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Nelson David Wolf

The objectives of this study were to find a suitable
mathematical relation between stress and strain; to find a
relation between stress and bending moment where the stress-
strain law 1s non-linear; and to check this relation by
experiments,

The properties desired in a stress-strain relation are
listed, and a forrmla between stress and strain was found.
From this relation, the bending moment for a given cross-
section was found as a function of the strain at the outer
surface, Using the stress-strain curve, a plot of %? versus
the maximum stress on the section was drawn.

From this study it was concluded that the proposed
mathematical relation is suitable and can represent stress-
strain data for certain types of magnesium and aluminum
alloys. It was also concluded that the stress at the outer
surface can be fairly well estimated by the use of this rela-
tion.
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STATEMENT OF THE PROBLEM

The objectives of the problem are: to find a suitable
mathematical relation between stress and strain; to find a
relation between stress and bending moment when the stress-

strain law is non-linear; and to check this relation by

sultable experiments.



CHAPTER I

MATHEMATICAL RELATIONSHIPS BETWEEN STRESS AND STRAIN
WITH APPLICATION TO MAGNESIUM AND ALUMINUM ALLOYS

Introduction

The problem of representing stress-strain data by an
analytical expression is not a new one. Many studies have
been made on the subject with no one answer being the re=-
sult, Below the proportional limit of the material Hooke's
law seems to be universally accepted, but beyond this point

no one formula is in general use.

Properties Desired in a Formula

In seeking formulas to represent stress-strain data,
it 1is possible to state certalin properties that a formula
should have. This statement makes 1t possible to eliminate
quickly certain types of formulas that otherwise would seem
adequate at the first glance. The following is a list of
such properties.1

l. The equation should be simple.,

1 "Stress-Strain Formulas," W. R. Os%ood, Journal of
Aero, Science, Vol. 13, Jan. 1946, pp. L45-L48.



2. It should be able to represent a large number of
engineering materials,

3. It should go through the origin.

4o There should be at least two parameters in the
formula, and they should be easy to calculate,

Se The slope at the origin should be equal to the
modulus of elasticity.

6. The equation should be easy to integrate when
substituted in integrals which arise in develop-
ing the theory of plastic bending or colummn
analysis.

Each formula should have the properties listed above
i1f 1t 1s to be useful in the general case.

Previously Proposed General Formulas

2

The following™ 1s a list of formulas taken from the

literature. The notation used is:

€ 18 unit strain,
S

O = 157 ,
S 1s unit streass,

E 1s the slope of the stress-strain curve at the origin,
€ 1is the base for the natural log, and

a, b, ¢, d, k, org¢ ,ﬂ » & are parameters.




1.

2.

3.

e

Se.

be

Hooke's law, the universal stress-strain formula,
€ =0 .
usually written as,
S=E¢,
needs no comment,
In 1729 Bulffingeri suggested,
€ =ko",
and 1t has been used 1In spite of the fact that the
slope at the origin is not E,

Riccatl proposed two formulas,

~t/fe
e ke

14

a</(14¢,
/H)_')’

and . ‘(

=Qe
but they have only one parameter each, and the
slope at the origin is not equal to E,.

Gerstner's formula,

o = e...bez’
also has only one parameter and therefore cannot
be general.

In general, there is no objection to Poncelet's

formula except that the parameters are hard té find,

He suggested,
¢ = o'[t + p((-x'-l)]

In Wertheim's formula,



Te

9.

10.

1l.

4 2
‘ .1"0-/30—.
the slope at the origin is zero.

Hodgkinson's formula,

2 3 ¢
°'=€+6‘+CQ+46 ,

is no more than a power series in € ,
and the parameters are hard to find.

Cox suggested three formulas,

¢

ef(1 +qr)

2 3

€=0 +80 + Yo

o =€ ...663+c§3
The first has only one parameter and the other two
are limited to only a few materials,
Inbert!'s formula,

’ ) yy o

¢ - (3)2).

has only one parameter,

Hartiz suggested two equations,

w=(z)(")

¢ = [e [('-'é)Jc-M

but they both have only one parameter which is not
enough to represent accurately wide ranges of stress-
strain datsa,

In Schiile's formula,



c a6 b€’

the slope at the origin is not E,.
12, Prager's formuls,

o =ae +6ramhf-2)b)¢,
is good for many materials with a wide range of
strain values, but the parameters are hard to find,
and in problems in plastic bending the integrals
do not integrate in closed form.

13. Holmquist and Nadal suggested the use of two formulas,

€ = o

6=6‘+k(""°})‘. e % g,
where d',‘, is the proportional limit stress.
The two form a powerful combination but the para-
meters are hard to find in the second equation.

1. Osgood and Ramberg suggested,

¢ =04+ ko,
wh ich represents a wide range of materials and the
parameters are easy to find,
15. Rao and Leggett suggested,
€ = o +B(cosh 4c —1)
but the parameters are hard to find for the best fit,

The Proposed Formula

After making an intensive study of the subject, Osgood
and Ramberg suggested their formula,



é¢E =0+ k:d"‘
which i1s a special case of Holmquist's and Nadai's equation
with Cﬂ; equal to zero. They thoughf that this relationship
was a good approximation to the stress-strain data and possessed
the other properties desired in a formulae.
The relationship suggested here is similar to that of
Osgood and Ramberg with an interchange in the variables. The

equation now takes the form,

c =€ +k€'n,
This is similar to the relationship suggestea by Gerstner
except that there are two parameters, whereas his formula
replaces n by the numerical value of two.

The relationship does possess the properties discussed
previously. First, the equation is certainly simple. Second,
as 1s shown later, it can represent the stress-strain data of
certain types of aluminum and magnesium alloys, and can there-
fore represent curves of similar shape for other materials.
It best represents materials with a slight break in the lower
range of the stress-strain curve. Third, the curve goes
through the origin, and fourth, the parameters are easy to
calculate, Fifth, the slope at the origin is equal to E, and
sixth, the equation can be integrated in closed form when
substituted in the integrals of plastic bending.

It can be seen that the relationship possesses the de-

sired properties, but the equation does have limitations. In



attempting to apply the equation to a number of different
actual stress-strain curves for magnesium and aluminum alloys,
as well as a number of hypothetical curves, the following
observations were made,

The first and biggest limitation found was the fact that
the equation holds good over only a portion of the entire
stress-strain curve. For the cases tried, and for the best
rit, it was found that the equation holds for values of
strain up to the yleld strength, at 0.2 percent offset, of
the material in every case, and in some cases up to one and
one-half to two times the yleld strength strain. Therefore
it can be seen that the equation cannot be used over the
entire stress-strain curve, that 1s up to rupture of the
material, and the point up to which it holds 1s best found
by applying the relation to the particular data,

The second limitation found was the fact thas for the
cases tried, usually, a perfect fit could not be obtained.
The closeness of the fit depended upon the range to which the
equation was being applied, as well as the material itself,
The lower part of the mathematical curve is not a straight
line like that found in many materials, but when plotted and
drawn to a reasonable scale it cannot be distinguished from

it.



Method of Application of the Formula

The general equation can be written in the following
4

form,
= € +x€" (1)
oc-€=kg" (2)
log (6°-€) = log k + n log ¢ (3)

The parameters to be found are k and n o+ Plotting
values of (0°- €) versus € , obtained from actual tension and
compressive tests, on log-log paper should give a straight
line if the data 1s to fit this type of curve. If the result
is a straight line, or nearly so, the constant k 1is the
intercept, and n the actual slope of the line on log-log
paper.

Before going further, the question of algebraic signs
should be investigated. Let M be any point on the stress-
strain curve past the proportional 1limit OP ., See Fig. 1l.
The coordinates of this point are (€, , S;)e Let E be
the slope of the straight part of the curve. PN 1s a con-
tinuation of the straight line OP &and has slope E. From
the Fig.,

and by definition,



FIlG.
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Again from the Fig.,

€ >¢,
or (( ) o-l °
In general
€20
and (0 -€) is a negative quantity if € = 6" 1s not con-
sidered.3

From equation (2) it is seen that k must be a negative
number. Therefore thé absolute values of the quantities

must be considered in equation (3).
log |0 -€| =10g x| +n 10g € (L)

The general procedure in calculating k and n 1s
as follows,.
l. Pick a number of points from the stress-strain
curve that 1s to be fitted,
2. For each point (€, S), calculate & ,
3. Calculatelb'- él o
4o Plot |6 - €| versus € on log-log paper.
S. Draw a straight line through the points.
6. Find the actual slope of this line which is n .L"

3 For€ =0 , the curve is a straight line. This is very
often the cgse for small values of € . When € is very small,

the term K€%is much smaller than € and when plotting the
curve the term € cannot be distinguisdhed fromé€ E]L} .ng

L It may be found that the curve is not a perfect straight
liné. In this case a compromise must be made in drawing the
line and determining the slope n .
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7. Substitute a typical point in equation (4) and
calculate k .S
8. Plot the curve just obtained and compare with

the original stress-strailn data,

Application to Magnesium and Aluminum Alloys

The aluminum alloy used was ordinary stock, Alcoa ZL;S-TM..6

Six tensile specimens and six compression specimens were
tested. They were cut from two different bars, each twelve
feet lpng; one being of square cross-section one inch on a
side; the other of circular cross-section one inch in diameter.
One of each type of specimen was cut from each end, and one
of each type from the middle of each bar.7
The magnesium alloy was & laboratory produced experimen-
tal material of a type designated ZK60A-B by the Dow Chemical
Company. The bar was 30 inches long and had a circular cross-

section one inch in diameter. One tension specimen, and one

compression specimen was cut from each end.

5 Actually k could be read directly from the graph,
but due to the physical size of the graph paper and numerical
size of numbersinvolved, it 1s best found in this manner,

For properties and heat treat see, Alcoa Structural
Handbook, Aluminum Company of America, 1950, pp. 1L, 15, 22.

The reason for this procedure will be seen in
Chapter III,



12

The tensile specimens were standard8 0.505 inches in
diameter. The compression specimens were three inches long
and one inch in diameter.

The stress-strain tests were performed with a 60,000
pound, universal testing machine, with automatic stress-
strain recorder.

The procedure followed was that normally used when
running standard tensile and compressive testse.

The tests results for the aluminum alloy, square section,
are shown in Fig. 2, for the circular section, Fig. 3. The
tests results for the magnesium alloy are shown in Fig. L.

The following example shows the procedure used in deter-
mining the stress-strain equation for the aluminum alloye.
Notice how steps one, two and three have been tabulated in
Table I for easier calculation. Fig. 5 shows steps four,
five and six, where the greph has been plotted, the line
drawn, and the slope obtained from it. Step seven is to
pick a point from the graph and calculate the value of k .

Thus, for a point at which

€ = 0.007
|e - €| % 0.0021
and n = 3

108 l.oozll = log;, |k|+ 3 1og , (.007)

8 For standard tensile specimens see ASTM Standards,
1952, Part I, pp. 506, 507.



13

pees

BLARgaEy

)

aEsgEREnm

.

144+
4 Ii-uu
Lo

1

f:.__n‘ 358

Lyt

{
3+

on|




i
; + '

4!

el

|
|

ruaSAAnp s r

|
4
o
18

58 et ol Wadl Lanman
m i







TABLE I
s € o |or-¢€|
38,500 004 «0037 «0003
140,500 00l «0039 +0001
43,000 .ooLL <0041 <0003
1)y, 000 005 0042 «0008
46,300 «005 .00L5 «0005
146,000 <006 004l <0016
148,000 <006 +0046 <0014
50,500 <006 +0049 .0011
47,250 «007 <0045 «0025
51,500 <007 +0050 «0020
148,000 +008 <0046 .003L,
51,500 «008 «0050 0030
544,000 008 00052 0028
148,500 «009 «00L7 -0043
544,000 «009 «0052 +0038
u9,oob +010 .0048 0052
53,000 .010 0051 +0049
56,000 010 «0054 «00U6
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7.3222 - 10 = log, lx] + 3(7.8451 - 10)
log, k] = 3.7869

lx|l = 6120
k %= -6100
O =€ - 6100€°

Step eight is carried out with the use of the tabulation
shown in Table II, The curve 1is plotted in Fig. 2 and the
results observed.

The equation fits well for values of strain up to 0.008
in./in. In Fig. 2, this is somewhat past the yield point
strain of 0,007 in ./in. in tension and 0,006 in./in. in
compression at 0,2 percent offset. The equation as found
here 1s an average curve between the tension and compressive
tests; the reason for this procedure will be explained later.
If so desired, a curve could be found that would fit either
the tension or compressive curve more closely. For the
closer approximations, see Figs. 6 and 7. Notice the equation
of the curve 1s given in each figure.

If the curves shown in Figs. 6 and 7 are compared with
the actual stress-strain data, Fig. 2, very close agreement
can be seen,

The stress-straln data, and the curve plotted for the
equation is shown in Fig. 4 for the magnesium alloy. The
fit 1s almost perfect as can be observed, and the equation

holds for values of strain up to 0.012 in./in. Beyond this
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TABLE II
3 3
¢ ¢ 6100 3 € o s

04001 1x107 6.1 x 107 0.00100 10,250
0,002 8 x 1079 48.8 x 10~6 0.00195 20,000
0,003 27 x 10™° 165, x 10~® 040028} 29,100
0,00l éL x 1077 390, x 1070 0.00361 37,000
0,005 125 x 109 762, x 107° 0.00424 43,500
0,006 216 x 107 1320. x 10~° 0400468 48,000
0,007 343 x 10=7  2090. x 10~° 0400491 50,200
0,008 512 x 10~ 3120. x 10~6 0.00488 50,000

0,009 729 x 10=°  Luho. x 107° 0.00456 16,700
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point the curve falls off rapidly as is the case for the

other equations. There is a slight break in the curve for

low values of € ; this leads to a better fit as well as a

wider range of application.
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CHAPTER II

APPLICATION OF THE STRESS-STRAIN FORMULA TO PLASTIC BENDING

Introduction

The flexure formula,

_ Mc
s =1

found in elementary books on strength of materials, uses
Hooke's law in its derivation. Hooke's law,

s =E€,
can be used where the stress-strain data can be fitted to
a stralight line. For non-linear stress-strain curves, and
for stresses past the proportional l1limit, the flexure for-
mula cannot be used because Hooke's law does not applye.
Therefore, when these cases exist, some other relationship
between stress and bending moment is necessary.

In general, when a bar 1s subjected to bending, the
stress distribution curve may be thought of as a stress-strain
curve, if the stress axis of the stress-strain curve 1s assumed
to 1lie in the neutral surface of the beam., See Fig. 8.
Section A-A is consldered to be any cross-section. The
stress-strain properties in tension and compression are

agsumed to be the same.
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In applications this may not be the case, so the average
of the stress-strain curves 1h‘tension and compression could
be used for the stress distribution in the cross-section.
This is the reason why the average curie was calculated for
the aluminum alloy in Chapter I.

Plane sections are assumed to remain plane before and
after bending, in the elastic range as well as the plastic
range. |

From this assumption and Fig. 9,

¢ = (R+§_)d_'d'0-Rd'9_,____§'

R€ | - (5)

y

Bending Moment for a Rectangular Cross-=Section

From Fig. 10,

M = I SydA
hiz
M =2bls Sydy
o
and from equation (1)
S =E (€+kem).
h/a
M=2b1Ej (¢ + x€1) yay
°
From (5) dy = Raé €
a
and M =2b; E (€ +xe?* 1) g¢



jt
f B 5*
hfa 1
!
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where 42 1s the strain at the outer surface,

2
Using (5) M = DbjEh ( & ,x€" ) (6)
2 3 n+ 2

The values of k and n , as found in Chapter I, can
be substituted in equation (6). This formula gives the rela-
tion between the bending moment and strain at the outer sur-
face for a rectangular section.

%? can be calculated and plotted against the maximum
stress on the cross-section by using the stress-strain curve.
This graph gives a useful relation between a given bending
moment and maximum stress on a rectangular section for a

given material.

Bending Moment for a Circular Cross-Section

The same assumptions are made here as in the treatment
of the rectangular section. From Fig. 11,
M= ; SydA
dA = 2xd
yl‘
M= |4 j Sxydy
°

Using equations (1) and (5), with the equation of the

circle gives,

€
M=) RE S (€2 + x€™* 1) (€2 --62).'z aé
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Integration by parts, a sufficlent number of times gives,
0*3

3 7rf
M=)} R E d(
L + n+2 ] ( - ‘2)‘/‘
Making the substitution, (3 =-;u€‘, the integreal becomes,
' n+3
-n/ « J
- RN 4
N2
° (' — M )
From a table of definite integrals,

_—fllfaB l)‘f'4 -L)

where B denotes Beta function. This can be written in terms

(8)

of Gamma functions as follows,

- ! m’#)f‘(z 043
pA (n-&",

Substituting this back in equation (8), using (5) and noting

r(i—)zﬁgives,

M =3 E 0,250 €, + _2k PLM) (9)
f-(n+2) r‘(&.‘!‘.ﬁ)

The values of k and n as found in Chapter I can be

substituted in equation (9). This gives the relation between
the bending moment and strain at the outer surface for a cir-
cular cross-section, when the stress-strain data for the

material can be fitted to equation (1).

)
?  (m) =I -l gE gy
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By using the same procedure as before, a graph can be

drawn that will relate XS to the maximum stress on the

I

section. This will be for a circular cross-section and a

given material,
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CHAPTER III

THE BENDING TeSTS

Introduction

The bending theory developed in the previous chapter
can be checked by performing bending tests. These test re-~
sults can be used to show how close the stress predicted
by the theory approacheg the actual stress developed at the
outer surface, and also to illustrate the procedure in

Me

Plotting the stress versus T diagram,

Description of Experiment

Fig. 12 shows a dlagram of tne test setup. The load
was applied by the use of dead weights. Two SR=l type elec-
tric strain gages were used. One gage was located directly
at the highest point of the section, while the other was
located at the lowest point of the section. The strain at
the outer surface was taken as the average of the two readings.
This was done to account for the fact that the stress-strain
properties in tension and compression were not the same as
assumed in the theory.

The Brush amplifier, along with the Brush oscillograph,

was used to record the strain wvalues,
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The procedure was as follows:?
l. Load increments of 100 lbs. were used.
2. Both values of strain were recorded for each load.

With this data, Me can be calculated, and the value

I
of stress can be found from the stress-strain diagram corres-
ponding to the average value of strain. These two values are

then plotted.

The Aluminum Alloy

The tensile and compressive specimens were cut from the
same bars that were used for the bending tests. In order to
determine if the properties of the bar were the same through-
out, the specimens were cut out of the bar as described in
Chapter I.

From the average stress-strain curve of the aluminum
alloy, Figs. 2 and 3,

k = -6100
n = 3.

For the square section,
by =1 in.
n=11in,
E = 10,5 x 106 psi,

and from equation (6),
M = 5.25 x 10° € (0.330 - 1250€ ). (10)

For the circular section,
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r= 0050 in.

E = 10.4 x 106 psi

and from equation (9),

6
M= 4,09 € (0.250 - 762€2) 10 (11)
Calculating %? s and substituting values of strain for €¢

in (10 and (11), and finding the corresponding stress value
from the average curve, Figs. 2 and 3, the calculated curves
in Figse. 13 and 1l were drawn. The actual test results are
also shown for both the square and circular sections.

For the rectangulaf section there 1is good agreement be=-
tween the theory and test data up to a stress value of about
30,000 psi, and again from about 45,000 psi to 50,000 psi,
Between these points the stress values are low. One reason
for the low values may be the fact that the average stress-
strain curve, Fig. 2, 1s not as good an average in this range,
as in the other parts of the curve.

For the circular section good agreement exists over the

entire range of the curve,

The Magnesium Alloy

The same procedure was applied to the magnesium alloy
as was applied to the aluminum alloy. From Fig. l, and from
the data on the circular section,

n = 2,6
k = =425



34

1
; ~
Lol SEEORIUR o
R i 1S
O R , t
' 1
! L]
! I
- AV.A - ———n e .”X
. ;
! : H
. "
e e s eI s e e

'

1
J. .
i ! Vi
| : : '
‘- I - . -
. - .
1 ”_
i H .
- _— ] - —
m H i .
- .;% - b~ e
! |
i B I
: : Ve .
,_ : : M
_ i G | ]
H :
; SRS NS S SUSSIIUE S — . : . i ol ! —
" ! ; = w : -
! i -
: ! R
-t it T
- :

[ S

e

S | : .. & ; : ' C R ) _ : "

L jfreE v ERRE U I A R SR B
- — HG=g =TT ———JTOM-HOBTON — o — e S _ — ERRa e
- NOTLOSS mﬁmmzﬁofxm
T X eeq sl
TR Tl
STEIO ORI CNIEHN AL

*SA




. S R B
' LR . HP
' e . [

Vet

B O S

B T

4 —
] i o ”
B |
| | P S
; - ! i . X
[UESUNS SUNTS AU SRLNS SN S S - c;tlﬁylvl| T,“
i i : )
| j i
. . ey - ]
| ! ; Lo .
i : ! o ' St
! | | _
_ o g . L
| ! | ! ; -
S S S S B /\ I -
“ | m VAY
= L e
] ! - i

! ' \
et S S U EORSR SO
: { i ! L B
: m m T :
Y S S, . e O e
C T ! ! 4 |
. HE i e .y‘« - o.ﬁ_”
H ' | ! . i B
! . | o i
S ] i
EEDAFTUU DU N N S RS S T TR S N
Ll IR L




36

0450 in.
E=6.,3x 106 psi

r

and from equation (9),

M= 247 €(0.250 = 60 (}'6) 1o6

Using the same procedure as before, the results are
shown in Fig. 15. Better agreement was expected because the
equation relating stress to strain agrees very well with the
stress-strain data. The error was assumed to be due to ex-

perimental technique.
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CHAPTER IV

CONCLUSIONS

From this study it may be concluded:

l. The proposed mathematical relationship is suit-
able and can represent stress-strain data for certain types
of magnesium and aluminum alloys.

2. A relation between stress and bending moment was
found when the stress-strain law is non-linear,

3. The maximum stress at the outer surface can be

fairly well estimated by the use of this relation.
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