A}: ”XQCKEN"'AL RELATEQ ‘QSHEP fiE?‘c"EEN SEPESS‘ A if.) 5:7; mm WJ‘E‘H MPUCAEEON “F0 Fit-.3251 332% VHS Thai: 59? {€26 D's-fires a? M S. MECHSQAH STATE *3 1585 Exéaésw Qévéé We? m" €35 ‘6‘. 1 THESIS This is to certify that the thesis entitled AN EXPONENTIAL RELATIONSHIP BETWEEN STRESS IND STRAIN WITH APPLICATION TO PLASTIC BENDII‘I} presented by NELSON D. WOLF has been accepted towards fulfillment of the requirements for MASTER OFW degree inWCHANICS Mofiw Major professor Date_M§LCL1_8._1255__ 0-169 AN EXPONENTIAL RELATIONSHIP BETWEEN STRESS AND STRAIN WITH APPLICATION TO PLASTIC BENDING by Nelson David lglf A THESIS Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Applied Mechanics 1955 THEE)! q ACKNOWLEDGMENT The author wishes to eXpress his appreciation to Dr. Charles 0. Harris for suggesting the problem, as well as for his many helpful ideas throughout its undertaking. It has been through his guidance and supervision that this paper was possible. 0r{‘”%? e g.)- 3%}: :HJ AN EXPONENTIAL RELATIONSHIP BETWEEN STRESS AND STRAIN WITH APPLICATION TO PLASTIC BENDING by Nelson David Wolf AN ABSTRACT Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Applied Mechanics Year 1955 Approved _§45z4a~fl24 C), 7JWLhJAJL6 Nelson David Wolf The objectives of this study were to find a suitable mathematical relation between stress and strain; to find a relation between stress and bending moment where the stress- strain law is non-linear; and to check this relation by experiments. The properties desired in a stress-strain relation are listed, and a formula between stress and strain was found. From this relation, the bending moment for a given cross- section was found as a function of the strain at the outer surface. Using the stress-strain.curve, a plot of «%§ versus the maximum.stress on the section was drawn. From.this study it was concluded that the proposed mathematical relation is suitable and can represent stress- strain data for certain types of magnesium.and aluminum alloys. It was also concluded that the stress at the outer surface can be fairly'well’estMmated by the use of this rela- tion. TABLE OF CONTENTS CHAPTER Page Statement of the Problem 1 I. Mathematical Relationships Between Stress and Strain with Application to Magnesium and A1uminum.Alloys . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . Properties Desired in a Formula . . . . . . . . Previously Proposed General Formulas . . . . . The Proposed Formula 0 e e e e e e e e e e e o a) U1 to a: r4 I4 Method of Application of the Formula . . . . . Application to Magnesium and Aluminum Alloys . 11 II. Application of the Stress—Strain Formula to Plastic Bending . . . . . . . . . . . . . . . . . 23 Introduction . . . . . . . . . . . . . . . . . 23 Bending Moment for a Rectangular Cross-Section. 25 Bending Moment for a Circular Cross-Section . . 27 III. The Bending Tests . . . . . . . . . . . . . . . 30 Introduction . . . . . . . . . . . . . . . . . 30 Description of EXperiment . . . . . . . . . . . 30 The Aluminum Alloy . . . . . . . . . . . . . . 32 TheMagnesiumAlloy............. 33 IV. Conclusions Bibliography . TABLE OF CONTENTS (Cont.) LIST OF FIGURES FIGURE PAGE 1. 9 2. Tension and compression tests for Alcoa 2hS-Th Al Square Section 13 3. Tension and compression tests for Alcoa 2hS-Th Al Circular Section 1h h. Tension and compression tests for Mg, Type. ZKCOA-B by Dow Company Circular Section 15 S. 17 6. Tension curve 20 7. Compression curve 21 8. 2h 9. 2h 10. 26 ll. 26 12. 31 13. Stress Vs. %% for Rectangular Section ans-Tu Al 3h 1h. Stress Vs. %g for Circular Section 2hS-Th Al 35 15. Stress Vs.M2 for Circular Section ZKéoA-B Mg 37 STATEMENT OF THE PROBLEM The objectives of the problem are: to find a suitable mathematical relation between stress and strain; to find a relation between stress and bending moment when the stress- strain law is non-linear; and to check this relation by suitable experiments. CHAPTER I MATHEMATICAL RELATIONSHIPS BETWEEN STRESS AND STRAIN WITH APPLICATION TO MAGNESIUM AND ALUMINUM ALLOYS Introduction The problem of representing stress-strain data by an analytical expression is not a new one. Many studies have been made on the subject with no one answer being the re- sult. Below the proportional limit of the material Hooke's law seems to be universally accepted, but beyond this point no one formula is in general use. Properties Desired in a Formula In seeking formulas to represent stress-strain data, it is possible to state certain properties that a formula should have. This statement makes it possible to eliminate quickly certain types of formulas that otherwise would seem adequate at the first glance. The following is a list of such properties.1 1. The equation should be simple. 1 "Stress-Strain Formulas," W. R. Osgood, Journal of Aero,Science, Vol. 13, Jan. l9u6, pp. hS-u . 2. It should be able to represent a large number of engineering materials. 3. It should go through the origin. h. There should be at least two parameters in the formula, and they should be easy to calculate. 5. The lepe at the origin should be equal to the modulus of elasticity. 6. The equation should be easy to integrate when substituted in integrals which arise in develop- ing the theory of plastic bending or column analysis. Each formula should have the properties listed.above if it is to be useful in the general case. Previously Proposed General Formulas 2 The following is a list of formulas taken from.the literature. The notation used is: C is unit strain, .3 a- g .jEr , S is unit stress, E is the slope of the stress-strain curve at the origin, e is the base for the natural log, and a, b, c, d, k, orq ,fl , I are parameters. 2 Ibid. 1. 2. 3. LL. 5. 6. Hooke's law, the universal stress-strain formula, 6:6- , usually written as, S = Ber, needs no comment. In 1729 Bulffingeri suggested, egkr", and it has been used in spite of the fact that the slope at the origin is not B. Riccati proposed two formulas, file a- : he 9 “(a /I A.) and d- .( 9 but they have only one parameter each, and the slope at the origin is not equal to E. Gerstner's formula, 6": E+b62’ also has only one parameter and therefore cannot be general. In general, there is no objection to Ponoelet's formula except that the parameters are hard to find. He suggested, 6: 0"[l + 3(6‘r-lfl In‘Hertheimfis formula, 7. 9. 10. 11. 1 2 i ago-4780’, the slope at the origin is zero. Hodgkinson's formula, I 4' d’sé +652+CQ +J6 , is no more than a power series in 6' , and the parameters are hard to find. Cox suggested three formulae, 6 0/(I +l|f) a a 6=r+5r+yr 3 rat +66 +ce3 The first has only one parameter and the other two are limited to only a few materials. Inbert's formula, I ‘6' 6 = (x)(* -'): has only one parameter. Hartiz suggested two equations, ‘=(é)(e“‘-') 6' =[e [(I-ége" but they both have only one parameter which is not enough to represent accurately wide ranges of stress- strain data. In Schiile's formula, 12. 13. 15. a“ .a6”+6e’, the slope at the origin is not E. Prager's formula, 6" =Qé +6fa04[(“a)/b]6, is good for many materials with a wide range of strain values, but the parameters are hard to find, and in problems in plastic bending the integrals do not integrate in closed form. Holmquist and Nadai suggested the use of two formulas, 6:0" €=6+k(r'°?)a 5'40; where d; is the proportional limit stress. The two form.a powerful combination but the para- meters are hard to find in the second equation. Osgood and Ramberg suggested, €e6+kd'h, wiich represents a wide range of materials and the parameters are easy to find. Rao and Leggett suggested, G a 0' +/3(Ce:ln 16‘ -l) but the parameters are hard to find for the best fit. The Proposed Formula After making an intensive study of the subject, Osgood and Ramberg suggested their formula, G ==¢l"+kd"a finich is a special case of Holmquist's and Nadai's equation with 0; equal to zero. They thought that this relationship was a good approximation to the stress-strain data and possessed the other properties desired in a formula. The relationship suggested here is similar to that of Osgood and Ramberg with an interchange in the variables. The equation now takes the form, {r'==£ + l:e"', This is similar to the relationship suggested by Gerstner except that there are two parameters, whereas his formula replaces n by the numerical value of two. The relationship does possess the properties discussed previously. First, the equation is certainly simple. Second, as is shown later, it can represent the stress-strain data of certain types of aluminum.and.magnesium alloys, and can there- fore represent curves of similar shape for other materials. It best represents materials with a slight break in the lower range of the stress-strain curve. Third, the curve goes through the origin, and fourth, the parameters are easy to calculate. Fifth, the slope at the origin is equal to E, and sixth, the equation can be integrated in closed form.when substituted in the integrals of plastic bending. It can be seen that the relationship possesses the de- sired properties, but the equation does have limitations. In attempting to apply the equation to a number of different actual stress-strain curves for magnesium and aluminum alloys, as well as a number of hypothetical curves, the following observations were made. The first and biggest limitation found was the fact that the equation holds good over only a portion of the entire stress-strain curve. For the cases tried, and for the best fit, it was found that the equation holds for values of strain up to the yield strength, at 0.2 percent offset, of the material in every case, and in some cases up to one and one-half to two times the yield strength strain. Therefore it can be seen that the equation cannot be used over the entire stress-strain curve, that is up to rupture of the material, and the point up to which it holds is best found by applying the relation to the particular data. The second limitation found was the fact that for the cases tried, usually, a perfect fit could not be obtained. The closeness of the fit depended upon the range to which the equation was being applied, as well as the material itself. The lower part of the mathematical curve is not a straight line like that found in many materials, but when plotted and drawn to a reasonable scale it cannot be distinguished from it. Method of Application of the Formula The general equation can be written in the following .4 form. r: e + k6 n (1) r—e =k‘n (2) log (f-‘) = log k + n log 6 (3) The parameters to be found are k and n . Plotting values of (f- 6) versus G , obtained from actual tension and compressive tests, on log-log paper should give a straight line if the data is to fit this type of curve. If the result is a straight line, or nearly so, the constant k is the intercept, and n the actual slope of the line on logélog paper. Before going further, the question of algebraic signs should be investigated. Let M be any point on the stress- strain curve past the proportional limit OP . See Fig. l. The coordinates of this point are (tfi , 81). Let E be the slope of the straight part of the curve. PN is a con- tinuation of the straight line OP and has slope E. From the Fig., 52.2%, and by definition, i=6; . llll'llllllll FIG. 10 Again from the Fig., e! > £2 a or 6| > a: o In general 6 a 0" and (7-6) is a negative quantity if 6 = 5- is not con- sidered.3 From equation (2) it is seen that k must be a negative number. Therefore the absolute values of the quantities must be considered in equation (3). log|T-€|=loglk‘+nlog€ (h) The general procedure in calculating k and n is as follows. 1. Pick a number of points from the stress-strain curve that is to be fitted. 2. For each point (6 , S), calculate 0" . 3. CalculatelE- 4“ . 1;. Plot ‘5' -6‘ versus 6 on log-log paper. 5. Draw a straight line through the points. 6. Find the actual slope of this line which is n .L" 3 For (- =0' , the curve is a straight line. This is very often the case for small values of G . When 6 is very small, the term k‘ is much smaller than 6 and when 0 ti the curve the term 6 cannot be distinguished fromG Elke; .ng h It may be found that the curve is not a perfect straight line. In this_case a compromise must be made in drawing the line and determining the slope n . 11 7. Substitute a typical point in equation (A) and calculate k .S 8. Plot the curve just obtained and compare with the original stress-strain data. Application to Magnesium and Aluminum Alloys The aluminum.alloy used was ordinary stock, Alcoa 2hS-Th.6 Six tensile specimens and six compression specimens were tested. They were cut from two different bars, each twelve feet long; one being of square cross-section one inch on a side; the other of circular cross-section one inch in diameter. One of each type of specimen was cut from each end, and one of each type from the middle of each bar.7 The magnesium.alloy was a laboratory produced experimen» tal material of a type designated ZKooA-B by the Dow Chemical Company. The bar was 30 inches long and had a circular cross- section one inch in diameter. One tension specimen, and one compression specimen was cut from each end. 5 Actually k could be read directly from the graph, but due to the physical size of the graph paper and numerical size of numbersinvolved, it is best found in this manner. For properties and heat treat see, Alcoa Structural Handbook, Aluminum Company of America, 1950, pp. IE, 1?, 22. The reason for this procedure will be seen in Chapter III. 12 The tensile specimens were standard8 0.505 inches in diameter. The compression specimens were three inches long and one inch in diameter. The stress-strain tests were performed with a 60,000 pound, universal testing machine, with automatic stress- strain recorder. The procedure followed was that normally used when running standard tensile and compressive tests. The tests results for the aluminum.alloy, square section, are shown in Fig. 2, for the circular section, Fig. 3. The tests results for the magnesium.alloy are shown in.Fig. h. The following example shows the procedure used in deter- mining the stress-strain equation for the alwminum.alloy. Notice how steps one, two and three have been tabulated in Table I for easier calculation. Fig. 5 shows steps four, five and six, where the graph has been plotted, the line drawn, and the slope obtained from.it. Step seven is to pick a point from the graph and calculate the value of k . Thus, for a point at which 6 = 0.007 \e- 41$ 0.0021 and n 5 3 16310 i.0021| = 10310 ‘k‘ + 3 loglo (.007) 8 For standard tensile specimens see ASTM Standards, 125 , Part I, pp. 506, 507. f .3. -----li-. . Iii.“ Al’s“)! . V . . '_ . .lfi‘an,‘V-‘l w M 1.31.. -il.T.. -‘110: - ail: ... ...0 $4 «1. v . —.-. --_. -o q _ h . w it“ - 'l i ‘1 . “Kiwi! 2+1-.. 1 . TABLE I s 6' ar' [GFN-lfl. 38,500 .008 .0037 .0003 h0.500 .000 .0039 .0001. h3.000 .0088 .0081 .0003 un,000 .005 .0082 .0008 u6,300 .005 .00u5 .0005 u6,000 .006 .0088 .0016 u8,000 .006 .0086 .0018 50,500 .006 .0009 .0011 87,250 .007 .0085 .0025 51,500 .007 .0050 .0020 L;8,000 .008 .00116 .0031. 51,500 .008 .0050 .0030 Sh.000 .008 .0052 .0028 08,500 .009 .0007 .0003 58,000 .009 .0052 .0038 89,000 .010 .0088 .0052 53,000 .010 .0051 .0009 56,000 .010. .005u .0086 18 7.3222 - 10 = 10glo [kl + 3(7.8851 - 10) loglo IkI =3.7869 lkl = 6120 Jun-6100 0' = 6 - 610063 Step eight is carried out with the use of the tabulation shown in Table II. The curve is plotted in Fig. 2 and the results observed. The equation fits well for values of strain up to 0.008 in./in. In Fig. 2, this is somewhat past the yield point strain of 0.007 in ./in. in tension and 0.006 in./in. in compression at 0.2 percent offset. The equation as found here is an average curve between the tension and compressive tests; the reason for this procedure will be eXplained later. If so desired, a curve could be found that would fit either the tension or compressive curve more closely. For the closer approximations, see Figs. 6 and 7. Notice the equation of the curve is given in each figure. If the curves shown in Figs. 6 and 7 are compared with the actual stress-strain data, Fig. 2, very close agreement can be seen. The stress-strain data, and the curve plotted for the equation is shown in Fig. A for the magnesiwm alloy. The fit is almost perfect as can be observed, and the equation holds for values of strain up to 0.012 in./in. Beyond this l9 TABLE 11 6 63 61003€3 0" 3 0.001 1 10'9 ' 6.1 x 10"6 0.00100 10,250 0.002 8 10'9 u8.8 x 10"6 0.00195 20,000 0.003 27 10'9 165. x 10'”6 0.00288 29.100 0.000 6h 10'9 390. 2x 10"6 0.00361 37.000 0.005 125 10’9 762. x 10'6 0.00428 83,500 0.006 216 10"9 1320. x 10"6 0.00u68 88,000 0.007 303 10’9 2090. x 1077'6 0-00091 50,200 0.008 512 10"9 3120. x 10"6 0.00888 50,000 0.009 729 10"9 into. x 10""6 0.00856 86,700 20 Hv. .. .1.» - 1.. 1 .4 .. . .1... .. . - . *1. . .A. ..1.11.... a... .. .. . 1.. -. 1. 1. . 1. 1 .-...1. . u...“ ... 1 .1. . .... ...... 11“ a. .. ...- . _Fr. ..h. . . .. ...-g. ... .. 1... . .-.. -..~. .11 ..1. ... .. ...i .1..x.. .1. q . .. ._.H . . . ~. ~. .. .1 . . . ..1. * 1. 1. 1'. u .A .. .... . v. a 01- v. a. .1 ....r. 1. ..1 ..1. .1 . 1 1...? ..1 ~ 1. . .41 1 . 1.. . .1. .4 .. .1. .. .1. .-.1 1. .. . ..-... .... ..1, ... ... . 1.. 1-.. ..1 ..a, 1, .... 1. .. '11. .1 a 11711 .c 1 . 1 1 -. ..11.111.1- v . .1' 1 1' 0 I1 1 1- ..Y‘UDI ‘11'417-1 1 ..Jall-c . - 1111. 0‘14] «11’1- . . -l.1. .Jll .111 v '0 I .111 pl. 1 1191 ‘ - l vlvtclr..v '4 110.10 ~1- 0 I. l. 1 ll- OL‘I 1 1|. 011 1 11| 014 . 1 - Wel- II . I 011 u o n ‘11. 4 .«4..1 1 .. . _. .1 1 1 l 11. . ..1 1. ..1. 1. . u 1 1 1 .1. . v 1 1. ... H. * ... 1 . F . . . m.. 1. 1 1 _ + 1. +1 . . n ”1.11.. 1 w. 1 . .1 .1... . 1 .1. 0.. 1 - ..1 .~ 6 1 .11. .I - . . . . y a . . . .. 181.9 1 A 1 . . . . .H. 1 . .1.‘ . - .. . r. . 1.-.. . . ..1. 1 1 . .. 1 .. . . ._ H w. .. ...: 1 . 11 .. .1 1. . L . . - . ... . ....1 ' ... u .4... 1- w . . . . 11. . . . a . 14. . L . -..1A .. . -. 1 - 1 r 1 p . 11 11 ., -l 1 1 1 1 . 1 r1 1 .. 1111.11 1. . 4‘11 4 .14“. ...“..1 .1.fi. x 4... .. .m... .1. ,- 1 w..q. ......- .. . . . . . 4* 1-. . a- .. ..1 .. . . . a . . 11'... 1.r- ... . ... . . .1 1. AI . .1v1 1 - ..A .w.1 .1 . .o 1 ... .r . . .. 1 m. . .. 1 1.111! 1 _ . me .1111. v ...v . .... . . i... .. . ... u .111 .- .1 ..l. . _ 1... - A. .001 . _ . . . . . . F ......1 .1 . .. on»: SW. Guam . . : ...1 .. - -35 r. ..1.. . 1. ,. -.. . 1 :1.... ..1. ... 12-1.... _ . 1 11.10 b 111. I] 9 .1. . 1 ..ir _ .. . 1.. .110 v1. 19 . 1 1 11!. 1| r1101.- .1? o 1.111 . v 1174 11111 .1 11.1.92! 11.10% 11.31.15 1IIJ10 Ill-1191 . . n ill-- J..- .O!« 10 1 5141‘“ 0 \11 L6 01011 .1111 10 01. J - 4 a 1111 110111.! VII IIIQJIQ .1111 < - 1 1 - ..10 . 1 . . _ 1 1.1111.- . ...h. - ... .. .. .1. 1.. . V. v.1... A 0 1. . . v1. ..7 . . 0.1a . ‘1‘ w h .1 ..TT... .0-1 1 .~ 0 v .a . .. . , . . . . .1. . 1 . . . . 1 .... {-1 1V .- 10 a... - .. . _ 1.1 .1 1 . m - ..... ._ . | ...o. . . « ... . . . . v 1, . . a. .. . a M a N" -M. _ . . ... . . .u a . ...-...11. 1..._ . 1M 1... . ......t. 1 1 .. 1 . H. 1 v .. 1 . v.1 . . .7 . . 1. 1.1 1 . . _ 1 .. 1- w... . 1.. . w e v d . . . v g y o .. 4. 1 1 . v... .w 1.1 p . .. . 1 1. 1 _ . _ .w 1. I .. . .. .1 ...... mi . 7.1 ...c 1 v u. 1 Ta.. .13.. . H. . .. 1 _ 1.. a . ~ 1 ~.-.. 1 . . 1. .. . ._ “..1 .. . . .. . 1 . .v - 1 . 1 .. 1 .1 . I u r 1 o r .. s.-. . . .¢-- . . -.-... 1. .. 11s.; . -1-1;111-.11-.- --... -1. 1 11...-1.*- 11----. -.-- 11.1;1:1-- . . . 1 . . .- .. . 1 u . .. a .L x 1. . m . . — .. _ . . n 1 . 1 1 a .1. . 1 . . _ . .. . a .... . ..1.‘ 6 1 - a 1 . . 111' 1 v--|11l.v|§11151|l*'1 1111.41.1er 4 F i 1 '0‘. p .r I. 11 Ill..- 1 _ 1 . . . . .. ..F 1 1 . 1 1 a- _ 1 1 a . . 1 . .. 1. w . . 1 1 _ 1 . .. 1 . -. . 1 . fl . 1 m _ . - p _. . . . . _. fi.. . . . 6 . 1. . .- . g. -. 11 1- .. ....1 11111.11 . .1rlLY.+|1‘..?| 1111 ...-1111‘. 11|.01--I ..... 1171-94 11:17:41.1111vt1 .141111. 11 11111.1.- _ _ . . 1 1 . . 1 _ . -1 1 . . . 1 . . . _ 1 . N 1 . . a . . m . w . H . 1 m . . .- - ._-. .. .. a a, . L 1 a 1 4. ,1 . . a. i ... . 1 1 1 . . . .1 _ . 1 a . .1 _ . - 1 .1. 1. r o. . . .J 0 ....91 0. u .. H . _ 1 .. . «a . 1-_ . _ u . ... 1 Y1. . 1. . . a 1 . .1 _ a . . 1 .. 1.. . .. .. . 10 A 1 .100. wll-v. - - 4 111 ’11.: I1 1111 .11-1Il1.+1.'11-1'1.1111 if! '1‘1A11-1‘1 10 015511 .1- 1‘111410101-1 11,-CleII-IAI1.v1-.Y16lec-1Av a 0 .. . .1 .u . a y .. u . ...... .U _ . . . v v .1 . .. .1 . — .. — 1 *..1. . o w. . 1h . 1 .. 1 v 1 s v . 1 a. . .fi 1 . F - . .1 . . . -. . H . . . ”.1. ..1. . > >1 D L m .1 _ . . ... .11. -. N .. 1 . H. u. . .i 1 .1. . u 1 . a. . u . 1. ‘1 . . . . _ s . ... 1 41. 1 , ~ .H m 1 v . ~ . . . V 1.“ 1.. 1 n M I_ . . b 1 .. . a . .1 .v - .1 . 4 v. . .l..a . .. . . 111.11- .1.. .. -...1. .. --.--... r. .... -. . .....-., ..... -. ..-. 1a... ...a-.. ...-..- .91-..-1. i. 1 . 1 1 . . . 1 . h a . 1- ...-1. y. .u . .. . . . _ .. a n . .....s . . . .1 A . . . .. . 1 . _ 1 _. . 1 . . .. . .n - - W . .. .1 l" . p . . ... . w _ a .. M . 1 1 1 . ..- . a. - N . . . ~. . u > r 1|- . r ’ m . . m . - . 11 _ _ N a . . . w . . a 1. 1 1 a . .1 A .. .1. . . . , 1 . . .1 . .. . . - 1. . . . 1 . .. .- .. . . _. . .. . . .. . ; g . . . . . 1 1 . . . . . 1 31.1 . v. . . . 1. q... .1 . 1 . ..1. . . . . . .a 1 * . o 1 . . 1. . .... 1. ”T -.w _ . 1 . . m . .1,. 1 1...» . . 1 1 . .. 1 1 1 ... .v o. 1.1 .- o..c1l.o.w111‘1.1.1114fi.1.1.1‘..§.1111! 1111\0.1...- .-..F(1.111-11....1«11.111411:Lw1:1.!1.w.l.11.T-1-11r.1..1. .1-14.1.11-.10 “.111-4T1101 1- .1 t ..a...!.....-. 1.‘ 161514! [On Alwi? - 1...: All . . . 1 . 111 . _. .1 . . v. . 1 . .. ....fi 1 . .. 1i . . 1. 1. x a a .. . . . a A . . o — H 1 . .1 1 V. . . . 1 1 . _v .v . a . m . ~ 1 e . . .. _ _ .... . . q . ._ . 1. V a. .- 1 . a. W1... — . . . . v . . . . . 1. . H . 1 . _. 4 . ..01 F n v 1 .1 .1 1 L a .1 1 A 4 4 4 4 1 .. . 1 . fi . . . . .. 1 . A . .. 1 1 ..M . .. .. — ... N 1 w N . . « f . . 1 1. . u . ,r. 1. 1 ... .. 1 . r . . .. . . w 1 _ . . . 1 . . . 1. .1 1 1 . . . c . . .1... M . 1 .. . # L. .F. - .161. 1 1 . .... ..a 91 .- . .1. 1 . .Y 0 .4 19-..- 1* I 11101-111 12.11.4i11114-111w 0111 1 c.01...1.~11..1. H o 0.011 11.01a11111» oa’ablelvfil . .. . 1 _ . “.. . .1 . . . ._ _ ... ... , . 1 . m . .1 . .1 . .1 . . - 1 ... . . _ . . . - . u . 1 .. .1 I .1611. 1 1 a 1. r .. .. m .. 1 1 . . . . 1 1 -. 1 F . _ . . . L a . H . . p _ 1 D~ 1 (: fl }———o——~e—.——___ 1 ,l 1 1 4t .' l 1 . 71“ i. .1 ' 1 \ '1 u ... . .. W . u _ . 1 1 1 1 . 1T gr. 1 1. . . . . 1 . - . - . . . . . [W 10$..«L111tuPofllI-I11 1T1.Io111. iii-A III-LAIL I“.111..1l1¢l-.Vlla.1r ”I. r 4..-[1LA1flI’AII * «r .W . , . 1 1 1 1 - . . . .1 g . . . . . — _ _ . w . o .. .1 _ 1 a y . . n a o _ w . v _ . . ._ .. . fi . . r 1 11 o 17 a . _ n . . .h .1 - . 1?.-.- . 1 1 1 . 1 11“ . . H 1 . . 1- 1+1409“.1IA-J11 .- If . 1 - .I.. 11 111.01 . 1 . 1 1 - -.. 1. 1.1 1.. .11 .1- . .... . . . ... . .. . 91-1 0 -l 1.1.!11‘ Til-W11. . «.31 i. 1 u . 1 1. .. H h ., . 1 n _ M fi. . .. r . . 1 1. 1 a. W .. m .. H 1 a 4 1 . . 1 1 ,. _ _ . . .. . r 11.... . 1 4 1 - . . . H 1.41 ”d . _ . 1 . . . . .. 1 1 . ..C... x . . ~ _ . _ 1 . . . F 1 . ~ . 1 A 1 . .1 . a. . 1 .. . . . 1 _ . . . - . . . . 1 . v 1 ‘- - - h ....‘i.’ w . .0 111m. 1.. . .-. ..1001111..- \I.+.-v..- .11 ..1111-1...fi. . ..11.1 . ...-11-11. 111'th I.“ 1111- 11.1. . . 1 .1 .. _. . . 1. 1 . . 1 _ _ . . 1 . . .1 .1 I ~ . .. n . _ fl 1 _ . _ « ... . . . . . _ 1 . . . .1l-I-1 1 I.1l|01011-l.1'o {+01 1 1 11:1 I 11 L1,.Ipi11ll 01-1411" YW-vi v..1..¢-.1|l..1*.“.1 OAH.’ IO-ivl‘fipllllu. 11-.111111111..W1I. 0-1111111. .IWOIl-Iw1q-11lc - 1| 11111 1. Iwrli.’ 1.110 .11.! ll ill-illivlllm [vii-"1‘1 . . _ . 1 . . . , . 1 - 1 --. 1..-.. 1-.. -.-11, 11-.. :. .. 1.111a.--1q11. . 11.----1.1-.s-1;. .- ..1--1asr.1i1-1. m . . 1 1-1., H H.... . _ _ 1 x . . _ . . . 1 1 1 . . 1 . f _ a _ .W ‘ .h _ 1 . u 1 _ . _ fl. 1 TI 4‘ _ 1 4 1" _ 1p . Ll ¢m A“ A . . 1 .. . 1 . 1. _ -. H . u H 1 . . . . 1 1 _ . _ r .. . .1. . . 1 . . . H. . _ . . . . . W . “ .. 1 . ... 1 1 ..11-01 -fi 1 14 1 1 A .11. ..il .m - 1 - 1- r15 violik . 0 . v 11.94v1111 .v - 1 -+l|. o 1 1 . 1 A . 1-7101. r19|'.- I 411.1 P1 111 .u 1 .1 1 1 v..: 111.... .1 . 111 A . 1 . . . . . _ . . 1 . 1 . _ H 1 1 . . 1 1 , . 1 _ . ._ o mam-H 1 . 1 _ 1. 1 . .1 U .. .1111 11.1-11.1- 1 1.1111.- .1-11-L1111l-1. _-I 11111111114111-1111 11.11111- N . _ a 1 1.1 1111- . .1111 1 . . . _ . 1 1 . . . .. ... . a . .~ 1 . 1 1 . H .. 1 .1 v . . . .. . . . 1 1 1m . . . . . . p . p . fl . .. .. . . . . .. 1..l...11.- ,1..-..£--.._L.. b-.1 .. 1+-|.1~ .. 11- 111.-1-. 01.. . 11 01.6... 9:159 mamas , . . _ 1 , . . 1 1 . . . _ 1 .. . . . . . . m . . a . q 1 . . . . h . . . 1 . . . 1 . . . H . . .. _ . . . . . . 1 v 1. . 4 fl _ .. _ . .1 1 .. 1 . . 1 . . . . . » . 1. . . u m I 1. v . . .. r _ . a . . . . - . . 1 _ 1 w 1 . . 1. . . .. .. . 1 . . .* . ..+ . . . . . _ . 1. 1 1 . 1 u 1w .1. - 4 o . u .1 '01.: h . . v ... in.” el-i1oIL-I Incl-1.0 111100 1 7.! Lil. .11 Il'ihi. . - .1-. 111 IVVIOII 1 1‘14 011 . [*1 '11. Y. 91.. 1. . A 10.11. . .. . 1 . .+ . . . . 1 . ~ g . _ .. . . . _. . . 1 . .. _ . . . . . . .” .. . .. . .49....0131figclyr... 3.1.x”. . .15. i .153 _ H . . a .. 1.... .--...hw11-H .1 . 1 1.. -.w .....11. 21 1 1H1“..- .1..--1.---...--M.-1..---1.. -- 5.1 . , ...- 11 1 ..fi 1 1111. _ .- ... 1 1... . . .1 1.. 1 . 1 . . 11. . 1 . 1 » . . . .1 .. . 1 . 1 1. . .. 1. - 1 .. . .. 1 . . . 1 - ".1 ..1 .1 1.1 - 1 .. 1 1 * 1.11.1. “1. . .. 1 ...-1 ...1- 1 . . . . . .1 . a .1 .. a q 1. 1. .. .1.-.1. ... ,- _ r...- . 1“. 1. . - . .. . . . .. . - HN..1 ._1o-1,:1..1.1111 TY.“ -.111# .11. .-111- .v. . 13.11 V. .1. .0. 11.11 I . . .- 11-11-9111‘ .11Y1t-11-1‘11b 1 1.. 1. 11. 1 1T. .1 - 1- .w. . 119 1. -111 . 1 . n .. .. .. ... . 1.. 1 . 1 ... . 1 1 . . . 1 1 n 1. .. 1 - w 1 . 1 - . .. .. . .- - . ., .. _ _ .... . o 1 1n1.1 . .. 1 -.. . .111 o . 1.» - . . 1 .M .- 1 . 1 .. . .. . .. . . . .. .. . .. . .H . --.... ..1...-.1. 1 ... . ... . .... . .1.- .. .... .. . . . . ~ . . .. . 1 - 1. . . . . 1 .. . .1 .. . 1 . . . . 1.. 1 . . .. 1 . . . .. . . . _ . . .. . 1 1 .1111r1b ... ynnwgri awtn . 1 .1 _ 1 1r. 1 . _ , , .1911111111 1111- 1111 11-1 .. . ,. ... . . 1. .- . . 1 1; .H. - .. ... . .... a . . +11 . 1 a . 41. . . . .1 .. . .. . . . .. 11 .. 1. . . . 1 1 1 .1 . 1 v . 14 1 . . o 1 ..L .. . - . . .- . p r... .v -. . . .w. . . . . . . . . . . n 1 . . .. 1 ... . -. . q _ n 1 ... Q . . . . ..... ... -.. . . 1... .. . . . H. . a . .1 ... . . {11w... .u 1a.”..1. 11% 1451 a . .- . .m 1.1 - 1.1. . . W 11.1. .5. W ..1 1a.!lt...11o 11-1 ...... a . 1.1.1.1? .ID.'111 ..... 1«1....111-.OIII1.110 1.11 1. Y. .‘.O..l|. . . 1 -.v.. 1.11174131115 61.11I- . 111.11. 1 1. - .1-J ’1'. 1 1.1114.‘ 10.”. .1 1 1 1 1 - .1 u - _ 1 .. 1 1 . 1 1. . - 1 .— . . .- - . . . . .1 1 . a . . . . . 1..-1.11”... 1. 731 _ 3 T L . 1 _ .1 -. _ 1 _ . .. . . . 11 . .. . . . 1" w 1 1 1 -1. . . 1. .. .. . - nv . . 1 .. . .. # . . w. . . .a 1 . 1 a ho ‘ c- 1 . . o . n a” ... g . W 1 H 1F 11-1 1 1 pl- » 4 III- L . M _ _ .a . .9 u _. _ a .M 4 J. . v 1 1 . H .1 . . .. o . . 1 . . . 1 -. 1 . 1 .. . a o . ~ 1 .— u. . 1 . 1 1 m 1. 1. 1 1 .. . . - .. 1 1. . . . . + 1 . . . . . ~.. _ .1. _ 1 1 . 1. . . . - - . .1 ..o . . _ _ . . 11r- ... 1 ...l ... 1.4. ill I. 11-! . . 1 a a 1 . ‘ .11.. I 1 Thu T011 .1 .- -1 1 1 1161|11§1t 114 ‘0-11?.1.I1J1‘111-1.w.1.'010. 11 11» II. T1 '1. [1.11.11 . - .. —. 1 . - 11 1t. . 1 .1 l9 . 1 1 1 1111.1 . v.11 1 . .19 o 1.1! 11‘.“ 11111 *11 11%. l .1 v . . _ a. . .. . . , 1 . w . . fl . - . 1. .. 1 . _ . . . .. _ 1 1 . 1 1 _. . .1 1 . .. 1 1 m _ 1 . . . . . a 1 . . . . 1 .m ..1.1...--...... .1-. 11.11119111111111- 1! 1 1 1 . i + . - _ 1 w . _ . 1 1 M . . . 1 . . . 1 . - : 1 -1 1 . .1 ... . W- - . ----1.1.f-1 . -- :.. 1 - ----11-11 111- 11...: 111 m ~ g . . M . . . .. 1 . 1 . . . - _ .- _.. . 1. _ . w . 1 . . — 1 n 1 . 1 1 1. . j ‘1. a” .l . 1 . . 1 1 1 _ 1 1 H 1 . _ 1. . . 1 1 _ 1 _ . . .1. 11 . .1... - . .1 -- 1,..- .- .1 - --.. . - .-H - .1 _. _ . 1 . _ . M 4.. . . . h _ _ _ . . 1 w . . w . . 711,1 1 11,- “[1 1o ‘11 .LI'111101H1"M 1|. 1 ll '11 1 I .1WQ1111 _ 11. A l-I' 1 L.IOI1 5' 1| 4 .1.--|1|1.'1I1I._..?’-11111'-| I1 171.1 1111111.!- Tlll‘ .I1 1” .1‘1‘1 111,“ . .1 .1111 III-11.1... v-11-11.‘l10l1. . . 1 a . fl .. m 1 . . _ w . 1 _ 1 1 . .. _ . 1 _ , 1 . 1 1 . , 1 . 1 , . 1 , . _ _ . . a . w . _. . .. . 1 _ < . III N 11 Ill. 1 w .1 m . 1. \ 1 . . . 1 . _ _ . Cu , 1 . . 1 .. . . . . _ 1 1 ._ .p . 1 - _ . .1 . . _ .. . _ . . 1- 1 ~ 1 .. 11 .o 1. ... .1. - .1 1.1.1 1 .1. 1..-.1 o 1 1 111 .1 131-1- ...... 1.I . .... ..1..-..l.. 1. . .. . \1 » 1. 1 1 . 1 1 , _. _ H u _ . . . _ . . 1 1 . . . . . 1 . 1 . . _ 1 . _ 11111 -..-1-1-1.- 111111m.---.-m1w.m-1 --.-5111 . -1--11111.11--. - 1 11 1 11-111-11.11: 1 1-.--..-.- ..--1111.11-11. 1 ¢ . . . . . . .. . _ _ 1. . . _ . h . . _ . 1 M . 1. . . ... -. 1 . p... , nHH .. 11 . 1 . . . ~ ... . - _ 1 -1 ... ,r. 3 - . . .. 1 -1... 1..-“061.17.11- 1.. -- 11-1....11 L.1-«1.1.-| - WK ..1.11...1-. -1.-11.1r1 .1-m1..1.-1-11-1 u * 1 . 1 fl w a a. . ‘v . 1. . c . . n D 1 1 1 . . .1. ._ . . _ . + . . .. .. . . $ . . . . . _ .. .. . . .. -. . . 1 h ,. . W 1 . 1 1 T 11!? Dr! 1 1 . . 1 . . 1 1|”: ... . . 1 1 . ,1 1 1.. .1 1 _ _ .. ,1 __ . , 1 . UR. . ...-w. . .11 _ . 1 . . l . . . . . 1 . . .. . . . . 1 . . 1. “1 . . . 1 . .. . . . . . . .. . .. . 1..... .. .. . . . 1 . 1. ... .. . .1 1 . leth a n . . I 1. u 1 I 1 1 . .1 1 1 . 1 111‘ 1 r0.- 1-1 a 1 1 1 1 n -1 r a .1 11%-.- . .I‘ 1 V. 0 4 I; 1..! .11” 10.10.... 1 . 111*:qu 0 .VLTA-Itllk 1 1 c 1L ..- l”¢‘|01$ Jlu.ll1.H-.AI11. 111* n 114 1.5.1.1‘ . II‘.‘1|H1 11 n . 1 I'D-1.1%.!!- { . 11';le 1 I r. 1111-1. 5 1’14 111111 *1 I 1 1i . 11m . - _ .H .. .M . . . ~. . fi . 1 . .. . . fl . . .W . ‘- . . . .. . A A . 1 .. . 1 . .. - . . . .- .. .. 1 1 . . . . 1 1 .. 1 1 . 1 H. ‘. . . 1. .1.. p . .— . .... .1 u *1 . _ .1 . 1,“ . . 1 . n _ . . _ . . . 1 .1 . n .+ . . 1 .. h . . . “1 . . ‘ 5 .. . F, .1 1 .. . .. ....1..._. a w . 1 1. 11.“. _ M. H .H_.- .... ..1-.__ . ....... .. .....L.. . .1 . ~ « 22 point the curve falls off rapidly as is the case for the other equations. There is a slight break in the curve for low values of E 3 this leads to a better fit as well as a wider range of application. 23 CHAPTER II APPLICATION OF THE STRESS-STRAIN FORMULA TO PLASTIC BENDING Introduction The flexure formula, -1212. 3‘1 found in elementary books on strength of materials, uses Hooke's law in its derivation. Hooke's law, 8 = E€?, can be used where the stress-strain data can be fitted to a straight line. For non-linear stress-strain curves, and for stresses past the proportional limit, the flexure for- mula cannot be used because Hooke's law does not apply. Therefore, when these cases exist, some other relationship between stress and bending moment is necessary. In general, when a bar is subjected to bending, the stress distribution curve may be thought of as a stress-strain curve, if the stress axis of the stress-strain curve is assumed to lie in the neutral surface of the beam. See Fig. 8. Section A-A is considered to be any cross-section. The stress-strain properties in tension and compression are assumed to be the same. 25 In applications this may not be the case, so the average of the stress-strain curves in tension and compression could be used for the stress distribution in the cross-section. This is the reason why the average curve was calculated for the aluminum.alloy in Chapter I. .Plane sections are assumed to remain plane before and after bending, in the elastic range as well as the plastic range. I From this assumption and Fig. 9, 5 $20.39 B + d d d p:= a? y=Re ' mm 6 Bending Moment for a Rectangular Cross-Section From Fig. 10, M = I’ SydA Hz and from.equation (l) s '=Ep(e+ ken). "Iz M=2b1ES (6+k6n)ydy c From (S) dy = Rdé (c , I and M =2blE (€.+k€n+l)d( 26 FIG. /< 1 9‘ FIG. 27 where 5‘ is the strain at the outer surface. 2 Using (5) M = bJEh __t_‘_._ +1.6.“ (6) 2 ~3 n + 2 The values of k and n , as found in Chapter I, can be substituted in equation (6). This formula gives the rela- tion between the bending moment and strain at the outer sur- face for a rectangular section. 'I-IIIE can be calculated and plotted against the maximum stress on the cross-section by using the stress-strain curve. This graph gives a useful relation between a given bending moment and maximum stress on a rectangular section for a given material. Bending Moment for a Circular Cross-Section The same assumptions are made here as in the treatment of the rectangular section. From Fig. 11, M = " SydA dA = Zxdy P M = h ’ Sxydy 0 Using equations (1) and (S), with the equation of the circle gives, 5. M = 1, R3 ES (52 + ken + 1) (6‘2 _€2)'lz d6 28 Integration by parts, a sufficient number of times gives, 60*: 3 ”-6—; M = u R E ‘d‘ ... l 1 n 2 If” (G: _ (1)]; Making the substitution, 6 aft, the integral becomes, ’ n+3 * 3/ a“ J 2. a “ ( - '2 , l a ) From.a table of definite integrals, =—(”’3B ”:4 J.) where B denotes Beta function. This can be written in terms (8) of Gamma functions as follows, (hi3 LP ~)P(z) )6:¢39 2, mil ”(‘7 ) Substituting this back in equation (8), using (5) and noting P(f)=fig1ves, M =7Tr3 E 0.250 6‘ + 2 k T‘ LII—1A)“ (9) r (n + 2) r‘ (1.1.1.5)6‘ The values of k and n as found in Chapter I can be substituted in equation' (9). This gives the relation between the bending moment and strain at the outer surface for a cir- cular cross-section, when the stress-strain data for the material can be fitted to equation (1). co 9 r(m) =I Jen-'15.x dx 0 29 By using the same procedure as before, a graph can be drawn that will relate ‘ME to the maximum stress on the I section. This will be for a circular cross-section and a given.material. 30 CHAPTER III THE BENDING TESTS Introduction The bending theory developed in the previous chapter can be checked by performing bending tests. These test re- sults can be used to show how close the stress predicted by the theory approaches the actual stress developed at the outer surface, and also to illustrate the procedure in 1:42 I diagram. plotting the stress versus Description of Experiment Fig. 12 shows a diagram of the test setup. The load was applied by the use of dead weights. Two SR-h type elec- tric strain gages were used. ‘One gage was located directly at the highest point of the section, while the other was located at the lowest point of the section. The strain at the outer surface was taken as the average of the two readings. This was done to account for the fact that the stress-strain properties in tension and compression were not the same as assumed in the theory. The Brush amplifier, along with the Brush oscillograph, was used to record the strain values. 31. mmwzqi odomllll w2 t I'QI. Alli it‘ll} ..I;-§I.nlb-Illlo'lu I. r33... - ,.. WI. ... .331I. .. . . 3.3I . .. ..I I . .I.- I .. -_ . _- .. . . I 3I :.AI I I I. .... v 3.3 -. . . . “4. II w‘l. I . ..w .II. bII. u LI II. I. 5.. I... - . 3. . “I * . I - I; I I. ll. . . 4 u . I I . . I. . . . . . ... . - . . . a! .-, 1p_.t v . I. I >... - I II‘ -_ . . . v. I q - ... . . . .... .. . . . - . . .. . . I .. .. . --. .... . . . I.“ ...I. -. I . . 1 I .I . I. .1. “X; . _ . 3. . i-...I .I- - .. 3.3-- I--.-.-,-.33 I.. .3. 3 ..---3I-.33,...3-3- ...3 ..3 . 3,.-. 33--.-.. ...I- 3- . - - 3- . {...-74.. -313 ...I -.3I..-3-I-.3..I -5 .- .- ... .. ...-3.... I3 ..I .3 .... ...I ..-. 33+: ..I3. .4 . ,. I - .. . .43. .--I-._. .-.. “3;, 3... .I . - _ oiv . u . . _ I . . I . I - . .. . 3... I 3 I v . I a. I . . . I3 .. .w. I . w I . x“. 3 I. 17.. . .II . .I. . .0...¢. . I. ._.I .v 3. _. . I I . L 3 3 . . . . ... . .I . - 3 I-. 3 . .. I I «- 3 f . . . .. .. a . . . - I h. r I I u . . I H -. II . u . .. v. . ..n . I a . 3W 3 .v . I I. In ... . . b . 3 a I- I . .4 . . . . . . .. a. .. .. I - A. 1..-... fl, -. I I. .fiII - . I ..I . .. I. L .I. .I. -..I . I. ... .I,.-..I... . I . 3 I" . ... I I I. I ... L4 I I 3 .. .u . - 3” I-3 . ..I I . ... I v .. . . .I . v .. . .H . . -n .IIo . -. . . I I . 31 . . ~ 5 II). A c3 35‘ .I ‘.1 .- i nae. [-33 3| . nlv I :.II ’ I30 ‘3. I .. 43 3: i :13 o l u I.'t3 I .1! I o\ Ifi 1'13 IV- I pl'l4l‘ 1|. n I 031-13! UI 3- vll I I3 :13. t I 'wle" .3. 1|.-. v 3 l l . .I I I I . .I - . . I .3 . I . .I . . u . ._ . I . I I . r w ... . Iv . .- .. I . I . . I I . ..I - I - . . linole‘lv . I. (‘33! 03-. .II A 1.313] I! 71 i- Ivli‘. Ivlv» «ll-M331- v I'lntl.llcl.9-&..I I a . .. . I. . .. ... . . -I I . . I . . - ._ .I .. I I I . I . . . .I I I . a .I . .I... . I .I . I . .. - .I I I. - - I3...--3 4..-....- ---.-- .... -I- - . I I . I v c _ I I q . I . ..zI. . I W I . _. - I I. . . II .- I 3 - I I a 4 .I I . I a I I I. I p. . I . I I q . - . I . I . I I . I I. . . , I I I . — . . - . . I. . ...-3 3 .. A I- - . -I I ..3 .1I - ... ., - . . ... 3 3.3 .H .3 .... 31 . - 4 ?.~33 - - 3-433340- . 3 ._ . _ - . .. . I. ..I. I , . I I I I I I . e .. .I . In M .- . 33,-. . I . - .I 3.3-- I 3 I I , I I .I I a A I . 4| .. - I _ 3 - I I I. I I. _ .. . . . h .4 . I . - , a I I I-3 . . . o . .. w - p. I . v I 3 I . ..w t . - .— . c u o r . . . . I . .. v . ... o I -..-.-.....-I 3.- - - ...-+3 -rr-I . - ..- -- II... I.-. I -- .. I I I .9. . .I. I - . I- .- .. . .... .. I _ ..... .I . . . - . I. .. . _ 1 G .. _ . . -_ . H . .I. .. I .- I _ .. . .. IT I I . r.. — u. .. h 4 I ..Iv .... wry-a . . . n I.. I I .c w . I I”. . I» . . .I w I - 3. - .. 7...; . 31.3-3- -- 1---333-3..I . III... I.- .133 . . . . I _. 3. I . . . . I .. .. . — . I 4. I w. .I I . I. . . I. I « I I . I I . I. . . . -... . I I. . . I .. . I . . . I I. .- . . . I. - . . I .. ‘34‘01‘ 31. vli‘JIl . w -....I v.~ I i . f 3N I . II'QII . — I . a. I.. - ... ..I I _ I I . I ... . ... I. I I. . .I _ I . .. . .I . . I . . . s » ...I. I . e i K ... . . _ . I . I I. * 3r. . I a..- a I o . "....lll . 0. t C. 4 a Y: I .A ...l . n O u o. u ...Olnil I. .. I .. I . I . .. . .- . a - . . I . I. . . H . I I ,I _ z. _ I - I , I I I I . I. I. I I . I . I . L I . q .. . . . I . . .. . _ 3-. I. . u 3 .w .3 I . . . v I . v. 3 n 33. I... N. .Lv 11- 3M3....-4- .3 . I n I . I . I . . I . I .. I I I . . I I - . A V. .. o — I I i I I _ I . m I .. I _ . . .I... u I I I _ . . I. . . . . ...!“ III" II 53-33 .33-!- fii- 3.1333 3 I 3313. 3-. .- .4 .- 3 . 3- -Yc3I.-3 -1 5.231 talwl tq-QII333I-r 3c 31%|- lt! '0...le llIleiil .Y 1 I vlvfll I‘-37.ll!|.4-.33.|.L¥!3"ol ll3‘.'3.n.ul.3l 4 ”r {I I. . I I . I _ . .. .. g I I . .. . I I , . ._ .I I .. . I I . I I I M I. i . . i . I I. I . . I I . - . I I . _ I . It 1 1,». o .. 0.: .. 3 t ~ I m s I n s '- 3* .13 Is. I s . .- ~31}; . . .T t. w: .-.V.l u.4.. [ In“. 3 a 3 4 343- vl. . ulI.A..I .I 1 +31. IA- _ '3r-bllo L I I . . . . . . . .. . . . . . I . , I. . I .I I I I. 6 I I . . .I . I « .3 I .- F . I J. 3. ... in! .- . I q I I 1 . -, I . H. 3. . I I w .I I I. .. mom I . I W I. I I _. . . I .3 i .- - . - .. - -. -e . . . 3 . c -.- .- -3 .3 .3 - 33 3 . 3 .. -4- .u . -3-.. -4---3.. s _ . I .I I I I I . I . I . I .. . _ . I . . . I I- . I I I _ . I I. _ . .. I _ I V I I I I _ . . . - . . \vl . .. I - . . . n73: , . 1 I - I‘ll . Til-.331 .. $-36 : 33l- - 3 € 3+ . - - «- 333l. .0. - 1 33 . 333.10I31 303.1-- . a I . 3.33 Ell-.113]! 11.3333333’ 3!! w I jftil .13?) 1 ail-.1130 . 1. 3 -. l1- - |-- t. n 3- ...... 3., 33' 3.11331" W .. q i . _ . I I I — . I n I I I I . 1 0. I I _ . . I _ I . I . .. I . , I I ._ . I . .. I I I _ . I . . I I _ . I I . _ _ . - I - ..... - .- .IT . - I . . . ---. . - .I- -3. 3- I... --I .- .I -- ..- .17-. . . -- - I .. .- I -- . ....I 3 -3 . I . ‘- I - I u . . I _ - . I . I . I . I I I I I I . I _ I _ . I u I I I .- I- . I ...-3.33 . I I . . . . 3 .3 3 . ?.K I _ . . .. . . I . . . I I] I I I . I I . . . ... I I CU . . I ma . IE . ., _ . I: . I I I . I -3. h- 9. .3 T .33. .. .3, Y. -. -33 3.3... .I - ..- I - ... I .-3 r. .....r-3.- .- 3 - U .... . 3,-“- 3- 3:.-3 -. .333.- I.. - - - . - 1 --3I -3 3- I . I . . . . . I I . + . . I H . I I. I I I I . _ . I .. . I u I . . _ . . _ I . _ I I I 3 I I - _ -.3 . I . I . I ... -_ . I _ , I I . . . , 3-. 473. 3-3303- Iaomae -...--- .3- -. 3-. 3 _ 3. _ . ---. ...... 3-.I--33--.-3-,-3- I I . . . I c m v . g I I m . I _I .. I .. o . I .. .I _ . I . . . t . .. «En-mam. I I . _ _ _ I- . . . . SR. . . I . .1.-+..-. . .. 3 . -L. -. ..-. -...i . .3- I. . - .. .6. .. v-3.” .3 »:-. ..... -I.:.-.I.I -. u..33 .I 3.3.. r: -. 3:.I.3- -Im- .. ~13 +.o.-11‘ 3.3 .3 II 3. «I43 I .. I I . . . . . . . ..zowaemm mqgeezsao . . _ . . --. , _ . A! a . I . I ., . . I I . I. I I 3r| — Ll V V . J3 I I I F3 II . I .. I . . . I. . . ... . I . .. I . ... III ou>d Guam . I I .I I . I I. .-I .I . I. . A . .. . .. . . . I I .. I .3. . .. . .. .LI . r. . 3?. .49 -1.!392- -.....-I .- 33.-...v-..I ‘0'”. . t;:-4|...¢oaiavu-uu3lvo- -6 I-thH-OJ tuu‘le—l. .Ir .|WI¢4II ..-o:..+.ai.|o- a-Il..I.:O.u.vI 431.1;th n‘nlwil-n» lladzth!f.lI . _ - . ... .1 -.. I . Th I. u I W . .-. a . .... . . I .3 3a. I..-.v.I . ..-. ..-. . . . I .. ...I.... c ..I N. n .I. .v. V I ... I o.—.. H.#. .. o .M. . ... I I. o. v n .0. s H... aIAw b . , .o . ... 74 O ... u I a . . .I. . e I 3 o o v. ..I. . .314 . .. ~I..h. .M .... .M I} . . I ...» .II. . .I. .tv... ..... ..»I ..I.. "TI. ....I. «I. 35 3-.”- I. o - . . I. ~ ..J M .....H .M I1 I . -I« .3». . 3w -I I III... II I. - I . k I» T .I .... --I I I 3- - . . . . 3 I . v . .. I II I 3 3 - . I . ~.. . I. I. .. .I33._.. . a. I. . . H. . . I I . r..-. I I I 3 . . . . - 43. .w . I .3. . .. . I .-I.3._ 7|! - 3 I I. I . .. . .-I I... I ..... II. I 13 .. . . I - I . .. I I . I3 ”- .. . *. ..u .. I ...I I. ...-A. v .. I - ...-.3I I I. .II. .. ... I ..I...-I .- .. I . I. I I-|-3_3 - . 3I.- . .. 3I-3...-.33 33.- .....-I :33..-- .-....-...-. .- ... - - ..-.. I.-3 3...- --.:Ir-..3.-. .-3.-I ----- .3..-33!. 3-3...|3l31-,- .3-.- --.-+ - -.3.-- .-w.-33-.. 3:..- -. -. ...-$34 3 -. . .. flun- It] ._..I. .I . . . I I - .... I3; . I _. I . I . . I I . p I ... v . I . I . I . . .. . I. I. _ . .I- I .- .. . . I v - I .o- a .- . - _. -3 I. 3 I . .- I. Io. I I . . - I . n I I .- I I I - .. 33. . 3 - - . - -|3-|3-. 33| n- | |3|3313 -.-3 - s I II 3. A . E || . .3I . I 3. v. ”31%|,- " . . I . 3 _ - H 3 3 I . I . A. I . filll||3 . I I u . . .. . ..I I. . I. -. I. - I. I - . - . 3 . I... I I I . .33.. - I -. I. I W h .I . 3 . m I. - I 3-." . . - I. w - » I . I . I . .I . 3. . .. -. .m . . .- I. .... .3 -_ . -. - .... I. .3 - - I ... - fi- ...-... -- - .. . - ...-Ii.- -..I .I - -. . -. {3-2 -..-. .3 - .I: 3-. .3-I- -. -.-.-.-.: .4333- ..----- -3-I ...... :33I3 - - ..--1...- .3...... ...-3.3 .. .. ... .... .I w I - I: ..I...I. I... ..I. I - IA-I - .- - .H .I I - I I r . , I ... .I . .. I Q . . .I . — .-- . I u. . a . . 3 - I Q w 3 I .-.. . I It I o I . I I I . I .I . - I . I} .. .- ...I. I . I I I...- . .I. I T . I . + I u I . . I . -.1. _ I . 3 I N . . n a, . . . I . . ,. . .|I.3 I . m - . I - .— .I > I A. A 1 nil-"iil I . 1 a . 1 . 3 .I .. - LI . . . . . . . I . I I I . I 3 . . . . . .. - I 3 I. I .3 III 3 I w 3.“ . I .. I I I I .I .. I .II. _.. - I II. I . I.- .-.I.-. 3 I .I. I I I I . . I . .. I . .. ~ . I I - ... - . I I I - 3-3 . 3 - -33-. 3 u||33 3 333|Y3| - 33 3- r .I | - 33|3n 3| . +... -.3.o.|-3|3 33 I. I 3| ||. - -3- 0| 3. - 3||3$ 3 .3 333 .-| '13. n- ...... : -3-+ -¢| -- - v o .- i --3 33- .I l3 3 . . I. I I . .. I I I. . . I I -s I I I 3 .I . AI . . I I I I . u m I u h o w I . . . I .3 .I _ I I I - . . I I h - I . I o I I. I... .. .I -. . M I . - ~ Y||I||I|6| |3|IJI| II I II I Illul" -\|“3-.r33|l.l i-n33||9| ll "Ifi3+-- |Ile-I‘I4!0 fll+3| || . .1.-I I -||DIII-|I II 33 III-3'13 ...-vll-ll'lll I I I . - I . .- I . 3 I I 3 I- c I I I I . . . . I . 4 — r _ . l 43. . . A 1 . I . - . h . --..I-3I.-33-.-3..- A... -I -3 o.fl.l- 3 .3..I- 3 -3 . --.... 3- . 3 ”..3.- - -3.I..-.3I..-|.- . 33- . I . I I . . - . I I. I. .I . I . - I. _ I I . I . I I I, .- I I . I . I .. . o I - _ . > I |3|L .7 r v | I'l'iv'll¢ Iii . . . I . v . I I . . I . _ I _.I . - _ _ . I I . . I; I I I 3- .. . 1. I . I I I I . . I . .- I I . II - - 3-0 II.- . - t o. a -.. 3-3 |.-33||_ . a 9 3 33“. II-A 3| 53- 3-4- - 33» -I- 7— 3|!||3 -o343-3l-33 3. | 3 3 3 Ilo-v I . ||wl3| ‘3 433 3| I -. I . I . 33 . o w. I . I I . . I . . I I . . _- .I . . I .. .. I . . . . I I I I . . .. . I I . - I I H. .m I I w .- . H4, I I I . .O-IIIOII|0||0|33- m-|'l'0| cu|||l3lIIQ4| 33|IIIC||||||F| .I'l-l 3||Iv| r 30 L I * L! 0 | [I ililu 303 -|||-'.l|-l kl I . . I ..- . - I . .I I I . II I .. - ..I. I . . .I I . . .I. I I - I I . I. I I I. I - I I . I . . - I . . I _ I I .. . ... I. I - . . _ I o 7‘3Y3-o - ... 3 v|3.| 3 3,-31H 6 3 I g I 3 I 3 3 . t 4 I «I 933 4 p 3+3 3+3 . c . ...... 0 L31 3.A3| c . 3|.3|| 1| 3 II! L-. - .. -||?|9-|I.II . I I I I -I .I .- . I I I. .I .I . I .. -3 I . . — .3 . .... I I n I . . q-. a I n . 3 ._ .I I I. .. . I I . I. . I 3 . _ 1 _ . I . n..- d | I . 4 u 1| . I . . . . . - I I. I. . I. . - * I I. . . - . .. . . - I - . . I. I I I . I I . I . . . I -I- I ... . I _ . . . . .. . . .I .I I I. . - .3 3 I 3 . I. . - a 3 ...b '3 1. 5.33 3| w. 3. I 3 n 0 33-0 13.3 ofltli-Il-I I o 3 .. 31”.. I I 93 3 o 331 .33 3 3| a 3331 . — u I ... -- 3L . .7 _ I II I _ I. . - . I I I. . . . . . I. A . a I .I . u _ _ \ a. . .- I . I ~ . . . . .... . . I 3. I.- ._ J- - .. I I I I M. I I. . n . I - .I - . ... Il|||l||| “313'4 3 I f. I|36 -|||3l3 31- I? 53 v _ [Jiul . . -I I I . . I . - . I. I I. . - _ I I . I 4. I I. . o c A . n . _. . .. . I .I I ..w .I. II 3 . -l -.- . . - . - . -. - -.I.--- .-.-- . -1333 13 -. 3 33- -” I w H I I I .I I. 03 .p M 3.3 .-3I I . . I .I -. .3 .. I . . I . I . . I . .- .- . I . . I . _. I H. I . w I I - .— I T r . .3 I . - |4 I .I . I _ I . . . I . I . .. . . . . . . I . . . .I . - I I . I I I I . .. I .-3- . . . o . .. I- I I . - ..--f ..... -.- .133H33-l+ -.I-I-- . I - . . . I - I - - . I I I . I I 4 . I ~ _ I - I . . II I I I 3 . . . I I - I u H I . . I I . —. .> I i3 l-33 - |I|3|33|l|.-:|3 ||¥| 3||b3|-L-3 3-13.33- VI 3...! ||- -w03 I3133|| I |3-3‘lvv||||3fll||33 OII-3|J I |m . I I . . I . . I ._ u _ — A a 1 — I — a o _ I I . . I .I I I I. . . 3 . - - .5 . l o c . I 3 3 -; .wl - 3- 33- . u 3 o - . 3333 if3|| < l4 3-.3 I3 3| . I I I . I I - I I - .I I I. I I . I II I I . F . I . .-| . I. I pm»: I.. l4|| _ 4 . I . . I ._ c. .I .I I . . _ I I . I -_ . . . I - I . .3 .I . I-- .-.. . .I I -- . -. - - I . I .. I . I . e . I I I . I. . I I .. p I . I < . _ .|l-|3|.O- - || - 3 -|33-3|I..|lI-.|3J-||-.33+ I .|-n .33u- I-||<- l 433|3 3 3| - .- Vix I . .. J..|3|-|||3-I.|3||3|£|| \.w- 3133 | T. |3|3|3|| 03- |3l -- ||33|31 | . l|3| ||||||I . . I I I I . I . _ .. _ I - “-.. .- . - I .. ..3 I .I 3 - I .3 3 - - I . I I . . I g I m I . ’\ | _- 4 I a l. I . Q. I G” . . . I . . . I I I I . 3IrJ-..Iv|3|.+!3--.33-3-+.-.. .--.-. - ..I-3 -« l 3-, . 3-. . . r . . I I I conga? . I . . I o .. . ‘11 1 3 3| -.||¢||-3 .I.|3|.3-lv..|3|33-333|-I-3||I|LY3|-ll3|| 3|. 3L||33|||3 :1 In ..I-- . ... , . |A41|9||1I|1|+3|4 - .|-.'.-.-|I VII-431.6333. I .I.. III: ..I ......f ...-I «.- 36 I' 0.50 in. E = 6.3 x 106 psi and from.equation (9). M = 2.1+? €¢(o.2So - 60 6‘1"”) 10" Using the same prooedure as before, the results are shown in Fig. 15. Better agreement was expected because the equation relating stress to strain agrees very well with the stress-strain data. The error was assumed to be due to ex- perimental technique. 1 I fl 4 I 14. . . .I 1 3 I. _ . w - 3, 3. V. .. + .i... I I.I. ..... 3.3 -. « ... . I . , . -. 3 . I .III _ i 3. :II. 3-. I. . ..V131 .IwI I3 -3.II3 . . ...-I. . I.-... ... a :4 Q h .I . .~.I . . .LIIQI .I III .... .. 3 _ u IV - ..3I . ..... . .I I... . .1 I I I: .r. . fl ... I .I. . « ...I,V. ”.3..l..I-I-... 3h 3.. .- 3. .. 3 .3 .I3 + 3 I . 3 I L 4 .1 I I -I u I I I III II; I I . o . I 1 I _I I II II I III-I OIII-II. 331-311. 51111;!1111 TI- IIII I I.II-1II:I II I: .III1IIIO V I 1641‘ I 4 ‘ I w -I III. vI I ...... I1I II I . .. .. .I . _.I . 3 . . . . 3 . . . I .I... I I I I U . . I*. I3 I .. -I-.H .. .. I .I .3 .- ViI.. . I VI+. I I,. ~ I II c. _ I m a . .3 . . 1.333... . ... II3.3 V.. J. .. +3. .I- 33. ... “ ... I. 3 . V a 3 - - . L: . 3 I 1: I. 3 _ -. .I .3 -- . 3 H 1-.-113.11: . Im 3.134 . I ..I 3V..3. . . «I o. — I_ n n I . 3 ....... I. I 3 I ... .. .3. . 3.- 3 I. I . I3 . . . i -I 3 - 3 I I . .3 . ~ 7 I +I I3 II”. . I 3 3 3 w .M.I .I . m _ w I . 33-. :3- .I; -3 -- . OmIIfiI -. i133:- .uI.---I .14 - 3 -- In?- .-.....I .. :3:O3H:3.- 3 I - -3 I. . - 3 I w .H .3 I. I .3. I. . +3... 3. .. _ . I” u . . u w 3c 1 ”I . I I. _ I - .. - I w o ... , _ a I .- .I, M a- .. _ .. 3 r I u _ H . V N - .3: H ._ s I 1 I. . I 31.1 k M . 3 1 u m _ - I13. . .I I . . . 3 I . 3 . v I... I . — IV I . + H .I, m. 1 3. I . ~ I H. v r . . I . . I. . .I III - II II3I.I 'II iII ‘ II..III-:I III'IIIII3PIVE VII-311'! fit II III .4 I... ’.‘.1.. I I III 0......L oIIIIII +I.I4Irl. I. II,. .. II I“ I ._ P 3 I. . _ _ fl I I I _ 31. “IV . . .. . o r 4 i. . I . . i I . I. V I a 3. . I II . -. - * I + —o .. I A . I . 11H . . . . . a I 3. 3 I F ...-411110111361-1'I III-D3IIIiVIIlIII-Il ' VIII IIII‘I IailbLfI1I II 1. r1 IIIIT 14 r I'III I... II LIIIII'OIILIIIIIIJ a II I IIIIIIIOIII III 1111111111 I! IQIIIII T'III IIIID I ‘Ilf IIII IIII IIIIIIIIIIII . 3 3“ . 3 M I . . 3 “1 w u 3 . 3. u . n . .-I . . 3. .. . ,3- 3 3 _- .3 3 3 . 3 .3 _. AV . 33 . .. ..- 3 I _ I .I 3 . 33 I , I . _ I ..3..:.I.. III:# .I....I-. -“I I. II A I .I II; . III -. 1II_.I.II I1II+I1III .I III III-HIlIIIL IIIIJII II1T1I III II IIII lI-31II I I a I + IIJII-II .3I I310 - ... .I.- I3 - rIII III III I 3 . . _ . . . . . 3 .---3 .3 .3 . -. 3 . - . a 3 H . V . .— w . _ - , . . ..3 .. .v ._ _ ..q . H w . . . . u _ .H . _3 fl. 3- J i h _ 3 H 3 If . 3. _ 3 3-H _ 1 I. 110”: 1 1 ‘I‘I.IIII.I-" . 3 3 . 3 3 3 3 . 3. 4 . 3 . <1 3. I k - . V 3 I . .3 h 3 . 3 n . 3 . _ _ . fl . . . . . II .. . 3 . -. ------ I -I .-I V. I I . . ..IIIIII 3 I III- I III 33I 1. I19 I1 I 9 I19 II I I 11I III: I I I1 11IO I I I 11! . I III- 1 I II III I I I. .II III I I I . I .1 -.I 11 I .I . . I- I III III I-_ 1. I . w H 3 fl .1.. .4 4.. _ “I 3 I. a I I a 3 T w . 3_ W ' 3 n 3 3 _ . ._ - - ... 3 _ 3 . I . I I . . H ... _. .. . 3 u I a I 3 . 3 . .I 3 _ _ . 3 .. . . ~ . 3 . . .V II 3 w I I u - b I . .1 1 I . I u . . .VI I_r I 1.11. 11 .III. ”-..-131:- 1+1? 117:3 7 . - ,. . _ - 3 -3 - 3. - . 11-.....113 3 .33 — I ..3 , ...- V- .3 3 . . . I h 3 I. . . ..Ip - . I fl .I .. I+ . g .. . - P ~ I . 3 I . _ ... . I 3 3 . I . I . _ . I» .I I .3. I I .V I I .. I . . i I. 3 r I I . l 1 I IIIIIILIIIIII I Y! VrIIII P4: II 3-311 II II_IIIII. Ihl. -I.III m I II I I I I I III. I1I I .H. I 1 4 I IIII III I II+. ”4&1. . I III. I IIIII IIIrI.1 I .I.I.HI .011 HI‘III . TIIIIIIYII ~ . I h .3 3. w...“ 3. M -_. .. I _ . I .I .r u .. I . k. u I . I ., + 3 . I ... .3 . I I I 3 3 3. 3. I. ._3 M . _ 3+.I . » .... I. ”I . . ._ I I3~ . _ . r .H 4.. . Ila I II I I . . . .... . ... . I. 3 -. .I ..I. | . .I a _ II. 0. , H _ . .. i . . . 3. V - . 3V . p _ , w I .. 3. 3 ..na mums anomWM31I< . . 3 . . . . .- .3. 3 .3 3 . .93 3 7 .3313 ..i . ...."3. 1.33.3 m3. .3. f . ...-1..; T. I. .I4I I c I I; I. I3.. ..IJ. II I ..I I-31 IIIII-....1.II-I.1. I . .4 . II. I .II-Vl-IL III-I I11-Y11-I .IdIIII I II II¢3I 1. II .I I I. I II I I I I» I, . I. III) .. IIIIPI IIVIIIIO .I I ~11 33 ... . .. W... Wfi... MHBHIOTIIIIO. .. ”3.3.... .3 ; ...s 3.33.7133. w ..3.3 .. 3 ...... H 3...;3 3 ... .. 3. ~ . . If”. 3 ... n V ... p U.. .- I I .. ..I . . .u I + . I ._ .. N. - A_ I I . - . .- . - . -. . , _ 1 . I 3.. ,. - . . . 3 I I I111I1+i1311131 .1 3 . 1 fr . - I LII-11:1-- -. - I 13.1 ILIIIIIVIII1. r 3 I .. . I . . . . . . 3 . .3 . .. .3 N w H . w 3 _ _. . V. V ~ . . .. . 3 m . _ M - I 3 - I I .. u 3 II . 3 . . 3 3 .- 3 ..I . 3 . .- 3 _ 3 H . 3 . . .. . w . II I. v I . 3 . I I . o . II I . .. I . I A . 11 I I .1lI I r v I 3‘ 4I .. I 1 I. I. III I III-III 1 II Id III) I m k . .+ ,. . . . . .3 _ _r . 3 I 3. . v .. 3 .. . . -. I I I . 3 .h. 3 _ . .fl . . . . I .3. n I _ 3 ..I 3 i + . I3 . _ 3n. . . fl . ,3 h 3 . :5 _ .3 ~ _ . . 3 3 3 . . .3 H H l . 3 H . w ; M 3 3 - .3. 3 .3 VI. . ..I 3 I ._.I II II III .IWII + II I I _ I IIIII 1111? .I4 ..... 4. . . * 3 . . .. . 3 II.- _ . . .. .. 3 _ u 3 _ . . 3 3 3 . I H . 3 3 . _ _ . I'IIIO-Ivu‘ 3111.1! II'III-IIII'IMV‘I‘III.L. i, II'II I4 filo-I'll. i 1..-I11 I 3— » VIII IIIILTI‘ ’ITIIII'I ': 1 I-I0g I.' I- II" ’M o ... 3 ¢ .- I . . . I 3 3 . 3 ,_ 3 _ .. 3. _ 3 H 3 n . . 3 3 H m 3 N- i . . 3 . . .I i . III m II «I II .II . 1th. I. I 1IAIII p. III-a IIIIIIIII - I . I. . . . . .. I. -I I 1; ..II19I1IIF III II I I I .1II v I IIL IIIIIIAJI II.YIII11P1II . a . _ . . I . . 3 m > _ . . 3 I 3. . 3 . I - 3 . n _ n 3 . 3 , .1 I 1? 51”. 3 _. 3 . i 3 g 3 * . w w . g * < . In . ‘ 7.11... I _ I... I II| ... . c 1* I I >- I._ ..W _ II I ISIPI II n I w . . . 3. . . . _ 3 . _ _ u 3. _ H 3 i . . . , M . 3 I _ 3 II- - -1L III-III- III. III 1:. 3 I I3 - .I ...-.11:- 1-1 .IIIJII-IIIIIILI I- - 1:11 iI- I.-- L3: :1 -I.- -3 I -I-. 3 3 i 3. . M . . H 3 O o .I - - W < . I g . I I I III! I I.‘ III I I1.II,II# IIIAI II 11IIII III I III..| | II I I I I I I“. o _ r4 1.1I.I1I.. I N _ .. . U . I l v I I O I I I .- - I I I I . a I I I‘ -- I I I Q Q l 4' I I I I i--_.__ I I I I V | 1 I I I I--- -35-” '-_._..-'. -..-... I 1 1 3! 1 + I 1 1 1 1 1 3 INA-Dd MN 3.. I 3-1 I.-..., ..+.. . 3...... 3 . ... I 1 1 o 1 1 1 0 e i 1 1 o I I I I 1 0 4 I Y I o I l I I .....-II_3-_. .4,_._—_.__,__.._. - H“--- .‘ - - . . . I .——-.. r . ... I . . . I . - I . 3 . _ . - 3 _ i .7 3 3 .- . . . ..unu . “WW . . . . . I u . _ _ _ . I . 3 3 . 3... . — 3- . 3 3 .m 3 a 3 3 . _ 3 . . V V . I . I . w I . F I.” I . M u 3. - . I . H I - c y I . H II . w J I .3 VW‘IL. I I‘. .II 6.914171 0 III I I. OHIO I I v1k I-l ~1I| .IIII Y. 151“ I I I I .7 Ilolnl .I- ..I l IIIIIIIH III-O I AI. I IIIJL III-I “ill-I M‘IIO, I H LIII‘ I’M 1IOII91IIvIH11I II.I_ IMIII III I I .IIIMIIQ 1IAT1O1H 1H ‘ 01' ‘ I I I1“1.|..IIIIII - 3 . , _ .. . I. , , n 3 . .- . _ . ,. 3 . . 3.. 3. M _ 1..“. H. .«3 4.. 3 3 . .3 3 N. . _ u- 3M3 I r-:- . . In ._ I III“ A... . u I . . + . 3 a . v I I b I": I I V , . b I I . I I I w 38 CHAPTER IV CONCLUSIONS From.this study it may be concluded: I. The proposed mathematical relationship is suit- able and can represent stress-strain data for certain types of magnesium.and aluminum alloys. 2. A relation between stress and bending moment was found when the stress-strain law is non-linear. 3. The maximum stress at the outer surface can be fairly well estimated by the use of this relation. 39 BIBLIOGRAPHY gigoa Structural Handbook, Aluminum Company of America, 1950. Bronwell, Arthur. Advanced Mathematics in Physics and Engineer: ing. McGraw-Hill Book Company, Inc., New York, Toronto, Coonan, F. L. Principles of Physical Metallurgy. Harper and Brothers, l9h3. Cozzone, F. P. "Bending Strength in the Plastic Range," Journal of the AergEScience, Vol. 10, May 19MB, Pp. 137-151. Gill, S. S. "Bending Strength of Materials with Non-linear Stress-Strain Curves," Aircraft Engineering, Vol. 19, July 19h7, Pp. 212-216. Hoffman, 0., and G. Sachs. Theory of Plasticity. McGraw- Hill Book Company, Inc., New Xork, Toronto, London, 1953. Lee, G. H. An Introduction to Experimental Stress Analysis. John Wiley and Sons, Inc., 1950. MathematicalATables from.Handbook of Chemistry and Physics, Ninth Edition, Chemical Rubber Publishing Co., 19h3: Osgood, W. R. "Stress-Strain Formulas," Journal of the Aero. Science, Vol. 13, Jan. 19h6, Pp. u5-h8. Ramberg, W., and W. R. Osgood. Description of Stress-Strain Curves by Three Parameters. N.A.C.A. T.N. No. 902, 19MB. Timoshenko, S. Strength of Materials, Second Edition, Part I. D. Van Nostrand Company, Inc., 19h1. Williams, E. J., and N. H. Kloot. "Stress-Strain Relationship," léustralian Journal of Applied Science, Vol. 3, March 1952, Pp. 1-13. Dwight, H. B. Table of Integrals and Other Mathematical Data, The Macmillan Company, New York, 1951, Second edition.