

SYNTHESIZING REALISTIC ANIMATED HUMAN MOTION
USING MULTIPLE NATURAL SPACES

By

Reza Ferrydiansyah

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Computer Science

2011

ABSTRACT

SYNTHESIZING REALISTIC ANIMATED HUMAN MOTION
USING MULTIPLE NATURAL SPACES

By

Reza Ferrydiansyah

When animating virtual humans, it is important that the movements created are

realistic as well as that they meet various constraints. One way to create motion, given a

starting pose, is to first find an ending pose that meets the specified constraints. Then a

motion that translates from the starting space to the ending space is computed. Traditional

inverse kinematics method are able to find poses that meets constraints, however these

poses are not always natural. Linear interpolation between a starting pose and ending

pose can be used to create motion. Once again however, the interpolation method does

not always create motion that is natural.

This thesis proposes the creation of a natural space. The natural space is a hyper-

dimensional space in which every point in this space describes a natural pose. Motion can

be created by traversing over the points in this space. The natural space is created by

reducing the dimensionality of motion capture data using Principal Component Analysis

(PCA). Points in the reduced space retain the characteristic of the original data. Multiple

natural spaces are created on different segment of the human skeleton.

This thesis describes a method to generate new constrained natural poses that are

natural. The poses synthesized are more natural than traditional inverse kinematics, and

single space PCA. Motion is created through a space consisting of pose configurations

and angular speed. A method to generate realistic looking motion based on this space is

presented in this thesis.

Keywords: Principal Component Analysis, Inverse Kinematics, Computer Graphics,

Human Animation, Naturalness, Skeletal Model

 iv

Dedicated to my beautiful wife Andriana and my energetic son Rivian

 v

Acknowledgements

It is finished.

All praises to Allah, God of the Universe, through his blessings, I was able to

finish this dissertation and obtain my PhD at this fine school.

Throughout this long journey I have encountered so many people who have made

this work possible. First and most importantly, my wife and soul mate, Andriana, who is

my inspiration and who has kept me focused on finishing this work. My parents have

always given me support and encouragement, even if they do not understand anything

about computers, and without them I would not be where I am today.

Of course, this work would be impossible to finish without my advisor Dr Charles

Owen, who taught me what a PhD dissertation is and isn’t. Dr Owen’s advice was

priceless through the whole process of finding a topic, doing the experimentation, and

writing the thesis. I have also received generous guidance from my committee. Dr Yiying

Tong helped me find the ‘Aha’ mathematical formula moment. Dr Frank Biocca and Dr

Joyce Chai’s gave me a different set of very interesting viewpoints that made for some

very interesting ideas. I would also like to thak the CSE 101 instructors: Dr Jo Smith,

Kevin Ohl, Helen Keefe, Judy Eberlein, Erik Eid, and Vaughn Anderson of whose course

I was a big part of during my PhD.

Throughout my time here, I have been blessed with meeting other students who

share the same enthusiasm for learning. I will always be thankful of Metlab’s Lisa

Rebetsnitch, Annette Lettsome, Fan Xiao, Kayra Hopkins, Jerry Pinero, Zubin Abraham,

and Sarah Coburn for their part in dissecting my work, often repeatedly. A special shout

also for my fellow CSE 101 crew who I spent so much time with: John Hettinger, Jacob

 vi

Brown, Alex Peer, Jignesh Patel, and Mayur Mudigonda for their friendship and

conversations regarding all things.

It is also important for me to also acknowledge the people that have shaped my

path towards where I am know. Dr Yudho gave me my first programming in Basic book

in Melbourne. Dr Windy Gambetta and Dr Bambang Parmanto conspired to send me to

the United States to pursue my studies. Special thanks to Dr Wayne Dyksen who

championed me to the admission committee here at MSU.

Finally I’d like to thank the Elhedon Indonesian community including Putri Arum

Jati, Perdinan, Mujiburrohman, Dwi Agus Yuliantoro, Yudi Wicaksono, Ririn Seamount,

Irfan Prasetya, Saraswati Haruming, Tiara Ahmad, Ainur Rosyid, and Arinanda Mamahit

among others who have kept me sane during my PhD years.

Is it finished? No, a Phd is just the beginning.

Reza Ferrydiansyah

 vii

Table of contents

List of Tables ... ix

List of Figures ... x

1 Introduction... 1
1.1 The problem of natural movement.. 2
1.2 Current Methods for Natural Animation... 5
1.3 Proposed Solution ... 7

1.3.1 Thesis Contribution...9
1.4 Document Structure .. 10

2 Pose and Motion Calculation.. 11
2.1 Kinematics Method... 12
2.2 Dynamics Methods ... 15
2.3 Multiple Constraints..17
2.4 Data driven animation... 18

2.4.1 Motion blending.. 20
2.4.2 Motion Synthesis .. 22

3 Natural Spaces .. 24
3.1 Creating Natural Spaces.. 24
3.2 Principal Component Analysis ... 27

3.2.1 Use of PCA in human animation .. 29
3.2.2 Creating a Pose Space from Motion Capture Data 30
3.2.3 Characteristic of Synthetic Data in Natural Space............................ 32

3.3 Multiple Natural Spaces.. 36
3.3.1 Effector Space... 37

4 Poses ... 39
4.1 Lookup strategy .. 39

4.1.1 Results... 41
4.2 Inverse Kinematics in Pose Space .. 45

4.2.1 Conquering joint limits ... 49
4.2.2 Naturalness.. 50
4.2.3 Number of Dimensions ... 52

4.3 Multiple PCA Space Inverse Kinematics ... 54
4.3.1 Estimated Effectors Space .. 55
4.3.2 Matching overlapping angles.. 56
4.3.3 Weighting Overlapping Angles .. 57

4.4 Results... 58
4.4.1 Accuracy ... 58
4.4.2 Naturalness.. 60

 viii

5 Motion... 67
5.1 Characteristic of natural motion.. 67
5.2 Utilizing a Motion Space .. 69

5.2.1 The Motion Space... 71
5.2.2 Calculating Motion ... 72
5.2.3 Characteristic of Motion Speed .. 76
5.2.4 Speed Trajectory Matching... 79
5.2.5 Multiple Spaces...83

5.3 Results... 83
5.3.1 Motion Reconstruction.. 84
5.3.2 Pose Based Motion Synthesis ... 88
5.3.3 Speed Based Motion Synthesis... 89

6 Conclusion and future work..95
6.1 Conclusion .. 95
6.2 Future Work .. 97

Appendix A. Multiple Space PCA Results ... 101

References... 108

 ix

 List of Tables

Table 3-1 List of bones for each segment... 37

Table 4-1 Accuracy comparison of various pose generation algorithm 42

Table 4-2. The effect of different number of dimensions to naturalness and accuracy.... 52

Table 4-3. Accuracy comparison of all algorithms... 59

Table 4-4. Average log likelihood of all algorithms...60

Table 4-5. Average log likelihood comparison of the Inverse Jacobian and Multi PCA
algorithm ... 64

Table 4-6. Average log likelihood comparison of the Single PCA and Single PCA +
algorithm ... 64

Table 4-7. Average log likelihood comparison of the Single PCA and Multi PCA
algorithm ... 65

Table 4-8. Average log likelihood comparison of the Single PCA+ and Multi PCA
algorithm ... 65

Table 5-1 Number of dimensions per M-space segment .. 83

Table 5-2 Euclidian distance for the right hand segment motions.................................... 84

Table 5-3 Euclidian distance for the right foot segment motions..................................... 85

 x

List of Figures

Figure 1-1. An example of a skeleton model for human animation. The skeleton model is
used based on [16]. ... 3

Figure 3-1 Weight vs. Horsepower data and the PCA axis. For interpretation of the
references to color in this and all other figures, the reader is referred to the electronic
version of this dissertation. ... 27

Figure 3-2 Transformed data to PCA space.. 28

Figure 3-3 PCA data reduced to just one dimension .. 29

Figure 3-4 The coordinates of the right hand from both the original data (black) and the
natural pose samples (grey). The top-left picture is the cutaway x-y coordinate view,
the top-right, x-z and the bottom z-y... 33

Figure 3-5 Naturalness of random poses generated by the P-space, random (with
distribution), random, and from the motion capture data ... 35

Figure 3-6 Division of the skeleton as shown in Figure 1-1 into multiple segments 36

Figure 3-7 Location of effectors for effector space. The coordinates of joints that are
colored in red are stored used to create a lower dimensional space. 38

Figure 4-1 Mean angle difference of poses created by CPG (both Jacobian and CCD) and
iterative Jacobian method.. 43

Figure 4-2. Each frame shows the result of running the CPG algorithm for each of 6
poses. The pictures on the left side are the front view of the pose; the pictures of the
right side are is from an angled view from the right side of the animated humans.
The leftmost pose in each frame was created using the NSPA algorithm followed by
the CCD algorithm, the middle pose was calculated using CCD, and the rightmost
pose was calculated using the iterative Jacobian method. .. 44

Figure 4-3. Graph of number of dimensions vs accuracy and naturalness 53

Figure 4-4 . Graph of accuracy of all algorithms.. 60

Figure 4-5. Average log likelihood of all algorithms graph... 62

Figure 4-6. Unnaturalness is caused by extreme leg movement in single space PCA. The
figures were created by (from left to right) regular Jacobian, single space PCA,
single space PCA +, multiple space PCA ... 63

 xi

Figure 4-7. Unnaturalness is caused by extreme leg movement in single space PCA. The
figures were created by (from left to right) regular Jacobian, single space PCA,
single space PCA +, and multiple space PCA .. 64

Figure 4-8. Graph of pairwise comparison between algorithms....................................... 65

Figure 4-9 Sample result poses for 2 constraints (hands) problems 66

Figure 5-1 The speed and angles of natural motion and a linear interpolated motion...... 68

Figure 5-2 Motion vector representation used in this thesis ... 72

Figure 5-3 Total speed, angles, and angular velocity of motion calculated using M-space.
... 76

Figure 5-4 Mean error of speed reconstruction on original samples 77

Figure 5-5 Mean speed trajectory of running motion and walking motion 78

Figure 5-6 Total speed, angles, and angular velocity of motion calculated using Speed
Trajectory Matching.. 82

Figure 5-7 Comparison of walking motion... 86

Figure 5-8 Speed and angle comparison of right hand and right foot 87

Figure 5-9 Creating new pointing motions using natural spaces...................................... 89

Figure 5-10 Effect of a different speed trajectory to motion .. 90

Figure 5-11 Speed and angle per frame after fitting with new trajectory......................... 91

Figure 5-12 Speed trajectories for walking and running motion 92

Figure 5-13 Walking and running motions generated from prototype speed trajectories.
The top figures show the original motion. The figures on the second row shows
generated walking motion, while the figures on the third row shows generated
running motion.. 94

Figure 6-1 Results of running the pose generation algorithms on right hand constraints
only ... 102

Figure A-2 Results of running the pose generation algorithms on right hand and left hand
constraints ... 103

Figure A-3 Results of running the pose generation algorithms on right foot constraint
only ... 104

 xii

Figure A-4 Results of running the pose generation algorithms on right and left foot
constraints ... 105

Figure A-5 Results of running the pose generation algorithms on hands and foot
constraints ... 106

 1

1 Introduction

Object animation in computer applications is virtually a requirement in current computer

technology. With the rise in ease of access to computer graphics technology, animation is now

used in a wide range of applications as an interface element.

Animation describes the temporal manipulation of elements in a computer graphics

system. Animations describe scenarios, events, and other information allowing users to quickly

understand what is happening. Animation allows users to easily manipulate scenarios as the

application allows, allowing better understanding and insight in the various scenarios and the

relation of objects in those scenarios. One of the most important fields of endeavor in computer

graphics and animation is the creation of apparently realistic animations

The creation of animated virtual humans can be thought of a sub-problem within this

field. The terms animated human or virtual human in this paper refer to human characters that

has been rendered by the system on a display or to use as an element of a virtual/augmented

reality system. An autonomous character that can make its own decision based on an algorithm

(albeit in a limited way) is called an agent. An agent that is presented as a virtual human is

referred to as an embodied agent. Creating realistic human animation requires realistic modeling

and rendering of objects, modeling of the object’s physical characteristics, creation of realistic

object behaviors, and object interaction with the user and other objects in an environment [1].

Virtual embodied agents are graphical renderings that represent humans in virtual and

augmented environments. Humans respond to animated humans whether controlled by a real

person, or by an algorithm [2]. Virtual humans have been used as characters in animated movies

[3], actors in interactive story systems [4-6], controllable agents in computer games, tutors in

educational software [7-9], and presentation agents [10]. They can also appear as a guide to a

 2

person in an unfamiliar land, serve as a trainer who demonstrates and oversees, or provide the

interactive component of a future user interface. These virtual humans can also be controlled by

humans or act in a predefined sequence of actions.

Due to our everyday interaction with other humans, we are used to seeing and noticing

natural movement everyday. When embodied agents do not act naturally even only slightly, the

user’s focus will be distracted by the unnaturalness of these virtual humans [11-13]. A prime

example of this is in the movie Polar Express, where critics said that the movie was a good

movie story wise, but they were bothered by the unnaturalness of the eyes [3]. Unfortunately this

was one of the bad points of the movie which was oft repeated.

1.1 The problem of natural movement

There are two main reasons why the animation of natural movement is difficult. First, the

human body consists of a set of parts which are joined together. Each part moves according to a

specified set of degree of freedoms. Animation for a virtual human body is usually achieved

through the use of a skeleton model [14], [15]. The skeletal model consists of various joints.

Each joint has up to 3 degrees of freedoms. The joint allows the bone to rotate in the x, y, and z

axis. The rotations are adequate to simulate any human pose. Chapter 2 discusses the formulas

used to calculate position based on these bone rotations in more detail.

Figure 1-1 shows the skeletal model used for this thesis. This skeletal model is based on

the skeletal model for the ASF specification [16]. The skeletal model consists of 30 joints and 56

degrees of freedom.

 3

Figure 1-1. An example of a skeleton model for human animation. The skeleton model is used

based on [16].

Because there are multiple joints and bones, the human body is flexible enough that it is

able to achieve the same task with multiple poses. There are, for example, different poses for a

person to retrieve something that is on top of a table. There are many possible different

combinations of angles for each pose. Many of them will be deemed unrealistic to the trained

human eye.

This flexibility is great for humans, but a headache for animators. Out of all these

possible poses, an animator must choose a ‘best’ one. This usually means that the animator must

choose the most natural pose or the pose that sets the human up for the next movement sequence.

 4

What does it mean to have a natural pose? In this paper, naturalness is defined simply as

the pose selected by most people given the same constraints. The constraints are positions and

orientation of body parts, positions of obstacles, and external physics constraints (such as gravity

or motion).

 Whether a motion or even a pose is deemed to be natural or not will be observed by

different criteria. Naturalness may be graded based on energy, meaning it will be based on the

notion that the human will take as small, or least costly, a motion as possible to achieve the

constraint, or to hold that constraint for a long time. Naturalness may also be based on the

starting pose. If we start with an awkward starting pose, the natural thing to do to get to a

constraint may simply continue with the awkward pose even though it is inefficient in the long

run.

Another very important factor is the environment. For example the position of target

objects (where the animated human wants to touch or avoid) is obviously a primary factor in the

resulting pose or animation. The positions of other (non-target) objects are also important

because animated humans in most cases are assumed to follow the same physical rules that real

humans adhere to. Therefore it is very important that human body parts do not, for example, go

through any of the available objects.

Because of interaction requirement, sometimes a virtual human must face a certain

direction. Humans naturally point their eyes at what they are attending to or attempt to maintain

eye contact with the user. Eye contact can also be used as cue for the users [17]. For example if

the application wants to induce the user to pay attention to a particular object, the virtual human

may be made to look at the object.

 5

Finally naturalness may also depend on emotions and mood. People with different

emotions tend to perform different types of actions [18]. A naturally disgusted motion will be

different than an angry motion. A successful virtual human agent must take all of these factors

into account when performing a particular motion.

1.2 Current Methods for Natural Animation

In applications where the virtual agent has no need to think, plan or interact with the

environment, or in other words have no autonomy, an artist determines the action of the virtual

human at each time step. There is no internal agent representation of the current state or of the

actions performed by the agent. Everything in the world is fully controlled by the world designer.

This makes this class of agent relatively easy to create. However, it can be quite tedious to create

animations frame by frame. .

Tomlinson [19] refers to agents having non-autonomous behavior as linear agents

because this method is not suited to characters that must interact with users. Consequently this

method is of more interest to those creating motion pictures or other static animations [20], [21].

Tomlinson describes the various differences between linear and autonomous agents as well as

differences in the applications and usage of these agents.

Another way to create linear animations is through the use of scripts. Scripts are code in a

human-readable language that will be translated by the animation engine into movements. Script

languages are usually created by the animation engine developer and used by the artist to create

the animation. Some example of systems based on scripting language are the Improv system [22],

and STEP [23]. Similarly the Jack architecture uses a natural language system to describe motion

and intention [24].

 6

The main difference between scripts and manually created animation is that scripts are

internally known by the agent. Scripts can also make it easier to create new animations as it is

quite easy to copy movement from one part to another (or from one agent to another), and simple

programming constructs such as loops, sequential presentation, and blending of actions can be

easily created.

Because an artist creates individual frames, it is the responsibility of the artist to create

the most natural animation. As artists, they may have the knowledge and the experience to do

this, possibly to even do this well. In many cases the results are human animations that are very

natural. Of course the drawback to this method is that it will take a significant amount of time for

the artist to create each frame and a significant amount of talent on the artist’s part.

Work has been done to create animations that are fully computer generated. Given a set

of constraints, an algorithm calculates the correct angles depending on the starting position and

other factors. An algorithm that calculates a set of angles based on one or more target position is

classed into the inverse kinematics method [25]. The forward kinematics method calculates the

position of each point on the body based on the angles of the joints

In most cases of human animation, inverse kinematics methods are quite difficult to

calculate algebraically. Therefore inverse kinematics solutions are often solved iteratively. The

number of iterations may be quite high and therefore an application may take some time until a

solution converges.

Simple inverse kinematics solution algorithms such as the iterative Jacobian, do not

necessary consider naturalness as a goal. The main objectives of these algorithms are simply to

get a correct set of angles that satisfy the constraints.

 7

In animation where the virtual humans walk, run, or jump, dynamics and spacetime

calculation is often used [26-28]. The dynamics and spacetime calculation are based on physical

forces that apply to each body part. Appendages are influenced by gravity, inertia, and other

forces. By calculating these forces, a more natural movement is generated.

Sampled movement, or motion capture, captures movement data directly from real people.

These people are usually given a suit with reflectors to wear [29], [30]. A set of cameras capture

their every movement. It is impossible to capture all possible motions that a human can perform,

therefore new motion data must be generated by manipulation of the existing data.

Manipulation of existing data can be as simple as splicing the motion capture data and

joining them together to create different motions (motion blending). The motion capture data

may also be transformed to fit different characters (motion retargeting). Finally new motion data

may be generated which are similar to the pre-existing motion data. The difficulty is, of course,

how to generate data that encompasses various positions from the available data and still make

them realistic.

Current techniques are often the result of integration of techniques from multiple

categories. For example, motion can be created via kinematics techniques, then enhanced with

dynamics techniques. Another common example is to use captured motion data and use

dynamics techniques to create a new set of movements that both adhere to physical laws and are

based on motions of a real representative human.

1.3 Proposed Solution

The problem of animation generation can be stated as follow: A starting position angle

that can be represented by the set of angles P0, and a set of constraints C0..k which are the

 8

constraints of all positions in the movement are supplied as input. Some of the constraints may

be hard constraints that must be met, while others may be a set of targets which the motion must

try its best to fulfill. The objective of the algorithm is to find a motion that allows a smooth

natural movement between P0 and Pt and satisfies all constraints at time t.

In general, constraints can be positions of various body part, the angles of each degree of

freedoms, orientation of a particular bone, or the position of other objects that cannot collide

with any body part. In this thesis however, the focus is on Cartesian coordinates of the body part

or effectors relative to the root bone.

The problem with any animation generation is that there are many possible solutions that

meet the constraints. An algorithm must find the correct pose from all possible solution, which

may not be natural. This may entail rejecting unnatural movement, or changing angles to make it

more natural.

However if all possible animated human poses in the search space are natural poses, there

would be no need to attempt to naturalize the poses. The focus will simply be on satisfying all

constraints.

All poses can be placed in a hyper-dimensional configuration space, where each

dimension represents the value of one joint angle. By pruning all points in the space that

represents unnatural poses, it may be possible to use the resulting space to find natural motions.

However, it is difficult to define the limits of the area of these unnatural regions. The next

problem posed is limiting the movement generation algorithm so that it does not wander into

those spaces once the area is found.

The solution proposed in this thesis is to create a hyper-dimensional sub-space where all

movement inside this space is natural (instead of defining pockets of unnatural poses). The idea

 9

is to first determine relationships or correlations between the various angles of the bones in a

natural movement. This correlation data is found by observation of natural captured data.

Principal Component Analysis (PCA) is a commonly applied method that captures the

correlations between values in a vector. PCA can also create a reduced dimensional space with

the strongest correlation between the angles in the natural poses [31]. This PCA reduced space

represents the natural space because points in that space can be transformed into an original

space which represents poses having the same variance as the motion capture poses, and

therefore consists of natural poses. Our algorithm performs the search on the natural space and

each point on the natural space is transformed back to the correct angles.

As PCA is a global statistical method, it summarizes data globally. This method tends to

merge various data together, and as a result, some of the motion details get lost. The method

described here uses multiple PCA spaces, where each space corresponds to a segment of the

skeleton (segments can be overlapping). Each space finds the variance of one segment. This

enables better control of each individual segment, and a better chance for finding natural poses

that meet the constraints.

Natural space will be created from motion capture data. Creating a natural space that

encompasses a wide range of movement will require a large amount of data. However due to the

number of available data, as well as time and financial resources, the data collected will probably

not be large enough. Multiple natural spaces will have to be created from data segregated by

motion type or body parts. The motion generator will need to choose the correct spaces and join

data from multiple natural spaces.

1.3.1 Thesis Contribution

This thesis:

 10

1. Demonstrates that it is possible to synthesize new user-constrained poses and motion

from motion capture data having the same naturalness characteristics as the original data.

2. Describes an algorithm that finds a pose by searching in natural space that meets a user

specified positional targets for multiple effectors.

3. Shows that, by segmenting the body into multiple overlapping spaces, it is possible to

find poses that are more natural than traditional inverse kinematics and regular single

space PCA, while also more reliably achieving specified constraints.

4. Describes a method to measure naturalness of poses based on the probability distribution

function of the motion capture data.

5. Gives details on how to create motion by traversing a natural motion/phase space. This

method creates motion that are quite similar to natural motion compared to straight

interpolation

1.4 Document Structure

The details of kinematics and dynamics calculation techniques as well as data based

techniques are discussed in Chapter 2. Chapter 3 discusses various methods of using a statistical

summary of motion capture data, including the PCA to create a natural space. Chapter 4

describes the algorithm and results of using multiple natural spaces in creating poses. Chapter 5

shows the results of the motion generating algorithm. Finally a conclusion, possible applications

and possible future work is given in Chapter 6.

 11

2 Pose and Motion Calculation

The act of animation is simply rendering multiple frames one after the other at such a

speed that the viewer perceives it as a continuous motion. To create animation, a set of key

frames is generated between one pose and another. The computer interpolates the positions

between key frames, adding additional frames to make a smooth transition between poses for the

viewer.

In the simplest case, an artist creates all the necessary key frames leaving the computer to

fill in the transition frames. If the key frames are spaced fast enough, the resulting interpolated

frames will have a smooth and natural characteristic to them.

The problem that this thesis addresses is when key frames are not created by any artist.

Constraints such as the position or orientation of various body parts and physical characteristics

are given for the whole animation sequence, or for the final pose only. In this case, the key

frames must be generated automatically by the software.

Two ways this can be achieved are to find an end pose then create key frames that lead up

to that pose or to generate multiple pose paths from a starting position and choose one path

which transistions the animated human to that pose.

The algorithm to solve this problem is linked with the human model used. The skeleton

model which is a hierarchical model of human geometry and physical motion is often used, and

is the one that will be utilized for this thesis. The skeleton is a set of rigid bodies which move

relative to each other in a hierarchical structure and move the overlaid flesh with them. Most

models of bipeds in computer graphics systems utilize an internal, invisible armature, the

skeleton of the object, meant to accomplish the same functionality. The skeleton does not need

to conform to an actual human skeleton, either in size, shape, or relative motions, although some

 12

do. The movement of the animated character is specified by the location (position, rotation) of

the skeletal bones. The skin (which is usually a triangle mesh) is correlated with one or more

bones and will move according to the movement of the bones.

Work on skeletal representation began in the 1970’s [14], [15]. Since then, the skeletal

model has been the primary method for human animation. Skeletons have also been used as the

basis for captured motion data [32].

There are many standards and recommendation in creating skeleton, each standard

allowing various bone properties. In most cases, bones are a 3 dimensional object having an

origin and a length. The origin of a bone can be determined from either the end position of its

parent bone [16], an offset from the end position of its parent bone, or an offset from the center

coordinate[33]. Most bones have a rotation value in the x, y, z axis which allows them to move

into various position. Some standards allow scaling in one or more axis or the specification of

limits. The terms joint and bone are used interchangeably, since it is only the joint location that is

utilized. The bone itself is not assumed to have a specific geometry. In general, the length is

provided mainly for display and user interface purposes.

2.1 Kinematics Method

Kinematics method uses angles of bones to perform movement. Forward kinematics is

the calculation of a position of a particular point in the skeleton given various angles of all the

bone in the skeleton. Forward kinematics calculation is a chain of rotations (representing angles

of joints in the correct axis) and translations (which represent bone length). A simple set of

matrix multiplications composes the rotation matrices and translation matrices. The rotation

matrices relative to the x, y, and z axis are given in Equations (2-1), (2-2), and (2-3) respectively.

 13



















−
=

1000

0cossin0

0sincos0

0001

αα
αα

xMr

(2-1)

















 −

=

1000

0cos0sin

0010

0sin0cos

αα

αα

yMr

(2-2)



















−
=

1000

0100

00cossin

00sincos

αα
αα

zMr

(2-3)

A translation (t, u, v) in the x, y, z coordinates can also be represented as a matrix:



















=

1000

100

010

001

v

u

t

Mt

(2-4)

Given the coordinates of the root bone as (xr, yr, zr), the end position (xp, yp, zp) can be

calculated by multiplying the root bone with the rotation of every bone, by the translation (or

direction and length) of every bone Equation (2-5).

××××××



















=



















)()()()()(

11

221111 yyxxzzyyxx
r

r

r

p

p

p

MrMrMtMrMrMr
z

y

x

z

y

x

ααααα

(2-5)

A common problem in animation is to find a pose that will satisfy a constraint that a

particular point on a specified bone is at a coordinate T. This problem is called the inverse

kinematics problem, and it is an inverse of the forward kinematics formula. Unfortunately this

calculation is very difficult to solve algebraically. There have been works on solving systems

with limited (6) degrees of freedom [34]. However an animated human skeleton typically

consists of more than 20 degrees of freedom.

 14

To solve inverse kinematics problems, iterative methods are often utilized. One basic

iterative method used is the Iterative Jacobian method [25]. The coordinate of the effector X is a

function of the various joint angles (Equation (2-6)). The derivative of X can be calculated using

the Jacobian given in Equation (2-7). The Jacobian calculates the partial differential for each

value for each axis (x, y, or z) over the partial differential for a particular angle Equation (2-8).

)(αfX = (2-6)
αα dJdX)(= (2-7)

j
ifJ αα ∂

∂=)(
(2-8)

By inverting the Jacobian the angle movement can be calculated.

dXJd)(1 αα −= (2-9)

The new angles can be calculated as:

ααα dtt +=+1 (2-10)

This step is repeated until the ending solution is close enough to the solution. This

iteration can actually take a while depending on the size of dX. A large values for dX will result

in a more imprecise angle difference. A small value for dX means that it will be slower to

converge to a solution.

Other iterative methods calculate the difference of angles per degree of freedom instead

of for the whole skeleton. One of these methods is the CCD or Cyclic Coordinate Descent

method [35]. In CCD, the angle between a joint and the effector and between the joint and the

target is calculated. The difference of that is the rotation angle needed for that degree of freedom.

The CCD iterates from the joint closest to the effector to the root of the skeleton.

The problem with these two inverse kinematics problems is that there is no notion of

naturalism. All bones move equally with the main goal of finding a solution, any solution.

Weighted inverse kinematics proposed by Meredith [36] allows different motion which depends

on the weight given to different part of the bodies. Ideally, such a scheme would create a more

 15

natural movement, however it is not clear how to determine the weights for each of the bones to

create the most natural movement. Creating weights for each bone does not solve the problem of

the speed or the number of iterations it takes to find a solution.

2.2 Dynamics Methods

In dynamics-based models, the movements of animated objects are based on the physical

laws that they are subject to, such as momentum, gravity, friction, and acceleration. The model

must also take into account the properties of each object such as the mass and the shape of the

object. A set of formula is created that, based on the physical laws and the object’s properties,

determines where each object is at each time frame. Various models also allow objects to link

with other objects and thus constrain both object movement [37], [38]. The problem of

calculating the position and state of each object given forces that are known is called the forward

dynamics problem.

The solution to the inverse dynamics problem determines the forces or velocity needed

for an object to move from one position to another or to stay in motion with respect to its current

position, mass and shape, as well as existing external forces [37]. Given a set of constraints,

inverse dynamics can be used to calculate the motion from a starting pose to a pose that meets

the constraint.

A combination of dynamics and kinematics are often used [39], [40]. The inverse

kinematics element of the algorithm determines the position of the joints at various points. The

dynamics element calculates the speed and the trajectory of each bone segment.

The Newton-Euler formulation calculates linear acceleration and angular acceleration and

is often used to calculate the desired speed of movement [28], [41]. The Newton formulation

 16

states that, in linear systems, force equals mass times acceleration. In the Euler formulation of

angles, the moment (or sometimes torque) is the inertia multiplied by the angular acceleration.

Newton equation:

maF = (2-11)
Euler equation

ωIM = (2-12)
Other methods include using the potential and kinematics energy for the Lagrange

formulation. Witkin and Kass [42] proposed a spacetime computation which uses Newton’s law

and takes into account the starting and ending position of the object, the starting and ending time

of the movement, as well as any additional constraints to calculate the trajectory and the forces

needed to perform a motion.

Ko and Badler used inverse dynamics to animate human locomotion [43]. Based on the

location of the objects at a time t (determined by a script), they determined the positional and

angular acceleration of all links in the system using the Newton-Euler dynamics method. The

kinematics system adapts to the dynamics calculation result. A set of dynamic equations for

walking motion was created in [26]. A numerical integrator approximated the forces and the

torques needed for the motion of both the upper and lower body.

A very complex and detailed model of the body has been created by Lee et al [44]. The

model includes a complete skeletal/bone model, muscles, and skin. Although such a model may

be more precise, the sheer size and complexity may make it unfeasible to build. For specialized

programs, it may be better to create dynamic models of the body part that is needed, such as a

hand dynamic model for grasping [45].

Motions created by dynamics calculation are much more natural than those created by the

pure kinematics calculations. The motions depend on the physics models used. The more

 17

complete the physics model, the more physically correct it is, however it may take longer to find

a solution to such problems.

2.3 Multiple Constraints

Whether solving for inverse dynamics or a combination of inverse kinematics and inverse

dynamics, many problems in animation requires the animation to meet several constraints. These

can be pose constraints, dynamic constraints, time constraints, and/or mechanical constraints [28],

[46], [47]. Pose constraints determine where the position of a particular bone or bone segment is

at a particular time. Mechanical constraints determine various physics laws at work on the body.

Time constraints refer to the time that an agent must be in a particular position. Finally, dynamic

constraints ensure that physics laws such as Newton’s second law are met at all times. Other

constraints that are also commonly used in the calculation of movement, such as constraints for

collision detection [40], energy [48], balance, and comfort [43].

In some cases not all constraints can be met at once. There might be conflicts that

prohibit all constraints to be met. To solve this problem a priority scheme or a weighting scheme

is used [47]. The solver will try to solve the constraints with the highest priority first, or tries to

iterate towards finding solutions having the highest weights.

There are often other soft constraints, which do not have to be satisfied, but in which the

algorithm tries its best to achieve. These soft constraints are sometimes represented as an

objective function, the idea being that the algorithm must minimize (or maximize) the value of

these objective function. The objective function is used to find the correct answer in the event of

multiple answers (for example, taking into account the minimization of energy).

 18

Constraints can be formulated as functions. Usually constraints are formulated as a

function that results in 0 when met, that is Ci(Xj)=0. The objective function is useful when the

problem is under constrained which will allow us to have multiple solutions to the problem.

When the constraints and the objective functions are all linear, a linear programming

algorithm such as the simplex algorithm can be used. In most cases however a non linear

algorithm must be used in order to solve these problems. The steps in solving a non-linear

constrained optimization problem is to simply find repeatedly an estimate solution based on the

gradient of the objective function with regard to the solution. The algorithm used is a in a class

of algorithms called Sequential Quadratic Programming methods. Due to space constraints this

document does not go into details on the various solution algorithms and instead refer readers to

[49].

2.4 Data driven animation

A lot of work has examined using captured human-motion in so-called data-driven

computer graphics. An instrumented human is asked to perform movements which are then

captured by a computer system. The advantage of using captured human motion data is that there

is no need for an animator to input the animation data manually. Furthermore, the result of

captured human motion data is natural and human-like because it is a sampling of real human

motion.

In a common setting for capturing data, a subject is placed in a studio, wearing a special

(usually plain and dark) suit. The subject will have special markers at different places to track the

location of various bones. Cameras (or perhaps only one camera) located at various angles record

the subject as he or she proceeds with various motions.

 19

Each recorded frame is automatically stored in the database. The computer locates the

coordinates of each reflector. The main reason that the suit is plain is to reduce interference with

the reflector. Once the location of every reflector is found, the angles of various joints can be

calculated [29], [30].

The captured data consists of the parameters of the movement for each frame, namely the

position and orientation of each skeleton segment. A single capture sequence can have many

angles and joints. ASF formatted data, for example, has 29 joints with up to 3 degrees of freedom

for each joint. The captured data will typically be stored at a frame rate of 15-30 frames per

second.

When playing back a captured motion sequence, the motion player simply sets the angles

of the joints according to the frame data. Once the pose is drawn, the player waits a set time

(depending on the number of frames per second there are), clears the image and draws the next

frame in the same way.

The amount of data accumulated this way is quite large. To limit the size of the files or

the database, subjects typically perform a single short motion. This motion can be as simple as

walking, running, jumping, or it may be more complex such as dribbling a basketball [50]. By

grouping sequences, users of the motion data can choose the data that is useful easily. The users

do not have to select frames within the motion capture database. Instead users select the motion

needed and use all of it. There is also some work on automatically segmenting long motion

capture sequnences based on similar actions [51].

One problem with this method is that the range of possible human motion is quite large.

Even a simple basic movement may have many variations. For example, a person can jump

while facing to the left and also jump while facing to the right. There are infinite variations to a

 20

basic movement, and as such, it is impossible capture all of it using human actors. New motions

must be created from existing captured data sequence.

2.4.1 Motion blending

One way to create a multitude of animation sequences is creating a weighted combination

of frames from different captured sequences, a method known as motion blending. In Kovar [52],

Gleicher [53], and Arikan and Forsyth [54], animation sequences are created by creating

connection graphs for frames that are similar. Captured human motion is transferred to a skeletal

format. Each clip is broken into a small set of frames and each frame set is connected to other

frame sets on different clips based on a similarity function.

A simple approach to finding similar frames is by calculating the difference between the

angles for all bones (perhaps include velocity) [55]. Kovar [52] opposes this idea because this

idea does not take into account the importance of joints, differences caused by translation or

rotation on the root bone, nor velocities and acceleration of the motion. Instead they find the

similarity between point-clouds created over k contiguous frames. The similarity is the total

distance of each point in one point cloud with a corresponding point in the other point cloud

(which comes from a different motion). Pairs of frames between two motions which have very

low difference are joined together to create graph edges.

Linear blending simply switches motion when the two clips are very similar. An angular

method blending proposed by Shum joins motions based on the angular momentum trajectory

[56]. Blending can be performed in the middle of an existing motion, instead of waiting for it to

end, creating a smoother transition between clips. Heck et al. used a splicing method, which joins

upper body from one clip with the lower body from another clip [57]. To join the two segments

together, they perform time and spatial alignment, as well as a posture transfer which matches

 21

the location of the shoulders and hips for each clip. Mutlu blends frames together to create new

walking motion on a different path based on the position of the foot plants [58].

An animation sequence is generated by taking a sequence of frames from a clip and then

adding another frame sequence from another clip continuously until the character is in the

desired position. The number of graph nodes and edges can be very large, therefore an efficient

algorithm is needed to perform the search. This can be done by using various graph search

methods to find the best motion between the starting pose and the ending pose.

Lee [55] uses reinforcement learning to find the best path between all various starting and

target poses. Reinforcement learning uses rewards and discounted rewards to determine which

path to take in each graph node. Once the best action for each graph node is already met, it is a

trivial to create animation that encompasses various nodes.

This concept of path finding for motion has been developed further to create dynamic

motion controllers. Dynamic motion controllers allow the creation of motions based on states,

where each state consists of the configuration, speed, torque, and environmental factors [59],

[60]. Each state includes the current pose, motion, and even the environments. The controller

chooses the next state based on the current state, dynamic constraints, and the environments. Use

of a controller allows some measure of variability in the motions created even in unpredictable

environments [61].

Interpolation is performed on the newly connected frames to create a smooth transition.

Interpolation creates k number of frames where each frame is a pose between the two existing

frames. Linear interpolation, the most basic interpolation method, uses the starting angle and the

ending angle (of each joint) to create an equal size interval which is used to calculate the angle at

 22

every frame (Equation (2-13)). A better method is to first convert the Euler angles to quaternion

and perform a linear interpolation on the quaternion [62].








 −
×+=

k
t k

t
0

0
αααα

(2-13)

A spline interpolation can also be used to connect two frames together. The difference of

angles between two frames in spline interpolation is not fixed. The difference of angles between

frames takes speed of motions into account. However, spline interpolation typically requires

more than 2 sample points in order to get the best interpolation fit.

Motion capture data has also be used for basis of change. Yamane [63] and Pan [64] uses

RRT, a randomized tree search to find possible paths between the starting pose and the ending

pose. The points found represent collision free poses. Motions between the poses are created

based on motion capture data, by finding motion clips that are meets the constraints.

2.4.2 Motion Synthesis

This method of blending motion is adequate when the range of movement in an

application is limited. A prime example of this is sport games. In sport games (such as American

football, or soccer) the main interaction is between a human and a ball. By capturing various

interaction between person and ball, some which are basic, and a few specialized movements,

various combination can be created that will allow natural movement over a whole game.

However if the range of movement is larger, or the terrain is unpredictable, motion

blending will not do the trick. There is a need to create new motion based on existing captured

data, a method sometimes referred to as motion warping.

Abe et al. [32] used a base frame of animation data captured from actors to create a

family of similar frames. Each generated frame has each character in the same position as the

 23

base frame but translated (in the x or z axis) or rotated (using the y axis). Each new animation

preserves the physics characteristics of the base animation.

New motion can be created by warping or changing existing motion capture data to meet

different constraints. Van Basten uses a greedy search to find feet motion that is similar to a new

set of stepping motion [65]. Warping is then performed on the resulting steps.

Different body types have different correlation between joints [66] and thus different

movements caused by body type. A lot of work on motion warping has focused on adapting

motion from the captured data to other characters that may have different builds, shapes and

characteristics, a process known as motion retargeting. Different body types have different

correlation between joints and thus different movements caused by body type. Meredith and

Maddock [36] change the motion capture data using weighted inverse kinematics. By changing

the weights of various joints, they are able to create personalized movement for different types of

people. The weighting of various parts was also performed by Popovic [28] to create different

movement based on personality.

 24

3 Natural Spaces

Multi dimensional data points such as the joint angles for motion capture data frames can

be placed in an n-dimensional space. Each point represents one pose, and each value in a

dimension represents the angle of the degree of freedom. This space is commonly known as the

configuration space.

A theoretical natural space N-space can be thought of as a sub-space in the configuration

space where human poses are natural. The dimension of N-space can be smaller or equal to the

dimension of the configuration space. Search for poses and motions that meet constraints using

N-space only returns poses and motions that are natural. Therefore there is no need to make the

results natural.

One way to create N-space is to have it consist only all the points that are found from the

motion capture data. Unfortunately, this severely limits movements, as poses that were not found

on the original motion capture data will not be used even though it may be natural.

Another way to see this problem is by viewing this problem as a classification and

learning problem. Given a set of learned data (motion capture data), classify any points into

either natural or not natural. In other words, divide the space into N-space and N’-space. The

next chapter discusses various ways to create N-space from the learning of motion capture data.

3.1 Creating Natural Spaces

The animation generation algorithm will start with a point in N-space and find a new

point which meets all the criteria. This is done by testing various points in that N-space. In order

to do this faster the created N-space must have the following characteristics:

 25

1. There is an easy way of determining whether a position is in N-space or in N’-space.

Every time a candidate point is found, the point must first be tested on whether it is in N-

space or not. If the new point is not in N-space, this point is discarded.

2. A reasonable estimate can be made of how close a new position in N-space is to

satisfying the various constraints of the animation based on the information provided by

the space and also the resulting pose of other known positions. This allows the search

algorithm to intelligently choose points that will take it reasonably closer to the solution

point.

One idea to create N-space is to use model boundaries in the configuration space

separating natural space from unnatural space. Voronoi cells or Parzen Windows [31] allow the

creation of such borders. However in order to create these boundaries, both negative and positive

samples (that is natural and unnatural poses) had to be available. Motion capture data only

provides positive samples of human motion. Another problem with using this method is the

complexity of the algorithm to create the borders as well as to detect the borders is O(n log n)

where n is the number of data points [67].

To create N-space, various methods were considered. One popular classification method

is the use of clustering. However the data obtained is not a good match for this method. There are

2 groups for this classification, a pose is either in N-space or in N’-space. Once again there is a

need for negative or unnatural samples which are not available. Therefore any classification

method that requires negative examples such as clustering can not be considered.

Statistical modeling allows the creation of models that describes the motion capture data.

Synthesis of new motions is possible using these models. One of the earliest works of statistical

modeling on motion capture data is done by Pullen and Bregler [68]. They used wavelet

 26

decomposition and a Gaussian kernel to model a Wallaby’s motion. Realistic motions was be

created by calculating the conditional probability of each frames. Stylistic Hidden Markov

Models have also been created from motion capture data. New motions were created by doing

random walk on the resulting HMM state machines [69].

A multivariate distribution function can also be generated from the motion capture data

[31]. This distribution function can then be used to determine the likelihood that a pose is a

natural pose. N-space can be defined as any point that has a natural pose likelihood score of over

P. The distribution function allows calculation of new points which have similar or higher

likelihood score. However the distribution function by itself will not help find points that are

closer to a solution. The search function needs information about the relation of points in the N-

space to the solution to determine the best motion path.

Component analysis methods are able to summarize the relationships between various

dimensions of the original data. Typically component analysis methods such as Principal

Component Analysis, Independent Component Analysis, and Nonlinear Component Analysis

allow the transformation from one space to another space that can better describe the data [31].

Component analysis methods are also typically used for creating a lower dimensional space of

the data. Other lower dimensional methods such as MDS and Isomaps have also been used to

model motion data [70]. The problem with MDS and Isomaps is that they typically need a large

amount of space as they need to store the distance between all possible frames.

This thesis uses Principal Component Analysis (PCA) as the main method for creating

natural poses and motions. PCA allows a straightforward summary and generalization of the

motion capture data. The number of PCA dimensions can be reduced to limit the search space,

 27

which is compatible with the aim of creating a natural search subspace. Synthesizing poses and

motions from PCA space does not need for significant amount of space and computation.

3.2 Principal Component Analysis

PCA is a statistical technique that uses the variance of data to allow data points to be

transformed into points in a reduced dimension space. An extended primer on PCA is given in

Joliffe [71]. The points in the reduced dimension space retain characteristics of the original data

set that contribute to its variance [31], [46]. Due to the smaller number of dimensions, data is

easier to analyze.

To calculate the PCA of a data, first find the mean and the variance for each dimension.

The covariance matrix C can then be calculated from the mean and variance. Given the

covariance matrix C, a set of eigenvalues λ are calculated according to Equation (3-1). Once the

eigenvalues are calculated, the eigenvectors e are calculated according to Equation (3-2).

0=− IC iλ (3-1)

iii eCe λ= (3-2)

Figure 3-1 Weight vs. Horsepower data and the PCA axis. For interpretation of the references to

color in this and all other figures, the reader is referred to the electronic version of this

dissertation.

 28

The set of eigenvalues is combined together to create the transform matrix T with a

dimension of m x n where m is the number of dimensions in the original data and n is the number

of dimensions in the reduced space. T is used to transform any data point in the original space

into a point in the reduced dimension space. The value of any dimension in the reduced

dimension space is actually a weighted combination of values from the original space.

To clarify the concepts here a chart was created to show the weight vs. horsepower data

for various cars (Figure 3-1). This data was part of the Auto MPG data set from the UCI machine

learning repository [72]. The lines in the figure show the scaled eigenvectors which form an

orthogonal axis. Figure 3-2 shows the result of transforming the original data with the PCA

transform matrix created from the eigenvectors.

Figure 3-2 Transformed data to PCA space

If the dimension is reduced to one dimension, all the data will be on a single line (Figure

 3-3). This reduced dimension space limits the data that can be synthesized. New data when

transformed back to the original space will be on the main axis line of the PCA.

 29

Figure 3-3 PCA data reduced to just one dimension

The transformation matrix to calculate the position of a point in the reduced dimension

space is not a square matrix (because the number of dimensions is different). Although no

inverse matrix is available for this non-square matrix, a pseudo inverse matrix can be created

using the Singular Value Decomposition method [73].

Any point in the reduced dimension space can be inverted back to the original space

using the pseudo inverse of the matrix. These points will have the same covariance between

points as any of the original motion capture data that is in the original space. The next few

sections show that synthesized points in the natural space (within some boundary) is natural.

Therefore the reduced dimension space created by PCA is a good candidate for N-space.

3.2.1 Use of PCA in human animation

In PCA, the eigenvectors can be ordered by importance. The first k set of eigenvectors

can be used to represent a certain percentage of the variance of the data. This property has been

used to create compression algorithms on human motions using PCA [74], [75]. The quality of

the motion reconstruction depends on the number of dimensions used in such a scheme.

 30

PCA is often used to summarize motion capture data and then to generate new poses. Li

shows that PCA can be used to create general unconstrained motions [76]. Some, like Tilmanne,

uses PCA to create walking motions that are based on different emotion expressions [77].

Johnson’s PhD dissertation focuses on using PCA on motion capture data based on

quaternion [78]. The aim of his dissertation was similar to this work, which is to use the PCA

space as an “expressive” sub space in order to synthesize poses and motions. His work focuses

on using a single PCA space for the whole body, while this work focuses on multi PCA spaces.

In his work, he also mentioned an inverse kinematics solution using the sub space, but never

actually implemented.

Most of the work on PCA as a means of representing motion has been based on motion

categorized into specific tasks [79], [80]. This thesis described a method that takes general

motion data and performs PCA on body parts segments to better control the motion to meet the

user’s constraints. The naturalness of the resulting PCA generated motion is often just visually

inspected. In Chapter 4.4.2, naturalness is shown by statistical comparison of the various motions.

3.2.2 Creating a Pose Space from Motion Capture Data

This chapter describes the creation of a natural pose space (P-Space) from motion capture

data. The term pose space is a specialized version of a natural space (N-Space) that only contains

information about pose configurations. Data used for this method is motion capture data which

primarily deals with angles for each degree of freedom. Other information can also be added or

deduced from the existing data. Additional data may include goals, emotions, and speed of

movement. Adding information typically increases the number of dimensions, therefore the data

used for learning need to also be increased.

 31

To generate the P-space, frames are read from motion capture data. Each frame is

considered to be a singular natural pose. A vector X=(x1, x2, …, xn) is created from the joint

rotation angles for each pose. To normalize the data, the rotation and translation angles of the

root bone are ignored. The covariance matrix C is calculated, and the PCA transformation matrix

T is created based on the eigenvectors calculated with Equation (3-2). Each pose X can be

transformed to a corresponding point in N-Space α=(α1, α2, …, αn) using Equation (3-3).

XT ×=α (3-3)
This point is then transformed to an actual pose by using the inverse of the PCA

transformation matrix. The original transformation matrix T is orthonormal, and therefore the

inverse of this matrix is simply its transpose. The dimension of the pose space is less than the

original dimension. Therefore, only the first n columns of the inverse of the transformation

matrix are used. A vector X in the original space can be created from a point in P-space by using

Equation (3-4).

α×= TTX (3-4)

Multiple points in the original space may map to the same point in the reduced space.

Inverting the point in the reduced space returns a point with the least mean squared-error to all

possible points. It is not uncommon that the degrees of freedom may slightly exceed the

specified DOF limits. If any of the angles of X is outside the bounds of the joint (AMini...AMaxi)

the angle is adjusted according to the limit of the angles (Equation (3-5)). That is if Xi > AMaxi

then Xi= AMaxi and if Xi< AMin i then Xi= AMin i. The angle error is the difference between

the limits and the calculated joint angles.

 32









−
−

>
<

=
0

ii

ii

ii

ii

i AMaxX

XAMin

otherwise

AMaxx

AMinx

AErr

(3-5)

3.2.3 Characteristic of Synthetic Data in Natural Space

One important focus of our work is whether the P-space can be utilized to create new

natural poses. First, a P-space is created for the right hand motion. The bones involved consists

of right hand, right wrist, right humerus, right clavicle, thorax, upper back, lower back, and root.

For this data, 98% of the arm variability can be described by only 7 dimensions. A transform

matrix T is created from the eigenvectors that transforms the 18 angle vector to a 7 dimensional

space. A sample point α consists of 7 values α=(α1, α2, …, α7), each corresponding to one vector

element.

The sample poses used for learning the PCA are transformed into their respective P-space

coordinates. The minimum and maximum value of each dimensions are retained from these

sampled poses. For each dimensions, a set of interval ranging from the minimum value αmin to

the maximum value αmax is created.

A set of new poses are created by selecting points at an interval in P-space. For each

dimension, 4 evenly spaced points between the minimum value and the maximum value is

chosen. Points contain a combination of values from each interval.

 33

X vs Y

-20

-10

0

10

20

-20 -10 0 10 20

X vs Z

-20

-10

0

10

20

-20 -10 0 10 20

Y vs Z

-20

-10

0

10

20

30

-20 -10 0 10 20

Figure 3-4 The coordinates of the right hand from both the original data (black) and the natural

pose samples (grey). The top-left picture is the cutaway x-y coordinate view, the top-right, x-z

and the bottom z-y

The created points in P-space correspond to new poses that were not in the original

sample. These points are also quite different than the data learned. Figure 3-4 shows the right

hand effector coordinates from both the original sample poses as well as the new starting poses.

The grey dots represent the right hand coordinates of the new poses, while the black dots

 34

represent the original sample poses. It is apparent that the synthesized poses have a larger range

of reach than the original ones.

The naturalness score for each unconstrained point was calculated by calculating the

similarity to an existing pose in the database. Comparison was done on a bone by bone basis.

Given two poses, one a randomly selected sample point, and a pose from the MOCAP database,

the quaternion dot product between each bone angles was computed. The dot product can be

used to measure the angle needed to rotate from one angle to another. As the angle becomes

more similar, the rotation needed decreases, and the dot product approaches a value of 1.

Equation (3-6) shows the similarity measure between two poses, each having k bones,

∑ ⋅−=
k

kk))(1(21 ααδ (3-6)

We compare this method with two random methods for generating poses. The first

method simply selects a set of random angles (within the DOF limits) to generate a pose. The

second method creates random numbers using the distribution of the angles in the training data.

The method is also compared to actual natural pose taken from the MOCAP database. A random

pose is taken from the MOCAP database, the similarity distance is calculated over all poses not

in the same motion. The reason for this is that poses in the same motion tend to be close together

(especially a pose which comes before or after the reference pose in a motion).

500 poses were generated for each method. The 90
th

 percentile of the distance is

calculated. The reason only the 90
th

 percentile of the distance is calculated is that in some poses,

the difference of the most different bones significantly dwarfs the values of the other differences.

The data was resampled (bootstrapping) 1000 times. The mean angle in radians of the 90
th

 35

percentile for each degree of freedom is shown in Figure 3-5. ANOVA was used to calculate that

the means are different at a .95 significance.

Angle Difference

0

5

10

15

20

25

30

35

40

45

wrist radius humerus clavicle thorax upperback lowerback

Joint

A
ng

le

Natural Motion (leave 1 out) N-Space

Random (Natural Distribution) Random

Figure 3-5 Naturalness of random poses generated by the P-space, random (with distribution),

random, and from the motion capture data

From the graph above, it is apparent that poses in pose space are more natural compared

to the completely random algorithm. Algorithms that are using the P-space have a potential of

creating more natural poses than algorithms that use regular space.

 36

3.3 Multiple Natural Spaces

Another factor of concern is the creation of an N-space that is too limited or too specific.

The number of data and motion may not be enough to generate an N-space capable of all natural

movements. The correlation between body parts that are not near each other may be small, and

therefore. Furthermore, the work of Grudzinski concludes that PCA is often better for small sets

of joints [81]. Therefore it is a good idea to create multiple N-spaces (one for different parts of

the body) based on different parts of the data and then joining them in the animation generation

phase. Using a single PCA for the whole body also lead to over generalization of the data. This

over generalization reduces the number of possible poses inside the space.

Figure 3-6 Division of the skeleton as shown in Figure 1-1 into multiple segments

 37

In order to alleviate these problems, there is a need to create multiple natural spaces each

one corresponding to one particular group of body parts. This gains importance due to the fact

that there are multiple constraints for each target pose or motion. The algorithm proposed will

combine these various natural spaces in generating the correct path to the pose.

There have been various attempts to divide the human body into parts in order to simplify

kinematics and dynamics calculation [57], [64], [82], [83]. The segments created in previous

work are free of overlaps. As such, there is a loss of information between the various segments.

In order not to lose all the relation between body segments, an overlapping segment scheme is

used. In this scheme, some of the joints (such as the lower back, upper back, and thorax) are used

in multiple spaces. The upper body part (thorax and back) is important to both the left hand and

right hand, and therefore it is impossible to be placed in only one space. Our method divides the

body into 5 subsets which have overlapping joints (Figure 3-6, Table 3-1).

Table 3-1 List of bones for each segment

Region Bones Number of
Dimensions

Right Hand to
root

Right hand, right wrist, right radius, right
humerus, right clavicle, thorax, upper back,
lower back

18

Left Hand to root Left hand, left wrist, left radius, left humerus,
left clavicle, thorax, upper back, lower back

18

Right Foot to root Right foot, right tibia, right femur, right hip
joint

6

Left Foot to root Left foot, left tibia, left femur, left hip joint 6
Head Head, upper Neck, lower Neck, thorax, upper

back, lower back
18

3.3.1 Effector Space

A problem with segmenting the body into multiple parts as shown above is that the

correlation between bones in different part is lost. Another, more general problem is that, in

many inverse kinematics problems, the constraint only applies to some body parts while

 38

coordinates of other body parts are not specified. When the right hand is constrained to be placed

at a desk for example, where should the other parts of the body lay?

To solve this problem, a space for the coordinates of various body parts is created. This

method was also used by Ishigaki et al to compare similarity of a user pose to an example motion

for control of avatars [84]. The coordinates of the hands, feet, elbow, neck and head are stored as

shown in Figure 3-7. PCA transforms the data into a lower dimensional space. This new space is

called the effector space and acts as a guide for positioning the whole body.

Figure 3-7 Location of effectors for effector space. The coordinates of joints that are colored in

red are stored used to create a lower dimensional space.

 39

4 Poses

Poses are the basic building block of motion. One way of thinking about motions is a

continuous set of poses, and therefore poses serve as a good starting point for animation. By

calculating a pose that meets a certain constraint, one can create motion by interpolating from

starting pose to end pose. The constraints of a pose can be coordinates/position of the end of

various bones, orientation of bones, or specific areas where the bones must not go through

(collision detection). The natural poses that are of interest are those poses that meet the

constraints, as well as being as close as possible to the starting pose.

The algorithms described here generate poses from pose spaces as described in the

previous chapter. In order to generate natural poses, two strategies are used: search for closest

natural pose and inverse kinematics in the pose spaces.

4.1 Lookup strategy

A search on motion capture data can be performed in order to find poses meeting certain

constraints. In order to do this reliably, the motion data must be complete, which will likely

mean it must be very large. Instead of finding exact matches, it is also possible to find poses that

are near to meeting the constraints and then performing minor modifications on the resulting

pose.

In order to efficiently perform the search, poses from motion capture data are placed into

search optimized data structures such as the oct-tree or Rapidly-expanding Random Tree (RRT)

[85]. RRT has been often been used in a planning stage, to find multiple poses (from starting to

ending pose) that meet the constraints set out by the environment [63], [64].

 40

The algorithm described here do not use the actual motion capture data. Instead this

method first generates a set of poses that is deemed to be representative of the whole possible set

of natural poses, referred to as unconstrained poses. Unconstrained poses are simply poses

created by selecting points in the pose space. This point is then transformed to an actual pose by

using the inverse of the PCA transformation matrix.

The motion capture data utilizes skeletons consist of 29 joints and 59 degrees of freedom.

In this work we limit the method to finding poses for the right hand. As we are only concerned

about arm pose location, we only utilize the angles from bones that connect the root bone to the

right hand bone. The right hand bone acts as the end effector. There are 9 bones and 18 degrees

of freedom between the right hand bone and the root bone. In our experiments, the goal is to

place the end effector (hand) at a particular, specified, position. The starting pose of the virtual

human is all the same. Bones from the hand to the root bone (lower back) are considered; other

bones are ignored. The algorithm proposed is called the Constrained Pose Generator (CPG)

algorithm.

Sample points were predetermined by choosing points on a grid in P-space. For this data,

98% of the arm data variability can be described by only 7 dimensions. A P-Space was created

using 7 dimensions. For each of the seven dimensions, points are sampled on the grid, starting

from the minimal value to the maximum value. The lower dimension of PCA captures more

variability than the higher dimensions; therefore the lower dimensions were sampled at a higher

rate. The total number of points used as a seed for this method is 53000. These points are stored

in database, indexed by the end effector position to facilitate fast searching.

 41

The similarity calculation in Equation (4-1) was performed on a more complete motion

database. The motion database contained over 3 million poses. For each sampled pose the

similarity score is the minimum value calculated using the above formula.

Given a starting pose P0, our method seeks to determine a set of DOFs that place the end

effector (the right hand) at a desired target position T(x, y, and z). We find a sample point Ri

having the end effector position S in the pose space which is the best match for that pose. The

criteria to find Ri is based on the distance of the end effector with the addition of a weighted

naturalness score δ.

δwST iii +− 2minarg (4-1)

Once the algorithm determines a candidate pose that is nearest to achieving the desired

constraint, either Coordinate Cyclical Descent (CCD) [35] or the iterative Jacobian [25] is used

to refine the pose so as to accurately meet the constraints.

4.1.1 Results

To test the result of this algorithm, 1000 random single constraint problems (on the

position of the right hand) was generated to determine accuracy of algorithm as well as

naturalness of results. The algorithms tested are the CPG using CCD, CPG using the Jacobian,

and Iterative Jacobian algorithm.

Table 4-1 shows how accurate the various algorithms were at finding a solution. Out of

the 1000 constraints given, 104 constraints were never found by any of the algorithm. This could

mean that the constraints were out of reach range of the virtual human. The two scores in Table

 4-1 show the accuracy for all constraints, and accuracy for only the reachable constraints (with a

confidence interval of 95%). Based on this table it is clear that in terms of accuracy in finding the

 42

correct pose for a given constraint, usage of P-space is an improvement to using iterative

Jacobian.

In some of the poses, the inverse Jacobian algorithm creates poses where the body is

twisted and awkward. There are of course exceptions. One of the main problems with the

Jacobian is that all joint angles are changed, even though in natural human motion not all joint

angles change to achieve a pose.

Table 4-1 Accuracy comparison of various pose generation algorithm

Method Accuracy Accuracy for
Reachable
Constraints

CPG (CCD) 0.7280 ± 0.0276 0.8125 ± 0.0256
CPG (Jacobian) 0.8090 ± 0.0244 0.9029 ± 0.0194
Jacobian 0.6030 ± 0.0303 0.6730 ± 0.0307

To compare the naturalness of each algorithm, the mean angle difference between each

bone in the generated pose and the closest natural pose is calculated. The 90
th

 percentile of the

distance is calculated. The reason only the 90
th

 percentile of the distance is calculated is that in

some poses, the difference of the most different bones significantly dwarfs the values of the other

differences. Therefore we take the biggest 10% difference out of the data. The data was re-

sampled (bootstrapping) 1000 times, and ANOVA was used on the data. From ANOVA we find

that the mean were different with 95% confidence. The mean angle in radians of the 90
th

percentile for each degree of freedom is shown in Figure 4-1.

 43

90th Percentile Mean Angle Difference

0

0.1

0.2

0.3

0.4

0.5

0.6

wrist radius humerus clavicle thorax upperback lowerback

Bone

A
ng

le
 (

R
ad

ia
ns

)

CPG (CCD)

CPG(Jacobian)

Iterative Jacobian

Figure 4-1 Mean angle difference of poses created by CPG (both Jacobian and CCD) and

iterative Jacobian method

Based on this graph, we can see that the CPG algorithm created more natural (as shown

by a smaller difference to the sampled motion. Because the CPG algorithm moves the starting

point, the Jacobian method is able to find poses which are more natural. The resulting poses for

the different algorithm on 6 different targets are shown in Figure 4-2.

One of the major disadvantages of this method is that only the generated pose is natural.

The modifications made using CCD and Jacobian do not necessarily keep the pose in a natural

state. Another problem is that the generated P-Space pose is only based on the distance to

meeting the constraints and not on the starting pose. The starting P-Space pose may actually be

very far from the starting pose, and thus the ending pose is not always an optimal solution.

 44

Figure 4-2. Each frame shows the result of running the CPG algorithm for each of 6 poses. The

pictures on the left side are the front view of the pose; the pictures of the right side are is from an

angled view from the right side of the animated humans. The leftmost pose in each frame was

 45

created using the NSPA algorithm followed by the CCD algorithm, the middle pose was

calculated using CCD, and the rightmost pose was calculated using the iterative Jacobian

method.

4.2 Inverse Kinematics in Pose Space

In order to address these problems, a method utilizing iteration within the N-Space is

used. Iteration through N-Space will also take into account the starting pose. The method

proposed here uses the inverse Jacobian in N-space to find pose that meets the constraint. In the

previous chapter, CCD was shown to better find natural position from unconstrained N-space

poses. However the Jacobian method was preferred for the inverse kinematics because of two

things:

1. It is difficult to do multiple constraints with CCD. With Jacobian you just need to add the

new degree of freedom to the Jacobian.

2. Segmented needs synchronization between two N-spaces. It is also difficult to do this

with CCD. In CCD you change one DOF/dimension at a time. With multiple spaces we

may have to change a degree, and then have it changed by the synchronization process.

The first step is to calculate the Jacobian. The Jacobian determines changes in angle

effector coordinate(s). Instead of the actual angle however, P-space is used. Therefore the

Jacobian calculates the changes in P-space dimension to the effector coordinates. The Jacobian

depends on the model used for the skeleton. Our model used a skeleton in which the forward

kinematics formula is a series of rotation matrix (R(x)) and translation matrix (L). This

corresponds to the bone having a rotation around the x, y, and z axis, followed by a translation

(Equation (4-2)). P is a vector (Px, Py, Pz) containing the coordinates of the vector.

 46

∏=
i

iziyix LxRxRxRP)()()(321 (4-2)

However because we are using forward kinematics in N-space, this formula changes

slightly. To find the value for the n
th

 degree of freedom, Equation (4-3) is used. The angle for the

n
th

 degree of freedom is simply the n
th

 row of T
T
 multiplied by the current point in P-space

(Equation (4-4)).

α×= T
nn TX (4-3)

)()()(,22,11, k
T

kn
T
n

T
nn TTTX ααα ×++×+×= L (4-4)

The forward kinematics in N-space can then be calculated as

∏=
i

T
iz

T
iy

T
ix LTRTRTRP)()()(321 ααα (4-5)

The nth value of X is a weighted sum of α according to the n
th

 row of T
T
. The derivation

of the nth angle of X with regards to the i
th

 value of α is therefore the i
th

 weight of the value, or

simply the i
th

 value of the n
th

 row from T
T

(Equation (4-6)).

T
in

i

n T
d

dX
,=

α

(4-6)

'')(abbaabd += (4-7)

Using the product rule for derivation (Equation (4-7)), the Jacobian for the i
th

 dimension

in P-space and the j
th

 degree of freedom can be calculated. To simplify the derivative equation,

let Ψ represent each rotation and translation equation in the forward kinematics calculation of P

(Equation (4-8)) such that P is simply the product of all Ψ (4-9). For all rotation factors of P, the

derivation of Ψ with regards to α is shown in Equation (4-10). The translation factors of P are

constant and therefore the derivations of such factors are 0.

 47







=Ψ
i

T
i

i
L

TR)(α
(4-8)

∏Ψ=
i

iP (4-9)

)('
'

, α
α

T
i

T
ji

j

i TRT
d

d
=

Ψ

(4-10)

 Based on the above equation and the product rule, the partial derivative of the i
th

coordinate in the pose P with regards to the j
th

 value of α is:

∑ ∏ ∏ 












ΨΨΨ=

−

= +=n

n

k

n

nk
knk

j

i

d

dP
)(')(

1

1 1α

(4-11)

The iterative Jacobian method of solving inverse kinematics is to iteratively calculate ∆X

that moves the point in P-space to another point that is closer to meeting the target. At each step

of the iteration, ∆P, the vector between the current coordinates Pt and the target constraints Pc is

calculated (Equation (4-12)).

tc PPP −=∆ (4-12)

The Jacobian J in P-space is similar to the Jacobian in normal space. The difference is

that each element is a partial derivative of P with regards to changes in α. This is shown in

Equation (4-13)

























=

n
mmm

n

n

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

J

ααα

ααα

ααα

L

MOM

L

21

2
2

2
1

2

1
2

1
1

1

(4-13)

The aim is to find ∆ α, which is the changes to α that moves the skeleton to the target

pose. ∆ α can be calculated by using Equation (4-14)

PJ ∆=∆α (4-14)

 48

The Jacobian is not a square matrix, and therefore not invertible. There is no guarantee

that the problem is under-constrained or over constrained. To solve the problem, we find ∆α that

minimizes the distance to the following equation.

2PJ ∆−∆α
(4-15)

Furthermore, the angles of the joints should move in small interval. A large ∆α may

cause the problem to overshoot, or become unnatural. A damping factor is introduced in

Equation (4-16). This damping factor tries to minimize the distance of ∆α.

2
α∆TT

(4-16)

A simple inverse Kinematics solution for N-Space can therefore be calculated by finding

the minimum of the following equation

22 αα ∆+∆−∆ TTPJ
(4-17)

If this equation is calculated using Euclidian distance, the minimum distance is

equivalent to finding the minimum value Equation (4-18). Because T is orthonormal, T*T
T

results in the identity matrix

αααααα

αααααα

αααα

∆∆+∆∆+∆∆−∆∆−∆∆=

∆∆+∆∆+∆∆−∆∆−∆∆=

∆∆+∆−∆∆−∆

TTTTTTT

TTTTT

TTT

PPJPPJJJ

PPJPPJJJ

TTPJPJ

)()(

)()(

(4-18)

The minimal value of ∆α can be calculated by deriving the formula above. The minimal

value is found when the derivation of the formula is equals to 0. This results in Equation (4-21)

that can be used to find ∆α through either the inverse of the left matrix or using factorization

such as LU/QR algorithm [86], and therefore solve the inverse kinematics in P-Space. This

method is also commonly known as the damped least square method.

αα

αααα
∆+∆−∆=

∆+∆−∆−∆+∆=∆
222

2)()(

PJJJ

JPPJJJJJd
df

TT

TTTTTT

(4-19)

 49

PJJJ

PJJJ

d
df

TT

TT

∆=∆+∆

=∆+∆−∆

=∆

αα

αα
α

0222

0

(4-20)

PJIJJ TT ∆=∆+ α)((4-21)

4.2.1 Conquering joint limits

One of the problems of this method is that it does not take into account the joint limits.

Problems occur when the closest path to a target is via poses that have angles outside the limits.

To counter this problem, a perturbation factor that checks for limit breaking angles, and forces

these angles to move to the other direction (usually to the middle of the joint limits). If a single

iteration contains more than one joint outside the limits, not all are perturbed at the same time.

The idea is to perturb one joint and allow other joints to adjust to the perturbed angle and change

accordingly.

When the i
th

 joint is outside the limit, this method checks whether perturbation should be

performed. Perturbation on the i
th

 joint is performed when the number of steps, and i meets the

condition in Equation (4-22). When the modulo of these two numbers to a constant k is equal,

then perturbation starts. Once a perturbation starts, it will remain active for w iterations (w is a

window size constant).

),mod(),_mod(kikstepn == (4-22)
Equation (4-23) describes this perturbation factor. ∆m is the target joint angles,

calculated by the difference between the mid-point of the joint limits and the current joint angle.

This vector only contains joints currently subject to perturbation. The M factor is a dp x d
α
 (P

 50

rows times α columns) transformation matrix that simply deletes all unnecessary factors in the

PCA space if the factor does not effect the angle being perturbed.

mMTT ∆=∆α (4-23)

To calculate the change in angles/point in P-space, each step of the iteration tries to find a

change to α that brings the body closer to the constraints, and at the same time make sure that the

intersecting bones are consistent. To solve this, we find a solution for ∆α that minimizes the

following equation:

2
3

2
2

2
1 mMTTPJ TT ∆−∆+∆+∆−∆ αλαλαλ (4-24)

The equation consists of a weighted sum of three distances. The first distance is based on

the difference between the current body pose to the target constraint. The second term is the

damping factor, which simply measures the distance between the current pose and the ending

pose based on ∆α. A damping factor limits the size of ∆α, making it change only in small

incremental steps. The third factor is the perturbation factor described above. The weights λ is set

beforehand to calculate the importance of each factor.

Similar to the simple inverse kinematics equation, the minimum value of this equation

can be calculated by finding the derivative and setting it to 0. The solution for ∆α can be

calculated by solving the following equation:

mTMPJ

MTTMIJJ

TT

TTT

∆+∆=

∆++ αλλλ)(321
 (4-25)

4.2.2 Naturalness

An important part of this research is determining the naturalness of the resulting poses.

The most notable method of calculating naturalness from motion capture data has been

performed by Ren et al. [82]. They measured naturalness using various methods (Mixture of

 51

Gaussians, Hidden Markov Models, Naïve Bayes, and Switching Linear Dynamic System) and

compared the results to human scored naturalness.

Due to time constraints, this thesis does not implement those methods. In this thesis,

naturalness is measured by calculating the Gaussian probability density function based on a

testing sample. The testing sample consists of 96000 poses taken from the motion capture data.

The testing model is assumed to have a Gaussian multivariate distribution with a mean and co-

variance N(µ,Σ). The naturalness score for an algorithm is calculated by determining the

likelihood that a set of poses were generated by the sample distribution given in Equation (4-26).

)),(|()),(|()|),((Σ=Σ=Σ ∏ µµµ NxfNXfXNL i
i

(4-26)

 Where f(x| N(µ,Σ)) is simply the Gaussian multivariate probability distribution function,

with k being the number of dimensions (Equation (4-27)).

)(1)'(
2

1
1

)),(|(
µµ

π
µ

−−Σ−−

Σ
=Σ

ixix

k
i eNxf

(4-27)

Due to the large size of k, it is common to calculate the average log likelihood in order to

compare the various algorithms (Equation (4-28) and Equation (4-29)).

∑ Σ=Σ
i

i NxfXNL))),(|(ln())|),((ln(µµ
(4-28)

∑ Σ=
i

i Nxf
n

l))),(|(ln(
1 µ

(4-29)

The average log likelihood of each algorithm corresponds to the degree of naturalness of

the algorithm. An algorithm with a higher average log likelihood score is deemed to be more

natural than an algorithm with a lower score. Matlab was used to calculate the log probability

distribution function and log likelihood. With Matlab, the minimum positive number is

approximately 1x10-300, any value lower than that is considered to be 0. As ln(0) is undefined, a

 52

constant value of -750 was used as the result of ln(0) in order to avoid working with undefined

number.

4.2.3 Number of Dimensions

For PCA methods the number of dimensions used has a significant effect on the resulting

poses. To find out the effect of the number of dimensions on accuracy and naturalness, we run

the single-space PCA algorithm on 100 randomly generated constraints for one constraint

problem (the right hand). The original data has 56 dimensions, and testing was performed on 1, 7,

14, 21, 28, 35, 42, 49 and 55 dimensions. The results of the accuracy and naturalness is shown in

Figure 4-3 and Table 4-2.

In general, an increase of the number of dimensions increases the accuracy. Accuracy is

the percentage of poses that meets all constraints. As the number of dimension increase, there is

more freedom in the motion allowing the algorithm to find poses that meet the constraints.

Naturalness on the other hand, peaks when the number of dimensions is approximately 50% of

the original dimension. Allowing more freedom of movement is detrimental to naturalness, as it

allows poses that are not natural to be used.

Table 4-2. The effect of different number of dimensions to naturalness and accuracy

Number of
Dimensions

Average Log
Likelihood Accuracy

1 -750 0
7 -738.8863 0.71
14 -529.2594 0.9
21 -387.8207 0.94
28 -326.3475 0.94
35 -502.4741 0.97
42 -502.2705 0.99
49 -678.8402 1
55 -673.3091 0.99

 53

For the algorithm comparison it is important that the algorithms have a high degree of

accuracy and naturalness. We use a threshold value of 95% for the accuracy with as high as

possible score for naturalness. This translates to 30 dimensions (from 56 original dimensions) for

the single PCA. For the multiple-space PCA, 12 dimensions were used for the right hand, left

hand and head space, and 5 dimensions for the right and left foot space. The same number of

PCA dimensions is used for all constraint groups.

Figure 4-3. Graph of number of dimensions vs accuracy and naturalness

 54

4.3 Multiple PCA Space Inverse Kinematics

It is now a matter of solving a multi-constrained inverse kinematics problem using

multiple spaces. There are two ways of solving multi-constrained inverse kinematics problem,

using priority [51], [52], or using weights [53]. In this proposed algorithm, a dynamic weighting

system is used. In essence, the importance of the estimated effector space constraints decreases at

every step while the importance of the external constraints remains the same. This allows the

algorithm to satisfy the external constraints in cases where both constraints cannot be satisfied at

the same time.

For each kinematics step the current target position ∆P is a matrix that consists of the

external constraints Px and the effector space constraints Pe. Section 4.3.1 describes how to

calculate both the external constraints and the effector space constraints. The external constraints

are capped with a distance of md (Equation (4-30)) while the effector constraints are capped with

a variable distance that depends on md and the step number n (Equation (4-31)). If the resulting

calculated distance for the effectors space is lower than a constant kd then that constraint is

ignored. This reduces the number of constraints that the calculation must meet and helps in

finding the solution faster. This also has the effect that as the number of steps increases, the

inverse kinematics solution prefers to stay at its current position rather than trying to move to the

exact position of the effectors constraint

)1,min()(
2P

m
Pd d

tx = (4-30)

)1,min()(
2Pn

m
Pd d

te = (4-31)

 55










∀
=∆

> tetetedktePtedteP

txtxtx

PPd

PPd
P

)(

)(

)(,
 (4-32)

4.3.1 Estimated Effectors Space

The effectors space described in chapter 3.3.1 is implemented and utilized in this method.

If P is a vector of coordinates of the various body parts, TE is a PCA transformation matrix to a

lower dimension based on learning the coordinates of the 8 effectors positions from the motion

capture data. β is the resulting point in the reduced dimensional space according to Equation

(4-33). The reduced space is notated as CC-space (constraint coordinate space)

PTE=β
(4-33)

There are two groups of constraints, the external constraints Cx which are specified by

the user or by the actions, and the new set of constraints, called the estimated constraints Ce

which constraint the rest of the body parts. The estimated constraint Ce, is calculated based on

the current position as well as the target constraint.

Given that β0 is a point in CC-space corresponding to the current pose, ∆β is the

difference in CC-space that corresponds to a point that meets the external constraints Cx. Γ is a

matrix that finds the external constraint elements from a pose. To calculate ∆β, the following

equation is minimized:

22
1)(ββ ∆+Γ−Γ−∆Γ + tt

T
E PPT (4-34)

Equation (4-34) is minimized by solving the following equation:

)()(1 tt
T

E
T
E

T
E PPTITT Γ−ΓΓ=∆+ΓΓ +β (4-35)

 56

The target position Pt, consisting of both the external and the estimated constraints is

calculated using Equation (4-36). This value is used in the calculation for finding ∆α such as in

Equation (4-25).

t
T
E PT =+∆)(0ββ (4-36)

4.3.2 Matching overlapping angles

The biggest problem with creating segments that overlap is that some of the angles are in

multiple segments. When calculating the inverse kinematics solution for each segment, angles

that are in multiple segments must result in the same value.

The first attempt to solve this involves creating additional factors to control the angle

difference. One angle may appear in two segments k and l. This angle appears as the i
th

 angle of

the k
th

 segment and the j
th

 angle of the l
th

 segment (Equation (4-37)).

ljki xx ,, = (4-37)

The angles from the above equation can be calculated from the points in P-space through:

[] 0

0

,,

,,

,,

=







−

=−

=

l

k
ljki

l
T

ljk
T
ki

l
T

ljk
T
ki

TT

TT

TT

α
α

αα

αα

 (4-38)

For multiple angles, a matrix can be created for all angles that must be matched. A new

matrix Γ combines the subtraction formula for multiple angles, one formula per row. The above

equation is equivalent to:

0=







Γ

l

k

α
α

 (4-39)

 57

The above equation can be added as a factor to the Equation (4-24). However,

experiments show that this formulation decreases the accuracy of the solution. This significantly

adds to the number of constraints in the system. The iterations using this formula often end up at

a local minimum that does not sufficiently address the main constraints.

4.3.3 Weighting Overlapping Angles

A second attempt to solve the overlapping problem is through weighting after the

calculation. Once the change in α is calculated, the overlapping angles is consolidated.

Consolidation is done through calculating the weighted sum of all angle spaces. Equation (4-40)

describes the calculation for the k
th

 joint angle, based on the weight of the i
th

 space (wi), and the

k
th

 angle calculated by the i
th

 space.

∑

∑
=

i
i

i
kii

k w

w ,θ
θ (4-40)

The weights used are based on whether the i
th

 space corresponds to an active constraint

or an effector space constraint. If the space affects an active constraint, it is given a priority

weight of 1.0 or a non-priority weight 0.8. Only one space can have a priority weight of 1.0 at

one time, therefore the space that has the priority weighting is changed every n steps (we use 10

steps). Passive constraints or effector space constraints is given a weight of 0.4. All the constants

here were found using empirical methods. This weighting scheme gives more importance to the

active constraint spaces and allows the solution to be found much quicker.

 58

4.4 Results

Comparisons were performed on a different number of constraints. There are five groups

of constraints that are used. All of the constraints were the Cartesian coordinates of the various

body parts. For each group, 100 randomly generated set of constraints were created. The groups

are:

1. Right hand constraint only

2. Right foot constraint only

3. Right and left hand

4. Right and left foot

5. Right hand, left hand, right foot, and left foot

4.4.1 Accuracy

The first measure for the algorithm is the accuracy. The accuracy is simply the number of

poses found that meets all constraints. The algorithm must find a pose that meet all constraints in

250 iterations.

Table 4-3 and Figure 4-4 shows the accuracy of the various algorithms in finding poses

that meet the constraints. An increase in the number of constraints tends to lower the accuracy of

the various algorithms. This may be because it is impossible to achieve a pose that meets all

constraints. Another explanation is that some of the algorithms simply iterates on a local minima

during the Jacobian iteration. When the iteration count is higher than the maximum allowed, the

application stops the algorithm and marks it as unable to fulfill the constraints.

 59

Table 4-3. Accuracy comparison of all algorithms

 R. Hand
Constraints

R. Foot
Constraints

R + L hand
constraints

R + L foot
constraints

R+L Hand +
R+L Foot
constraints

Single PCA 0.95 0.68 0.79 0.61 0.32
Single
PCA+

0.96 0.96 0.63 0.91 0.37

Regular
Jacobian

0.91 0.98 0.28 0.82 0.14

Multiple
space PCA

0.98 1.00 0.69 1.00 0.65

The foot constraints problem causes a lot of difficulty. A look at the right foot constraints

problem shows that the single PCA algorithm is unable to find the goal because in trying to find

the shortest path to a goal, typically tries to bend the knee outward (past the bounds of the

angles).

The Multiple space PCA method has a very high accuracy compared to the other methods.

The only exception to this is for the right and left hand constraint group where the Multiple

spaces PCA does worse than the Single PCA method. A possible reason for this is that the right

and left hand constraints cause a conflict in the overlapping joints of the spaces. As such, the

algorithm finds a pose where the error is minimized, which is to say the total distance from the

end effector position to the constraints is the smallest. However this pose does not actually meet

any of the constraints.

 60

Figure 4-4 . Graph of accuracy of all algorithms

4.4.2 Naturalness

Table 4-4. Average log likelihood of all algorithms

 R. Hand
Constraints

R. Foot
Constraints

R + L hand
constraints

R + L foot
constraints

R+L Hand
+ R+L Foot
constraints

Regular
Jacobian -712.4789 -141.356 -721.299 -219.605 -696.894
Single PCA -339.3964 -169.534 -577.728 -298.049 -580.832
Single PCA+ -315.1096 -234.453 -445.176 -363.788 -474.114
Multiple
space PCA -264.8083 -133.141 -305.194 -139.147 -348.928

The naturalness of each pose created by the algorithm is measured by Equation (4-29).

To analyze this data further, bootstrapping was used to find the mean and the variance. 1000

 61

pose groups were created for each algorithm. Each pose group consists of n poses, where n is the

number of correct poses found by the algorithm. The poses in the pose group is found by

randomly sampling with substitution from the correct poses. We calculate the average log

likelihood for each group and then calculate the mean and standard deviation (Table 4-4 and

Figure 4-5).

The regular Jacobian method on average results in less natural poses for the hand

constraints and the hands and feet constraints. However the poses for the feet constraints are

more natural than the resulting poses from the single PCA algorithms. For the feet constraint

groups we find that the regular Jacobian method does not move the upper body at all. Because

the upper body remains in the starting pose (which is a natural pose), and given that the number

of non moving joints is much higher, the probability of this pose being a natural pose is also

higher.

 62

Figure 4-5. Average log likelihood of all algorithms graph

For all constraint groups, we can see that the multiple space PCA performs better than the

single PCA or even the single PCA with effector space and perturbation. One reason why single

space PCA creates unnatural poses is that all joints are correlated in this algorithm, therefore

moving one part a certain angle, also moves another part that is deemed to be related to it.

Moving the arms is correlated to movement in the legs, and the more the arm joint moves, the

more the leg joints move. Figure 4-6 shows how the legs in figures created using the single space

PCA method is unnatural due to the fact that they are moved in relation to the hands movement.

In these figures, only the position of the right hand is a hard constraint.

 63

Figure 4-6. Unnaturalness is caused by extreme leg movement in single space PCA. The figures

were created by (from left to right) regular Jacobian, single space PCA, single space PCA +,

multiple space PCA

The second reason for unnatural poses is the proclivity to bend to a target when the

natural thing is to turn the body towards a target. Bending is preferred because it is usually the

closer solution in the pose space. However, as we can see in Figure 4-7, bending the body to a

particular target sometimes results in unnatural poses.

Because the correct poses created by each algorithm differ, the naturalness score may be

skewed. To compare the algorithms more fairly, pair wise T-test were performed on pairs of

algorithms. The list of tests consisted of the single space (Single PCA) versus single space +

effector space + perturbation algorithm (Single PCA+), single PCA vs. multiple spaces, single

PCA + vs. multiple space, and Jacobian vs. multiple spaces. Only figures that meet constraints

for both algorithms were included in this calculation. The paired log likelihood score for these

algorithms are shown in Table 4-5, Table 4-6, Table 4-7, Table 4-8, and Figure 4-8. Again,

bootstrapping was used on the paired data in order to retrieve the best estimate for mean and

standard deviation. T-test results suggest that the difference between all of the pairings are

significant (p<0.01)

 64

Figure 4-7. Unnaturalness is caused by extreme leg movement in single space PCA. The figures

were created by (from left to right) regular Jacobian, single space PCA, single space PCA +,

and multiple space PCA

Table 4-5. Average log likelihood comparison of the Inverse Jacobian and Multi PCA algorithm

 R. Hand
Constraints

R. Foot
Constraints

R + L hand
constraints

R + L foot
constraints

R+L Hand +
R+L Foot
constraints

Jacobian -711.811 -719.07 -689.783 -717.499 -750.00
Multi PCA -253.033 -269.747 -304.883 -273.159 -307.586

As expected, the regular Jacobian creates poses which are the most unnatural. For poses

having the same constraint, the multiple-space PCA algorithm creates poses that are significantly

more natural.

Table 4-6. Average log likelihood comparison of the Single PCA and Single PCA + algorithm

 R. Hand
Constraints

R. Foot
Constraints

R + L hand
constraints

R + L foot
constraints

R+L Hand +
R+L Foot
constraints

Single PCA -323.0806 -340.911 -352.788 -369.725 -406.215
Single PCA+ -296.2438 -303.793 -333.184 -334.931 -388.236

The single space PCA and single space PCA+ algorithm’s average likelihood do not

differ as dramatically as other pairings. Adding the perturbation factor and a set of effector space

constraints to the single space PCA algorithm helps control the location of all the non-

constrained body parts, and thus the single space PCA+ algorithm creates more natural poses.

 65

Table 4-7. Average log likelihood comparison of the Single PCA and Multi PCA algorithm

 R. Hand
Constraints

R. Foot
Constraints

R + L hand
constraints

R + L foot
constraints

R+L Hand +
R+L Foot
constraints

Single PCA -330.6858 -339.53 -373.038 -369.51 -347.944
Multi PCA -256.6454 -265.001 -287.241 -279.14 -260.00

Table 4-8. Average log likelihood comparison of the Single PCA+ and Multi PCA algorithm

 R. Hand
Constraints

R. Foot
Constraints

R + L hand
constraints

R + L foot
constraints

R+L Hand +
R+L Foot
constraints

Single PCA + -307.2701 -325.293 -334.842 -332.925 -321.276
Multi PCA -256.5242 -266.892 -280.256 -269.738 -263.291

Figure 4-8. Graph of pairwise comparison between algorithms

 66

Table 4-7 and Table 4-8 shows that the multiple space PCA method creates poses that are

more natural than both the single space PCA and single space PCA+ algorithms. A graph of

these values is shown in Figure 4-8.

Figure 4-9 shows a small sample of results of the algorithms for 2 constraint problems

(hands). For each pose group the figures show the resulting pose calculated by the regular

Jacobian, single space PCA, single space PCA+, and multiple space PCA method. A more

detailed set of samples for different constraint groups can be seen in Appendix A.

Figure 4-9 Sample result poses for 2 constraints (hands) problems

 67

5 Motion

Motion is a set of frames presented sequentially a such a rate of speed that the illusion of

smooth movement is created. To create motion automatically, an algorithm creates a number of

frames containing the poses, from the starting pose to an ending pose that meets the target.

The algorithm described here finds a motion in motion space (M-space) to move a virtual

human from the starting pose to the ending pose that meets constraints. The M-space is a

specialized version of a natural space that contains data regarding the phase, which is the pose

configuration and angular speed for each frame. The ending pose must be predefined through

other algorithms (e.g. the P-space inverse kinematics algorithm described in Chapter 4.3). The

M-space algorithm uses the damped least squares method [87], [88] to find a set of frames that

allows a natural movement between the starting pose and the ending pose.

5.1 Characteristic of natural motion

The simplest method for creating motion between P0 and Pt is simple linear interpolation.

Linear interpolation assumes the velocity at each time frame is the same, and that the path from

P0 to Pn is a straight path. To perform this type of interpolation, the first thing to do is calculate

the interpolation step ∆P, which is simply the vector from P0 to Pn divided by the number of

frames (Equation (5-1)).

Each step of the motion can be calculated by using the pose for the previous frame and

adding the interpolation step (Equation (5-2)). This step is repeated until the final pose is reached.

n

PP
P n 0−=∆ (5-1)

 68

PPP tt ∆+=+1 (5-2)

Figure 5-1 The speed and angles of natural motion and a linear interpolated motion

However, observation of captured motion data reveals that natural motion do not look

like the results of linear interpolation. Natural motions do not have a constant speed for all angles.

The angles for each joint do not always move with the same speed, some angles may start slow

and speed up in the middle before slowing down again near the end. Joint angles sometimes

deviates from the straight path between the start and end angles.

An example of the speed of joint angles in a natural motion created by the right hand

segment, with a length of 32 frames is shown in Figure 5-1. The left part of the figure shows the

 69

natural speed, the actual angles in degrees for each degree of freedom, and the speed of each

degree of freedom. The right part shows the same attributes created by linear interpolation

between the starting pose and the ending pose. The same non linear motion characteristics have

also been observed in faces deformation [89].

5.2 Utilizing a Motion Space

Chapter 2 discusses the various techniques used to create motion. This thesis focuses on

how to use existing motion capture data to generate motions. There are two approaches to

creating human motion assuming a constrained target. The first is to generate a motion that finds

a pose at the end that meets the constraints. The other method finds a set of key frames that meet

the constraints first, and then interpolate the rest of the motion. The second approach is the

approach used in this thesis.

The creation of synthesized motions from motion data, have been proposed by various

authors. Abe et al. creates a limited amount of poses which have the same physical requirements

using transformation (by rotation or translation) of motion capture data [32]. Grochow et al [90]

compute poses via kinematics based on data learnt from captured motion. They calculate the

likelihood of a particular pose using a probabilistic model. New poses are synthesized using an

optimization algorithm in which the objective function depends on the learnt poses. Similarly, in

Yamane [63], inverse kinematics is calculated using a constrained optimization algorithm.

Captured data is stored and used as soft constraints. Motion is created by the smoothing of

various results of IK computations over multiple positions.

The algorithm proposed by Pan [64] uses RRT to plan out the key frames necessary. For

each set of key frames, a motion is calculated using interpolation, and depending on how natural

it is (and whether it is in a constrained environment or not), it is replaced by existing motion

 70

capture data. They first find a motion capture data segment that resembles the motion they have,

and then uses that. This still requires a large database of motion capture data to be able to create

good results.

PCA have been used on whole motions (normalized skeletal configuration across

multiple frames) [79], [80]. The created PCA space is then used to create new motions with

different constraints. In order to do this, only similar motions, or motions which performs one

task can be summarized using the PCA, for example golf motions.

Instead of a using each motion as one data point, the algorithm described here uses the

phase (a combination of pose configuration and angular velocity) to create a reduced motion

space (M-space). Given the starting pose P0, the ending pose Pn, and the number of frames n, the

proposed method attempts to find a natural motion (through generation of the interleaving set of

poses) that moves the human from the start pose to the end pose. The poses are found by finding

the points in a lower dimension motion space that meets motion constraints.

The algorithm focuses on finding the shortest path between the starting pose and ending

pose. Realistic physics may sometimes be overlooked. For example, if position A was a standing

position and position B was a kicking position (where the leg meets the ball), it is unlikely that

the algorithm will try to move the leg back to gain momentum for kicking. Instead the end results

will probably be a straight path between the starting positions to the kick position. This can be

remedied by having a constraint that the motion includes a backward movement to create

momentum.

 71

5.2.1 The Motion Space

To create a motion space, information about the current angle as well as the angular

velocity for each DOF is used. To calculate the angular velocity ωt, the average difference

between the previous frame and the next frame is used in order to smooth out the result

(Equation (5-3)).

2
11 −+ −

= tt
t

PPω (5-3)

The vector H, represents a phase of motion contains both the current angle configuration

as well as the angle velocity at each frame (Equation (5-4)). The numbers of dimensions for H is

double that of the original configuration space. PCA is used to create a lower dimension space

(the motion space or M-space). The number of data used for creating the PCA space was

increased to 45000 samples.

[]ttt PH ω,= (5-4)

N is the point in M-space corresponding to H. T is the transformation matrix from the

original phase space to the M-space that transforms H to N (Equation (5-5)). T is orthornormal,

and therefore the transpose of T transforms from N to H (Equation (5-6)).

tt THN = (5-5)

t
T

t NTH = (5-6)

Each point in N-space corresponds to a pose and a velocity. T
T

p and T
T

v are

transformation matrices that transforms from the point in M-space to the pose (Equation (5-7))

and velocity (Equation (5-8)) respectively.

NTP T
P= (5-7)

NTT
v=ω (5-8)

 72

5.2.2 Calculating Motion

Motion is calculated in the M-space. N0 and Nn is the point in M-space corresponding of

the phases H0 and Hn. We attempt to find the motion M which is a contiguous set of points in M-

space corresponding to a set of poses in the original space. Figure 5-2 illustrates the M vector

that includes the data for every frame.

M = [N0 N1 N2… Nn]

Figure 5-2 Motion vector representation used in this thesis

To calculate M using N-Space, these constraints are used:

1. N0 = [P0 ω 0]. The first element of M is a PCA transformation of P0 and the initial speed

2. Nn = [Pn ω n]. The n
th

 frame element of M is a PCA transformation of Pn and the final

angular speed

3. Pt+1 = Pt + k ω t. The poses in the motion must be contiguous. The momentum added to

each pose must match the following pose (possibly scaled by a constant k).

 73

4. ω0 and ω n-1 are minimized. The assumption here is that the motion starts and end on a

still pose. Therefore the angular velocity at the first frame and at the last frame is

constrained to be as small as possible.

In order to find the best motion between a starting pose P0 and an ending pose Pn, as well

as meet all those constraints, the constraints are transformed to equations that can be minimized.

Constraint number 1 and 2 corresponds to the minimization Equation (5-9) and Equation (5-10).

This equation attempts to minimize the difference between the actual start and ending pose and

the corresponding poses from the starting and ending points in M-space. Constraint number 3

corresponds to Equation (5-11). This equation tries to force the next pose in the motion to be as

close as possible to the current pose plus the angular velocity. Constraint number four

corresponds to Equations (5-12) and (5-13). These two equations attempt to find a point in N-

space with the smallest possible angular velocity. Finally a damping factor is introduced in

Equation (5-14). This damping factor ensures that each pose remains as close as possible to the

subsequent pose.

2
00 NTP T

P− (5-9)

2
n

T
Pn NTP − (5-10)

2
11..1)(t

T
vt

T
Pt

T
Pnt NTNTNT +−∀ +−= (5-11)

2
0NTT

v (5-12)

2
1−n

T
v NT (5-13)

2
11..1 ttnt NN −∀ +−= (5-14)

 74

To get the individual M-space point corresponding to a single frame within a motion, the

L matrix can be used. The L matrix’s value depends on the frame number.

MLN kk = (5-15)

Therefore the Equations (5-9)-(5-14) can be written as

2
00 MLTP T

P− (5-16)

2
MLTP n

T
Pn − (5-17)

2
11..1)(MLTMLTMLT t

T
vt

T
Pt

T
Pnt +−∀ +−= (5-18)

2
0MLTT

v (5-19)

2
1MLT n

T
v − (5-20)

2
11..1 MLML ttnt −∀ +−= (5-21)

The motion solution M is the motion that minimizes all those factors according to

Equation (5-22). Each factor in this equation is weighted by the constant lambda that denotes the

importance of each part. The first four factors have the same weight because they are similar in

purpose (matching the pose or the velocity). Furthermore having one weight reduces the number

of parameters that must be controlled.

21

1
13

21

1
12

2
11

2
01

2
1

2
001

)(

∑

∑

−

=
+

−

=
+

−

−+

+−+

++

−+−

n

t
tt

n

t
t

T
vt

T
Pt

T
P

n
T
v

T
v

n
T
Pn

T
P

MLML

MLTMLTMLT

MLTMLT

MLTPMLTP

λ

λ

λλ

λλ

(5-22)

 75

To calculate the value of M that minimizes the above equation, the derivation for each

factor with respect to M (df/dM) is calculated as shown in Equations (5-23)-(5-28)

)(2)(2 0000 PTLMLTTL P
TT

PP
T − (5-23)

)(2)(2 nP
T
nn

T
PP

T
n PTLMLTTL − (5-24)

MLTLTLTLTLTLT t
T
vt

T
Pt

T
P

n

t

T
t

T
vt

T
Pt

T
P)()(2 1

1

1
1 +−+− +

−

=
+∑ (5-25)

MLTTL T
vv

T)(2 00 (5-26)

MLTTL n
T
vv

T
n)(2 11 −− (5-27)

MLLLL tt

n

t

T
tt)()(2 1

1

1
1 −− +

−

=
+∑ (5-28)

Finding the weighted sum of all the derivation of Equation (5-22) and setting it to 0,

gives a formula that allows a matrix factorization to find M:

nP
T
nP

T

tt

n

t

T
tt

t
T
vt

T
Pt

T
P

n

t

T
t

T
vt

T
Pt

T
P

n
T
vv

T
n

T
vv

T

n
T
PP

T
n

T
PP

T

PTLPTL

M

LLLL

LTLTLTLTLTLT

LTTLLTTL

LTTLLTTL

1001

1

1

1
13

1

1

1
12

111001

1001

)()(

)()(

)()(

)()(

λλ

λ

λ

λλ

λλ

+=





























−−+

+−+−+

++

+

+
−

=
+

+
−

=
+

−−

∑

∑

(5-29)

The result of using this calculation to generate motion is shown in Figure 5-3. The

original motion characteristic is shown on the left. The starting pose and ending pose of the

original motion is used as input to the algorithm described in this chapter. The resulting motion

shows variability in the total speed and angular speed.

 76

Figure 5-3 Total speed, angles, and angular velocity of motion calculated using M-space.

5.2.3 Characteristic of Motion Speed

The algorithm described so far minimizes the total speed at the beginning and the end. It

does not constraint the speed of motion in the body of the motion. Different motions have

different speed trajectories, and different motions can be created by changing the speed of the

angles. An example of a speed trajectory based on a function is a quadratic function speed

trajectory, which peaks at the middle of the motion.

 77

Figure 5-4 Mean error of speed reconstruction on original samples

Twelve walking motions and twelve running motions were selected from the motion

capture database, each with different subjects. The motion of the right foot during the

performance of a single step is used for speed analysis. The speed for each frame was calculated

by taking the difference between subsequent frames. Every motion has different distances

traveled and different number of time frames. Therefore the motion must be normalized. A set of

regularly spaced key points, including the first and the last speed were selected. The speed at

each key-point was then calculated. From this method 24 normalized speed trajectories from the

motion samples were created. The prototypical speed for a motion is the average of those

normalized speed trajectories.

 78

To reconstruct the speed for a motion of n frames, the interval centers were matched to

the frame index. A cubic spline algorithm [91] was used to create a curve that would best fit all

the key points. This method was used to reconstruct the speeds of the original samples. The mean

of the error of the reconstructed speed with respect to the original sample speed for key points

between 3 and 50 was calculated and is shown in Figure 5-4. The figure shows that the error rate

does not significantly decrease after 13 key points.

Figure 5-5 Mean speed trajectory of running motion and walking motion

Figure 5-5 shows the normalized mean speed trajectory for running and walking motions

in 13 key points. The blue lines represent the running motion, while the red lines represent the

walking motion. The thick lines represent the mean value or the prototype speed. As expected,

different motions require different speed characteristics, and therefore this motion trajectory can

be used to generate different motions. Hotelling’s T squared method was used to calculate the

 79

statistical significance of the multivariate differences of means [92]. This test shows that the

means of the two types of motions differ significantly (p<0.01, F13,10=17.2947)

5.2.4 Speed Trajectory Matching

Given a prototype speed, the next task is to use that speed to create a motion. The total

speed Ω can be calculated from ωx as shown in (5-30). To match the velocity to a set of speed

constraint S = {s0, s1… sn} the following constraint could be used.

∑=Ω
i

ixx
2
,ω (5-30)

2
xx s−Ω (5-31)

To simplify this problem however, we use the squared total velocity in (5-32) and

minimize

∑=Ω=Θ
i

ixxx
2
,

2 ω (5-32)

22
xx s−Θ (5-33)

Finding the derivation of this formula and then using it to calculate the motion with

Equation (5-33) turns out to be complex. The reason for the difficulty comes from the w variable

being raised to the power of 4. Instead of trying to derive this formula, we calculate the Jacobian

with respect to each individual ω Equation (5-34). Based on Equation (5-30), it can be inferred

that each partial derivative is equal to the value 2ω.

[]nxxx

nx
x

x
x

x
x

d
d

d
d

d
dJ

,2,1,

,2,1,

222 ωωω

ωωω

L

L

=








 ΘΘΘ=
 (5-34)

 80

In order to match the speed we can add the constraints shown in Equation (5-35) and

Equation (5-36). The term ∆ω represents the moment velocity. Based on this moment velocity

we can find the moment for motion ∆M

22
..1)(tttnt vJ Θ−−∆∀ = ω (5-35)

22
..1)(ttt

T
vnt vMLJT Θ−−∆∀ = (5-36)

The derivation of this with respect to ∆M is:

))((2)(2 2
tt

T
v

T
tt

T
v

T
v

T
t vJTLMLJTJTL Θ−−∆ (5-37)

The solution to M can be found through iteration. After every iteration, ∆M is added to M

as shown in Equation (5-38). In order to use this iteration, Equation (5-22) must be changed to

use both M and ∆M.

MMM tt ∆+=+1 (5-38)

To find ∆M for each iteration, Equation (5-39) must be minimized. Equation (5-39) is

similar to the original M-space equation shown in Equation (5-22), with an extra speed trajectory

matching factor added. By calculating the derivation of Equation (5-39) and setting it to 0, the

most optimal value of ∆M can be calculated using Equation (5-40).

 81

∑

∑

∑

Θ−−∆+

∆+−∆++

∆++−+

∆++∆++

∆+−+∆+−

+

+

−

t
ttt

T
v

t
tt

t
t

T
vt

T
Pt

T
P

n
T
v

T
v

n
T
Pn

T
P

vMLJT

MMLMML

MMLTLTLT

MMLTMMLT

MMLTXMMLTX

22
4

2
13

2
12

2
11

2
01

2
1

2
001

)(

)()(

))((

)()(

)()(

λ

λ

λ

λλ

λλ

(5-39)

)()(

)(

)(()(

)()(

)()(

)()(

)()(

2
4

1

1
13

1

1
12

1101

1101001

1

1

2
4

1

1

1
13

1

1

1
12

111001

1001

tt
T

v
T
t

n

t

T
tt

n

t

T
t

T
vt

T
Pt

T
P

v
T
nv

T

P
T
nnP

T
nP

T
P

T

n

t
tt

T
v

T
tt

T
v

T
v

T
t

tt

n

t

T
tt

t
T
vt

T
Pt

T
P

n

t

T
t

T
vt

T
Pt

T
P

n
T
vv

T
n

T
vv

T

n
T
PP

T
n

T
PP

T

vJTLMLL

MLTLTLT

MTLMTL

MTLXTLMTLXTL

M

vJTLLJTJTL

LLLL

LTLTLTLTLTLT

LTTLLTTL

LTTLLTTL

Θ−+−−

+−−

−−

−+−=

∆











































Θ−−+

−−+

+−+−+

++

+

∑

∑

∑

∑

∑

−

=
+

−

=
+

−

−

=

+
−

=
+

+
−

=
+

−−

λλ

λ

λλ

λλλλ

λ

λ

λ

λλ

λλ

(5-40)

 82

The result of using this calculation to generate motion is shown in Figure 5-6. The

original motion characteristic is shown on the left. The starting pose and ending pose of the

original motion is used as input to the algorithm described in this chapter. The right data shows

the motion trying to match quadratic function speed. The resulting motion shows variability in

the total speed and angular speed.

Figure 5-6 Total speed, angles, and angular velocity of motion calculated using Speed

Trajectory Matching

 83

5.2.5 Multiple Spaces

The body space is divided into 5 segments as described in Chapter 3.3. To calculate the

motion for the whole body, each segment is calculated separately. The angle of joints that are in

multiple segments is simply the average of the angle values for that joint in all segments.

Equation (5-41) describes the calculation for the k
th

 joint angle, which is an average of the

angles in all spaces that contains the k joint angle.

n
i

ki

k

∑
=

,θ
θ

(5-41)

5.3 Results

Two types of evaluation are performed on this algorithm. The first evaluation is aimed at

measuring the similarity between a motion generated by this algorithm and a motion taken from

the motion capture data. To do this, the angle difference at each frame is calculated. A visual

observation of the motions is also performed. The second evaluation attempts to asses new

motions synthesized with the M-space. Visual observation of the created motion is used in

assessing the resulting motion.

Table 5-1 Number of dimensions per M-space segment

Body
Segment

Number of
Dimensions

Right hand 18
Left hand 18
Head 18
Right Foot 8
Left Foot 8

 84

The body space is divided into 5 segments. By using the minimum distance between

actual motion and motion created using M-space, the number of dimensions used are shown in

Table 5-1.

5.3.1 Motion Reconstruction

The first evaluation compares a motion created in M-space and one existing in the motion

capture data. Four clips were selected from either the right hand or the right foot segments. The

clips chosen had a speed trajectory that was similar to a quadratic function. The clips start off

slow, peak near the middle, and slow down again near the end. The start pose and the end pose

was given as input to the various algorithms tested.

The results of three different motion generating algorithms were compared. The first

algorithm is a simple linear interpolation between the first pose and the end pose. The second

motion algorithm uses the M-space algorithm described in chapter 5.2.2. The third algorithm is

the speed trajectory matching algorithm of chapter 5.2.4. The trajectory of the speed was a

quadratic function with a peak of 5 degrees/frame.

Table 5-2 Euclidian distance for the right hand segment motions

Clip Number of
Frames

Interpolation M-Space Speed
Trajectory

Clip 1 41 13.9794
(7.4394)

13.9380
(7.9521)

14.2215
(8.6094)

Clip 2 32 10.2899
(6.0120)

12.3045
(7.2574)

9.0544
(5.3202)

Clip 3 13 14.3558
(9.0049)

14.6976
(8.6656)

13.7084
(7.9130)

Clip 4 47 32.4070
(15.5398)

33.0236
(16.9043)

31.0832
(14.9078)

Total 133 19.6405
(14.4471)

20.3638
(15.0579)

18.8868
(14.0731)

 85

The total Euclidian distance between the joint angles was calculated for each frame. The

farther the distance of the natural motion and the generated motion, the less natural the motion is

deemed to be.

The mean and standard deviation (in brackets) for each algorithm is shown in Table 5-2.

Based on the data found here, all three algorithms create motions which are similar in terms of

naturalness. Paired T-tests shows that the differences were not statistically significant (t score

were -0.3997 for methods 1 and 2, 0.4310 for methods 1 and 3, and 0.8265 for methods 2 and 3).

Similarly, Table 5-3 shows the mean and standard deviation of distances for the right foot.

It is clear here that the speed trajectory algorithm performs better for foot motion than the other

algorithms. Paired T-tests shows that the differences are statistically significant for p<0.005 (t

score were –8.0657 for methods 1 and 2, 3.9803 for methods 1 and 3, and 10.4810 for methods 2

and 3).

Table 5-3 Euclidian distance for the right foot segment motions

Clip Number of
Frames

Interpolation M-Space Speed
Trajectory

Clip 1 37 15.7634
(7.3665)

26.1878
(14.8549)

8.7737
(4.5666)

Clip 2 31 14.1270
(9.0573)

31.2707
(18.2234)

11.3426
(7.7485)

Clip 3 21 8.7946
(4.5610)

44.1516
(30.6322)

4.6237
(2.8625)

Clip 4 41 13.0720
(9.7789)

25.6661
(19.2689)

11.0984
(7.0715)

Total 130 13.7276
(8.7391)

28.7152
(19.5668)

9.9472
(6.6033)

A second evaluation was performed on this data. A walking motion was taken from the

motion capture database. The original walking motion was of 60 frame length. To generate the

motion, the first and the last frame of the walking motion were given to the interpolation and the

 86

M-space algorithms. The speed matching algorithm with a quadratic function approximation was

used. The maximum sum of angle speed per frame was 3 degrees for the arms and left leg

segments, 2 for the head segment, and 5 for the right leg segment.

Figure 5-7 compares various walking motion created by regular interpolation and using

motion space. The original walking motion is shown in the top row. The second row shows the

result of linear interpolation. The third row shows the result from the M-space with speed

matching.

Figure 5-7 Comparison of walking motion

The problem with linear interpolation can be seen in the right leg segment of the motion.

In a normal walking motion shown in the first row, a person bends his knees to lift the leg

forward. This is not seen in the motion created by interpolation. The motion drags the feet from

the back to the front. The M-space motion created on the other hand shows some knee bending

and as a result a small leg lift occurred, albeit not as high as the lift in the normal walking motion.

 87

Figure 5-8 Speed and angle comparison of right hand and right foot

 88

Figure 5-8 shows the speed and angles for both the right hand (top) and the right foot

(bottom) segments. The left graphs show the original speed and angle per frames. The right

graphs show the speed and angle per frames of the motion created by the speed trajectory

matching algorithm. The motion generated by the speed trajectory matching algorithm follows a

path that in most joints mimics the path in the original motion.

5.3.2 Pose Based Motion Synthesis

In most applications of human animation, there is a need to synthesize new motions

based on existing data. The method described in this thesis allows different ways of creating new

motion to meet an application’s need.

Motions are generated based on the start and end poses. By changing the end pose, new

natural motions must be generated. The top figures of Figure 5-9 shows an animated human

pointing upwards. New motions are generated by changing the direction that the human points to.

Two new motions were generated, one pointing to the front and one pointing to the side.

The first pose for each motion was taken from the original motion capture data. The multi

space pose generator described in Chapter 4.3 was used to generate the end poses. The speed

trajectory matching algorithm with a quadratic function motion trajectory with a peak of 5 was

used for creating both motions. The algorithm was able to create a novel motion that meets both

speed and position constraints.

 89

Figure 5-9 Creating new pointing motions using natural spaces

5.3.3 Speed Based Motion Synthesis

An alternate way of generating new motions is to change the speed of various parts of the

body. However one must be very careful that the motion remains natural, even when the speed

changes. This method allows a user to set the total speed for a segment. This allows the user to

control which segment needs to change, while at the same time not worry about changing

individual joint angles and how they relate to one another.

 90

Figure 5-10 Effect of a different speed trajectory to motion

The animated figure in Figure 5-10 is performing traffic control actions (waving cars

through an intersection). The figures on top show the original motion. The speed of the right

hand segment was changed to have a peak of 8. However the starting and ending poses remain

the same. The figures on the bottom show the resulting motion after the speed was changed. Due

to the change of speed, the character had to move the hands in a curved trajectory in order to

meet both positional and speed constraints. As a result of this change of speed, the end motion is

significantly different from the original motion. Figure 5-11 shows the speed and angle per frame

of the right hand segment. The left graphs show the original motion capture data while the right

graphs show the data after the change of speed.

 91

Figure 5-11 Speed and angle per frame after fitting with new trajectory

A prototype speed trajectory (as shown in chapter 5.2.3) can also be used to generate

motions. A walking motion was taken from the motion capture database. The original walking

motion was of 86 frame length. A 60 frame motion was created to speed up calculation. To

generate the motion, the first and the last frame of the walking motion were given to the

interpolation and the M-space algorithms. Instead of matching the speed at all frames, speed

were matched every 2 frames. In essence, this allows the algorithm to choose a more natural

 92

speed for some frames and not make unnecessary movements just to meet the pre arranged speed

constraints.

Figure 5-12 Speed trajectories for walking and running motion

Figure 5-12 shows the speed and angle per frames generated by this algorithm for two

prototype speed trajectories, a walking and a running motion that starts and ends with the same

pose. Figure 5-13 shows the results of synthesizing a motion having those speed trajectories. The

top images show the original motion taken from the motion capture data. The middle images

 93

show the synthesized walking motion while the bottom images show the synthesized running

motion.

 94

Figure 5-13 Walking and running motions generated from prototype speed trajectories. The top figures show the original motion. The

figures on the second row shows generated walking motion, while the figures on the third row shows generated running motion

 95

6 Conclusion and future work

6.1 Conclusion

This thesis describes a set of algorithms that creates natural spaces, subspaces of

all possible poses and motions, and how to utilize these subspaces to create more natural

poses and movement.

The skeletal model is divided into multiple overlapping segments. PCA is

performed for the motion capture data in each segment. The resulting space is called the

natural space. Inverse kinematics on the PCA space is used to create constrained poses.

Furthermore to retain the relation between the various segments, an effector space is

created consisting of the coordinates of 8 end effectors / bones.

Naturalness was measured by calculating as log likelihood of a set of poses

created by an algorithm given a model of naturalness. The mean and variance of the

motion capture data was calculated and used as the parameter for a normal distribution.

This normal distribution of data is used as the model for comparing naturalness of poses.

The likelihood is calculated by calculating the probability density function (pdf) of poses

to the model.

Resulting poses are most natural when the number of PCA dimensions is around

50% of the original number of dimensions. A lower number of dimensions severely limits

the poses that the algorithm is able to use, therefore, it is not likely to find one that meets

the constraints. A high number of dimensions on the other hand give too much freedom

on the resulting bone angles. The relationships between the bone angles are lost, resulting

in unnatural poses.

 96

The algorithm proposed here creates poses that are more natural compared to

traditional iterative Jacobian and the single PCA space method. As predicted the

traditional iterative Jacobian performs the worst, as it focuses on finding solutions

without taking naturalness into account. The single PCA solution creates relations over

body parts that may not really exist, and are only there due to insufficient learning data.

By breaking the space into multiple segments, this algorithm is better place the bones into

a pose that fits the constraints, while at the same time keeping it natural.

To create motion, a motion space was created from the phase space. The phase

space includes the angle of the bones as well as the speed of each angle. Similar to the

pose space, the skeletal model is also segmented into the same space.

Given a starting pose and an ending pose, the algorithm described in this thesis

creates the inner poses in order to create a motion. A single vector represents each phase

of the motion from the starting pose to the ending pose. The motion generated algorithm

searches through the motion space to fill out the vector with motion phases that meets the

constraint.

Traditional linear interpolation assumes changes in joint angles are always

constant. The motion capture data however shows that this is not always true. With linear

interpolation the angle of a joint at any time t is always a linear product of t and the angle

speed. The speed of joint angles in natural motion changes constantly and cannot be

easily replicated by linear interpolation.

The first algorithm proposed finds a solution by minimizing the beginning and

ending speed. This algorithm is able to create motions that have variance in its speed,

similar to natural motion. The second algorithm proposed goes even further by allowing a

 97

user to control the speed of the motion at each step. Therefore the user can select a speed

curve (such as a simple quadratic curve) which the algorithm tries to match. This

algorithm is also able to create motions with variable speed for each joint, creating a

more natural motion.

The work described here shows that the use of multiple reduced dimension space

is a feasible alternative in generating poses and motions. By utilizing the statistical

properties of motion capture data, these methods generate more natural looking poses and

motions compared to traditional methods.

6.2 Future Work

There are various directions where this work can be expanded. Some of the areas

for expansion include a more thorough study of data, optimization, methods merging, and

evaluations.

Chai and Hodgins dismissed the use of global PCA in their work because it over-

generalizes the data [93]. One reason for this is that they use global PCA instead of the

multiple space method described here. Even the multiple space method can be broken

down further. Some have used techniques that work on motion capture data for specific

movement [79]. Preliminary studies by this author, shows that categorizing motion and

using different category results for the motion capture data results in different motions.

Further study can be performed to utilize fully the specific properties of each motion.

Different emotions elicit different types of movement [21]. PCA has been used to

generate different walking movement based on emotions [77]. This work can be

expanded by using emotion based motion capture and eliciting motions and poses that is

typical of an emotion.

 98

Quaternion representation of joints has some advantages over Euler angles [78].

Various PCA algorithms on motion have been used using this quaternion representation

[78], [81]. A comparative study for multi space PCA using quaternion as compared to the

current Euler angle is needed.

No optimization or algorithmic analysis is performed on the current algorithm.

Therefore it is impossible to know whether the algorithm here is suitable for real time

systems. The complexity of this algorithm comes from finding the inverse of matrices. As

some of the matrices are sparse, it may be possible to speed up the inverse calculation.

The algorithm described here can be easily incorporated into other programs. The

pose generating mechanism can be used in the RRT search algorithm proposed in

Yamane [63] and Pan [64]. The motion generating algorithm does not necessarily need to

take as input the results from the pose generating algorithm. All it needs is the skeletal

configuration for the starting pose and the ending pose.

The assumption used in this work is that motion is transferable between subjects

and body types. One of the findings of Pronost et al, is that different body will have

different correlation between joints, and thus different type of movement [66]. Future

research can weigh in on how to use the body information to transfer or change the

natural space.

In this thesis, naturalness is measured objectively through the use of a probability

distribution function. It would be interesting to see whether the poses and motions created

here are natural according to direct observation by humans. To test the naturalness of the

motion created, subjects may try to determine [94] which two motions were generated by

a real human, and which were generated by this algorithm. If the subjects were not able to

 99

discern which is which, it can be concluded that the algorithm proposed creates animation

of natural motion.

APPENDICES

 101

Appendix A. Multiple Space PCA Results

The following figures show selected comparison of running the iterative Jacobian, Single

PCA, Single PCA +, and Multi PCA algorithms as described in Chapter 4.3 on various

constraints. For all figures, the skeleton shows the results of running the respective algorithms in

order from left to right.

In all of the following figures, the Multi PCA found a solution pose that meets the

constraints set. The other algorithms may also possibly have found a solution pose to the

constraints.

 102

Figure 6-1 Results of running the pose generation algorithms on right hand constraints only

 103

 Figure A-2 Results of running the pose generation algorithms on right hand and left hand

constraints

 104

Figure A-3 Results of running the pose generation algorithms on right foot constraint only

 105

Figure A-4 Results of running the pose generation algorithms on right and left foot constraints

 106

Figure A-5 Results of running the pose generation algorithms on hands and foot constraints

REFERENCES

 108

References

[1] Nadia Magnenat-Thalmann and Daniel Thalmann, “An Overview of Virtual
Humans,” in Handbook of Virtual Humans, John Wiley & Sons, 2004.

[2] K. L. Nowak and F. Biocca, “The effect of the agency and anthropomorphism of
users’ sense of telepresence, copresence, and social presence in virtual
environments,” Presence: Teleoperators and Virtual Environments, vol. 12, p. 481–
494, Oct. 2003.

[3] P. Goldstein, “Why is the $170-million ‘Polar Express’ getting derailed?,” Los
Angeles Times, 2004.

[4] F. Charles, M. Cavazza, S. J. Mead, O. Martin, A. Nandi, and X. Marichal,
“Compelling experiences in mixed reality interactive storytelling,” in Proceedings
of the 2004 ACM SIGCHI International Conference on Advances in computer
entertainment technology, Singapore: ACM Press, 2004, pp. 32-40.

[5] M. Mateas and A. Stern, “Towards Integrating Plot and Character for Interactive
Drama,” Socially Intelligent Agents: The Human in the Loop. Papers from the 2000
AAAI Fall Symposium, pp. 113-118, 2000.

[6] J. Gratch, “Émile: Marshalling passions in training and education,” in Proceedings
of the fourth international conference on Autonomous agents, Barcelona, Spain:
ACM Press, 2000, pp. 325-332.

[7] J. Rickel and W. L. Johnson, “Integrating pedagogical capabilities in a virtual
environment agent,” in Proceedings of the first international conference on
Autonomous agents, Marina del Rey, California, United States: ACM Press, 1997,
pp. 30-38.

[8] J. Lester and B. Stone, “Increasing Believability in Animated Pedagogical Agents,”
in The First International Conference on Autonomous Agents, Marina del Rey,
California, 1997, pp. 16-21.

[9] E. Andre, T. Rist, and J. Muller, “Integrating reactive and scripted behaviors in a
life-like presentation agent,” in Proceedings of the second international conference
on Autonomous agents, Minneapolis, Minnesota, United States: ACM Press, 1998,
pp. 261-268.

 109

[10] J. Cassell et al., “Embodiment in conversational interfaces: Rea,” in Proceedings of
the SIGCHI conference on Human factors in computing systems: the CHI is the
limit, Pittsburgh, Pennsylvania, United States: ACM Press, 1999, pp. 520-527.

[11] R. McDonnell, F. Newell, and C. O’Sullivan, “Smooth movers: perceptually guided
human motion simulation,” in Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation, Aire-la-Ville,
Switzerland, Switzerland, 2007, p. 259–269.

[12] P. S. A. Reitsma and N. S. Pollard, “Perceptual metrics for character animation:
sensitivity to errors in ballistic motion,” ACM Trans. Graph., vol. 22, no. 3, pp. 537-
542, 2003.

[13] A. Hertzmann, C. O’Sullivan, and K. Perlin, “Realistic human body movement for
emotional expressiveness,” in ACM SIGGRAPH 2009 Courses, New York, NY,
USA, 2009, p. 20:1–20:27.

[14] N. Burtnyk and M. Wein, “Interactive skeleton techniques for enhancing motion
dynamics in key frame animation,” Commun. ACM, vol. 19, no. 10, pp. 564-569,
1976.

[15] E. Catmull, “A system for computer generated movies,” in Proceedings of the ACM
annual conference - Volume 1, Boston, Massachusetts, United States: ACM Press,
1972, pp. 422-431.

[16] ASF/AMC, “Acclaim ASF/AMC,” 1999. [Online]. Available:
http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/ASF-AMC.html.

[17] M. Garau, M. Slater, S. Bee, and M. A. Sasse, “The impact of eye gaze on
communication using humanoid avatars,” in Proceedings of the SIGCHI conference
on Human factors in computing systems, Seattle, Washington, United States: ACM
Press, 2001, pp. 309-316.

[18] P. Gebhard, “ALMA: a layered model of affect,” in Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems, The
Netherlands: ACM Press, 2005, pp. 29-36.

[19] B. Tomlinson, “From linear to interactive animation: how autonomous characters
change the process and product of animating,” Comput. Entertain., vol. 3, no. 1, pp.
5-5, 2005.

[20] J. Lasseter, “Tricks to animating characters with a computer,” SIGGRAPH Comput.
Graph., vol. 35, no. 2, pp. 45-47, 2001.

 110

[21] T. Porter and G. Susman, “On site: creating lifelike characters in Pixar movies,”
Commun. ACM, vol. 43, no. 1, p. 25, 2000.

[22] K. Perlin and A. Goldberg, “Improv: a system for scripting interactive actors in
virtual worlds,” in Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, ACM Press, 1996, pp. 205-216.

[23] Z. Huang, A. Eliens, and C. Visser, “Implementation of a scripting language for
VRML/X3D-based embodied agents,” in Proceeding of the eighth international
conference on 3D Web technology, Saint Malo, France: ACM Press, 2003, pp. 91-
100.

[24] N. I. Badler, M. S. Palmer, and R. Bindiganavale, “Animation control for real-time
virtual humans,” Commun. ACM, vol. 42, no. 8, pp. 64-73, 1999.

[25] A. Watt and M. Watt, Advanced Animation and Rendering Techniques Theory and
Practice. New York: Addison-Wesley, 1992.

[26] A. Bruderlin and T. W. Calvert, “Goal-directed, dynamic animation of human
walking,” in Proceedings of the 16th annual conference on Computer graphics and
interactive techniques, ACM Press, 1989, pp. 233-242.

[27] C. K. Liu and Z. Popovic;, “Synthesis of complex dynamic character motion from
simple animations,” in Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, San Antonio, Texas: ACM Press, 2002, pp.
408-416.

[28] Z. Popovic, “Controlling physics in realistic character animation,” Commun. ACM,
vol. 43, no. 7, pp. 50-58, 2000.

[29] M. S. Geroch, “Motion capture for the rest of us,” J. Comput. Small Coll., vol. 19,
no. 3, pp. 157-164, 2004.

[30] B. Bodenheimer, C. Rose, S. Rosenthal, and J. Pella, “The Process of Motion
Capture: Dealing with the Data,” Computer Animation and Simulation ’97,
Eurographics Animation Workshop, no. 1997, 18. 1997.

[31] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley-Interscience,
2000.

[32] Y. Abe, C. K. Liu, and Z. Popovic;, “Momentum-based parameterization of
dynamic character motion,” in Proceedings of the 2004 ACM

 111

SIGGRAPH/Eurographics symposium on Computer animation, Grenoble, France:
Eurographics Association, 2004, pp. 173-182.

[33] H-Anim, “H-ANIM specification for a standard humanoid,” 2007. [Online].
Available: http://h-anim.org/Specifications/H-Anim1.1/.

[34] R. P. Paul, B. Shimano, and G. E. Mayer, “Kinematic Control Equations for Simple
Manipulators,” IEEE Transactions on Systems, Man, and Cybernetics, 1981.

[35] M. Fedor, “Application of inverse kinematics for skeleton manipulation in real-
time,” in Proceedings of the 19th spring conference on Computer graphics,
Budmerice, Slovakia: ACM Press, 2003, pp. 203-212.

[36] M. Meredith and S. Maddock, “Adapting motion capture data using weighted real-
time inverse kinematics,” Comput. Entertain., vol. 3, no. 1, pp. 5-5, 2005.

[37] R. Barzel and A. H. Barr, “A modeling system based on dynamic constraints,” in
Proceedings of the 15th annual conference on Computer graphics and interactive
techniques, ACM Press, 1988, pp. 179-188.

[38] P. M. Isaacs and M. F. Cohen, “Controlling dynamic simulation with kinematic
constraints,” in Proceedings of the 14th annual conference on Computer graphics
and interactive techniques, ACM Press, 1987, pp. 215-224.

[39] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien, “Animating human
athletics,” in Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, ACM Press, 1995, pp. 71-78.

[40] J. K. Hahn, “Realistic animation of rigid bodies,” SIGGRAPH Comput. Graph., vol.
22, no. 4, pp. 299-308, 1988.

[41] H. Zhiyong, N. M. Thalmann, and D. Thalmann, “Interactive human motion control
using a closed-form of direct and inverse dynamics,” in The Second Pacific
Conference on Computer Graphics and Applications, Pacific Graphics ’94.,
Beijing, China., 1994.

[42] A. Witkin and M. Kass, “Spacetime constraints,” in Proceedings of the 15th annual
conference on Computer graphics and interactive techniques, ACM Press, 1988, pp.
159-168.

[43] H. Ko and N. I. Badler, “Animating human locomotion with inverse dynamics,”
IEEE Computer Graphics and Animation, vol. 16, no. 2, pp. 50-59, Mar. 1999.

 112

[44] S.-H. Lee, E. Sifakis, and D. Terzopoulos, “Comprehensive biomechanical
modeling and simulation of the upper body,” ACM Transactions on Graphics
(TOG), vol. 28, p. 99:1–99:17, Sep. 2009.

[45] C. K. Liu, “Dextrous manipulation from a grasping pose,” in ACM Transactions on
Graphics (TOG), New York, NY, USA, 2009, p. 59:1–59:6.

[46] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthesizing physically realistic
human motion in low-dimensional, behavior-specific spaces,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 514-521, 2004.

[47] P. Baerlocher and R. Boulic, “An Inverse Kinematic Architecture Enforcing an
Arbitrary Number of Strict Priority Levels,” The Visual Computer, vol. 20, p. 402–
417, 2004.

[48] A. Witkin, K. Fleischer, and A. Barr, “Energy constraints on parameterized
models,” in Proceedings of the 14th annual conference on Computer graphics and
interactive techniques, ACM Press, 1987, pp. 225-232.

[49] A. R. Conn and N. I. M. Gould, “Large-scale nonlinear constrained optimization: a
current survey,” in Algorithms for continuous optimization: the state of the art, E.
Spedicato, Ed. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1994, pp.
287-332.

[50] CMU, “CMU Graphics Lab Motion Capture Database,” 2008. .

[51] J. Barbic, A. Safonova, J.-Y. Pan, C. Faloutsos, J. K. Hodgins, and N. S. Pollard,
“Segmenting motion capture data into distinct behaviors,” in Proceedings of
Graphics Interface 2004, London, Ontario, Canada: Canadian Human-Computer
Communications Society, 2004, pp. 185-194.

[52] L. Kovar and M. Gleicher, “Flexible automatic motion blending with registration
curves,” in Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, San Diego, California: Eurographics Association, 2003, pp.
214-224.

[53] M. Gleicher, H. J. Shin, L. Kovar, and A. Jepsen, “Snap-together motion:
assembling run-time animations,” in Proceedings of the 2003 symposium on
Interactive 3D graphics, Monterey, California: ACM Press, 2003, pp. 181-188.

[54] O. Arikan and D. A. Forsyth, “Interactive motion generation from examples,” in
Proceedings of the 29th annual conference on Computer graphics and interactive
techniques, San Antonio, Texas: ACM Press, 2002, pp. 483-490.

 113

[55] J. Lee and K. H. Lee, “Precomputing avatar behavior from human motion data,” in
Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation, Grenoble, France: ACM Press, 2004, pp. 79-87.

[56] H. P. H. Shum, T. Komura, and P. Yadav, “Angular momentum guided motion
concatenation,” Computer Animation and Virtual Worlds, vol. 20, no. 2-3, pp. 385-
394, Jun. 2009.

[57] R. Heck, L. Kovar, and M. Gleicher, “Splicing Upper-Body Actions with
Locomotion,” Computer Graphics Forum, vol. 25, no. 3, pp. 459-466, Sep. 2006.

[58] S. Mutlu, “Motion Enriching Using Humanoide Captured Motions,” Master’s
Thesis, Polytecnic University of Catalunya, 2010.

[59] M. da Silva, F. Durand, and J. Popović, “Linear Bellman combination for control of
character animation,” in ACM Transactions on Graphics (TOG), New York, NY,
USA, 2009, p. 82:1–82:10.

[60] S. J. Lee and Z. Popović, “Learning behavior styles with inverse reinforcement
learning,” in ACM Transactions on Graphics (TOG), New York, NY, USA, 2010,
vol. 29, p. 122:1–122:7.

[61] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Optimizing walking controllers for
uncertain inputs and environments,” in ACM Transactions on Graphics (TOG), New
York, NY, USA, 2010, p. 73:1–73:8.

[62] K. Shoemake, “Animating rotation with quaternion curves,” in Proceedings of the
12th annual conference on Computer graphics and interactive techniques, ACM,
1985, pp. 245-254.

[63] K. Yamane, J. J. Kuffner, and J. K. Hodgins, “Synthesizing animations of human
manipulation tasks,” ACM Trans. Graph., vol. 23, no. 3, pp. 532-539, 2004.

[64] J. Pan, L. Zhang, M. C. Lin, and D. Manocha, “A hybrid approach for simulating
human motion in constrained environments,” Comput. Animat. Virtual Worlds, vol.
21, p. 137–149, May. 2010.

[65] B. J. H. van Basten, P. W. A. M. Peeters, and A. Egges, “The step space: example-
based footprint-driven motion synthesis,” Computer Animation and Virtual Worlds,
vol. 21, p. 433–441, May. 2010.

 114

[66] N. Pronost, A. Sandholm, and D. Thalmann, “Correlative joint definition for
motion analysis and animation,” Computer Animation and Virtual Worlds, vol. 21, p.
183–192, May. 2010.

[67] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental geometric data
structure,” ACM Computing Surveys (CSUR), vol. 23, p. 345–405, Sep. 1991.

[68] K. Pullen and C. Bregler, “Animating by Multi-Level Sampling,” in Proceedings of
the Computer Animation, Washington, DC, USA, 2000, p. 36–.

[69] M. Brand and A. Hertzmann, “Style machines,” Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, p. 183–192, 2000.

[70] H. J. Shin and J. Lee, “Motion synthesis and editing in low-dimensional spaces:
Research Articles,” Comput. Animat. Virtual Worlds, vol. 17, p. 219–227, Jul. 2006.

[71] I. T. Jolliffe, Principal Component Analysis, 2nd ed. Springer, 2002.

[72] A. Frank and A. Asuncion, UCI Machine Learning Repository. University of
California, Irvine, School of Information and Computer Sciences, 2010.

[73] K. T. Ge, “Solving Inverse Kinematics Constraint Problems for Highly Articulated
Models,” University of Waterloo, 2000.

[74] Q. Gu, J. Peng, and Z. Deng, “Compression of Human Motion Capture Data Using
Motion Pattern Indexing,” Computer Graphics Forum, vol. 28, no. 1, pp. 1-12, Mar.
2009.

[75] O. Arikan, “Compression of motion capture databases,” in ACM SIGGRAPH 2006
Papers, Boston, Massachusetts: ACM, 2006, pp. 890-897.

[76] Z. Li, Y. Deng, and H. Li, “Generating Different Realistic Humanoid Motion,” in
Advances in Artificial Reality and Tele-Existence, vol. 4282, Springer Berlin /
Heidelberg, 2006, pp. 77-84.

[77] J. Tilmanne and T. Dutoit, “Expressive gait synthesis using PCA and Gaussian
modeling,” Proceedings of the Third international conference on Motion in games,
p. 363–374, 2010.

[78] M. P. Johnson, Exploiting Quaternions to Support Expressive Interactive Character
Motion. Massachusetts Institute of Technology, 2003.

 115

[79] J. Min, Y.-L. Chen, and J. Chai, “Interactive generation of human animation with
deformable motion models,” ACM Transactions on Graphics (TOG), vol. 29, p.
9:1–9:12, Dec. 2009.

[80] S. R. Carvalho, R. Boulic, and D. Thalmann, “Interactive low-dimensional human
motion synthesis by combining motion models and PIK,” Comput. Animat. Virtual
Worlds, vol. 18, no. 4-5, pp. 493-503, 2007.

[81] T. Grudzinski, “Exploiting Quaternion PCA in Virtual Character Motion Analysis,”
Proceedings of the International Conference on Computer Vision and Graphics:
Revised Papers, p. 420–429, 2009.

[82] L. Ren, A. Patrick, A. A. Efros, J. K. Hodgins, and J. M. Rehg, “A data-driven
approach to quantifying natural human motion,” in International Conference on
Computer Graphics and Interactive Techniques, Los Angeles, California, 2005.

[83] F. Multon, R. Kulpa, L. Hoyet, and T. Komura, “Interactive animation of virtual
humans based on motion capture data,” Computer Animation and Virtual Worlds,
vol. 20, p. 491–500, Sep. 2009.

[84] S. Ishigaki, T. White, V. B. Zordan, and C. K. Liu, “Performance-based control
interface for character animation,” in ACM Transactions on Graphics (TOG), New
York, NY, USA, 2009, vol. 28, p. 61:1–61:8.

[85] S. M. LaValle, Planning Algorithm. Cambridge University Press, 2006.

[86] David C. Lay, Linear Algebra and Its Applications, 2nd ed. Addison Wesley, 2000.

[87] S. R. Buss, “Introduction to Inverse Kinematics with Jacobian Transpose,
Pseudoinverse and Damped Least Squares Methods,” 2004. [Online]. Available:
http://groups.csail.mit.edu/drl/journal_club/papers/033005/buss-2004.pdf.

[88] S. Buss and J.-S. Kim, “Selectively Damped Least Squares for Inverse
Kinematics,” Journal of Graphics, GPU, & Game Tools, vol. 10, no. 3, pp. 37-49,
Jan. 2005.

[89] D. Cosker, S. Paddock, D. Marshall, P. L. Rosin, and S. Rushton, “Toward
Perceptually Realistic Talking Heads: Models, Methods and McGurk,” ACM
Transactions on Applied Perception, vol. 2, no. 3, pp. 270-285, Jul. 2007.

[90] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovic, “Style-based inverse
kinematics,” in ACM SIGGRAPH 2004 Papers, Los Angeles, California: ACM,
2004, pp. 522-531.

 116

[91] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes in C book set: Numerical Recipes in C: The Art of Scientific Computing,
2nd ed. Cambridge University Press, 1992.

[92] Harold Hotelling, “Multivariate Quality Control,” in Techniques of Statistical
Analysis, New York: McGraw-Hill, 1947, pp. 111-184.

[93] J. Chai and J. K. Hodgins, “Performance Animation from Low-dimensional Control
Signals,” ACM TRANSACTIONS ON GRAPHICS, vol. 24, p. 686--696, 2005.

[94] S. E. M. Jansen and H. Welbergen, “Methodologies for the User Evaluation of the
Motion of Virtual Humans,” in Intelligent Virtual Agents, vol. 5773, Z. Ruttkay, M.
Kipp, A. Nijholt, and H. H. Vilhjálmsson, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 125-131.

