‘. o . n o a. - . . AN mm 05 me am mm: or- m ms- os W gamma omen my my “WWW I M tor “the Donna 0,! 15d. '3. .mctimjs‘m‘i mm . . Waém- Wesley mm“, 1:, * 1953 IHE$1$ , This is to certify that the thesis entitled "An Investigation of the Heat Transmission and Mechanical Properties of Several Types of Perimeter Insulation under Dry and Saturated Conditions" presented by Walter Treichler, Jr. has been accepted towards fulfillment of the requirements for fin— deqree in _lLE..___ .G x ,u’ t ' I f 5?) j u. | n . " u ' .3 1/ - : I" . 1 .. . I '. A l u ‘ _. ' a J " 4 I I I ‘ ' I a ‘. a . 1.. Major professor“ I s #_.fi_ —+____m—+ -- —-v—.—--..»‘- __~ ~ fiHi AN INVESTIGATION OF THE HEAT TRANSMISSION AND flbCHANICAL PROPERTIES OF SuvnfiAL TIPLS OF PnhIMETLR INSULATTON UNDnh DRY AND SATURATLD CONDITIONS ‘ by .JALTm «new! museum Jh. A THLSIS Submitted to tne school of Graduate studies of Alchigan state Coxiege of Agriculture and ApyLied acrence in partial fuifiiiment of tne requirements for tne degree of MASTnn OF bCILNCE ucpartment of decnanicai engineering L350 7m: {THESIS I _ l b/m/y; TABLL '_;)_F_ comma Page Acknowledgments List of Figures and Tables I. Introduction 1 [1. Apparatus and nietnodology 5 A. moisture Absorption 5 5. Determination of btructurai Properties 5 C. Determination of neat Transmission Preperties 6 iii. DiscuSSion of nesults 15 A. meisture Absorption #5 8. Structural Properties }5 C. Heat TransmisSion Properties ‘0 iV. Conclusions and necommenaations 50 Appendix A. Sample Ceiputation as B. Curves Showing Temperature Variation in bamyies for heat . Transmission Tests 04 C. Data bneets 45 D. Tnermocoupie Correction Curve b5 Bioiiosrapny and deferences 66 Asiiwm rename Tne author wishes to express nis sincere tnanns to Dr. James T. Anderson Nnose Kind guioance anu valuable counsei neipea to insure tne successfui completion of tnis investigation. Gratefui acknowicdément is aiso due to Jr. Donaid n. henwick for nis cooperation in maxing tne refrigeration laboratory faciiities avaii- abie for tnis investigation ano to Mr. D. W. Sebei and Mr. C. m. madman, of tne Power naboratory staff, for tneir assistance in assemoiing tne necessary apparatus. THE Alil‘ 9f; Fi'CUan Ass Thumb}; Appiication of perimeter insulation............................... dign numidity chamber............................................. Fiexurai test arrangement......................................... Layout of neat transmission test apparatus........................ Details of Specimen mounting...................................... Apparatus to produce sine-wave variation in current to neater ceil Curve snowing percentage by volume of mOisture absorbed b; samples immersed in water at room temperature............................. Curve snowing percentage by volume of moisture absorbeo by samples in saturated atuOSpnere Lt; Lido Foe...eeeeeeeeeoeoeeeeeeeeoeoeecoo Diagram snowing results of compression test....................... Dlubram buUWLns results of fiexural test.......................... Diagram snowing results of impact test............................ Variation of tnermai difquivity Witn meisture content............ Variation of tnermai conductiVity Witn mOisture content........... Preperties of insulating materials as listed by manufacturers or [laindbOO‘SO.OOOOOOOOOOOOOOOOOOO00......0.0.0.0000...OOOOOOOOOOOOOOO Properties of insulating materials as ostermineu by tne lrlvestigatlonOOOOOOOOOOO...OOOOCOOOOOOOIOOOOOOOOOOOOOOOOOOOOOOOOOO l4 l6 l7 lo 15 19 ZZ b6 Sid TH E lNThUDUCTlON Une of the new trends in home construction has been the basement- less, slab foundation house in Which a concrete slab poured above grade serves as the ground floor. while this method males possible many economies in production, certain essential details must not be omitted if satisfactory results are to be eXpected. For example, at least four inches of gravel Should underlie the concrete slab, and its lower sur- face should be sealed with a moisture-proof membrane. This is necessary to avoid the possibility of ground water seeping into the slab. in addition, studies conducted by the National Bureau of Standards* and the Small domes Council of the University of lllinois** have defi— nitely proved that thermal insulation of the slab is required to prevent excessive heat losses during the heating season. it was also discovered that the major portion of the neat loss from ' the slab occufied through the outer edges rather than the undersurface, anu that the installation of suitable insulation around the slab perim- eter reduced the total heat loss by as much as twenty-five percent. The minimum recommended thickness for this insulation is two inches. in cases where radiant heating ducts or pipes are incorporated in the slab, the insulation Should cover the undersurface of the slab as well as the *Dill, Richard 8., W. C. Robinson, and H. E. hobinson. measurement 9}; heat Losses from Slab Floors. United States National Bureau of standards, Wasnington, Building Materials and Structures Report BAS 103, 1945. **Bareither, H. D., and J. T. Landrum. Concrete Floors £2;_Basement- less Houses. University of lllinois Small Homes Council, Urbana, Bulletin F. 4.5, 1948. perimeter. Figure l snows various pOSSlDle applications of perimeter insulation. Note application ld Which indicates a method of applying perimeter insulations to an existing structure. An added benefit obtained by the use of perimeter insulation is a reduction in temperature gradient from the center to the outer edges of the slab surface by as much as thirty percent. dhile no industry-wide standards have been established to date, it is fairly obvious that there are certain properties which an insulating material selected for this application should possess. First of all, the material snoulu nave a sufficiently low COBffllClent of thermal con- ductivity as installed and be capable of maintaining it. it Should not absorb nor be appreciably affected by water or water vapor. it should preferably be available in board or block form, and should be crush- reSistant Whether damp or dry, Wltn a compreSSive strength of not less than five hundred pounds per square foot. Finally, the material Should be unaffected by seil Chemicals and Should not be a harboring place for vermin, molds, or mildew. Four types of insulation-Styrofoam, Foamglas, Fiberglas and cork- board--were selected for the investigation on the assumption that they possessed all or most of the desired prOperties. The purpose of the investigation was to test each material under identical conditions, de- termine to what degree each possessed the desired preperties, and com- pare all of the materials on this basis. Tests for resistance to soil Chemicals, vermin, and fungi were beyond the scepe of this investigation, but determinations of compreSsive and flexural strength, impact reelstance, moisture absorption, and heat transmiSSion properties were undertaken. -g- .\ I I "-," . "\I\ - / ,' [J ‘ 1/ . " * GRAN! 9"- \,_ l. ‘1 M . \ . [If ,1.- ’Il’ ’-'\/\>> \ A . 0 [5'4 3:- -r ‘ ’- ° 0 d u. u 00 - li‘x :3 | g 0., 4 o a FRAME AW’ALL ""7— x—V‘JARM APR REGISTER TGRAUE Cane t s mil-k ups? \ Jail" 0 D ‘ 1 L ' ' it .I A I [A OK . ).. . 7/ .‘f. J L“ ' \ WHTERFRLOO: FflimEPAN: oR-WEL nth/w.) FOOTIMG I”? . {21“ u,- lNSULATIoN. THE Although an ideal perimeter insulation should absorb no moisture, none of the materials selected Were absolutely meisture proof. Since exposure to m0isture is a possible hazard in application, it was con- Sidered deSirabie to discover wnat effect (if any) the presence of mois- ture had on the various prOperties considered. This deCiSion resulted in added complications in the test procedure, eSpecially in the deter- mination of neat transmission prOperties. The nature of these compli- cations and the apparatus and test procedures deveiOped to overcome them are discussed in the following chapter. TIME APPAAATUS AND MLTHODOLOGY MOlhTUdE AhSOhPTlON in this phase of the investigation, two lots of samples were pre- pared. One lot, after being oven-baked to the bone—dry state, was weighed and immersed in a tank of water. The second lot, also baked dry and weighed, was placed in a nigh-humidity chamber where saturated conditions were maintained at a temperature of approximately ll5o Fahrenheit. Details of this Chamber are as Shown in Figure 2. Both lots were removed for weighing peri0dically, and the test was conCluded after the completion of four hundred hours' eXposure. Amount of mOisture absorbed in any case was indicated by the difference between the bone-dry weights and the observed weights. it was necessary to allow excess liquid to drain from the samples before attempting to determine mOisture absorption, particularly in the case of the cormboard and Fiberglas samples. DhTEhthATlDN of STiUCTURAL PhOPhhTihS Because of the various ways in which the perimeter insulation might be stressed, it was felt that a determination of the compressive, flexural, and impact strength should be made for each material under investigation. Further, it was desired that the determination should be made for both normal and saturated conditions. Therefore, two identical lots of speCi- mens were prepared, one lot to be tested in the normal state (less than 0.05% moisture content, by weight) and the other after immerSion in water for two weeks. The compression and fiexurai tests were performed on a n—m-‘ 0-"..- m- ~~ ‘* if, 1 :Illlbuol I .1. . . i, erloll.._llll:_ w lj'lllldvllol'ullb . 1 III Ill . II ‘—_- __ , ii. -_ _ —‘-- —~u..1.a ..‘_. .—..a~ '- " 1 .I I 7////,///77/7 f / //////,////e//,/ / / standard Tinius ulsen, screw-type, manually-loaded testing macaine. Compression samples measured 55" x 53" x 2", except those of Bioer- glas, whiCh were 5%" x 5%" x 2%". Since it was found that these materi- als had no definite yiehd point, merely becoming more compact and firm -as compressive load was applied, compressive strength comparisons were based on the amount of load each material would support when compressed to 90% of its original thickness. The tests were then carried out on this basis, using a dial indicator to measure the amount of compacting. Per flexural strength determination, samples measuring a" x 2" x Z" (d" x z" x 2%" for Fiberglas) were placed on V-blocks seven inches apart, and a wedge-type head was utilized on the Tinius Olsen screw—type testing maChine as shown in Figure 5. Deflection was measured Wlth a dial indicator. .FORCE ++——3-5”;—e> _JV \7 3‘3 KISAMPLE I . 4: F/7/7/7‘77//7V'/77 8.. A FIGURE. 3. For impact strength measurements, a steel ball one inch in diameter and weighing O.ld5 pounds was dropped from a height of Six feet upon the wet and dry samples. The Fiberglas samples were tested on the edge as well as on the face because of their nonhomogeneous laminar structure. Three samples of each material were tested under normal and saturated conditions, and three drOps were made on eacn sample, a total of eighteen per material. DhTmhmlNATlON of flhAT-TRANSMISSION PdOPhfiTlES bince heat transmission properties of the selected insulating mate— rials were to be determined under both wet and dry conditions, a departure from the conventional testing procedure was necessary. with the standard methbds of determining thermal conductivity, accurate results from a meisture—laden sample are problematical, because a temperature difference is maintained between the two faces of the Sample and any mOisture con— tained therein migrates to the colder side.* if a method were to be used in whiCh the Opposite faces of the sample were alternately the colder, than it would be reasonable to assume that the absorbed moisture would not migrate to one particular face. In all proba- bility, most of it would remain in the interior of the sample. In addition, any apparatus devised to produce this reversal of temper- ature gradient should be of such a nature that the temperature variations would conform to proven principles for neat flow in the unsteady state. Test results then could be applied in existing equations for computation of *dilkes, G. B. heat insulation. New York: John Wiley and bone, i950, p. 152. heat transfer coeffiCients. Therefore, it was decided to assemble an infinitely thick body subjected to a periodically varying temperature at one surface. Two equations applying to this case are the following: m 2/: Where: r = time for temperature of a given point within the body to be influenced by a change in surface temperature n : number of complete cycles per hour x 3 distance from the surface to the interior plane &:= thermal diffusivity = Coefficient of Thermal Conductivity Specific Heat x Density 4/112. 036 °‘ where: 10p :.maximum temperature variation at an interior plane (2) O 'U H (J m i ' magnitude of temperature variation at the surface in: H distance from the surface to the interior plane :3 I ' number of complete cycles per hour 9' I ‘ thermal diffusivity of the material* hquation (a) was considered to be better adapted to the require- ments of this investigation because of tho pOSSibility of measuring differences in temperature variation with greater accuracy than differ- ences in time lag. The test apparatus, as finally assembled, is pictured scnematically . .‘ . . . u . ‘ 1 in figure 4. Construction of the main section of the equipment and the *Jakob, Max, and G. A. Hawkins. Elements pf Heat Transfer and insulation. New York, John Wiley and Sons, l942. pp. 50-55. ‘\+$i‘lli y. I: i r3 4 ‘ v u. a... .r h /. T. \ v d). w: I'll r‘ *L .4».——..___. --... 5': "Q L. . NSFQRM JR? 4/ uulllll L I I III: III a . h r w .\ _ .. I . . T r. . .7 . . C .i "Ii! I . e. v «at. . N V 0 W ind f- C I. ITJI ~ 1 Lu. .xU .\ 3\ Wu AM .1 p . as f ' 'LDROQ“" ’ t' LL. P , ‘n—J“ -10- manner in whicri the test specimen is mounted are snown in greater detail on Figure 5. The electric grid, indicated on Figures 4 and 5, provided heat source for one surface of the test specimen. A sine-wave variation in the volt- age applied to this heater was produced by the arrangement pictured in Figure 6. The opposite surface and sides of the SpeCimeh were imbedded in a £4" x '44" ‘x 15" mass of Fibergles insulation enclOSed by a plywood oox. Surrounding the plywood box was a Sheath of a"Celotex, and air at igloo Fahrenheit was circulated in the z-inCh space between the two enclos- ures. fleet was supplied to this enclosure by a partially dismantled elec— tric oven with fan attacned as shown in Figures 4 and 5. All of the aforementioned equipment was installed in an insulated room with the temperature maintained at 40° Fahrenheit. Thermocouples were placed at the center of both faces of the 12" 2: l2" x 2" test Specimen, at the lower edge of the Specimen, and at a Point on the upper surface of the plywood inner box approximately five inches from the front face. Temperatures were recorded automatically by means of a Brown Electronik Potentiometer mounted on the outside of the insulated room. An additional cheek on the temperature of the air circulating in the Space between the two sneils of the Specimen mounting was provided by a mercury thermoineter inserted at the rear near the oven. The temperature of the air circulating around the equipment in the insulated room was indicated and recorded by a Brown necording Thermometer “it“ a. temperature-sensitive bulb in the air exhaust duct. A mercury tr - ~ - 1 ' 1arm-”heater suSpended in the room prov1ded a Check on these readings. " Ci. r» . u p . m - [t . / _ _ / _ 4/ T .l! . . _ _ i _ l I." T .‘x‘ \ MOUNT EST 7 or DETAEL F16. The length of the complete temperature Variation cyCie «as twelve hours. The equipment «as adjusted to produce a temperature variation at the eXposed face of the test speCimen from 60° to lo'OO Fahrenheit with a mean of 120° Fahrenheit. Test periods for each Specimen were twenty-four hours, or two complete cycles. \ . IJ . \ 1..-... . #WJ ; W. i L P) V... m $7....in f... F. .. a. rt. g ...V» 8V.) rd)...” 6..an .\ w on. n..- \fMJJDnF A L '5 (u. H.231 0:5 t... 41.“...\. C. ..\. «I ..m -IVI. - .L. r. . .N \ .‘r {O .. in... .II- . ....o0.a. .3. o .r o 2-1.. _. i :1 ——.——— ~— II. "I man .1! II‘.III ”.7“ 4-513) . iflb *\I.III. t.4~ . (Ii .l‘...’ EWI.L:. WWWII ; .l~ _ _L i .5. .Y. Q fl:\ —fl.jfi.\H./\ / dqmm. maximNp .2 . i w .r:\>m E y... -14.. DiscussmN p;_ .~.:_.8ULTS MOISTUhh ABBOhPTION The results of the moisture absorption tests are shown in Figures 7 and 8. It should be noted that the amount of moisture present in each sample is expressed as a percentage by volume while usually the moisture content of insulating materials is stated as a percentage by weight. A percentage by weight comparison can be extremely misleading When materials of rather great differences in density are compared.* On a percentage by weight basis, for example, final moisture content of the Styrofoam sample after four—hundred hours immersion would be 41% and the moisture content of the corkboard sample would be 55%. Actually, the corkboard sample had absorbed over twice as much moisture, and by indicating results on a percent-by-volume basis, the true relationsnip is Shown. The moisture content by volume was 2% for Styrofoam and 5% for cormboard. bThUCTURAL PhDPnhTihS The results of the compreSSion and flexural tests for the materials under investigation are as Shown on Figures 9 and 10. The values indi- cated are the average of the results obtained on three samples of every material for'eacn condition. Flexural strengths were compared on the *wilkes, G. B. heat Insulation. New York: John wiiey and sons, l950, Pp 0 09‘90 . ‘I -l7- .‘6 d .04. coo—1 can. 00.. .00 .9. u. ..o ... co. .in u.. oi. .1 v.- -.. ...0. ..§ . . . . . a a . . o o a . u . n . . . . . . . . "V I o-O o >9 ’9‘ 5.9.. 9.-. .000 090 O O o ...o .u 40. .09 “o .0- 0A... .u. . . .v 0.. - 0 one .. a. .0: . .. O Oreo o. e O l ‘0 0‘ «ll 00 to 9.. .05 to .0 lo 7v .. e. . .u a, 4. a. t. .- . o- a. o. .0 0.0 90 .. o. o. .- v. at . i . . . e . : o t . e f o n O ‘ u t p a ‘ u a 0 n . . . . . t . v ..a. .... ..o 1.. a . . ¢ . o O I v . . a. .'c .. . ... ..- .’ e a .4 one. 000 . . . .ve .0. .0 ea. .5. , ,0 v.‘ i .0 v.. Q.-. 6.. a- o- co. ... 0.. 0-. I. .u. . . . : ..o a. . . . . . .5. ..v 0.. ... . . . . . _. . .. 0 .. . ..l. .vo A¢4 o 7-4 to. 9'9. «9.. u...¢ Y" D. 0". o. ‘90 ‘0. v». 9... 99 o.. .0. .0. 0‘9 0'. .0. ._. ... .- ... .. .. .. . . .o. .v. -o. at; 0.. 4.. ... vi. .. . u . c . 0 o . . . . . . ¢ - . . . . . e . . . a u . b a i o . a 0 v . b . . . . t t a -19- basis of Modulus of Rupture expressed in pounds per square inch. Bending_moment x Distance. Neutral Axis to Outer Fiber lodulus Of Rupture = Moment of Inertia for Section The results of the impact test are pictured in Figure ll. Impact reSistance, of course, varies inversely as depth of penetration. This test was roughly comparable to drOpping one leg of a twenty-pound-chair on the insulation from a height of three incnes. It Should be noted that While the compressive and flexural strength of three of the materials tested remained the same or decreased after saturation, the flexural and compressive strength of Foamglas increased. Also, both btyrofoam and Foamglas snowed an apparent increase in impact resistance after saturation. It is thought that this was due primarily to an increase in resilience of the eXposed surfaces. According to the manufacturer, moisture does not penetrate beyond the surface layer of cells to any great extent. hthLTo of HmAT TnAfileooloN TLDT \ The results of the heat transmission tests are Shown in Figures la and 15. Figure 12 shows the variation in thermal difquiVity for the various samples with moisture content by weight. A comparison is made with a thermal difquivity curve for wood fiberboard computed from the results of an investigation by hecnler, mcLaughlin, and Queer* to deter- mine heat and vapor transfer Characteristics of the material. we may *Hedhler, E. G., E. h. homaughlin, and hm h. Queer. Simultaneous Heat and Eager Transfer Characteristics 2£.gg insulating Material. American booiety of heating and Ventilating angineers Transactions, Vol. 4a, 1942, p. 512. -ZU- also compare results with those of an investigation of foundry Sand by Tanasawa (l955) described in Jaxob*, where it was found that the thermal difquiVity of the sand first increased and then decreased with increas— ing humidity with a maximum at a humidity of 10% by volume. The reason being that starting with dry material the 3 first rose fast and then Slowly to about five times its original value, whereas‘gp increased at a linear rate. Tanasawa employed a periodic heat flow With very high fre— quency and a temperature difference of less than one-half degree Fahrenheit. It must be noted here that although the approaCh to the problem of determining the heat flow Characteristics of the selected insulating mate- rials was based on the long-established principles of temperature varia- tion in an infinitely thick homogeneous body subjected to periodically Varying temperature on one surface, the actual eXperimental conditions departed somewhat from the theoretical ideal. Due to the impractioility of utilizing a large mass of each individual type of insulation at the identical saturation conditions of the l2" x l2" x 2" samples, a single enclosing mass of z.l6 pound per cubic foot Fiberglas was employed for all samples. The value of thermal diffusivity computed directly from test data then is actually a compOSite of that of the sample and the Fiberglas. However, the test value Should fail oetween the actual thermal dif- fusiVity of the sample and that of the Fiberglas. In fact, for the Con- oitions of this investigation it appeared that the relationship between the test difquivity, actual diffusivity, and the difquiVlty of the Fiber- glas could be eXpressed with sufficient accuracy as a direct preportion—- Fiberglas (a): Test (00 3 Test (dd: Actual (a). Test values were corrected _ *Jakob, flax. heat Transfer. New Yorx: Jenn Wiley and sons, Vol. 1, '- 21 - rw—a 4’1 30*: .Hffi.” #3:“ 7m 1 . m: i: H :3: “5.“:fo ::... ..-1-. , : :w : 1.1. . £21.13, :1L11w ammwmlwieooa pea _u _ku:. i. 1mgwmxemw.;um gym”. a. a ._ :35. .. .5 ya a ..., - yiiwelll r l . . ail- ;; H . _;:iz:_1.1“21 0:. 4 ..E . was f5», y 1 Quin samples-waemlu. ‘ a. 4Q» 71- mawea fl -1 - f 3% PL , h mam -._+_ i-_l - aileod l .49 NM. . a~ uuuuuuuuu E .e E . 21-41-11- - m . _ -22.. on this basis after a test of a sample of Fiberglas identical to that used in the backing prOVided a value for the thermal diffuslVity. The determined value varied less than three percent from the computed value obtained using actual apparent density and the manufacturer's values for SpeCific heat and thermal conductiVity. From the curves of Figure lz, it is seen that the thermal diffusivity of corkboard Changes little until moisture content exceeds forty percent by weight, the rise in thermal conductivity apparently being balanced by the Specific heat and denSity. The fiberboard, over the range covered, SHOWS a slight increase in difquivity. The other materials snow varying trends. The obvious conclusion is that no Set rule for a Change in ther- mal diffusivity with change in moisture content is readily formulated, because the quantity depends upon the thermal conductivity, denSity, and speCific neat, all of WUlCn are undergOing simultaneous Changes at dif— ferent rates as the moisture Changes. The point at thirteen percent by weight for Fiberglas should be disregarded due to the fact that the sample had eXpanded to practically l50 percent of its original thicaness during eXposure in the high-humidity Chamber and it was necessary to remove a portion of the material in order to fit it into the test apparatus. The high values of thermal diffusivity whicn are exnibited by Foamglas are rather difficult to account for. Calculation, using actual density and values of specific heat and thermal conductivity as given by the manufac- turer, results in a Value of approximately 0.040 and the test result Should fall between this figure and that of the Fiberglas backing, Which was 0.0519. Possible reasons for the discrepancy could be that the samples lware not truly representative of the average product, that some unanown, experimental variable was present, or that the specific heat and/or the thermal conductivity undergo great Changes in value between the manufac- turer's figures for 750 Fahrenheit and the test mean tehperature of liloO Fahrenheit. Wilkes* gives figures for a temperature of llz;o Fahrenheit which do not differ appreCiabiy from those at 75V so the third possibil— ity does not seem very likely. it would also seem somewhat odd that an experimental error Should occur only for the two samples of the one mate- rial, especially SinCe the two tests were not consecutive. Probably the first reason given must be accepted as the most logical until further investigation is uncertaKen to prove otherWise. in the calculation of thermal conductivity from the test results, val- ues of SpeCific heat and density are needed as well as thermal diquSivity. No values of SpeCific neat for moisture-laden materials were found in the literature, although there have been attempts to correct a values IOF moisture content. Jaxob** suggests the following factors to correct thermal conductivities of building materials for various percentages of moisture content by volume: moisture Content Correction Factor l 0 l.50 a 5 l.55 5.0 i.75 0 0 z.lo 5 O (.05 lacLean (la4l)*, from tests on various woods, developed empirical formulas to adjust g for moisture content, but they were of no help in *uilKes, G. 5. Heat insulation. New York: Jonn niley and cons, l950, pp. l7l-l80. **Jakob, max. Heat Transfer. New York: Jonn wiley and sons, Vol. l, l949, p. 94. ***MacLean, J. D. Thermal Conductivity pf wood. heating Piping and Air Conditioning, 15, 600, la4l. p. 590. “of. this case. Therefore, to r.roVide values of speCific heat for the purpose of this investigation, the Specific heats as given for the dry insulating materials were combined Nltfl that of water on a percent-by-weiaht beSls as indicated in the sample computations. This prOVlded a linear increase in SpeCiiic heat values With increasing moisture content. The resulting calculated value was used With the apparent density and thermal diffus- ivity to determine thermal conductivities for the moisture-laden sahples. The variation in thermal conductivities ultfl moisture content is snown on Figure 15. As expected, apparent.§ increases With moisture con- tent, although at different rates for the various materials. An interest- ing correlation is Obtained, in the case of corkboard, with data graph- ically portrayed in hilxe5*. This investigation extended only to a mois- ture content of approximately seventeen percent by welsflt. Nevertheless, this agreement seems to indicate that the method of correcting speCific heat for moisture content is a valid one. The values of conductivity indicated for Foanslas must be viewed Wltn skeptiCism for the reasons outlined in the discussion of Fibure it. Also, the pOint for Fiberglas at thirteen percent by weight is assumed to be in error. biieht decreases were noted in apparent densities of moisture-laden samples during the test, apparently due to evaporation of a portion of the included moisture. in order to hold this loss to a minimum, the edges and most of the inner surface of the sample had been Covered with aluminum foil. The outer surface abutting the copper plate «as not covered. Upon completion of a run, the foil was removed and the sampie reweiehed. The *flilxes, G. B. neat Insulation. New York: Jonn Hiley and bons, ist P. til. - g5 - ................. «.u. ,3. in .11 ........ passage “ ,_ (ow otyriw 'C D 4 H «4in o. q i h . V . Q. ; .3 spin. adme goal? _ ._.-. ; ‘W ll Paine G! i has?” sci. .eeHiriiifijfiih. miww M. 3ng I [L . 9 ~44»: ll -;;6-. weight used in determining perCentage moisture content and apparent density was the numerical average of the Weights at start and finish. Unly traces of moisture were noted on the foil and COpper plate upon removal, indicating the apparent Soundness of the premise concern- ing prevention of meisture migration to one surface by applying a peri- odically alternating temperature to the sample. The complete results of the investigation are summarized on Table ii. For comparison Table I lists the preperties of the materials as obtained from texts or manufacturers' bulletins. -37.. TABLE I VAHIUUS PnOFEthbb OF leULATlNG MATERIALS lNVthIGATLD l‘fiOul JIMVUFACTUMHS' DATA UNLhSS OTHLRHISL INUlCATED Pr0perty ! Units Corxboard Fiberglas Foamglas Styrofoam é 5 Density iLbs./Ft. 6.9* 11.0% 9.0 1.6 Thermal z diffusivity Ft./hr. 0.0065* 0.009% 0.0175 0.0595 bpeleic 0 heat Btu/Lb./ F. 0.59% 0.44% 0.20 0...? Thermal m 0.4.0 conductiVity Fté-Hr’f—OF. O.z6* 0.57% 4e...) 0.51 Compressive z : ‘ strength Lbs./ln. N. A. s N. A. ia5.0 as noisture absorption % of Vol. N. A. 1% i 0.2% 6% *Wilkes, G. B. Heat insulation. New York: Jonn alley and Sons, 1950, Appendix. - 35 - PhoPsnTiso 0F Thu iNSULATiNG maTnnilsc lNVLleUhTLB* TibLi ii Ab DthfilenD EnUm ThbTS Property Units Corkboard Fibergias Foamglas Styrofoam benSity libs./Ft.C a. 7.dl l5.b 6.07 l.7l b. l7.l0 s.5z <.vd Thermal a a. 0.0075 0.0075 0.00l 0.000 diffusiVity Ft./Hr. b. 0.0l4 0.019 0.000 0.0ol opGCific o a. 0.40 0.24 0.40 0.L7 heat btu/LO./ P. b. 0.74 0.50 0.45 0.56 Thermal Sigiiga a. 0.s7 0.fid l.¢b 0.04 conductivity Et.-hr.e F. b. <.ld 1.96 i./4 0.00 COmpressive a a. 50 l5 l0« 05 strength hbs./ln. 0. l4 5 ms 55 Modulus of z a. 04 44 fl oz dupture Lbs.’ln. b. l7 50 9d 07 moisture(Lqu absorption % of Vol. l5.7 15.6 4.00 4.70 moisture (Va—1p.) - absorption % of Vol. 5.60 4.8; l.5l b.0d *The "a" values are for the dry state; "b" were determined after immersion. - (9 - CONCLUSIOND AND nhCUmMLNDATiONS from the results obtained from this inVestigation, it would appear that otyrofoam best meets the qualifications set forth for an ideal per- imeter insulation. The apparent high Values of thermal conductivity obtained for Foamglas, although not believed representative, cast some doubt upon its effectiveness as insulation, espeCially wnere radiant floor heating is employed; Fibergias and coraooerd should be made mois- ture and vapor proof if they are to be suitable for perimeter insulation. it was evident, as a result of the researcn undertahen for this investigation, that there is a distinct lack of published information concerning the properties of the various insulations. Values of thermal conductivities and specific heats over a greater range of temperatures and for various moisture contents are particularly needed. it is felt that the test procedures employed can be of great value in extending the Knowledge oi the prOperties of insulating materials under varying conditions of maisture content. further refinements in the pro— cedures and equipment used are necessary, however. The entire mass of insulation c0mprising the pseudo-infinite body should be of the same material as the sample being tested, and have the same moisture content. This will necessitate the use of a much larger capacity heat Source if the same temperature limits of OSCillation are to be maintained. in addition, a metal, rather than a plywood box, would be more suit- able for enclOSing the mass of insulation. The double-wail feature, with air circulating between the walls, could be retained, and the apparatus - 50 _ utilized to produce a sine-wave voltage input to the heater grid is satisfactory. Consideration should also be given to reduCing the period of the cycle and magnitude of temperature OSCiiiation in future investigations, with the possibility of then utilizing a smaller mass of insulation to apprOXimate the tnlCK body. Finally, a simple method of determining the SpeCific heat of the meisture-laden material Should be developed, so that experimental values can be combined with the thermal difquiVity test results to determine values of thermal conductivity with greater accuracy. L: Amr’Ln CULAIJUTAT i Ui‘éb l. The Determination of Thermal DiffusiVity (09 for corkboard (6.05% mUlSt.)3 Maximum Variation in Temperature at interior Plane = ia.75 OF. Aagnitude of Temperature Variation at the Surface 3 4o.s5 OF. Number of Complete Cycles per hour 3 0.0064 Distance from Surface to interior Plane = 0.i615 Ft. Thermal Diffusivity of Bacxing insulation = 0.0519 itE/Hr. /7Tn 1' X —-—- \ 0c Asap =AOSE I n e XJEE‘ _ £35 ’ 410 P 0.1615 /9.¢~Ld.§§.fl - OK 22.75 0.1615 finger. at 0,0854E ._ (0,571 )2 = 13.5 o: 0.l<5l5 0.571 Thermal Diffusivity ea. W o: a 0.0309 rte/m. ‘\ ‘ . " ' . ' z ' Lorrected Value: gfigg—E—g— x 0.0;;09 : 0.00642: r't.,/nr. ll. Determination of Thermal Conductivity (x) for soraooard (6.05% m0ist.): Thermal DifquiVity = 0.00043 bQ- Ft./dr. Density : Lbs./Cu. Ft. Specific Heat : O.60¢ Btu/Lb./°P. Coefficient of Thermal Conductivity5x ewe 0.00848 x ll.00 x 0.652 x l; .. -l -2 - 0.702 dtu-[n., Hr., Ft., °r.l III. Specific heat of Moisture-Laden sample (Corxboard): bpeCific heat of Corkboard in Dry btate = 0.40 Btu/Lb./°F. Specific Heat of hater at lzoo F. 3 0.0397 th/Lbo/OF- Percent of Water in bample-—by height 3 56.9% CompOSite SpeCific deat - 0.009 cpw,-r O.bll Cpcb (0.509 x 0.997) +—(0.sii x 0.40) c = 0.604 dtu/Lb./OF. pc lV. Modulus of hupture from blexure Test Data for styrofoam (Saturated): Bending doment = 75.z0 ln./Lbs. Distance from Neutral AXlS to Outer Fiber 2 l.UU In. Aoment of inertia for Section I l.50 In.4 Jodulus of Rupture : bendin doment x Dist., Neutral AXis to Ulter Fiber Moment of Inertia Z§l£Q_§_liQQ : 56.7 Lbs./In.2 1.55 S -55- t ....;..: ......2..:..:..n..:. ;...1.;: .. 414lJ3fl11fl..:..1.1. .. 1. .. flu._:, .111 “D.MH..H.._1.WH.,. fl. ...”.Wfln .fiflflflflwflfl _ ..HHHCHflflHHfiHX...UUCM.H..1..1fi@h.._... . .. . ....... .... .... . _ Tlllirilljl. .....i........ .... .1 in. «....-.T g- . . --ti{!:Il!ZELIIIIF . . ultii . .. ”.0 a: mi: , . . , .. H H .1 u . H 1 . HM.“_H.HHMH.Q1~.. . . L .. . 1» i . u . . . .. ... .. . .. H.. at i w . .. 1 . .1. 1 Au & 1 : IQ” . : . 1.. .. . l .KOlVW 0U, ..wog i .. . 1i 7--...- ..l..m.n.u.¢u.m.nm.-.-o- F1 .... m Famed u .23 paid «)2 l -34... 14»._..1.._4 ikfiffi. ;.: {‘ .. [_r ifis. .:..;“Q i... w": dd .nm1.z1+ _ a...” m... Lush A2 . -mrn. amen. D W V 3k 2U ....... ’1 Y! hi '3 ...—J +11 11 'Ezif'AESE 4*. ti] . . .. . I . 1. . .... - -.L—e-'o—<.-H—1-.-.s .... T 3 I f h ,9 HL—o’ 1f+ ”www— ‘::7 $ng t1 r ' ‘50‘ 4—... . c .. . .L .. .' v a ‘_ j i , (:7 M’— w”, 1‘“ ‘§::::‘:.', rig-M "eff" ‘- r‘tlgfldc‘fl -_ “V. 5“ ‘1 >13 ii. '7 -.._.—-_(... _._- >—- .... m4... . FEE; juz H + .iuaéese due 0 o, . . m l, V7.5 ........ Eran: u . #540 .2 Guam; :2 «a Lei. 3 Fdwxmw nu Mk1 - iii all ..il ) U’J F tub-.1 k ~ H'v--% I‘J :1 LL: lg- , V f 1 >—-.g-~— ,a r“? \ a . 4 . v o . u y Y n 4 .o u 0. ¢ .. . .. . . . . .. . .. . . . . . . .. .L- . .. ... o... .... ... . .. .... ... ...,e... s . . . u . . . . . . o . v o c . i . . . . . o a . ~ . . . u . . v 4 . . . . v . i a . . . . a . . . . . . i . .k- c 5”. i. )7"! ........ ........ .... ..o. o . .... o... .... ........ ........ ....... .... .... .u.i ...c 'v. ... .... ........ ..... ........ 72145 . . 7.11.... r! . ...—....» - \Tg v - 5+“..- \ ,. ~W. ...... j‘1 “>4 ...... . ..Js.._._. . _ , I, . '._.4>-""' . . fioi if? n) ,7 u). g. LL! .L'. U1 (f' luau) 4" m: _ --~-->--——- an-.- m . _€4.~..i...il;-.w : 1 , ...fl .. “v- ,; o . 4;“ M- a, ft 5515’“ ..... -40.. ......... ......... ........ K.--H_4_..- ........ “...—.....iw . . 3‘? i \ Iii“ / .1.": W 'Aa K <37, we 7‘5 =12. mi 3 #7:, 1&1 LU; r in .30 «C. Tame -..—4p_ - _i... .__-. a” .-L in . MO r02 - -41- Jul-n" It‘ll a * o —-o—¢4)Ho—o—A ....-... .... r... .... ... .....-.. M ‘-~4 t—TT .v TI .5. I g T f It‘li 5|.“ swam i ...—_H—AH ..i..,.. In -42.. @Ktiefii Esau .amemuso .0 Esme. - 72:2,,1 V a . painlisu.m ppm a um... F0320? Am” 11 ...! I! I (f‘ [F O r J3 I. . a. 1». oau av. oak}... .. .M L... e d E. .lfan kwleq>w175wgv7.3.7 l ....x H. . .1“ LUSH“: ”a: .H H. I flux 3 H 14 i “xx 33“ ”a .1 _ :3 . 1. A .. - .Tfll -:“ - xx .5 1 f. 37:7? M33 .2 x H H. M .4 ....“ 51”.. H H: 3 H 7.1.33. .M 3 w . . 1.4 L. . H .U .H .H M; g. “...... “......n, H. m .. ...4 M. i . H. .1. M ... :5 H . H . i .13. .. .1“; 1. .H ...“ . H H : l . . . I- .. . . - . . . , - 1..& W. . .. ... 1. . . 1. . T H . ......L -..l. . .3 . . . . H .. . ”.3 TH . 1 .- u... 31.- 1; “Mm . . s . .. - so . . bl, . 4. ‘ t . . g; 1 g M. .2“ nun .NHW . 1 1. 2. x x .3” 1 ”3. ”twin H . . g .... .T H...“ ”3-H 1. pl .. H :- .. . x 1 .H ”icy” . .. . . .1. 1 . .x. ”M1... . .x H. .g .... u. .1: J.” H ..t. T 1H. T H . .3 with . q + . . .10.... . . 0d. a 0i H. 1. .. .5 1“ 3H1 . . gr 1 _H ....K. 1 . 1 - an“ H 1 W. . 33- H 1 u“... 3 .:.. LE. . h .... Y1 .amLiQ . 1 _whoqudnm w . . .. .. i . l .- 1.3- 1i -45.. -44.. nut-202 _ Sheet No. I D F- I MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE memm L96 - PW H241 Tkgusmmamu 2392531155 Observers { Date MY "L I TEMP “Totem?” 1TEST {Luann 7° ‘73 Amman Sch. ‘ VARIATION _9__s THERMA HenMiMotsT. Mon-r. bemwy Hear MAT'L OUTER INNER '9 DIFFU:.1D|FFV5.BV 3" (fining ' (DRY5 SURPMJ. szFAcfil __ [a] l [—1-] Von. WT. —.~ '5’“ — 1 K .I‘F) ('a\._-_ :lI/nix) (113%) Lil LiZlflaflfiItal 38.50 Zl LE 1811. '00104i00075‘ 1 “ $7.81 0.40 . [44.Ls’-3Izs’ I‘I'IS 005601.00“ - l — 257.47 0.20 ‘ £44.00 2.97.5" 1.1451100550 005? _ l ._ ‘ ,3“! 0.7.7 . l = 139.00 7.7 So[ )419' 0.0354: 0.0‘0 [.04. G.‘87,1 9-57. 0.10 5p'ma‘ +0.25 22 vs! 1.77o‘0.ozoq [ 0008+ 4.95 324 [Loo 0.4. 65am... 34.2; 20wI mm mm; 0-0075’ — -- 13.59 on» “Una“ 133.50 1.3.00 . [.6731 0.0113; 0.0M- 15.5 51.5 /7./o 0+0 8 haunt: 35.75 24.00. L‘HO 0.05044 0.049 7.. 6! 11.2 12.73 0.24- 9151vaosi 0+. 75 12.751 1.5;: mam}f 0oz: Mo‘ 35.7 2.09 0.17 101F13¢KQL31J3L 5'0 zo.oo§ IoétS 0.0305 0.019 Q. 84: 34,0 [3.12, p.14. ’ ' : I V 13 l i ; i1 14 ‘ 15 I 16 - i ; 17 - ’ 1 i 18 19 1 20 . g 21 I I 1 22 ' 23 ; 24 ; Q 1 25 L ____L___ L . : Rem‘rk‘: *COMTROL (a VARIES < 37: FROM COMPUTGD VALUE) -45- ‘ nut-232 Sheet No. I D F I MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE Running Log «Wan -— :DRY 'Pwa INSvt—A TJON IMVIEATIGA T’ION Ear-e Tun!- WEIGHT (5am orz Dagny 5 0—333) 2 - 1 (Lash ans.) . (Lu/F71) 1Conke'pi3‘H-53 “:05 L321. - .744— 2.5AMPLE. 4'7-53, 9:45 I-1891(o.o33) _ 7. 74., 3 ‘I 45TYROFAV{3’23‘53 I0200 0-297. " . I-TL . 5 .53NIPL3 4’3'53' 3150 ' o. 283160.001.) » _ 1,7] 61 ‘3 1 7FOAM6LM{3'3°‘$3 Iozoo I-Hs’. -— 8.49 85%?” 4-3-33. 1m; 1.4+: (noon). . 266, 9 “I . _ 10 Fzsencmi3‘L3-S3 10320 2.2% — . I3.S’O, 11 SAMPLI‘. 1446-53 [1:00, 2.1+5(o.003) 8.43" l 12 I 13 14 15 16 17_ 18_ 19. 20‘ _21 22 ' 23 24 25. - - Remarks: -45... Maw. 19 ::3- Mons-war. CONTENT (7. BY WT) ,2.I-z.. .D.Oo 0.70 0.00. D.I3 0.00 (70 8V VOL) 0.17 ”A; RQC'D D- . 0.00 wa£ IAIY 2.? (1H 04: Réc‘b o. 00 Bow! DRY . °‘°7' AS REG'D 0- 9 O "Bout DRY 0-03 As Rec». 0. o o BONE PM an) A _u -47.. nunm Sheet No. I or I MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE Rnnmmmdmwwmmflw— TWm-qrmu Oboavm{ IIIIIBFICIIEB It! { madam-Arm». ,19_~$_3_ . Die T1312 E2251!“ Wfigur €227”? Monsvvrzr; Con/renn- c z- -- _ am.) (1.85.) (1.35.) {7: BY w.) , (z w v...) 13.40.32 340-53. 11:10 -- 1.107 —- Mo 0.23 .05 Red». 2 , ,, 3-23-53 10:20. "" . 1.743 (IO-02.4), 000 0.00 <-- 300463121? 3 . .. 343-55 I0 13:: . 4—4310. 2.084 0.846 . , 4’04; . 9.12. CIMMEIZDED) 4 , 3-24-53 0 5a . 43:30. 1.10.? 0307’ , 42.0 8.45 5 I IIgnzv-S'l I31 IS’ . 91:53? 2.105 0.962 I404 . 67.15’ . 6 . “3—30—5’3 19:2,; [64:05. 2.407 I.IA4»— . 4543 [1.2. 7 4—1 ~53 II :15' Ian-.555 2.477 LL34- ,‘W‘! . 11.9 8 . ..4’3'5'3 Io-gLa [140:00 2.52.1 1.17: .s’orz . 12.3 9 . Aug—:3 13:33 Iggy-401.525 1.302.. .52.? . 13.3 10. 4-7-5.3 9140 I351: 20‘ 2.65“ I.4'07_ 53° I3.1>’ 11. 4-3—5; 14:41: 410:20 2.470 1.4274 33-4 _ 13.7 12 . . .. 1.3 Mama‘s 3-14-53 11:10 1 -- , 1.13s - . 1.74 0.2... As Rfio’p 14 I I?"Zfi§3 9253’: —-' IloHZ [0.030) 0.00 0.00 ‘—" Ban/e I111 15 _ ”3-“.53 qzsrs'I 20:001.“; . 0.237. . 13.412. 1.31- (Pun-an 16 _ 3-2.? $3 1033! +S’S4rOI 1.370 0.2.;LI . “(.440 2.42.. .M I‘m-ml: 17' ”3-39-53 Io'.°° no»: L‘HS’ . 0.747, : 7.1.00 z.8$’_ Chagrin.) 18 . 4-1-;3 11:15 159:2; In? . 0.390 2.5.qu 3.70, . 19 . 4-3—53 la: 35’_ utzwI I. (.10 0.492.. 30.5 4.72.. 20 . 4.7-53 Moo 312:0; 1../.70 0-3’5’1 33.1 5130 . 21 . 4-9-53 2oszoI 370; 2.; 1.6“ 0.54s: :3. o . 5. 2.7 22. ..4'H'S3. H = 13408:“ 1.663 . 0. 5‘50 33.1 513° 23 241 Remarks: pa'fifi’”? BATVRAT an bra/vs”? 3mm; ‘2- 7. 47 */Fr3 0 ”/F-T} nut-232 I OF L MECHANICAL ENGINEERING LABORATORY’ MICHIGAN STATE COLLEGE Rummde PERIMMWMTIQN DWI .w‘- .1. I www.103— b1”: T‘fi“ Tm" WGICHT Garaw on MotsruRE CONTENT 5 ELA-PSED "" 19—35) 2- I (H {6-) 11.155) .114») 67- BY WT)_ (ZN V...) 1 Saran-2‘2. 340'33 “:03 . —‘ . I‘Mb’. —‘ . 0.10 0.03 «4: Red) 2 . ”3-10-53 $230 . "‘ . I.‘ML (0-003). 0.00 0.00 6—30»: Day 3 , ..3-25’43 10:20 44:5“? 2.I$° . 0.159 7-3)’ L51 - Linnea”) 4 - IIy-uagg 19:00 Iéé':‘5o . ’Z.I9‘I . 0.207 I 4.411 I. 9‘! 5 . 3-27-53. I0:I.>'. ?‘9:4§, 2.35‘7_ 0.3455 1555'“ 3:5" , 6 _ 3-30-53 102% ,IG‘LZIOI 2.:70 0.579 , 21.: 5130’ . 7. 4-7-31 “:10 2.0-.on 3.IOYI I-II/.I 15.4 70.7 8 _ 4.3'30 1335251»; 3.107 1.2!: 37.? NJ 9. 0-440 8140 333:1; 3.13:. 1.2.4:. 32.5 IMO 10 I ..4-7-53. INOOI 354-330 3.2237 1.2.4: 314' . 11.4» . 11 . ..4"!'$3. I614; 4mm: 3.313 mm 34.7 10.0 12 . . 13 57,040.53 3-14-53, 11:25 --' . 2.150 --"' D. I3 0.03 795 Rec); 14 _ _ 3-2.:4; Iozo$I — 2.2401 {0.003) 0.00 0.00 9.30m! Dray 15 .. 3-1043 azss'Izgzs'oI 2.327 I 0.050 . 3.44%. 0.77 (P040150 m 16 _ .. 3-2.7’53 Iazss' ,48133 1.4"! 0.2.44 . ‘I- 70 2.32.. _ Hump- l7 1 .. 3—30-53 ImofIIzazuI 1.4'48‘ 0.11:” 2.7.2. L43 6“,”an 18 . IIQ-I'Si ”:00 .MHS, 2.502. 0.315 . 12.3..) 3.0; 19. Iq—z—sz 20:3; “mm: 2.42:; 0.372 I4.+O . 3.03 20. II4-7-53 IozooI 31mm 2.“: 0.44? )7,.45’I 4.3, 21. III—943 2°on 370.00 2.73:: 0.490 17.305 +40 22I1 II4vlo-53I 13:50 337:2; 2.7:?! 0.30: 10.30 4.83 23I Audi-$1 II: I; 443:5; 2.750 0.513 H.025" 4*.97. 24 . .25 -- 7 Remarks: lav bewnv 5.5704,.75, 305M”? SAMPL‘ #2 “'96 T/Fr3 48 14-96 1"757.3 c- f... I'L..<'O - - I/ In “LIT-232 lop-I Sheet No. MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE Running Log of WEE? TI o~ T55 1- RRIMETWA T4 0M OW{ W. W. ”RIEICHLIEK 4'2. { Date MAR-APR. . 195—3-— . Di" TIME. 'TIME .WEMHT CAINoK MO'STVREiON-reflr "' LAP 5. Gig». (£35.) git—3:3). (7. Br W1.) (70 av Von.) 1.39mmci2 3—23-53 14:2.0 - L45? "‘ _ _O.u 0.03 A: Rsc'p 2. .. 3-15—53 I024; -—— I455 (0.003) 0'00 0«°° . <—-—- “Bow, Dav 3. ,Z'L6'53 4:44 2215‘. [.4IL I 0.157 I I 9-73 , I- 50 , fiMMERSE‘D) 4I z-zv-n Iona 44;ng 1.430 I0.I7>’I 10.73 . . I. 6? . 5I ..3“3°’55- Ia'.Lo_Ilq:3.s’I [.680 0.2-7ng ”.413 I ,2.. ‘4 . 6I 44—53 II:00I/(.8'.I5I L703 0.2.54: III—.90 2-445 7. 44,343 I0:I01I5‘:25’I [.715’ 0.270 I517» , 2.4a. 8 ..4—6'53 IJZLO 1403357 I.73>"I 0.230 It. IS'I Ingq 9. 4-7—33 4:4:0 310:4: L749. 0.043 16. 76. .Z-‘R! 10. 44-53 16:30 guns: L74? % 0.2.94- I6.‘BI _ 2.. 92. 113 4-40—53 Iqr; Io 337:!5‘ L759 0.2.9.? Ilé- 32' _Z.. 8'3 12f 4.414;} lowo 4107;157 I.7>'9 I 0.24.5” . 15.97. .LES 13; .. I _ 14 Swazi; 34.343 14:45“ —— 1.47? "" 0-10 0-03 . As. Rec'p. 15. 31:43. Iozqs- —- I.475fl(0-oos) 0-00. °~°° .é‘" Bouslm 16. 3-24—53 4:65’I 13"“. [.5'53 0.073 I 5'10 2. 0.75". (Punt) IN 17I 3-an I0 :40 47:5; I371 0. II 4'. 7. I Y, I- I0 . Hunt? - 18; 44—5; II :IS’ 16?:30 I-LI‘I'I 0. I39, 9-62— (.34, cum-mm) 19 4+5; lazls’ uszs'o. ML? 0. Is: . 7-40 . L47 20; .4'7-33. lozoo 3II:I5’ l-L3I_ o.I56I ‘I-S'S'I l-S'O. 21. Ann-$3 I3:5'o 387:»? 1.62.3 D.I$bI 945’ /.4+_ 22, ..4"I('6'3, ”:IOI 4497:” I.63LI OJST 9.1.2. /- S'I . 23: 24. I 251 ROM!“ Dev DEUSva SArvRATr-tb JDE’VS'TY 9. 7 3 "/Fr,3 #- -49_ ’0'5" /FT3 0‘: a 9n d 134nm; I sue-53. 25! 2, 3-1951 3. 344-33 I 4. 3—27-51 5. 3-30-51 6. 0+0: . 7. Iq—s—SzI 8 4-7- 5'3 9. I4—II—s'3I 10. 442—51 llI . . ~123w..‘2. 3")4- 5; 13I I3-L3-S3 14, Jar-53. 15: 3-24-31 163 . 3-07-31. 17. . 3-3.)..5'1 18I II4-I—n 19. ,4v3'33. 20, .4443, 21 .. 0—7-5; 22. ._ 4-4—53. 23 I 440—53 24. Remarks: SAMI’LF.‘ i"I MLIT-233 MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE Sheet No. RunningLoco! ST'VROWAM SAMPLES - Malsrum; ABEQflEIIgli T531- OW{ W-Wc TrggLQI-ILIEIZ \IQ. { Del: 7723. 770”; 5MP“) ... t SA" DL‘ 5 MIGHT GAIN’OQ L0$c) (HRS) CLEs.) (I. In.) _0. 330 (0.007.) 0.133 . ID.I65’_ II32.$I "“ 0.302.. IS’: IO . _— 955'0 18:40 0.433 10:4'OI 43:30 0.41.! lo: DSI 40:0"; 0.442? . Ilizo I [449219 0,494 I0:J$'I18’716'S'I O. 5’90 [0:09 ZNEJZDI 6.5.05'I II:I.5’ SE33: 0.510 II:204¢7190I 0.5'91 . II'.I7I - 0.2.42 ”:10 — I OJAVI 1021044500 b.5‘IaI 4:40) 07:30 I 04903 W” . 92:00 0.651- [0120/64'IIOI 0.65:0 II:00 . 20:90 0.730 In: IrI 160:0)“ 0-732 I3220I 333':I0I 0-760 4:40 33::30 0,777 ILJ3°_ 440:2» 6.770 H'SOO 42.4300 0.747 'DRY :DENSITY I. so ”Wm-3. A —') A ‘ 0W5” . . 0.”? I 0. LaoI 0.2.055 0.7,IOI 0.2/0‘II 0.2.40 I 0.309 0.33’LI 0. 341-: 0.922.. 0.44m 0.462. 0.47? 0-471 0.449 Snrunarib IISN‘ITY -50- MOISTURE. COMTIENT (7 RV Wt) . 0.44 Io.oo 3.0.7:; . 35250 I 33.00 . 09370 00M. 40.60 I+I.20I Add! 0.00 0.0:. .44.: {0.6 .54" ..5’6- 54. _S‘I- I (1.0. . a. 61- . 62. “I wunhwmv“ 3‘“ ”/3"? PERIMEIZEQ 15.5.“,Atlgu qugsuc-‘HLIIOH 0. 07. 0.00 I. 317" I. 5‘8 1.50 1.82. lo Date/MAW..." P .1953- I- ('7. DY Va.) A s Rae’s . é“. Bout: MY (PLACED m HUMID- CWAMEEEJ 1.77.. [.17 1-02— 2.02. 0.00 I 0.00 1.90 2.43 A: Rec'b HBO”; 1“; , (IS-Infinsep) 3.44 . 3-77. 4'. H: 4.23, 4.40 4—.6II 4’. 5’4- . 4.76? IOFI Sheet No. “LIT-232 MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE 3.5"x 3g" x 2." SMPH!‘ ON 'TEs1f COMPRfijjIOM Running Log 0! AT ION ?Emm Aw2H\.34V unude mlnmwviioU .195; G... d ntoq uu< Tl I Date APR“. I4- .II4wm4V-I 22.3339 N3 uuuckm 3.330.056 9'04 Mu<¢u>< fill II III I II _ fi. 33, icibuduA NZ _ Ft 9.004 .w EIIII- Serpanra _I _,____.I- ._ I III. M W Remarks: * FITSeRSLAS SAMPLE 21I 3.5"); 3.$' x Z.I‘DS"_ ..51- SAMPLE l nut-232 Sheet No. [—1.14 MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE Runnimmdm Eir ON 8'x 2" x 2 " SAMPLE; WVLAT'ION Imvmrtbu om«:{ MW. TREACHLFR 4&1 { Datefil’fi" "Ii-1953 W i \f- 1 I o 3 7“ I- u 8’A . z w ° ‘3 T LEA! + 3‘” «>3; ..:“Aoifi $05.»: I: 13003;,‘4 n5§dit\ 332‘“ 't4?3&} 30-: 0mg n~Iza>m «~43: gH\O§\‘~ .3 00 ‘c’gdgfiz EQHQGBK :QV§¥5 Vdfii‘T‘géQ 3. I: I 0”“ ”*2 V 4 "‘3 e [3'4 It 5 1 I I 1 I I' TOW—bib MORTAL I‘f _ HI>I I‘E-I-HI-I SATuIRAIE; H II: I_ :94. 1 5711‘: I 9360 I( E If“ , I0.2.Ia : 2 a; II 7,5 I 0250 I z. , '3 I o. 293 III! 3 u I 15’ 45.5 3033 I335 35; 3:. IL 20° /.33 10.175147 : (a l' 4 . v? I. 40 I $0,309 I I 4;“ 2'7 ?O.65'b El 5 be“ I 3'7 i 20. goo ‘ 54‘ 25’ >94“? 6 0 1’. 3: 24.; I m :Iosroo Ifl 0.. u: 4m: LSI 00.450; 30 7 E f," 100 I I I0 I75' I . 7a 55 10.!“ ’ b I g I 8 ‘4‘ I 9'0 . I I 0,15% 3“ 79 0. Mo 1' fl 9 Q“ ‘ 35’ 'IoI.5' II.33 '0. I60 5’ » 1.; ‘ I.33 ‘0. I0" ‘27, (III E LlL—J, ‘IAI C III , 107I (MI 0’ I 0.4L: : I0... 44’ 0. 40:. f 11 o 52. I la 4m ? II 45’ 'I I e! I . I K I 0}?“ ‘1 ‘X 1 . I. I 12/," ‘0 I03.b’ II.33 b.501I 92- I IuI 40 75-3 I L33 'DA’W .I___‘7 I 13. , I + + * I 14 I I I 15 i ' I I! 16: i I I 17 i I , I 18 I I I! . I, 19 3 I 20 ! I I 21 I I I I I I 22 I I I I 23 I I I I L I I 24 I I! :f 2_5..I_ -. -II III: I: _- I I I I _E__. _ - I. I -..IJI- Remark” *- FIQEQGLAI SamPut 8" 2." X tit: Howl-s 0! RU'WCI ‘ BEND-IM'N‘V' 1’ l g Qntur a! Ian‘s-HA or San-I.»- 52 - f C. 3674”“. N‘uf‘AL Axle To 0970! I. FIE. m J A 2 . To W3. A- 13. 9 1 0'? No 3 9° 4 9" C9 5 (5’ _. 0.0co . 0.072. e 6 Q‘ .. 0.05m o.ocoI ‘1 7 “J. 0-I5Iq. 0.I7CI 8 $69 0.2.910. 0.”? 9q‘ \‘9 ..0-171. (1M? 1 vr‘°_I 0.237. 0.23%. 11 J? .. 0.244. 0.151 12 (a? 0333. 0.236I 13 09‘“ 0.304, 0.300 14 49“ _. 0.300I 0.330 15 cf 0.7.47, 0.3oo_ 16 ‘ 17 18 19. 20: 21. 22 23 24. 25 Remarks: STEEL BALL ...”-m Sheet No. I on: I MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE RunningLogol IMPAg-r Tejgr PEBJMETE,B INSHhaI|ON I:M¥I=.§TICpl-3TOOA1 DWI W-W. TREIcku-M. I I-<——~——I NOEAL I—————->I PENETRATION (Islet-Hts) Dream’s]: C. Ave, Ft MAL Ave. _ .MEAsurzEA 31...; Flaws-ran T10 N. 0.153 0. 2,30 0.1745 0.7.40: 0.7.51 azcz 0.32.: 0-32! 0.13’? v .. 0.037 0.040 0.034» . 0.037 10.05? . 0.0745 moc3 (106+ DJS’Q a. 2.2.2. 0.23! 0.245 0.25:0 0.2.44 0.310 0.3I7 0.273 0.05! I: U 0. ‘ML 0.300 _— 0mm. 19_$'_.L I<———-——I SAruyTED I————">I IDE N ET'RATION (INCHES) l a. 1; 3A 4'». $4 (a. 7A 7% ‘Ia. IO. Ha 0.091. 0.066_ 0.047 0.3“), (LBKL 0.305“, 0.141. 0.1.04 I21. 0.147,. :3,t p.140 MK 0. ZKOI I34 0.317I I‘INCH 1314. (0.185 L115). GFT'. - 53.. No PENETRATION B. ..C. FINAL AVE. Ave. MEASVRFSABLE. 0-0“— 0.045I 0.040 0.33:: 0.32.5 0.3“. 0.204 0.127 (7.va 0.1:? 0.7.37, 0.187. (L040 0.078_ 0.0651 0.3.55 0. 'LYS‘ D. 335 0.194- 0.170, 0450 0.2;; 0.2%, 0.2%: 0089 0. Okay 0.074- I 0.018 0.333 0.3571» 0.334» (L203 0.194 0.3% II [I 0.166 I 0.1%; o. 2.6! ,. o. 2%; 0.303 0.L8L "LIT-232 SheetNo. (OF! MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE Running Logof‘IEST ‘1 “HEAT TRANSMIéglgg Eggsz-rlg; —— (:ggnagfig ( bhx) ?§K|&fl1§& Zgfivhajflou Igyrgsrmarxw aha-ms{ IMWTFRE ”‘5 gm { DmAP1.Ll-l1'19£ ,ME Emu” Dunn Iflfle.‘ Roan ISwain“; £966 HEATIEK ROOM ‘— Tume #2:“;5 135:3“ 1‘5“" :1”ng ’Tma 11:: 7' Am. MP“ )@£;‘) 5: P. 3—” 1.8421“) T5 :1 P. 5 (m) m (”F-”LfiLL11L,__CEL+.Mgtle®n) °r.) 1 11:00 —0 - M. o 73.: 4+.o inmo 87.0 ?o 0.5-0 3cm 2 )If3o 0.5’0 Hz”. 5’ 81.0 43.5 limo 41.5 40 0.51) Ike 3 (3:03 1.10 [45.0 106.9 47,.5’ ; [2.1-0 “1.: “3 0-52? 3315’ 4 “+100 3.0» 15510 mo 4:.r 110.5 mm m. Moi 3a.: 5 mo: 4.00 Km ' [275 42.: 4%: 1:40 105' 0-5.? 31.2." 6 15:05 5'40 Mayo lssfio 424 , I"; 114.5 92. Mar 37.9 7 17:03 a.» 133.9 134.: 44-0 no.5 nus" 5'? 0.2.5 34-0 8 17:30 5-5") I100 133.0 411,0 110.57 [IQ-5 5’0 04$ 39.0 9 WHO 9.50 71.0 “6.5" 4L0 I 110.5 102.0 [7 - 37.0 10 W)” q." 97.0 (ms 44.0 I no.5 q‘i-o I‘l ’ Sine 11 u)” 10:” 81.5 I040” 44).; 1 [2.0.0 4%.: 3° —' 37.5; 12 74:». ”-00 $4.4 44.0 40.5 I mm 41.5} 45' o.L.s' 37.0 13 L3;oo 11.00 67.0 €8.5’u 40.0 . (“.5 66.0 i '70 0.40 37.0 14 um. :34» “3.0 1.3.; 40.0 ' [no who! ALT}. MR. ~_,_x. 15 alzoo' 14.99 13%.; “3.5’ 4-9.0 ' [11,9 [who 16 02:” ' 15.00 '53", 11510 44.0 12.3.0 12.3.0; 17 03:00 “.09 _ [51.5 I3s’.o 40.0 IAL. l2825’l 18 MN: rm- [$4.55 No.5“ 40.9 111.0 (”-0 19 orzoo moo [Won'tL [44.0 40.0 i [11.0 I110 20 06:00 I‘D-00 [11.9 136.0 40.0 121.9 ”0.9 21 07:00. 10.00 [04.0 12.7.; 4m ! 12w “1.0 22 0823: 2:50 SY-o [12.5 4-0-0 E Inc 44.0 ’3’ ~ 37.5 23 «:3. 21.51: 31.0 loio 34.5; “41.5 q;.s’ 33 0.7.0 , 37.5 24 10:00 23.00 $1.3; 101.0 34.51 “9.5’ 43.0 4’0 0-13; 37.5’ 25 moo “on 92-! 49.; goo i “15' 445’ng 0.30 3h: Remarks: WT. A1" STARV -- 1.3021; - a _. WT- 61' Fuvlsn ._ 1.302. HUT-232 Sheet No. I OI: I MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE Running maMWs -— Foemccas (Dar) _chunms'rga. INSULA TION INVES Tl an 1mm °m{ W.W.TRfi\cl—|L£K 4a. { Dmiwn- 23 .19£3_ ”HM E. IELAPSE) Omma INNER ‘ SURF/55:5. LOWER. ROOM AWL I‘IEATER TWE 3mm“ sugpue Tng. Ema {Tenn TemPKKATUmE [Npu‘r TEMP. Temp. (INNER. TEMP: _- (WEE/u.) (Somme) (Santa) 3:) (Sm-1:25) T' T" T" T: “p.15. Wis. . (HRS) ('F-I ('F.) 0F) (OF) (”FA .L°F4) .(‘F-) (Von-s) C‘IMVS) .xzoo +0 ~ 12.1.0 [06.0 _ “(1.9 . 1°44, . 4a.; ‘ 39.5 _‘ 34,... a7 9.5-.» 2.1300 . I.” 145-0123.; 120.0,)”.3 +0... 33.3,». 34.0; us- ,o.co 314,03 ‘z.oo ,Ml.o J31; 12.1.5 Isms" lift. ‘ 315' 33.0. N_.__rz_ _Nch. 4'OIOO , 3.00 )57-0 lS'o.O_ 17.0.; 137.0 5 ozoo G, 4mm léo-b’ . 1:23. Iuo 136.0 6fozoo 1' 5.09 . {44.0 V III/LO Who (2,3,; 7 .0400 6.00 [7,0,0 (33.0 “4.0 116.0 8: Ofoo .. 7.00 . Ioo.0r Hana ILLD} [04..0‘ 9. 0600 q 3. 00 V10 . [0510‘ [Lama ‘13.; 10 D700 4'00 90.0 ‘ILa Inns". 97.0. 111 0800 ., 10.00 _ 26S" filo 123.5‘ Sumo. 442.0 254.0 34,; go, 0,1,0 . 12; 0830 .. (05°. 3510 qns’ [21.0 who. 41.: 134.0 .3510 .5’0 . O-Lb‘. 13. “93° ”'50. 17.4.0 111.0 “41.5 lo7.ov 415’ than . 3910 ' In. ’ 0.51: _ 14. “so .. 13.5’0 1443.0 I‘L‘I-S’ no.0~ 120.; 44.0 4L0 . 36.0 “8’ _ 0.49 _ 15 ,. I‘LOO .. [4.00. I540 ”.510 ' 1113.0. [16.31 40.0 3265' | 34.0 ‘ ”,0 | 0.65" 16‘ ”>00 .. l5’-°°_ )65".a 147.; 17.1.0 ”5.0 449.0 34.0 3510 H7 9"°._ 17; [4,00 .. laool 16/.0 {51.1 lu.o I352; +0"? . 3‘“? . 34.0. 1°?v 0-53.. 18. .439 .. [550 [$4.5 Irma [2,1,0 133,0 40.; 31.9 3530 34 . 0‘5'9 .. 19, 1600 .. [$00 [25.0 l3+.o (2.1.0 _ 116.)" 4!.5’ 40.0 . .3510 41 0.2.5“. 20 I700 non [one “$0 [7.1.0 193.! 40.0 159.1; 3.4.0 30 —- I “ ' ‘ .... ... 21. [5’00 . Z400 . 37-0 I053" (Ll-O 43.0 [mm ’ . Alf-3,. ALE. 22,1400 .. 2,100_ 74.0. ‘ISZS' I’Llno 31.0 . . . 23, Zooo .. 7,201 76.5’ 99-5 ILI- 0, €2.5‘ . 24: 2/00 . zzoo_ 95'. Mm [7.1.0 9510. 44-5" 34-0 34.5’ S'b’ ; 0.30 .. 25“”? W0. 106.0 47.5' Ila-5" Ga; 40.? 3%.; 35:0 90 4 0.3.1: Remarks: .1”: WT. er START —' /-4"[_355_ Nb 41” FINISH '— 1.44/31? IOFI "LIT-232 Sheet No. MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE 40 Running mums RUPERIIES -- STYROFOAM (1311;) PfimnmLINWTmATmN OMTI W. I Date/Int. Z7-LS ,19£3_ IIELAPSEDIOUTER INNEQISURFACEILMK R°°HI AnIz IHeA-Irsa IT— 'TJMF. T35 ISQRFAceIsummce, Tenn . Ebce TEMP. I'IEMPeA ”TUREI Int-_— puT I _ ($4£L£)($4nnt)(quan : Tine I‘m-IRWII I I I I _ 3:1) (Snag? I I _ IT! IT; T4 Tr "13.8. Iwz. I 0, I 3" -,J(H_ t.)I(_°F.) [16L ,Lffi)-('1=.):(fg) (a):(':)_bm1s)76€m_r_s)fl _ 1 21130 '0‘ I III. § [107.55 IM-b’ [ch 5' 40.0 38.5 I 35"‘3. 8% I 0.40 I 2 1.3.30 I [.00 ‘ 131.5’ {12.0.0 I liq-0 3113.0 40.5 3Q.O I 3:7. b’I £08 0.5’0 I 3I14130I 1.00 I Mina .l33.o I no.0 IILAnO N. R. I I MR. ,N.R. I 4I0133o I 3.00 Inmo Il+s.o I lots I 130.0 — I I I _ I I 5I Gus; I LL00 141.0 . I410 I 100.5' I I315 I I II Iozno I 5:00 I 160.3; I MssI 101.0 123.0 I I II 7 04:30I 6.00 I £51.0I I35?! It!.0 I “7.0 I 8 05":30 7.00 I 1:0.5‘; (7.1.0; (1.1.0 , 104-0 . I 9 0613:: {.00 I 7510 . I01.0I no.5: I 43.0 I . 10 07:30I Q.00I $3.0 Qto ILLO 8405’ . I I “- 08:30I 1°.00I 78.0 _ 4].! Iw-S’I 79.0 I 40.0 31.0 I364) . 35’ ID.‘LO I 12I6413°I u.» I 34.; I 90.5’ no.5" 81.: 40.: 31.0 I36.s’I 5’3 I 0.0:: f. 13I 10:30 I moo 101.5 97.0 no.0 ; 90.0 40.0 38:: I 3.0 I 75’ ' as; I 14 uzgoI: 13.00 I Izao I “9.0. (2.0.0 I108! +0: 31.0 I 3;.s‘I lot I 0.5’0 I 15I 13:3oII l$.ooI In; 13M; 111.5. 124.0» 4L0 31.0 _ 35.5 Ito ; 0-50 II 16I I+:00I Isis’ai 141.0 (45.0'I no.0 Utof 40.0 38.0 35.0: II4- I 055’ I 17I ”:30 I 16.00 I IH-b' MtoI [11.0 I [34.0 41.0 31.0 asis’I 108 030 I 13 lrzzoI 17-00, Ifl-O. MaisI MJ’ 1300 40.5 40.0 37.0 T 8’4 0.419 I 19I Ic:soI nooi (30.0. 134.0I no.0! nus 405 «no 27.0 I a: I 0.30 I 20I IxzooI IQJO‘ [045; 11510? Iw.5'~ 103.0 «.0 3t!- 3;.; 35’ I 0.2.: I 21 18’230I 20.00 I 99.0. MOHFI no.5 49-0 41).! 39-0 35.0 I 30 I '- 22 M;3.I u.00I $50 : loo.0I (7.0.: 40.5 31.5 , 38.0 390' I7 . -" II 23 20:30I 2.0.005 <30.0 I €3.§I I745“ 9510' 31.0 . 38.0 . 3+.5I 3° —— I 24 u- '3°I ”-WI 81.5’I 91.5I 17.0.5 fis‘oI 3q.5 ' . 34-0 35.5I 44. I 07,0 II Egg}; 50.92....122 15.; J22? 7:1. 57. th 9 -:.itLLJébi; 2:} 0:30 I ".m‘rk': WT. arr START - 0.2.83",L - 56 - WT- Ar chsn —— O. 2.95“ “LIT-232 MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE SheetNo. IoFI Running Log «EL #4 " WGIIfi) WM T I omI .. M I www.mil r IME IE:~‘DI OwIkI Imvu Swan“. Law“. “K0001 IRGOM I HEATIER. __ I MI! $3122? $;_:::;¢ Tent. ‘ Eb“. A”; ITEMP. I IfiU‘l’ I ' I (,qu4 Term Q’HLflfl-II ~ I §4M'_:4 )(SQMPL‘) L") (Sauna) I o' I TI T; T4, T: I _E -- I-LHRS.\ . CE.) -CF.) I CE.) -. CF.) -- CE)- . CF.) ILVoLTs)I CAMPAI- 1 2.400 I -o- . “LG I 85.5 I “4.5? 97...: 34-5’I 3?.0 I 90 ‘0-4'5' I 2 0100 I I." [1125’ ,IILO I “4.5 107.5 MILI Nut. I Nut ”v.11, 3 07’” II Loo . Mia Juno I ”0-0 . Iu.» I I 4 on» I 3.00 I 15;: 139.0 I n.0,: my, I 5 0400 4509 I57.5I 1‘?on Iu.o I37.oI 6 05‘» $00 IM-o I‘M-5’, Iu.o~ I3+-5I 7‘ 0600 (.00 (33.0‘ I3S’I I I I I I I I I I I I I I 19 I IN! [$.00 //o.o 130.0 111.5’ I I245 I404: 385' I 9? 0.53 ' 1300 we 94: um Ins'I mo I495 I400 24.99 Yam [07.0 “9.0 : lot-0 I 40.0 , I!” . 74.» Il-' In. [IQ-5 43.0 I 44.0 I 34.0 I Z? —- , Moo 2.1.99 9L5 ‘17-5’ 120.0 ‘10.0 a 44.0 I 34.: I 1»: -— I I709 13.0. 94» 19.: no.0 93.: 49.: I 1525’ 4’0 9.1.3 I Remarks: WT. m, STA,“ ... 1.004” # WT. AT FIN\3H "’ I- 437'. 53 . ‘ , a SheetNo. IOF I MLIT-ZJI MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE . fl RunnlmLongEST ,5 " HEAT—EAush/USSION ?RB?EKTIE$' FlflEflQgfi-S (bay) ?ER1M:-‘I 5-3 INSHEQIIOM ‘quES‘I-LGATIQN OW{ W. W1 TREIQfl 2&3. Qrg. { Date NIAV 5’ ' 19:3— ELAPSEDIOUTER INNEQ Roan SURFALEI EDGE I HEATER ”EMF: Tiff-3 SURFAME Summon Wau— TEMP. TEMP. I513“- , I TEMf’. 7'0.va 7.53? (11mm. (Swami) (“Daviv‘ICS—ugfl 1:1) — 6 TI T; T3 T4 , Ts ,2 (Has) PF.) .C°F.) C’F.) CF.) IC°F-) ('V'OLTSMIMPA 1. I230 .. 0 .1136 , 94.0 a 40.5 I/fi-b’ . 47.0 90 _ 0.4:: . 2, I330 .. 2:00 II3O.O _ 4810 . 442.0 _ no.0 'Io7.o 6)? 0.5:: 31430 2.00 IMO ,III.o . 40.0 11.0.5. IIs.o . III , 0.52;, 41530 3.00 . I54.» _ ILLOI 34-5 Iuo I I225. II3. 0.55, 5_ )eoo .. 3.5'0 . Isao, [27.0. 40.0 Mm , H.510 , 104 0.55, 61:39 .. 4,0,, . Isa; I3I.ol sans IzL.o. Iz7-o I 103 0,50 7. I730 . 5200 , 147.; I345" 49.0 Inc. Inc 82, 0.4g. 8,)‘130 . 7.00 “3.0 . Isms 34.5 122.0 who. .26 6.“. 9.2/01» .L 3-00 QKO [LI-5, 41.5 124-5 IO‘ioOI I? "“ 10I2I30 9.0a 37.5. )lL-OI 4‘0-0 Iu.o'_ 102.0, I? - 11. 27.33 [0.00 81.0. Icio' 4’0» . [LI-S 98.0 20 --' _ 12 . 2,330 ILOO $4.5. €141.55 Crab" _ Iii-0 47.0 . 4—1 _ 0.2,5’. 13,1440 H.270 gq,5_ €35 (+0.5 . luv-0| IO'L-g N__.__f(‘ I N. R. 14I°I°° 11-30 1°45 44-57. 40.0 122.0. No.0 I 15,0103 I350 ”74,. [06.0. 412.5 121.0 . )I‘LoI 16‘ 0300 14.50 I4;_o “4,0; 40-0. lune. lasts 17. 04—00 Is.“ 1:74.01 use, 400 IZZ-S‘, MM’, 18, 050° Iaso Isam 133.0, 40.0 [21.5. new: . 19I 060° . ”.50 [510' IzmoI 34.5 IZLJ" IZS’.b’ ’ . ’ ZOI o7oo .. ”.59 I344 Issac. 44.0 /;z.sj [13.0. 21' 0230 2,0.90 /o§.$l 127.0. 40.5 . no.5" )0qu . I7 "- 22; 0430 .. v.00 4L0: “7.5 40.5 . Iw.5_ "WI-0‘ I? "- 23. “73° 11-” Woo. low. 41.: . mo. In» 3I _— 24; “.30 23.00. (31.5", IoI.o_ 40,0 . lam; (17,0. 41, 0.2.5’. ?5 “’39 , 24.00» 74L») 9&0 90.5 Ibo-.5? _443‘ NAZ- Mpg, Ramada: £5.00 Ho. 0 ‘M-5' WT: AT STA «T —-— 2. 2.90 4:- 59 - f “ II F.\ um-m Sheet No. J 1L1 MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE Running In. uWfinmmMfiou-n) WSWGATI ON °W{ :- { DateIWAY $7,191.: I I INMzK Room LSJRFACF. EDGE Hall'lrfiR I mane. 17515 L RFMJ. SvnncT WALL Temp. Tent. INflIu‘r bm’m Sauna} —- Box) _. lTenP. Temp. TsMP, (S‘IMPLEXSQMPLU) - i 1 — — l T, E T, T. I T. T, o I _E-____-.-_+(.H1&s.) IL’EJ ACE) LLEL. (f; CF.) ‘Voursl my)! - 1.730 —o~ ‘Ibo 3900 41.0 1124.0 [04.0.94-0 0-45’ . 2.43., z 00 H4“: Ilse». § 419.5 Inna Izs.o Mme 0.60 3.2033 '5 3 0° ’ I4Q.o “4.0 40.5 : Ill-S .lM-a I I214) 0.65 4 1'3: I‘Ho ISO-S mm 44.0 . Iuoo Isms no.0 0-5“ : 5 use 15.00 Mas mg 44.2: 1 (10.5 I3“ 4:.o 0.4: 6 L150 Y (.00 ! I31. 0 04.5” 44.0 1 (2.0.! ”4.0 Ni, l N416. 7 1433 7.00 I [IMO I ”Lo 44.0 ‘ Ila-5’ I°fl-° ! 8 DISo 3-00 I°°a5 I ”3.0 44.0 . [19.9 loo» 9 owe Q-oo 41.0 “3.0 40.; {mm [00.3 10 0150 [0.09 97.0 (05.3 41.5’ ‘ [IQ-0 qQ-D \ 11 043° ”.00 42.0 [no.0 40.5 I “4.0 72.0 I I 12 0539 Iz.oo [03.0 I 97.5 44.0 I “41.0 lama . 13 “30 Is.“ “4.0 Ioz.o 40-5 i “9-0 [09-0 14 0730 Woo no.0 mm 40.; ‘ my “7.5 15 one I310: I I410 “9-0 44° lu-O Izao 16 0550 19.90 I Isw [no 49.: II%.5’ In. 17 1939 I7.“ .. ”"5! I33.o 41.0 II‘I-S Ila-0 /3°°° 0-‘° 2 18 ll}. .ItoO I34.°Y ‘37-0 40.5 no.9 Iz3.o I N43. m, 19 “3° [1,99 . “7.0 [33.0 44.0 Iu.0 “1.3 I 20 13:: Lo.“ Ins. on ILLS 44.0 [7,1,0 1.4.; I. 21 I43: u.oo (14.51 “5.5 44).: mo ems _ I 22 [no 21.” 37.0 I I010 49,5' ‘ Iu.o 95.0 321~ “‘ 23 [630 23.0» 95,0 IoI.° 40.5 5 ”4.0 4510 17 "' 24 I730 24: 00_ qI.o 4'). 5 41.0 I‘LLO 46.0 6‘8 0. 3o 25 )800 14.5: no , 47.0 4o-§___Iu-o “-0 ~.g._,n_y.__ng__:.: “.m.fl“: 15.00 197-0 43- 5 WT. a'r STAN-T : 2.1644,}:963; _' 2 957:: Mr: AT Fun-1H : a vixn‘ "LIT-232 SheetNo. [or-l MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE J unmanned-:6“ 3' H341 TRAMWW-Mmm) ?ERIME‘I£E 1515;455:1014 INVESTIGATION 0 {MW { MeM,195_3 EMPSBD OUT-21 INNnin Room Swing; Lunar! H64 :52 jTlME. Tflg,5_‘;_:~ia;£3;vua Wau. Temp. “Some 1" 1' — ' ' 5"" TEN"- [Imwsvt ($6Hfl-t) _1 [Snggeflfigp-I) "" 3.x) ~ . T—I T; 7—3 Tk Ts’ 5 H3942; CE, ::. . om 35.; (mm) M; 12200 -D~ H420 46.0 4/.0 m... qas’ 2+ 0,43— 22300 1.00 331.0 /I3.o 41.0 110.5 l/3.5' Nfi. MR. 3 zqoo 2. 0° [43.5 [17.0 44.0 no. 5 )‘L7-o 4 moo 3.00 ISLS 137.0 41.0 No.5” ‘37:: 5 02.00 400 [no 141.; 44.0 was 141.0 6 0300 5.00 141.0 136.5‘ 44.0 120.0 134.0 7 0400 6-00 [24.0 [2.7.0 44.0 120.0 [1,-7.0 8 0500 ‘7.» 107.0 nae 4m My “(.0 9 0‘00 2.09 €4.5’ Io7.o 40.5’ “6].0 . /o‘7.o 10 0700 100 25,0 [00.0 40.5 IlfoS' [no.0 11 one [0.00 92.; 414.; 419.5 143.0 14.; 12 0900 > “.09 38.5. 93.5 44.0 “to 93.3“ 13 [000 12.00 103-0 97-0 40,)’ “7-0 ‘77-0 14 H00 {3.00 121.5’ [06.0 41.0 “4,0 105.0 15 ,7,” 19.0., 137.0 Ic7-O_ 41.0 . 114.0 no.0 16 I300 (5.00 144.0 (25's 41;! limo (27.5’ 17 W00 16.00 154.0 137.0 41.0 Moo 124.; “3.0 _ 0.60 18 [$00 wool may 244.5 41w //‘}.0 140.5 fit) on 19 [50° 17.09 131-0 133-0 44.0 ”15' ”7-0 MR. Me. 20 I700 . xq.aa_ [12.0 (24.0 4:.0 111.5” 12,1.0 l l 21 [too 242.00 517.0 IH.o 4%.! no." /’/-° 22 W00 ZI.°°,' 37.0 101.7 4/.0 lw.9 /on.5’ 30 -— 23 2060 4.1." 8:30 fiio 40.3 no.0 fisto 30 —' 24’ 2.100 23.0. f 74.0 43.5“ $0.; /w.o 44.0 47 0‘20 25 1100 24.00 QAO qar 41.9 [20.0 44.0 7; 0.3:: Remarks: ”rm 9:. Aprcu. I-Iucu we.» 7,, a - - 3”: .‘Z 37:: 33:?» mag. —— 2m“ [0F] mm: Sheet No. MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE Rmnin‘mdflsr ’4 " HEAT TMNMISSION ‘Pnavgn'rlgs -- or: o 517%,.) PWIDN DWI F! H‘ 4 I Daemm.19i3_ .J—emebkmnsg IINNOE‘RI ROW“ ISutFAc—I EDGE I .HE/J'IIER I TTms “If UKFAQa Sugpqgg T29. iTEMP. TEMP.I Iuwur ....’ TEMP. TEMP. (INNER I -— I I ‘3. ) [SMM'VeI I £u¢>CSALPLN I _j -— - o. I TI I TL T3 I T4 Ts‘ I z ICHKS)_ ILL?)IFCE)_.C FJACE ) --. (IE-.LIiI/okfl) (AMPS) I 1 [zoo I'O- Ilu.o 107.0 40.5 _ I’Ll-O Ill-5 44' 9'59 2 I300 1.00 I 134.0 “2.0 40.5 i Iu-O 123.0 I MR. MR 3 1400 2.00 [43.0 129.0 40.5 I ILO-O I3z.b' 4 1300 I100 IS,“ . A45 40-5 , Izo-b Inc 5 Moo 4.00 [44.5 7 I365 40.5 I no.0 136.0 I 6 I703 5100 [33.0 : [33.0 41.5 12.0.5 [1&5 7 1900 0.00 [2.1.0 . Izms 44.5 I IMA’ H10 I 8 Moo 7-00 I [05.0 “4.0 44-0 [10.0 lo4-.$ I 9 2,000 9.00 I 01.511039 41.0 I no.0 d15.0 l7 - I 10Iz,oo 61.90 I 85.9 47.5 40.5 I no.0 no I 30 —- I 11 12.00 10.00 I 54.0 _ 43-5 44.0 ”’05 87-0 1 (IV 0-2’5 I 12‘ 2300 ”.00 ' 412.0 I 44.5 _. 44.0 I ma fiZ-YI MR. MK I 13‘ 2.400 I IL.oo /0‘I.0 I lnz.0 41.0 I “9.5' "4-5 I 14 0100 13.00 [14.6 I H45 40.5 17.1.5 [H.5I I 15 02,90 moo I46.5'I 12.7.0 4—1.0 I lz3.0 I32..5 I I 16 0300 [$.00 IssaI 137.0 41.0 (14.0 140.0 I 17 0490 [5.9. [52510 I [41.0 I 44.0 12.4.0 [44.S'I 18 0500 [7.00 MSOI HASI 44.0 . [2.4.0 l36.0 I 19 0600 [1.00 I304: I I3L.0I 40.5 ' [$4.0 Izs’.0I 20 0700 [$00 II’L.0 I [21.0 I 40.! I [24.0 ULSI 21 0800 7,000 97.0 I “0.5 I 40.5 I I135 10‘” I ; 22 Moo 2:.» 00.5 193.0; 40.5 , 122.5- IMI I 23 [000 um 86.5‘} 98.0 40.5‘ I ILLS q0.oI I I 24 “00 2.3.00 flo.o I 96.0 44,9 H‘M 41.6‘I 5'5'.o (7.30 I 25 'L93___-3:fi-92 /°'-_-3;_‘I9-5 4w _ "M 67-5465: _I 9-55" - Remarks: WT. m START— 0. 5'183‘r HVE- "" 5“?" W-r. 91’ chsn— @476“ -62- “LIT-232 Sheet No. _l_n_£’__ MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE at Rum“ mot-[EST IO - HEAI TRANSMISSION 'PRoPERTIEs- FIBWST/Vu.) WT- AT FINIsI-I — 2.75 T -63- 1DERIMFT o Iuve 1 flTlON OW{MLEH.LLLJL I Date MAY 17-14 , mil up“; Owen IINNcR Room ISURrAc'. Ebac 'HEA‘ITER TI M 6 1M E ISURFAcEISIflincq’; Tarp, TEMP. TEMP! IN (I91- — " I TEMP. I TEMP. KIM/en f _- I . ISAMPLe) 02.3.6) (54:12:) I 33:.) , I T1 : T7. T3 . 7; T5 0 ‘ .013014950.11?)..-I29_I.-_cg) --.(em ,yomymmg __,-__._ _ 1 (330 '0'- I/13.s’ I 4515’ 41.0 I121.0 101.0 8‘! 0.50 2 1430 1.00 I 125.0 I l07.o 405' I170: 111.0 111 0.55 3 1530 2.00 I 134.5I 114.0 +1.0 I120.s 122.0 . 123 an 4 [430 3'00 I [45.0I 81.0 413.0 [21.0 (33.5 I IZS 0:60 5 I730 4.00 I 150.5} 140.0I 41.0 I 122.0 140:0I N_._P.. NE'I 6 ”3° 5.00 I ”If-OI I3flo5 40.5 I 12.2.0 127.0 I I, I ' I 7 103:: 6.00 ' 13.4.0I 134.0 40.5 I 122.0 1L4.oI 43 0.40 I 8 7,030 I 7.00 I [/425’: 024.0 41.0 I 12,0. 5' HSSI N- . M. R. I 9 2130 too I I03.o I “3.0 41. 0 I 1104.5 103.0: . 10 223° 4.00 . £14.51 105.0 41.0 I 17.1.: €7.0I I 11 2330. )0.00 91.0I /oo.oI 405' I 17,05 44.0I I I 12 24-30I “.00 €6.0I 100.0I 41.0 f 120.0 fisis‘I I I I I 13 0130 [1.00 107.5 loaf 41.0 12.00 102...: I I 14 0130 13,00 113,0 1 115.5 40.5’ 101.0 11+.S'I I I I 15 0330 14.00 I 14-0.: I 124,0 411.5 17.2.0 17.8.0 ; I I I .16 D430 [$.00 [51.0 I I351.) 40.5 I I27...) I3Q.s’l I I I 17 0530 15.00 I 1$3.51 140.0 44.0 IZLo 143.0I I I l 18 06.30 (7.00 147.0I (41.0 _ 41.0 111.? 137.0 I I I 19 073° 18.00 135.0 I 134'. OI 40.5 121.: 131.0 g I I 20 03.30 I 14-00 [19.9 I‘ 12.4.0I 41.0 (21.0 119.5 I I 21 09.30 I Luca 102$; 114,0I 41.0 12.0.: 1o4-.0 I I 22 1030 p.00 q2,oI 106.0 405' I 120. o 95.0 I 23. 1130 21.00 90.0 I [01.0 40.5 I 12.0...) ‘iLSI I 24 [130 13. 00 9915' /01.5— 40.5 . H‘LY 46.0 I _ I 25 1330 24.110 117.0 103.5 41.0 . 11354__/_o_§9j_9_g_ 0.5. I I Rohii; WT. AT START —-— 3.16“ -7v—éfi—‘iO7-T HUT-232 Sheet No. I of I MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE RunninglngolIEST It” " HEAT TRAusmlsygN Efigeegjflgs— E13g30053(2.16'/n3—Dnv) 'P. N 10 INV 11019 Oboavm{ W. W. TREICHL‘R JR. { Date MAY ”-17,. 19:5; Elan-tn OUTER. Inven‘I Room I5URFA¢£ HEAT M1 Tl M E SURFAcE $0M» Tin P. T'CMP. IMP ur Tiff . -—-—- Tum Tum I ‘— IINNJQ .4- [SA—2“")(SAE‘I I fit) a T. . T. T. I T. 2 (Lugs). (:11 LL35.) ._@)_I,L¢e_: (vow; (AfiréL _. 1 1000 ~o— 119.0 101.0 45.1: I1/m 91° 0.“ 2 I100 I.oo Izg,o [09.0 47.0 I “9.0 ”LE; MR 3 11.00 2.00 135.0 I1w.5 1+1. 5 I 11%0 II ‘ 4 I300 3.00 [43.5 124.0 41.0 I 114.0 5 10m 4.0.. 143.0 I 1111.5 41.0 i “4.5 6 I500 5'.” 142.5; 1330 415' I m... . 7 léoo 6.00 17.9.0 1215 41-5 I 11.3.5 I 8 17° 0 7- 0- 108.0 "7. 0 41. o I 124,0 II . I 9 I900 3.0. 92.1; [07.5 44.0 I no.5 I7 __ . 10 M» a.» 33.0 19.5 40.5 , 1m 17 - 11 Low 10.00 80.5 ‘13.: 44.0 I 119-0 St —- 12 2.100 “.00 37.3I 45.5’ 400 I 119.: 50’ 0.2.0 13 110° 11.." 100.5 I 130.0 405' I 1196’ NJZ. ALR- 14 no: 13 m 12.0.0 115.0 40. S . no. 0 105' 0. 5° 15 2.900 Mano 1%.0 I 131.0 40. 5' I no.0 MR. I MR. 16 0100 16.00 156.0 I H15 Q05 I 170.5 I 17 07'“ 16.00 . 157.0 I 1%.0I 40.0 I 1'00. 0 18 030. 17.00 [44.0 I 144.0 40.0 I 1741.0 19 0400 1!." I34.0 I 135.0 44.13" I 119- b’ 20 0500 14.00 116.0 1L4.o 40.5 I ll‘I-b’ 21 0600 2.»,00 ans 112.; 40.5 I 1141.5 ’ 22 M00 2|.00 95.5' 102.0 441.5 I no.0 ' 23 0500 11-00 $0.0 $5.0 40.5 I no.0 24 O‘IOo Lg... <34...) I Q34: 4—0.5; I 120.0 II 25 1000 2.4.» 47.0 I ‘18.: 30.53135 V Remarks—«WT. AT START -— 2.74.i--__ h w-r. n1- Fumsu - 2.16“ -54.. -55- 10. ll. BIBLIOGAAPHY AND nannbNCnS American bociety of Heating and Ventilating engineers. Guide, 1952, Chaps. 5 and 9. Bareither, H. D., and J. T. Landrum. Concrete Floors for Basementless Houses. University of illinois Small Homes Council, Urbana, bulletin F. 4.5, 13:28. Dill, Bicnard 5., d. C. hobinson, and H. b. nobinson. measurement 9; Heat uOSScS from biab Floors. United States National Bureau of .Standards, Washington, Building Materials and structures neport BMS 103, 1945. Hecnler, F. 6., n. a. mcLaugnlin, and n. R. Queer. Simultaneggg Heat and yapor Transfer Cnaracteristics 9; an insulatiga material. American booiety of Heating and Ventilating angineers Transactions, Vol. 46, l942, pp. 505-5l5. Jakob, Max. Heat Transgeg. New Yorx: Jenn Kiley and sons, Vol. I, l94b, 75d pp. Jakob, max, and G. A. Hawnins. Elements g§_heat Transfer and lnsulation. New York: Jonn diley and Sons, 1942. pp. 50-55. macLean, J. D; Tnermal ConductiVitz 9; hood. Heating Piping and Air Conditioning, lb, 060, 194l. pp. odd-631. ncDermott, P. F. Moisture Migration. Refrigeration engineering, 4a (August, 1941), pp. 105-111. snacx, A. Industrial Heat Transfer. Translated by H. Goldscnmidt and E. P. Partridge. New York: John Wiley and Sons, l955, pp. 5l-53. ; Tanasawa, Y. Heat TransmiSSion'ig_Foundr1 Sand. booiety:mecnanical nngineers of Japanyl, 317, 1955. Seen in Abstract only. '7‘ ‘"14 wilkes, G. B. fleet insulation. New York: Jonn Wiley and Sons, 1950, zz4 pp. . .‘ Xx. - b6 - _ ~‘ 5 ‘7 L: \. .5 '53 ... M USE ONLY " ’2 '54 am \I '5‘ ) Je I " 3a., 25 ’3. 5\ \‘l ‘5‘ \\|\\\\\\1\\\\\\\\ 0921 ll!‘ |I||I|| ‘\II \I‘ ‘ |||I|I| "I‘l ‘ \| I“ 'I“: ‘ N \ \flifixiixi‘ufilimfxumin 03178 1293