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ABSTRACT

ATTENUATION OF SOUND IN SOME OVERLOADED
ABSORBERS BY A PULSE TECHNIQUE

by Jay H. Wolkowisky

The main purpose of this study is to investigate the sound
absorption properties of some rubber-like and elastic materials as a
function of the frequency and of the stress.

A predetermined static stress is applied to a specimen
through long transmitter rods, by means of a universal testing machine.
A stress pulse is produced which travels through the specimen. By
means of strain gages, the strain pulse can be recorded before it enters
and after it leaves the specimen,

The input and output pulses are represented by a finite Fourier
series., By using this series in a Fourier Integral the amplitude dis-
tribution function for each of the input and output pulses is obtained.
Calculating the ratio of the mean squared (over small frequency bands)
amplitude distribution functions for the input and output pulses, a
measure of the energy transmission is obtained. By varying the
static load applied to the specimen, the dependence of the energy
transmission on the static stress is obtained.

The results are plotted as histograms. These show that the
more rubbery a material is the more the sound absorption properties
change with stress. Also thatatcertain frequencies there is

resonance phenomenon for some of the materials tested.
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CHAPTER I

INTRODUCTION AND REVIEW OF PAST WORK

This investigation was inspired by the need to select a material
exhibiting good sound isolation properties while under severe compres-
sive stresses. The material is to be used in isolating tensile specimens
from the load holders of a testing machine in Acoustic Emission studies
(Ta 60).

The present analysis attempts to determine the sound deadening
power of a material while under a load. In other words, the material
is being tested under the same conditions as would be experienced by
it in actual practice.

The analysis is based solely on the comparison of the input and
output shapes of a transient stress wave. This transient stress wave
is measured before it enters and after it leaves the specimen (the
method of measurement will be explained in the next chapter). There-
fore, since the pulse is not actually being measured in the specimen,
what is being measured is the combined effects of two important mech-
anisms of energy dissipation. These two mechanisms will now be
explained. They are first, the loss of energy of the incident pulse due
to reflection at the interfaces; and second, the attenuation due to inter-
nal friction.

Reflection at the interfaces: Looking at the equation (Li 60),

r v,
1, f2r2
= AV 5
r = '—__—v——/pzz P1



it is seen that if féVz 7}/?V1 or /‘l'Vl 7,{_/'2V2, then ?r’y ?i' or
practically all the energy is reflected. Also, it is seen from this
equation that if /;ZVZ = /lel none of the energy is reflected.

If the media are well matched, (PV values are close together)
then considerable energy transmission takes place. If the media are
badly matched (APV values differ greatly), then there is a corresponding
poor energy transmission. So it is clear that the quantity AV, called
the "'specific acoustic resistance', controls the transmission of energy

"at an interface from one medium to another. Therefore, for a good iso-
lator, it would be advantageous to have the specific acoustic resistances
differ greatly.

Internal friction: There is at present no satisfactory theory

of internal friction in solids, and more experimental data are required.
Internal friction in solids may be produced by several different mech-
anisms, and although these all result in the mechanical energy being
transformed into heat, two different dissipative processes are involved.
These two processes are roughly analogous to the viscosity losses and
thermal conduction losses in the transmission of sound waves through
fluids. These processes will not be discussed further, since a study

of the mechanism of internal friction was not the main objective of this
investigation.

In this analysis the effects of reflection and internal friction
will not be considered separately. The total effect of these two
mechanisms will be lumped together and this t;)tal energy loss will be
analysed. The methods which have been used previously to measure
energy dissipation in solids may be divided into several classes, these

are:



1. Free vibration methods

2. Resonance methods

3. Wave-propagation methods
This investigation can be classified with the wave propagation methods,
but yet the method of analysis is quite different from what has been done
before.

1. Free Vibration Methods. This method is most suitable for materials

which are linear. At a given frequency of oscillation the period and
logarithmic decrement of free oscillations can be measured. From
these measurements its mechanical properties and behavior can be
found.

2. Resonance Methods. This method is based on the principle that if

an oscillating force, whose amplitude is fixed but whose frequency can

be varied,is applied to a material, the amplitude of the resulting vi-
bration passes through a maximum af a frequency which is known as

the resonant frequency of the system. The value of this resonant frequency
depends on the elastic properties of the system, while the width of the
resonance peak gives measure of the dissipative forces which are

present,

3. Wave-Propagation Methods. When a stress wave is propagated

through a solid, and the solid is not perfectly elastic, some of the energy
of the stress wave is dissipated as it passes through the medium. The
attenuation can be measured and from known relationships (Ko 53) a
measure of the internal friction can be determined. The experiment
used in this investigation is based on the same principle but the method
of analysis to determine the relative energy dissipation at various fre-

quencies is stri¢t)Ya mathematical one.



Work on the propagation of low frequency longitudinal waves
in filaments has been mainly concerned with the dynamic behavior of
rubber-like materials and high polymers. Some of these investigations
have been done by Ballou and Silverman (Ba 44), Nolle (No 48), Ballou
and Smith (Ba 49), Hillier and Kolsky (HiK 50), and Hillier (Hi 50).

Another technique using the propagation of waves has been to
produce a short pulse of high-frequency oscillation and measure its
time of transit and its attenuation as it passes back and forth along the
specimen. This method is similiar to the principle used in radar. Ivey,
Mrowia, and Guth (Iv 49) have used this technique to work with rubber
specimens. .

More recently Auberger and Rinehart (Au 61) have used an
electrosonic pulse technique developed by Hughes (Hu 49) to investigate
the attenuation of stress waves in plastics.

All these investigations have been primarily concerned with
obtaining data on internal friction. This investigation differs slightly
in that its main purpose is not so much to obtain quantitative results
but to explain a possible method of analyzing an attenuated stress pulse
and to obtain an over-all picutre of sound absorption as a function of
frequency without analyzing the details responsible for it. As a conse-

quence, all results have been represented graphically.



CHAPTER II

DESCRIPTION OF EXPERIMENT

The experimental apparatus is very simple and is depicted in
Fig. 1. The stress wave is produced by a short steel striker rod (a)
which falls under its own weight and hits the upper end of a one inch
diameter circular steel bar (b) The striker rod is guided in its fall by
a pipe (c) which has an inside diameter approximately the same size as
the outside diameter of the striker rod. The striker has a light nylon
line (d) attached to its top end so that it can be pulled to the desired
height again for the experiment to be repeated.

The stress wave travels down the upper bar, passes through the
specimen (e) and travels into the lower steel bar (f), Thespecimens are
all about 1/8" thick. The upper bar is held in place by a collar (g) which
is attached to the stationary head of the testing machine. All the con-
tact surfaces between the collar and the upper bar are separated with a
soft material so that there will be as little interference as possible with
the stress wave as it travels down the upper bar.

Two sets of type A-8 strain gages are used. One set (h) to
measure the stress wave before it enters the specimen and the other
set (i) to measure it after it has left the specimen. Each set consists
of four gages. Two are used to measure the lateralstrain and are placed
180° apart on the bar. The other two in the set are used to measure the
longitudinal strain and are also placed 180° apart. The four strain gages
in each set are hooked up in a bridge circuit so that the strain measured
will be a sum of the four individual strains. The wiring is described

in Figs. 2, 3, 4. The strain gage set on the upper bar is approximately

5



one striker bar length from the specimen so that the stress wave will
have completely passed through these strain gages before the reflection
has a chance to interfere. The set of strain gages on the lower bar are
placed approximately one striker bar length from its lower end so that
the reflections from the welded joint do not interfere as the stress wave
passes through these gages.

The upper bar is quite long (three feet) since it is desirable to
have the strain gages far from the struck end of the bar. This is so
that the transient end effects produced when the striker hits the bar
will die out before they reach the strain gages and therefore not interfere
with the main pulse.

A crystal (j) is used to trigger the first oscilloscope. This is
placed about seven inches above the top set of strain gages. An external
trigger is needed for the first oscilloscope since the entire pulse had
to be recorded. The external trigger serves the purpose of triggering
the sweep before the stress wave actually reaches the strain gages.

The sweep of the second oscilloscope is triggered from the first for
the same reason.

As can be seen from Fig. 1 the lower bar is attached to the
movable lower head of the testing machine, Thé compressive load is
applied to the specimen when the lower head of the testing machine moves
up.

The oscilloscopes used were Tektronix units with Dumont Type
cameras attached to photograph the pulses which are projected on the
oscilloscope screen,

Now for a summary of the experiment. The testing machine

applies the predetermined static load to the specimen. The striker



hits the upper bar, the stress wave travels down the bar to the first
set of strain gages and the resulting strain pulse is photographed from
the screen of the first oscilloscope. The wave continues through the
specimen and the resulting strain pulse is picked up by the ;econd set
of gages and photographed. These input and output photographs are the
data to l;e analyzed,

The experiment was done with sheets of nine different materials:
white felt, neoprene, nylon, silicon rubber, teflon, saran, clay
impregnated bakelite, red rubber, and hard board. These materials
were thought to have good sound absorption properties and also meet
other design criteria. Each of these materials were tested under three
different static loads: 500 lbs., 1500 lbs., 4000 lbs, These loads
correspond to static stress in the specimans of €3§psi.,/9/0 psi., and
S/go psi. respectively,

Due to the fact that the analysis of the data is such a lengthly
process, only three of the materials (white felt, neoprene, nylon) were
analyzed under loads of 1500 1bs. and 4000 l1bs. each. The data not
processed is on file with the Applied Mechanics Department, .Michigan

State University,
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CHAPTER III

ANALYSIS OF THE DATA

A set of data will be considered as the two photographs of the
input and output pulses from one run of the experiment; four sets of
such photographs are shown in Fig. 5. A pulse is represented in Fig. 6
by f(t). The pulse for 0 £t < L will be represented by a finite Fourier
series. In doing this the wiggles of the pulse for t > L will be neglected.
These parts of the pulse, represented by dotted lines in Fig. §, are
due to dispersion of components of higher frequencies than were of
interest here. This approximated pulse will be called f(t). It has been
shown (Wh 54) that a given function can be represented by a sum of

sine terms:

- . qrt . 21Tt sin (n - 1)17't
f(t) = b1 sin 37— ¢ b2 sin 4— bn T

which will take given values for (n - 1) given equally spaced values of

the argument t; say

(n-1)L _

L, _ 2L
f('r_l') —— fl ’ f(T) — f2 ’ ) f n —_— n-l
where fl’ fz ..... fn-l are given numbers, and the coefficients are
given by
_ 2 . i1r . 2i1r . (n - )i
bi_-r—li'fl sin — +f251n — + ....fn_1 sin —————
~
For our case n = 7 and hence
6 .
- Z . iTrt ‘
f(t) = bi sin—- (1)

i=l1

where

il
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6
- 2 . . ji1r
bi = 3 g fj s1n—6— (2)
=l

The six equally spaced ordinates (fj) of f(t) are measured directly from
the photographs using a two-dimensional measuring microscope. The
Michigan State University '"Mistic' electronic computer was used to
calculate the bi's from equation (2). A completely new computer pro-
gram had to be devised for this operation and is on file with the Applied
Mechanics Department, Michigan State University.

If one thinks of the input pulse as a transient excitation of the
system and the output pulse as the transient response, then one can
treat the system almost as if it were a vibration problem. Since these
input and output pulses are '""random' (not a single monochromatic wave)
then they can be represented as the sum of an infinite number of separate
monochromatic waves. The function that tells "how much' of each
separate wave is contained in the input and output pulses is just the
Fourier integral transform (or amplitude distribution function) of these
two pulses.

When the Fourier integral transform of these input and output
pulses are taken they will be represented as functions of frequency.

The pulses are now in a form in which they can be compared so that the
results obtained will also be functions of the frequency. This is what
was desired. The method for comparing the transformed input and out-
put pulses will be explained later.

The equation for the Fourier integral will be developed. Since
the same general method of using the transform will apply to both the
input and output curves we can represent both of them by F(t) 02t cee.

As shown symbolically in Figure 7, the Fourier Integral representation
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is then o
F(t) = f A'(w) sin wt dw
o
where
o0
Aw) = 2 ( F(t) sinew t dt
/‘
o
This reduces to
6 i
. - b. (- 1)1
A (w) = A(f) = 2L 51n224T/fL E i (3)
. i.l4(fL)E-i!

The f:letails of the above calculation and method of plotting are given in
the Appendix. These curves for A(f) are plotted in Figs. 8-13 for white felt,
nylon, and neoprene at 1500 lbs. and 4000 lbs. each.

The transformed input and output curves are now compared in
such a manner as to give the relative energy loss as a function of the
frequency. This is done by taking the ratio of the mean squared (over
small frequency bands) amplitude distribution function for the input
and output pulse. This ratio will be called the '"mean squared amplitude
distribution ratio'.

If Rf is this ratio for a frequency band '"f", then

This is shown for a frequency band centered at fin Figure.1l4.
For this investigation a frequency band width of 5000 cycles/sec.
and subintervals of width 1000 cycles/sec. was used. These ratios (Rf)

are plotted as histograms in Figures 15 - 20.
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CHAPTER IV

RESULTS AND CONCLUSIONS

The results of this investigation are the mean squared amplitude
distribution ratio histograms (shown in Figures 15-20). These graphs
give a qualitative view of the energy loss (or gain) as a function of
frequency.

The first thing to be noticed from these graphs is that for the
lower loads there is less energy transmission than for the higher loads.
This would be expected since for a higher load the specimen becomes
more compressed and the acoustic resistance comes closer to matching
the acoustic resistance for the steel. As was stated in the introduction,
if the acoustic resistances are well matched than there will be better
energy transmission (poorer sound isolation).

From looking at the two histograms for white felt at 4000 1bs.
and 1500 1lbs,, it is seen that the maximum ratios occur at the same
frequency bands (20 kps and 40 kps) and that the general shapes of these
two histograms are almost proportional in form to each other, the 1500 1b
load histogram naturally being proportionally smaller for all values.

The same effect is noticed from the histograms for nylon, but
the correlation is not quite as good as for the white felt. The two
histographs for neoprene show no such correlation. Therefore it could
be said that for materials which are not rubbery (such as white felt) the
mechanical properties are not a function of the stress which is applied.
But for materials which are rubber-like the mechanical properties are
a function of the stress. The degree of dependence on the stress is
somewhat related to the degree of rubberiness, for instance nylon is much

less rubber-like than neoprene.
29
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It is also seen from these histograms that some of the ratios are
more than one. This is not hard to justify heuristically if one thinks of
the effects which cause this phenomenon to be analogous to the factors
causing resonance in a vibrating system.

On the same graphs as the histograms can be seen the ratio of
the squared maximum amplitudes of the output to input pulses plotted
at the fundamental frequency of the input pulse. One sees that these
values fall fairly close to the mean squared amplitude distribution ratios
at the fundamental frequency. Therefore if one wished to obtain a rough
measure of the energy transmission at the fundamental frequency it
could be obtained by taking the ratios of the squafed maximum amplitudes
of the output to input pulses. But for values at higher frequencies it would
be necessary to go through the complete mathematical procedure
described.

It should be noted that an assumption has to be made in order to
justify the use of the Fourier analysis which has been used. The Fourier
analysis requires a linear system (perfectly elastic) for the superposition
principle to be valid. This assumption then is that the materials we are
dealing with are perfectly elastic. This assumption would be completely
erroneous, obviously, for the materials being used (neoprene, nylon,
etc.) except for the fact that the strains caused by the stress wave are
of very small magnitude (150/tin/in). Since, even though a material
may have a nonlinear stress-strain curve, the portion in the neighbor-
hood of the static stress can be assumed to be linear with not too great
an error.

Because of the above assumption any wave can be obtained by a

simple superposition (a linear combination) of separate monochromatic
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waves, each of which is propagated independently and which do not
intersect with one another. However, these properties no longer hold
if the nonlinearities of the specimen are very pronounced.

The effects which appear due to the nonlinearities, though small,
may be of importance in certain phenomena. These effects are usually
called ""anharmonic effects'', since the corresponding equations of motion
are nonlinear and do not have simple periodic (harmonic) solutions.

These anharmonic effects will now be discussed. It has been
shown (La 59) that the superposition of two monochromatic waves
satisfying certain conditions (relations between their frequency and wave
vectors) leads to resonance. In other words a new monochromatic wave
is formed, whose amplitude increases with time and eventually is no
longer small. This anharmonic effect involving resonance occurs not
only when several monochromatic waves are superposed, but also when
there is only one wave. From the single monochromatic wave there may
result (if the frequency and wave vector satisfy certain conditions) be-
sides this original wave, waves with twice the frequency and the amplitude
increasing with time.

These anharmonic effects are most probably the reason for ratios
being more than one in the mean squared amplitude distribution histograms
of some of the specimens,

The results of this study could be checked by using different
lengths of striker bars (therefore different pulse shapes) on the same
materials under the same conditions. The data obtained should all be
fairly close to those obtained here.

Another field of investigation in connection with this study would

be to see what correlation existed between these results and results obtained
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using input excitation composed of a single frequency. In other words
using steady state inputs, at various frequencies, on materials statically

compressed.
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APPENDIX

CALCULATION OF THE FOURIER INTEGRAL TRANSFORM
(AMPLITUDE DISTRIBUTION FUNCTION)

Using the well known formulae,
)

F(t) = g A' (W) sinwt dw

Ps

o
©

A' (W) = 1% f F(t) sin cy t dt

o

and Figure 7

£(t) 0 £ t<«L
F(t) =
0 L £ t o =
.
one gets
L
| . (0
A' (W)= = f(t) sinew t dt .
mos

o
From Eq. (1)

L 6
A' (@) = 4—% J /Z: bi sin iTIt sinwt dt
o

i=1

N\
Since the functions are continuous the order of summation and

integration can be interchanged. Therefore,

¥ L
Ve — 2 : ‘ it .
A (W) = T _/_’ bi /) sin —— sint dt
i=1 o
For convience let
_iTr
3=
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Then integrating by parts one obtains

2w (-1t

A' (W) = 2LsinwlL /

i=1

2 )
(wL)™ - (im)
Changing to frequency units of cycles/unit time

w = 2 I f

then 6 -
- - . (2mefL) (- 1) i
A(f) = A' (2w f) = 2L sin b. (3)
e TTZ — i 4(fL)2—- iZ

Eq. (3), as it stands, looks pretty frightening to plot, so it will now be
simplified in order to see the behavior of the function A(f). First it is
seen that when f = -2-1-]:- all the terms drop out except the ith term; since
in this term the denominator goes to zero and there is an indeterminate
form of —8— . So using L‘Hospital's rule,
i i, Lim .
A(—-E) == bi (- 1)" 1 i sin 2T L{
22 2
T 2o 415 - i

~ 2L (- 1)i i Lim 2T Lcos 2L f
T2 i oy 8 L2 ¢
3T
_ bt (4)
= —

From Eq. (4) six values of A(f) are immediately known at

f= L 2 6
= 3L ' 2L’ "t 20

Another simplification of Eq. (4) is obtained when
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__2m -1 _
f—T ’ m_.l,Z ..... 6
so that
6 i
2 -1 2L + ' b. (- 1) i
AL = ST PR (5)

i=1 [mz—m-f-%-] - i

Eq. (5 can be put in the form of a matrix equation to facilate computation

m mil 1

- 2L m+41
A _1}7(- 1) B_. b, (6)

Where Bmi is a six by six matrix and bi is a six element column matrix.
By observing Eq. (5) it is seen that Bmi is the same for any set
of bi's. Therefore one can look at Brni as a transformation matrix
which transforms the coefficients of a finite Fourier series into values
of the amplitude distribution function (Fourier trangorm).
Eq. (6) gives six more values of A(f) equally spaced between
those given by Eq. (4). So with Egs. (4) and (6) enough information is

given to see how the function A(f) behaves.
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