INVESTIGATION OF THE WATER
SUPPLY SYSTEM OF
ALLEGAN, MICHIGAN

Thesis for the Degree of B. S. MICHIGAN STATE COLLEGE Wayne Knox Ward 1948

2./

SUPPLEMENTARY MATERIAL IN BACK OF BOOK

Investigation of the Water Supply System of Allegan, Michigan

A Thesis Submitted to

The Faculty of

MICHIGAM STATE COLLEGE

of

AGRICULTURE AND APPLIED SCIENCE

By

Wayne Knox Ward

Candidate for the Degree of

Bachelor of Science

March 1948

0.1

Foreward

The purpose of this report is to show the difficulties encountered and the remedies that should be used to improve an existing water supply system. Allegan is a city of approximately 5500 people and yet is one of the few Michigan towns of this size without metered service. It is a very backward community as to public utilities. Seemingly, the general public is not properly informed on the subject of just what their public services have to offer. In my investigations, many local residents were interviewed as to the water supply system itself. Very few even had any knowledge as to the location of the wells. Less than half of those contacted could tell whether there was a fire hydrant located in their own residential block. When suggestions were made as to the improvement of the water supply system, many answers were to be found. Some believed improvements were necessary. Others said. "Well, we get water at our house. Why are improvements necessary? They felt that as long as they received water the system was entirely adequate. Suggestions were even made to improve other facilities around town instead of worrying about the existing water sumply. This shows lack of information and interest in the actual condition of the water supply system.

The water supply system is a public utility, municipally owned and the people should understand that it is their civic responsibility to take an interest in its functions. The complete system of furnishing water to the domestic, industrial, commercial and public services should provide sufficient earnings to cover the cost of labor and material consumed in the operation of the plant. These include adequate revenues to cover the cost of electrical energy for pumping and lighting.

heating of pumping stations, treatment of water if required or desired, depreciation of plant and equipment, and a reasonable reserve for extensions and capital improvements.

History

Allegan County is located in the third tier of counties north of the Indiana state line and on the east shore of Lake Michigan. The location has made this county a nomular vacation snot with facilities available for recreation, outdoor fun and a variety of sports. Fishing and boating are normalar because of the forty-five recorded lakes widely distributed over the entire area. Lake Michigan comprises the entire western border of this popular vacation land. Eighty thousand acres of forest area of which forty-five thousand are state owned offer unlimited opportunities to the ardent hunter. The Kalamazoo River is available for canoeing and the banks afford a pleasant site for picnics and hikes. Comparitively lightly populated, Allegan County might be said to resemble the county of a century ago in that the forests have been well preserved or replanted. Allegan County is famous for its fruit. celery beds, wildlife land, oil wells, and onion farms. Industrially, the county is a large producer of paper, fine furniture, canned food products and numerous other manufactories.

Early history records Allegan county as a very good trading area. The Kalamazoo River offered the means of transporting goods from inland cities to Lake Michigan. A natural harbor is found where the Kalamazoo River flows into Lake Michigan. Now the stream has many hydro-electric dams to halt all navigation by water. Due to this change, the river is now considered as a source of natural power for industry and public use.

The city of Allegan is located at the junction of state highways M-40, M-89, and M-118. It is the county seat and assumes normal municipal functions for the county as well as the city itself. Allegan is the leading industrial center of the county. Roads from the city lead to

golfing, resort and camping areas, lakes, streams, and many other mumerous points of interest.

The population of Allegan has increased from 60 persons in 1835 to 4526 (1940 census). The great increase was due to the ideal situation for industries and in earlier history to its favorable location with respect to trade. The population in 1947 has been estimated at 5500.

The town is situated in a valley and is completely surrounded by hills except for the river channel area. The Kalamazoo River created a necessity for a total of five bridges to care for the transportation needs of people and vehicles. All business establishments and the greater majority of industries are located below the hills. The area above the hills is principally used for residential purposes.

Water supply history as found to be interesting as to the development of the present system. Negotiations took place between village officials and the originator of the Holly system of water works, and in March 1871 the citizens, by a vote of 225 to 130, favored the installation of the water supply system and the bonding of the village to the amount of \$25,000 to carry the proposition into effect. Double turbine engines were first used for forcing the water, and mains were laid through the business district and gradually extended to the residential districts. By 1873 the water works had been proved satisfactory and the engine company of the fire department was then dispensed with, the pressure in the mains being sufficient. Before the system was complete, nearly \$50,000 had been excended by the city.

The water works has been improved and extended from time to time.

In March 1896 the village voted an issue of bonds not to exceed \$7,000

for repairing and improvement. On September 11, 1901, at a special election, it was voted (242-67) to bond the village to the amount of \$15,000

for the installation of new pumps at the water works. In April 1903 the proposition was carried by popular vote to bond the village \$26,000 for the improvement of water works and water power. City records indicate that the total initial cost of the present plant and distribution system represents a capital investment of over \$200,000.

INVESTIGATION OF PRESENT WATER SUPPLY SYSTEM

No permanent records were found as to the quantity of water pumped, due to lack of meters at the pumps as well as in the homes. Records on the piping system were incomplete and inadequate for any studies. No recorded information was available on the pumps as to kind, age, manufacture, type, capacity, or operating condition. These vital facts are important for the engineer if he wishes to improve the water works system.

As mentioned before, this can be classed as a typical report on the difficulties to be encountered by an engineer in an attempt to remodel and improve an existing system. He must resort to the basic principles of designing a new system and find out if the present system will fit in with the pumps, pipes, and equipment of a basically new plan.

To do this accurately and from an engineering standpoint, the system has been broken down into studies of source of supply, pumps, pipes, population, consumption, and other necessary analyses needed to design an adequate and modern system of water supply.

•

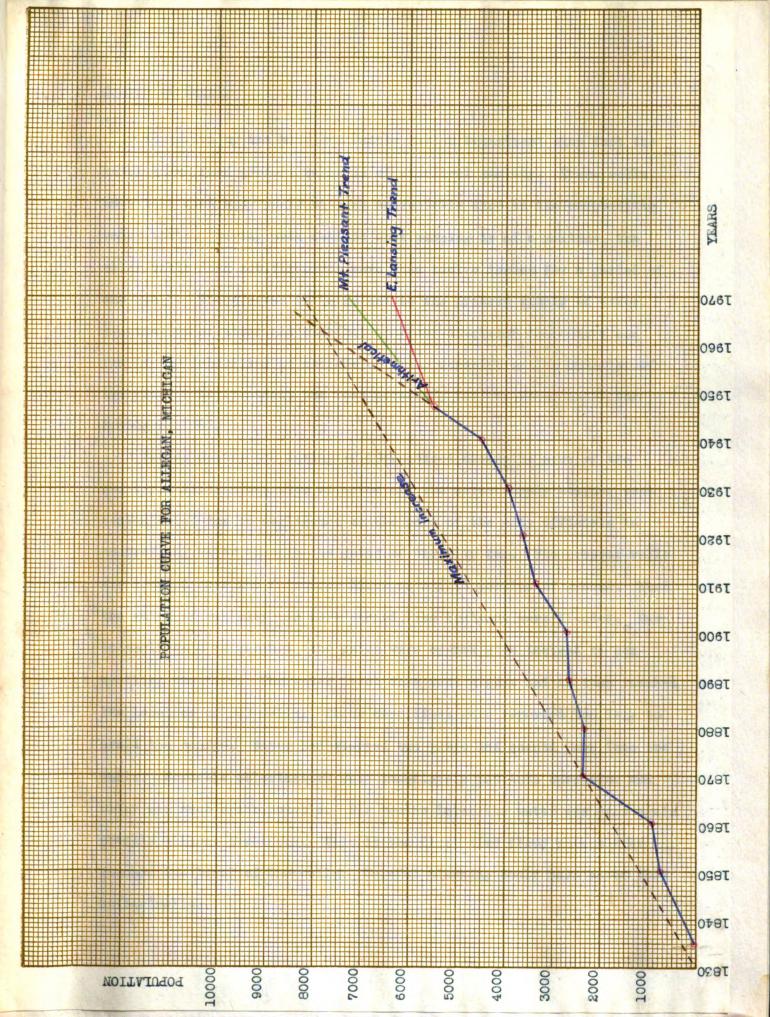
. Professional and the second of the second

Weils & Pump House
1-750 gpm pump
1-14" well
42' deep

Well & Pump House
1-1200 gpm pump
1-750 gpm pump
1-26" well
42' deep

Well & Pump House 2-500 gpm pumps 6-5" wells 42' deep

Population Studies


Wide variations are found in the average domestic use of water which is usually about 35 gallons per capita per day. The economic status of the customers will affect this greatly. In high-value residential districts the consumption will be high due to their ability to pay for greater services such as added bathrooms, sprinkling systems, air conditioning, steam heat, and showers. Apartment houses will show the highest consumption because of the higher density of population over a small area. The consumption rate of slum areas can be assumed as 20 gallons per capita per day while apartment buildings will show as high as 60. The lowest figures will be expected where there are no sewage facilities and only one faucet to serve one or several homes. Density of population has a definite effect on consumption. High densities will create large consumption rates while the smaller concentration of population will have very little effect.

The following facts on population were found in the census reports or in the historical records of the city:

Year	Population
1835	60
1850	752
1860	922
1370	2374
1830	2305
1 890	2669
1900	2667
1910	3419
1920	363 7

<u>n</u>	Population	<u>Year</u>
	3941	1930
	4526	1940
(Approximately)	5500	1947

The approximate population for 1947 was determined from Post Office records. This information has been entered in graphic form on the following page. Future prediction for population and the general population trend information is available from the graph mentioned above.

Source of Supply

Tests run by the Michigan Public Health Department show that the water taken from present wells is of excellent quality. These wells have been used many years with no appreciable drop in the surrounding water table. During peak demands when pumping is at a maximum, the water table does not fluctuate more than twelve inches for a period of one month. There seems to be no end to the present supply of water. Examination of pipes and chemical analyses discloses that there are few if any impurities to corrode or cause deposits on the interior of the pipes. No treatment has been necessary for the water until the Spring of 1947.

Phoods during the Spring of 1947 caused demage to most of the country. Allegan was also affected and the water supply sources were contaminated due to negligence on the part of the city officials in controlling water through the gates of our city dam. The present wells are located near the Kalamazoo River on a flat portion of ground. When the gates of our city dam were opened, the lowlands were flooded. Due to negligence of workmen, the gates were opened wide instead of controlling the flow. The water level then went higher and in time reached the location of our wells. These conditions were reported too late to avoid the damage. Water had stopped two pumps and seeped down into the wells. Portable chlorinators were immediately put into operation and water was once again potable. Six months later the water was once again potable without treatment. This is the first time flood waters ever reached the level of the wells. Careful planning could have saved this contamination.

Pumps

By personal investigation of the wells in Allegan it was possible to check the pumps and get the following information:

No.	Canacity Head	<u>RPM</u>	Depth of Well	Manufacturer
1	1200 gpm. 162'	1750	421	Gould
1	750 gpm. 162'	1750	428	Fairbanks-Moorse
1	750 gom. 150'	1750	421	Gould
2	500 gpm. 150	1750	421	Rees-Ro-Turbo

All pumps are old and seem to be in generally poor condition as to regular and adequate maintenance in former years. However, verbal information was available from the repairman that the pumps had been overhauled within the last two years. Some had been repaired within the last six months but no written record of these important facts was made. It seems that all repair work was done by employees of the water supply system. Parts were ordered from the factories. At the time of my investigation, all pumps were running. This was necessary because of the heavy seasonal demand for sprinkling and water used for cooling purposes. If a pump had broken down, it would have been impossible to maintain proper pressures in the mains. The officials are entirely dependant upon adequate repairs of the pumps, made before the peak demand of water comes about, to hold the system through the season of highest demand. This is a crude and inefficient solution to the problem but seems to have worked after a fashion. Pressures during this peak demand are very low especially in the homes on the hills. Rigid sprinkling regulations are always a necessity to give adequate pressure for fire demand and homes on the hill.

Pipe System

The pipe system is adequate for the demand at present and, if proper changes are made as requested, will be adequate for future demands. Pipes that have been in the ground for as much as thirty years still show no signs of corrosion or deposits causing high frictional losses. Investigation of the older records disclosed that there are several wood mains still in service. These have been inspected and found to be in excellent condition.

Metering

There are no meters existing in the entire water system. On two 500 gpm. pumps there are pressure gages. The operator of these pumps merely sees to it that a pressure of from 68-70 pounds per square inch is maintained.

Equipment

The Department of Public Works has available all the necessary equipment to do any repair work needed on pipes, pumps, valves, hydrants, or service to homes. Storage space is available for spare pipes, valves, hydrants, and parts for equipment. A good stock of these necessities is kept on hand.

Consumption Studies

Consumption rates vary from about 35 to 530 gallons per capita per day. This wide variation can be caused by one or various combinations of the following important factors: size of city, presence of industries, quality of the water, its cost, its pressure, climate, characteristics of population, whether supply is metered, and the efficiency of the water works administration.

Climatic conditions are always present in design work. In regions where it is hot and dry, much water will be used for sprinkling. Bathing

•

· State of the sta

•

is increased, air conditioning units are heavy users, street sprinkling has some effect and even ornamental fountains should be taken into consideration. In cold climates water is wasted by running water at faucets to prevent freezing of pipes.

Metering will always cause a drop in the consumption compared to the unmetered system. Customers are billed for water used and become economical with its use. Less water is wasted by consumers because they realize the added cost of waste. Unaccounted for water is easily traced when meters are used so this can be kept at a minimum.

Industries and commerce are usually dependent upon large quantities of water. They always tend to raise the consumption rates. Paper and steel industries use the highest amount of water.

High densities of population will cause high consumption rates.

This does not necessarily hold true in slum districts. Low concentrations of population bring about lower consumption. Apartment houses will show the greatest density value and consumption rates. Slums will be the lowest.

The size of a city has an indirect effect. Area covered, density of population, whether or not a sewer system is in use and large industries all must be investigated before the size of the city can be allowed to effect the consumption rates.

The following paragraphs will be devoted to definitions of domestic, commercial, and industrial, and public uses of water. Loss and waste must also be included. These definitions must be studied before any further facts can be presented.

<u>Domestic consumption</u> includes water furnished to houses, hotels, business establishments, etc. for sanitary use, drinking, washing,

bathing, cullinary, and other purposes such as irrigation and sprinkling of privately owned gardens and lawns.

Commercial and Industrial water includes all water furnished to commercial and industrial plants. It is dependent upon the type of industry, whether large or small, period of operation, and whether or not they patronize the public water works. It is entirely possible for a large industry to use over 50% of the total output of water from the supply.

Loss and Waste can be attributed to leaks in mains, unauthorized connections, pump slippage, leaks in plumbing fixtures, or just careless and willful waste. This loss can be kept at a minimum with a properly engineered water system. If meters are installed 100%, leaks can be easily traced.

Public use of water includes use of water in public buildings such as city halls, court houses, jails, schools, and other public institutions. Fire demand is included in public use. This can cause high consumption rates over short periods of time. Over long periods it has little effect.

Audit Report

BOARD OF PUBLIC WORKS

City of Allegan, Michigan

Water & Sewer Department

November 15, 1946

Board of Public Works, City of Allegan, Michigan

Gentlemen:

I have examined the books of account of the Electric Department, Water Department and Sewer Department of the Board of Public Works of the City of Allegan, Nichigan for the period from July 1, 1945 to June 30, 1946 and submit herewith my report covering the period examined.

I tested or examined the accounting records and supporting evidence and reviewed the accounting methods of these departments, but I did not examine the details of all transactions.

Respectfully,

C. E. Cooper, C.P.A.

Water Department Comments

Cash on deposit in bank A comparison with June 30, 1945 shows a decrease amounting to \$5.643.22	3,771.36		
Accounts Receivable A comparison with june 30, 1945 shows a decrease amounting to \$113.42 which is accounted for as follows:	4,109.53		
	Decrease		
June 30, 1946 June 30, 1945 J Customers Accounts 4,340.03 4,453.45 Less: Reserve for Bad Debts 230.50 230.50	fune 30, 1946 113.42		
Net Customers Accounts 4,109.53 4,222.95 113.42 I did not verify these accounts by direct correspondence with the customers or examine them in detail, or determine the adequacy of the Reserve for Bad Debts.			
Inventories	3,829.97		
Consist of Material and Supplies and when compared with June 30, 1945 Increased \$851.26. I accepted the Inventories without verification.			
Payables	348.37		
A comparison with June 30, 1945 shows a decrease amount- ing to \$1,819.84 which is accounted for as follows:			

·

.

:

=

•

. •

Payable to Electric Department Other Accounts Payable	June 30, 1946 348.37	1,819.89 348.32	Decrease June 30, 1946 1,471.52 348.32
Total	348.37	2,168.21	1,819.84
Bonds Are General Obligation Wat payable July 15, 1946 with City of Allegan pays the partment pays the interest 30, 1945 shows a decrease Operations A condensed comparative st shows the following:	n interest at 4 principal and the comparison amounting to \$1	percent. The le Water De- le with June le 1000.00	1,000.00 and Expenses
	July 1, 1945	Jan. 1, 1945	Jan. 1, 1944
	June 30, 1946		- - -
Total Income	13,525.43	9,612.17	12,634.70
Total Expenses	11.841.26		10.964.95
Net Income	1,684.17	3,740.55	1,669.75
For further details of the	operations see	Schedule H	
ASSETS Cash			3,771.36
Allegan State Bank Receivables			3,771.36
Customers Accounts		4,340.03	
Less: Reserve for Bad Debts		230.50	
Total			4,109.53
Inventory			
Material and Supplies			3,829.97
<u>Capital Assets</u> Plant Investment (Temporary Acc	mint)	1,000.00	
Structures and Improvements	.oun v /	772.97	
Mains and Accessories		11,433.95	
Meters		175.80	
Tools and Work Equipment		1,646.94	
Office Equipment		93.64 <u>2.268.58</u>	
Wells and Pumping Equipment Total		2,200,30	17,391.88
Deferred Assets			17,551.00
Unexpired Insurance TOTAL ASSETS			9.44 29.112.18
LIABILITIES AND CAPITAL			
Payables Accounts Payable to Electric De	epartment	348.37	
Accounts Payable		None	-10
Total			348.37
Bonded Indebtedness			1,000.00
Accrued Interest			38.33
Capital Surplus			3,000.00

Surolus
TOTAL LIABILITIES AND CAPITAL

Schedule H
Comparative Statement of Operating Income and Expenses

INCOME	July 1, 1945 to June 30, 1946	Jan. 1, 1945 to June 30, 1945	to
Flat Rate Sales to Customers Public Fire Protection Forfeited Discounts Miscellaneous Water Revenues	11,801.78 850.48 97.08 776.09	8,915.08 637.86 22.25 36.98	11,510.93 850.43 111.98 161.31
Total	13,525.43	9,612.17	12,634.70
Interest on Long Term Debt Labor Supervision Supplies Maintenance Pumping Fuel and Electric Power Labor Maintenance Administrative Salaries Legal, Etc. Office Salaries Office Supplies and Expenses Insurance Misc. General Expense	41.66 2,271.13 162.75 264.24 4,525.16 800.03 976.66 606.95 209.00 1,042.42 532.05 190.12 219.04	38.69 1,003.04 296.95 2,043.98 791.38 306.95 329.28 531.00 287.38 136.23 108.74	100.02 1,749.63 44.68 143.13 4,059.60 1,240.77 1,100.49 584.22 85.13 931.19 357.96 294.40 223.73
Total Expenses	11,841.26	5,871.62	10,964.95
NET INCOME	1,684.17	3,740.55	1,669.75

Note: The Flat Sales to Customers and Public Fire Protection shown above for the period from January 1, 1945 to June 30, 1945 are for three quarters of a year.

Financial

In the financial report for 1947 which is not complete at this time, the following information was available for this report. Revenue is collected on a flat rate basis. Necessary information as to the number of residences, industrial and commercial firms are included in this report.

Water Department Reserves (1947)

11	Industrial firms	\$ 526.00
1325	Residences	9000 . 00
188	Commercial firms	2300.00
1	Fire department Total Revenue	<u>240.00</u> \$12966.00

Computations

Pump Capacities

1200 gpm

750 "

750 "

500 "

3700 gpm = Total capacity

Maximum output

$$3700 (60) 24 = 5,330,000 \text{ gal./day}$$

Assume numps are operating at 60% efficiency

Maximum Consumption rate

Domestic Consumption rate (Maximum)

Maximum daily output equals 175% of the average day

average day =
$$\frac{\text{maximum deily output}}{175\%}$$
 = $\frac{580.5}{1.75}$ = 332 gel./cap./day

The average daily consumption rate of water is extremely high but can be expected where water is common and a lot of it is available at a low price. This is one value that must be lowered.

RECOMMENDATIONS FOR FUTURE IMPROVEMENTS

The following suggestions are to be made for a design period of twenty years or until 1967. Improvements should be made as soon as possible to make the present system adequate as well as financially independent. Improvements cost money and must be paid for by bond issues or taxes until adequate reserves can be built up. These costs must be repaid, therefore finances and defined planning are definitely necessary. The difficulties encountered will be discussed in the following pages with detailed recommendations to implement these improvements and changes.

Source of Sumply

The same source of water should be continued. Water tests show it low in mineral contents, clear, good taste, and no treatment necessary. The definition of potable water is: Potable water is one that is safe to drink, pleasant to the taste, and usable for domestic purposes. The present water supply has all these requirements without necessity of treatment. The supply presents no indications of being limited in quantity either in the past or during present times. Treatment of the water has been unnecessary up to the spring flood of 1947. By investigation it was possible to see why this happened. It is very unlikely that there will be a re-occurance of this difficulty. Portable chlorinators should be part of the necessary equipment to provide for unforeseen emergencies. The buildings that house the pumps could also be waterproofed and small pumps installed to carry away any seepage that might occur during floods. This would prevent seepage, into the wells, of contaminated water and allow all pumps, motors, and equipment to remain dry.

Pumps

All pumps used at the present time should be rebuilt and put into good condition. The pumps now used will be sufficient for any demand after meters have been installed at the pumps as well as in the residences. It will be possible to transfer one of the 750 gpm. pumps to the storage tank to help in any emergency. Any combination of pumps to produce 2000 gpm will prove adequate to serve all users of water. The present pumps are rated 3700 gpm. Therefore, this will allow a plan of rotation to be set up on the use of the pumps. Additional pumps will be available to use for peak loads such as fire demands or

sprinkling during the summer months. The storage tank will equalize pressures in the system and allow more even use of the pumps. Repairs can be easily made by utilizing a pump that is available. In my survey no suggestions are made for additional pumps because they will not be needed in the proposed system.

Pine System

This has proved itself satisfactory and in a good state of preservation. It has been accepting high consumptions of 3,500,000 gallons per day without difficulty or failing. With the new system installed, the maximum daily output should be 1,800,000 gallons per day. The present system is certainly adequate to allow this flow. Valves and hydrants are very well located and there is no need for any more except in the outward expansion of the city. These facts will come to the attention of the administration as the city expands.

Metering

Meters should be installed at each and every pump to accurately measure the water supplied to the mains from the wells. This will lead to valuable information regarding maximum hourly rates of consumption.

Consumption rate curves can be made for the maximum, average and minimum days. These will show the maximum and minimum consumption needed on each of these successive days. This information will lead to better planning on the part of the water works commission. It will also allow a rotational plan to be considered on the use of the pumps.

Installation of meters for all consumers is an important and essential corrective measure. If all consumption is metered, the difference between the water pumped and the total amount utilized by the

consumers will show the un-accounted-for waste. This information is of great use to the engineer. Leaks can be traced more easily and unaccounted-for water kept at a minimum to insure lower rates to the users of water. Water consumption was found to be extremely high for a town of 5500 people. The easiest way to make people realize their waste of water is to meter each home. Metering is a fair way to cover the cost of water by distributing the cost to all customers in exact ratio to their use of the said utility. If an unmetered system is used, the economical and careful person must help bear the burden imposed by careless and wasteful people plus industrial uses of water which are very high. A good system of water charges cannot be constructed unless they are based on the actual individual consumption of water. Meters affect the consumption greatly when installed. Sometimes the consumption is cut as much as 50% of the unmetered consumption. This reduces the necessity of providing more water, pumps, larger pipes and added equipment. Meters cause people to become more economical and resourceful in their use of water. It is one important way to completely organize an efficient water system. The cost of meters can be borne by the sale of bonds. With proper planning, the meters will pay for themselves in a very short time, and thus make full use of present plant capacity to provide adequately for present and future needs.

Storage Tank

Storage of water is necessary for several purposes: to equalize pumping rates over the day; to equalize supply and demand over a long period of high consumption; to furnish water for such emergencies as fire fighting or accidental breakdown. Storage should be elevated to give the necessary pressures by gravity instead of additional pumps.

During times of low consumption of water, the additional water will be fed into the tank. When a high consumption period is present, the tank will help raise the hydraulic grade line in the vicinity. For a city of 5500 persons a 200,000 gallon tank will prove satisfactory if located so that the high consumption area lies between supply pumps and storage. To do this, the location determined in this survey is shown on the map enclosed in the pocket of the back cover of this thesis. This location is opposite the majority of residences and all of the public and business districts. It is also located on a hill which gives greater area in which this tank will affect the hydraulic grade line variations.

Fire Demand

The National Board of Fire Underwriters uses the following formula for computing the necessary demend for fire extinguishing:

$$G = 1020 \sqrt{P} (1 - 0.01 \sqrt{P})$$

G = necessary demand in gallons per minute

P = population in thousands

Population = 5500

$$G = 1020 \sqrt{5.5} (1 - 0.01 \sqrt{5.5})$$

$$-1020 (2.34) \left[1-0.01 (2.34)\right]$$

= 2433.8

G = 2438.8 gallons per minute

Consumption Study and Computations

This is a report on the improved system and is merely a theoretical answer but should prove to hold true within 10%.

. -

and the control of th

The average consumption of water is 120 gal/cap./day.

Estimated population in 20 years 8,000

Due to high consumption of water in Allegan, 200 gal/cap/day sounds entirely reasonable and well above the average to allow a margin of safety.

Estimated maximum consumption in 1967

$$8000 (200) = 1,600,000 \text{ gal/day}$$

Domestic use	(average)	1,600,000	(31%)	=	496,000	gel/day
Industrial use	N	ti	(38%)	-	608,000	Ħ
Public use	Ħ		(11%)	=	176,000	H
Loss and waste	Ħ	Ħ	(20万)	=	320,000	R
		Total		1	,600,000	gal/day

Domestic consumption rate (maximum)

population 8000

domestic water 496,000 gal/day

$$\frac{496.000}{8000}$$
 = 62 gal/cap/day

Maximum daily output equals 175% of the average day

average day =
$$\frac{\text{maximum daily output}}{175\%}$$
 = $\frac{200}{1.75}$ = 143 gal/cap/day

143 gallons per capita per day is nearer to the average consumption of 120. The present rate of 332 is well out of reason. If the recommendations presented herein are adopted, it is a certainty that the per capita consumption will quickly level off to a reasonable figure more in line with the requirements of other cities of equal size and facilities.

Estimated Cost of Improvements

Water tower 200,000 gellon storage	\$35,000.00				
Footings and foundation 100 cu. yd. concrete \$30.00	3,000.00				
Water meters and register 59 \$700.00	3,500.00				
House meters $(5/8 \text{ m x } 3/4 \text{ m})$ 1500 • \$12.00	18,000.00				
Industrial & Commercial meters 230 © \$25.00	5.750.00				
Total Cost	\$ 65,250.00				

The \$35,000 necessary for the storage tank is the price for the tower installed and in place. The footings and foundation should be put in by labor employed through the water works. Only the cost of material need be considered under these circumstances. Labor expenses would be entered in the annual books as usual. The same situation holds true with the meters except each consumer pays a fee for installation of the meter and rental after installation has taken place. This defrays all labor expenses and pays for the meters in a short period of time.

The overflow level of the tank should be above 80 feet but doesn't need to exceed 100 feet. This will insure a pressure of at least 30 pounds per square inch in the vicinity when the tank is at its lowest level.

The total cost of improvements suggested is small compared to the total value of the present system. Results will be almost fantastic.

The return from this investment will be large enough to allow the water works to be financially independent.

The bonds should be issued for the design period of twenty years.

Finances can be adjusted so this investment can be paid off in small

sums each year or in a lump sum at the end of twenty years. Payment

•

•

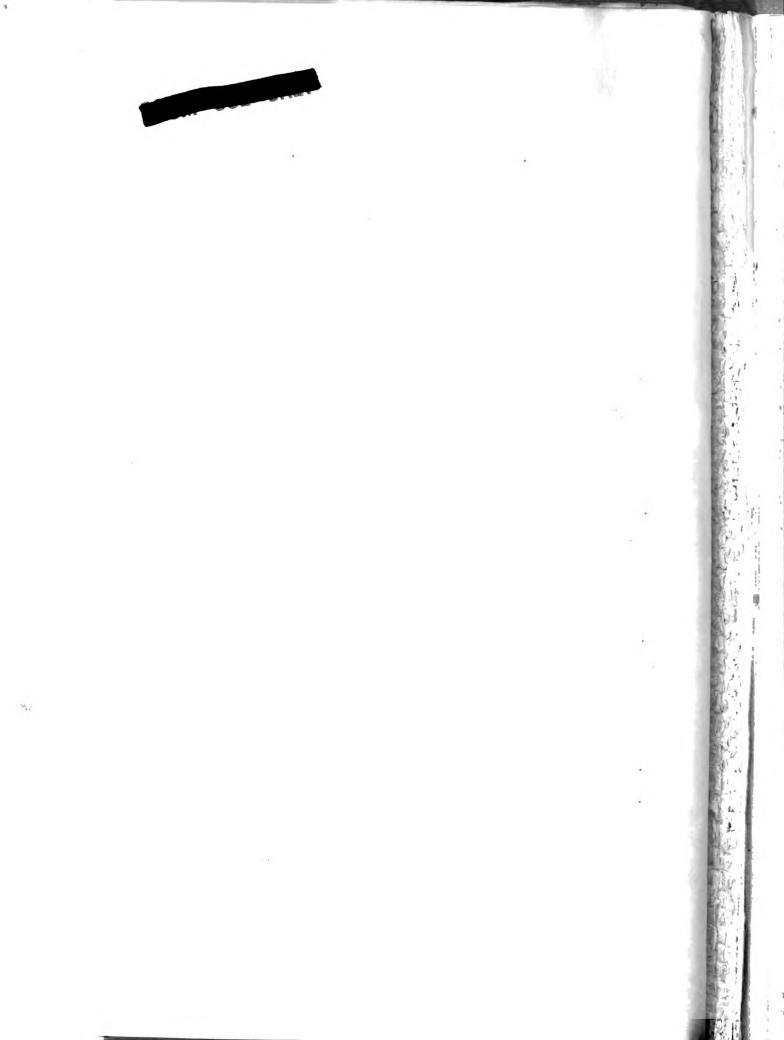
•

of this debt will be dependent upon the rate charged for the use of water and rental on the pumps.

Conclusions

This is a summary of all the improvements that have been deemed necessary to improve the Allegan water supply system. From the report it is possible to realize that the present system is taking care of water that could be furnished to a city four times larger in population. A system such as this can never continue to be financially sound. The following changes must be made and are here discussed in brief form.

- 1. No change is suggested in the present source of supply.
- 2. Pumps, now present, will be adequate for the future demand if the following changes are made: One 750 gpm pump will be transferred to the site of the new storage tank.
- 3. Pipes have proven their efficiency for the heavy consumption rates that are now present. Valves and hydrants are well located and no changes need to take place. Future expansion of the city will cause a demand for expansion of the pipe system and additional fire hydrants. These facts will be considered by the administration as these changes occur.
- 4. Meters are a definite necessity. All pumps must have individual meters installed to measure the water supplied to the mains from the wells. Meters should be installed in every home, industry, and public building. Metering of 100% should be required to insure a water works system to operate at maximum efficiency. Meters allow complete and accurate records to be compiled. From this data, present and future planning is possible without extensive investigations.
- 5. The need for the storage tank was apparent by results obtained from the investigation. Pumping rates are not steady, no emergency storage of water for fires or breakdowns and low pressures during high


consumption are factors to be improved by the installation of a storage tank.

6. New administrative duties should include keeping permanent and accurate records on water pumped, consumed, and unaccounted-for. This will allow repairs to be made to maintain unaccounted-for water at a minimum. A small laboratory should be set up to allow chemical and physical tests to be made on the water pumped into the mains. Records will show daily tests on the water and lessen the chance of contamination taking place in the water supply. The water supply commission is liable for any contamination or spread of disease caused by negligence on their part. A competent engineer will be able to plan future needs, expansion, and repairs with adequate records. When the metered consumption follows a definite curve or trend, rates can be determined by the administration. Special rates should be allowed for industries and other heavy users of water.

Municipality	Pop.	Source	ater Treatm Softened	Chlor.	Filtered	Smetered	Dai Maximum	ly Consum Minimum	ption Per Cap.	Res.	f Serv	ices Ind.	Meter Max.	Rates Min.	No. Hydrant:	Annual Rental	Ave. Pressure	Rates Effective	Change Contemplated	Proposed Rate Max. Min.	s Pumping Energy	Power Co.	Rate-KWH	Is Revenu Satisfacto
East Lansing	6000	Wells	Yes	No	No	50	1200000	600000	90	x	x	X	\$1.50	.15	x	None	45#	1940	No		Electric	Lansing	x	Yes
Charlotte	6000	ŧī	No	Yes	No	95	1300000	850000	95	x	X	x	.12	.075	114	\$1330	60	1945	И		Steam	City		88
Escanaba	14830	11	No	No	No	98	2861850	958250	97	x	X	x	(A).18	.075	304	\$ 12000	60	1943	11		Electric	11	(G) .01	ŧŧ
Cheboygan	5763	tt	No	No	No	95	275000	100000	x	x	x	x	.25	.20	43	None	40	x	II		n M	I.P.S. Co.	.015	Ħ
Coldwater	7500	11	No	No	No	7	2585000	589000	114	x	x	x	.10	.06	198	85	45	1945	16		Н	City	.014	88
Grand Haven	10000	11	No	Yes	Yes	80	1800000	600000	60.110	85	12	3	.15	.15	177	\$ \$	90	1941	N		Ħ	11	.015	11
Ludington	8701	Lake	No	Yes	No	99	1500000	800000	100	89.6	8.8	1.6	.125	.061	284	12.00E	Ta. 60	1920	Yes		Diesel	11		No
Manistique	6000	River	No	Yes	No	98	1000000	450000	135	x	X	x	.30	.08	185	None	48	1936	No		Electric	M.L. & P. C	o. x	Yes
Marshall	5019	Wells	No	No	No	None	x	x	x	80	20	0	Fla	at Rate	153	88	x	x	н		11	City	.02	88
Midland	16000	River	Yes	Yes	No	100	5000000	2400000	200	x	x	X	(B).18	.12	200	\$ 9000	45	1936	11		Diesel	Ħ	.0115	tt
Mt. Pleasant	8413	Wells	No	No	No	98	3000000	1300000	1.60	90	6	4	.375	.075	130	None	55	1935	Yes 4/1/4	18 .50 .125	Electric	C.P. Co.	.012	No
Niles	13000	11	No	No	No	100	2770600	591600	106	89.6	9.8	0.6	.38	.05	399	Ħ	60.65	1936	Ħ	.183/4.10	11	City	.013/4	11
Petoskey	6019	11	No	Yes	No	100	2254000	525000	150	x	x	X	.181	.075	140	Ħ	50.120	1933	19		Ħ	11	No Charg	e #
Plymouth	6800	Ħ	No	Yes	No	99	1200000	600000	97	94	5	1	(0).25	.10	150	\$25.00Ea	a. 50	1928	No		" De	et. Ed. Co.	.01	Yes
St. Louis	3500	11	No	No	No	80	700000	x	x	X	x	x	.43	.05	85	None	60	1937	H		Ħ	City	.0133	86
Sturgis	7200	Ħ	No	No	No	x	Ave.	451700	x	82	16	2	.12	.085	190	#	68	1930	11		tt	11	No Charg	e #
Trenton	6000	(Detroit)	No	Yes	Yes	100	1102000	915000	x	x	X	X	.28	.20	204	\$35.00Ea	a. 44	1943	II		II De	et. Ed. Co.	* x	88
Ypsilanti	11000	Wells	No	Yes	No	98	2715000	1300000	100	x	x	X	(D).12½	.121	275	\$43.00Ea	a. 95	1942	н		16 11	11 11	.0108	11
St. Joseph	8963	Lake	No	Yes	Yes	100		700000	125				(E).275			None	40	1938	II		# In	nd. Mich.	.01	88
St. Ignace	2600	Ħ	No	Yes	No	94			138							\$2199.96	65	1931	11		# Ed	. Soo Elec.	004	#
Alma		Wells	No	No	No	98		1742000								None	78	1937	Yes		ŧŧ.	C. P. Co.	.0111	No

REMARKS

- X Indicates that this information was not furnished.
- (A) Indicates additional meter or service charge made ranging from .50 to \$25.00 per month depending on size.
- (B) Indicates additional service charge of .40 per month.
- (C) Indicates additional service charge of .30 to \$4.50 per month.
- (D) First 7500 gallons or less is \$3.00 per quarter.
- (E) Additional service charge of .30 to \$4.00 per month.
- (F) Additional service charge of .60 to \$20.00 per month.
- * Minimum monthly bill is \$2.40.
 - St. Ignace is the only city reporting that has a water works that is privately owned, being operated by the Edison Sault Electric Co. At Cadillac the Consumer's Power Company own and operate the water works but they did not make any response to my questionnaire.

Pockethas I may 130 122 THS Map MICHIGAN STATE UNIVERSITY LIBRARIES

3 1293 03150 9536 SUPPLEMENTARY

