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AN EIGLNSTATE AEEROACH TO CELLULAR DIFFERENTIATION

by Philip 5. Ulinski

The problem of the Thesis is to study the relationship be-

tween the morphological type of a given cell and its biochemical

system. This problem is shown to be a particular example of a

more general set of problems typical of biology. The literature

leading up to B. C. Goodwin's theory of cellular tensoral organi-

zation is reviewed and criticized. This theory attempts to trans-

fer physical concepts to the study of biological systems. It is

argued that this transference is not warranted because physics and

biology characteristically use different modes of analysis.

It is assumed that a given cell can be in one of a finite

number of discrete states and there is an isomorphism between mor-

ph0105ical states and cellular biochemical states. These assump-

tions imply that the probability density function for the proteins

and the messenger ribonucleic acids of a cell satisfies a linear

partial differential equation. This equation is solved for a sim-

ple example. It is shown that in addition to states resulting

from the activitation and inactivation of genes, cellular states

may result frow the total organiZution of the cell.

The assumptions are related to experimental data by discus-

sing the ontogeny of the cerebral cortex and the embryology of the

neural crest. The possibility of cellular organization states is

related to current concepts of gene action. Susrestions are made
g) 1.)

for making the theory more directly testable.
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CHAPTER I. INTRODUCTION: THE PROBLEM OF CONCRESCENCES

"All science is philOSOphical, and the only philosophies

capable of validation are those of scientists."

- G. G. Simpson

A. The Problem of Concrescence

l. The origin of the problem -- A liver cell, a cat, a tulip,

a virus, and a mushroom are all examples of integrated biological

systems. The purpose of this Thesis is to find some way of hand-

ling, both conceptually and experimentally, a problem which arises

in studying integrated biological systems. This problem will be

called the problem of concrescence and it becomes important in the

following way. The initial step in most scientifically conducted

inquiries is to conceptually divide the system of interest into its

constituent units. The prOper method of inquiry, Descartes instructs

us, is to "reduce involved and obscure propositions step by step to

simpler ones, and then attempt to ascend by the same steps from the

intuition of all those that are entirely simple to the cognition of

all the others". Bi010gists have, to date, been predominantly en-

gaged in applying the first part of the algorithm to living systems,

delineating and studying the "simplest units" of animals and plants.

Exactly what these units are depends on which aspect of living sys-

tems interests a given biologist: the geneticist has designated,

1



at various times, the gene, the "cistron", the "recon", etc. as the

simplest unit of the genome; the neurolo;ist divides his system in—

to neurons, fiber tracts, and nuclei; the anatomist takes cells to

be the elemental units of all organisms; the biochemist gives pri-

macy to proteins, sugars, coenzymes, etc.; the population bioloEist

considers systems of gene pools and of animal and plant pOpulations.

The second part of the algorithm, the ascension to the cogni-

tion of all the other entities, those that are not entirely simple,

is potentially much more difficult; but it is this undertaking which

principally interests the biolOgist, for no living thing is a sim-

ple unit and all living things are composed of interacting simple

units. This idea of "organism" is, of course, not at all new. The

philoSOphy of Organicisml developed in the first decades of this

century championed exactly this idea, arguing that the total under-

standing of bi010gical systems depends on studying simultaneously

the action of all their components. Most groups of experimental

biolOgists have long been aware of the problem. Very few, if any,

phenotypic traits are determined by a single gene. Rather, pheno-

types are usually determined by a series of multiple alleles sub-

ject to the influence of various modifier and suppressor genes. To

some extent, every trait is determined by the entire genome. The

importance of interactions between the components of develOping

systems is reflected in Roux's idea of Entwicklungsmechanik and was

1 The doctrine of the Organismic school is less well known than

that of the Mechanists and the Vitalists. BibliOgraphies and ele—

mentary statements of the argument are to be found in the books by

Bertalanffy (1933,1952). A more detailed presentation is the one

by Goldstein (1963). Discussions particularly relevant to this

Thesis are by Weiss (1961,1963). A historical discussion is by

Needham (1931).
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emphasized by the discovery of embryonic inductionsa. The inter-

connexity of the nervous system forces one to assume that all but

the simplest physiological and behavioral processes result from

the operation of many, interacting anatomical or functional units.

Most neurologists seem to appreciate the need for what is called,

following C. S. Peirce, a "calculus of relations", but -— indica-

ting a sober appreciation of the difficulty of the problem - tend

to place the search for such a calculus in the same category as the

medieval serach for the Holy Grail. In the past ten years, biochem-

ists have elaborated many examples of how interactions between meta-

bolic processes result in their control. But, they still face the

problem of understanding how all metabolic processes affect each 0-

ther $3 3112.

Although the importance of interactions is generally apprecia-

ted and a descriptive analysis of many examples has been effected,

the complexity of most systems has frustrated attempts to quantita—

tively study integrated biolOgical systems. The impressive excep-

tion is in the study of populations where an entire science has

crystallized around the quantitative analyses of ecological and ge-

netic pOpulations. The problem is difficult just because it is con-

fusing to think about more than a few things at the same time. Most

peOple in Western societies, for example, find it almost impossible

to keep their family tree straight past the second cousin level.

The task of keeping track of one's kinfolk is, however, unrepresen-

tatively simple because it is a purely relational one and a static

one: the relationship Father-Son is constant once it has been ex-

2 A clear and recent review of the various interactions Operative

in embryogenesis is by Ebert (1965).
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tablished and has no quantitative aspects. A developing embryo,

however, is formed by virtue of a concatentation of changing inter-

actions which have quantitative as well as relational aSpects. For

instance, the eye lens of an adult salamander is only distantly re-

lated, spatially and functionally, to the heart of the animal. At

one point in development, however, the heart anlage comes into con-

tact with the lens anlage and, in some way, contributes to its sub-

sequent differentiation (Jacobson, 1966). Presumably, some induc-

tor substance passes between these two components; if this is so,

the differentiation of the lens would depend on how much inductor

is transferred from the heart anlage to the lens anlage. Living

systems are a reticulum of constantly changing correlations between

subsystems.

The point is, that the result of traditional inquiries into

biological systems is an assemblage of subsystems and the problem

of finding out what the relation is between the original integrated

biological system and the conceptual or manufactured subsystems.

We would like some way of specifying exactly what that relationship

is. In particular, we would like that way of thinking to allow us

to design experiments exploring the results of systematic variations

of the subsystems upon the behavior of the integrated system. We

will call the problem of finding such relations the problem 2£_222-

crescence. To begin with, we introduce a vocabulary designed to

discuss this kind of relationship.

2. The general nature of the problem -- The notion of con-
 

crescence is borrowed from the work of A. N. Whitehead (1925, 1929).

For Whitehead, the universe is a process merged from complex and



5

interdependent processes, called actual entities, much as the sea

is an amalgam of water drOps. In the process of becoming an actual

entity the potential unity of many entities —- actual and non-actual

-— acquires the real unity of one actual entity. The actual entity

is the real concrescence of many potentials. An electron, for ex-

ample, is a process which the physicist may represent, say, as a

plane wave. An atom is also a process, represented by a different,

more complicated kind of wave. A hydrogen atom is an actual entity

which is the real concrescence of its component electrons and pro-

tons, each of which is an actual entity in its own right. The pro-

cess of becoming a hydrogen atom is a series of eliminations of al-

ternate possibilities: protonic, neutronic, and electronic proces-

ses have the potentialities of becoming sulfur atoms, hydronium ions,

carbon atoms, etc.

The initial analysis of an actual entity reveals it to be a

concrescence of prehensions which have originated in its process of

becoming. A prehension consists of three factors: (a) the "subject"

which is prehending, namely, the actual entity in which that prehen-

sion is a concrete element, (b) the "datum" which is prehended, and

(c) the "subjective form" which is how that subject prehends that

datum. There are two kinds of prehensions: (a) positive prehen-

sions are termed feelings, (b) negative prehensions are said to

"eliminate from feeling". An electron and a proton and a neutron

at the vertices of an infinite equilateral triangle, for example, are

not a hydrogen atom because they do not prehend each other. A hyd-

rogen atom results from a progessive concrescence of prehensions,

the subject —— say, a proton -— incorporating various data such as

an electron and a neutron into the real actual entity of the atom
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and eliminating from feeling, considering as ineperative in the

prOgressive concrescence of prehensions, data such as other hydro-

gen atoms and the walls of the container.

A ESEEE (plural nexus) is a set of actual entities in the uni-

ty of the relatedness constituted by their prehensions of each ot-

her. A society is a nexus of actual entities which are ordered among

themselves in such a way that the nexus is self-sustaining A bot-

tle of hydrogen gas, for instance, is a nexus but is not a society.

A mouse is a nexus which is also a society. It is clear that the

universe consists of a hierarchy of nexus ordered such that a gi-

ven nexus consists of actual entities, each of which is a concres-

cence of a subordinate nexus, and such that the specified nexus is

a datum in the concrescences of a superordinate nexus. For practi-

cal purposes, it is convenient to consider only some small portion

of this hierarchy.

For the metaphysician, Whitehead's thought is tremendously

useful because it lays bare in full generality the structures of

all possible processes. For the scientist, Whitehead's thought

is a mask for ignorance because it does not specify the details of

processes interesting to the scientist. Instead, the scientist

must supply these details -— subject to the constraint that, inso-

far as Whitehead is correct and the scientist does his work ade-—

quately, the scientific description of a specific process must e-

merge as a particularization of Whitehead's description of the gen-

eral process. The scientist describes the processes of a specific

nexus. In the example of the hydrogen atom, this description can

be effected (in the "Heisenberg representation") by representing

the electronic and the protonic pfirurftvs by separate Hamiltonian
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Operators, H and, rougly speaking, representing the

elec’ Hprot’

prehensions by an interaction Hamiltonian, H The atomic pro-
int'

cess is then represented by the Hamiltonian

elec + Hprot Hint'

Whitehead's cosmology can be especially useful to the scientist

when he attempts to compare the specific descriptions of two dis-

tantly related processes.

3. Specific problem of the Thesis -- In this Thesis, we will

restrict our attention to the relation between the nexus of chemi-

cal molecules and the special set of societies which are integra-

ted biological systems and, more particularly, are individual cells.

The classical biologists consider a cell to be a unit of structure

and describe it in terms of its shape, its size, its spatial rela-

tion to other cells, its extracellular matrix, its staining prop-

erties, its embryolOgical potentialities and prospective fates,

etc. The biochemist, typically, does not deal with the cell as a

unit, but homogenizes it to produce a variety of components which

react with each other by certain types of chemical processes. The

cell that the classical biologist studies and the abstracted cel-

lular elements that the biochemist studies are not the same kind

of thing. The cell is a society and the chemical processes are a

nexus. In Whitehead’s terms, it seems clear that an intact, 1i-

ving, individual cell may be regarded as the concrescence of all

its biochemical processes. The goal of this Thesis will be to

solve the problem of this concrescence. That is, we seek to spe-
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cify the relation between the biochemical state of a cell and its

morph0103ical state.

We will consider the problem solved if a rule is found Jthh

will allow us to specify what the morphological type of a given cell

is if we are given the current state of all of its biochemical pro-

cesses. Such a rule would allow one to predict the results of ex-

periments in which the biochemical components of a living cell were

systematically varied. This is exactly the kind of experiments per—

formed by embryolOgists. A typical embryolog experiment might be

conducted as follows: First, specify a certain cell in embryo A

and determine its fate in the resulting adult. Second, in embryo

B, alter the environment of the corresponding cell and determine

its fate in the resulting adult. One way to do this is to trans-

fer the cell to a foreign environment in a third embryo, C. Often,

one will discover that two homologous cells will have different mor-

ph0105ical characteristics in adult A and in adult C. The interpre-

tation of such an experiment is that the environment of the cell af-

fects its biochemical processes in some way and that this disturbance

shows up in a deviation from its normal morphological type. Unfor-

tunately, it is not usually possible to predict the results of such

an experiment unless it has been done before. Some general guide-

lines do exist for such predictions, but it is not easy to genera—

lize them into an overall picture of deve10pmental processes couch-

ed in terms of biochemical processes. A Specification of the rela-

tionship between biochemical and morphological cellular states would

provide such a generalization.



B. Introductory Comments

The discussion in this Thesis requires the following prelimi-

nary comments. First, although a specification of the relation be-

tween biochemical and morphological states of individual cells will

be proffered, it is probably an entirely unsatisfactory one. What

is really being attempted is a formulation of the problem and some

of its possible avenues of attack which is eXplicit and heuristic

enough to provide a foundation for subsequent work. Secondly, a

fairly detailed knowledge of the biochemistry of the cells being

studied will be assumed as "given". This is, of course, a poor

assumption. A critique of how useful this assumption is will be

found in Chapter IV. Thirdly, the purpose of the work is to devel-

Op a ggneral method for solving the problem. In any particular
 

case, the method presented would have to be fitted to the nature of

the system under study. This would require a detailed knowledge of

the system and would be a fairly involved mathematical problem.

Thus, the solution of the problem for an actual biological system

must be regarded as a project in itself. The example worked out

in Chapter III is designed to illustrate how the calculations are

to be done. Fourthly, the discussions of this Chapter and of Chap-

ter II boarder the domain of speculative philosOphy. However, they

are deemed to be a necessary preface to the critical development of

the theory of Chapter III. The primary goal of this theory is a

theoretical scheme which the eXperimental biologist can use to de-

sign new experiments and to systematize the results of old ones.

Fifthly: "The true method of discovery", whitehead writes, ”is

like the flight of an aerOplane. It starts from the ground of par-
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ticular observations; it makes a flight in the thin air of imagi-

native geneialization; and it again lands for renewed observation

rendered acute by rational interpretation." For the sake of ef-

ficiency, it seems best to relieve the people who elaborate theo-

retical generalizations from the reaping of particular observations.

This freedom must not be interpreted as a license for the theore-

tician to permanently reside in SOme domain of ethereal verities,

but imposes the responsibility of assurring that the aerOplane will

have somewhere to land. In an attempt to discharge this responsi-

bility, the theory of Chapter III has been reworded in empirical

terms in Chapter IV.



CHAPTER II. TACTICS AND STRATEGY IN A THEORY OF CLLLULAR TLMPOR-

AL ORGANIZATION

"We shall probably fare better if we constantly recall

that the physical object before us is an undivided sys-

tem, that the divisions we make therein are_more or

less arbitrary importations, psychological rather than

physical, and as such, are likely to introduce compli—

cations into the expression of natural laws Operating

upon the system as a whole."

Our problem of studying the relationship between the morpho—

logical type of a cell and its biochemical system has remained al-

most entirely unscarred by theoretical assaults. But Brian Goodwin

(l963,l964a,l96#b) has made an impressive attack on the related

problem of the relationship between the components of the biochem-

ical systems of cells and the time behavior of cells. By way of

establishing the tactics with which to approach our problem, we

will use this Chapter to review Goodwin's theory, requisitioning

those of its aspects which bear upon our probleu and noting in

what ways it can be altered to satisfy our needs. The Goodwin

theory is also of interest in that it illustrates a strategy which

has pervaded theoretical biology: Most students who have attempted

ll
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to formulate the relationships exhibited by integrated biological

systems have almost tacitly mide the initial assumption that they

are subject to the same kinds of laws Operative in the systems stud-

ied by the physicist, so that theoretical biology should parallel

theoretical physics, the laws of the former being analogous to the

laws of the latter. To allow a judgement of the utility of this

strategy, we will digress slightly by discussing the theories -—

which are the grandparents of Goodwin's theory -— of animal and

plant pOpulations elaborated by A. J. Lotka and Vito Volterra.

A. The Mechanics and Thermodynamics of Demographic Systems

1. Kinetic equations —- Attempts to describe the drowth or

evolution of pOpulations of species by general mathematical laws

date back to Malthus' essay, but one of the earliest workers to

produce exhaustive theoretical and empirical studies of the beha—

vior of populations was A. J. Lotkaa. By analOgy to chemical ki-

netics, Lotka considers the evolution of populations as transfer-

ences of masses and energies between the components of a system,

each species of organism comprising a component and the number of

individuals of a species constituting the "mass" of the component.

Interactions between species are represented as stoichiometric re-

lationships, and the time rate of change of each component is des-

cribed by a first order differential equation so that a set of El-

netic equations
 

 

1 (SN
( ) Ezr = Fr(N1.--o.Nn): r = 1:2.--'~n'

3
Lotka's work is summarized in his Elements of Mathematical Bio-

logy (1956) originally published as Elements oi Physical Biology (192M).
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where Nr is the mass of the rip species, describes an ecolOgical

system of n species. Of particular interest are systems in which

a balance between prey and predator exists so that dNr/dt = O for

all r. This situation is defined as a steady state. Steady states
 

are classified as stable or unstable depending on whether the Nr's

remain at or oscillate about some mean values qr, or whether they

will gradually decrease to zero or increase to some upper limit.

The task of the demographer is to find the form of the functions

Fr(Nl’°'°’Nn) and to detail the conditions which will cause the sys-

tem to be in a stable or unstable steady state. Lotka considers a

variety of empirical examples of demagraphic systems, but for our

purposes it is more instructive to consider Volterra's descussion

of the demographic problem.

2. The Volterra eguations -- In two papers (1931,1937), Vol-

terra considered demographic systems of the Lotka type from a fair—

ly mathematical viewpoint. He takes the kinetic equations (1) to be

of the form

 ‘2’ iN—r=e.l aNN.
dt r figr sr s r

The coefficients Er describe the growth (or death) of the rth ape-

cies when it is in isolation; the coefficients l/pr -— if one again

thinks of a pOpulation of individuals as a mass -— describe the mass

of the rip component which is transformed in unit time into another

component, i.e. l/Qr individuals of the r313 species are equivalent

to 1/95 individuals of the 5.122 species; the constants asr describe
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the interaction between the rth and the s32 species,and must be

antisymmetric, i.e. asr = - ars' Ne will call the Equations (2)

Volterra equations. If we introuuce the notation Nr = er/dt, the

Volterra equations can also be written as second order system:

2 n

(3) £3 dX ax dX
r 2r— erg + dts dtr .

dt 5 _ d

The conditions that the system (2) have stable steady states

are well known in the theory of differentiatl equations. The solu-

tions to these equations will be of the form

31,; A2. Ant alt
+ G e + 000 +G e +G e + 000

N = G r2 rn 2rlr r1

where the parameters ‘Ar are the roots of the characteristic equa-

tion

iel’A “21/51 aL[11/91

D = 1.312432 ez')‘ axe/32 = O

E i
i aln/(gn aZn/(gn "' E'n " A  

The nature of these roots determines the stability of the states.

IFor example, if all the AT'S are pure real and positive, the sys-
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tem will persist near to the stable state values ql,...,qr,...,qn;

if they are pure imaginary and positive, they will oscillate about

the stable state values; if they are negative, the state is unstab-

le.

Of particular interest is a result which Volterra calls the

law of the conservation of fluctuations and which guarantees that

if a system has n even, has stable steady states, and if the Nr's

are bounded between two positive limits, then at least several of

the Nr's will exhibit undamped oscillations about their mean values.

This means that in systems of sufficient complexity (as biological

systems undoubtedly are) we may be justified in treating the sys-

tem as ergodic and replacing time averages by averages over the

ranges of the variables Nr'

3. Physical ana103_ -- In whitehead's terms, the kinetic e-
 

quations describe feelings in the demographic universe. On the

face of it, the idea of an actual entity resulting from a concres-

cence of these feelings seems poorly conceived, for the masses Nr

seem to be the only attributes which could be applied to such an

entity, and they are the attributes of the feelings. However, both

Lotka and Volterra suggest that such a concrescence is justifiable.

Lotka, arguing by analOgy to the kinetic equations of chemical ki-

netics, suggests that the demOgraphic system considered as an en-

tity should evolve in accordance with an analog of the second law

of thermodynamics. His argument hinges on the construction of a

quadratic form. If we define the vector N = N(Nl,...,Nn) in an

Ad

n-dimensional space and designate the transpose of N by N, a

Quadratic form is a scalar function, E , defined byi = NAN where





16

A is an nxn constant matrix. After a suitable orthogonal transfor—

mation, it can be shown that the condition for the stability of the

system is that §§ be a minimum at the stable state values qr' This

is analogous to the classical mechanics where it can be shown that

the potential enerey is a quadratic form. Thus, as in mechanics and

thermodynamics, important ideas about demOgraphic systems can be phra-

sed in terms of a minimum principle, so there might

exist functions § analogous to the functions known as

thermodynamic potentials, in terms of which the behavior

of the system can be concisely epitomized, after the man-

ner of thermodynamics. If such a plan could be success-

fully carried out, the result would be a species of quasi-

dynamics of evolving systems, in which certain parameters

P played a role analogous to forces, without being in any

sense identical with forces (or even with generalized for-

ces); certain other conjugate parameters p would play a

role analogous to displacements, and certain functions §

would resemble in their relations to certain events in the

system, the energy functions (free energy, thermodynamic

potentials) of thermodynamics. 3/

Although Volterra sometimes follows Lotka in considering the

kinetic equations of a demOgrsphic system as analOgous to chemical

kinetic equations, he usually considers them as the equations of

motion of the system. In this case, the attributes of the actual

entity are parameters analOgous to those of classical mechanics.

Thus, Volterra writes

n n

E : dX .
L = rd? and M Br Er Xr C

I‘ = 1 I‘ = l

where C is a constant, and shows that L + M = constant. L is cal-

led the demOgraphic kinetic energy and M is the demOgraphic poten-

l,
 

A. J. Lotka (1956), p 321.



l7

tial energy, so trat we have a conservation of demographic energy.

Similarly, demographic work is given by

Also, Volterra was able to derive equations (3) by considering the

first variation of the function

n

dX

C13— >(3ra-Frlndwr+yaén 15:;- :srdtrxs +P

r=l r

where P is the demographic potential

n n n

E 9 6r X + % i E c X X ,
r r , rs r s

r = l r = l e = l

whence come the Euler-Lagrange equations

an an 0

air a.
 

m
e
-

These reduce to the kinetic equations (3). Now, if we put pr =CVQXr,

we have the Hamiltonian
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and the canonical equations of motion

9.2 .. 32.12 512‘. _ - 5.3.3

I‘ I‘

It is clear, then, that given sufficient ingenuity, one could ea-

sily construct a "demographic mechanics" analogous to classical

mechanics.

B. The Statistical Mechanics of Biological Associations

1. The microcanonical ensemble -- Lotka's suggestion is that
 

there may exist for demOgraphic systems analogs to the thermodyna-

mic state parameters of chemical systems. Volterra suggests consi-

dering the kinetic equations of the demographic system as equations

of motion. The obvious next step is to develOp an analog to the

program of statistical mechanics and to relate the equations of mo-

tion to the parameters of state, a task which has been accepted by

E. H . Kerner (1957. 1959, l96h).

(a) To obtain a system of equations which satisfies the Lion-

ville equation, Kerner introduces the change of variables vr =

1n Nr/qr° Since -— at steady state -— equations (2) imply the e-

quations

the equations of motion become



(A) 6r ;r = E :asr qs (e S - 1) °

Now, as in the statistical mechanics, we think of these equations

as guiding the movements of a point in an n-dimensional phase space.

If we consider a Gibbsian ensemble of such phase Spaces, we can de-

fine a density of points in phase space, (>(vl,...,vn). We also

I ‘ . . I l I

define V = (vl,...,vn). The conservation of den81ty in phase

Space gives us

 

n

a? . a - 9P at
T+divPV= Zlvravr+fi=oo

I‘:

From the equations of motion (1+), we have atr/avr = 0; but we note

in passing that this is a consequence of the particular form of E-

quations (2), and will not hold for the general kinetic equations.

In this case, the, we have the Liouville equation

n

3? . &P
'37- -+ E::;vf :;;¥ = O .

r:

As is done in classical statistical mechanics, Kerner restricts the

discussion to the equilibrium case where dP/é t = O.

(b) The starting point of statistical mechanics is some state-

ment about the way energy is distributed between the possible state

of the system. Thus, Kerner must (1) introduce an analog to total

energy, and (2) make some statement about its distribution. He
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chooses to discuss first the micrccanonical ensemble in which the

energy of the system is held constant, but he could equally well

have elected to treat first tne canonical ensemble in which the

total energy varies but the temperature is fixed.

v

(1) By multiplying Equations (4) by qr(e r - 1), setting

?} = @} qr’ and summing over all r, we obtain

n

0 VI‘

V O -l = O

E : 7} r ( ) '

r = l

and we have the integral of motion

n

vr
G = E 7} (e -vr) = constant.

r=l

Since, if we set Ysr = Oér/Qs Fr : - Y , G satisfies the ca-

I‘S

nonical equations

2" a

r Ysr '1??; G ’

8:].

4
0

II

Kerner takes G as the Hamiltonian of his svstem. Again, we note

that the success of this choice depends on the particular form of

Equations (2); G may not exist for some systems.

(2) It is customary in statistical mechanics to postulate

that there is, 3 priori, an equal probability of finding each of

the possible states of an isolated system to have a specific total

energy, G. Then, it is shown that if the number of systems in the
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ensemble is sufficiently large, the probability distribution ap-

proaches the frequency of finding the system in the "most probable"

state of the system. This is eXpressed mathematically by writing

the density function as a delta function

f=fo(G-GO)

where F; is a constantx Kerner adOpts this proceedure.

2. The canonical ensemble -- (a) Consider, now, the canoni-

Cal ensemble formed by studying only V of the n Species in a sys-

tem and regarding the remaining n — V species as a "heat bath" with

energy being transferred into and out of the system of V species.

In studying the canonical ensemble, it is customary to take

1
P” = exp —G—-(“P- G”)

to be the density function for the Species;'v is a parameter inde-

pendent of the variables vr, and the meaning of G will be made clear

later; G is the total energy of the V Species. Since we must have
V

F» d1}: 1

where d7; is the incremental volume in phase space, and the inte-

gration is over all of phase space, we have the phase integral

Z = exp(-"P/9) = exp (-C'I/G) dz, .



 
 

T
A

slice the :1“

C‘te 1 v‘
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This relationship is used in the evaluation of ensenble averages.

Thus, the ensemble average F for some function F = F(vl,...,vn) is

M
I

I: fi,Fd'Jj,= Fexp(‘P-G,/e)dl,,

12
:: cup/9 SF €XP('Gy/e) (171.1: F eXp(-Gu/6)dTy e- /6

5 F exp(-Gy/6)d7; exp(-Gy/6)4ix}.

Since the actual evaluation of such averages is a formidable excer-

cise in integration, ”e will merely catalog the results.

1 I -

(l) The ensemole average of N is N = q .
r r r

(2) The demographic analog to kinetic-energy is the

function T = v C)G/c) v . Kerner shows that T :6 .
r r r r

Since this result holds for all r, this is the ana-

log of the equipartition theorem for physical sys-

tems: the average value of the demagraphic Kine—

tic energy for each of the U Species is the same,

and one thinks of the kinetic energy being distri-

buted equally between the different Species.

(3) To see the signifigance of E}, consider the ensem-

ble average of the functionTi(Nr/qr - l)d. It

Can be shown that

 

”Tim/qr - l)2 = 9 .
1‘

Thus, 6: (Tr/qr)(Nr - qr)2, SO that, within a



   

(b)

that, we 3."-

 

‘I

Q
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constant factor, €5is the variance of the system about

its mean value qr. Since temperature plays the analogous

role in physical systems,€3 is the demOgraphic tempera-

ture.

(b) If 5 is the "tenperature" and G is the "total energy",

what, we might ask, are the analoas of the other themodynamic st-

ate parameters? These are all easily calculated from the formulae

of statistical thermodynamics:

(l) The free energy is'W = - % ln Z

(2) Heat capacity is C = (Ba/()9

(3) EntrOpy is S = 5—:73/9

(4) Work due to environmental influences if Fi = -<5G/Acxi

for some external variable Cki.

Under certain conditions, we can derive the demographic ideal gas

law F T = kha-

(c) However, ensemble averages of certain parameters rela-

'ting to the oscillations of the variables Nr are of more value.

We introduce the notation xr = Tr/e = @rqr/e .

(1) First, we define T_/T as the fraction of time, over a

lLong interval, that the values of Nr are below the steady state

‘Value qr' To calculate T_/T, Kerner (1959) uses the function



a
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Then

00

T /T = “PW/e h(V ) e-G/e dV 0

- r r

~00

Evaluation of this integral gives

0.5 \< T_/‘1‘ = mar, x-1)41

where I(J§, x - l) is the incomplete gamma function. When evaluated

numerically, this result indicates that for 9 small, i.e. the sys-

tem is near steady state, T_/T = T+/T, (T*/T = l - T_/T). But for

69 large, T_/T b T+/T. Thus, in pOpulations which show large fluc-

tuations, the number of individuals of any species will usually be

below the steady state level.

(2) In a similar way” one can calculate the mean amplitude

.A+ of oscillations above the steady state value as

X -X

X e

A+ : (T+7T)x! °

(3) Also of interest is the mean frequency with which the

ixbpulation numbers take on a given value. It is possible to car-

12y out a variety of calculations of this sort, but the simplest is

e. . .. . .3 .

lie determination of the ratio of the mean frequency tnat the sys-

tlemxtakes on steady state values (i.e. Nr/qr = l) to the mean fre-

‘allency that it takes on some other value, 7’: Nr/qr° This is found

‘t<3 be



’;\ '2
L (I

to (7?) = exr(.)?e-7)xr
rel

for the rig speCies. we note that CJrel(l) = l and cu}el(fi>)<:1

if'q,£ l, which means that Nr takes on its steady state value more

frequently than any other value.

(d) Kerner offers two empirical tests of his theory. First,

he (1957) notes that the probability of finding the pOpulation of

r between vr and vr + dvr is given by

—Gr/6

P dv = e dv / Z .
r r r r

Then, by setting nr Nr/qr he finds

°'~ Tr":L '0‘Trnr
n e

r

dnr

P(n ) dn : i

r r -dT

t"Tr 1‘ fear)

51nd observes that this form of distribution has been used to des-

<:ribe actual pOpulations by R. A. Fisher and his group. Second,

ICerner (1959) makes use of data on the fluctuations in a pOpula-

tlion of Labrador foxes over a period of 91 years. From these da-

‘t£1, he is able to calculate parameters such as T_/T, A+, and A_

ikbr the system. He then solves his theoretical expression for each

C>f’these parameters for x and finds that within reasonable limits

the empirically calculated values of x are in accord. Also, Ker-

ner finds good agreement between theoretical and empirical Core-10?)
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values.

C. Theories of Epigenetic Systems

1. Weddington and the cybernetics of development -- The idea

of using the tools developed to study demographic systems to elu-

cidate embryolOgical problems is due to C. H. Waddington. As an

example of Waddinton's ideas, we will consider the first essay in

his book The Strategy 2; the Genes (1957). As the starting point

of this essay, Waddington takes an observation about deveIOpmental

systems:

The major empirical fact about the develOpment of ani-

mals - g fact which has no theoretical inevitability,

but which is so obstrusive that only the crudest obser-

vation is necessary to establish it —— is that the end

products which it brings into existence usually vary dis—

continuously. The tissues of an animal are in most

cases quite sharply distinct from one another; skin,

nerve, muscle, lung, kidney, etc., with of course many

subtypes in the bodies of highly evolved and complex

creatures, but with very few kinds of cells which could

be considered as providing a range of intermediates con—

necting two of the major varieties. Similarly, each

organ has its well defined and characteristic morpholo-

sy- 2/

Waddington sees one of the central problems in developmental bio-

logy to be that of accounting for these macrosc0pic discontinui-

‘ties in terms of genes and "gene products" which are present only

in.small concentrations in the organism and which vary continuous-

ly. This is a different statement of our general problem of the

relationship between feelings and actual entity, the processes of

gene action being feelings and morpholOgical discontinuities being

attributes of the actual entity which results from a concrescence

—_

5 C. H. Waddington (1957), p 13.



of the genetic processes.

COS

Wadaington's approach to a solution is to regard the substan-

Of the genetic-metabolic system as pOpulations which can be

described by kinetic equations similar to those of Lotka and Vol-

terra; he notes

The

If we regard the system as closed ... and if the sup-

plies of raw materials are taken as constant, the e-

quations which result are of the same type as those

which arise in the study Of the growth of two pOpula-

tions of animals which compete with one another for a

limited food supply. é/

generalization to Open systems was made by H. Kacser in his

epilogue to Waddington's The Strategy 2; the Genes. Kacser notes
 

that, in general, the kinetic equations of an Open system show

that the composition of the final steady state of the system is

dependent upon the nature and the quantity of catlysts (i.e. en-

zymes) present, that these steady state values are independent of

the initial concentrations of the components Of the system, and

that the flux of materials into the system enters as a factor into

the

pen

For

how

steady state values. He then uses these properties of an 0-

system to suggest explanations for SOme biological phenomena.

example, the independence of initial conditions might explain

in regulatory eggs a half of an embryo produces and apparent-

ly normal adult. Or, pleiotrOpic effects in which a single gene

Inay lead to a variety of phenotypic characteristics might be ex-

plained by differences in enzyme concentration or state. In all

likelihood, these explanations are too simple to be adequate, but

the point of interest is that it is possible to use kinetic equa-

tions to study Open systems.

k.

Ibid., p 21.
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Wadcington realizes that in using the kinetic ap;roach to study

develOping systems, a likely method is to consider them as guiding

the motion of points in a multi-dimensional phase space. To facili-

tate thinking about develOpmental problems in these terms, he intro-

duces a surface, which he calls the epigenetic landscape, defined
 

in this phase space. His description of an epigenetic landscape for

two independent variables is as follows (Figure 1):

Consider a more or less flat, or rather undulating, sur-

face, which is tilted so that points representing later

states are lower than those representing earlier ones.

Then if something, such as a ball, were placed on the

surface it would run down towards some final end state

at the bottom edge. There are, Of course, not enough

dimensions available along the botton edge to Specify

all the components in these end states, but we can,

very diagrammatically, mark along it one position to

correspond, say, to the eye, and another to the brain,

a third to the spinal cord, and so on for each type of

tissue or organ. Similarly, along the tOp edge we can

suppose that the points represent different cytOplasm-

ic states in the various parts of the egg. 2/

In a rough way, one can conceive of the position Of the ball repre-

senting the develOpmental state Of, say, a cell. The depth of the

trough the ball finds itself in is a measure of the competencies

of the cell at that time -— the deeper the trough, the more dif-

ficult it being to deter the cell from its prospective fate.

The concepts which Waddington eXpounds are particularly in-

structive because they bring to bear upon our problem of the geno-

type tO phenotype relationship all Of the ideas and methods we

have discussed both in this Chapter and in Chapter I. As we have

already noted, Waddinton suggests that one of the central problems

in embryology is that of the concrescence of genetic processes to

those of morphogenesis. He also emphasizes the importance of sta-

 

 

Ibid., p 29.
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Figure l. The epigenetic landscape. See text for description.

Drawn after Wadwington (1957).
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bility and the discontinuity of the morpholOJical aspects of orga-

nisms in this iroolem. he Observes that genetic processes can be

described by kinetic equations in the same way that Lotka and Vol-

terra used them to describe the evolution of pOpulations of orga-

nisms. The idea of the epigenetic landscape is similar to Lotka's

potential functiong, and Waddington, apparantly independently of

Kerner, used the kinetic equations to move a point in a phase space,

albeit Waddington expressed himself qualitatively. A significant

difference between Waddington and the demographers is that Wadding-

ton's discussion stems only from biological considerations, ig-

noring the use use of physical analogs.

2. A statistical mechanics of epigenetic systems -- (a) The

task of following up Waddington's suggestion and attempting to es—

tablish a relationship between a set of genetic-metabolic equations

and parameters which can be used to study an intact developing cell

was accepted by Waddington's student, Brian Goodwin. This under-

taking necessitated, as a preliminary, some attempt to resolve

three problems: (1) The Lotka-Volterra-Kerner theory discusses

pOpulations of organisms, and to use it as the basis for an epi-

genetic theory one must first argue that the demographic and epi-

genetic systems have the same formal characteristics, (2) the epi-

genetic system is imbedded in the genetic system, in the physio-

logical system, in the evolutionary system, etc. Before proceed-

ing, one must decide in what way this hierarchy of nexus is to be

included or excluded from the discussion of the epigenetic system,

(3) the Volterra equations describe interactions between individ—

uals. To transfer the Volterra-Kerner theory to a consideration

g

8 Cf. J. Needham (1936).
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of epigenetic systems, one must first derive a set of kinetic

equations which describe the genetic-metabolic system. We will

examine Goodwin's answer to each of these problems.

(1) Waddington's writings tend to emphasize the similarities

between embryological and evolutionary processes, and his sugges-

tion that pOpulations of organisms be considered as analogous to

the chemical components of an organism carries this theme just one

step further. Phylogeny and ontogeny are similar in that they

study the rise and fall of something (pcpulations or components)

with time; they are both looking at develOping systems, in the

broadest sense of the term. The Lotka and Volterra theories are

potentially capable of describing evolving systems of p0pulations,

but their principal application is to systems of animal and plant

populations which are in equilibrium or, more precisely, in a

steady state. The Kerner theory, however, does not intrinsically

have the potential of describing develOping systems and can deal

only with steady state systems. This is, of course, because Ker-

ner models his theory after the classical statistical mechanics.

Mathematically, this condition of reversibility is introduced by

setting dR/ét = O in the Liouville equation or by making the er-

godic hypothesis which allows the replacement of time averages

by ensemble averages. An ergodic system is not necessarily ab-

solutely invariant with time, but may vary about some mean value;

all that the hypothesis requires is the variation be periodic with

at most a period of very long duration. Insofar as Kerner is in-

terested in studying the periodic fluctuations of pOpulations a-

bout a steady state value, the modus Operandi of classical sta-
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tistical mechanics is ideally suited to the problem.

Thus, since Goodwin aptlies the Kerner theory to the study of

cellular problems, his theory must be viewed as a failure for the

purposes of studying embryolOgical systems. But, such an equilib—

rium theory should apply to an important class of cellular steady

state activities, the most notable of which are the clock rhythyms

characteristic of many biolOgical systems. Goodwin is well aware

of this limitation of his theory and applies his results primarily

to problems in the study of biolOgical clocks, realizing that ap-

plications to embryological problems would require the elaboration

of a theory analogous to non-equilibrium statistical mechanics.

(2) There is nothing new in the observation that living or-

ganisms present to the biologist a hierarchy of nexfis. Comte (18-

58), for instance, noted this and suggested that a classification

of these levels can be either "biotaxic" or "bicstatic" depending

on whether it is in terms of dynamic and functional or of struc-

tural characteristics. Waddington (1957) chooses a classification

in terms of "time scales", the history of the ancestors of an or-

ganism constituting the evolutionary or longest time scale, the

deve10pment of the individual making up the embryological or medium

time scale, and the constant activities of the organism forming the

shortest or physiolOgical time scale. Goodwin also constructs a

classification in terms of time scales, but uses the relaxation

time of a given hierarchical level as a defining criterion. He

distinguishes a metabolic system of cells comprising the diffusion

and interaction processes and the enzymatic transformations of

small molecules (i.e. not macromolecules) and having a relaxation
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. . -l -2 . . . .
time of lo —lO seconds, an epigenetic system comprising the
 

biosynthesis, diffusion, and interaction of macromolecules and

2 A . .
having a relaxation time of 10 -10 seconds, and a genetic system

 

which has a very long relaxation time and is not relevant to his

discussion.

Haddington realizes that an accurate theory of biological sys-

tems demands the simultaneous consideration of all levels of or-

ganization in a mathematical theory of living systems would induce

a complexity prohibiting the comprehension of the theory by every-

one save, perhaps, a Laplacian calculator ratiocinatrix, and the
 

primary task of the theoretician becomes one of performing some

einklamnerung or bracketing off of all the organizational levels

except the one in which he is most interested. Goonwin meets this

problem by making a distinction between parameters and variables:
  

if the two systems have very different relaxation times

(say one is 100 times larger than the other), then rela-

tive to the time required for significant changes to

occur in the "slower" system (larger relaxation time),

the variables of the "faster" one (shorter relaxation

time) can be regarded as being always in a steady state.

Therefore only these steady state quantities will enter

into the dynamic equations describing the slower system,

and a very considerable economy of motional equations

can be achieved. On the other hand, the variables of

the "slow" system will enter into the equations of mo-

tion of the "fast" ne as parameters, not as variables.

These parameters have a slow rate of change, and the

faster system will gradually move in time in response

to these slow changes; but for the purpose of studying

the short-term dynamics of the fast system, the slowly

changing quantities which define the notion of the slow

system can be regarded as environmental parameters. 2/

(3) As the fundamental "unit" of the epigenetic system, Good-

 

win takes a control loop, pictured in Figure 2. Lj represents a

certain gene locus or perhaps an Operon; R is a ribosome which

*—

9 B. C. Goodwin (1965), p 10.
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uses the messenger RNA, rj, of the th Species of protein, pj; C

is a cellular locus where the jth species of protein is utilized

to produce the metabolite Mj from some precursors. The 100p shown

in Figure 2 has a feedback mechanism so that when the concentra-

tion of Mj exceeds some Value Sj’ the production of the enzyme pj

is halted by some mechanism of.enzyme repression. Presumably the

entire genetic-metabolic system of the cell could be represented

by an array of such lOOpS with varying degrees of interaction be-

tween loops (Figure 5).

For the purposes of develOping an analytic theory of the epi-

ggenetic system, the array of control 100ps in Figure 3 must be re-

;placed by a set of kinetic equations which will serve the same

:pupose fulfilled by the Volterra equations in the Kerner theory.

ESince these control equations are undoubtedly greatly oversimpli-

.fied, we will only sketch Goodwin's derivation. The principal

eassumption made is that the gene-repressor interaction in enzyme

Ifiepression and induction follows the same mechanism that enzyme-

sxlbstrate interactions follow.

To derive the control equations for the control 100p in Fig-

ulme 2, Goodwin assumes, to begin with, that each protein is syn-

thesized at a rate proportional to the concentration of its mRNA

Eirui that it is degraded at a constant rate. Thus,

“alere 0% and @j are constants and where pj designates the concen-

tration of the 1th Species of protein and rj the concentration of
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Figure 2. A single cellular control 100p. Lj is a certain

locus; R3. is a ribosome; Cfi is the cellular locus where the jth

protein is used) pj is the jth Species of protein and r3. is the

corresponding mRNA; M3. is the metabolite produced by the protein.

Drawn after Goodwin (1963).
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Figure 3. The biochemical system of a cell represented as an array

 

  

  

   

of control loops. See Figure 2 for explanation of notation. Drawn

after Goodwin (1963).
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the j£h species of mRNA.

To obtain a control equation for rj, Good.vin assumes that the

precursors (nucleotides) of the mRNA are present in the cell in the

constant average amount L Kj] , and that the precursors and the re-

pressor (nucleohistone?) for the jth locus compete for the available

gene template, Tj' Then, we have the stoichiometric equations

T. + K."‘T.K. and R. T.““I‘.R.

a J‘— J J J + J‘— J J’

the equilibrium constants

[13.12.] [T1 -]

K. = -__J-_J-j—l and L. 2w ,

T. R. T. .

3 [3H J 3 J J

and the conservation relationship

‘where [Tj]o is the total amount of template and R3 is the concen-

tration of the repressor of the jth template. Thus,

L [3133]“?_ [K

[TjAj] = l + LJle] +

 

Iqow, if we assume that the concentration of repressor is prOportion-

éil.to the "excess" of metabolite

[R3] ‘ 051m ‘ SJ] ’
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O; a constant, and assume that rj is degraded at a constant rate

bj' then we have

9.11.- Twine-Io _ ,3,
dt " 1 L. . K. .IV'.-S. °

+ 3[ 3I + JUJDJ J] J

 

for the rate of synthesis of rj may be assumed prOportional to

the concentration of "activated" template, [TSAd]. Setting aj

= L. K. T. B.=l+L.[K.] andm=K.O'.'

J[J][J]O‘J JJ’ 33’

a.

l(6) dr.

dt ‘3. m.M.-S. '

3+ at.) J

 

J

The distinction between parameter and variable discussed in

£Section 2.a.(2). is used to remove Mj from Equation (6). Suppose

izhat Mj has a kinetic equation of the form

dM.

—- = C.p.-8.,

<3j and s. constants. Since Mj is a parameter in the epigenetic

syustem (i.e. it is a variable in the metabolic system), we may

l?e111ace it by its steady state value, cjpj/Sj° Thus, Equation

( 6 ) becomes

(7) dr. 31

01“ “A. + k.p. j
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A. = B. - m.S. and k. = m.c. s.. E nations ( ) ind (7) are

3 J J J J J/ J q 5 a

the control equations for the control loop shown in Figure 2. This

where

method of removing Mj from Equation (6) is clearly just a first ap-

proximation; a more detailed study would necessitate obtaining Mj

as a function or the pj's and rj's so that the control equations

‘would be more complex.

(b) Starting from control equations of the type just derived,

(Eoodwin deve10ps a theory of the epigenetic system parallel to the

I§erner theory. Because we have already discussed this deve10pment

:in.Section B, we will only (1) discuss a detail in which the Good-

vvin.theory differs from the Kerner theory, and (2) discuss the re-

Eaults and predictions of the Goodwin theory.

(1) In Section B.l.(b) we saw that a simple set of transfor-

znations serves to put the Volterra equations into a form which will

salways lead to a Hamiltonian function G. However, the control equa-

txions for different arrays of control 100ps can be expected to vary

wcidely in form, and it may not always be possible to find a G func-

tjuon. In the case of Equations (5) and (7) there is no difficulty.

LVer let 5. and Fj designate the steady state values of p3. and r3. and

j J

definedb {5. =r. -?. andl ". = A. k. .) Euations ()y 3 J J + pJ ( J + JpJ /QJ. q a 5

arid. (7) become

:3e1: Qj = A + k.p.. Then if we introduce the variables 9j and fij

 

22. _ b 1 _ 1

dt j 1 +63

A

22-- «
dtJ ‘ OSrj'
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From these equations we obtain

 dG(f>‘j,?.) = o<3r3d§§j - ba 1 +131 — 1 dfij = o

00 c»

and G(p},?j) = JP ' dG(pj,?j) = constant

r (Aj/Qj—l)

a. ’92.

= ——%——l + bj[f3j - ln(l+pj)] = constant.

This integral is easily exPressed in terms of the original variab-

les pj and rj. But, in the case of the control loops shown in Fig-

ure 4, there is a serious difficulty. Goodwin shows that the con-

trol equations can be put in the form

 

 

£121 - b Y1 - 1
dt ' l Yl + pl

d—Qa - b Y2 - 1

A r22 _ _; A A

dtl “ Q1 “1103 r1 * k12 (*2 r2 )

A Y22 _ _.2. « A

. . . . . . - A A A A
However, it is possible to integrate the differential 06(p1’p2'rl’r“)

L
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.Figure 4. Two control lOOps illustrating strong coupling. See

.Figure 2 for explanation of the notation. Drawn after Goodwin
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only in the special case when KlKIZCXZ/Ql : r-kalCXl/QZ, for then

2

the terms

rl A A r2 A A

Q-Ikll darldra + 2-1-2- kZlderdrl

becomes a perfect differential. In general, it will be possible to

find a Hamiltonian function for any set of control equations (Ker-

ner, l96fi), but this example shows that it may not be possible to

actually integrate the differential form. This is an important

shortcoming, for the integrated form is needed to calculate all

ensemble averages.

(2) Goodwin follows Kerner's methods and calculates the var-

ious thermodynamic functions, but replaces the adjective "demogra-

phic" by the word "talandic" meaning "oscillatory" so that his

analyses are in terms of talandic energy, talandic temperature,

talandic entrOpy, etc. As in the Kerner theory the actual use of

these state functions is that the total energy is needed to calcu-

late ensemble averages and that the talandic temperature is used

to measure the variance of fluctuations about steady state values.

The equilibrium assumption is reflected in the equipartition of

talandic energy between the components of the system. Kerner's

results on the functions A+/A, T+/T, OJ, etc. are found also to

apply in the case of epigenetic systems.

Goodwin extends his study one step further than the Kerner

theory by studying the statistical prOperties of oscillating sys—

tems in some detail. In particular, he discusses the consequences

of strong coupling between control 100ps; that is, situations in
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which macromolecules from one control loop directly affect other

control loops. This type of occurrence is illustrated by the

loops in Figure 4 and is the opposite of weak coupling which occurs

when control lOOpS interact throujh the metabolic system. Strongly

coupled control loops can exhibit the phenomenon of entrainment in

which one loop may recruit other lOOpS to its particular frequency

and amplitude. As his choice of an adjective indicates, most of

Goodwin's results are aimed at studies of the oscillating systems

exemplified by bi0105ical clock phenomena. Thus, he suggests ex-

periments in which the character of oscillations are changed fol-

lowing pulses of amino acis or RNA's. However, as Goodwin points

out, these results on periodically varying systems will probably

be of little use in the study of deve10pmental problems.

D. Tactics and Strategy

The five workers we have discussed constitute something of a

movement throughout which the tendency has been to develOp theories

and concepts which parallel those of physics. The general program

of the movement has been to effect a description of a system in

terms of kinetic equations and to use these equations to formulate

a statistical description of the system considered macroscoPically.

If we use this approach on our problem of the genotype to phenotype

relationship, we must decide (1) to what extent it is advantageous

to continue the tactics of their statistical description, and (2)

to what extent it is appropriate to follow their strategy of paral-

leling physics.

1. Tactics -- The Goodwin theory serves the important pur-
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pose of makinr clear what is inadeauate as a general theory of

cellular deve10pment. The central result of the theory is that en-

vironmental stimuli result in changes in the talandic temperature

-— or variance of the epigenetic variables p3. and r3. about their

steady state values -— so that the epigenetic "system can exist in

many different talandic energy states without any change occuring

in the steady state values of the microscopic variables"lo. But,

if we think of cellular states as reflecting the enzymes present

in the cell, development must consist of changes of the steady

state values of the pj's. Thus, "it is necessary to have a model

which is irreversible in the sense that ... the steady state quan-

tities p3. and qj undergo permanent change"ll. "The difficulty is

to produce a model which switches under an environmental stimulus

(a temporary parametric alteration) and then stabilizes itself by

other changes of internal activities so that even when the stimulus
 

is removed the altered state persists"12. Our tactics, then, will

be to use the crux of the Goodwin method and represent the genetic-

metabolic system of the cell by control equations and the state of

the cell by points in a multidimensiOnel phase space, but to attempt

a more general theory able to describe irreversible and quantized

processes.

2. Strategy -- The tendency to use physics as a model for

theoretical biology is clear in Lotka's use of "stoichiometric"

equations to study the "transformations of masses and energies"

between demes. It is to be seen in Volterra's law of the conser-

vation of demoSraphic energy and his pains to show that his ”equa-

10

ll

12

 

Ibid., p 13}.

Ibid., p 151. Goodwin uses q instead of our r.

Ibid., p 151. Italics in original.
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tions of motion" can be derived from a variational principle. It

is to be seen in Kerner's even greater pains to derive the Volterra

equations from a least-action principle, in his use of the Gibbsian

statistical mechanics, and in his decision to derive the various

thermodynamic functions. It is important to realize that none of

these workers is directly applying physics to their problems. One

can no longer doubt that the laws of chemistry and physics are sa-

tisfied in living systems, so that it behooves the biologist to

pay attention to entrOpy and force and molecule and a sizeable frac-

tion of the physicist's armamentarium of concepts. But, each of

the workers we have discussed realizes that it is inapprOpriate

—- in general -— to use these concepts to discuss integrated bio-

logical systems. It is meaningless, say, to speak of the phhysical

kinetic energy of a population of animals when studying pOpulation

genetics. The tendency is one to proceed in analogy to physics

and the outcome is an analOg to temperature, an analog to entropy,

and an analog to Hamilton's equations rather than a novel use of

the physical quantities 2££.§£'

An example of an argument offered in support of this analo-

gizing occurs in the first chapter of Goodwin's book. First, Good-

win points out that biologists are faced with a form of what we

have called the problem of concrescence:

From the properties of the "elementary particles" of

cells, such as the cistron, the zymon, the replicon,

etc., must emerge those characteristics which are the

recognized attributes of living cells. 1’‘

{This is analogous to the problem of statistical mechanics, but un-

like the case in thermodynamics where a quantiative set of macro-

 

13 Ibid., p 1.
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scopic relationships in the form of phenomenolOgical thermodynamics

exist,

All that there is in biolOgy is a set of concepts such

as organization, adaptation, regulation, competence,

homeostasis, etc., which must carry an enormous burden

of more or less intuitive understanding and experience

about the essential principles of biological structure

and function. Although some of these concepts have

been analyzed into more exact notions which could lead

to quantitative definitions satisfying to some extent

their intuitively-perceived content, there is certain-

ly no set of relations which order them into phenomeno—

logical laws of cellular biology. lfi/

Goodwin then asserts that phenomenolOgical laws of cellular systems

are not apt to be found:

The singular absence of precisely-formulated laws of

cellular organization suggests that there simply are

no obvious general quantities for measuring cell be-

havior which are presented to our senses in the manner

that heat, pressure, and volume are in the study of

physical phenomena. lé/

Thus, Goodwin elects to introduce analOgs of the known "macrOSCOpic

parameters" from thermodynamics:

The present theory ... sets out to derive some general

lacrOSCOpiC or "thermodynam 0" functions which arise

from certain dynamic characteristics of molecular con-

trol mechanisms in living cells. The programme is,

then, to use the present knowledge of the molecular

organization of cells, so brilliantly eXposed by mo—

lecular biologists, as the microstructure for a sta-

tistical theory from which the general behavioural

consequences of this organization can be deduced in

terms of functions which bear a complete formal ana-

logy with the classical thermodynamic quantities of

temperature, free energy, work etc. lé/

,Again, it must be emphasized that the posited relationship between

physical thermodynamics and talandic thermodynamics is one of simi—

larity or analogy rather than one of identity.

l3?

 

Ibid., p 2.

15 Ibid., p 3.

16 Ibid., p 3.
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If we were to adopt this strategy, we would generalize the

Goodwin theory to obtain the talandic analog of quantum mechanics

or non-equilibrium statistical mechanics. However, we shall ar-

gue that this strategy is not valid and should be abandoned. In-

stead, we suggest that the problems of the mechanical—thermOdynah-

ic relationship and of the genotype-phenotype relationship are re-

lated in that they are elements of the sane class of proolems -—

those of concrescences —— and that there is no formal similarity

between the systems studied in physics and those studied in holis—

tic biOIOgy. Our reasons are that (a) the difference in the modes

of analysis of the physicist and of the biologist suggest that con-

cepts cannot easily be transferred between the disciplines, and

(b) assumming that the subjects of the two sciences are similar and

that similar concepts exist in the two sciences has led to no use-

ful results.

(a) (1) To see how the analyses of the physicist and the bio-

lOgist are different we must realize that all of the physicist's

concepts and results are derivative from his eXperience as a human

being in what, for lack of a better term, we shall call eXperential

Space, the "Space in which" he perceives things and moves around in

and endures in. The mathematical description of experential Space

is that of a Euclidean 5-space and a Newtonian inertial reference

system. For some purposes, experential space is too naive of a

concept and it is necessary to alter our conception of space and

time to one of space-time. This change is tolerable because this

new idea still has eXperential Space as a "classical" limit and,

Inore importantly, even in relativistic situations events re still
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constrained oy the most basic properties of experential space. For

example, it is not possible to escape from space, the result of any

movement is that the moved object is still in experentiul space.

Also, an object can be made to move about in eXperential space in

a continuous motion from one point to another. Even the host ab—

stract results in physics must conform to such basic prOperties of

experential Space. Mathematically, the point is that all the things

that can be done to a physical object must be expressable in terms

of a group of continuous transformations of Objects in experential

space. There is no force of logic behind this "must", it is just

the intuitively established standard of our intellectual tradition.

The mathenatician remains unfettered by considerations of ex-

perential space. In fact, mathematics is difficult just because it

requires one to abandon his "real” eXperential space for a considera—

tion of the more abstract idea of a set of elements which nay exhi-

bit peculiar characteristics when judged by the standard of eXperen-

tial space. This mathematical license tends to obscure the primacy

of eXperential space in physics, for the physicist often uses a va-

riety of mathematical spaces as tools to study events that occur in

experential space. The Lagrangian and Hamiltonian formulations of

mechanics represent events that happen in experential space as points

in configuration or phase Space. Quantum mechanics represents "states"

of objects in eXperential space as vectors in Hilbert space. But,

the physicist never studies events "in phase Space" or "in hilbert

space"; instead, he uses these spaces to emphasize the characteris-

tics of events in experential space, and they are useful only as

long as he can translate his findings to the coordinates of experen—
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tial space-time. An apparent exception to this is the affine pres-

sure-volume-temperature space of thermodynamics which imposes the

odd restriction that state transformations can be made only along

isobars or isotherms instead of along the shortest route from point

to point.17 Perhaps, as Bridgman (1961) points out, it is because

of this degree of abstraction that it has seemed necessary to "re-

duce" thermodynamics to mechanics and, thus, to events in experen-

tial space. By virtue of such reductions, all of the concepts of

physics become utensils for thinking about events in experential

space: concepts such as "force", "energy", and "angular momentum"

being clearly related to experential space, the concept of electri-

city and magnetism such as "charge" being less immediately stated

in terms of experential Space, and the parameters of thermodynamics

being related to experential space only through the SOphisticated

transformation of statistical mechanics. In sum, physics may be

defined as the study of events from the point of view of eXperential

space.

(2) However, this is not the only point of view from which to

view natural events; entirely different orientations are often use-

ful and intelligible. As a simple example, suppose one had a pile

of building materials - boards, bricks, nails, etc. These compo-

nents could be used to build one of several objects; say, a house,

' barn, and a row boat. It would, of course, be possible to des-

cribe the construction of each item from a physicist's viewpoint

as a series of transformations in experential space. .Each step in

construction would be described as a change in space-time, particu-

lar pmoblems being formulated in terms of "forces" and "stresses"

 

17 or. L. Brillouin (1961+).
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and "strains". But, it is also pos;ible to describe the building

of any object from alternative points of view. One might define a

sequence of states such as that of being unassembled materials, that

of being a house, that of being a boat, etc. Now, if we wish to

study the transformations between such states, this viewpoint can

give unique insights. It is clear, for instance, that a direct

transformation from the state of being a hous to the state of being

a barn could probibly be carried out by a suitable remodeling pro—

cess. But, it is unlikely that a direct transformation between the

state of being a house and the state of being a boat could be mana-

ged; the radical differences in the macrosc0pic organizations of the

two objects would demand an intermediate transformation to the unas-

sembled state. All of these transformations possible or impossible

must conform to tne physical laws hf transformations in experential

space. On the other hand, it does not seem worth the effort to try

to eXplain the impossibility of the house-to-boat transformation

in the physicist's language: it is not clear, for example, that

the entrOpy of a boat is more or less than that of a house so that

it seems to be a misplaced effort to dream up an analogy to the Se-

cond Law to describe the "evolution" of such objects. This example

is important to us because much of the biologist's work is done from

a point of view which emphasizes organization rather than processes

viewed from the point of view of experential space. In particular,

the ideas of "gene action" and "cellular state" and "induction” do

ant really gain much by being interpreted in terms of eXperential

:apace. Biology might be characterized (but not definej) as the

study of a certain class of objects from the point of view of or-
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ganization. A more realistic example of this point of viex is

discussed in Section B of Chapter IV.

(3) This reCOgnition of the possibility of viewing natural

events from several points of view —- what Jhitehead calls dif-

ferent modes of analysis —— puts us in tne position to reilize

that an insistance on making physical fiUQlO5iGJ night tend to aC-

tually vitiate th power of the tools the Volterra-herner-Goodwin

movement has develOped. The central theme of these theories is

the representation of a demographic or an epigenetic system by a

point in a ”phase” Space. These spaces, however, are only distant-

ly related to the pnysicist's phase space in uhich the pesitions

of objects in eXperential space and their momenta are plotte;, for

the points in these spaces are in no way related to events repre-

sented frOm the point of view of experential space. Rather, they

represent the results of interactions between organisms or between

control 100ps, and are better described by a representation from

the point of view of the organization of a pOpulation of organisms

or of a cell. Most of the physicist's concepts are ideas about

events in experential space and it is inappIOpriate to assume that

they are meaningful when used 'n conjunction with the viewpoint of

organization expressed by the "phase” spaces of Kerner and Goodwin.

The danger in this transference of concepts between points of View

is that the prevalence of "physical analogs” may obscur parameters

and concepts which faithfully describe events from the organiza-

tional point of view. Since both the Kerner and the Goodwin theor—

ies have achieved some success in describing biolOgical events it

is necessary to tentatively accept their ”phase” spaces as fritw—
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ully re resenting tiolo;ic l i,1ena,'»;.'n;-n.:gx. jut since these ”Lhase”

spaces manifest a yoint of view radically different from the point

of view of experential stace represented by yhfibe srpces it is ne-

cessary to assune, until lrcven otterwise, that the systems being

analyzed by the yhysicist and by the biOlOJiSE are not formally

similar so that ”physical analogs" should not be exrected to have

aiytling to do with bioloaical systems.

(b) At this taint, we must raise tto auestions. First, hgd

the use of thysical analo;s received any entiricel Justification?

Secondly, is Goodwin Justified in using ghysical anlegS as a last

resort beCause the comflexity of biOlOgiCQl systems has mashed all

phenomenological relationships? he will consider Goodwin's point

first.

(1) Immediately after suggesting the use of rhysical analoss,

Goodwin laroceeds to a discussion of cybernetics and negative feed-

back as dpflied to cells. This is ironic, for ”negative feedback”

is the prime example of an intuitive, basically biolo;ical concept

which has been rendered quantitatively precise. The notion of neg-

ative feedback is pretty much equiValent to N. B. Cannon's concegt

of hOmeostasis in that each homeostatic system is bound to exhi-

bit negative feedback and each instance of n gative feedback in an

organism is apt tc be associated with a hemeostntic system. Further-

more, Rosenblueth, hiener, and Bigelow (1943) have suggested that

negative feedback is a grecise may of describin; ”purposiveness”,

the Lrototype of metaphysical entities. The concept of negative

feedback is also an example of an idea oriented towards the organi-

zational vie point. It says sonething about the way in which the
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organizqtional comfonents (as oggosed to the material co gonents)

of a system interact; although this interaction can usually Le des-

cribed as events or configurations in experential space, the impor—

tant consideration is only that a set of cosyonents actually do in-

teract; how the components are arranged Spatially is pretty inch

besides the point. Because the idea of negative feedoach is geared

to the organizational viewpoint, it is not likely to be used and

has not been used in any of the branches of :hysics is e fundamen-

tal concept. The utility of negative feedback in studying biologi-

cal systems does not prove thut a set of thenomenclOQical rel;tion-

ships will soon be found for cellular systems, out since it, like

the phenomenological relationships of thermodynamics, allows some

definite statements ubout the behavior of the system of interest,

the fact that theoretical biology and theoretical physics night

not look alike no longer seems to be a serious shortc0uing.

(2) he return now to our first question. In this regard, it

must be pointed out that most of the yhysiCdl analon derived by

Kerner and Goodwin are actually never used and do not contribute

to the derivation of any testable results. The only yhysical ana—

logs which are used are the total energy, G, and the temperature,

63. Physical total energy is defined directly in terms of the

coordinates of experentisl space. The function G is chosen as the

talandic total energy because it satisfies the Hemiltoninn efiuatichs;

on this basis, the grobability distribution in phase spice is de—

fined. If we retnin our scepticism towards the transferrence of

Physical concept to biolOgiCdl groblems, this becones a rather i3

hoc choice of a probability distribution. Regardless, it is doubt-



f

50

ful how much physical content is actually seine introduced into

n 3 . . , , . , _ _ .A 15 ‘ . a .

aOOQWln s theory, Ior a Single calculation shows that the {rous-

bility that the variable r; falls between rj and r.j + dr. is given

u

by just the Gauss'an distribution (cf. Chapter III, Section D.l.(a)).

We haVe already noted hat the talanuic teggerature is more or less

simply related to the variances of the variables p4 and rj. The

d

other Paraneters (T+/T etc.) which are actually used are measures

of the Various oscillatory characteristics of the systeu and are

not yhySiCal analogs. Thus, all of the useful results of the Ker-

ner and Goodwin theories could be obtained, devoid of ghysiCalis—

tic trappings, by using the usual statistical methods to study the

oscillations of the variables Ij and rj. There is no engiriCal

justification for the transference of Physical concepts to the

study of biolo;ical systems.

Je have argued that because the physicist and the biolOgist

tend to look at natural events from two different viewyoinns, the

yhysicist abstracting out of nature ideas which relate directly to

experential space while the Oi0103i5t has found it useful to ab—

stract out of nature the functional relationships manifest in the

svstem he is studying, it should not generally oe possiole to trans-

fer particular concepts from one science to tne other. We have

pointed out that, at least in one instance, a bioloiical cohcept

has been put into a form which allows definite statements aoout

the behevior of intact systems. And, we have noted that the im-

portant results obtained by Kerner and Goodain are not actually

degendent on the use of yhysical analOgs. he conclude, therefore,

18
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that the strategy of paralleling Physics is an unnecessary one

which is likely to ooscur already Opaque proolems uy introducing

inapproyriate formulae and unneeded entities. A gore aggrogrinte

strategy is to begin by doubting the applicability of all physi-

cal concepts to integrated biolOgical systems until such concepts

have been shown to be actually neceSSury to understand living sys-

tems and to taKe as central to a theoretical biology those ideas

and parameters which DiOlOSiStS have found helpful in thinking a-

bout living systens. No doubt the two nodes of analysis will ul—

timately find seme concepts mutually cowpatible, but by using this

strategy we will feel confident that these connon concepts reflect

some basic similarity in the two types of systens rather than mir-

roring the scientist's human tendency to over generalize well un-

derstood ideas.



CHAPTER III. A THLCRETICAL APPROACh TO CELLULAR STATES

"The aim is not to ape physics, but to mine the uni—

versal mathematical quarries."

-- E. H. Kerner

A. Assertions

l. The problem -- Our problem is to discover the relation-

ship of the genetic—metabolic system of a single cell to the mor-

pholo;ical type of the cell. We will assume that the genetic-meta—

bolic system of the cell is adequately represented by a set of 2n

kinetic equations in terms of the variables p. and rj. If we in—

troduce the variable A which measures the morphological type of

the cell, the problem will be solved if we can express A as a func-

tion of the variables p and r (we abbreviate the set of n pj's by

p and the set of n rj's by r). In this Thesis, we will restrict

the discussion to cells which persist in a cellular state and do

not pass from state to state.

2. Assertions -- As the basis for a solution we will use

two assertions about the nature of cellular states. These state-

ments are assertions in the sense that eXperimental data can be

used to support them, but will not be presented until Chapter IV.

The reader who is uneasy about this is invited to read Chapter IV

before proceeding in this Chapter. First, we assert that a given

58
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cell can be in one of a finite number of discrete morphological

types and that the cell is a stable system (in a sense defined be-

low) with respect to its morphological type. Secondly, we assert

that there is a one-to-one correspondence or isomorphism between

the morphOIOgical type of a cell and the state of its genetic—meta—

bolic system. In view of the first assertion, this means that a

cell can only be in one of a finite number of discrete genetic—

netabolic states.

B. Definitions and the Eigenvalue Equation

1. G>space, biochemical states, and morpholoEiCal states --

lNe designate the aggregate of all cellular systems as S. From now

CHI, the genetic-metabolic system of the cell will also be called

tale biochemical system of the cell. The biochemical system of a

ceJJ.is.represented by a set of 2n kinetic equations

a
: . dr. .

J = Rj(p'r) and E = Pj(p,r), J = 1.2,eee’no

Pj is the concentration of the ith species of protein; rj is the

CCJncentration of the corresponding mRNA. For the purposes of de-

VEfiLOping the general theory of cellular states, we will allow the

functions Rj(p,r) and Pj(p,r) to be any well behaved functions of

P 61nd r. However, we assume that Rj(p,r) and Pj(p,r) do not de-

Pe11d explicitly on small molecules such as ions, cofactors, hor-

mcules, vitamins, phOSphorylating agents, etc. In almost every

JJTteresting case it will be necessary to take account of these

sflmill molecules; this can be done without changing the general
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theory by expressing some of the constants in Rj(p,r) and Pj(p,r)

as functions of p,r, and other variables; thus, Obtaining more

complicated kinetic equations. A more practical description of S

is suggested in Section D of Chapter IV.

We define a vector space, 6), with the basis vectors a.j and

bj’ j = l,2,...,n, such that each axis of 0 represents the con-

centration of a species of protein or mRNA. A vector in 6>is gi-

ven by

n

T ( a r'b )= ..+ .-

21:33 33’

j = l

and the time rate of change of T is

:
5

n

dT “ = fl“. '3. = $2.". P76).
3;- = Q 2(1)an +133) {3385+ 33

° 1a: j:l

We temporaily define the biochemical state of S as the Zn-

tuple (p,r); that is, a point in O). This definition is implicit

in Goodwin's "phase" space of epigenetic systems.

The morphological state of a cell is a real positive number
 

Xk such that each different morphological cell type correSponds

to a different Ak' (It is easy to modify the theory to accomodate

the possibility of several cell types corresponding to the same xk).

In accord with our first assertion, we stipulate that there be N

morphological states and N xk's; that is, k = l,2,...,N. Our

second assertion maintains that there be a correspondence between

the biochemical and morphological states of a cell. To obtain
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such a correspondence, we introduce a function L(p,r) defined on

O’which maps biochemical states (Zn-tuples) into the set of all

Ak's; we will specify the form of L(p,r) in Section C. Our as-

sertion requires an isomorphism between biochemical states and

Ak's, but there are an infinity of 2n-tuples in G’and only a fi-

nite number of Ak's. To obviate this difficulty, we will rede-

fine our concept of biochemical state.

2. Biochemical experiments -- Experimentally, we can at

least conceive of measuring the variables p and r for a given cell.

Biochemical experiments consist of measuring the p and the r under

normal and experimentally altered conditions. In either case, the

result of any experiment is a 2n-tuple of values, (p,r), which can

be represented as a point in 0). Suppose that it be possible to

follow the variables p and r for a period of time in a cell of a

given morphological type. The results of this eXperiment will be

a configuration of points in (P. Suppose further that we pick

one of the p or the r, say, pj, and prepare a plot of the density

of points in 6>as a function of pj. If this plot be normalized,

we can consider it as a probability density. The results of such

an experiment might resemble the plot in Figure 5. To generalize

this idea to the case of all 2n variables, we introduce a single

19
valued, continuous function Uk(p,r,t) defined on 0); the index

k means that the cell was in the hth morphological state at the

time of the experiment. Denote the density of experimental points

in G’by Ui(p,r,t)Uk(p,r,t) where Ui(p,r,t) is the complex conjugate

of Uk(p,r,t). After normalization, Ui(p,r,t)Uk(p,r,t)dpdr gives

the probability that the results of a single measurement of pj is

 

19 Cf. Atkinson (1965), note 8.
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Figure 5. The results of the measurement of the concentration of

the th Species of protein in a biochemical experiment.

Probability that p3 is between

I I rnd {j + dpj
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Concentration cf the jth protein species
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between p3 and pj + dp‘j and r3 is between rj and rj + drj for all

j.

In general, we must expect that an actual distribution of

points and not a single point will result from a series of measure-

ments. If we were to explicitly study the influence of small mole-

cules on the p and r, variations in the activities of small mole-

cules would produce variations in the experimentally obtained val-

ues of p and r. But, even if we ignore these effects, the compo-

nents of p and r are likely to oscillate about some mean values,

so that measurements will result in values of p and r anywhere be-

tween certain limits. The necessity of reCOgnizing such oscillations

is another reason for rejecting the idea of a biochemical state be-

ing represented by a point in 0).

To meet this contingency, we now discard our first concept of

biochemical state and define the biochemical state of S as a den-

sity function in (P. We can fulfill our second assertion by con—

sidering N such functions. The function Uk(p,r,t) serves to define

such a density function, so we define the N biochemical states of

S as the N functions Uk(p,r,t), k = l,2,...,N. Thus, we consider

the function(a1) L(p,r) as mapping the set of functions Uk(p,r,t)

into the set of the 4Akds. We will assume that all N functions

Uk(p,r,t) are different. The distribution of points in GDare, in

general, not disjoint.

3. Expectation values and variances -- In a bioloSical sys-

tem, p. must have some upper bound; for example, if the average

total protein concentration for a cell is p0, it will always be

the case that pj‘(po. By a suitable choice of units for the p
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and the r we can have O\<p‘j <1 and Oérj< l for all 3'. Thus, all

experimental points will be within the unit Sphere in 0>and for all

t Ui(l,l,t)Uk(l,l,t) = 0.

Suppose that S be in its hth state; the expectation value of
 

any function, A(p.r), defined on U’is given by20

l l

Ak(p,r) = A(p,r)Ui(p,r,t)Uk(p,r,t) dpdr .

O 0

Note that Ak(p,r) does not take into account the probability that

S is in the hth state. Setting d7“: dpdr = dpl...dpndrl...drn and

suppressing the limits of integration as understood, this can be

written as

Ak(p,r) = /[Ui(p,r,t)A(p,r)Uk(p,r,t) d7'.

If S has N possible morphological states, we have a similar ex-

pression for the expectation value of A(p,r) when S is in each

state. Since these states are assumed disjoint, we may inquire

what the expectation value is for a series of determinations of

A(p,r) performed while S is in different stable states. We de-

note the probability that S is in the hth state when a measure-

ment is being made by cgck. Then, the expectation value of A(p,r),

taking into account the probability that S is in different states,

is

20

 

This is the usual definition of expectation value. For

example, see Frazer (l95b).



 

N

e

E ckck Ak(p,r)

k = l

A(p'r) = N I

I

i ,ckck

k = 1

We require, of course, that chick = 1, so that

N

(1) A(p,r) = E ciUi(p,r,t)A(p,r)ckUk(p,r,t) dT .

k = 1

A more compact form of (1) can be obtained by introducing the N x

N matrix

A(p,r)Ma = A(p,r) o e e e

0 O l O

O 0 O l  
the column matrix
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and the row matrix

. i t t

1 see kkeee CNUN o

In terms of this notation, (1) becomes

A(p,r) = JU*A(p,r)MaU d7 .

This form of the expectation value will be used throughout this

work.

As'a special case, note that if A(p,r) = pj or A(p,r) = rj,

then

.- U".Ud
3 [p3 T

U
! I

(2)

U‘r.U d .fara
! l

The variance of all measurements of A(p,r) in all N states is

defined as

u

A p

N

V

I

A b
!

V

N

(3) (AA)2

-11

[U‘Afiav - JU'AMaU j

Where A = A(p,r) for brevity. An equivalent way of writing (3) is
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(4) (1310‘2 = JU’ [AMa-A12Ud7‘.

Equation (3) is easily derived from Equation (h); these definitions

and prOperties of variance are anaIOgous to those usually used in

statistics (cf. Frazer (1958)).

4. Stability -- Let A = A(p,r) be some function of p and r.

S is defined to be stable with respect £9 A(p,r) if and only if

(£§.A)2 = O. This suggests that if a series of measurements of A

are made at times t1,t2,...,th, then S should be considered stable

with respect to (wrt) A if the time average deviation of the mea-

surements from some value A of A is zero. This definition oses$1..

two technical difficulties.

(a) The definition of expectation value introduced in B.?.

is an average in (P-space, and it is not obvious that this kind of

average is equivalent to a time average resulting from an actual ex-

periment. The connection between the two kinds of averages is a-

chieved by interpreting, for example,

‘

ckck

Zlcick

as the fraction of time spent in the kth state over a sufficiently

long period of time. The difficulty comes in deciding how long is

"sufficiently long". Physicists meet the difficulty be resorting
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to time averages extended over infinite periods of time, for which

the correspondence can be more or less established (ergodic hypo-

thesis). In our case, the most realistic approach is to leave the

matter entirely up to the judgement of the experimentalist and al-

low him to decide how long he has to continue to make measurements

to faithfully reflect the nature of the system under study.

(b) The word "stability” has a precise meaning in mathematics;

but, in general, it is not clear how the definition given here is

related to the mathematical definition. However, if we set A(p,r)

= p, the condition (.CxA)2 = 0 suggests that p is arbitrarily close

to B for almost all values of t. Then, the solution 3 of the sys-

tem of equations p = P(p,r) and 5 = R(p,r) will be stable in the

sense of Poincare (for example, see Magiros (1966)) with p’as a

point of stability. Also, if A(p,r) is a quadratic form of the

p and the r, then (3,?) will be a stable point of the equations

if A(p,r) has a minimum at (3,?). Thus, it should be understood

that the "stability" used in this Thesis is related to but not ne-

cessarily identical with mathematical stability.

It is very possible that S may be stable wrt A and be unstable

wrt some other function E = B(p,r), i.e. (13 B)2 i 0. An individ—

ual cell is expected to be stable wrt morphological type but be un-

stable wrt some of the p and the r most of the time.

5. EmbryOIOgical egperiments -— From an embryological point

of view, an experiment consists of "measuring” the morpholOgical

state of a cell under normal and experimentally altered conditions.

Our first assertion was that cells are stable with respect to mor-

phological type. Thus, the anticipated results of an embryologi-
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cal experiment are of the form of Figure 6. In the experiment de-

picted, the morphological state of a cell was measured, and the pa-

rameter elk (the cell was of the REE type) has been equated to the

expectation value of the measurement. Since L(p,r) serves to re—

late the variables of G’to the values [A of the morphOIOgical

k

variable 1*, we choose to write zxk = EXETF3. L(p,r) is a func-

tion defined on G’so that the expectation value and the variance

of L(p,r) are defined as in the previous Section. The Figure and

the first assertion indicate that llL(p,r) = o for the kt state

(and, in fact, for all of the morphOIOgical states). Together,

Figures 5 and 6 show that S is stable with respect to the function

L(p,r) or the variable >\, but is not stable with respect to the

variables p and r. These observations are the starting point of

tne theory to be develOped here. In preparation for this develop-

ment we will need the familiar Schwartz inequality and a certain

integral.

6. Two preliminary results —- (a) In our notation, the

Schwartz inequality 21 is

A.

(5) jU‘U JlAMau)'(AMaU) bl [§(AM8U)‘U]

with equality holding if and only if A aU = CU for some scalar

M

e - _ ¢

C. In particular, we may take C - jU AMaU .

(b) We will now show that the integral

Irwin = [Maw

21 This is a standard result in analysis; e.g., see Schmeidler

(1965).
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Figure 6. Results of the measurement of the cell type of a single

cell in an embryological experiment. ,X is the morpholOgical varia—

ble.

Probability that the Value of X

is between A and )+ d.)
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t

can be written in the form J (AMaU) (AMaU) . To do this, con-

sider the column matrix

W = U + d(AMaU) , d is any scalar

and the corresponding row matrix

fl

we = U‘ + d‘(AMaU) .

By inspecting the integrand of the integral

[W‘AMaW = [[Ue + d‘(A_MaU).J AMa [U + d (AllaUfl

and recalling that A is just a compact way of writing the pos-

Ma

sible values of a biological measurement” we see that the integ-

ral itself must be a real quantity. Written explicitly, this is

JN‘AMaVJ .—. [H.AMaU + d IU'AMaUHMaU) + d*I(A,‘iaU)‘(1th)

+ dd’,[(AMaU).AMa(AMaU) '

But, in order for this to be real, we must have

(Im d)fU‘AMaA_MaU + (Im at) [(AMaU). (AMa U) = c .
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Thus, we have our result

. 2 * ,

[U Abiau = Jm'biau) (Al/lab) '

7. The eigenvalue equation -- we can now derive the funda-
 

mental equation of the present theory. Recall that Z§L(p,r) = O;

that is

J.

IU" 211 - [Iva U]
k;Ma k - k Ja k

for we are limiting ourselves to the measurement of a single cell

in the hth state so that cick = l and cfick, = O for all k' f k.

Using the results of Section B.6.b. and the fact that .{UEUK ll .
.
.
:

a.

«JUQUK I<LMaUk)‘(LMaUk) =:[ Uh LMa UK] '

However, by the Schwartz inequality

LMaUk = [IUE.IMa Uk] Uk'

But, A = JUL: LMa Uk so that
k

L(p,r)Ma Uk(p,r,t) = Ak Uk(p,r,t) .

This equation will be called the eigenvalue eguation; and the func-
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tions Uk are said to be the eigenfunctions of the matrix IFa while
if 

 

the )\k's are the eigenvalues of that matrix.

8. Transition states -- The present theory has so far con-

sidered measurements only when a cell is in a stable state. To

obtain a complete picture of cellular deve10pment, it would be

necessary to deal with the "transition states" which occur when

then cell is passing from one stable state to another by introdu-

cing a set of functions, mG(p,r,t), defining the probability den-

sity functions for measurements when the cell is moving from the

mth state to the kth state. We have associated two important prOp-

erties with the functions Uk: (a) the definition of the eXpecta-

tion value of a function motivated treating the Uis as the ele-

ments of a vector, and (b) because they are associated with stab-

le states with respect to L(p,r), they satisfy the eigenvalue e-

nuation. The functions mG = mG(p,r,t) will not, in general, sa-

tisfy such an eigenvalue equation; but, they should be vectors,

for if the transition process begins at t0 and ends at t we
f!

must have

mG(p,r,to) Um(p,r,to)

and

mG(p,r,tf) Uk(p,r,tf).

In general, there will be N(N - 1) such functions, but mG(p,r,t)

may be identically zero for some values of m and k.

One approach to the problem would be to consider the func-

tions V , as vectors in an N-dimensional vector Space, (RF’ which

m: V
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has the functions Uk as its basis. This is the method which is

~d0pted in quantum mechanics. It is not difficult to see that if

there were a countable infinity of morphological states, then the

functions Uk would form a complete set and we could express any

function of p and r as a linear combination of the Uk'saa. How-

ever, the first assertion was that there are only a finite number

of morphological states, and the functions V3 cannot be assumed

lk

to be vectors in UKN because a finite subset of a complete set is

not generally complete. In quantum mechanics it is generally as-

sumed that there are at least a countable infinity of syscen states

so that the approach is valid. It is beyond the scoye of this The-

sis to consider the proolem of calculating the functions mG.

9. The relation of (RN to G) -— linear Operators on 0) ~-

 

Defined on (RN are a series of matrices, A'Ma‘ one corresponding to

each variable of S. These natrices and the vectors of (RN complete-

ly determine the expectation values and variances of the variables

of S in the manner detailed above. The system 5, however, was ori-

ginally described in terms of (P. It would be desireable to deter-

mine in terms of the coordinates of G’what the probability distri-

bution for each of the N stable states of S is and what the expec-

tation values of the variables are for each state. It is not easy

to do this in terms of the matrices defined on (R Instead, itN.

is shown in the Appendix that to each matrix, A

22

Ma’ defined on (RN

 

Because Uk defines a proba ility density3“UiU $‘l<c”. Thus,

the functions U form a complex L space. Since the L spaces are

known to be complete by a theorem due to Riesz-Fischer, the functions

Uk form a complete set (see Royden (1563)).
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‘

there is a linear differentiil ogerator, A(p.r) Oefifle& OVCF
C‘r. ’

L

G). This means tudt to each eigenValue equation in matrix form

there corresponds a partial Cifferential equation cf the form

A(p,r)Op Uk(p,r,t) = a Uk(p,r,t) .
k

The solutions of these equations will determine the yrobability

distributions and allow the calculations of the expectation val-

ues of any variable of S. It regains only to choose an onerator

corresponding to the morpn0105ical function L(p,r).

lO. Summar of arwument -- The format of the argument u‘
s - P
 

to this Point is:

(a) Assume that the Variables lhk are finite in number and

represent the expectation values of a variable with zero Variance.

That is, S is stable wrt that variable.

(b) Assume that there is an isomorphism between the set{/ik§

and the set {I53 .

. . . . , {A‘}+6

(0) Let L(p,r) be a function whicn naps k U . Agree

to specify this mapping oy requiring that ‘Ak.: L(p,r) .

(d) The first assumption implies that L(p,r)Ma Uk : Ah Uk'

(e) It is possible to replace this matrix equation by a

differential etuation L(p,r)OP Uk = Ak Uk' If tne form of L(p,r)Op

is specified, it is possible to find Uk and calculate 5,}, and

L(p,r).

C. A Choice of the Morphological Operator L(p,r)Op

1. Definition and Eroterties of L -- (a) he have previous-
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ly postulated that the morpholo;ical cell type of S is a function,

L(p,r), of the variables p and r of S. Since no experiments have

ever been directed to the determination of such a function, there

is no possible way of knowing a priori what form '5 appropriite
   

for Lgpjr). The only possible way to proceed is to guess a form

for L(p,r) and to hope that suitable experiments can guide the

formulation of another guess which better approximates tne form

of L(p,r) (if such a function is possible at all!). There are two

strategies which can be used to direct the formulation of these

guesses. First, one could take L(p,r) to be one of the parame-

ters -— such as entrOpy, temperature, information, energy, etc.

—- which have been useful in the study of physical systems. This

is the approach which has been used by Kerner and Goodwin, and

has been discussed in Chapter II. The advantages of this method

are that it allows the wholesale use in bioloqical systems of the

concepts and techniques of physics and cnemistry, and that it sug-

gests a solution to the philosOphical problem of the relationship

between physical and biOIOgical systems by treating them as dif-

ferent examples of the same type of system. The risk involved

in adapting this method is that bioloyical systems may not be or-

ganized-in the same way that physical systems are, so that the ap-

plication of physical parameters to these systems may not lead to

meaningful results. The second approach is to elect to set L(p,r)

equal to some parameter which expresses some very general charac-

ter of a system. Thus, in the next section we will specify that

L(p,r) is to be considered as a certain function which is a mea-

sure of the time rite of change of each variable of 8 relative to
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the movement in G>cf the probability distribution U'U. The ad-

Vantage Of this method is that L(p,r) will be reflecting an aspect

apprOpriate to a biolo iCal system, for it will be a parameter ap-

plicable to any system thich undergoes changes. The risk involved

in this case is that this parameter may be so general in nature

that it can contribute no interesting or useful infornation about

biological systems as Opposed to systems in general. The choice

between these two approaches is, perhaps, really dependent on in-

dividual intuition, but the only legitimate means of arbitrating

the matter is to compare tne success of the experimental predictions

of each approach.

(b) Since we are proceeding in an arbitrary nanner at this

point, there is nothing to prevent picking L(p,r) to be a differ-

ential Operator defined on G). ‘The advantage of this choice is

that, since we have assumed S to have stable states with respect

to L(p,r) and have argued that there is an equivalence between the

matrices defined on (RN and differential Operators defined on G),

we can write immediately

L(p,r) = L(p,r)Op = L(p,r)Ma

where the eoual signs mean contextual equivalence, and conclude

that

L(p,r) Uk(p,r,t) : AkUk(p,r,t) .
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Then, the ka's will be tne expectation Values of L(p,r) in tLe

N stable states of S; the functions Uk(p,r,t) determining the kro-

bability distributions will be the solutions of a differential e—

quation.

The total time derivative of the function U(p,r,t) is iiven

an a

“3% = ot+ :—
jzl 3

by

dr.

dt °
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We now Eostulate that the function L(p,r) is the Liouville opera—
 

tor

 

n

a 3

L(p,r) = L(p,r)Op = i Zijan) a pj + Pj(P.r) fij.

J =

Then, Equation (8) can be written

I'd—t- = 1

dU '(BU+LU

3t

where we have set L : L(p,r) for brevity.

The Liouville Operator can oe written in a different form by

use of standard vector notation: Recall that a gosition vector in

(y denoted by-f has the time rate of change
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n

-,~ d? E —~ -~
- a? = . Rj(p,r) dj + Pj(p,r) bj e

3:1

U is a function defined on G’with gradient

n

<;U = E iLQ '3. +

a P3 3

j=1

Q
/

G

 g
t

0
/

a

m

In terms of this notation, we hive

A .3

L = i Qo(V )

so that L U = i ZeU.

(c) In Section B.l., we took the function L to describe the

morphological state of S. The result of an embryological exyeriment

is an expectation value of L, and picking a form for L is the same

as stipulating what is "really" being measured in an embryolo;icnl

experiment. In our case, if S is in its K32 state, the expecti-

tion value of L is

)\ T A 6= U‘ L U d = i " n. U d .

k k k k m k T

d U o O n A 0 a c

{Q is the veloc1ty of a pOint in G); <7U'1s a vector Wlth magnitude

equal to the greatest rate of change of the function U and pointing

in the direction of the greatest rate of change of the function U
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and pointing in the direction of the greatest change of that func-

tion; Uk determines the probability distribution in.<?. Thus,/xk

A

may be taken, roughly, as a measure of tne motiOn of the vector T

relative to the motion of the distribution of points in G).

(d) Since U‘U is a probability density, we re uire thut

(9) l = ‘gU'(p,r,t)U(p.r,t) = ISU’(p,r,t')U(p,r,t')

for all t' > t. That is, we want

d O

Anticipating the result of Section D.l., U‘(p,r,t)U(p,r,t) : u(p,r)

x u(p,r) where u = u(p,r) is a time independent function of o and
A

r, and it is sufficient to demand that

 

e e :3?
(l0) ti°VP + at a 0

where f): n‘u. The identity

div (pi) = flit») + 3.6m)

allows this condition to oe written as

 

3p . e _ “‘_7—’~‘_,
5t + le (Fri) P<V q“) .
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I V I ‘ - A

Consider now a small, arbitrary volume, I“ about the gOlnt T

in G). Designate the surface surrouhiint;jjlx/A(. dv is a differ-

ential element of and dO‘is a differential elesent of . n is

the unit normal to j.. The density of point: in. 6) at time t is 3i-

ven by f). Since }}is small, the velocity of the yoints in.;/may

- A A 1 u .

be taken to be Just g = dT/dt. Thus, the number 01 LOlnto of 3/

. . . . - . . 1‘ A

passing through dd'in the time interval at is given by fWQ-n dO‘.

The number of points peeping through the entire surface in the time

interval dt is then

633 (10': div (Pa) dV ,

where the diver5ence theorem has been used. But, the number of

points pasair; annuyiflgimitke time interval dt is also given by

d
_ —5—-€ P dV : (- 526—81?) dVo

3’ 1’

Thus, since l}is an arbitrary volume,

a? . -.-->
'3— : le(F~o¢),

and the condition that the integral (9) be tine invariant reduces

to 6"; = O.

. -

In general,‘V-Q i O. For example, if p = ab + br + c, r : up

.5

+ er + 1‘, then 3-4 = a + e. Thus, to obtain an sober-table density

function we introduce the function M = M(p,r), called the last mul-
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tielier of 5, defined by the condition,Vn(M%) : O. hultiglying e-

quation (10) through by h and setting D : Hf), we obtain

a ‘
at=00

U

_\ ..A

MQ oVF-t-
 

A —3 ..‘b A _5

Using the identity div (MP-Q) = PV'OM) + MQ-VP, gives

51)

at

 

A d .3

+ div (Deg) —pVo(m) = o .

If we use D as the corrected firebability density, we will have div

(D3) = - a D/at and dD/dt = c.

M can be determined from its defining condition

3- -‘-> .
This condition implies that dt QHVM : - dt M‘V'e. Since M does

U

A uh

.g-VM , and

exp [-Jfis, cit] .

The parameter t must be removed from M by solving the kinetic equa-

not explicitly contain t, dM/dt

2:74: : - dtfio-‘z, or M

tions of the system in terms of p and r. This proceedure is illus—

trated in the Example, below. In some instances, t : t(p,r) will

e
be a complex function; then we will use D = (M‘M)’uiuk as the cor—

rected probability density.

(e) To be biologically meaningful, the ‘kkfs must be real
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.L -b A .1

x #y. _ ' 4:. . - M4. 7*wk, vU _ 1h: *WUKUK) UK; ,mk]h H ..
..

a.

I
I

P
. [6'(U‘U I'A) “It A ‘3 “A- t]k k“ - LkUkGT he“) - Uknmovuk

II P
“

u I

,
4

¥
-
"
\

:
2

W
C
:

g
u
t

4 c

W
e

Here, 3 is the surface of the unit sphere in G’space, 3 is the nor-

mal to S, and ds is an incremental area on 5. We have imbosed the

boundary condition Uk = 0 along 5. since ‘AKLiS equal to its con-

plex conjugate, it is a real quantity.

.3

2. The Liouville equation -— The equation BID/a t + (.37de
 

= 0 leads to an equation for the time deve10pment of U For sin-
k'

plicity, assumefii§ = 0 so that M = 1. Then

C
1

 
 

a 9“ t 9...:

O = U‘[Ot + fi'VU] + U :3 + Q'VU'] .

SetUzReU+iI;nU,U‘=ReU-iImU. Then

 0=2ReU[gtReU + :WRe U] + ZIInU[-5a—t Ian+:.€IxiLT].



at.

In renerxl, Re U and Im U are independent and non—zero, so that

we must have

c) ~34
fiReU + Q°VRCU:O

and

a A _s

:gz'lu b + $0<7Im U = C .

A.3

Thus, 3 U/d t + QoVTU = 0. Finally, we have the Liouville equation
 

for U:

Q
,

C
‘
.
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D. Determination of the Functions Uk(p,r,t)

The time dependent behavior of the Uk(p,r,t)'s is governed

by the Liouville equation; the time independent behavior is de-

termined by the eigenvalue eiuution. To deteruine the functions

Uk we assuhe that the variable: are gartially separable so that

Uk(p,r,t) = 2}L(t)uk(p,r) for some functions of time 1}k(t) and

some functions of p and r, uk(p,r).

1. Time detendent part -- Using U and the Liou—
k: kuk

ville equation we find that l}k(t) nuet satisfy the ordinary dif—

 

ferential equation

- d
<11) 1a“ 1km + vkmkk = o .



55

1 Mt

The solution to Equition (11) is I}k(t) = e . AR must have

. ,. . , . —l

the dimensions of (time) .

Two important results follow directly from the form of Zflk(t).

Thus, unless uk(p,r) is identically zero,dUk(p,r,t)/3 t 2 0 if

and only if k = O. In this case, the eigenvulue equation oeCOhes

just Luk = O, which is satisfied by uk(p,r) : constant. In pir—

ticular, we may set uk(p,r) : eXp (constant), or

uk(p,r) = Uk(p.r.t) = eX'p (G -W/G)

where G is the tulandic total energy, 4’15 the talandic free ener-

gy, and E91s the talsndic tenperature. Thus, the Goodwin theory

is restricted to the special case in which k = O and is not equip-

ped to discuss the N-l other cuses in which k A O.

(b) The functions U form an orthonormal set. To verify this
k

property, we introduce a constant of normulizution, Nk' Consider

the integral

iAk,t -iAkt
' e _ t

Nk'Nk Uk'Uk .. Nk'Nk e n k,e uK .

There are tho cases: (1) if xk = X we can huve
k.
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I

C
‘
\

H H P
'

E
:

EDb’ ‘t}qe Ergodic theorem (see Khincnin, 1949). This intedrul is eu-

:5j_]_3r evaluuted:

N N u

v

k' k in}: 1 -i(Ak'- AK”
 

) lim — e

-i(Xk,- A hm
k

'rlltis

fCDIWn an orthonormal set.

2. Time independent tart --
 

‘VC13.ue equation; written explicitly,

n

(12) i i Rj('pl’...,:pfl,rl,.

j = l

<)uk(pl,...,rn)

N N U‘ U = (8 ° the functions U when normalize;

’ k' k k' k k'k’ k’ ’

uk(p,r) must satisfy the eigen-

this is

3 uk(pl’....’rn)

0.,rn) +

apj

 

 Pj(pl,oo o,I‘n)"—g
= >k.uk(p],...,rn).

brj
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Equation (12) is u linear, first order, partial differentiul enun—

tion in 2n Variables. The solutions of such un euuution is usuel-

ly effected by reducing it to a systes of ordinary differential e-

'3
. L.

quations 3 .

For the purposes of this section only, we use p and r to desi;

nate just two variables out of the conplete set of an Vuriables of

S (i.e. p = Pj' r = rj, for sone j). Thus, Equation (12) becones

Auk(pir) ()uk(P’r)

(13) R(p,r) <9 p + P(p,r) a r = - i,Akuk(p,r).  

We now introduce a three dimensiona space with coordinates

given by p,r, and u : uk(p,r); and note that u is just a surface
k k

in this space (Figure 7). A general function in p,r,uk- Space is

represented by C€(p,r,uk). For example, we might have

2 2

CP(PgI‘ouk) = O = (p-a)2 + (I‘-Q)2 + (u —a) — b ,

k

which is the sphere in p,r,uk-space. At any given point, (p,r,uk),

the normal to the surface CQ(p,r,uk) is given by

(11+) ‘3 =‘W(p.r,uk) = 1% :1 . Q3;- '32 . dig-k :33,

where we designate the unit vectors of p,r,u

23

_ . ...x A _\

k-space by el,e2,e3.

 

This method is discussed in detail by Courant and Hilbert

(1962), Chap. II of vol. 2. We will only outline the proceedure

here. Our choice of boundary conditions guarantees that a unique

solution to Equation (12) will always exist.



C
C

(
)
0

5
L

0
I

Figure 7. The eigenfunction uK -' a surface in p,r,uk-space.
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Now consider the special case in which a C?(p,r,uk) is a so-

lution to Equation (15). Later, we will specify a set of boundary

conditions which determine a unique solution; but, for the modent,

we must consider Ce(p,r,uk) a5 a family of surfaces in p,r,u -space,
k

each of wnich satisfies Equation (13) and a given boundary condi-

tion. Since it is to be a solution of Equation (13), we have uk

= %>(p,r,uk). Ne seek a set of ordinary differential equations

which generate the family of surfaces uk(p,r). To find them, we

use 47(p,r,uk) = uk(p,r) in equation (1h) and note that the nor-

mal to any solution of Equation (13) must have the direction num-

bers d uk/A p, ()uk/f§r, and 1. Since the third number is the same

for all of the solutions, the normals to all of the solutions at

any given point will be distributed about a point in a certain

plane (Figure 5). This means that the planes tangent at a given

point to all of the solutions of Equation (13) will form a pen—

cil of planes; the axis of this pencil is called the Monge Efiii

after the French mathematician Gaspard Monge. The characteristic
 

curves of Equation (13) are defined to be a set of curves in p,r,

uk-space such that each curve is tangent at every point to one of

the components of the Monge axis at that point (Figure o). It is

possible to show (Courant and Hilbert (1962)) that there is an

equivalence between a set of characteristic curves and a given

first order, linear, partial differential eq ation. Thus, we may

take the differential equations of the characteristic curves as

our desired ordinary differential equations. If we introduce the

parameter s which measures the distance along a given characteris-

tic curve, we see that the differential equations of the charac—



Figure b. Characteristic curves in p,r,u
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teristic curves are

l . d d d .( 5) 35 = B(p,r), 3% = P(p.r), 6%}: = -l Akuk(p.r) 0

Equations (15) are called the characteristic equations of Equation
 

(13).

We can single out one of the family of sets of Characteristic

curves which generate solutions of Equation (13) by requiring that

the characteristic curves of interest intersect a curvetr in p,r,

uk-space. we consider_I‘to be described parametricslly in terms

of a parameter 7]; and, for our purposes, we specify that I+is not

itself a characteristic curve of the partial differential equation.

If the solutions of the Equations (15) are given by p = p(s), r =

r(s), and uk = uk(s), we specify that s = O alongir and determine

p = p(s) and r = r(s) so that they satisfy the initial value con-

ditions r = g(w?) and p = h(’7 ) wnen s = O. This gives

-11Kks

(16) p = pun") ), r ... 145,“? ), and 11km = . .

Integration of Equation (13) is then accomplished by eliminating

"W from the equations (16), solving the resulting system of eiua-

tions for s, and substituting the value of s into the expression

uk(p,r) = expi}i.)ks(p,ri]. uk(p,r) is a solution of Equation (15)

which satisfies the desired boundary conditions along]? . For boun—

dary conditions, we will always take 5 = O at the curve:F in p,r,u

K

-Space and require that uk = O at 1?, i.e. uk(O) : 0. We choose to



define:r by the equations

(17) p = cos W , r = sin’?

in terms of the parameter 7 . That is, we require that the proba-

bility of finding a cell with the concentration of its 33h protein

or mRNA such that p3. = l or r3. = 1, be zero. This discussion is

readily generalized to the case of an variables.

E. An Example

To illustrate the theory developed in this Chapter, we will

study a simple example. Consider a system, S, described by the

kinetic equations

92-.
dt - ap + br + E

(18)

dr

R-Cp+dr+e

where a,b,c, and d are constants and.e«l. We could allow 6 to be

any arbitrary constant, but assumming that it is small considerab-

ly simplifies the calculations. No real biological system is apt

to be describable by such a simple set of equations, but Ecuations
A

(18) are complex enough to illustrate a general principle which is

of biological interest.

p and r have the dimensions of molecules/cell, say; the con-

stants have dimensions of reciprocal time units. Since this sys-



93

tem is unrealistic, no attempt will be made to assign values to

the constants. Goodwin (1963) discusses in detail how this can

be C1 one .

The idea of the Examgle is as follows. The kinetic equations

(16) are taken to describe the biochemical system of sOme cell of

imaginary simplicity. The problezn is to predict the p05:ible mor-

pholo ical states of the cell on the basis of these equations.

Two steps are involved: (1) the deterninaticn of the probability

density function Dk(p,r,t), and (2) the evaluation of the expec-

tation values )k,5, and F.

1. Determination of D —- The probability density function
 

is given by D =MU‘U U satisfies the eigenvalue equation LU

k k k k k

kak’ or more expliCitly

(ap+br+€)%—p-uk+ (Cp+dr+€)'§—ruk :-Ii.Akuk

-i)\kt

The time dependent part of Uk is 19k(t) = e as above.

The associated characteristic equations are

= Cp + dr + 6 , -—k = -i/X kku

(
L
I
D
.

U.
‘

*
1d

dfi = ap + br + 6 ,

It is easily ceternined by elementary methods that the solutions

to these equations are

--/\e1 k8



 

  

 

 

(a + h C); (a + n c):

(19) p " l I C e 1 L1 C e 5' 1+E(r1-b— . l - .

fla-Lr. 2 l l 2 bC " .Isd

c l

(a + h C)” (a + r C)S

l 2 ” ‘l E (x-c)

2 “l M

where hl ind he Are given by

l 2 .
h = :- (d-a) + (u-d) + Abe

1 40

l 2
h = f— (d—a) - (m-d) + QbC

2 cc

and Cl and 02 are constant of integration.

Since the characteristic equations are linelr, the hl-tc‘ns

and the hfi-terms are seyarately solutions. If th iroolem no wor-

L

ked through using just tne hl-terms, it is found thnt uk is irregu-

lar at the origin. Thus, we set C1 = 0. CD is to be oetermined

so thvt Equations (la) sitisfy the boundury conditions

ill 2CD is given,
L.

{urinetric form, by

 

-(h -h )

ct = 2 1 sin.) _ 6(1 - b)

2 h bC - ad

1



 

 

  

If we .Eet

., E (d — b)

d = R - (be - Lxdjfizg - 111)

E3 = I‘ _ é (a - C)

(be - ad7(h2 - hl)

‘
-(a + h c)s

_ (d -b) _ (a - e) f _ a

r-- be - ad ’ 6.— bc - ad ’ find x ‘ e ’

Equations (19) become dtx + r‘: sin7? and fix + 5 = cos‘? .

Lhence

')

(0L2+?2)x2 + (20(Y+ 295)): + (r2+5"-1)=o.

If we neylect terms yuadratic in E.:

 
 

  

2_ 2 2€p(d-b) 2_ 2 2€r(a-c)

0k - p - bc - ad ’ P ' r - bc - ad

Ep(d - b) 6r(a - c) 2 a f»

our: "cc-ad ’ ¢S=bc-ad ’ 5— +8 -l~-l'

Then,



 

 

1:. A -' .' w v ,. ' ' , »~. ' .. ' ‘_ ' ‘

1r1b:., 1.1L _L.;. dimpn, L)", U“. 2: T .-'_ , fir; .. f. Chiltailv. -‘-;:

11‘ L‘.

tpe curlj KfflCLCtg ble Jean .et 6 u.l to T. I g L;q;r: c;e- isn'—

 

‘A - 9-

m : e“, - (J + k) e : c .

l l- 'u: L LCI.-:AJ-116(A .’ {.4 w TULC Diff)-.. pi Y. Ru 1 ..A .L 1 ‘\2 Uk»lb;r v‘q VJ‘. iv. Q1: LL 1 "‘

 

t say be 2 con leg lunction of , .nn r fer Luge v lbs” 01 tle cop—

' , . 1. _ ‘ .* n e ‘ I“: —‘ . 73 V, ‘_ .‘ . A

L r t;:, sc> = e .ILLJ' tn-e L) : (ra*xu)’ Lift}, . .ae l.lflt tvzr t LL : T
,

A- {L IL il-

there

a . 1 , - ' ‘ ‘_.___._(f‘) a». + C(hf + n.) + 1>\LC(-‘i‘ - 1i )

(do) E = L "Ti + ii_".c) (l + n c)
l C
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W

B untion (20) is v lid fcr all vtlLen or t

ever, L gust be real ;unntity if tre GAICCti:

r ure to be real (see oelcn). Thus, we

:!-.

I L.

‘< O and agree to regd ["(u - d)2 + 4befl for

 

80 that ha : l/2C

 

 

Making these ussunrtions, we find that

2 e w
(a + d) - 2 A. “In — d) + 40C

. K
L = a

a J i

Note tzmt if a : d = O and we take the lin

(lb) becone e uiValent to tne nernonic oscillnt

. . . 2
Under tleae conditions, we have In : l, T = (12

E = - Z‘Ak/«IEC . Tnus, the corrected grob.oility density

tion for the harmonic oscillstor is

2).?

(pg + rt) doc

 

DK(1§,I‘) :.

It is readily verifies tnet Dn for the LJTnCUiC

maxina' it simvly increuses fren D.(0 U) = U to D (l l) = l for all
, l K ’ K 9

values of the index K.

Cn tLe other land, tLC oriiinal Case gives

q- a

 

v-6 (20:1. taint

; 0.“; ‘v’ ,‘z. U L'

[(d -31).. 1 Ju. — d): + 4m, ].

it 6.90, 3.211”
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+ rL) “l,

QQCilJJLCT I

fune-
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3 Dk/A ; = C if (.1) E = 0, or (b) ATS/3;.) : t}. In tie first chute

we iinu tint 3 DRE/3 1‘ = b. In tze secozd C...‘..e, we 11nd tut

t

A Dk/B p : C2 le:..d:s to an extregum :;.t

1" = O

h - x

pQV:_.’"d+Z.

It is not difficult to show thut if tnis vilue of b is nitLin tne

rende of'CDSEMSlW tien.the extremum is s Minimum. Thus, D~(p,r)
IX

incre ses fFOn DK(U,O) = c to

j E

'E 63d)(d-b+n—e)A F
4

C

H v

I

n _ a 2(bc -

 

with a. m.-a_..<in‘.uzu at E : (be - ud)/e (d - b) + 2, r : (bc - and/e (Lt-C)

+ 2c

2. quluition of exgectation values -- To evxluate the var-
 

ious expectation values, we set L = A sing and r = A cos 9 ,
J.

\
/

vrhere A and 6 are Viriebles sucn that CSA \< l and ()\< 95"," f
‘

.ffe neglect the E -terzus in ok and e as centered to 1; .Aild r so that

0&2 p, (Pr, and set

43-b-Ef—E—d (d-b) sin6+ (a-c) cose .

Then Dkr’: (l + d) )EA-Eo

. o x I ' 3 __ u- \ I C“ _ '. .-

(9) We rcllu1re tili‘lt N12 DkdilUr —— 1 khere 11k 1L4 T IlOI‘..-.n

{
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lization constint. In terms of A and 9 , the integr l is

. n .)

1V2 1 .23 /e

a E -E “It ._

K 1 .. r,

O O C

(.3

wnere 'e Fave exyanded the binomial nnd drofiied the terms in d) ,

¢) 3, etc. Tne integration is easily executed, and
‘

a

Na_ l—E

k ‘ 'r__r__eI-;(d+a-b—c) °

bc — ad

03) The extectution values of the norphologiCAl state of S

is given by

l l

— '2 e' 7/ at ~,4
L NR; (M M) LUKLUk uldr .

O 0

Ne will calculnte L for the hirnonic oscillator. In this cise

“Ayn—c)

TV,QBE

and M = 1. We hnve

  

l l a

—_2 _.
L - k uh 1(br aIP + Cp 6 r) u ever .

0 0

By differentisting the cnnructeristic equations:



)1“ ~ I —i'\l;)c E- .

~1— : -Il. u‘C 001.1,? 6: : -1 UC I‘.

 

c
:

p {
1
.

'
1

This result is not entirely setisrnctory because it nus esser-

ted tnet morphological cell tyiee ere discrete, and up to tnis goint

there is no relson to suspect that tie 4Akfs :re discrete. however,

they can be mwde discrete by assunnin; tfilt Uk(p,r,t + t') = UK(p,

r,t) for some period t'. This condition ivylief that eXp (-i;kkt')

= l. and )\ = 0.112,... Thus, we could set A}: : LI: and have e.

discrete (
I
)

R

et. There is some exterinentnl evidence that grocein

concentrations oscillate in vivo (sec Goodwin (1963,19e4i)). A

theorem, due to Volterra, which suggests that lost of tle varinble;
)
—

in a costliested system mill oscillate about t eir gean values nus





lOl

alreidy oeen -entiored (Ch;fter II, Section 5.3.). flit, tiere i‘

no jugtiiiCnticn for “cce,tinb tnib a: the gencrnl rule in inte

rwted Liolc‘ic;l Ejételo uitiont furtber evidence.

(c)

We 1

”a“ -‘[;1

(1 MP)” A “ A sine A an :19

 

 

Simillrily

1
!

u 

In the Case of the harmonic oscillator,

4 (K +‘JBB )

'W(;k + E‘JEE) .
P = r

3. Switcniné etatee inc organiz tion states —— Of 5360141

interest ire ei enstlteo in LHiCL one or more genes ire “ciut off”

50 that rj = 0 for one or lore values of 3. In the came of tne

harmonic oscillator, we find, by evaluating r for n = C and k-9°fl

C
?

that O‘< 4/31T‘F‘S 2/TI. That is, none of tne lcrphclo,icll st te

of this Eyetem result from the gene locus being "shut off”. In

the xore generul system deecrioeu my tre Kinetic e nations (19} we



log

N C H Hfirml tznrt r

  

K _ (3d ' bC) (1d + d2 + 25C)

6/(a .. dy— + nbd [£3._;_:_ _ Ma - 0)]

In that Case ,

(d - b) (,ré +7T/h) + (a - c)(l —TT/1+)

(d - b) (“'/57+ 2) + (a C) (a -'fi/l67 °

 

w
!

l

‘5 > C if d > b and a > c. That is, in tnis systen one morpholoti-

Cal state results from the gene beinq shut off exile tnere are in

infinity of different morphologiCsl states possible with the gene

active.

he will ssy tnat txo cells are in different switcnin;

states if they nave different morpholOgic 1 types (i.e. different

will say that two cells are in different organization st tes if

k's) and Love different configurations of innccive genes. Je

 

they have different mor9n0105iCJl tyfes and have tne same configu-

ration of inactive genes. If the 333 gene is inactive, 1"..11en":r-7‘j :

O. For examyle, sugpose a cell contains three genes. It till

then have a potency of being in six switcning states and an in-

definite number of organization states. Une p ssibility 's:

State Gene Configuration noryholohical state

1 r = O = O r O

1 r2 3) 1

2 r1 = 0 r2 ) 0 r3) 0 2

3 rl)O r2=0r3)0 3



103

stute Gene Configurution Hortholcgicel b 458

b, r- o r. > c r-.= o .
J.) a j q.

5 r = O ri = 0 rs: C r
l a J 2

t r O r“ O r” O t
l > d > )> o

r O r, -7 1‘) & >.O rj:>C 7

States 1,:,5,4,5, und 0 are different switching ttxteo wnile states

0 and 7 are tne Sume switcniné state but different orgnniiatlon sta-

tes.

F. The Relationship between borehological end biochemical Cellular

States

The Problem of the Thesis is to discover tne relations 1; of

the biochemical systen of a single cell to tne norphologiCil tyne

of tne cell. The biochenicul state of u cell M15 defined in two

ways: On the one hand, it was defined as a certain eigenvector

Uk' In this case, tne morph0103ical state of S is the corresnon-

ding eigenvalue, )\k° These definitions suffice to seecify the

one can 31w:ys find A_, oy forninsconcrescence because, given Uk {

the scalar trodudt s-ULZLUk dT'. On the other hand, the oiocheni-

cal state of 5 was defined as a goint in tne s,ace<? . Fron the

exterimentul boint of view, tnis definition is dependent on the

first definition oecause tne exterisentolly useful values p and r

Can he predicted only from a Knowledge of UK. The relgtionLLig

between the biochehiCdl stute of a cell and the noronoioiic l Stkte

of a cell, thus, may 0e descriocd as the relitionsnip oetween un

eigenvector and an eigenvalue. That this is, in fuCt, tne nuture
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of the reltticnstig follcgs cireotlj ern tne stluility of cell

tire. fnis result is anid refiirdlees of wxrt for; he nonune for

L(p,r).

 



anrTsn IV. Tnfi turban min Lchd LF Cullthnx dTnBILITY

”The more concrete the biccnemiCnl studies of the self—

reiroduction of living things, the more envious it me-

cones that the Lrocess is not Just bOund up with this

or tnat particulnr sunstxnce or a single nolecule of

it, but is determined Dy tne nnole system or organize-

tion of the living body ... Which is flexing in nlture

and is in no way to be compared with a stumping m3Chine

with an uncnanginj matrix.”

-- A. I. Ollrin

The Jrevious Chapter, arguine on gurely forsnl grounds, sug-
k1

.qested that morphological cellular éCJEQS may ue considered is ei-

figenstntes of the biochemical system of the cell. This Cnutter till

correlate tne initial assertions of Chapter III to sOwe of the

‘biolciiCal groherties of cellular states ind will censure the con—

cept of cellular eigenstates to some of the control neonanisms

thought to figure in the munifestation of cellul;r churucteristics.

because the tonic of cellular stltes is a very general one, encol-

gassing aspects of a great najority of living systems, it would be

inOSEiDle to discuss all tne literature pertinent tO'the asser-

tions of Chatter III. Instead, we shill proceed by using a few

examples to delineate the bounds inside of which the assertiur: :re
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probably true and outsiue or wricn txey are ‘IOUiblj false.
I

Pirt l: Assertions

A. The Relationshiy betueen MorpholoTic;l ind biocteniCzl Cellular

States

The second Assertion of one,:ér III WAS Cudt tgere is an iso—

worthisn oetteen tn morphologic 1 state of a cell gnu it: oiocLeii-

Cal state. Biologically this means that distiict Patterns of bio—

chenicals are associstei uitn morthologicslly cistinct cells. In

some cases this asserrtion is un_uestionaolj sccurute: erytnrocyten

are dthCithd witn lsrje Amounts of he.o5looin, muscle cells gith

l.rge unounts of mjoein, and chondrocytes QFU issocieteu Jltfl lerie

anounts of cnondroitin sulfzte. In other cellular lineage; such

as some varieties of leuCOCjEeS anu tne various nervous systeu con—

:stituents both the norphclowicil and oiochenic l differences betseen

Cell tjges are Luotle ensign to uldc the VillJIEJ of tie Antcrtiwn

\4ncert in. As an snub lo, te sgill rUViéw «one of tne li;er.ture

(on tLe differeltiltion of rodent cerebrul cortex sni rgue trit tne

Cells of both tne acult and fetil cortex are astociatei ‘itn ii:-

tinct enzymic patterns.

1. The histoyenesis of the cerebral cortex -- (a) The de-
 

Velotment of tne cereorul meniscnere follows a ;;ttern con on to

.nost of the regions of tne centr l nervous system (CNS)“ . when

it is oriainallj fcheJ, tne neuril tube consig;s of g lsyer of

'gseudostratified epitheliil cells an; n as tre neuroetitneliun.

As the development of tne CNS ,roceeds, a nore ;eriyherxl n ntle

layer is foried of the centrifugel nigrition of neurcblitt: find in

25'

 

Reviews: P. seies (1935), R. L. «ltterson (ljoé).
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OUCCTJCct mcellul-r l yer CAllUl tne M.r5in l L ,er UBCQme; J}f$'

r;nt. Neurooll.ts mlJ ;ove out fro; the LUUTOCtiCfipliug iJ 1 series

(Jf K lEtIJlCC .nlvflflitIJJHb uno t. it s11 e JJFJCMIiC (3K6 .dzy, t-t xyoie-;;t; see,

show _; number of strata KllOnIl as trv-nsition zones. v.15 celL. Hove

Periyfer ll; tle, either oifferentiste into reco;niswole neurons

in one of tne trlnsition zones or differentiite fter tgeJ rech tle

vilr‘firral. zcnie.

(b) The develooment of the cereor l Cortex in t.e vlliio fgt

leS been describei oy dugita (l;l7) JhO _ietin;uisnei five lagers

iJI the acult cortex. To f¢Cilitfite conolrison .itr ..e nun n ccr—

t:e>: tnese ]_ryers ire IHLJJEreu ixlsinsl0;3',.itr Brouurun1hs descri til».

()1‘ the Adult hUmlM cortex. Layer I, tle L0:t yerigner l, is one

1.3:nina sonw is and contuins only sclttered glisl cells. Tue QCCOLd
 

ljx‘odngrn l yer, tne ll liu Aruguliris externu, is not listin uigi-
 

fible in tle rat. Luver III is the l:-..::in_._ E:~gr:z..ii lie: which contlins
«...—~— 

J.
"€3e1m¢t1inint, Closely since; tyru i; 1 cells. Layer IV is tre li-

“iltla franuliris interns CCflgiLtiflT of crowns: and lee —stuininc
\ .A J L .J
 

I3?21nules wrict resemble glial cells. The 1 din; 4:29lionwris, m.de

‘JI‘ of lmrge and loosely {sexed yfriliu 1 cells, is Lijer V. TLe in—

r1€31ziost layer VI is tne i Linu multiforuis wnicn contlins {oljmor—
 

i31¥;)is cells.

By wennin; (which occurs on the ilst day xfter birth) tle cor—

t‘53< has taken on adult crqr.oteristicu. ultlou;h t e cortex of t;e

neingttc rcpt is roujilv; line til-u; of tne- -...u'lt, taro i.;tQI‘t«.1llt clif-

3E€¥rences can ce cone veu. First, tne loult ldJCF; ire not in es-

4

*;1~lg oistinguishe;, the lulifi; :yr did lis ipiewrin; to Live been
 

llIVuoei of cells from the lsnina zonglis .nd tne l JiUl érnrullri:
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interval neiny ind- unnotzole. lflue cells o

lilve an in .wture :_.nrile t..r e. deconclw ,'t.o :zuz'litit.._; yer;
A

Are to oe seen bet een tie l2 ins multiforii; “wd tne ventricul r
 

w

!

'wsll. .mre Cells of there lagers ure Iresunatlj ”i I‘Llu to .rls

the cortex; tne lagers uieugtegr Curie; the 3r? uni %th Loetu.t.l

days.

Jed tnree vMJLe; in tne tr neititu tetyeen ;;I
F
“

(
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)

Sugita reco,1

zieontte:gnli tne _iult colteg. lflu: fir:t .'.m:6 l ate grow oirtl-

tintil tie lute d.; sue is ch r;cterizeo :3 tie wrolirer ti 4 :f

lieuroblu ts in; .“clf centrifug l mlsrdolog. Durinf t.e first

rolnase tne Ittte or incre -xa:in tne tL ounces o;‘t-t.<oe-te . - M
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Y
‘

1
,
.
.
.
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I

‘tti- es efl: lwaxt .s tiurirr, tne: tnirwl ghee-e. true walvfu ;n.a;

f1?om.tle lltg to the fig uay and in cn recterl ed of tie enlrrge-

izezit and oiffercntiaticn or ccrtic l cells. The cortex receiVes

ITewv new cells during tle second an..e and its rrte of incre: e of
L

J— t_ - . ,- .. A . ' ' ‘ ... . ,- — .,' . "

”Lilef‘leL’VQ ll; L‘Ility' / ul.-€i) -~. Felt J: E.) C CI circ.’ unlit: “clue. .L.-f:?(
F

53 JMrd gnzee llztu from tle glut to tne at h a j “nu is cu~r'cteri-

‘U‘iti Of tse ijliL.CloL cl nCJTOflul ,roce;s_s. ou'lta (ljlc) L's

Lilx3.n ttit tle s’le ‘gttern of uch o ¢€Lt cCCurs in t.e guinel

L 193; tne era Jf t;e lirst gnuae, nohever, occur: at tne ”iii d

(31' VGfiCgtiCH .

on ;§a'm t_tz is sufforted L, cit. Irom other .orkers. Peter;

“111-1; Fleiner (1750) studied t;.e ...orlno jenesis 01‘ he front'll uall‘tcfi

0f tine fetal fjuinei .l. is. verifiel mm: t.‘_e .. Siere:.tiwti;n of

Iti7is 1e ion occurs r.}idl5 curiL. tne eriod oet.een sl ,hg H; u.,:

She jest tion ter'1.
A

h- V'.:. .I _ — .. . . L ' L . I ‘ l »_-x ‘ I .- .
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tials apgeared in the brain of the fetal guinea ii; between #6 and

56 days. Flexner, Tyler, and Gallant (1950), however, were able

to record cortical potentials on the Moth day but not on the LSEE

day. Grain (1952) using neonate rate obtained spontaneous but ir-

regular and intermittent electrical activity during the first week;

during this period he could also elicit etrychnine potentials. By

t:he tenth day, the regularity and rhythmicity of the yotentials

“was adult in character. Kimel and Kavaler (1951) were first uble

tcs induce muscular re5yorees to electrical stimulation of the mo—

tcar areas of the guinea pig cortex between 42 and 46 days. Kava-

.143r and Kinel (1952) found that the level of acetylcholinesterase

cacrtivity begins before this at about 55 days.

(d) In both the rat and tne guinea pig, the cerebral cortex

{liaiseaseeenw to acquire its adult churaoterietics during the second

CDf' deve10pment. The histological arrangenent of the cortex has

been attained by this time; during; the firit yhaee cells are moving

.ir1t<3 their final position: and during the third ohase they are fi-

nlifiihing their differentiation into adult neurone. Neuroblaete dif-

f.I'entiate during; the second phase into immature neurons: they

d‘3‘relop an adult configuration of axons and dendrites, they obtain

Iqj~kial substance, and they undergo nuclemr and nucleolar changes

Wilfi.ch give them adult character'stics. The electrolyte difference

between the cell and its environment may be established at this

tithe, and the newly formed neurons seem to begin fultioning during

t}1e: second phase. In terms of cellular eigenstntes, a neuroblast

dLKPing the first phase would be in a given eigenstate of the nor-

Phoiogical operator, call it the 1:3}; eigenstate. That is, if it
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were possible to actually measure the value of the morphOIOgical

function L(p,r) for such a neuroblast, the eXpectation value for a

series of measurements would be Ak' During the second phase, the

neuroblast undergoes a transition to a different eigenstate, k', so

that measurements of L(p,r) would yield Ah" as the expectation

value. In general, we would eXpect tL&t the expectation Values of

each of the cellular proteins would be different in the neuroblast

21nd in the neuron; if there is an isomorphism between morphOIOgical

and biochemical states, the neuroblaets of the first phase should

have an enzyme pattern different from the enzyme pattern of the

neurons of the second phase.

2. Chemical entOgeny of the cerebral cortex -- Louis and

Josefa Flexner have approached the relationship between biochemi-

cal and morphological states by studying the enzymes in the fron-

tal cortex of the rat, pig, and guinea pig during the first and

the second phases (Reviews: Sperry (1962), Flexner (1952,195561,

1955b,l950)). When the information obtained by the Flexnere is

combined with the data of other workers, a fairly detailed picture

9f the biochemical differentiation of the cortex can be obtained.

T0 provide a perspective for a review of these studies it will be

helpful to outline the general nature of brain metabolism.

(a) (Reviews: Richter (1955), Balaze and Richter (1961)).

Br1min is a unique tissue in that it depends almost entirely for its

‘utrition on the metabolism of glucose, :1 peculiarity imposed by

the "blood-brain" barrier which restricts the entrance of almost

everything except glucose into the brain from the blood. In the

braLin, part of the glucose is utilized for the synthesis of amino
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acids (e.g. Roberts ot al. (1959)) and other compounds, part is

degraded via the Warburg-Dickens pathway to provide NADPE2 for the

metabolism of fatty acids and a source of five carbon sugars, but

most of the glucose is used in the Embdon-Myorhoff scheme which

degrades glucose to pyruvic acid. This compound has two principal

fates: in the presence of oxygen, it is used in the citric acid

cycle and the electron transport system of mitochondria to provide

38 moles of ATP per mole of glucose (aerobic glycolysis). In the

absence of oxygen, it is converted to lactic acid and two moles of

ATP (anerobic glycolysis). The relationship between these metabol-

ic pathways is diagrammed in Figure 9.

Adult and fetal brain tissue differ in their modes of carbo-

hydrate metabolism. Fetal brain tissue almost exclusively uses

pyruvio acid to form lactic acid. Since anerobic glycolysis does

not require molecular oxygen, fetal brain is remarkably insensi-

tive to anoxia (Fazeka et a1. (1914)). In adult brain, however,

anorobic glycolysis prevails. Most tissues retain the compounds

icedod for anerobic glycolysis so that they can function, albeit

103s efficiently, under anerobic conditions. Adult brain tissue

1. peculiar in having seemingly lost the capacity to metabolize

glucose anerobically and is notoriously sensitive to anoxia. If

thgre is a biochemical—morphological isomorphism, it should be

P$asib1e to show that the components of the citric acid cycle and

the electron transport chain become active during the second phase

°f deve10pment when the cortical neurons are differentiating. In

alCldition, some mechanism responsible for the adult sensitivity to

‘noxia should become operative.
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Figure 9.
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Schematic diagram of the interactions between metabolic

pathways important in cerebral categenesis.
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(b) The data on the biochemistry of differentiation will be

discussed under four headings: (l) metabolism of phosphocompounds,

(2) Embden-Myerhoff enzymes, (3) citric acid cycle and electron

transport components, and (h) lactic dehydrogenases.

(l) Flexner and Flexner (1950b) found that the total phos-

13horous content per kilogram of the cortical cellular phase fluc-

tiuates about a mean during the last half of gestation. The indi-

VGidual phosphorous containing fractions vary, however: between the

1+(lgh and the 45th days, the concentration of phospholipids increas-

css , presumably in conjunction with the synthesis of myelin. Pre-

‘rj.ous to this period, the content of pentose nucleic acids had been

increasing, but during this period it decreases so that the total

Phosphorous content is appreximotely oenstant (Flexner and Flexner

(314951)). Flexner and Flexner (1948) found that the concentrations

01 adenylpyrophosphatase increases sharply at 42 days. These chan-

80. suggest an increase in protein synthesis during the critical

poriod (Flexner et al. (1951)).

(2) The degradation of glucose begins by two phosphoryla-

'tiixons and an isomerization to produce diphosphofructose which is

EBIDIit into one molecule of dihydroxyacetone phosphate and one mole—

<=Inle of glyceraldehyde phosphate by aldolase. Flexner et a1. (19—

5563) report that the activity of aldolase is approximately constant

in the cortex of the guinea pig until about the 33rd day when it

“gins to increase slightly up to the 35% day; then it increases

to its adult value at term.

Dihydroxyacetone phosphate is readily isomerized to glycer—

aldehyde phosphate so that the degradation of one molecule of di-
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phospho fructose results in the formation of two molecules of the

aldehyde- Glyceraldehyde phosphate has two metabolic fates of in-

terest: (a) it may be reduced by glycerol phosphate dehydrogenase

to glycerol phosphat which combines with fatty acids to form the

Llipids needed for myelination, and (b) it may be oxidized by gly-

<:eraldehyde phosphate dehydrogenase to phosphoglyceric acid which

iJS metabolized to pyruvic acid. Laetsch (1962) found that the rat

fWDrebrain showed a 20% increase in glyceraldehyde phosphate dehy-

cizrogenase activity between the #32 and 21st days post partum and

an fivefold increase in glycerol phosphate dehydrogenase activity

t:c> reach the adult level between the 21st and 335g days.

(3) Succinic dehydrOgenase is one of the enzymes of the cit-

1?j.c acid cycle. Flexner and Flexner (1946) have shown that in the

CWDzstex of the fetal pig the activity of succinic dehydrogenase is

‘3<DIistant at 35% of the adult value until between the 6823 and the

.7531ih days when it begins to increase, reaching the adult value by

IDidrths In the guinea pig, the activity of succinic dehydrogenase

begins to inorease from a low level between the 403.31 and 451:3 days

and reaches the adult level ten days before term (Flexner et al.

(1953)). There is some evidence that attainment of the adult le-

Vel of succinic dehydrogenase is a reversible process, for the

transection of the anterior nerve roots in adult monkeys led to a

12% reduction in activity of that enzyme within 31 to 5A days

(liowe and Flexner (1947)). In rats, thyroidectomy leads to a de-

<Irease in the succinic dehydrOgenase activity with little effect

0n.several enzymes. This too is a reversible process: a normal

level of activity can be restored if hormone therapy is initiated
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before the 103g day, but no restitution of activity can be achieved

if treatment is delayed until the lSEh day (Hamburgh and Flexner

(1957)).

Malic dehydrogenase, another citric acid cycle enzyme, retains

a constant level of activity in whole brain homogenates of rats un-

til the 7th postnatal day when it begins to increase fourfold to

the adult level. Between the 103;}; day and maturity, malic dehy-

drogenase activity increases in the outer layers of the cerebral

cortex and decreases in the inner layers (Kuhlman and Lowry (1956)).

Flexner et al. (1941) have studied the development of some of

the components of the electron tranSport system in the parietal cor-

tex of the fetal pig and identified two critical periods: at about

60 days, the concentration of cytochrome c increases slightly from

a low level to a new level. At about 100 days, the concentration

of cytochrome oxidase increases markedly, so that the development

01' the cytochrome-cytochrome oxidase system is biphasic. During

the first critical period the neuroblasts take on the size and

form of neurons, the Nissl substance appears and the initial fis-

suration of the neocortex occurs; during the second critical period,

di fferentiation is completed and there occurs a great proliferation

of the cell processes and the neurOpil. However, in the guinea pig

the cytochrome system develops during the morphological critical

Period, the activity of cytochrome oxidase increasing fivefold to

the adult value at about the #333 day.

(h) Lactic dehydrogenase catalyzes the interconversion of py-

I‘uvate and lactate requiring NAD+ and NADH2 as a coenzyme. Lactic

dehydrogenase is actually a system of five "isozymes", each of
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which has basically the same catalytic progerties but differs from

the others in physical and chemical details. Each isozyhe is a

tetramer made up of two Kinds of geneticilly determined subunits

called M and H. The pattern Of'isozymes varies with type of tis-

zsue and species; in a given tissue, the pattern may change during

cievelopment.

Flexner et a1. (1960,1962) have identified four of the five

:issozymes in the lactic dehydrogenase of mouse and guinea pig cor-

tex. They could be distinguished by the use of cellulose ion ex-

<:liange and starch gel electrOphoresis as well as by their differ-

¢=r1t rates of reduction of NAD+. In the mouse, the lactic dehydro-

ggeLnase level is constant until the 103g day when it begins to in-

<3rhease fivefold to reach its adult level. In the neonate cortex

‘tvvc> isozymes could be identified, but in the adult all four com-

IPCDrzents could be found. Bonavita, Ponte, and Amore (1964) found

tllsit there is a progressive dominance of the H subunit during de-

velopment in the neonate rat. Plageman et a1. (1960) have shown

'tlient the H subunit is inhibited by an excess of pyruvate while the

”4 ssubunit is not. In contrast to the cortex, the retina is highly

resistant to anox’ia (Noell (1958)) and has a predominance of the

b4 subunit (Bonavita, Ponte, and Amore (1963)).

(c) The biochemical differentiation of the cortex proceeds

cOncomitantly with morphogenesis. The enzymes of the Embden-Myer-

hNfo patheway are present during all three phases, as is lactic de-

llydrOgenase. The citric acid cycle and electron transport compo-

!lents studied, however, increase during the second phase in step

With differentiation of adult neurons. The concentration of lactic
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dehydrogenase also increases during the second phase, but there is

a relative increase of the H subunit. Thus, as development pro-

ceeds the lactic dehydrogenase system will be less and less able

to sustain the brain when anoxia and a build up of pyruVate occurs.

The cytological differentiation of cortical neuroblasts, then, ac-

companies their vauisition of the equipment needed for anerobic

fizlycolysis and the development of the adult sensitivity to anoxia.

3. Other examples -- A correspondence between biochemical

sn-d.morphologica1 development is exhibited by a number of other

ssgrstems. For example, in the development of epidermal structures

j_:i the chick embryo (Review: Bell (1966)) the determination of the

Iarwospective epidermis seems correlated with the acquisition of three

jmnununologically detectable proteins, and the final appearance of

1:11e2adult x—ray diffraction pattern of feather Gi-keratin is con-

<3c>umdtant with the appearance of a protein with high cystine con-

tGent. In the fetal lung, the form of the bronchial tree is laid

Cicrwn by a group of rapidly dividing and relatively undifferentia-

tle!d.cells. Histochemical data (Review: Sorokin (1966)) suggest

t3kLat this process is accompanied by glycogen storage and reliance

Ilpon anerobic glycolysis for metabolic needs. The subsequent per-

j-C>d of differentiation and low mitotic rate is accompanied by an

1Increase of citric acid cycle enzymes, g1ucose-6—phosphate dehy—

(ixrogenase, and the components of the cytochrome system. In both

1Heart and skeletal muscle, contractions first appear in the embryo

EBhortly after the appearance of the second of the two contractile

:proteins (Ogawa (19588. 1958b. 1961. 1962), Ebert (1952. 1953. 1955.

1956)).
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Greenstein (195%) has argued that a similar biochemical-mor-

phological isomorphism is important in the anaplastic transforma-

tions diagnostic of cancerous growth. he attempts to summarize the

changes in chemical patterns that accompany the morphological tran-

sition from restrained growth and relative cellular specialization

to unrestrained growth, loss of the tendency towards segregation

‘by'cellular type, and less of cellular differentiation in five gen-

eral conclusionsa6: (a) Each normal tissue is characterized by the

Exasession of an individual pattern of enzymatic activity which may

swerve to distinguish it from all other tissues., (b) No enzyme pe-

<:Iiliar to tumors has ever been found so that tumors must be assumed

't<3 have enzymes qualitatively the same as those of normal cells.,

(<3) The enzymes pattern of a tumor appears to be constant even-

iiliough the environment of the tumor may change. The enzyme pattern

C>f‘ a tumor will not change if the tumor be explanted to a culture

Inedium or transplanted to a host of different genetic composition

(31‘ just allowed to grow in a constant environment., (d) The range

‘>17 enzyme activity or concentrations of small molecules in cancer-

CDLis cells is narrow relative to the great Variations shown by nor-

Yneal cells. Cancerous cells, thus, tend to approximate a uniform

Cell type distinct from normal cells., (e) Specific functional ac-

tivities tend to become reduced or entirely lost in tumor cells.

Ioiyer cells, for instance, are characterized by high arginase, cat-

afllase, and cystine desulfurase activities; in hepatomas, all of these

{fictivities are reduced or absent.

E‘s . . . . .
The literature of cancer biochemistry is extremely volumi—

nous, and the present author is not competent to judge Greenstein's

thesis. His peers seem, generally, to accept the interpretation;

e.g. Reid (1965) and LeBreton and noulé (1961).
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4. Qualifications -- The embryogenesis of the cerebral cor-
 

tex and the examples of develOping and metaplastic systems cited

above support the assertion of a biochemical-morphological isomor-

phism. However, at least three kinds of considerations suggest

that it is not an accurate generalization.

(a) The cellular slime mold Dictyostelium discoideum demon-

,strates two morphological forms. During favorable conditions, the

(Jrganism exists as unicellular myxoamoebae. But when starvation

cconditions obtain, the myxoamoebae aggregate and differentiate in—

‘t<3 an organism consisting of a stalk and a sorocarp or spore Case.

1111 important aspect of this differentiation is the formation of the

gfilyc05en and cellulose cell wall constituents from endogenous pro—

‘teein. Wright (1963,1966) has studied the metabolism of glutamic

£1<:id in Dictyostelium. This compound is metabolized via its oxi-
 

Cisztion by glutamic dehydrogenase to ck-ketoglutaric acid, a citric

€1c:id cycle intermediate, to CO This sequence, along with others,2.

IDI‘ovides energy for the synthesis of cell wall carbohydrates. The

C30ncentration of glutamic dehydrogenase is approximately constant

tll‘iroughout differentiation. However, the rate of in vivo evolution

<31? CO measured by C11+ tracer studies, increases sevenfold during
21

13 his period.

This paradox is resolvable by taking into account the concen-

thration of glutamic acid. The Michaelis-Menten equation is

vmax [S]

V=Km+ESJ
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where v is the velocity of an enzyme reaction —— in this case, the

glutamic dehydrOgenase reaction —— K is a const;nt, anx

V n A

reaction, and [S] is the con-

is t;e>
v
-
‘

theoretical maximal velocity of the

centration of :uhstrate —— glutamic acid, here. V is :iven bir

max 8 J

Vmay = k3[:E] ; k3 a rate constant and [E] the enzyme concentration.

‘Ihis equation can he rewritten as

k, [s]
KmZtESJ+ 1 °

V :

fIVbe reaction velocity can be increased in two ways. First, the

Clancentration of E can be increased. But, Wright's data show that

[.EJ is constant throughout differentiation. Secondly, the sun-

=313rate concentration could increase, making v larger. Nright has

Inseasured the ratio Km/[:S] and found that it decreases during dif-

lfeerentiation at the right rate to account for the inerease of the

I‘axte of CO2 evolution. Thus, in this instance, the substrate con-

czeantration is limiting and the concentration of an enzyme, alone,

\usas not an adequate incex of biochemical differentiation.

(b) Rudnick and fiaelsch (1955) have studied the ontoSeny of

gfllutamotransferase, an enzyme which catalyzes the formation of

ifilutamohydroxamic acid from glutamine and hydroxylamine. In the

Cthick embryo nervous system, the level of glutamotransferase ac-

ttivity increases slowly frOi the 9th day of incubation to a geak

(Eight weeks after hatching. Except for minor variations, the le-

‘Vel of activity in the optic lobes, the cerebellum, the diencepha—

lon, the medulla, the cerebral hehispheres, and the spinal cord

follow the same trend. In the retina, however, the level of clu-
t'."

C1
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tamotransferase activity is low and shows no rise until the 1733

day. On that day it increases twentyfold. On the lSth day, the

retina begins a critical period which results in the final differ-

entiation of the rods and cones (Coulombre (1955)). Between the

lbth and the 20th days, the level of acetylcholine increases sharp-

.ly and the retina beCOmeS functional as judged by the appearance of

tzhe pupillary constrictor reflex. But, it is not clear what role

gglutamotransferase could play in these anatomical and physiologi-

cal changes.

(c) R. L. Friede (1959a) has studied the distribution of suc-

c:j.nic dehydrOgenase in frozen slices of rat brain by histochemical

zueeans throughout postnatal development. He reports a general in—

<3I‘ease of succinic dehydroSenase activity (SDA) in the cerebral

CKDzrtex from birth to weaning. There is a general caudal-cranial

£§rwadient in the time at which SDA first deve10ps. In general, en-

ZHYYne activity deve10ps in cell bodies before it does in the neuro-

IliJl. Distinct lamina of SDA develOp in the layers of some corti-

‘3Ell.areas, and some areas show signs of temporary hyperactivity

(nucleus coeruleus) which might reflect Special events such as

"neilanin deposition. In other papers (1959b, 1959c, 1960), Friede

11615 extended his techniques to the adult guinea pig and construc-

‘tted an atlas depicting regions of high and low SDA throughout the

Ineedulla, the midbrain, and the cortex. He finds that the distri-

bution of SDA closely follows the general morphology of the brain.

'Tlrus, he (1961) was able to distinguish on the basis of SDA several

histologically defined nuclei of the reticular system. His data

also suggest that functionally related systems exhibit similar
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values of SDA. For instance, he was able to associate gradations

in various thalamic nuclei with parallel gradations in SDA in their

cortical projections. In a general way he suggests a relation be-

tween cellular function and intracellular SDA distribution: cells

in regions of integrative or receptive function show high enzyme ac-

tivity in the neurOpil (e.g. olfactory bulb) while cells in regions

of effector or relay function show high SDA in the perikarya (e.g.

nucleus of the mesencephalic root of the trigeminal nerve).

Thus, in some instances, it may not be possible to assume an

isomorphism between biochemical and morphological states in the way

we have done in Chapter III. It may be necessary to explicitly take

into account more biochemical parameters than we have done or might

<:are to do. It may turn out for some systems that there simply is

:10 correspondence. Or, it may turn out that the correspondence is

Ilot apparent when looking at a single cell because it involves gra-

Ciients of characteristics spread over many cells or it involves

(Iharacteristics localized within the cell. Nevertheless, if these

61nd similar difficulties are kept in mind it seems legitimate to

Eiccept the biochemical-morpholOgical isomorphism as a first approxi-

nuation which is applicable to at least some interesting cases.

I3. Cellular Stability and Discreteness

The first assertion of Chapter III was that cellular morpho-

10gical states are discrete and are stable. A cell was said to be

fstable with respect to a given variable if the variance of measure-

ments of that variable is zero. The quote from C. H. fiaddington in
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Chapter II (Page 27) is a statement of this assertion.. Like the

second assertion, it is valid only within certain limits. fie will

try to establish these limits by means of an example.

1. The embry010gy of the neural crest -- (a) As the neural

tube of a vertebrate embryo forms, a certain amount of neural plate

material is excluded from the tube itself and comes to rest on top

of the developing CNS. This group of cells is known as the neural

crest. The pertinent literature has been reviewed by Horstadius

(1950); a recent corroboration of the classical work by radioactive

tracers is by Weston (1963). References to the primary literature

will be found in these sources. The histological descriptions used

here are from Bloom and Fawcett (1962).

The prOpensity of a given type of cell to become transformed

:into another type of cell is described by its transition vector mG

(see Chapter III Section B.8.), where the original cell starts in

iihe mph morphologiCal state and changes to the kth morphological

EState. If mG = O, the transition mn—>k:is not possible; if mG =

1., the transition mn+>k;will definitely occur. If cells are stab-

3~e with respect to morphological type m, mG should equal zero or

‘De very small for most values of k. To gain some idea of the na-

11ure of cellular stability, we will outline the potencies of a sin-

ggle neural crest cell. Figure 10 represents the possible morpho-

Ilogical transformations of a neural crest cell. Each circle rep-

resents a morphological state; ® is the state with eigenvalue >\ k'

Of course, these assignments of eigenvalues are entirely arbitrary.

Arrows between circles represent possible transformations; if there

is no arrow between two states, a transformation is not possible
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(Description of Figure)

Description

Undifferentiated ectoderm

Neural plate (presumptive CNS)

General neural crest

Head crest

Trunk crest

Gill arch cartilage

Cartilage of anterior trabeculae

Dorsal spinal ganglia

Sympathetic nervous system

Schwann cells

Meninges

Dentin of teeth

Corium of skin

Connective tissue of dorsal fin

Pigment cells (melanocytes)

Mechanocytes

Amoebocytes

Generalized dedifferentiated cell
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Figure 10. Transition diagram for prospective fates of neural crest

line cells. Numbers represent cellular morph010gical

states. Arrows represent possible transitions.

     

 
18



127

(i.e. it has never been observed).

(b) The possible transformations are: V and V :

neural crest cells form on the lateral margins of the neural plate

The

from the ectoderm covering of the embryo. Like the neural plate

cells proper, the neural crest cells form only when they have been

in contact with the roof of the archenteron which lies below the

neural plate in the embryo. The medial portions of the archenteron

roof induce central nervous system while the lateral portions in-

duce neural crest.

 

V3,“: The anterior neural crest has the potency to form car-

tilage. The fate of these cells is determined quite suddenly at

‘the end of the yolk plug stage. Before this stage they are fairly

‘totipotent. Even after determination, however, anterior neural

crest material can form cartilage only when it has been in contact

with another tissue, such as pharynx. Cartilage cells are spher-

oidal in shape and characteristically produce a matrix of glyCOpro-

teins containing chondroitin sulfate.

V4,6: The posterior part of the anterior neural crest forms

the cartilage of the gill arches, the hyoid arch, and Meckel's car-

tilage (lower portion of the lower jaw). It has the capability of

forming trabeculae when transplanted rostrally.

V4.7: The anterior part of the anterior neural crest forms

the cartilaginous trabeculae of the chondrocranium which, after

ossification, form the nasal portion of the skull. The major por-

tion of the skull is of endomesodermal origin. This part of the

anterior neural crest does not have the ability to form visceral

arch cartilage.
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Vj,5: The posterior portion of the neural crest material is

totipotent until the late yolk plug stage when it attains the ab-

ility to autonomously differentiate into a number of cell types and

looses the ability to form cartilage.

V5‘8: Neural crest cells migrate down between the myotomes

to form the dorsal ganglia of the spinal nerves. A given ganglion

is formed in part by cells from the ipsolateral side and in part

by cells which cross over from the contralateral side. Although

the ganglia differentiate autonomously, the regularity of their

Spacing is dependent on the Spacing of the myotomes. The neurons

of the dorsal ganglia are typically T-shaped with a process which

extends from the cell body and divides into an axon and a dendrite.

They are myelinated and surrounded by small, flat, satellite cells.

V5.9: The neural crest cells contribute to the formation of

the sympathetic ganglia. Material from the ventral part of the

spinal cord also contributes. The neurons of the sympathetic gang-

lia are usually small, polymorphous multipolar cells.

V5,10: Schwann cells are considered as resulting, at least

in part, from neural crest cells. Schwann cells are long, flat

cells which spiral about neurons in a large number of laminae and

constitute the myelin sheath of the neuron. Myelin is a complex

of lipids and mucopolysaccharides.

V5,11: The majority of the pia and the arachnoid matters are

derived from neural crest cells. The dura is of endomesodermal

origin. The arachnoid and the pia are composed of intertwining

collagenous bundles interspersed with fibroblasts, macrOphages,

mast cells, and other connective tissue elements. The surfaces of
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both meninges are covered Wlth a layer of squamous mesenchymal epi-

thelium.

V5'12: The dentin of the teeth is derived from neural crest

cells. Dentin is a yellowish semitransparent substance, similar

in structure to bone, which contains a network of tubules. Dentin

contains both inorganic materials and a glyc0protein.

V5‘13: The innermost layer of the skin, the corium, is deri-

ved from neural crest material. This layer is a webwork of colla-

genous and elastic fibers.

V5.1“: In fishes, the connective tissue of the dorsal fin is

of neural crest origin.

V5.15: The melanocytes or pigment cells are derivative from

the neural crest. These are long cells with irregular outgrowths;

they can elaborate melanin.

(c) The cell types 6 through 15 are found in adult vertebrates,

and, in slip, they tend to maintain their identity as long as they

are alive eventhough they may be constantly changing their shape

or the character of their metabolism. It is this preservation of

identity that we refer to as cellular stability. Cells of the neu-

ral crest lineage demonstrate SOme remarkable diversities. Gill

arch chondrocytes and dorsal ganglionic neurons represent extrene-

1y different morphological types. At the same time, there is a

considerable overlap between some states: the meninges and the

corium are basically similar in histology and both contain pigment

cells.

(d) When a cell in one of the states 6 through 15 is removed

from its normal environment, as in tissue or cell culture, it can
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undergo further transitions. Hhen animal cells are cultured in

lumps of tissue or in a mass of dissociated cells they undergo

transformations known as dedifferentiation. Willmer (1960) has

classified dedifferentiated cells into three main groups in terms

of their morphological characteristics, their lccomotory behavior,

and their biochemical and physiological prOperties. Epitheliocytes
 

characteristically grow in vitro as an intact sheet of cells. They

tend to grow on the surfaces of culture flasks and move by a gli-

ding movement of the sheet followed by extensions of the peripheral

cells. They may produce carcinomas. They store mucosubstances in

the cytOplasm and may form keratin. Mechanocytes grow as a reticu-
 

lum or network of cells which ataches itself to the coverslip only

at its extremities. The individual cells move with a definite po-

larity. They may form sarcomas. They exude mucosubstances and may

form collagen. Amoebocytes grow as isolated cells which move in an

amoeboid fashion without a definite polarity. They may produce leu—

cemias. They actively pinocytose and collect mucosubstances in

their cytoplasm. More detailed descriptions of these classes of

cells can be found in Willmer's book. These three classes seen to

account for most dedifferentiated cells of all of the vertebrates

and at least some of the invertebrates.

Cells derived from neural crest material show three types of

transitions in tissue culture:

V Spinal gang1ion and sympathetic ganglion cells

V8,k’v9,k‘ 10,18

retain their basic Characteristics in vitro. That is, they do not

dedifferentiate. They may temporarily loose their Nissl substance

or develop axonal swellings. Schwann cells seem to retain their

 



Characteristics, also.

V6,16‘V7,16’vll,16’v12,lo‘vlj,lo’vlh,lb: Cnundrocytes and

connective tissue cells become mechanocytes in tissue culture.

V15’17: Melanocytes and other pigment cells become amoebo-

cytes in tissue culture.

It is not entirely certain whether or not dedifferentiation

is reversible. There is a good deal of evidence suggesting that

cells in tissue cultures may revert to their original types under

i
i
_
fi
i
.

appropriate conditions. On the other hand, isolated cells in cell

culture seem to permanently loose their identities and become "gen-

eralized dedifferentiated cells". (Review: Grobstein (1959)).

(e) The "adult" cell states appear to be discrete in that

they have different characteristics (shape, size, biochemistry,

potencies, etc.) and in that they do not appear to become direct-

ly transformed between themselves. A chondrocyte, honever, could

conceivably become a mechanocyte and then become a corium cell. The

adult states are stable in that they tend not to become transformed

as long as they are in their normal environment. They are clearly

not totally stable for some of them may dedifferentiate. Since

this is quite arbitrary, the proper use of the first assertion

should be as a hypothesis in need of verification.

2. Transition rules for developing systems —- The transition

diagram (Figure 10) for neural crest cells can serve as the basis

for a formal description of the behavior of developing systems.

Verbal descriptions of such systems are, of course, well known,

and in effecting a symbolic description we are contributing nothing

new to the science. (A recent "axiomatization" of developing systems
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in a slightly different context has been done by Apter (l9b6).)

This is an important point because scientific mythology fosters the

fallacy that a discussion is necessarilly rendered more accurate or

otherwise more "scientific" by the introduction of symbols. The

reason for formally describing embryological ”rules“ is that a pic-

ture of cells in terms of stable states is not very useful without

a way of calculating the transition vectors V An apprOpriate

mk'

description of the constraints placed by the cell on transitions

may allow the development of a method for calculating these vectors.

The hOpe is that the successful completion of this project would

contribute something new to embryology.

Figure 10 suggests four rules governing transitions between

morphOIOgical states. (a) Transitions are dependent on the state

in which the cell is at the start of the transition. In our nota-

tion this is clear because each transition vector,V depends on

mk‘

the index m. Thus, if we are given an undifferentiated ectoderm

eell, we could not confidently predict that it will become a chon-

drocyte until it makes the transitions described by V13 and V3“.

This kind of behavior is to be contrasted with that of some physi-

cal systems in which the development of the system depends only on

the initial state of the system and not on intermediate states.

(b) Transitions are dependent on the environment of the cell;

cells remain in a stable state unless they are perturbed by an ex-

ternal stimulus. The embryelogist calls such stimuli "inductions".

The transition l-+>2, is known to depend upon such an induction; it

has already been mentioned that the transition h~+>7 depends upon

the inductive influence of mesodermal tissue. This rule is some-
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thing of an overstatement, for although a great many transitions are

known to depend on inductions, there is nothing to rule out the pos-

sibility that some cells may spontaneously initiate transitions.

(c) Most transitions are impossible. That is, mG = O for

most values of m and k. In Figure 10 there are 18 states and, thus,

32# transitions. But only 30 of these are possible. This kind of

behavior is to be contrasted with the behavior of some physical sys-

terms in experential space for which all transitions are possible.

It has already been noted (Chapter II, Section D.2.) that this dif-

ference between integrated biological systems and physical systems

suggests that they cannot be described by the same set of laws.

(d) Most transitions are irreversible. That is, mG fl Vkm

for most values of m and k. This rule does not apply to plants and

it is not clear whether or not it applies to animals. However, it

is generally clear that most cases of "dedifferentiation" actually

involve transitions to new states. Thus, if mG)h 0, it is most

likely that Vkm = 0.

Part 2: Cellular States

C. The'Locus of Cellular Stability

The realization that cells show the kind of "stable state" be-

havior we have just sketched leads one naturally to inquire what

agents are responsible for maintaining a cell in its current stable

state, guiding it to its next stable state, and determining which

states it can change to. Historically, this question has been ap-

proached by supposing that some "thing", some cellular subunit per-

haps, serves to effect cellular stability. The results of Chapter
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III, however, suggest that some kinds of cellular stability reflect

the total cellular organization rather than the action of any cel-

lular subentity. To set the stage for this concept, we will brief-

ly outline the current dogma on the loci of cellular stability.

1. Ideas of cellular control -— (a) The early ideas about

cellular control centered about the notion that a cell's phenotype

was determined by the presence or absence of one of several kinds

of "determinants" in the cell. Weissmann argued that the deter—

minants were actually fragments of the chromosomes. During embryo-

genesis, he suggested, the chromosomes undergo a fragmentation at

each cleavage so that different blastcmeres get different chromo-

some fragments. If the determinants are located on these fragments,

each cell would get a different determinant and have a different

phenotype. The somatic line cells in Ascaris actually undergo this

kind of fragmentation. However, the karyotypes of almost every

other species show that most somatic cells retain intact chromoso-

mal complements, so that Weissmann's thesis is generally without

support.

A more viable application of the same idea is that cytoplas—

mic substances act as determinants. The mollusc Dentalium or the
 

oligochaete Tubifex, for example, have eggs with different kinds

of cytOplasm. In Dentalium, a mass of clear cytoplasm localized
 

in the lower half of the zygote ends up in just one of the blasto-

meres in the four cell stage. This "polar lobe" can be shown to

be necessary for the formation of the mesodermal components of the

embryo. No other part of the egg can form mesoderm. Similar sit-

uations occur in a variety of groups of animals (e.g. see Balinsky
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(1960)). It is difficult to generalize the role of cytOplasmic

determinants; but in most animals, the cytOplasmic organization of

the egg seems to play an important part in guiding deve10pment up

to about the gastrula stage.

(b) After gastrulation, development is thought to become pro-

gressively more controlled by the genes. If one rejects Neiasmann's

thesis, it becomes necessary to explain how the expression of genes

can be regulated to allow eye pigment genes to direct the produc-

tion of eye pigments only in eye cells, to allow keratin genes to

direct the synthesis of keratin only in skin cells, etc. The pic-

ture which has been developed in the past twenty years is that dif-

ferentiation is the result of a highly synchronized sequence of

gene "activations" and "inactivations" with the result that each

differentiated cell type has the genes appropriate to its pheno-

type in the "active" state while the inapprOpriate genes are in the

"inactive" state. In terms of Chapter III, different types of cells

are in different switching states. (Review: Ursprung (1966)).

On the molecular level, these events are currently interpreted as

analogous to the repression of gene loci known to occur in the bac-

teria (Jacob and Monod (1961)) although there is little direct evi-

dence to warrant the generalization. A totipotent zygote has a

full complement of "active", non-repressed genes. During differen—

tiation various loci are repressed, accounting for the loss of po-

tencies which accompanies development. There is some evidence

that the repressor substance is a histone protein (Review: Bonner

and T'so (1964)). A finer level of control is known to be effected

by the inactivations of enzymes by substrates and small molecules
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(Changeux (1965)).

2. Cellular eigenstates -- A model of this picture of cellu-
 

lar differentiation has been presented by Simon (1965). A system

of two loci is considered (Figure 11); G;

locus and G; represents the inactive allele. R1 and R2 represent

the concentrations of two repressor substances. The system is des-

represents an active gene

cribed by the stoichiometric equations
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Figure 11. A model for cellular differentiation in a system with

two gene loci. GI and G+ are active gene loci; G- and

   
 

2 l

G; are inactive gene loci. R1 and R2 are repressors.

kl and k2 are constants.
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where v and v are constants. At steady state
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For 33 the values of R1 and R2 are determined by solving Equations

(1). Simon's claim is that states S1 and S are more generally im-
2

portant than state S}. If it be assumed that a gene must be active

a minimum period of time for the synthesis of an mRNA molecule, he

argues that the system will respond to external inducers by either

retaining its current state (either S1 or $2) or "switching" to

the other state, depending on the concentration and the nature of

the inducer. However, his analysis does not seem to exclude the

possibility of an external inducer causing a transition from $1

or S to S

2 3'

To see the relation between Simon's model and the theory of

Chapter III, assume that the units are arranged such that R1<K 1

and R2<K 1. Then, we can eXpand G: and G; in a MacLaurin series

and retain only the first order terms:
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XI
C321 + -R.
1 X-a

1

+

x

6*21 + ——2-R .
2 X- l

2

Then, the kinetic equations become

 

 

v X+

dB 1 1

El = -klRl + _ R2 + v1

X

l

+

v X

dB 2 2
E2 : -k2R2 + - R1 + V2 °

X2

These equations are of the same form as the kinetic equations used

in the Example of Chapter III except that (3->v1,v2. Although

the formulae of the Example may not be applicable if v1 and v2 are

too large, the general results about the nature of the morphologi-

cal states is relevant to Simon's system. Simon's states 51 and

S. correspond to the switching states of the Example in which p =

O and r = 0; his state S- corresponds to one of the organization

5

states of the Example in which'p ) O and.r'> Ch However, bimon's

analysis misses the N-B other states included in the results of

the Example. This omis.ion arises because he does not include

states for which de/dt i O and d8 /dt i C host of the tine but ,

2

for which Rl : constant > O and R2 = constant > O.
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The “oint is that in many cases it may be meaningless to as-

sign a locus to cellular stability. The stability of cell type

may be a result of the total organization of the cell rather than

of the inactivation of plrt of the cell's genome. The traditional

picture of gene action contains a non seouitor: The facts that the
 

entire genome is retained in each cell of an organism and that these

cells differ biochemically and morphologiCally do not necessarilly
 

imply that genes are inactivated during differentiation. It is

possible, in fact more likely, that two different types of cells

have eXactly the sane configuration of active and inactive genes,

their differences arising beCause they are in two distinct organi-

zation states. It nust be emphasized that switching states and or—

ganization states are not incompatible so that sone differences in

cell type nay arise from genie inactivation while others result

frou cell-environment interactions maintaining two cells with the

same active benome in different morphological states. The possibil-

ity of organization states follows from the structure of cellular

biochemical systems, but this does not mean that they actually oc-

cur in living cells. Only an experinental ap,roach can establish

this e

D. Testability

It is obvious that the theory of cellular states developed in

Chapter III cannot, in its present form, be readily used to design

eXperiments. The only way to distinmuish snitching states and or-

ganization states in a living cell, for example, would be to mea-

sure the mRNA concentration of all Species of mRNA. This is not
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technically feasible. Nevertheless, it should be possible to put

yhe theory into a more practical form without making any modifica-

tions in the arguments. This would involve the following steps.

1. The theory is applicable to any organism with any finite

number of cellular types. However, it needlessly complicates cal—

culations to deal with metazoa or metaphyta which may have hundreds

of different cellular states. Equally interesting problems can be

undertaken using organisms with two or three cellular states. ‘The

slime molds, for instance, undergo a transition from an amoeboid

state to a sporOphyte state. The relationship between this morpho-

105ical transformation and tne underlying biochemical transforma—

tion is within the grasp of current biochemical methods (see Sec-

tion A.3.a.). The protozoan Naegleria has two distinct cellular

states, a flagellate state and an amoeboid state. Transitions be-

tween these states can be effected through changes in the cell's

environment (Willmer (1956a, 1956b)).

2. The exact relationships between gene loci and enzymes are

known in only a very few instances, so that it is not possible to

write authoritative kinetic equations in terms of the pj's and the

rj's. Even if it were possible, a prohibitively large number of

loci would have to be considered. It is more practical, therefore,

to represent the biochemical system of a cell by its enzymes and

substrates. Thus, the Goodwin control lOOpS of Figure 3 would be

replaced by the metabolic 100ps of Figure 9. In many instances,

these pathways are known in some detail. Also, some important

pathways of, say, carbohydrate metabolism can be considered as

independent of other pathways to a first approximation. Thus, rei-
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listic and interesting problems could be stated in terms of ki—

netic equations involving between 20 and #0 independent variables.

3. The most important extension of the theory itself which

is necessary (to some extent) for practical applications is a me-

thod of calculating the transition vectors V~ This would allow
mk'

predictions of the effects of controlled perturbations on cellular

states. It is not obvious how to calculate these vectors.
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APPEBDIX. ThE E,UIVALENCL BETWEEN LINEAR DIFFEKLLBIAL OPEdATOAo

AND MATRICES

The assertion that there is an equivalence between linear dif-

ferential Operators and square matrices is nathemuticully identi-

cal te asserting the equivalence of the Schrodinger and the Heisen-

berg pictures of quantum mechanics, and it can be troven in a Vu-

riety of Ways. ochredinger (1926) established the equivalence of

the two systems by arguing fron the fact that the comnutition re-

lationships between the variables of 1 necneniC1l system ur: the

sane whether the vuriuoles are represented as ogerators on confid-

wuce. Dirac (1926) es-uration synce or as matrices in hilbert s,

tublished a unificstion cf the two pictures in his "trunsformition”

theory by showing that the Schrgdinger wave functions correshond

to similarity tr1nsfornaticns of the Heisenberg nltrices. however,

von Neununn (1955) criticized Dirac's theory because it relied on

the use of the "iuyroper” delta functions, and offered, instead, a

more rigorous discussion of the equivalence. More recently, such

functions have been p11ced on a better mathematiC1l foundation27.

The demonstration given here is b1sed on von Neununn's disCuseion

of the Diruc theory. It is not intended to be rigorous.

Ne denote the elements of A(p,r)Mé by akk, k : 1,2,...,N, and

consider the vectors Uk as functions of the discrete variable, k.

27 _ ..A ~ . -1 . 1-1 H .‘

The theory of such imprcter functions or "dlmtrlbuclunt is

beyond the scoye of this work. A readable discussion is to be

found in Streeter 1nd flightman (1964).
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The eigenvalue equation in just a linear transfornetion in GKN

which can be written as

I

Z akk'Uk' "kkUk '

k'

The yreblem is how to define an analogous linear transformation on

G). To do this, we must retlace the discrete variable k by the

continuous variables r and r; thus, we also reyloce the cunnation*4

by the integral

L...) <1?”

I

where d?” = dp'dr'. Similarly, we replace the matrix elements akk'

by a function h(p,r,p',r'). Then, the desired transformation is

”U

b(p,r,p',rl) Uk(p',r') dJ ‘—€>‘akkUk(p,r) .

 

But, thie means that L(p,r)op must be an integral operator defined

by

n(p,r)OpUk(p,r,t) = h(p,r,p',r')Uk(p',r',t) djr.

where h(p,r,p',r') is the kernel of the operator. This is a recu-

liar circumstance, for ne have asserted that A(p,r)cfi should be u
l.
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differential onerator. To complete the discussion of the corres-

pondence we must anzwer three questions: (a) Do there exist on

a set of operators which are at once differential and integral 0p-

erators?, (b) If such coerators do exist, how does one proceed to

find a particular operator on.G?mtich,corresyonds to a given metrix

in (RN?' (6) Conversely, given such on operator on Q , how does one

orcceed to find a CGFPQJLOfldiHJ matrix in GKN?

(a) To show the existence of such «fl eterntor, A(p,r)OU, it

is sufficient to show tne existence of the corresgonding kernel.

First, sulpoee that A(p,r)ou is just the identity onerator, i.e.

.L

(l) Uk(Pv1'vt) = h(Par9P'9r')Uk(Pier'vt) dT'0

Equation (1) is satisfied if we set h(p,r,p',r') :(;(p - p')S(r - r')

where 6.(p - p') is the well known delta function.

The Lroperties of these functions are well Known2 . In gar-

ticulnr, for a function, f(x), of x:

)3 n(x - x') f(x') dx' = {-1)In dnf(x)/dxn

. n . . . , .
wnere 6' (x - x') 18 the nth derivative of the delta function.

Thus, for Any linear differential oterator, we can construct a ker-

nel in terms of delta functions and the derivatives of delta func-

tions. For exanple, if

28

 

For exnmgle, see Messiah (1964), vol 1, p 4bo et neq.
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uhnflcp ‘ 1+ 5 /ap .

'7)

tLen we take h(p,r,p',r") ==<S(;3- g')(§(r - r') + g“(; - p')<;(r -I'

(b) In thi; work, we will take an Ofofltur a; the oturtin;

Point of the incl] i(
0

(
I
I

ogeritoro on GDwiicn correetond to given natrices on (RN.

(0) Instead, we consider the groblem of conotructin; e mi-

trix on QN :vnich corre;,;olf.do to a given operator or. (P. Tnic is

emsily done if we recall thit the N elements of the matrix A(p,r)r
53

are just the exgectution value: of the function A(p,r) in the N

atnble etatee of 5. Then, if A(P’r)03 is considered as 1 function

1

on 6), it has a: itL kth extectution value

Ak(p,r)0p : U£(p,r,t)A(p,r)OPUk(p,r,t) d7”.

Thug, Le have the required nitrix if no net

 

' : . ) .

akk Ak(p'r'0p

, 50 we hey i;nore tne freelen of conetructin;

\
I
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