of the modularity matrix,

which uses the eigenvalues and eigenvectors of the modularity matrix to find a solution for

the community detection problem (spectral optimization) [107].

Although most of the modularity-based community detection algorithms have focused on

binary and undirected networks, in recent years there have been some extensions to weighted

and directed networks. Because a weighted and directed link can reflect both the strength

and direction of the interaction between two nodes, which can reveal more characteristics of

a system than the binary and undirected network. For example, Leicht et al. extended the

definition of modularity to binary directed networks and employed spectral optimization to

find the community structure for directed networks. This technique works well for bipartites,

but is less applicable to networks with a large number of communities [39] and weighted links.

An alternative approach is to represent the directed network as an undirected bipartite

network. To do this, each node in the network is split into two nodes, with one node only

receiving information and the other node only sending information. In this way, community

detection algorithms for bipartite networks can be employed for directed networks [115].

However, this approach is limited to networks with a small number of clusters. Recently,

Blondel et al. introduced an alternative greedy algorithm to find the hierarchical structure

of undirected weighted graphs [1], the computation time of which is comparable to spectral

optimization [39]. In this chapter, we extend this algorithm to directed weighted graphs for

community detection.
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4.2.3 Group analysis approaches

In many neuroimaging studies, extracting a common set of features or a representation for

a group of subjects such as the common community structure is more important than ex-

tracting features for individual subjects. This common structure usually gives us an overall

understanding of the group, while individual subject level representations show the subject-

specific features. There are three major group analysis strategies that can be employed

for community detection, i.e., the ‘virtual-typical-subject’ (VTS) approach, the ‘individual

structure’ (IS) approach, and the algorithm-based approach [116, 117]. The VTS approach

assumes that data from each subject performs the same function or follows the same distribu-

tion. It reconstructs a virtual subject by pooling or averaging the group data or connectivity

matrices and obtains one community structure for the whole group. However, this approach

does not consider the inter-subject variability and may fail when the behavior from subject

to subject is not consistent [116, 117]. Therefore, the results may not reflect any of the

features seen in individual analysis [118]. The IS approach applies a community detection

algorithm to every individual subject and finds a unanimous community structure from these

individual structures. Since this subject-specific strategy considers diversity across subject-

s, various strategies are employed to integrate inconsistent results. A common community

structure can be obtained through either averaging individual structures or voting/consensus

algorithms [119]. For example, replicator dynamics proposed by Neumann et al. can be used

to capture nodes that are jointly presented in the same cluster across subjects by analyzing

the structures obtained from individual subjects [120]. An alternative strategy to combine

the results in IS is to find the most representative subject, whose structure is the most

similar to all other subjects in the group [34] and can be used to represent the structure

of the whole group. However, this approach may lose important information provided by

other subjects, and may be even worse than just averaging the community structure over

subjects. The IS approach is usually computationally expensive since it requires the ex-

traction of the community structure for each subject before obtaining a common structure.
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Both the VTS and IS approaches focus on either preprocessing the data or post-processing

the community structures obtained from each subject. However, none of these approaches

reveals the community structure of multiple subjects by directly extending the community

detection algorithm to multiple subjects. Recently, some work has been done to address the

data-fusion or group inference problems at the algorithm level. Mechelli et al. constructed

a network or covariance matrix that comprises of m nodes from n subjects and assumed the

same model with different model parameters for all subjects [117]. However, this strategy is

more suitable for model-based approaches rather than clustering problems. For data-driven

problems, Correa et al. extended the canonical correlation analysis (CCA) to multi-set CCA

by optimizing an objective function of the correlation matrix of multiple canonical variates

instead of two such that the correlation among multiple variates is maximized [121]. Similar

to the multi-set CCA, which redefines the optimization problem for multiple subjects, in this

chapter, we propose a group analysis method by optimizing a common modularity function

of directed networks from multiple subjects.

4.3 Algorithm for community detection

In this section, we first extend the method proposed by Blondel et al. to weighted directed

networks [1] and then propose an extension for group analysis. The algorithm proposed by

Blondel et al. is originally a modularity based community detection algorithm for undirected

weighted networks. To reveal the community structure of an undirected weighted network,

it maximizes the modularity through greedy search. Initially, all nodes of the network are

in different communities. The algorithm is divided into two phases. In the first step, for

each node i, the gain in the modularity when node i is assigned to the community of its

neighbor j (Ai,j ̸= 0) is computed and node i is assigned to the community which has the

largest positive increase in modularity. This procedure is repeated for all the nodes until

the modularity does not increase any more. In the second step, a new network is built by

aggregating those nodes in the same community at the first step and forming meta-nodes.

95



1

2 0

4 5

1

2 0

4 5

3

7

6

14 4
3

7

6

4

14 4

4

M
odula

rit
y 

O
ptim

iz
at

io
n

C
o
m

m
u
n
ity 

A
ggregatio

n

1st Step 2nd Step

Figure 4.1: Hierarchical optimization of modularity by Blondel et al. [1]. The algorithm is
divided into two phases. First, each node is assigned to a community and the algorithm
tries to combine small communities by optimizing modularity locally. Second, it builds a
new network by aggregating those nodes in the same community at the first step. These two
steps are repeated iteratively until a maximum of modularity is reached.

The weight of the edge between two meta-nodes is the sum of the weights of edges between

nodes in the two corresponding communities from the previous step. These two steps are

repeated iteratively until a maximum modularity is reached. Compared to the existing

modularity based methods, this approach is fast and can reveal the hierarchical structure of

a network [39, 1]. The change of modularity is always computed with respect to the initial

graph to guarantee the convergence of the algorithm [39]. An illustration of this algorithm

is shown in Figure. 4.1.

4.3.1 Algorithm for community detection in weighted directed networks

In this subsection, in order to reveal the community structure of the functional human

brain network which is known to have a hierarchical structure [37], we propose to extend

Blondel’s approach to directed weighted networks. Initially, all vertices of the graph are

put in different communities. The algorithm for uncovering the community structure of a

directed weighted network consists of two steps. First, for each node i, the gain in the

modularity ∆Qgenj is computed when the node is assigned to the communities of all other

nodes j, where j = 1, · · · , N , j ̸= i. The original algorithm only evaluates the change of
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modularity when node i is assigned to the communities of its neighbors j, where j is defined

as the neighbor of i when Ai,j ̸= 0, which may be inaccurate and yield spurious partitions

in practical cases [39]. For this reason, we consider the change of modularity with respect

to all other nodes. Once ∆Qgenj is obtained, where j = 1, · · · , N , j ̸= i, the community for

which ∆Qgenj is positive and highest is chosen as the new community for node i. ∆Qgenj ,

which partly determines the efficiency of the algorithm, can be computed as follows,

∆Qgenj =
1

W

Nj∑
p=1

Ai,jp −
souti sinjp
W

+ Ajp,i −
sini s

out
jp

W


− 1

W

Ni−1∑
p=1

Ai,ip −
souti sinip
W

+ Aip,i −
sini s

out
ip

W

 ,

(4.4)

where jp ∈ Cj , ip ∈ Ci and ip ̸= i, Nj (Ni) is the number of nodes in community Cj

(Ci) to which node j (i) belongs to, sini (souti ) is the in-degree (out-degree) of vertex i, and

W =
∑

i,j Ai,j . The first term in the right hand side of the above equation is the gain

of modularity when node i moves to the community of node j, Cj , while the second term

is the modularity gained when node i stays in its original community Ci. This process is

sequentially and repeatedly applied to all nodes until there is no gain in modularity. At

this stage, the partition of the network at the first level is obtained. Next, nodes in the

same community after the first step are used to form several meta-nodes. The number of

meta-nodes is equal to the number of current communities and the weights between any two

meta-nodes are given by the sum of the weights of edges between nodes in the corresponding

communities [1].

Anew(inew, jnew) =

Ni∑
i=1

Nj∑
j=1

Ai,j , (4.5)

where inew, jnew = 1, · · · , tN with tN being the current number of meta-nodes, and Ni,

Nj are the number of nodes in the two clusters. Note that since the network is directed,

Anew(inew, jnew) ̸= Anew(jnew, inew). The two steps are iterated until the modularity

cannot increase anymore, and several levels of partitions are obtained at different resolutions.
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Require: Weighted adjacency matrix A ∈ (0, 1)N×N , nodes 1, · · · , N , initial commu-
nity structure C = {{1}, · · · , {N}}, tN = N .

Ensure: M Communities.
1: Compute the modularity Q of the network;
2: repeat
3: ∆Qtotal = 0, nchange = 0;
4: repeat
5: for h = 1 to tN do
6: for j = 1 to tN do
7: The change of modularity ∆Qgenj when node h is assigned to Cj ;

8: end for
9: j∗ = argmaxj ∆Qgenj ;

10: if ∆Qgenj∗ > 0 then

11: Cj∗ = Cj∗ ∪ vh;
12: end if
13: end for
14: Compute the change of the modularity ∆Qtotal = Qnew −Q;
15: if ∆Qtotal > 0 then
16: Q = Qnew, nchange = nchange+ 1;
17: end if
18: until ∆Qtotal ≤ 0
19: Nodes in the same community form new meta-nodes;
20: tN is equal to the current number of communities;
21: Recompute the weighted matrix A ∈ (0, 1)tN×tN ;
22: until nchange = 0.

Figure 4.2: Algorithm 4: community detection of weighted networks

Low resolution indicates the number of nodes (meta-nodes) is small. The first level of

partitioning (before the formation of meta-nodes) has the highest resolution. The modularity

is always computed with respect to the initial graph topology, in this way, the two-step

iterative procedure will not be trapped at a local maximum. This algorithm is summarized

in Figure 4.2.

4.3.2 Algorithm for community detection for multiple subjects

One of the remaining challenging problems for the application of this algorithm is the group

analysis when information from multiple subjects needs to be merged. As we mentioned in
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the background part, the standard approach to group analysis is based on either averaging

the data or averaging the detected community structure from each subject. In this subsec-

tion, we propose a community detection algorithm for multiple subjects by integrating the

information from each subject at the algorithm level, which can take both the inter-subject

variability and commonality into account. To be specific, for the algorithm proposed above,

we only take into account the change of modularity for moving one node to the community

of another node for each subject. However, this activity leads to the change of modularity

in all subjects. Therefore, we compute the change in modularity ∆Qk
genj

for subject k when

assigning node i to the communities of all other nodes j, where j = 1, · · · , N , j ̸= i, and

k = 1, · · · , L with L being the number of subjects, and try to maximize a common modular-

ity function, i.e, the sum of the gain in modularity for all subjects ∆Qgenj =
∑L

k=1∆Q
k
genj

.

In this way, the effect of outliers is directly decreased at the algorithm level. The details are

shown in Figure 4.3.

4.4 Results

In this section, we first illustrate the importance of edge direction information for revealing

the real structure of a directed network by a simulated synthetic network. We then test

the effectiveness of the proposed community detection algorithm for group analysis on both

synthetic networks and real EEG data.

4.4.1 Directed vs. undirected networks

Most of the existing community detection algorithms are intended for the analysis of undi-

rected and binary networks. However, many networks of interest, such as biological networks,

are directed. One approach that has been commonly employed for community detection in

directed networks is to directly apply the algorithms designed for undirected networks with-

out considering the edge direction information [101]. To illustrate the importance of edge
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Require: Weighted adjacency matrix Ai ∈ (0, 1)N×N , i = 1, · · · , L with L be-
ing the number of subjects, nodes 1, · · · , N , initial community structure C =
{{1}, · · · , {N}}, tN = N .

Ensure: M Communities.
1: Compute the modularity Qi of subject i, i = 1, · · · , L;
2: The modularity of the group is Q =

∑L
i=1Qi;

3: repeat
4: ∆Qtotal = 0, nchange = 0;
5: repeat
6: for h = 1 to tN do
7: for j = 1 to tN do
8: The change of modularity ∆Qi

genj
when node h is assigned to Cj for

subject i, i = 1, · · · , L;
9: The change of the whole group is ∆Qgenj =

∑L
i=1∆Q

i
genj

;

10: end for
11: j∗ = argmaxj ∆Qgenj ;

12: if ∆Qgenj∗ > 0 then

13: Cj∗ = Cj∗ ∪ vh;
14: end if
15: end for
16: Compute the modularity of the whole group Qnew =

∑L
i=1Q

i
new, Q

i
new is the

modularity of subject i;
17: Compute the change of the modularity ∆Qtotal = Qnew −Q;
18: if ∆Qtotal > 0 then
19: Q = Qnew, nchange = nchange+ 1;
20: end if
21: until ∆Qtotal ≤ 0
22: Nodes in the same community form new meta-nodes;
23: tN is equal to the current number of communities;
24: Recompute the weighted matrix Ai ∈ (0, 1)tN×tN of subject i, i = 1, · · · , L;
25: until nchange = 0.

Figure 4.3: Algorithm 5: community detection of multiple weighted networks
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direction information for community detection, we generate a simulated directed network

and employ two strategies to detect the community structure of this network. The first ap-

proach is to apply our proposed algorithm to the association matrix of the directed network

A directly and the second approach is to ignore the edge direction information and apply the

original Blondel’s algorithm to the association matrix of the undirected network 1
2(A+AT ),

where AT is the transpose of matrix A. The simulated network consists of 24 nodes and 2

clusters, with each cluster having 12 nodes. Nodes 1 to 12 are in the same cluster, while the

rest are in the other cluster. Each entry of the association matrix A is uniformly distributed

between [0, 1], which resembles the normalized DI value and A is not symmetric. The mean

of connectivity strength in each cluster is 0.5. The mean inter-cluster connectivity strength

from cluster 1 to 2 is 0.9, and from 2 to 1 is 0.1 . The standard deviation of the connectivity

strengths in each cluster is 0.2. The community detection results are evaluated by computing

the percentage of false discoveries or false discovery rate (FDR) F ,

F =
N∑
i,j

Oi,j −Mi,j

N2
(4.6)

where N is the number of nodes, Oi,j is a binary matrix with entries equal to 1 if nodes i

and j are in the same cluster. If nodes i and j are identified in the same cluster by the algo-

rithm, then Mi,j = 1 and Mi,j = 0 otherwise. The community detection results are shown

in Fig. 4.4. We observe that the proposed algorithm can detect the community structure of

the network if we use the edge direction information (Figure 4.4(b)), whereas the original

algorithm designed for undirected networks fails to capture the actual community structure

(Figure 4.4(c)). Without loss of generality, we generate the network 100 times and the aver-

age false discovery rates for both approaches are obtained. If we consider the edge direction,

the false discovery rate is 0.0423 and is 0.4789 otherwise. Therefore, our algorithm has good

performance for community detection of directed networks and can reveal the real structural

information of the directed network that conventional clustering algorithms for undirected

networks cannot. In fact, when the association matrix of a network is strongly asymmetric
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or the total in-degree and out-degree for each node is significantly different, the difference

of the community detection results between directed and undirected representation of the

network will be relatively large, and the community detection results based on representing

the network with directed weighted graphs can reveal the real community structure of the

network.
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Figure 4.4: Community detection of different representation of the network. Communi-
ty membership matrices for (a) Actual community structure. (b) Community structure
obtained from the proposed algorithm which considers edge direction information. (c) Com-
munity structure obtained from Blondel’s original algorithm which does not consider edge
direction. White indicates that the corresponding node pairs are not in the same cluster
(cluster N/A). Gray indicates that the corresponding node pairs are in cluster 1. Brown
indicates that the corresponding node pairs are in cluster 2.

4.4.2 Group analysis on synthetic data

In this subsection, we evaluate the performance of the proposed group analysis algorithm by

applying it to a single simulated network and a group of simulated networks. In addition, we

compare our proposed group analysis algorithm with alternative group analysis approaches to

show the effectiveness of our method. First, we test our algorithm on a directed network with

64 nodes and 4 clusters, with each cluster having 16 nodes. Each entry of the association

matrix is uniformly distributed between [0, 1], which resembles the normalized DI value.

Means of intra-cluster connectivity strength in the four clusters are 0.3, 0.5, 0.7, and 0.9,

respectively. The mean of inter-cluster connectivity is 0.15. To demonstrate the robustness
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Figure 4.5: Average false discovery rate of the community detection algorithm for a simulated
directed weighted network.

of the algorithm, the standard deviation of these distributions is modified from 0.1 to 0.5

with a step size of 0.1. Without loss of generality, we generate the network 50 times and

the average false discovery rate F is obtained for different standard deviations. The result is

shown in Figure 4.5. We observe that the false discovery rate grows with increasing standard

deviation of the strength of connectivity for each edge. Even so, the maximum false discovery

rate of our algorithm is 0.126, which is low and acceptable.

To test the effectiveness of the proposed group analysis method, we test Algorithm 5

(Figure 4.3) on a group of ten directed networks with the same community structure. Each

network has 64 nodes and 4 clusters, with each cluster having 16 nodes. Each entry of the

association matrix is uniformly distributed between [0, 1]. Means of intra-cluster connectivity

strength in the four clusters are 0.3, 0.5, 0.7, and 0.9, respectively. The mean of inter-

cluster connectivity is 0.15. For each network, the standard deviation of all the edge values

are randomly chosen from [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], which leads to the variation

across the ten networks. Without loss of generality, we generate 50 simulations of networks

to get the average false discovery rate. In addition, we compare our method with two

standard approaches, i.e., VTS (average the association matrix) and IS (average the subject-
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Table 4.1: Average false discovery rate for group analysis methods

Proposed Algorithm VTS IS (average) IS (voting)

FDR 0.0175 0.0225 0.6254 0.0231

Time (s) 141.1615 13.7438 141.9871 141.9870

specific community structure or majority voting). The average false discovery rate F for each

method is shown in Table 4.1. We observe that the proposed algorithm outperforms existing

approaches with the lowest false discovery rate, which indicates our proposed method can

provide promising results for group analysis problems. In addition, our proposed method is

slightly computationally more efficient than IS but less efficient than VTS. Due to the fact

that VTS is applied to averaged association matrix, it is only applied once instead of ten

times. IS approach consumes a large amount of time in extracting the community structure

for each subject before obtaining a common structure, while our proposed algorithm spends

time in computing the change of modularity for all subjects when combing small clusters.

4.4.3 Group analysis on EEG Data

In this chapter, we examined EEG data from a study containing the error-related negativity

(ERN) as described in Chapter 1. Previous work indicates there is increased information

flow associated with ERN for the theta frequency band (4 − 8 Hz) and ERN time window

25 − 75 ms for Error responses (ERN) compared to Correct responses (CRN) [122]. The

EEG data collected are preprocessed by the spherical spline current source density (CSD)

waveforms to sharpen event-related potential (ERP) scalp topographies and eliminate volume

conduction [73]. In addition, the bandpass filter is used to obtain signals in the theta band.

The effective connectivity quantified by the time-lagged DI is computed over a window

corresponding to the ERN response (0 − 100 ms after the response), for all trials between

each pair of 61 electrodes in the theta band. The time-lagged DI is averaged over the

information flow within 10 − 20 ms time delay [59], i.e. , d = 5, · · · , 10 in equation (2.13).

104



Once the connectivity matrices for each response type and each subject are obtained, we use

Algorithm 5 to identify the community structure of each response type. Since the proposed

clustering approach is multi-level, we give the clustering results at all levels for each response

type. The results are shown in Figure 4.6 and Figure 4.7. We observe that both the CRN

and ERN show hierarchical structures. The optimal number of partition levels for the CRN

is 3, while for the ERN it is 4. Since the modularity for each response type achieves its

maxima at the top (final) level, we interpret the partition at the top (final) level for each

response type. The third level of partition for CRN has three large clusters, i.e., frontal,

parietal, and some nodes in the central regions, which indicates that the frontal and parietal

regions exchange information through the central nodes. The fourth level of partition for

ERN also has three large modules, i.e., left frontal-central region, right front-central-parietal

region, and the parietal region, which indicates that the frontal and parietal regions work

together when an error occurs, and the left and right side of the brain work differently.

The differences between CRN and ERN also implies that ERN has more large-scale (across

different regions) interactions compared to CRN, while the information flow in CRN is more

local or less integrated. These results are aligned with previous work which indicates that

there is increased information flow associated with ERN for the theta frequency band (4− 8

Hz) and ERN time window 25− 75 ms for Error responses compared to correct responses in

particular between mPFC and lPFC regions [74].

Though we have the community structures for both CRN and ERN at different reso-

lutions, there are still two issues that need to be addressed. First, we need to determine

whether the obtained clusters are significantly different from those from a random network.

In order to address this issue, the modularity of the community structure from the actual

data needs to be compared with modularity from random networks. Second, the modular-

ity is known to have the problem of resolution limit for weighted graphs and it may not

be the best criterion for the evaluation of the obtained community structure of a weighted

network [123]. Therefore, we propose to determine the optimal level of partition for each
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Figure 4.6: Applying the multi-subject community detection algorithm to 10 subjects for
CRN. (a) The first level of partition for CRN. (b) The second level of partition for CRN. (c)
The third level of partition for CRN.
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Figure 4.7: Applying the multi-subject community detection algorithm to 10 subjects for
ERN. (a) The first level of partition for ERN. (b) The second level of partition for ERN. (c)
The third level of partition for ERN. (d) The fourth level of partition for ERN.
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Table 4.2: Comparison of Modularity for CRN with for random graphs

Modularity Level 1 Level 2 Level 3

CRN −0.0125 0.0678 0.0992

Averaged across random graphs −0.0512 −0.0027 0.0151

Table 4.3: Comparison of Modularity for ERN with for random graphs

Modularity Level 1 Level 2 Level 3 Level 4

ERN −0.0161 0.0587 0.0813 0.087

Averaged across random graphs −0.0526 −0.0053 0.0130 0.0170

response type in terms of information flow. To address the first problem, we compute the

modularity from random graphs and compare them with the modularity obtained from the

CRN and ERN. For comparison, random graphs that have the same number of nodes and

weighted links with the original graphs are generated. To be specific, we keep the weight

of each link unchanged and randomly assign the links [32]. In this way, the differences of

modularity between real networks and random networks are mainly due to the structure of

the network. We generate 100 sets of random graphs for each response type, which have

the same level of partitions with the original one, i.e., for the CRN the number of levels

is 3 and for the ERN it is 4. The modularity from the original networks of both response

types and the modularity averaged across random networks at different levels of partitions

are summarized in Tables 4.2 and 4.3. The modularity for the original networks is greater

than that of random graphs. In addition, the null hypothesis, i.e. the modularity obtained

from the CRN and ERN is not different from the modularity from random graphs at each

level of partition, is rejected at α = 0.001 significance level. Therefore, the clusters obtained

for each response type reveal significant differences from the equivalent random networks,

which indicates significant modular structures for both response types.

Modularity may sometimes fail to determine the best partition for a weighted network.

Therefore, we propose to determine the best partition in terms of information flow. We
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choose the partition which has high information flow inside the module and low information

flow between modules to represent the community structure of the whole group. In this

way, we can also reveal the community at different resolutions in terms of information flow.

Suppose we have K clusters at partition level l, the ratio between intra-cluster and inter-

cluster information flow is given as follows,

WIFLk =
1

N2
k

∑
i,j∈Ck

TAi,j ;

BIFLk =
1

K − 1

K∑
p=1,p̸=k

∑
i∈Ck,j∈Cp

TAi,j + TAj,i

2×Nk ×Np
;

R =
1

K

K∑
k=1

WIFLk
BIFLk

,

(4.7)

where Nk is the number of nodes in cluster Ck, k = 1, · · · , K, TA = 1
L

∑L
m=1A

m where Am

is the association matrix of the mth subject in the group and L is the number of subjects

in that group (In our analysis L = 10), WIFLk is the information flow within cluster k,

BIFLk is the averaged inter-cluster information flow between cluster k and other clusters,

while R is the averaged ratio of intra-cluster information flow to inter-cluster information

flow over clusters. We compute the information flow ratio for both the CRN and ERN

response types and compare this ratio with the one obtained from random assignment of the

cluster labels to each node for each response type. To be specific, for each level of partition,

we keep the number of clusters and the number of elements in each cluster unchanged, but

randomly assign each node a community label and compute the information flow ratio at each

level. In this way, the differences of information flow within and among clusters between real

networks and random networks at each specific level of partition are mainly due to the level-

specific structure rather than the number of clusters and the number of nodes in each cluster.

For each level of partition, we repeat the random assignment 100 times and the averaged

information flow ratio across these random networks are shown in Figure 4.8. We observe

that at each level of partition the information flow ratio obtained from original community

structure is higher than the ratio averaged across random graphs. In addition, for each level
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of partition, the hypothesis that there is no difference between the information flow ratio of

the original community structure and a randomly assigned community structure is rejected

at α = 0.001 significance level. Therefore, the obtained structures at each level of partition

for brain networks are significantly different from random graphs, which is aligned with

the results when using modularity for significance testing. We also observe that ERN has

a slightly higher information flow ratio, i.e., stronger within cluster information exchange

compared to intra-cluster information exchange, which indicates strong local activity or

functional segregation compared to CRN. On the other hand, for the comparison of best

representation of CRN and ERN in terms of information flow, we choose the second level

of partition for both groups (Figure 4.6(b) and Figure 4.7(b)), because the information

flow ratio of both response types reaches the local maxima at level 2. We observe that

at this level the ERN group and the CRN group have different clustering (Figure 4.6(b)

and Figure 4.7(b)) in the frontal and central-parietal regions. The frontal and central-

parietal regions around the cerebral midline are not in the same cluster for ERN, which

shows the functional specialization of the frontal and central-parietal regions around the

cerebral midline whereas for CRN that specialization does not exist. On the other hand, the

right lateral frontal and central-parietal regions are in the same cluster for ERN, which is

contrary to the CRN. These results are aligned with the previous work in [75], which shows

that error processing is controlled by the communication between the lateral prefrontal cortex

and medial prefrontal cortex.

4.5 Conclusions

In this chapter, we propose a method to identify modules in the effective brain network.

In order to achieve this goal, first, we applied the directed information measure to EEG

data involving a study of ERN to obtain the association matrix of the network. Directed

information can effectively detect the nonlinear causal relationship between EEG signals,

which is the basis for obtaining a reliable community structure. In addition, we extended
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Figure 4.8: The information flow ratio of both response types and their corresponding ran-
dom networks.

a modularity based community detection algorithm proposed by Blondel et al. to weighted

directed networks. Compared to current community detection methods, our proposed algo-

rithm discovers the actual structure of a directed network by employing the edge direction

information. Finally, we proposed a group analysis method to obtain a common community

structure across subjects to address the problem of variability across subjects. We extended

the idea of modularity optimization from a single subject to a group of subjects. This strat-

egy decreases the effect of outliers without making any assumptions about the data. The

proposed group analysis method has higher accuracy in community detection than standard

approaches, such as VTS and IS. It is also applied to EEG data and is shown to discriminate

between error and correct responses in terms of the community structures obtained.

The proposed algorithm is based on the optimization of modularity. However, the mod-

ularity optimization encounters the problem of resolution limit, which indicates that it may

miss detecting clusters whose size is comparatively small to the whole graph [39]. Therefore,

it would be of interest to investigate and extend methods that do not depend on modularity

optimization, e.g. random walk, to find the common communities across a group of weight-

ed directed networks. In addition, one can consider overlapping communities by extending
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the current framework to consider multiple community memberships. Finally, this work

can be extended to dynamic networks and detect the change of modules across time and

frequency [102, 124].
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Chapter 5

SUMMARY AND FUTURE WORK

This thesis discusses the problem of revealing the underlying structure of complex networks

from multivariate time series. In particular, we focus on quantifying the pairwise causal rela-

tionships, inferring the topological structure, and detecting functional modules of a complex

network.

5.1 Summary

The first part of this thesis focuses on finding a proper measure to quantify the interaction

and causality between two random processes. To achieve this goal, we tried to answer the

following questions: (1) What are some suitable measures? (2) What are the problems in

the implementation and application to real data with limited sample size? Motivated by

these questions, we introduced directed information and illustrated its relationship with ex-

isting measures, such as Granger causality, mutual information, and transfer entropy. The

implementation of DI requires large sample sizes and is very time consuming. To reduce

the computational complexity of computing DI while still quantifying the causal dependen-

cies, we derived simplified expressions of DI, i.e., the time-lagged directed information and

modified directed information. We also showed the relationship between modified directed

information and transfer entropy. The proposed expressions are shown to be more efficient

than the original DI in terms of computational complexity and capture more causal de-

pendencies than short time DI without considering time lags. Moreover, we compared the

performance of DI with model based measures such as Granger causality on different realistic

signal models, and DI is found to be applicable to a wider range of signal types. In addition,

we developed a new directed information estimation method based on multi-information and

provided a quantitative comparison of various DI estimation methods.
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Quantifying the pairwise causal relationships does not reflect the true topological struc-

ture of a system. Two nodes which have a high DI value may influence each other indirectly

through a third node. In the second part of our proposed work, we pointed out the drawback

of only using directed information for network inference, i.e., using DI alone can not distin-

guish direct causality from indirect causality. Therefore, the conditional directed information

is applied to address this problem. Moreover, time-lagged conditional directed information

and the modified conditional directed information are proposed to reduce the computational

complexity. Three algorithms are proposed for network inference and the results for both

linear and nonlinear networks are shown. The results of our algorithms on simulated data

show that the combination of modified DI and CDI can effectively increase the accuracy of

network inference.

The proposed network inference algorithms are able to detect the organization of any

collection of triplets in a network, but may fail to reflect the dynamics between a large group

of nodes or signals because of the limitation of computational complexity. In the last part

of our proposed work, we aim to simplify the inferred networks as well as to determine the

functional modules that result in the observed connectivity patterns by developing commu-

nity detection algorithms for directed networks. We introduced a hierarchical community

detection algorithm to discover the modules in a complex weighted directed network. In

addition, we proposed a group analysis method to obtain a common community structure

across subjects to address the problem of variability across subjects in neurophysiological

study. We applied the proposed framework to an EEG data set collected during a study of

cognitive control networks in the brain. In particular, we looked at a data set of subjects

involved in error-processing. The proposed method is applied to both synthetic data and

EEG data and is shown to discriminate between error and correct responses in terms of the

community structures obtained.
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5.2 Future work

There are still remaining challenges with the application of causality measures to real mul-

tivariate data and the inference of network structure. Some of these challenges include:

• The extension and evaluation of the proposed community detection algorithm. Al-

though the proposed community detection algorithm has promising performance, there

are some issues remaining to be addressed. First, both theoretical and practical devel-

opment may be needed to explain which representation (directed or undirected graph)

is more suitable for revealing the actual module structure of the network in different

scenarios. For example, when the association matrix quantified by effective connectivi-

ty is approximately symmetric, the results of community detection based on functional

and effective connectivity will be similar to each other. Second, one node can belong to

more than one community, therefore, it might be interesting to extend the algorithm

to uncover the overlapping community structure of a network. Third, the community

structure of the brain network may change over time, therefore, community structure

for a group of time-dependent, multi-scale networks are needed. Mucha et al. devel-

oped a generalized framework for network quality function that detects the community

structure in time-dependent multi-scale and multiplex networks [125]. This approach

may be extended to find the community structure of the effective brain network over

time.

• The group analysis proposed in Chapter 4 may also be applied to the network inference

problem. The proposed network inference algorithm was applied to synthetic data,

but when applied to the EEG data, the results are hard to interpret because of the

variability across subjects. Therefore, instead of reconstructing the brain network

for each subject, it is possible to reconstruct one network for the whole group. For

example, we can keep the common strong connections and remove the common indirect

connections for a group. In addition, the accuracy of the inference algorithm can
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also be improved by considering more complex scenarios. Node X may influence Y

through nodes Z and W and it is hard to remove the false positive connection between

X and W when only computing DI(X → Y||Z) or DI(X → Y||W) , because the

conditional directed information will equal to zero when considering both nodes, i.e.,

DI(X → Y||ZW). However, considering more nodes means higher dimensionality

and computational complexity compared to only considering one node. Therefore,

more reliable estimation of conditional directed information is needed. This problem

can be addressed by either using parametric density models or improving existing

mutual information and entropy estimators. In addition, the performance of MCDI

and TLCDI also depend on the estimated order of the model. Recently, Faes et al.

proposed a sequential procedure to determine the embedding dimension of multivariate

series [80]. This method is based on an information-theoretic technique and shows

promising performance for various signal models, which may be extended to MCDI

and TLCDI computation in the future.
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Appendix A

CONDITIONAL DIRECTED INFORMATION IN TWO GENERAL

TRIVARIATE MODELS

Two general models for triplets connected in a hub and chain pattern are given respectively

below:

Model 1: Hub Model

Xn = f(Xn−p1 , · · · , Xn−1) + un,

Yn = g(Xn−p2 , · · · , Xn−1, Yn−p3 , · · · , Yn−1) + vn,

Zn = h(Xn−p4 , · · · , Xn−1, Zn−p5 , · · · , Zn−1) + wn,

(A.1)

where X causes Y and Z (X is the hub), respectively. f(·), g(·), h(·) are three different

functions, p2 (p4) is the maximum time lag between X and Y (X and Z), p1, p3, and p5 are

the order of time series X, Y, and Z respectively. un, vn and wn are white Gaussian noises

and are independent of the signals.

Model 2: Chain Model

Xn = f(Xn−p1 , · · · , Xn−1) + un,

Yn = g(Xn−p2 , · · · , Xn, Yn−p3 , · · · , Yn−1) + vn,

Zn = h(Yn−p4 , · · · , Yn, Zn−p5 , · · · , Zn−1) + wn,

(A.2)

where X causes Y, and Y causes Z (Y is the intermediate node). f(·), g(·), h(·) are three

different functions, p2 (p4) is the maximum time lag between X and Y (Y and Z), p1, p3,

and p5 are the order of time series X, Y, and Z respectively. un, vn and wn are white

Gaussian noises and are independent of the signals.

We compare two causally conditional directed information for both models, i.e.,DI(Y N →

ZN ||XN ) and DI(XN → ZN ||Y N ).
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• For hub case:

DI(Y N → ZN ||XN ) =
N∑
n=1

I(Y n;Zn|Zn−1Xn)

=
N∑
n=1

[H(Zn|Zn−1Xn)−H(Zn|Y nZn−1Xn)]

=
N∑
n=1

[H(h(Xn−p4 , · · · , Xn, Zn−p5 , · · · , Zn−1) + wn|Zn−1Xn)

−H(h(Xn−p4 , · · · , Xn, Zn−p5 , · · · , Zn−1) + wn|XnZn−1Y n)]

=
N∑
n=1

[H(wn|Zn−1Xn)−H(wn|XnZn−1Y n)]

=
N∑
n=1

[H(wn)−H(wn)] = 0.

(A.3)

where the forth equality comes from that H(Y |X1, · · · , Xn) = H(Z|X1, · · · , Xn) when

Y =
∑n

i=1Xi + Z [126], and the fifth equality is due to the fact that noise wn is

independent of signals.

DI(XN → ZN ||Y N ) =
N∑
n=1

I(Xn;Zn|Zn−1Y n)

=
N∑
n=1

[H(Zn|Zn−1Y n)−H(Zn|XnZn−1Y n)],

≥ 0.

(A.4)

where the inequality is true since conditioning reduces entropy and the equality holds

only when Xn and Y n are identical.

Therefore,

DI(XN → ZN ||Y N ) > 0 = DI(Y N → ZN ||XN ). (A.5)

• For chain case:

119



DI(Y N → ZN ||XN ) =
N∑
n=1

I(Y n;Zn|Zn−1Xn)

=
N∑
n=1

[H(Zn|Zn−1Xn)−H(Zn|XnZn−1Y n)]

≥ 0.

(A.6)

DI(XN → ZN ||Y N ) =
N∑
n=1

I(Xn;Zn|Zn−1Y n)

=
N∑
n=1

[H(Zn|Zn−1Y n)−H(Zn|Y nZn−1Xn)]

=
N∑
n=1

[H(h(Yn−p4 , · · · , Yn, Zn−p5 , · · · , Zn−1) + wn|Zn−1Y n)

−H(h(Yn−p4 , · · · , Yn, Zn−p5 , · · · , Zn−1) + wn|Y nZn−1Xn)]

=
N∑
n=1

[H(wn|Zn−1Y n)−H(wn|Y nZn−1Xn)]

=
N∑
n=1

[H(wn)−H(wn)] = 0.

(A.7)

Therefore,

DI(Y N → ZN ||XN ) > 0 = DI(XN → ZN ||Y N ). (A.8)
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Appendix B

COMPUTATION OF TIME-LAGGED CONDITIONAL DIRECTED

INFORMATION

In this Appendix, we compute the time-lagged conditional directed information for both hub

and chain models.

Model 1: X interacts with Y and Z with different time delays,

Xi = ui,

Yi = bXi−m + vi,

Zi = cXi−n + wi.

(B.1)

Therefore,

E(Xk) = 0, V ar(Xk) = σ2, Cov(XkXk+1) = 0,

E(Yk) = 0, V ar(Yk) = (b2 + 1)σ2, Cov(YkYk+1) = 0,

E(Zk) = 0, V ar(Zk) = (c2 + 1)σ2, Cov(ZkZk+1) = 0,

Cov(Xk−lYk) = E[Xk−l(bXk−m + vk)] =


bσ2, l = m

0, otherwise

Cov(Xk−lYk+1) = E[Xk−l(bXk+1−m + vk+1)] =


bσ2, l = m− 1

0, otherwise

Cov(Xk−lZk+n−m) = E[Xk−l(cXk+n−m−n + wk+n−m)] =


cσ2, l = m

0, otherwise

Cov(Xk−lZk+n−m+1) = E[Xk−l(cXk+n−m+1−n + wk+n−m+1)] =


cσ2, l = m− 1

0, otherwise
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Cov(Xk−l+1Yk) = E[Xk−l+1(bXk−m + vk)] =


bσ2, l = m+ 1

0, otherwise

Cov(Xk−l+1Yk+1) = E[Xk−l(bXk+1−m + vk+1)] =


bσ2, l = m

0, otherwise

Cov(Xk−l+1Zk+n−m) = E[Xk−l+1(cXk+n−m−n + wk+n−m)] =


cσ2, l = m+ 1

0, otherwise

Cov(Xk−l+1Zk+n−m+1) = E[Xk−l+1(cXk+n−m+1−n + wk+n−m+1)] =


cσ2, l = m

0, otherwise

Cov(YkZk+n−m) = E[(bXk−m + vk)(cXk+n−m−n + wk+n−m)] = bcσ2,

Cov(YkZk+n−m+1) = E[(bXk−m + vk)(cXk+n−m+1−n + wk+n−m+1)] = 0,

Cov(Yk+1Zk+n−m) = E[(bXk+1−m + vk+1)(cXk+n−m−n + wk+n−m)] = 0,

Cov(Yk+1Zk+n−m+1) = E[(bXk+1−m + vk+1)(cXk+n−m+1−n + wk+n−m+1)] = bcσ2.

(B.2)

Then we get the covariance matrix and obtain the CDI values for different values of l.

(1) For l = m,

|Xk−lXk−l+1YkYk+1Zk+n−mZk+n−m+1| = σ12, |Xk−lYk| = σ4,

|Xk−lZk+n−m| = σ4, |Xk−lXk−l+1Zk+n−mZk+n−m+1| = σ8,

|Xk−lXk−l+1YkYk+1Zk+n−m| = σ10, |Xk−lYkZk+n−m| = σ6,

|Xk−lXk−l+1Zk+n−m| = σ6,

CDIk(YkYk+1 → Zk+n−mZk+n−m+1|Xk−lXk−l+1) = 0.

(B.3)
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(2) For l = m− 1,

|Xk−lXk−l+1YkYk+1Zk+n−mZk+n−m+1| = (b2 + c2 + 1)σ12, |Xk−lYk| = (b2 + 1)σ4,

|Xk−lZk+n−m| = (c2 + 1)σ4, |Xk−lXk−l+1Zk+n−mZk+n−m+1| = (c2 + 1)σ8,

|Xk−lXk−l+1YkYk+1Zk+n−m| = (b2 + c2 + 1)σ10, |Xk−lYkZk+n−m| = (b2 + c2 + 1)σ6,

|Xk−lXk−l+1Zk+n−m| = (c2 + 1)σ6,

CDIk(YkYk+1 → Zk+n−mZk+n−m+1|Xk−lXk−l+1) =
1

2
log

(b2 + 1)(c2 + 1)

b2 + c2 + 1
.

(3) For l = m+ 1,

|Xk−lXk−l+1YkYk+1Zk+n−mZk+n−m+1| = (b2 + c2 + 1)σ12, |Xk−lYk| = (b2 + 1)σ4,

|Xk−lZk+n−m| = (c2 + 1)σ4, |Xk−lXk−l+1Zk+n−mZk+n−m+1| = (c2 + 1)σ8,

|Xk−lXk−l+1YkYk+1Zk+n−m| = (b2 + 1)σ10, |Xk−lYkZk+n−m| = (b2 + c2 + 1)σ6,

|Xk−lXk−l+1Zk+n−m| = σ6,

CDIk(YkYk+1 → Zk+n−mZk+n−m+1|Xk−lXk−l+1) = log
(b2 + 1)(c2 + 1)

b2 + c2 + 1
.

(B.4)

(4) For l ̸= m− 1,m,m+ 1,

|Xk−lXk−l+1YkYk+1Zk+n−mZk+n−m+1| = (b2 + c2 + 1)2σ12, |Xk−lYk| = (b2 + 1)σ4,

|Xk−lZk+n−m| = (c2 + 1)σ4, |Xk−lXk−l+1Zk+n−mZk+n−m+1| = (c2 + 1)2σ8,

|Xk−lXk−l+1YkYk+1Zk+n−m| = (b2 + 1)(b2 + c2 + 1)σ10,

|Xk−lYkZk+n−m| = (b2 + c2 + 1)σ6, |Xk−lXk−l+1Zk+n−m| = (c2 + 1)σ6,

CDIk(YkYk+1 → Zk+n−mZk+n−m+1|Xk−lXk−l+1) = log
(b2 + 1)(c2 + 1)

b2 + c2 + 1
.

(B.5)

The time-lagged conditional directed information between Y and Z given X can be
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simplified as:

CDIk(YkYk+1 → Zk+n−mZk+n−m+1|Xk−lXk−l+1)

=



1
2 log

(b2+1)(c2+1)

(b2+c2+1)
, l = m− 1

0, l = m

log
(b2+1)(c2+1)

(b2+c2+1)
, l ≥ m+ 1 or l < m− 1

(B.6)

Model 2: X causes Y, and Y causes Z,

Xi = ui,

Yi = bXi−m + vi,

Zi = cYi−(n−m) + wi.

(B.7)

.

E(Xk) = 0, V ar(Xk) = σ2, Cov(XkXk+1) = 0,

E(Yk) = 0, V ar(Yk) = (b2 + 1)σ2, Cov(YkYk+1) = 0,

E(Zk) = 0, V ar(Zk) = (c2 + 1)σ2, Cov(ZkZk+1) = 0,

Cov(XkYk+l) = E[Xk(bXk+l−m + vk+l)] =


bσ2, l = m

0, Otherwise

Cov(XkYk+l+1) = E[Xk(bXk+l+1−m + vk+l+1)] =


bσ2, l = m− 1

0, Otherwise

Cov(XkZk+m+n) = E[Xk(cYk+n+m−n + wk+n+m)] = bcσ2,

Cov(XkZk+m+n+1) = E[Xk(cXk+n+m+1−n + wk+n+m+1)] = 0,

Cov(Xk+1Yk+l) = E[Xk+1(bXk+l−m + vk+l)] =


bσ2, l = m+ 1

0, Otherwise

Cov(Xk+1Yk+l+1) = E[Xk+1(bXk+l+1−m + vk+l+1)] =


bσ2, l = m

0, Otherwise
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Cov(Yk+lZk+n+m) =


c(b2 + 1)σ2, l = m

0, Otherwise

Cov(Yk+lZk+n+m+1) =


c(b2 + 1)σ2, l = m+ 1

0, Otherwise

Cov(Yk+l+1Zk+n+m) =


c(b2 + 1)σ2, l = m− 1

0, Otherwise

Cov(YkZk+n−m+1) = E


c(b2 + 1)σ2, l = m

0, Otherwise

(B.8)

Then we get the covariance matrix and obtain the CDI values for different values of l.

(1) For l = m,

|XkXk+1Yk+lYk+l+1Zk+n+mZk+n+m+1| = σ12,

|Yk+lZk+m+n| = (b2 + 1)σ4,

|XkYk+l| = σ4,

|Yk+lYk+l+1Zk+n+mZk+n+m+1| = (b2 + 1)2σ8,

|XkXk+1Yk+lYk+l+1Zk+n+m| = σ10, |XkYk+lZk+n+m| = σ6,

|Yk+lYk+l+1Zk+n+m| = (b2 + 1)σ6,

CDIk(YkYk+1 → Zk+n−mZk+n−m+1|Xk−lXk−l+1) = 0.

(B.9)
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(2) For l = m− 1,

|XkXk+1Yk+lYk+l+1Zk+n+mZk+n+m+1| = (b2 + 1)(c2 + 1)σ12,

|Yk+lZk+m+n| = (b2 + 1)(b2c2 + c2 + 1)σ4,

|XkYk+l| = (b2 + 1)σ4,

|Yk+lYk+l+1Zk+n+mZk+n+m+1| = (b2 + 1)2(b2c2 + c2 + 1)σ8,

|XkXk+1Yk+lYk+l+1Zk+n+m| = (b2 + 1)σ10,

|XkYk+lZk+n+m| = (b2 + 1)(c2 + 1)σ6,

|Yk+lYk+l+1Zk+n+m| = (b2 + 1)2σ6,

CDIk(YkYk+1 → Zk+n−mZk+n−m+1|Xk−lXk−l+1) = log
(b2c2 + c2 + 1)

c2 + 1
.

(B.10)

(3) For l = m+ 1,

|XkXk+1Yk+lYk+l+1Zk+n+mZk+n+m+1| = (b2 + 1)(c2 + 1)σ12,

|Yk+lZk+m+n| = (b2 + 1)(b2c2 + c2 + 1)σ4,

|XkYk+l| = (b2 + 1)σ4,

|Yk+lYk+l+1Zk+n+mZk+n+m+1| = (b2 + 1)2(b2c2 + c2 + 1)σ8,

|XkXk+1Yk+lYk+l+1Zk+n+m| = (b2 + 1)(c2 + 1)σ10,

|XkYk+lZk+n+m| = (b2 + 1)(c2 + 1)σ6,

|Yk+lYk+l+1Zk+n+m| = (b2 + 1)2(b2c2 + c2 + 1)σ6,

CDIk(YkYk+1 → Zk+n−mZk+n−m+1|Xk−lXk−l+1) =
1

2
log

(b2c2 + c2 + 1)

c2 + 1
.

(B.11)
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(4) For l ̸= m− 1,m,m+ 1,

|XkXk+1Yk+lYk+l+1Zk+n+mZk+n+m+1| = (b2 + 1)2(c2 + 1)2σ12,

|Yk+lZk+m+n| = (b2 + 1)(b2c2 + c2 + 1)σ4,

|XkYk+l| = (b2 + 1)σ4,

|Yk+lYk+l+1Zk+n+mZk+n+m+1| = (b2 + 1)2(b2c2 + c2 + 1)2σ8,

|XkXk+1Yk+lYk+l+1Zk+n+m| = (b2 + 1)2(c2 + 1)σ10,

|XkYk+lZk+n+m| = (b2 + 1)(c2 + 1)σ6,

|Yk+lYk+l+1Zk+n+m| = (b2 + 1)2(b2c2 + c2 + 1)σ6,

CDIk(YkYk+1 → Zk+n−mZk+n−m+1|Xk−lXk−l+1) = log
(b2c2 + c2 + 1)

c2 + 1
.

(B.12)

The time-lagged conditional directed information between X and Z given Y can be

simplified as:

DIk(XkXk+1 → Zk+m+nZk+m+n+1|Yk+lYk+l+1) =



log b2c2+c2+1
(c2+1)

, l ≤ m− 1 or l > m+ 1

0, l = m

1
2 log

(b2c2+c2+1)

(c2+1)
, l = m+ 1

(B.13)
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