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ABSTRACT

SYNTHESIZING REALISTIC ANIMATED HUMAN MOTION
USING MULTIPLE NATURAL SPACES

By
Reza Ferrydiansyah

When animating virtual humans, it is important tha movements created are
realistic as well as that they meet various comggaOne way to create motion, given a
starting pose, is to first find an ending pose thaets the specified constraints. Then a
motion that translates from the starting spacté¢oending space is computed. Traditional
inverse kinematics method are able to find posas rieets constraints, however these
poses are not always natural. Linear interpolabetween a starting pose and ending
pose can be used to create motion. Once again leowdne interpolation method does
not always create motion that is natural.

This thesis proposes the creation afadural spaceThe natural space is a hyper-
dimensional space in which every point in this spaescribes a natural pose. Motion can
be created by traversing over the points in thecep The natural space is created by
reducing the dimensionality of motion capture datang Principal Component Analysis
(PCA). Points in the reduced space retain the ckexiatic of the original data. Multiple
natural spaces are created on different segmehedfuman skeleton.

This thesis describes a method to generate newraorexl natural poses that are
natural. The poses synthesized are more natumaltthditional inverse kinematics, and
single space PCA. Motion is created through a spaosisting of pose configurations
and angular speed. A method to generate realmbkilg motion based on this space is

presented in this thesis.
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1 Introduction

Object animation in computer applications is villwa requirement in current computer
technology. With the rise in ease of access to ecdenpyraphics technology, animation is now
used in a wide range of applications as an inter&dement.

Animation describes the temporal manipulation of elementsaisomputer graphics
system. Animations describe scenarios, eventso#me information allowing users to quickly
understand what is happening. Animation allows sugereasily manipulate scenarios as the
application allows, allowing better understandingl ansight in the various scenarios and the
relation of objects in those scenarios. One ofrtiest important fields of endeavor in computer
graphics and animation is the creation of appayegtlistic animations

The creation of animated virtual humans can be ghowf a sub-problem within this
field. The termsanimated humamr virtual humanin this paper refer to human characters that
has been rendered by the system on a display nsdaas an element of a virtual/augmented
reality system. An autonomous character that cakenita own decision based on an algorithm
(albeit in a limited way) is called an agent. Aneagjthat is presented as a virtual human is
referred to as aembodied agentCreating realistic human animation requiresiséalmodeling
and rendering of objects, modeling of the objeptysical characteristics, creation of realistic
object behaviors, and object interaction with teertand other objects in an environment [1].

Virtual embodied agents are graphical renderings tapresent humans in virtual and
augmented environments. Humans respond to aninfatethns whether controlled by a real
person, or by an algorithm [2]. Virtual humans é&een used as characters in animated movies
[3], actors in interactive story systems [4-6], tohable agents in computer games, tutors in

educational software [7-9], and presentation aggtis They can also appear as a guide to a

1



person in an unfamiliar land, serve as a traineo @émonstrates and oversees, or provide the
interactive component of a future user interfadeese virtual humans can also be controlled by
humans or act in a predefined sequence of actions.

Due to our everyday interaction with other humams,are used to seeing and noticing
natural movement everyday. When embodied agentsotact naturally even only slightly, the
user’s focus will be distracted by the unnaturadnetthese virtual humans [11-13]. A prime
example of this is in the movie Polar Express, whenitics said that the movie was a good
movie story wise, but they were bothered by theatumalness of the eyes [3]. Unfortunately this

was one of the bad points of the movie which wasegfeated.

1.1 The problem of natural movement

There are two main reasons why the animation afrahimovement is difficult. First, the
human body consists of a set of parts which areepitogether. Each part moves according to a
specified set of degree of freedoms. Animation dovirtual human body is usually achieved
through the use of a skeleton model [14], [15]. Bkeletal model consists of various joints.
Each joint has up to 3 degrees of freedoms. The giows the bone to rotate in the x, y, and z
axis. The rotations are adequate to simulate amyahupose. Chapter 2 discusses the formulas
used to calculate position based on these bontargan more detail.

Figurel-1 shows the skeletal model used for this thdsigs skeletal model is based on
the skeletal model for the ASF specification [TBje skeletal model consists of 30 joints and 56

degrees of freedom.
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Figure 1-1. An example of a skeleton model for human aimmarlhe skeleton model is used
based on [16].

Because there are multiple joints and bones, tineahubody is flexible enough that it is
able to achieve the same task with multiple po$kere are, for example, different poses for a
person to retrieve something that is on top of letaThere are many possible different
combinations of angles for each pose. Many of thelhbe deemed unrealistic to the trained
human eye.

This flexibility is great for humans, but a headador animators. Out of all these
possible poses, an animator must choose a ‘best’ ®his usually means that the animator must

choose the most natural pose or the pose thatheebsiman up for the next movement sequence.



What does it mean to have a natural pose? In #psem naturalness is defined simply as
the pose selected by most people given the sansraois. The constraints are positions and
orientation of body parts, positions of obstacéas] external physics constraints (such as gravity
or motion).

Whether a motion or even a pose is deemed to teahar not will be observed by
different criteria. Naturalness may be graded basednergy, meaning it will be based on the
notion that the human will take as small, or leasstly, a motion as possible to achieve the
constraint, or to hold that constraint for a lomgd. Naturalness may also be based on the
starting pose. If we start with an awkward startpage, the natural thing to do to get to a
constraint may simply continue with the awkwardeesen though it is inefficient in the long
run.

Another very important factor is the environmendr lExample the position of target
objects (where the animated human wants to tou@vaid) is obviously a primary factor in the
resulting pose or animation. The positions of otflwn-target) objects are also important
because animated humans in most cases are assurfiodldw the same physical rules that real
humans adhere to. Therefore it is very importaat htuman body parts do not, for example, go
through any of the available objects.

Because of interaction requirement, sometimes talirhuman must face a certain
direction. Humans naturally point their eyes at ithay are attending to or attempt to maintain
eye contact with the user. Eye contact can alsoskd as cue for the users [17]. For example if
the application wants to induce the user to pagnétin to a particular object, the virtual human

may be made to look at the object.



Finally naturalness may also depend on emotions randd. People with different
emotions tend to perform different types of actiph8]. A naturally disgusted motion will be
different than an angry motion. A successful virlmaman agent must take all of these factors

into account when performing a particular motion.

1.2 Current Methods for Natural Animation

In applications where the virtual agent has no neethink, plan or interact with the
environment, or in other words have no autonomyarwist determines the action of the virtual
human at each time step. There is no internal aggmesentation of the current state or of the
actions performed by the agent. Everything in tleelavis fully controlled by the world designer.
This makes this class of agent relatively easy¢ate. However, it can be quite tedious to create
animations frame by frame. .

Tomlinson [19] refers to agents having non-autonasndehavior adinear agents
because this method is not suited to charactetsnhat interact with users. Consequently this
method is of more interest to those creating mapictures or other static animations [20], [21].
Tomlinson describes the various differences betweear and autonomous agents as well as
differences in the applications and usage of thgsats.

Another way to create linear animations is throtlghuse of scripts. Scripts are code in a
human-readable language that will be translatethéyanimation engine into movements. Script
languages are usually created by the animatiomerdgveloper and used by the artist to create
the animation. Some example of systems based gotisgrlanguage are the Improv system [22],
and STEP [23]. Similarly the Jack architecture wseatural language system to describe motion

and intention [24].



The main difference between scripts and manuaklyated animation is that scripts are
internally known by the agent. Scripts can also enéleasier to create new animations as it is
guite easy to copy movement from one part to amdtvéfrom one agent to another), and simple
programming constructs such as loops, sequenggeptation, and blending of actions can be
easily created.

Because an artist creates individual frames, thésresponsibility of the artist to create
the most natural animation. As artists, they mayehthe knowledge and the experience to do
this, possibly to even do this well. In many caesresults are human animations that are very
natural. Of course the drawback to this methotfas it will take a significant amount of time for
the artist to create each frame and a significardumt of talent on the artist’s part.

Work has been done to create animations that #sedomputer generated. Given a set
of constraints, an algorithm calculates the coreexgles depending on the starting position and
other factors. An algorithm that calculates a $etngles based on one or more target position is
classed into the inverse kinematics method [25¢ fidrward kinematics method calculates the
position of each point on the body based on théearaf the joints

In most cases of human animation, inverse kinemanethods are quite difficult to
calculate algebraically. Therefore inverse kinensasolutions are often solved iteratively. The
number of iterations may be quite high and theestor application may take some time until a
solution converges.

Simple inverse kinematics solution algorithms sashthe iterative Jacobian, do not
necessary consider naturalness as a goal. Theobhpaatives of these algorithms are simply to

get a correct set of angles that satisfy the camis:.



In animation where the virtual humans walk, run,jemp, dynamics and spacetime
calculation is often used [26-28]. The dynamics apdcetime calculation are based on physical
forces that apply to each body part. Appendagesnditeenced by gravity, inertia, and other
forces. By calculating these forces, a more nata@lement is generated.

Sampled movement, or motion capture, captures mentedata directly from real people.
These people are usually given a suit with reflecto wear [29], [30]. A set of cameras capture
their every movement. It is impossible to captut@assible motions that a human can perform,
therefore new motion data must be generated bypukation of the existing data.

Manipulation of existing data can be as simple @iag the motion capture data and
joining them together to create different motionsofjon blending). The motion capture data
may also be transformed to fit different charac{erstion retargeting). Finally new motion data
may be generated which are similar to the pre-dexysnotion data. The difficulty is, of course,
how to generate data that encompasses variousgpssfitom the available data and still make
them realistic.

Current techniques are often the result of intégmatof techniques from multiple
categories. For example, motion can be createdkiaematics techniques, then enhanced with
dynamics techniques. Another common example is 4@ captured motion data and use
dynamics techniques to create a new set of moventleat both adhere to physical laws and are

based on motions of a real representative human.

1.3 Proposed Solution

The problem of animation generation can be stasefbllow: A starting position angle

that can be represented by the set of angigsad a set of constraintsgG which are the



constraints of all positions in the movement angpdied as input. Some of the constraints may
behard constraintgshat must be met, while others may be a set getarwhich the motion must

try its best to fulfill. The objective of the algtm is to find a motion that allows a smooth

natural movement betwee 8nd R and satisfies all constraints at time t.

In general, constraints can be positions of varlmady part, the angles of each degree of
freedoms, orientation of a particular bone, or plosition of other objects that cannot collide
with any body part. In this thesis however, theufbcs on Cartesian coordinates of the body part
or effectors relative to the root bone.

The problem with any animation generation is thaté are many possible solutions that
meet the constraints. An algorithm must find thered pose from all possible solution, which
may not be natural. This may entail rejecting uaretmovement, or changing angles to make it
more natural.

However if all possible animated human poses irsgeach space are natural poses, there
would be no need to attempt to naturalize the poBes focus will simply be on satisfying all
constraints.

All poses can be placed in a hyper-dimensional igardition space, where each
dimension represents the value of one joint anBle.pruning all points in the space that
represents unnatural poses, it may be possibledgdhe resulting space to find natural motions.
However, it is difficult to define the limits of ¢harea of these unnatural regions. The next
problem posed is limiting the movement generatilgordghm so that it does not wander into
those spaces once the area is found.

The solution proposed in this thesis is to creadtg@er-dimensional sub-space where all

movement inside this space is natural (insteadethithg pockets of unnatural poses). The idea



is to first determine relationships or correlatidretween the various angles of the bones in a
natural movement. This correlation data is founabgervation of natural captured data.

Principal Component Analysis (PCA) is a commonlplaggd method that captures the
correlations between values in a vector. PCA can ateate a reduced dimensional space with
the strongest correlation between the angles iméteral poses [31]. This PCA reduced space
represents the natural space because points irsplage can be transformed into an original
space which represents poses having the same c&riam the motion capture poses, and
therefore consists of natural poses. Our algorigemriorms the search on the natural space and
each point on the natural space is transformed tmattie correct angles.

As PCA is a global statistical method, it summagidata globally. This method tends to
merge various data together, and as a result, sfrtitee motion details get lost. The method
described here uses multiple PCA spaces, where ssade corresponds to a segment of the
skeleton (segments can be overlapping). Each siiadte the variance of one segment. This
enables better control of each individual segmantl a better chance for finding natural poses
that meet the constraints.

Natural space will be created from motion captua¢éadCreating a natural space that
encompasses a wide range of movement will requiaege amount of data. However due to the
number of available data, as well as time and irdmesources, the data collected will probably
not be large enough. Multiple natural spaces waNénto be created from data segregated by
motion type or body parts. The motion generatol meked to choose the correct spaces and join

data from multiple natural spaces.

1.3.1 Thesis Contribution

This thesis:



1. Demonstrates that it is possible to synthesize oser-constrained poses and motion
from motion capture data having the same naturalolearacteristics as the original data.

2. Describes an algorithm that finds a pose by seagcim natural space that meets a user
specified positional targets for multiple effectors

3. Shows that, by segmenting the body into multipler@apping spaces, it is possible to
find poses that are more natural than traditionakise kinematics and regular single
space PCA, while also more reliably achieving dpsticonstraints.

4. Describes a method to measure naturalness of pasesl on the probability distribution
function of the motion capture data.

5. Gives details on how to create motion by traversingatural motion/phase space. This
method creates motion that are quite similar taunatmotion compared to straight

interpolation

1.4 Document Structure

The details of kinematics and dynamics calculatiechniques as well as data based
techniques are discussed in Chagte€hapte3 discusses various methods of using a statistical
summary of motion capture data, including the P@Acteate a natural space. Chapler
describes the algorithm and results of using mielti@atural spaces in creating poses. Chapter
shows the results of the motion generating algoritRinally a conclusion, possible applications

and possible future work is given in Chapder

10



2 Pose and Motion Calculation

The act of animation is simply rendering multiptarhes one after the other at such a
speed that the viewer perceives it as a continuooson. To create animation, a set of key
frames is generated between one pose and anothercdmputer interpolates the positions
between key frames, adding additional frames toev@aakmooth transition between poses for the
viewer.

In the simplest case, an artist creates all thessry key frames leaving the computer to
fill in the transition frames. If the key frameseaspaced fast enough, the resulting interpolated
frames will have a smooth and natural characteristthem.

The problem that this thesis addresses is wherfrikeyes are not created by any artist.
Constraints such as the position or orientatiomasfous body parts and physical characteristics
are given for the whole animation sequence, ortlier final pose only. In this case, the key
frames must be generated automatically by the soéw

Two ways this can be achieved are to find an erse ploen create key frames that lead up
to that pose or to generate multiple pose paths faostarting position and choose one path
which transistions the animated human to that pose.

The algorithm to solve this problem is linked witte human model used. The skeleton
model which is a hierarchical model of human geoynahd physical motion is often used, and
is the one that will be utilized for this thesidhelTskeleton is a set of rigid bodies which move
relative to each other in a hierarchical structamel move the overlaid flesh with them. Most
models of bipeds in computer graphics systemszatin internal, invisible armature, the
skeleton of the object, meant to accomplish theeshamctionality. The skeleton does not need

to conform to an actual human skeleton, eitheiza, shape, or relative motions, although some
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do. The movement of the animated character is Spedyy the location (position, rotation) of
the skeletal bones. The skin (which is usuallyiangle mesh) is correlated with one or more
bones and will move according to the movement eflibnes.

Work on skeletal representation began in the 19[1$, [15]. Since then, the skeletal
model has been the primary method for human anomagkeletons have also been used as the
basis for captured motion data [32].

There are many standards and recommendation irtinggeskeleton, each standard
allowing various bone properties. In most casesieboare a 3 dimensional object having an
origin and a length. The origin of a bone can bemeined from either the end position of its
parent bone [16], an offset from the end positibitoparent bone, or an offset from the center
coordinate[33]. Most bones have a rotation vafuthe x, y, z axis which allows them to move
into various position. Some standards allow scalmgne or more axis or the specification of
limits. The terms joint and bone are used intergleably, since it is only the joint location that is
utilized. The bone itself is not assumed to hawpecific geometry. In general, the length is

provided mainly for display and user interface [msgs.

2.1 Kinematics Method

Kinematics method uses angles of bones to perfoowvement. Forward kinematics is
the calculation of a position of a particular paimtthe skeleton given various angles of all the
bone in the skeleton. Forward kinematics calcufaitoa chain of rotations (representing angles
of joints in the correct axis) and translations ighhrepresent bone length). A simple set of
matrix multiplications composes the rotation masicand translation matrices. The rotation

matrices relative to the x, y, and z axis are giweBquationsZ-1), 2-2), and 2-3) respectively.
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1 0 0 (2-1)
0 cosa sina
0 -sina cosa
0 0 0
[cosa 0 -sina
Mr, = .O 1 0
sina 0 cosa
0 O 0
[ cosa  sina 0O
-sing cosa O
0 0 1
0 0O 01
A translation (t, u, v) in the X, Y, Z coordinate also be represented as a matrix:

(2-2)

R O O O Fr O O O

(2-3)

Mr, =

o O O

100t (2-4)
01 0 u
Mt =

0 01 v

0 00 1

Given the coordinates of the root bone as Y z), the end position x yp, zp) can be

calculated by multiplying the root bone with theatmon of every bone, by the translation (or

direction and length) of every bone Equati@rbj.

Xp | [ (2-5)
TP 2| M (@) % My (@) % M (@) < Mty < My (@) < My @)

P r

1 1

A common problem in animation is to find a poset twdl satisfy a constraint that a
particular point on a specified bone is at a cowath T. This problem is called the inverse
kinematics problem, and it is an inverse of thevend kinematics formula. Unfortunately this
calculation is very difficult to solve algebraicallThere have been works on solving systems
with limited (6) degrees of freedom [34]. Howevar animated human skeleton typically

consists of more than 20 degrees of freedom.
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To solve inverse kinematics problems, iterative hnds are often utilized. One basic
iterative method used is the Iterative Jacobiarhot{25]. The coordinate of the effector X is a
function of the various joint angles (Equati@if)). The derivative of X can be calculated using
the Jacobian given in EquatioB-7). The Jacobian calculates the partial diffeegrfor each
value for each axis (x, y, or z) over the partiffiedential for a particular angle Equatio?-8).

X = f(a) (2-6)
dX = J(a)da (2-7)

Ia) = a%aj (2-8)

By inverting the Jacobian the angle movement cacabmilated.

da = 3 (@)dx (2-9)
The new angles can be calculated as:
i = 0p +da (2-10)

This step is repeated until the ending solutiorclsse enough to the solution. This
iteration can actually take a while depending andize of dX. A large values for dX will result
in a more imprecise angle difference. A small valoe dX means that it will be slower to
converge to a solution.

Other iterative methods calculate the differencargles per degree of freedom instead
of for the whole skeleton. One of these methodthés CCD or Cyclic Coordinate Descent
method [35]. In CCD, the angle between a joint #rel effector and between the joint and the
target is calculated. The difference of that isrbtation angle needed for that degree of freedom.
The CCD iterates from the joint closest to the @fieto the root of the skeleton.

The problem with these two inverse kinematics potd is that there is no notion of
naturalism. All bones move equally with the maimalgof finding a solution, any solution.
Weighted inverse kinematics proposed by Meredi&] EBlows different motion which depends
on the weight given to different part of the bodikeeally, such a scheme would create a more
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natural movement, however it is not clear how ttedrine the weights for each of the bones to
create the most natural movement. Creating weiigihtsach bone does not solve the problem of

the speed or the number of iterations it takesim & solution.

2.2 Dynamics Methods

In dynamics-based models, the movements of aninipgstts are based on the physical
laws that they are subject to, such as momentuavjtgr friction, and acceleration. The model
must also take into account the properties of ediglct such as the mass and the shape of the
object. A set of formula is created that, basedhenphysical laws and the object’s properties,
determines where each object is at each time frafagous models also allow objects to link
with other objects and thus constrain both objecvement [37], [38]. The problem of
calculating the position and state of each objaargforces that are known is called foeward
dynamics problem

The solution to thénverse dynamics probletetermines the forces or velocity needed
for an object to move from one position to anothreto stay in motion with respect to its current
position, mass and shape, as well as existing readtdorces [37]. Given a set of constraints,
inverse dynamics can be used to calculate the mdtgn a starting pose to a pose that meets
the constraint.

A combination of dynamics and kinematics are oftesed [39], [40]. The inverse
kinematics element of the algorithm determinespbsition of the joints at various points. The
dynamics element calculates the speed and thetwayeof each bone segment.

The Newton-Euler formulation calculates linear deedion and angular acceleration and

is often used to calculate the desired speed ofemewt [28], [41]. The Newton formulation
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states that, in linear systems, force equals massstacceleration. In the Euler formulation of
angles, the moment (or sometimes torque) is thiéianmultiplied by the angular acceleration.
Newton equation:

Euler equation

M=la (2-12)
Other methods include using the potential and ketexs energy for the Lagrange

formulation. Witkin and Kass [42] proposed a sp@eetcomputation which uses Newton’s law
and takes into account the starting and endingiposif the object, the starting and ending time
of the movement, as well as any additional constsatio calculate the trajectory and the forces
needed to perform a motion.

Ko and Badler used inverse dynamics to animate huoe@motion [43]. Based on the
location of the objects at a time t (determinedabgcript), they determined the positional and
angular acceleration of all links in the systemngsihe Newton-Euler dynamics method. The
kinematics system adapts to the dynamics calculatsult. A set of dynamic equations for
walking motion was created in [26]. A numericaleigtator approximated the forces and the
torques needed for the motion of both the upperandr body.

A very complex and detailed model of the body hasrbcreated by Lee et al [44]. The
model includes a complete skeletal/bone model, fasisand skin. Although such a model may
be more precise, the sheer size and complexity mage it unfeasible to build. For specialized
programs, it may be better to create dynamic moadletee body part that is needed, such as a
hand dynamic model for grasping [45].

Motions created by dynamics calculation are muchenmatural than those created by the

pure kinematics calculations. The motions dependthen physics models used. The more
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complete the physics model, the more physicallyemtrit is, however it may take longer to find

a solution to such problems.

2.3 Multiple Constraints

Whether solving for inverse dynamics or a comborabtf inverse kinematics and inverse
dynamics, many problems in animation requires thmation to meet several constraints. These
can be pose constraints, dynamic constraints, ¢onetraints, and/or mechanical constraints [28],
[46], [47]. Pose constraints determine where th&tpm of a particular bone or bone segment is
at a particular time. Mechanical constraints deteenvarious physics laws at work on the body.
Time constraints refer to the time that an agergtrbe in a particular position. Finally, dynamic
constraints ensure that physics laws such as Néwsmtond law are met at all times. Other
constraints that are also commonly used in theut@ion of movement, such as constraints for
collision detection [40], energy [48], balance, a@oenfort [43].

In some cases not all constraints can be met at.ohlcere might be conflicts that
prohibit all constraints to be met. To solve thislgem a priority scheme or a weighting scheme
is used [47]. The solver will try to solve the ctoasts with the highest priority first, or tries t
iterate towards finding solutions having the highesights.

There are often otheoft constraints, which do not have to be satisfied,itvwvhich the
algorithm tries its best to achieve. These softst@mts are sometimes represented as an
objective function, the idea being that the aldgonitmust minimize (or maximize) the value of
these objective function. The objective functioms®d to find the correct answer in the event of

multiple answers (for example, taking into accadimet minimization of energy).
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Constraints can be formulated as functions. Usuedigstraints are formulated as a

function that results in 0 when met, that igX§)=0. The objective function is useful when the

problem is under constrained which will allow usve multiple solutions to the problem.

When the constraints and the objective functiores al linear, a linear programming
algorithm such as the simplex algorithm can be usedmost cases however a non linear
algorithm must be used in order to solve these lprod. The steps in solving a non-linear
constrained optimization problem is to simply firepeatedly an estimate solution based on the
gradient of the objective function with regard e tsolution. The algorithm used is a in a class
of algorithms called Sequential Quadratic Prograngmnethods. Due to space constraints this
document does not go into details on the varioligiso algorithms and instead refer readers to

[49].

2.4 Data driven animation

A lot of work has examined using captured humaniomoin so-calleddata-driven
computer graphicsAn instrumented human is asked to perform movésnerich are then
captured by a computer system. The advantage 0§ gsiptured human motion data is that there
is no need for an animator to input the animatiatadmanually. Furthermore, the result of
captured human motion data is natural and humanHgcause it is a sampling of real human
motion.

In a common setting for capturing data, a subjeqlaced in a studio, wearing a special
(usually plain and dark) suit. The subject will baspecial markers at different places to track the
location of various bones. Cameras (or perhaps améycamera) located at various angles record

the subject as he or she proceeds with variousomsti

18



Each recorded frame is automatically stored indatbase. The computer locates the
coordinates of each reflector. The main reasonttteasuit is plain is to reduce interference with
the reflector. Once the location of every refledsfound, the angles of various joints can be
calculated [29], [30].

The captured data consists of the parameters ahthvement for each frame, namely the
position and orientation of each skeleton segmarngingle capture sequence can have many
angles and joints. ASF formatted data, for exantms,29 joints with up to 3 degrees of freedom
for each joint. The captured data will typically btored at a frame rate of 15-30 frames per
second.

When playing back a captured motion sequence, titemplayer simply sets the angles
of the joints according to the frame data. Oncepbse is drawn, the player waits a set time
(depending on the number of frames per second trede clears the image and draws the next
frame in the same way.

The amount of data accumulated this way is quitgelaTo limit the size of the files or
the database, subjects typically perform a singtatsmotion. This motion can be as simple as
walking, running, jumping, or it may be more compkich as dribbling a basketball [50]. By
grouping sequences, users of the motion data camsehthe data that is useful easily. The users
do not have to select frames within the motion eagptatabase. Instead users select the motion
needed and use all of it. There is also some worlawtomatically segmenting long motion
capture sequnences based on similar actions [51].

One problem with this method is that the rangeasfsible human motion is quite large.
Even a simple basic movement may have many vammtiBor example, a person can jump

while facing to the left and also jump while facitwythe right. There are infinite variations to a
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basic movement, and as such, it is impossible catl of it using human actors. New motions

must be created from existing captured data seguenc

2.4.1 Motion blending

One way to create a multitude of animation sequergereating a weighted combination
of frames from different captured sequences, a aaekinown asnotion blendingin Kovar [52],
Gleicher [53], and Arikan and Forsyth [54], animpatisequences are created by creating
connection graphs for frames that are similar. @a&ot human motion is transferred to a skeletal
format. Each clip is broken into a small set ofrfess and each frame set is connected to other
frame sets on different clips based on a simildtityction.

A simple approach to finding similar frames is @afctilating the difference between the
angles for all bones (perhaps include velocity)].[#ovar [52] opposes this idea because this
idea does not take into account the importanceoioty, differences caused by translation or
rotation on the root bone, nor velocities and aaagion of the motion. Instead they find the
similarity between point-clouds created over k gpmius frames. The similarity is the total
distance of each point in one point cloud with aresponding point in the other point cloud
(which comes from a different motion). Pairs ofnfies between two motions which have very
low difference are joined together to create grages.

Linear blending simply switches motion when the tlips are very similar. An angular
method blending proposed by Shum joins motions dasethe angular momentum trajectory
[56]. Blending can be performed in the middle ofeatisting motion, instead of waiting for it to
end, creating a smoother transition between chigek et al. used a splicing method, which joins
upper body from one clip with the lower body fromo¢her clip [57]. To join the two segments

together, they perform time and spatial alignmestwell as a posture transfer which matches
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the location of the shoulders and hips for eagh. ®Mutlu blends frames together to create new
walking motion on a different path based on thatmwsof the foot plants [58].

An animation sequence is generated by taking aesmguof frames from a clip and then
adding another frame sequence from another cligirmowvusly until the character is in the
desired position. The number of graph nodes anesdgn be very large, therefore an efficient
algorithm is needed to perform the search. This lmardone by using various graph search
methods to find the best motion between the stapgose and the ending pose.

Lee [55] uses reinforcement learning to find thstlpath between all various starting and
target poses. Reinforcement learning uses rewardsdscounted rewards to determine which
path to take in each graph node. Once the besinaftr each graph node is already met, it is a
trivial to create animation that encompasses varimgdes.

This concept of path finding for motion has beenali@ped further to create dynamic
motion controllers. Dynamic motion controllers alladhe creation of motions based on states,
where each state consists of the configurationedgptrque, and environmental factors [59],
[60]. Each state includes the current pose, motm, even the environments. The controller
chooses the next state based on the current dyai@mic constraints, and the environments. Use
of a controller allows some measure of variabilitythe motions created even in unpredictable
environments [61].

Interpolation is performed on the newly connectedinies to create a smooth transition.
Interpolation creates k number of frames where dearhe is a pose between the two existing
frames. Linear interpolation, the most basic inbdapon method, uses the starting angle and the

ending angle (of each joint) to create an equ& siterval which is used to calculate the angle at

21



every frame (Equatior2¢13)). A better method is to first convert the &uhngles to quaternion
and perform a linear interpolation on the quaterj&®].
a; =ag +t x(—ak -aoj (&-13)

A spline interpolation can also be used to conheotframes together. The difference of
angles between two frames in spline interpolatgonat fixed. The difference of angles between
frames takes speed of motions into account. Howes@dme interpolation typically requires
more than 2 sample points in order to get the inéstpolation fit.

Motion capture data has also be used for basibarige. Yamane [63] and Pan [64] uses
RRT, a randomized tree search to find possiblesphétween the starting pose and the ending

pose. The points found represent collision freeepo$lotions between the poses are created

based on motion capture data, by finding motiopscthat are meets the constraints.

2.4.2 Motion Synthesis

This method of blending motion is adequate when rdwege of movement in an
application is limited. A prime example of thissigort games. In sport games (such as American
football, or soccer) the main interaction is betweehuman and a ball. By capturing various
interaction between person and ball, some whichbasic, and a few specialized movements,
various combination can be created that will allwatural movement over a whole game.

However if the range of movement is larger, or thgain is unpredictable, motion
blending will not do the trick. There is a needcteate new motion based on existing captured
data, a method sometimes referred tanasion warping

Abe et al. [32] used a base frame of animation daftured from actors to create a

family of similar frames. Each generated frame @ash character in the same position as the
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base frame but translated (in the x or z axis)otated (using the y axis). Each new animation
preserves the physics characteristics of the hasga#ion.

New motion can be created by warping or changingtiexy motion capture data to meet
different constraints. Van Basten uses a greedylsea find feet motion that is similar to a new
set of stepping motion [65]. Warping is then perfed on the resulting steps.

Different body types have different correlationvbeen joints [66] and thus different
movements caused by body type. A lot of work oniamtvarping has focused on adapting
motion from the captured data to other characteas may have different builds, shapes and
characteristics, a process known as motion retagyeDifferent body types have different
correlation between joints and thus different mogata caused by body type. Meredith and
Maddock [36] change the motion capture data usiemied inverse kinematics. By changing
the weights of various joints, they are able tatzgersonalized movement for different types of
people. The weighting of various parts was alsdopered by Popovic [28] to create different

movement based on personality.
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3 Natural Spaces

Multi dimensional data points such as the jointlasdor motion capture data frames can
be placed in an n-dimensional space. Each pointesepts one pose, and each value in a
dimension represents the angle of the degree efiéma. This space is commonly known as the
configuration space.

A theoretical natural space N-space can be thoofga$ a sub-space in the configuration
space where human poses are natural. The dimeokidfspace can be smaller or equal to the
dimension of the configuration space. Search faepand motions that meet constraints using
N-space only returns poses and motions that arealaf herefore there is no need to make the
results natural.

One way to create N-space is to have it consist alhkhe points that are found from the
motion capture data. Unfortunately, this severehts movements, as poses that were not found
on the original motion capture data will not bedisgen though it may be natural.

Another way to see this problem is by viewing tpi®blem as a classification and
learning problem. Given a set of learned data (@motiapture data), classify any points into
either natural or not natural. In other words, dévithe space into N-space and N’-space. The

next chapter discusses various ways to create bedpam the learning of motion capture data.

3.1 Creating Natural Spaces

The animation generation algorithm will start wahpoint in N-space and find a new
point which meets all the criteria. This is donetésting various points in that N-space. In order

to do this faster the created N-space must haviotloeving characteristics:
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1. There is an easy way of determining whether a jposis in N-space or in N’-space.
Every time a candidate point is found, the poinshfirst be tested on whether it is in N-
space or not. If the new point is not in N-spahgs point is discarded.

2. A reasonable estimate can be made of how closewa pusition in N-space is to
satisfying the various constraints of the animatiased on the information provided by
the space and also the resulting pose of other knmusgitions. This allows the search
algorithm to intelligently choose points that wilke it reasonably closer to the solution
point.

One idea to create N-space is to use model bowsdami the configuration space
separating natural space from unnatural spaceonoicells or Parzen Windows [31] allow the
creation of such borders. However in order to ed¢la¢se boundaries, both negative and positive
samples (that is natural and unnatural poses) bddetavailable. Motion capture data only
provides positive samples of human motion. Anotherblem with using this method is the
complexity of the algorithm to create the bordessnell as to detect the borders is O(n log n)
where n is the number of data points [67].

To create N-space, various methods were considénee.popular classification method
is the use of clustering. However the data obtaisewt a good match for this method. There are
2 groups for this classification, a pose is eitineN-space or in N’-space. Once again there is a
need for negative or unnatural samples which ateamailable. Therefore any classification
method that requires negative examples such atedlug can not be considered.

Statistical modeling allows the creation of modélst describes the motion capture data.
Synthesis of new motions is possible using thesdeiso One of the earliest works of statistical

modeling on motion capture data is done by Pullad Bregler [68]. They used wavelet
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decomposition and a Gaussian kernel to model adlg motion. Realistic motions was be
created by calculating the conditional probabilif each frames. Stylistic Hidden Markov
Models have also been created from motion captata. dNew motions were created by doing
random walk on the resulting HMM state machined.[69

A multivariate distribution function can also bengeated from the motion capture data
[31]. This distribution function can then be useddetermine the likelihood that a pose is a
natural pose. N-space can be defined as any gw@hhas a natural pose likelihood score of over
P. The distribution function allows calculation néw points which have similar or higher
likelihood score. However the distribution functiby itself will not help find points that are
closer to a solution. The search function needsrimétion about the relation of points in the N-
space to the solution to determine the best mqath.

Component analysis methods are able to summareeelationships between various
dimensions of the original data. Typically companemalysis methods such as Principal
Component Analysis, Independent Component Analyaigl Nonlinear Component Analysis
allow the transformation from one space to anofipace that can better describe the data [31].
Component analysis methods are also typically deedreating a lower dimensional space of
the data. Other lower dimensional methods such BS Mnd Isomaps have also been used to
model motion data [70]. The problem with MDS andntsps is that they typically need a large
amount of space as they need to store the distateeen all possible frames.

This thesis uses Principal Component Analysis (P@#&)Yhe main method for creating
natural poses and motions. PCA allows a straigiiodl summary and generalization of the

motion capture data. The number of PCA dimensi@mshe reduced to limit the search space,
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which is compatible with the aim of creating a matisearch subspace. Synthesizing poses and

motions from PCA space does not need for signifieamount of space and computation.

3.2 Principal Component Analysis

PCA is a statistical technique that uses the vaeasf data to allow data points to be
transformed into points in a reduced dimension spAn extended primer on PCA is given in
Joliffe [71]. The points in the reduced dimensipace retain characteristics of the original data
set that contribute to its variance [31], [46]. Dwethe smaller number of dimensions, data is
easier to analyze.

To calculate the PCA of a data, first find the maad the variance for each dimension.
The covariance matrix C can then be calculated ftben mean and variance. Given the
covariance matrix C, a set of eigenvallieare calculated according to Equati@al(). Once the

eigenvalues are calculated, the eigenvectors eadecalated according to Equatios2).

IC-Al1|=0 (3-1)
Cg =Ae (3-2)
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Figure 3-1 Weight vs. Horsepower data and the PCA axisiierpretation of the references to

color in this and all other figures, the readeréferred to the electronic version of this

dissertation.
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The set of eigenvalues is combined together toterdee transform matrix T with a
dimension of m x n where m is the number of dimensiin the original data and n is the number
of dimensions in the reduced space. T is usedattstorm any data point in the original space
into a point in the reduced dimension space. Thieevaf any dimension in the reduced
dimension space is actually a weighted combinatforalues from the original space.

To clarify the concepts here a chart was createshtov the weight vs. horsepower data
for various cars (Figur8-1). This data was part of the Auto MPG data ehfthe UCI machine
learning repository [72]. The lines in the figureosy the scaled eigenvectors which form an
orthogonal axis. Figur&-2 shows the result of transforming the originatadwith the PCA
transform matrix created from the eigenvectors.

PCA transtormed Weight vs Horsepower
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Figure 3-2 Transformed data to PCA space
If the dimension is reduced to one dimension,tadldata will be on a single line (Figure
3-3). This reduced dimension space limits the data can be synthesized. New data when

transformed back to the original space will belomhain axis line of the PCA.
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Feduced Dimension Weight vs Horsepower
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Figure 3-3 PCA data reduced to just one dimension

The transformation matrix to calculate the positaira point in the reduced dimension
space is not a square matrix (because the numbedinansions is different). Although no
inverse matrix is available for this non-square nmata pseudo inverse matrix can be created
using the Singular Value Decomposition method [73].

Any point in the reduced dimension space can bertad back to the original space
using the pseudo inverse of the matrix. These poml have the same covariance between
points as any of the original motion capture d#iat s in the original space. The next few

sections show that synthesized points in the nlagpace (within some boundary) is natural.

Therefore the reduced dimension space created Byi$¥& good candidate for N-space.

3.2.1 Use of PCA in human animation

In PCA, the eigenvectors can be ordered by impodafhe first k set of eigenvectors
can be used to represent a certain percentage ofatiance of the data. This property has been
used to create compression algorithms on humanomstising PCA [74], [75]. The quality of

the motion reconstruction depends on the numbdmaénsions used in such a scheme.

29



PCA is often used to summarize motion capture daththen to generate new poses. Li
shows that PCA can be used to create general umnamesl motions [76]. Some, like Tilmanne,
uses PCA to create walking motions that are basetifferent emotion expressions [77].

Johnson’s PhD dissertation focuses on using PCAmotion capture data based on
guaternion [78]. The aim of his dissertation wansilgir to this work, which is to use the PCA
space as an “expressive” sub space in order thasize poses and motions. His work focuses
on using a single PCA space for the whole bodyJenthis work focuses on multi PCA spaces.
In his work, he also mentioned an inverse kinersasiglution using the sub space, but never
actually implemented.

Most of the work on PCA as a means of representingon has been based on motion
categorized into specific tasks [79], [80]. Thigedls described a method that takes general
motion data and performs PCA on body parts segnterttetter control the motion to meet the
user’s constraints. The naturalness of the reguP@A generated motion is often just visually

inspected. In Chaptér.4.2, naturalness is shown by statistical comparef the various motions.

3.2.2 Creating a Pose Space from Motion Capture Data

This chapter describes the creation of a natursé ppace (P-Space) from motion capture
data. The term pose space is a specialized veo$iamatural space (N-Space) that only contains
information about pose configurations. Data usedH® method is motion capture data which
primarily deals with angles for each degree ofdmra. Other information can also be added or
deduced from the existing data. Additional data nragjude goals, emotions, and speed of
movement. Adding information typically increasee ttumber of dimensions, therefore the data

used for learning need to also be increased.
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To generate the P-space, frames are read from motpture data. Each frame is

considered to be a singular natural pose. A vestdqx4, X2, ..., Xy) iS created from the joint

rotation angles for each pose. To normalize the,dae rotation and translation angles of the
root bone are ignored. The covariance matrix Gisutated, and the PCA transformation matrix

T is created based on the eigenvectors calculaidd Eiquation 8-2). Each pose X can be

transformed to a corresponding point in N-Sp&ega1, oo, ..., ap) using Equation3-3).

a=TxX (3-3)
This point is then transformed to an actual poseubyg the inverse of the PCA

transformation matrix. The original transformatioratrix T is orthonormal, and therefore the
inverse of this matrix is simply its transpose. Thmension of the pose space is less than the
original dimension. Therefore, only the first n woins of the inverse of the transformation
matrix are used. A vector X in the original spaae be created from a point in P-space by using
Equation 8-4).

X=T" xa (3-4)
Multiple points in the original space may map te game point in the reduced space.

Inverting the point in the reduced space returp®iat with the least mean squared-error to all

possible points. It is not uncommon that the degret freedom may slightly exceed the

specified DOF limits. If any of the angles of Xastside the bounds of the joint (AMinAMax;)
the angle is adjusted according to the limit of éingles (Equation3(5)). That is if X > AMax;

then X= AMax; and if X< AMin; then X= AMin;. The angle error is the difference between

the limits and the calculated joint angles.
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Xi < AMini AMini - Xi (3'5)
AErmm =% > AMax  X; - AMax
otherwise 0

3.2.3 Characteristic of Synthetic Data in Natural Space

One important focus of our work is whether the BRegpcan be utilized to create new
natural poses. First, a P-space is created forighe hand motion. The bones involved consists
of right hand, right wrist, right humerus, rightweicle, thorax, upper back, lower back, and root.
For this data, 98% of the arm variability can bealded by only 7 dimensions. A transform

matrix T is created from the eigenvectors thatdfamnms the 18 angle vector to a 7 dimensional

space. A sample pointconsists of 7 valuas=(a1, ay, ..., 07), each corresponding to one vector

element.
The sample poses used for learning the PCA arsftianed into their respective P-space

coordinates. The minimum and maximum value of edichensions are retained from these

sampled poses. For each dimensions, a set of aiteamging from the minimum valugyin, to

the maximum valuemaxis created.

A set of new poses are created by selecting painen interval in P-space. For each
dimension, 4 evenly spaced points between the nuiminvalue and the maximum value is

chosen. Points contain a combination of values feach interval.
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Figure 3-4 The coordinates of the right hand from bothdhginal data (black) and the natural

pose samples (grey). The top-left picture is thaway x-y coordinate view, the top-right, x-z

and the bottom z-y

The created points in P-space correspond to newsptigat were not in the original

sample. These points are also quite different thendata learned. Figu4 shows the right

hand effector coordinates from both the originahgke poses as well as the new starting poses.

The grey dots represent the right hand coordinafehe new poses, while the black dots
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represent the original sample poses. It is appdhaitthe synthesized poses have a larger range
of reach than the original ones.

The naturalness score for each unconstrained peast calculated by calculating the
similarity to an existing pose in the database. gamson was done on a bone by bone basis.
Given two poses, one a randomly selected samptd,@od a pose from the MOCAP database,
the quaternion dot product between each bone amgdsscomputed. The dot product can be
used to measure the angle needed to rotate fronagle to another. As the angle becomes
more similar, the rotation needed decreases, aeddth product approaches a value of 1.

Equation 8-6) shows the similarity measure between two passash having k bones,

5= (1~ (aw L)) (3-6)
K

We compare this method with two random methods generating poses. The first
method simply selects a set of random angles (withe DOF limits) to generate a pose. The
second method creates random numbers using thiéudigin of the angles in the training data.
The method is also compared to actual natural fadsn from the MOCAP database. A random
pose is taken from the MOCAP database, the sildistance is calculated over all poses not
in the same motion. The reason for this is thaepas the same motion tend to be close together

(especially a pose which comes before or afterdference pose in a motion).

500 poses were generated for each method. Trt1he @ centile of the distance is

t : : . . .
calculated. The reason only the rbﬁercentlle of the distance is calculated is thatame poses,

the difference of the most different bones sigaifity dwarfs the values of the other differences.

The data was resampled (bootstrapping) 1000 tifike. mean angle in radians of thetrbo
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percentile for each degree of freedom is showngnré 3-5. ANOVA was used to calculate that

the means are different at a .95 significance.

Angle Difference

45

wrist radius humerus  clavicle thorax upperback lowerback

Joint

—&— Natural Motion (leave 1 out) =——0=— N-Space
------ A~ Random (Natural Distributiony—e= Random

Figure 3-5 Naturalness of random poses generated by thgalee, random (with distribution),
random, and from the motion capture data
From the graph above, it is apparent that posgese space are more natural compared
to the completely random algorithm. Algorithms tlaa¢ using the P-space have a potential of

creating more natural poses than algorithms thategular space.
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3.3 Multiple Natural Spaces

Another factor of concern is the creation of anpgaee that is too limited or too specific.
The number of data and motion may not be enougfet@rate an N-space capable of all natural
movements. The correlation between body partsarenot near each other may be small, and
therefore. Furthermore, the work of Grudzinski dades that PCA is often better for small sets
of joints [81]. Therefore it is a good idea to deeaultiple N-spaces (one for different parts of
the body) based on different parts of the datathed joining them in the animation generation
phase. Using a single PCA for the whole body atsal Ito over generalization of the data. This

over generalization reduces the number of pospitdes inside the space.

===

/\

Figure 3-6 Division of the skeleton as shown in Figlif& into multiple segments
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In order to alleviate these problems, there isere create multiple natural spaces each
one corresponding to one particular group of boastsp This gains importance due to the fact
that there are multiple constraints for each tapgete or motion. The algorithm proposed will
combine these various natural spaces in genertitengorrect path to the pose.

There have been various attempts to divide the humdy into parts in order to simplify
kinematics and dynamics calculation [57], [64], ][B[B3]. The segments created in previous
work are free of overlaps. As such, there is a tdsformation between the various segments.
In order not to lose all the relation between bedgments, an overlapping segment scheme is
used. In this scheme, some of the joints (sucheotver back, upper back, and thorax) are used
in multiple spaces. The upper body part (thorax lagck) is important to both the left hand and
right hand, and therefore it is impossible to becptl in only one space. Our method divides the
body into 5 subsets which have overlapping joiRtgyre3-6, Table3-1).

Table3-1 List of bones for each segment

Region Bones Number of
Dimensions
Right Hand to Right hand, right wrist, right radius, right 18
root humerus, right clavicle, thorax, upper back,
lower back

Left Hand to root | Left hand, left wrist, left radiueft humerus, | 18
left clavicle, thorax, upper back, lower back
Right Foot to root| Right foot, right tibia, righerhur, right hip 6

joint
Left Foot to root Left foot, left tibia, left femuleft hip joint 6
Head Head, upper Neck, lower Neck, thorax, uppet8

back, lower back

3.3.1 Effector Space

A problem with segmenting the body into multiplertpaas shown above is that the
correlation between bones in different part is.l@stother, more general problem is that, in
many inverse kinematics problems, the constraidy @pplies to some body parts while
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coordinates of other body parts are not specifféden the right hand is constrained to be placed
at a desk for example, where should the other péttse body lay?

To solve this problem, a space for the coordinafesrious body parts is created. This
method was also used by Ishigaki et al to compangasity of a user pose to an example motion
for control of avatars [84]. The coordinates of liands, feet, elbow, neck and head are stored as
shown in Figure3-7. PCA transforms the data into a lower dimersli@pace. This new space is

called the effector space and acts as a guideokitipning the whole body.

Figure 3-7 Location of effectors for effector space. Toerdinates of joints that are colored in

red are stored used to create a lower dimensiopats.
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4 Poses

Poses are the basic building block of motion. Org wf thinking about motions is a
continuous set of poses, and therefore poses s&na good starting point for animation. By
calculating a pose that meets a certain constraing,can create motion by interpolating from
starting pose to end pose. The constraints of @ pas be coordinates/position of the end of
various bones, orientation of bones, or specifeaarwhere the bones must not go through
(collision detection). The natural poses that afeinterest are those poses that meet the
constraints, as well as being as close as podsilthe starting pose.

The algorithms described here generate poses frose gpaces as described in the
previous chapter. In order to generate natural §aseo strategies are used: search for closest

natural pose and inverse kinematics in the poseespa

4.1 Lookup strategy

A search on motion capture data can be performedder to find poses meeting certain
constraints. In order to do this reliably, the roatidata must be complete, which will likely
mean it must be very large. Instead of finding éxaatches, it is also possible to find poses that
are near to meeting the constraints and then penfigr minor modifications on the resulting
pose.

In order to efficiently perform the search, pos@sf motion capture data are placed into
search optimized data structures such as the eetetr Rapidly-expanding Random Tree (RRT)
[85]. RRT has been often been used in a plannimgestto find multiple poses (from starting to

ending pose) that meet the constraints set outdgnvironment [63], [64].
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The algorithm described here do not use the achailon capture data. Instead this
method first generates a set of poses that is dieéonae representative of the whole possible set
of natural poses, referred to as unconstrained spddaconstrained poses are simply poses
created by selecting points in the pose space. gdiig is then transformed to an actual pose by
using the inverse of the PCA transformation matrix.

The motion capture data utilizes skeletons co$i® joints and 59 degrees of freedom.
In this work we limit the method to finding poses the right hand. As we are only concerned
about arm pose location, we only utilize the andllesn bones that connect the root bone to the
right hand bone. The right hand bone acts as tbeeffactor. There are 9 bones and 18 degrees
of freedom between the right hand bone and the Wook. In our experiments, the goal is to
place the end effector (hand) at a particular, ifipec position. The starting pose of the virtual
human is all the same. Bones from the hand todbebone (lower back) are considered; other
bones are ignored. The algorithm proposed is cdhedConstrained Pose Generator (CPG)
algorithm.

Sample points were predetermined by choosing pomts grid in P-space. For this data,
98% of the arm data variability can be describedbly 7 dimensions. A P-Space was created
using 7 dimensions. For each of the seven dimessjnints are sampled on the grid, starting
from the minimal value to the maximum value. Thevdéo dimension of PCA captures more
variability than the higher dimensions; therefdre tower dimensions were sampled at a higher
rate. The total number of points used as a seethif®method is 53000. These points are stored

in database, indexed by the end effector posibdadilitate fast searching.
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The similarity calculation in Equatiorl{l) was performed on a more complete motion
database. The motion database contained over Bmoses. For each sampled pose the

similarity score is the minimum value calculatethgghe above formula.

Given a starting posegPour method seeks to determine a set of DOFspthat the end

effector (the right hand) at a desired target pwsiT(x, y, and z). We find a sample point R
having the end effector position S in the pose spalaich is the best match for that pose. The

criteria to find R is based on the distance of the end effector th¢haddition of a weighted

naturalness scoe
argmin; [T; - S ||2 +Wo (4-1)
Once the algorithm determines a candidate poseighatarest to achieving the desired
constraint, either Coordinate Cyclical Descent (G€Ib] or the iterative Jacobian [25] is used

to refine the pose so as to accurately meet thsti@nts.

4.1.1 Results

To test the result of this algorithm, 1000 randomgle constraint problems (on the
position of the right hand) was generated to determaccuracy of algorithm as well as
naturalness of results. The algorithms tested leeexPG using CCD, CPG using the Jacobian,
and Iterative Jacobian algorithm.

Table4-1 shows how accurate the various algorithms \aefending a solution. Out of
the 1000 constraints given, 104 constraints wevem®und by any of the algorithm. This could
mean that the constraints were out of reach rafgjeeovirtual human. The two scores in Table
4-1 show the accuracy for all constraints, and myufor only the reachable constraints (with a

confidence interval of 95%). Based on this tabis tlear that in terms of accuracy in finding the
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correct pose for a given constraint, usage of Respa an improvement to using iterative
Jacobian.

In some of the poses, the inverse Jacobian algordfeates poses where the body is
twisted and awkward. There are of course exceptiQre of the main problems with the
Jacobian is that all joint angles are changed, ¢weuagh in natural human motion not all joint
angles change to achieve a pose.

Table4-1 Accuracy comparison of various pose generatigorithm

Method Accuracy Accuracy for
Reachable
Constraints

CPG (CCD) 0.7280 + 0.0276 0.8125 + 0.0256

CPG (Jacobian) 0.8090 + 0.0244 0.9029 + 0.0194

Jacobian 0.6030 + 0.0303 0.6730 + 0.0307

To compare the naturalness of each algorithm, teanmangle difference between each

bone in the generated pose and the closest natosal is calculated. The tBcpercentile of the

. . th . . . . .
distance is calculated. The reason only the pércentile of the distance is calculated is that i

some poses, the difference of the most differenebaignificantly dwarfs the values of the other
differences. Therefore we take the biggest 10%edifice out of the data. The data was re-

sampled (bootstrapping) 1000 times, and ANOVA wseduon the data. From ANOVA we find

that the mean were different with 95% confidenche Thean angle in radians of thetrbo

percentile for each degree of freedom is showrignreé4-1.
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Figure 4-1 Mean angle difference of poses created by Qi@ (Jacobian and CCD) and
iterative Jacobian method

Based on this graph, we can see that the CPG #ilgodreated more natural (as shown
by a smaller difference to the sampled motion. Beeahe CPG algorithm moves the starting
point, the Jacobian method is able to find poseishvlire more natural. The resulting poses for
the different algorithm on 6 different targets an@wn in Figurel-2.

One of the major disadvantages of this methodas ahly the generated pose is natural.
The modifications made using CCD and Jacobian danacessarily keep the pose in a natural
state. Another problem is that the generated P&pase is only based on the distance to
meeting the constraints and not on the starting pbke starting P-Space pose may actually be

very far from the starting pose, and thus the emgiose is not always an optimal solution.
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Figure 4-2. Each frame shows the result of running the GRf&rithm for each of 6 poses. The
pictures on the left side are the front view of plose; the pictures of the right side are is fram a

angled view from the right side of the animated &nsn The leftmost pose in each frame was
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created using the NSPA algorithm followed by théd@&@yorithm, the middle pose was
calculated using CCD, and the rightmost pose wadsutated using the iterative Jacobian

method.

4.2 Inverse Kinematics in Pose Space

In order to address these problems, a method ingligeration within the N-Space is
used. Iteration through N-Space will also take iafrount the starting pose. The method
proposed here uses the inverse Jacobian in N-spdt®l pose that meets the constraint. In the
previous chapter, CCD was shown to better find naatposition from unconstrained N-space
poses. However the Jacobian method was preferrethéoinverse kinematics because of two
things:

1. ltis difficult to do multiple constraints with CCDVith Jacobian you just need to add the
new degree of freedom to the Jacobian.

2. Segmented needs synchronization between two N-sp#tcies also difficult to do this
with CCD. In CCD you change one DOF/dimension #tree. With multiple spaces we
may have to change a degree, and then have it etidnygthe synchronization process.
The first step is to calculate the Jacobian. Theoldian determines changes in angle

effector coordinate(s). Instead of the actual argdevever, P-space is used. Therefore the
Jacobian calculates the changes in P-space dinmetwsithe effector coordinates. The Jacobian
depends on the model used for the skeleton. Ouremakd a skeleton in which the forward
kinematics formula is a series of rotation matrR(X)) and translation matrix (L). This

corresponds to the bone having a rotation arouadtty, and z axis, followed by a translation

(Equation 4-2)). P is a vector (P R, P7) containing the coordinates of the vector.
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P = R Ry (xi2) Rz (xi3)L (4-2)

However because we are using forward kinematichl-space, this formula changes

slightly. To find the value for thetrﬁdegree of freedom, Equatio#-8) is used. The angle for the

nth degree of freedom is simply théhrrow of TT multiplied by the current point in P-space

(Equation (4-4)).

Xp=Tp xa (4-3)
Xn = (Tay % a@0) + (Tq, xaz) ++(T], xay) (4-4)
The forward kinematics in N-space can then be tatled as
P = [ Re(TL )Ry (Tp@)R, (T3 a)L (4-5)
i

The nth value of X is a weighted sumoeo&ccording to thetn row of TT. The derivation
of the nth angle of X with regards to trtlr(]e\'value ofa is therefore theﬂ? weight of the value, or

simply the }h value of the tr? row from TT (Equation (4-6)).

dX, T (4-6)
da- =Thi
ai
d(ab) = ab+ab' 4-7)

Using the product rule for derivation (Equation7; the Jacobian for théhidimension

in P-space and théhjdegree of freedom can be calculated. To simpligy/ derivative equation,

let ¥ represent each rotation and translation equatigha forward kinematics calculation of P
(Equation 4-8)) such that P is simply the product of‘#l{4-9). For all rotation factors of P, the
derivation of¥ with regards tax is shown in Equation4¢10). The translation factors of P are

constant and therefore the derivations of suclofacire 0.
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4-8
v - {RM o
L
P= |‘| W, (4-9)
i’ =T R(T @) (4-10)
da; i

Based on the above equation and the product thée,partial derivative of thethi

coordinate in the pose P with regards to %ﬂagilue ofa is:

(4-11)

dR
da; [(lek)w (k|_n|+‘1Pk)J
The iterative Jacoblan method of solving inverseekatics is to iteratively calculateX

that moves the point in P-space to another poattithcloser to meeting the target. At each step

of the iteration AP, the vector between the current coordinaten@ the target constraintg iB

calculated (Equation (4-12)).

AP =P, -R (4-12)
The Jacobian J in P-space is similar to the Janabianormal space. The difference is

that each element is a partial derivative of P webards to changes in This is shown in
Equation 4-13)

d d d ] (4-13)
Via, “Vaa, Y,
dpR, dP, dP,

J= 0’1 d0'2 O'n

de' drn/ de.
do das day, |

The aim is to findA a, which is the changes wthat moves the skeleton to the target

poseA a can be calculated by using Equatidnl@)

JAa = AP (4-14)
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The Jacobian is not a square matrix, and therefotanvertible. There is no guarantee
that the problem is under-constrained or over caimstd. To solve the problem, we find. that
minimizes the distance to the following equation.

|9a - ap|? (4-15)
Furthermore, the angles of the joints should movesmall interval. A largeAa may
cause the problem to overshoot, or become unnat&ralamping factor is introduced in
Equation (4-16). This damping factor tries to miraenthe distance afo.
2 4-16
[r"aa] o
A simple inverse Kinematics solution for N-Space taerefore be calculated by finding
the minimum of the following equation
2 4-17
1980 - AP||2 + HTTAGH (4-17)

If this equation is calculated using Euclidian digte, the minimum distance is

equivalent to finding the minimum value Equatioft1@). Because T is orthonormal, 'II*T

results in the identity matrix

(JAa -AP)T (JAa -AP) + 00 TT! Aa (4-18)
= (JAa)" JAa - (J0a)T AP -APT JAa + APTAP + Aa T Aa

=AaTITIna-Aa T ITAP-APT JAa + APTAP + AT Aa
The minimal value ofAa can be calculated by deriving the formula abovee minimal

value is found when the derivation of the formwaquals to 0. This results in Equatidr2(l)
that can be used to firtla through either the inverse of the left matrix @ing factorization
such as LU/QR algorithm [86], and therefore sollie inverse kinematics in P-Space. This
method is also commonly known as the damped |leastre method.

df
dAa

=237 JAa -23TAP + 20

=3TAa+T )T aa-3TAP-(APT )T +2Aa (4-19)
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df -0 (4-20)
dAa

23T A -2)TAP+2A0 =0
JTIha +Aa =3TAP
ATI+)aa=3TaP (4-21)

4.2.1 Conquering joint limits

One of the problems of this method is that it doestake into account the joint limits.
Problems occur when the closest path to a targetiposes that have angles outside the limits.
To counter this problem, a perturbation factor tttacks for limit breaking angles, and forces
these angles to move to the other direction (ugualthe middle of the joint limits). If a single
iteration contains more than one joint outside limits, not all are perturbed at the same time.
The idea is to perturb one joint and allow othént@to adjust to the perturbed angle and change

accordingly.

When thetfq joint is outside the limit, this method checks wie perturbation should be

. th. . . .
performed. Perturbation on the joint is performed when the number of steps, antkets the

condition in Equation4-22). When the modulo of these two numbers torestemt k is equal,
then perturbation starts. Once a perturbationsstarwill remain active for w iterations (w is a

window size constant).

mod _ stepk) == mody(, k) (4-22)
Equation 4-23) describes this perturbation factaxm is the target joint angles,

calculated by the difference between the mid-pofrthe joint limits and the current joint angle.

This vector only contains joints currently subjéztperturbation. The M factor is g d d; (P
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rows timesa columns) transformation matrix that simply deleddisunnecessary factors in the

PCA space if the factor does not effect the angladperturbed.

MTTAa = Am (4-23)
To calculate the change in angles/point in P-spa&eh step of the iteration tries to find a

change tax that brings the body closer to the constraintd, arthe same time make sure that the
intersecting bones are consistent. To solve thes find a solution forAa that minimizes the

following equation:

M|dna -np|? + /]ZHTTAGHZ +4g|MTT Aa —An"ﬂz (4-24)

The equation consists of a weighted sum of thretadces. The first distance is based on
the difference between the current body pose totdahget constraint. The second term is the
damping factor, which simply measures the distametgeveen the current pose and the ending
pose based ona. A damping factor limits the size afo, making it change only in small
incremental steps. The third factor is the perttiobefactor described above. The weighis set
beforehand to calculate the importance of eaclofact

Similar to the simple inverse kinematics equatithe, minimum value of this equation
can be calculated by finding the derivative andirsgtit to 0. The solution foAa can be
calculated by solving the following equation:

(AITI+ 250 + s TMTMT A

4-25
=JTAP+TM T Am (4-25)
4.2.2 Naturalness

An important part of this research is determinihg haturalness of the resulting poses.
The most notable method of calculating naturalnfgesn motion capture data has been

performed by Ren et al. [82]. They measured natess using various methods (Mixture of
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Gaussians, Hidden Markov Models, Naive Bayes, amiticBing Linear Dynamic System) and
compared the results to human scored naturalness.

Due to time constraints, this thesis does not implat those methods. In this thesis,
naturalness is measured by calculating the Gaugsialpability density function based on a
testing sample. The testing sample consists of @@@3es taken from the motion capture data.
The testing model is assumed to have a Gaussiativaridte distribution with a mean and co-
variance N(,X). The naturalness score for an algorithm is cateal by determining the

likelihood that a set of poses were generated &yp#mple distribution given in Equation (4-26).

LIN(u,Z)1X) = £ (X IN(,2) =[] F 06 IN(1.2) (4-20)
[
Where f(x| Nf,X)) is simply the Gaussian multivariate probabitiigtribution function,
with k being the number of dimensions (Equatior2 f3}.

1 - 6 -) @2

f04 IN( ) =—=—e 2
K

Due to the large size of k, it is common to calteikae average log likelihood in order to

compare the various algorithms (Equation (4-28) Bqdation (4-29)).

In(L(N(,2)1 X)) = X In(f (x | N(1,5))) (4-28)

=13 In(r 0 ING D) e

The average log likelihood of each algorithm cqooexls to the degree of naturalness of
the algorithm. An algorithm with a higher averagg likelihood score is deemed to be more
natural than an algorithm with a lower score. Matigas used to calculate the log probability
distribution function and log likelihood. With Math, the minimum positive number is

approximately 1x10-300, any value lower than teatdnsidered to be 0. As In(0) is undefined, a
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constant value of -750 was used as the result(6j in order to avoid working with undefined

number.

4.2.3 Number of Dimensions

For PCA methods the number of dimensions used Bamé#icant effect on the resulting
poses. To find out the effect of the number of disens on accuracy and naturalness, we run
the single-space PCA algorithm on 100 randomly geed constraints for one constraint
problem (the right hand). The original data hasiiséensions, and testing was performed on 1, 7,
14, 21, 28, 35, 42, 49 and 55 dimensions. The tesfithe accuracy and naturalness is shown in
Figure4-3 and Tablel-2.

In general, an increase of the number of dimensiocreases the accuracy. Accuracy is
the percentage of poses that meets all constréistthe number of dimension increase, there is
more freedom in the motion allowing the algorithon find poses that meet the constraints.
Naturalness on the other hand, peaks when the nuohleemensions is approximately 50% of
the original dimension. Allowing more freedom of vament is detrimental to naturalness, as it
allows poses that are not natural to be used.

Table4-2. The effect of different number of dimensionsaturalness and accuracy

Number of Average Log
Dimensions Likelihood Accuracy
1 -750 0

7 -738.8863 0.71
14 -529.2594 0.9
21 -387.8207 0.94
28 -326.3475 0.94
35 -502.4741 0.97
42 -502.2705 0.99
49 -678.8402 1

55 -673.3091 0.99
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For the algorithm comparison it is important thag¢ &lgorithms have a high degree of
accuracy and naturalness. We use a threshold whl98% for the accuracy with as high as
possible score for naturalness. This translat@® tdimensions (from 56 original dimensions) for
the single PCA. For the multiple-space PCA, 12 disiens were used for the right hand, left
hand and head space, and 5 dimensions for the aighteft foot space. The same number of

PCA dimensions is used for all constraint groups.

Effects of Number of Dimensions on Accuracy and Naturalness
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Figure 4-3. Graph of number of dimensions vs accuracyratdralness
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4.3 Multiple PCA Space Inverse Kinematics

It is now a matter of solving a multi-constrainatverse kinematics problem using
multiple spaces. There are two ways of solving rughstrained inverse kinematics problem,
using priority [51], [52], or using weights [53} this proposed algorithm, a dynamic weighting
system is used. In essence, the importance ofstiraaed effector space constraints decreases at
every step while the importance of the externalst@mts remains the same. This allows the
algorithm to satisfy the external constraints isesawhere both constraints cannot be satisfied at
the same time.

For each kinematics step the current target posii® is a matrix that consists of the
external constraintsyPand the effector space constraints Bection4.3.1 describes how to
calculate both the external constraints and thecedf space constraints. The external constraints

are capped with a distance ofjifizquation 4-30)) while the effector constraints are cappeith wi
a variable distance that depends agfpand the step number n (Equati@n3l)). If the resulting

calculated distance for the effectors space is ftawvan a constantgkthen that constraint is

ignored. This reduces the number of constraints tiia calculation must meet and helps in
finding the solution faster. This also has the dffinat as the number of steps increases, the
inverse kinematics solution prefers to stay atissent position rather than trying to move to the

exact position of the effectors constraint

Ay (P) = mln( (4-30)

My
die(P) = min(———1) (4-31)
JilPf?
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AP = diy (Pix) P w3
URe dte(Re)>kd die(Re)Re

4.3.1 Estimated Effectors Space
The effectors space described in chapt8rl is implemented and utilized in this method.

If P is a vector of coordinates of the various bpdyts, E is a PCA transformation matrix to a

lower dimension based on learning the coordinatdben8 effectors positions from the motion
capture datap is the resulting point in the reduced dimensiasdce according to Equation

(4-33). The reduced space is notated as CC-spagst(amt coordinate space)
p=TeP (4-33)

There are two groups of constraints, the externabtaints & which are specified by
the user or by the actions, and the new set oftints, called the estimated constraints C

which constraint the rest of the body parts. Thareged constraint & is calculated based on
the current position as well as the target constrai

Given thatPg is a point in CC-space corresponding to the ctrpose, Ap is the
difference in CC-space that corresponds to a ghattmeets the external constraints C is a
matrix that finds the external constraint elemenisn a pose. To calculat&f, the following

eqguation is minimized:

T 2 2
e ag-Ra-rR)| +[a4 (4-34)

Equation 4-34) is minimized by solving the following equatio

(Tl TrTE +1)AB =Tl T (MR4 -TR) (4-35)
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The target position {P consisting of both the external and the estimateastraints is

calculated using Equatiod{36). This value is used in the calculation fardfng Aa such as in
Equation 4-25).

T (AB+fo) =R (4-36)
4.3.2 Matching overlapping angles

The biggest problem with creating segments thatlapes that some of the angles are in
multiple segments. When calculating the inversesikiatics solution for each segment, angles
that are in multiple segments must result in theesaalue.

The first attempt to solve this involves creatirdgiéional factors to control the angle

difference. One angle may appear in two segmenatsdd. This angle appears as tWea’ngle of
th th. tP .
the K segment and the jangle of the I segment (Equatior®{37)).

Xjk =Xj| (4-37)
The angles from the above equation can be calcufeden the points in P-space through:

T . _-T
Tikak =Tj,1a

T T -
Ti,kak —Tj ,|0’| =0

[T —TJ-,{Z:(} -0

For multiple angles, a matrix can be created fbaagjles that must be matched. A new

(4-38)

matrix I' combines the subtraction formula for multiple &sglone formula per row. The above

eqguation is equivalent to:

r[ak} =0 (4-39)
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The above equation can be added as a factor toEtheation 4-24). However,
experiments show that this formulation decreasesatituracy of the solution. This significantly
adds to the number of constraints in the systera.ifEnations using this formula often end up at

a local minimum that does not sufficiently addrgssmain constraints.

4.3.3 Weighting Overlapping Angles

A second attempt to solve the overlapping problemthrough weighting after the
calculation. Once the change in is calculated, the overlapping angles is constdila

Consolidation is done through calculating the wiaghsum of all angle spaces. EquatidmiQ)

describes the calculation for thteh foint angle, based on the weight of tﬁhesipace (W, and the
th th.
k™ angle calculated by the ispace.
D W6k
—
D W
[

. th . . .
The weights used are based on whether Hweplace corresponds to an active constraint

6 (4-40)

or an effector space constraint. If the space tffaa active constraint, it is given a priority
weight of 1.0 or a non-priority weight 0.8. Onlyespace can have a priority weight of 1.0 at
one time, therefore the space that has the priargtighting is changed every n steps (we use 10
steps). Passive constraints or effector space reamist is given a weight of 0.4. All the constants
here were found using empirical methods. This wieghscheme gives more importance to the

active constraint spaces and allows the solutidrettbound much quicker.
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4.4 Results

Comparisons were performed on a different numbeoaoftraints. There are five groups
of constraints that are used. All of the constsaimere the Cartesian coordinates of the various
body parts. For each group, 100 randomly genersgedf constraints were created. The groups
are:

1. Right hand constraint only
2. Right foot constraint only
3. Right and left hand

4, Right and left foot

5. Right hand, left hand, right foot, and left foot

4,41 Accuracy

The first measure for the algorithm is the accurddye accuracy is simply the number of
poses found that meets all constraints. The algarinust find a pose that meet all constraints in

250 iterations.

Table4-3 and Figuret-4 shows the accuracy of the various algorithminiding poses
that meet the constraints. An increase in the narmmbeonstraints tends to lower the accuracy of
the various algorithms. This may be because imigossible to achieve a pose that meets all
constraints. Another explanation is that some efalgorithms simply iterates on a local minima
during the Jacobian iteration. When the iteratioarnt is higher than the maximum allowed, the

application stops the algorithm and marks it adlento fulfill the constraints.
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Table4-3. Accuracy comparison of all algorithms

R. Hand R. Foot R+ L hand R + L foot R+L Hand +
Constraints | Constraints | constraints constraints R+L Foot
constraints
Single PCA | 0.95 0.68 0.79 0.61 0.32
Single 0.96 0.96 0.63 0.91 0.37
PCA+
Regular 0.91 0.98 0.28 0.82 0.14
Jacobian
Multiple 0.98 1.00 0.69 1.00 0.65
space PCA

The foot constraints problem causes a lot of diffic A look at the right foot constraints
problem shows that the single PCA algorithm is imab find the goal because in trying to find

the shortest path to a goal, typically tries to dehne knee outward (past the bounds of the

angles).

The Multiple space PCA method has a very high aagucompared to the other methods.
The only exception to this is for the right andt lend constraint group where the Multiple
spaces PCA does worse than the Single PCA meth@msaible reason for this is that the right
and left hand constraints cause a conflict in therlapping joints of the spaces. As such, the
algorithm finds a pose where the error is minimjaetich is to say the total distance from the

end effector position to the constraints is thele However this pose does not actually meet

any of the constraints.
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Figure4-4 . Graph of accuracy of all algorithms

4.4.2 Naturalness

Table4-4. Average log likelihood of all algorithms

R. Hand R. Foot R+ L hand R + L foot R+L Hand
Constraints | Constraints | constraints constraints + R+L Foot
constraints
Regular
Jacobian -712.4789 -141.356 -721.299 -219.605 -696.894
Single PCA -339.3964 -169.534 -577.728 -298.049 -580.832
Single PCA+ | -315.1096 -234.453 -445.176 -363.788 -474.114
Multiple
space PCA -264.8083 -133.141 -305.194 -139.147 -348.928

The naturalness of each pose created by the dlgoig measured by Equatiod-29).

To analyze this data further, bootstrapping wagsl usefind the mean and the variance. 1000
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pose groups were created for each algorithm. Eash group consists of n poses, where n is the
number of correct poses found by the algorithm. Pposees in the pose group is found by
randomly sampling with substitution from the cotrgmoses. We calculate the average log
likelihood for each group and then calculate theamand standard deviation (Takled and
Figure4-5).

The regular Jacobian method on average result®sa hatural poses for the hand
constraints and the hands and feet constraints.eMemthe poses for the feet constraints are
more natural than the resulting poses from thelsiRfA algorithms. For the feet constraint
groups we find that the regular Jacobian method shm¢ move the upper body at all. Because
the upper body remains in the starting pose (wtacnatural pose), and given that the number
of non moving joints is much higher, the probapilif this pose being a natural pose is also

higher.
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Likelihood Comparison of Various Algorithm
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Figure 4-5. Average log likelihood of all algorithms graph

For all constraint groups, we can see that theiptalspace PCA performs better than the
single PCA or even the single PCA with effectorcgpand perturbation. One reason why single
space PCA creates unnatural poses is that allsj@re correlated in this algorithm, therefore
moving one part a certain angle, also moves anqihdr that is deemed to be related to it.
Moving the arms is correlated to movement in tlgsJeand the more the arm joint moves, the
more the leg joints move. Figufe6 shows how the legs in figures created usingihgle space
PCA method is unnatural due to the fact that threynaoved in relation to the hands movement.

In these figures, only the position of the righbtias a hard constraint.
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Figure 4-6. Unnaturalness is caused by extreme leg movwemsimgle space PCA. The figures
were created by (from left to right) regular Jacalj single space PCA, single space PCA +,
multiple space PCA

The second reason for unnatural poses is the pitycto bend to a target when the
natural thing is to turn the body towards a tar@emnding is preferred because it is usually the
closer solution in the pose space. However, asamesee in Figurd-7, bending the body to a
particular target sometimes results in unnaturakpo

Because the correct poses created by each algadiffen, the naturalness score may be
skewed. To compare the algorithms more fairly, pase T-test were performed on pairs of
algorithms. The list of tests consisted of the ngpace (Single PCA) versus single space +
effector space + perturbation algorithm (Single REAingle PCA vs. multiple spaces, single
PCA + vs. multiple space, and Jacobian vs. multgplaces. Only figures that meet constraints
for both algorithms were included in this calcwati The paired log likelihood score for these
algorithms are shown in Table5, Table4-6, Table4-7, Table4-8, and Figure4-8. Again,
bootstrapping was used on the paired data in daleetrieve the best estimate for mean and
standard deviation. T-test results suggest thatdifference between all of the pairings are

significant (p<0.01)
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Figure 4-7. Unnaturalness is caused by extreme leg movwemsimgle space PCA. The figures
were created by (from left to right) regular Jacabj single space PCA, single space PCA +,
and multiple space PCA

Table4-5. Average log likelihood comparison of the Ieedacobian and Multi PCA algorithm

R. Hand R. Foot R + L hand R + L foot R+L Hand +
Constraints | Constraints | constraints constraints R+L Foot
constraints
Jacobian -711.811 -719.07 -689.783 -717.499 -750.00
Multi PCA -253.033 -269.747 -304.883 -273.159 -307.586

As expected, the regular Jacobian creates posehwshe the most unnatural. For poses
having the same constraint, the multiple-space RI@Arithm creates poses that are significantly

more natural.

Table4-6. Average log likelihood comparison of the S#nlgCA and Single PCA + algorithm

R. Hand R. Foot R + L hand R + L foot R+L Hand +
Constraints | Constraints | constraints constraints R+L Foot
constraints
Single PCA -323.0806 -340.911 -352.788 -369.725 -406.215
Single PCA+ | -296.2438 -303.793 -333.184 -334.931 -388.236

The single space PCA and single space PCA+ algostiaverage likelihood do not
differ as dramatically as other pairings. Adding frerturbation factor and a set of effector space
constraints to the single space PCA algorithm halpstrol the location of all the non-

constrained body parts, and thus the single sp@éerRlgorithm creates more natural poses.
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Table4-7. Average log likelihood comparison of the SengCA and Multi PCA algorithm

R. Hand R. Foot R + L hand R + L foot R+L Hand +
Constraints | Constraints | constraints constraints R+L Foot
constraints
Single PCA -330.6858 -339.53 -373.038 -369.51 -347.944
Multi PCA -256.6454 -265.001 -287.241 -279.14 -260.00

Table4-8. Average log likel

ihood comparison of the S¥ngCA+ and Multi PCA algorithm

R. Hand R. Foot R+ L hand R + L foot R+L Hand +
Constraints | Constraints | constraints constraints R+L Foot
constraints
Single PCA + | -307.2701 -325.293 -334.842 -332.925 -321.276
Multi PCA -256.5242 -266.892 -280.256 -269.738 -263.291
[ regular Jacobian [ Mulii PCA | |1 Single PCA [ Single PCA +
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Figure 4-8. Graph of pairwise comparison between algorghm
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Table4-7 and Tablel-8 shows that the multiple space PCA method csgatses that are
more natural than both the single space PCA anglesspace PCA+ algorithms. A graph of
these values is shown in Figutes.

Figure 4-9 shows a small sample of results of the algorsttior 2 constraint problems
(hands). For each pose group the figures show dkeltng pose calculated by the regular
Jacobian, single space PCA, single space PCA+,naultiple space PCA method. A more

detailed set of samples for different constraimiuges can be seen in Appendix A.

Figure 4-9 Sample result poses for 2 constraints (hands)lpms
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5 Motion

Motion is a set of frames presented sequentiaiych a rate of speed that the illusion of
smooth movement is created. To create motion autoatig, an algorithm creates a number of
frames containing the poses, from the starting pos@ ending pose that meets the target.

The algorithm described here finds a motion in progpace (M-space) to move a virtual
human from the starting pose to the ending pose rieets constraints. The M-space is a
specialized version of a natural space that cositdata regarding the phase, which is the pose
configuration and angular speed for each frame. ditding pose must be predefined through
other algorithms (e.g. the P-space inverse kinasiaigorithm described in Chapi#3). The
M-space algorithm uses the damped least squardsothf®7], [88] to find a set of frames that

allows a natural movement between the starting podehe ending pose.

5.1 Characteristic of natural motion

The simplest method for creating motion betwegmafd R is simple linear interpolation.
Linear interpolation assumes the velocity at eatle frame is the same, and that the path from

Po to R, is a straight path. To perform this type of int#dgtion, the first thing to do is calculate

the interpolation stepP, which is simply the vector fromgRo B, divided by the number of

frames (Equation (5-1)).
Each step of the motion can be calculated by ugiagoose for the previous frame and
adding the interpolation step (Equation (5-2)).sT$tiep is repeated until the final pose is reached.

_Pn_PO
n

AP (5-1)
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Rap =R +AP

(5-2)
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Figure5-1 The speed and angles of natural motion andeali interpolated motion

However, observation of captured motion data revéaht natural motion do not look

like the results of linear interpolation. Naturabtions do not have a constant speed for all angles.

The angles for each joint do not always move whih $ame speed, some angles may start slow

and speed up in the middle before slowing downragaiar the end. Joint angles sometimes

deviates from the straight path between the stattesnd angles.

An example of the speed of joint angles in a natomation created by the right hand

segment, with a length of 32 frames is shown irufé®-1. The left part of the figure shows the
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natural speed, the actual angles in degrees fdr éagree of freedom, and the speed of each
degree of freedom. The right part shows the sartrdbw@tes created by linear interpolation
between the starting pose and the ending posesdie non linear motion characteristics have

also been observed in faces deformation [89].

5.2 Utilizing a Motion Space

Chapter2 discusses the various techniques used to creatiernThis thesis focuses on
how to use existing motion capture data to genemawéons. There are two approaches to
creating human motion assuming a constrained tafgetfirst is to generate a motion that finds
a pose at the end that meets the constraints. fhiee method finds a set of key frames that meet
the constraints first, and then interpolate the o#sthe motion. The second approach is the
approach used in this thesis.

The creation of synthesized motions from motioradative been proposed by various
authors. Abe et al. creates a limited amount oépaghich have the same physical requirements
using transformation (by rotation or translatiof)mtion capture data [32]. Grochow et al [90]
compute poses via kinematics based on data leamt €aptured motion. They calculate the
likelihood of a particular pose using a probabiishodel. New poses are synthesized using an
optimization algorithm in which the objective fuitct depends on the learnt poses. Similarly, in
Yamane [63], inverse kinematics is calculated usingonstrained optimization algorithm.
Captured data is stored and used as soft constraittion is created by the smoothing of
various results of IK computations over multiplesiions.

The algorithm proposed by Pan [64] uses RRT to plarthe key frames necessary. For
each set of key frames, a motion is calculatedguiterpolation, and depending on how natural

it is (and whether it is in a constrained environier not), it is replaced by existing motion
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capture data. They first find a motion capture datgment that resembles the motion they have,
and then uses that. This still requires a largaluiege of motion capture data to be able to create
good results.

PCA have been used on whole motions (normalizedetskteconfiguration across
multiple frames) [79], [80]. The created PCA spaxdhen used to create new motions with
different constraints. In order to do this, onlyngar motions, or motions which performs one
task can be summarized using the PCA, for examgfengptions.

Instead of a using each motion as one data ptiatalgorithm described here uses the

phase (a combination of pose configuration and lamgtelocity) to create a reduced motion

space (M-space). Given the starting poggttfe ending posejfPand the number of frames n, the

proposed method attempts to find a natural motibroggh generation of the interleaving set of
poses) that moves the human from the start pogetend pose. The poses are found by finding
the points in a lower dimension motion space the¢ts motion constraints.

The algorithm focuses on finding the shortest fegtween the starting pose and ending
pose. Realistic physics may sometimes be overladkedexample, if position A was a standing
position and position B was a kicking position (ndéhe leg meets the ball), it is unlikely that
the algorithm will try to move the leg back to gammentum for kicking. Instead the end results
will probably be a straight path between the stgrppositions to the kick position. This can be
remedied by having a constraint that the motioduohes a backward movement to create

momentum.
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5.2.1 The Motion Space
To create a motion space, information about theeotirangle as well as the angular

velocity for each DOF is used. To calculate theudengvelocity o, the average difference

between the previous frame and the next frame &l us order to smooth out the result
(Equation (5-3)).
_R+1-Ra
2

The vector H, represents a phase of motion contstis the current angle configuration

(5-3)

as well as the angle velocity at each frame (Equna®-4)). The numbers of dimensions for H is
double that of the original configuration space AP€ used to create a lower dimension space
(the motion space or M-space). The number of datd dor creating the PCA space was

increased to 45000 samples.

Hi =[R o] (5-4)
N is the point in M-space corresponding to H. Tthie transformation matrix from the

original phase space to the M-space that transféirts N (Equation (5-5)). T is orthornormal,
and therefore the transpose of T transforms frota N (Equation (5-6)).
Ni = TH; (5-5)
He =TT N, (5-6)
Each point in N-space corresponds to a pose ancelecity. TTp and 'ITV are
transformation matrices that transforms from thenjppm M-space to the pose (Equation (5-7))

and velocity (Equation (5-8)) respectively.

P=TEN (5-7)

w=T, N (5-8)
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5.2.2 Calculating Motion

Motion is calculated in the M-spacegldnd N, is the point in M-space corresponding of

the phases gland H,. We attempt to find the motion M which is a contgs set of points in M-

space corresponding to a set of poses in the afigipace. Figuré-2 illustrates the M vector

that includes the data for every frame.

M =[Ng N1 No... Np]

L P JLwo J| [P Jl e || . Py | on |

I _'_

Figure 5-2 Motion vector representation used in this thesi

To calculate M using N-Space, these constraintsised:
1. Ng=[Pgo gl- The first element of M is a PCA transformatidnfey and the initial speed
2. Np=[Phop. The r%h frame element of M is a PCA transformation gfdhd the final

angular speed

3. Pi+1 =R + kot The poses in the motion must be contiguous. Tomemtum added to

each pose must match the following pose (possiadies by a constant k).
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4. ogando .1 are minimized. The assumption here is that theandtarts and end on a

still pose. Therefore the angular velocity at thmstfframe and at the last frame is

constrained to be as small as possible.

In order to find the best motion between a starpioge I and an ending poseg,Ras well

as meet all those constraints, the constraintgransformed to equations that can be minimized.
Constraint number 1 and 2 corresponds to the maaitioin Equation5-9) and Equation5¢10).
This equation attempts to minimize the differenetngen the actual start and ending pose and
the corresponding poses from the starting and gnpaints in M-space. Constraint number 3
corresponds to Equatiob-(1). This equation tries to force the next posthe motion to be as
close as possible to the current pose plus the langeelocity. Constraint number four
corresponds to EquationS-12) and %-13). These two equations attempt to find a pwin¥-
space with the smallest possible angular velodtipally a damping factor is introduced in
Equation b-14). This damping factor ensures that each pesains as close as possible to the

subsequent pose.

.
HPO —Tp NoH (5-9)

.
Pr —Tp Np (5-10)

2
thl..n—luTl;r Nesg —(Tp Np +T,) Nt)H (5-11)
2
T, NOH (5-12)
2
T, Nn—lH (5-13)
2

thl..n—lHNt+1 —Nq H (5-14)
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To get the individual M-space point correspondin@tsingle frame within a motion, the

L matrix can be used. The L matrix’s value depemushe frame number.

Nk = LM (5-15)
Therefore the Equation5-9)-(5-14) can be written as

T 2
HPO —TT LM H (5-16)

T 2
HPn —TI LM H (5-17)

T T T 2 ]
Oi=1.n-1Tp Lt+aM = (Tp LM +Ty, LtM) (5-18)
T 2
T LOMH (5-19)
T 2
Y H (5-20)
2

Ot=1.n-1Lt+1M — L M| (5-21)

The motion solution M is the motion that minimizall those factors according to
Equation (5-22). Each factor in this equation isghied by the constant lambda that denotes the
importance of each part. The first four factorsénhéive same weight because they are similar in
purpose (matching the pose or the velocity). Funioee having one weight reduces the number

of parameters that must be controlled.
T 2 T 2
A1HPO —TT LM H +/11HPn ~TTLM H

T 2 T 2
+ 2T LOMH + TT LM H

2 (5-22)

n-1
"'/]ZZ‘TII LM = (TR LM +T LtM)H
t=1

2

n-1
+ 3D LM - LM |
t=1
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To calculate the value of M that minimizes the abequation, the derivation for each

factor with respect to M (df/dM) is calculated &®wn in Equationsy-23)-(6-28)

2LYTpTR Lo)M = 2(LETpRy) (5-23)

2L TpTA LM = 2(LLTRR,) (5-24)

2E1(TFT Lwa ~To L + Ty L)' (TR L TR L + T LM (5-25)
t=1

2(LyTyTy Lo)M (5-26)

2( LI]—lTvT\;r Lh-1)M (5-27)

2112‘;( Le+1 = L) (Lsg — LM (5-28)

Finding the weighted sum of all the derivation ajuition b-22) and setting it to O,

gives a formula that allows a matrix factorizattorfind M:

M(LTpTR Lo) + M(LATpTR Ly)
+ M (LOTUTY Lo) + A (Lh-g Ty Ty Lng)
n-1
S T L T T LT (L T+ T L)
= (529
n-1 .
+ A3 (Lisp — L)' (Lsr — L)
t=1

= MLoTpRy + ALTRR,
The result of using this calculation to generatetiomis shown in Figure-3. The

original motion characteristic is shown on the.l8fhe starting pose and ending pose of the
original motion is used as input to the algorithesctibed in this chapter. The resulting motion

shows variability in the total speed and angul@esh
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Figure 5-3 Total speed, angles, and angular velocity dfiemocalculated using M-space.

5.2.3 Characteristic of Motion Speed

The algorithm described so far minimizes the tefsed at the beginning and the end. It

does not constraint the speed of motion in the bofdyhe motion. Different motions have

different speed trajectories, and different moticas be created by changing the speed of the

angles. An example of a speed trajectory based @umeion is a quadratic function speed

trajectory, which peaks at the middle of the mation

76



Total Speed Reconstruction Errar

13

12

11

10

walking
running

5 10

1 | 1
20 25 30
Mumber of Key Foints

15 35 40 45 alll

Figure 5-4 Mean error of speed reconstruction on origisamples

Twelve walking motions and twelve running motionsrev selected from the motion

capture database, each with different subjects. mution of the right foot during the

performance of a single step is used for speed/sisallThe speed for each frame was calculated

by taking the difference between subsequent frarB®ery motion has different distances

traveled and different number of time frames. Tfeeethe motion must be normalized. A set of

regularly spaced key points, including the first@he last speed were selected. The speed at

each key-point was then calculated. From this nee2¥bnormalized speed trajectories from the

motion samples were created. The prototypical sgeeca motion is the average of those

normalized speed trajectories.
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To reconstruct the speed for a motion of n franties,interval centers were matched to
the frame index. A cubic spline algorithm [91] wased to create a curve that would best fit all
the key points. This method was used to reconsthecspeeds of the original samples. The mean
of the error of the reconstructed speed with resfmethe original sample speed for key points
between 3 and 50 was calculated and is shown uré&tg4. The figure shows that the error rate

does not significantly decrease after 13 key points
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Figure 5-5 Mean speed trajectory of running motion andkivey motion
Figure5-5 shows the normalized mean speed trajectoryufuming and walking motions
in 13 key points. The blue lines represent the inmmotion, while the red lines represent the
walking motion. The thick lines represent the mealue or the prototype speed. As expected,
different motions require different speed charasties, and therefore this motion trajectory can

be used to generate different motions. Hotelling’'squared method was used to calculate the
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statistical significance of the multivariate diffeices of means [92]. This test shows that the

means of the two types of motions differ signifittpifp<0.01, 3 1517.2947)

5.2.4 Speed Trajectory Matching
Given a prototype speed, the next task is to usedbeed to create a motion. The total

speed can be calculated fromy as shown in%-30). To match the velocity to a set of speed

constraint S = {§, ... Sy} the following constraint could be used.

Qy = \/ﬁ (5-30)

[0 - 5 (&-31)

To simplify this problem however, we use the sqdatetal velocity in $-32) and

minimize
- A2 —
Oy =Q% = Z@% (5-32)

(5-33)

Finding the derivation of this formula and thenngsit to calculate the motion with
Equation $-33) turns out to be complex. The reason for iffeedity comes from the w variable
being raised to the power of 4. Instead of tryinglérive this formula, we calculate the Jacobian
with respect to each individual Equation (5-34). Based on Equatidt30), it can be inferred

that each partial derivative is equal to the vaue

J= dG)X dG)X dG)X
deyq dey o dwy n (5-34)

=[2a)5(1 20y -+ wa,n]
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In order to match the speed we can add the conttrahown in Equation5¢(35) and
Equation §-36). The termAm represents the moment velocity. Based on this mome&ocity

we can find the moment for motiayiv
) 2
thl..nHJA@l i\ ‘@t)H (5-35)

2
thl_nHJT\,T LiAM - (vt2 —G)t)H (5-36)
The derivation of this with respect &M is:
24 T,ITIT L)aM -2 1,37 (V2 - ©,)) (5-37)
The solution to M can be found through iteratiofteAevery iterationAM is added to M
as shown in Equatiorb{38). In order to use this iteration, Equati®2@) must be changed to

use both M and M.

Mt"‘l = Mt +AM (5-38)
To find AM for each iteration, Equatiorb{39) must be minimized. EquatioB-89) is

similar to the original M-space equation shown quétion 6-22), with an extra speed trajectory
matching factor added. By calculating the derivatod Equation %-39) and setting it to 0, the

most optimal value oAM can be calculated using Equation (5-40).
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2 2
Aluxo “TTLo(M +AM )H +/11Hxn ~TTL, (M +AM )H

T 2 T 2
+ A[TT Lo(M +AM )H # ATT Lo (M +AM )H

2
+ A (TR Lyag — TR Ly +Ty L)(M +AM )H (5-39)
t

+ 253 [Lia(M +BM) =L (M +AM)|°
t

2
Ay 3 |oT] Lam - (2 —@t)H
t

M(LETRTR Lo) + A (LpTpTp L)

+ (LT Lo) + A (Lh—Ty Ty Lyog)
n-1

A Y (TP L —Tp L +Ty L)' (TR Liag ~TR L +Ty Ly) |AM
t=1
n-1 -

A3 (Lesr— L) (Lisr — L)
t=1

n—1 (5-40)

A 2 (LT 3T L) = (T T (W - ©y)
t=1

= ML{TpXg = ML TpM + AL Tp X, = 4L TpM

- LT M =Ll T M
n-1
~h Y (ML -TeL +T/ L)' M
t=1
1 T T T2
—Agz(Ltﬂ—Lt) M+ 4L T, (v —6y)
t=1
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The result of using this calculation to generatetiomis shown in Figures-6. The

original motion characteristic is shown on the.l8fhe starting pose and ending pose of the

original motion is used as input to the algorithasctibed in this chapter. The right data shows

the motion trying to match quadratic function speBde resulting motion shows variability in

the total speed and angular speed.
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Figure 5-6 Total speed, angles, and angular velocity afiomocalculated using Speed

Trajectory Matching
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5.2.5 Multiple Spaces

The body space is divided into 5 segments as destin ChapteB.3. To calculate the
motion for the whole body, each segment is caledlaeparately. The angle of joints that are in

multiple segments is simply the average of the engllues for that joint in all segments.

Equation §-41) describes the calculation for thtg foint angle, which is an average of the

angles in all spaces that contains the k jointengl

Zgi,k

g = (5-41)

n

5.3 Results

Two types of evaluation are performed on this atgor. The first evaluation is aimed at
measuring the similarity between a motion generatethis algorithm and a motion taken from
the motion capture data. To do this, the angleethfice at each frame is calculated. A visual
observation of the motions is also performed. Theord evaluation attempts to asses new
motions synthesized with the M-space. Visual oletom of the created motion is used in
assessing the resulting motion.

Table5-1 Number of dimensions per M-space segment

Body Number of
Segment Dimensions
Right hand 18

Left hand 18

Head 18

Right Foot 8

Left Foot 8
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The body space is divided into 5 segments. By usitggminimum distance between
actual motion and motion created using M-spacentiraber of dimensions used are shown in

Table5-1.

5.3.1 Motion Reconstruction

The first evaluation compares a motion created iapgdce and one existing in the motion
capture data. Four clips were selected from eiifieright hand or the right foot segments. The
clips chosen had a speed trajectory that was sindla quadratic function. The clips start off
slow, peak near the middle, and slow down agaim tieaend. The start pose and the end pose
was given as input to the various algorithms tested

The results of three different motion generatingoathms were compared. The first
algorithm is a simple linear interpolation betwehe first pose and the end pose. The second
motion algorithm uses the M-space algorithm desdriin chapteb.2.2. The third algorithm is
the speed trajectory matching algorithm of chape.4. The trajectory of the speed was a
guadratic function with a peak of 5 degrees/frame.

Table5-2 Euclidian distance for the right hand segmeantioms

Clip Number of | Interpolation | M-Space Speed
Frames Trajectory
Clip1 41 13.9794 13.9380 14.2215
(7.4394) (7.9521) (8.6094)
Clip 2 32 10.2899 12.3045 9.0544
(6.0120) (7.2574) (5.3202)
Clip 3 13 14.3558 14.6976 13.7084
(9.0049) (8.6656) (7.9130)
Clip 4 47 32.4070 33.0236 31.0832
(15.5398) (16.9043) (14.9078)
Total 133 19.6405 20.3638 18.8868
(14.4471) (15.0579) (14.0731)
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The total Euclidian distance between the joint asglas calculated for each frame. The
farther the distance of the natural motion andgdeerated motion, the less natural the motion is
deemed to be.

The mean and standard deviation (in brackets)doh algorithm is shown in Tab2.
Based on the data found here, all three algoritbreate motions which are similar in terms of
naturalness. Paired T-tests shows that the diffe®nvere not statistically significant (t score
were -0.3997 for methods 1 and 2, 0.4310 for metHodnd 3, and 0.8265 for methods 2 and 3).

Similarly, Table5-3 shows the mean and standard deviation of distafor the right foot.

It is clear here that the speed trajectory algoriferforms better for foot motion than the other
algorithms. Paired T-tests shows that the diffeeenare statistically significant for p<0.005 (t

score were —8.0657 for methods 1 and 2, 3.980&thods 1 and 3, and 10.4810 for methods 2

and 3).
Table5-3 Euclidian distance for the right foot segmeitions
Clip Number of | Interpolation M -Space Speed
Frames Trajectory
Clip1 37 15.7634 26.1878 8.7737
(7.3665) (14.8549) (4.5666)
Clip 2 31 14.1270 31.2707 11.3426
(9.0573) (18.2234) (7.7485)
Clip 3 21 8.7946 44.1516 4.6237
(4.5610) (30.6322) (2.8625)
Clip 4 41 13.0720 25.6661 11.0984
(9.7789) (19.2689) (7.0715)
Total 130 13.7276 28.7152 9.9472
(8.7391) (19.5668) (6.6033)

A second evaluation was performed on this data.adkiwg motion was taken from the
motion capture database. The original walking moti@as of 60 frame length. To generate the

motion, the first and the last frame of the walkingtion were given to the interpolation and the
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M-space algorithms. The speed matching algorithth @wiquadratic function approximation was
used. The maximum sum of angle speed per frame3mdsgrees for the arms and left leg
segments, 2 for the head segment, and 5 for thelag segment.

Figure 5-7 compares various walking motion created by legguterpolation and using
motion space. The original walking motion is shawrthe top row. The second row shows the
result of linear interpolation. The third row shows result from the M-space with speed

matching.

Ifigure 5-7 Camparison of walking motion

The problem with linear interpolation can be seaethe right leg segment of the motion.
In a normal walking motion shown in the first roa,person bends his knees to lift the leg
forward. This is not seen in the motion createdribgrpolation. The motion drags the feet from
the back to the front. The M-space motion createdhe other hand shows some knee bending

and as a result a small leg lift occurred, albettas high as the lift in the normal walking motion



4 Total Bpeed For All JToints

o 20 40
Angles Per Frame

e ————

R 30 40 60

5 Change per Angle per Frame

i
|:I L i e S q__;---i"._l‘_-_ el it il

Total Bpeed For All Joints

2

1

Oq 20 40
86 Angles Per Frame

[:l s S
1004 20 40 60

1 Change per Angle per Frame

0 e ™

] -1
4 -2
0 20 40 0 20 40
Total Bpeed For A1l Joints 5 Total Bpeed For A1l Joints
4
2
0 20 40 0 20 40
20 Angles Per Frame - Angles Per Frame
o 40|
40 _
20 20 |
0 0
20 20|
488 20 40 co Wl -400 20 40 60
i Change per Angle per Frame 4 Change per Angle per Frame
2 2
0 o
g -2
_d -4
0 20 40 o 20 40

Figure 5-8 Speed and angle comparison of right hand aghit fioot
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Figure 5-8 shows the speed and angles for both the right t{top) and the right foot
(bottom) segments. The left graphs show the origipged and angle per frames. The right
graphs show the speed and angle per frames of ti®mmmcreated by the speed trajectory
matching algorithm. The motion generated by theedpeajectory matching algorithm follows a

path that in most joints mimics the path in theioral motion.

5.3.2 Pose Based Motion Synthesis

In most applications of human animation, there isead to synthesize new motions
based on existing data. The method described srthiesis allows different ways of creating new
motion to meet an application’s need.

Motions are generated based on the start and esespBy changing the end pose, new
natural motions must be generated. The top figofeBigure 5-9 shows an animated human
pointing upwards. New motions are generated by gingrthe direction that the human points to.
Two new motions were generated, one pointing tdrtiv@ and one pointing to the side.

The first pose for each motion was taken from thgirmal motion capture data. The multi
space pose generator described in Chaptemwas used to generate the end poses. The speed
trajectory matching algorithm with a quadratic ftiom motion trajectory with a peak of 5 was
used for creating both motions. The algorithm whle & create a novel motion that meets both

speed and position constraints.
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Figure 5-9 Creating new pointing motions using natural s

5.3.3 Speed Based Motion Synthesis

An alternate way of generating new motions is tangfe the speed of various parts of the
body. However one must be very careful that thelanatemains natural, even when the speed
changes. This method allows a user to set the sptdd for a segment. This allows the user to
control which segment needs to change, while atsdmae time not worry about changing

individual joint angles and how they relate to @amether.
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Figure 5-10 Effect of a different speed trajectory to mwoti

The animated figure in Figurg-10 is performing traffic control actions (wavirgrs
through an intersection). The figures on top shbes ¢riginal motion. The speed of the right
hand segment was changed to have a peak of 8. Kowe starting and ending poses remain
the same. The figures on the bottom show the ragutiotion after the speed was changed. Due
to the change of speed, the character had to nfevéands in a curved trajectory in order to
meet both positional and speed constraints. Asualtref this change of speed, the end motion is
significantly different from the original motionidure5-11 shows the speed and angle per frame
of the right hand segment. The left graphs showotiginal motion capture data while the right

graphs show the data after the change of speed.
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Figure5-11 Speed and angle per frame after fitting witkvrirajectory

A prototype speed trajectory (as shown in chapt@r3) can also be used to generate

motions. A walking motion was taken from the moticapture database. The original walking

motion was of 86 frame length. A 60 frame motionswaeated to speed up calculation. To

generate the motion, the first and the last frarhéhe walking motion were given to the

interpolation and the M-space algorithms. Instefdnatching the speed at all frames, speed

were matched every 2 frames. In essence, this altbe algorithm to choose a more natural
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speed for some frames and not make unnecessarymeat®just to meet the pre arranged speed

constraints.
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Figure 5-12 Speed trajectories for walking and running it

Figure5-12 shows the speed and angle per frames gendrpttds algorithm for two
prototype speed trajectories, a walking and a mgumotion that starts and ends with the same
pose. Figuré-13 shows the results of synthesizing a motionrgathose speed trajectories. The

top images show the original motion taken from mhetion capture data. The middle images
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show the synthesized walking motion while the hottonages show the synthesized running

motion.
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Figure 5-13 Walking and running motions generated frontqiygpe speed trajectories. The top figures shovotiggnal motion. The

figures on the second row shows generated walkiigom while the figures on the third row shows g@ted running motion
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6 Conclusion and future work

6.1 Conclusion

This thesis describes a set of algorithms thattesematural spaces, subspaces of
all possible poses and motions, and how to uttlese subspaces to create more natural
poses and movement.

The skeletal model is divided into multiple ovepapy segments. PCA is
performed for the motion capture data in each segnide resulting space is called the
natural space. Inverse kinematics on the PCA sfgaused to create constrained poses.
Furthermore to retain the relation between theousrisegments, an effector space is
created consisting of the coordinates of 8 encttdfs / bones.

Naturalness was measured by calculating as lodiHd@d of a set of poses
created by an algorithm given a model of naturandfhe mean and variance of the
motion capture data was calculated and used agataneter for a normal distribution.
This normal distribution of data is used as the ehdor comparing naturalness of poses.
The likelihood is calculated by calculating the lpaibility density function (pdf) of poses
to the model.

Resulting poses are most natural when the numbBIC# dimensions is around
50% of the original number of dimensions. A lowanmber of dimensions severely limits
the poses that the algorithm is able to use, thexetft is not likely to find one that meets
the constraints. A high number of dimensions ondter hand give too much freedom
on the resulting bone angles. The relationshipsédxn the bone angles are lost, resulting

in unnatural poses.
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The algorithm proposed here creates poses thaimare natural compared to
traditional iterative Jacobian and the single PQ#ace method. As predicted the
traditional iterative Jacobian performs the womss, it focuses on finding solutions
without taking naturalness into account. The sirf®A solution creates relations over
body parts that may not really exist, and are a@hé&re due to insufficient learning data.
By breaking the space into multiple segments, dtgsrithm is better place the bones into
a pose that fits the constraints, while at the same keeping it natural.

To create motion, a motion space was created flmrphase space. The phase
space includes the angle of the bones as welleaspghed of each angle. Similar to the
pose space, the skeletal model is also segmerttethnsame space.

Given a starting pose and an ending pose, theigdgodescribed in this thesis
creates the inner poses in order to create a moli@mngle vector represents each phase
of the motion from the starting pose to the engoge. The motion generated algorithm
searches through the motion space to fill out #aetar with motion phases that meets the
constraint.

Traditional linear interpolation assumes changesjoint angles are always
constant. The motion capture data however showshlsais not always true. With linear
interpolation the angle of a joint at any time &iways a linear product of t and the angle
speed. The speed of joint angles in natural motioanges constantly and cannot be
easily replicated by linear interpolation.

The first algorithm proposed finds a solution bynimizing the beginning and
ending speed. This algorithm is able to create ongtithat have variance in its speed,

similar to natural motion. The second algorithmpgmeed goes even further by allowing a
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user to control the speed of the motion at eagh Jteerefore the user can select a speed
curve (such as a simple quadratic curve) which dlgorithm tries to match. This
algorithm is also able to create motions with Maleaspeed for each joint, creating a
more natural motion.

The work described here shows that the use of phellteduced dimension space
is a feasible alternative in generating poses amtioms. By utilizing the statistical
properties of motion capture data, these methodsrgée more natural looking poses and

motions compared to traditional methods.

6.2 Future Work

There are various directions where this work caeXjganded. Some of the areas
for expansion include a more thorough study of dapéimization, methods merging, and
evaluations.

Chai and Hodgins dismissed the use of global PCieir work because it over-
generalizes the data [93]. One reason for thikasthey use global PCA instead of the
multiple space method described here. Even theiptaulspace method can be broken
down further. Some have used techniques that worknotion capture data for specific
movement [79]. Preliminary studies by this auttsirows that categorizing motion and
using different category results for the motiontoae data results in different motions.
Further study can be performed to utilize fully #pecific properties of each motion.

Different emotions elicit different types of movemi¢21]. PCA has been used to
generate different walking movement based on emstif¥7]. This work can be
expanded by using emotion based motion captureshriting motions and poses that is

typical of an emotion.
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Quaternion representation of joints has some adgastover Euler angles [78].
Various PCA algorithms on motion have been usedguthis quaternion representation
[78], [81]. A comparative study for multi space P@Qsing quaternion as compared to the
current Euler angle is needed.

No optimization or algorithmic analysis is perfomnen the current algorithm.
Therefore it is impossible to know whether the althon here is suitable for real time
systems. The complexity of this algorithm comesfiftinding the inverse of matrices. As
some of the matrices are sparse, it may be pogsilsigeed up the inverse calculation.

The algorithm described here can be easily incatpdrinto other programs. The
pose generating mechanism can be used in the RRihsalgorithm proposed in
Yamane [63] and Pan [64]. The motion generatingritlygm does not necessarily need to
take as input the results from the pose generatiggrithm. All it needs is the skeletal
configuration for the starting pose and the englioge.

The assumption used in this work is that motiotrassferable between subjects
and body types. One of the findings of Pronostletsathat different body will have
different correlation between joints, and thus etét type of movement [66]. Future
research can weigh in on how to use the body irdtion to transfer or change the
natural space.

In this thesis, naturalness is measured objectithetyugh the use of a probability
distribution function. It would be interesting teeswhether the poses and motions created
here are natural according to direct observatiohdopans. To test the naturalness of the
motion created, subjects may try to determine {@dich two motions were generated by

a real human, and which were generated by thigighgo. If the subjects were not able to
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discern which is which, it can be concluded thatdlgorithm proposed creates animation

of natural motion.
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APPENDICES



Appendix A. Multiple Space PCA Results

The following figures show selected comparisonuwiiting the iterative Jacobian, Single
PCA, Single PCA +, and Multi PCA algorithms as ddsd in Chapter4.3 on various
constraints. For all figures, the skeleton shovesrésults of running the respective algorithms in
order from left to right.

In all of the following figures, the Multi PCA fouha solution pose that meets the
constraints set. The other algorithms may also iplysdiave found a solution pose to the

constraints.
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Figure 6-1 Results of running the pose generation algarglon right hand constraints only
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Figure A-2 Results of running the pose generation algorglon right hand and left hand

constraints
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Figure A-3 Results of running the pose generation algargton right foot constraint only
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Figure A-4 Results of running the pose generation algorglon right and left foot constraints
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Figure A-5 Results of running the pose generation algorgton hands and foot constraints
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