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ABSTRACT

ATTENUATION OF SOUND IN SOME OVERLOADED

ABSORBERS BY A PULSE TECHNIQUE

by Jay H. Wolkowisky

The main purpose of this study is to investigate the sound

absorption properties of some rubber—like and elastic materials as a

function of the frequency and of the stress.

A predetermined static stress is applied to a specimen

through long transmitter rods, by means of a universal testing machine.

A stress pulse is produced which travels through the specimen. By

means of strain gages, the strain pulse can be recorded before it enters

and after it leaves the specimen.

The input and output pulses are represented by a finite Fourier

series. By using this series in a Fourier Integral the amplitude dis-

tribution function for each of the input and output pulses is obtained.

Calculating the ratio of the mean squared (over small frequency bands)

amplitude distribution functions for the input and output pulses, a

measureof the energy transmission is obtained. By varying the

static load applied to the specimen, the dependence of the energy

transmission on the static stress is obtained.

The results are plotted as histograms. These show that the

more rubbery a material is the more the sound absorption properties

change with stress. Also that at certain frequencies there is

resonance phenomenon for some of the materials tested.
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CHAPTER I

INTRODUCTION AND REVIEW OF PAST WORK

This investigation was inspired by the need to select a material

exhibiting good sound isolation properties while under severe compres-

sive stresses. The material is to be used in isolating tensile specimens

from the load holders of a testing machine in Acoustic Emission studies

(Ta 60).

The present analysis attempts to determine the sound deadening

power of a material while under a load. In other words, the material

is being tested under the same conditions as would be experienced by

it in actual practice.

The analysis is based solely on the comparison of the input and

output shapes of a transient stress wave. This transient stress wave

is measured before it enters and after it leaves the specimen (the

method of measurement will be explained in the next chapter). There-

fore, since the pulse is not actually being measured in the specimen,

what is being measured is the combined effects of two important mech-

anisms of energy dissipation. These two mechanisms will now be

explained. They are first, the loss of energy of the incident pulse due

to reflection at the interfaces; and second, the attenuation due to inter-

nal friction.

Reflection at the interfaces: Looking at the equation (Li 60),
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it is seen that if jfZVZ >>fiv1 or fivl "bi/'ZVZ. then Pro; Pi, or

practically all the energy is reflected. Also, it is seen from this

equation that if 5V2 .2 f’iVl none of the energy is reflected.

If the media are well matched, ([V values are close together)

then considerable energy transmission takes place. If the media are

badly matched (IDV values differ greatly), then there is a corresponding

poor energy transmission. So it is clear that the quantity/V, called

the "specific acoustic resistance", controls the transmission of energy

' at an interface from one medium to another. Therefore, for a good iso-

lator, it would be advantageous to have the specific acoustic resistances

differ greatly.

Internal friction: There is at present no satisfactory theory
 

of internal friction in solids, and more experimental data are required.

Internal friction in solids may be produced by several different mech-

anisms, and although these all result in the mechanical energy being

transformed into heat, two different dissipative processes are involved.

These two processes are roughly analogous to the viscosity losses and

thermal conduction losses in the transmission of sound waves through

fluids. These processes will not be discussed further, since a study

of the mechanism of internal friction was not the main objective of this

investigation.

In this analysis the effects of reflection and internal friction

will not be considered separately. The total effect of these two

mechanisms will be lumped together and this tOtal energy loss will be

analysed. The methods which have been used previously to measure

energy dissipation in solids may be divided into several classes, these

are:



1. Free vibration methods

2. Resonance methods

3. Wave—propagation methods

This investigation can be classified with the wave propagation methods,

but yet the method of analysis is quite different from what has been done

before.

1. Free Vibration Methods. This method is most suitable for materials
 

which are linear. At a given frequency of oscillation the period and

logarithmic decrement of free oscillations can be measured. From

these measurements its mechanical properties and behavior can be

found.

2. Resonance Methods. This method is based on the principle that if
 

an oscillating force, whose amplitude is fixed but whose frequency can

be varied’is applied to a material, the amplitude of the resulting vi—

bration passes through a maximum at a frequency which is known as

the resonant frequency of the system. The value of this resonant frequency

depends on the elastic properties of the system, while the width of the

resonance peak gives measure of the dissipative forces which are

present.

3. Wave-Propagation Methods. When a stress wave is propagated
 

through a solid, and the solid is not perfectly elastic, some of the energy

of the stress wave is dissipated as it passes through the medium. The

attenuation can be measured and from known relationships (Ko 53) a

measure of the internal friction can be determined. The experiment.

used in this investigation is based on the same principle but the method

of analysis to determine the relative energy dissipation at various fre-

quencies is striCtIYa mathematical one.



Work on the propagation of low frequency longitudinal waves

in filaments has been mainly concerned with the dynamic behavior of

rubber-like materials and high polymers. Some of these investigations

have been done by Ballou and Silverman (Ba 44), Nolle (No 48), Ballou

and Smith (Ba 49), Hillier and Kolsky (HiK 50), and Hillier (Hi 50).

Another technique using the propagation of waves has been to

produce a Short pulse of high-frequency oscillation and measure its

time of transit and its attenuation as it passes back and forth along the

specimen. This method is similiar to the principle used in radar. Ivey,

Mrowia, and Guth (Iv 49) have used this technique to work with rubber

specimens. .

More recently Auberger and Rinehart (Au 61) have used an

electrosonic pulse technique developed by Hughes (Hu 49) to investigate

the attenuation of stress waves in plastics.

All these investigations have been primarily concerned with

obtaining data on internal friction. This investigation differs slightly

in that its main purpose is not so much to obtain quantitative results

but to explain a possible method of analyzing an attenuated stress pulse

and to obtain an over-all picutre of sound absorption as a function of

frequency without analyzing the details responsible for it. As a conse-

quence, all results have been represented graphically.



CHAPTER II

DESCRIPTION OF EXPERIMENT

The experimental apparatus is very Simple and is depicted in

Fig. 1. The stress wave is produced by a short steel striker rod (a)

which falls under its own weight and hits the upper end of a one inch

diameter circular steel bar (b).The striker rod is guided in its fall by

a pipe (c) which has an inside diameter approximately the same size as

the outside diameter of the striker rod. The striker has a light nylon

line ((1) attached to its top end so that it can be pulled to the desired

height again for the experiment to be repeated.

The stress wave travels down the upper bar, passes through the

specimen (e) and travels into the lower steel bar (f)‘The specimens are

all about 1/8” thick. The upper bar is held in place by a collar (g) which

is attached to the stationary head of the testing machine. All the con-

tact surfaces between the collar and the upper bar are separated with a

soft material so that there will be as little interference as possible with

the stress wave as it travels down the upper bar.

Two sets of type A-8 strain gages are used. One set (h) to

measure the stress wave before it enters the specimen and the other

set (i) to measure it after it has left the specimen. Each set consists

of four gages. Two are used to measure the lateralstrain and are placed

1800 apart on the bar. The other two in the set are used to measure the

longitudinal strain and are also placed 1800 apart. The four strain gages

in each set are hooked up in a bridge circuit so that the strain measured

will be a sum of the four individual strains. The wiring is described

in Figs. 2, 3, 4. The strain gage set on the upper bar is approximately

5



one striker bar length from the specimen so that the stress wave will

have completely passed through these strain gages before the reflection

has a chance to interfere. The set of strain gages on the lower bar are

placed approximately one striker bar length from its lower end so that

the reflections from the welded joint do not interfere as the stress wave

passes through these gages.

The upper bar is quite long (three feet) since it is desirable to

have the strain gages far from the struck end of the bar. This is so

that the transient end effects produced when the striker hits the bar

will die out before they reach the strain gages and therefore not interfere

with the main pulse.

A crystal (j) is used to trigger the first oscilloscope. This is

placed about seven inches above the top set of strain gages. An external

trigger is needed for the first oscilloscope since the entire pulse had

to be recorded. The external trigger serves the purpose of triggering

the sweep before the stress wave actually reaches the strain gages.

The sweep of the second oscilloscope is triggered from the first for

the same reason.

As can be seen from Fig. l the lower bar is attached to the

movable lower head of the testing machine. The compressive load is

applied to the specimen when the lower head of the testing machine moves

up.

The oscilloscopes used were Tektronix units with Dumont Type

cameras attached to photograph the pulses which are projected on the

oscilloscope screen.

Now for a summary of the experiment. The testing machine

applies the predetermined static load to the specimen. The striker



hits the upper bar, the stress wave travels down the bar to the first

set of strain gages and the resulting strain pulse is photographed from

the screen of the first oscilloscope. The wave continues through the

specimen and the resulting strain pulse is picked up by the second set

of gages and photographed. These input and output photographs are the

data to be analyzed.

The experiment was done with sheets of nine different materials:

white felt, neoprene, nylon, silicon rubber, teflon, saran, clay

impregnated bakelite, red rubber, and hard board. These materials

were thought to have good sound absorption properties and also meet

other design criteria. Each of these materials were tested under three

different static loads: 500 lbs. , 1500 lbs. , 4000 lbs. These loads

correspondto static stress in the specimens of G35psi. .1910 psi. , and

5100 psi. respectively.

Due to the fact that the analysis of the data is such a lengthly

process, only three of the materials (white felt, neoprene, nylon) were

analyzed under loads of 1500 lbs. and 4000 lbs. each. The data not

processed is on file'with the Applied Mechanics Department, .Michigan

State Unive rsity .
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CHAPTER III

ANALYSIS OF THE DATA

A set of data will be considered as the two photographs of the

input and output pulses from one run of the eXperiment; four sets of

such photographs are shown in Fig. 5. A pulse is represented in Fig. 6

by f(t). The pulse for 0 1’: t .4. L will be represented by a finite Fourier

series. In doing this the wiggles of the pulse for t > L will be neglected.

These parts of the pulse, represented by dotted lines in Fig. 5, are

due to dispersion of components of higher frequencies than were of

interest here. This approximated pulse will be called f(t). It has been

Shown (Wh 54) that a given function can be represented by a sum of

sine terms:

_ . 4ft . 21ft sin (n-l)’n’t
f(t) - b151n-1_J—.(..b2 Sin L + bn L 

which will take given values for (n - 1) given equally spaced values of

the argument t; say

 

 

L __ 2L ___ (n - l) L
f(—I-1—)... f1. f(——n—) __ f2 . f —-————fi-——— _ fn-l

where f1, f2 ..... fn-l are given numbers, and the coefficients are

given by

__ _2_ . i'fl’ . ZiTr . (n- Diff]
bi" n{f151n—fi- +f2 Sln n + fn_151n——-—?1————(

.J

For our case n - 7 and hence

6

__ Z . i'TI’t ‘
f(t) ._ bi Sln L , . (1)

i=1

where

ll
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INPUT OUTPUT

  

201/ sec—1 I- 1.11)

.L.

;5——3_—

millivolts

  

-

-

FIGURE 5 * Some Typical INPUT and

OUTPUT Strain Pulses
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l4

6

___ Z “x . jl’TT
bi _ -7— : fj Sin—T (2)

J21

The six equally spaced ordinates (fj) of f(t) are measured directly from

the photographs using a two-dimensional measuring microscope. The

Michigan State University "Mistic" electronic computer was used to

calculate the bi's from equation (2). A completely new computer pro-

gram had to be devised for this operation and is on file with the Applied

Mechanics Department, Michigan State University.

If one thinks of the input pulse as a transient excitation of the

system and the output pulse as the transient response, then one can

treat the system almost as if itwere a vibration problem. Since these

input and output pulses are ”random" (not a single monochromatic wave)

then they can be represented as the sum of an infinite number of separate

monochromatic waves. The function that tells "how much" of each

separate wave is contained in the input and output pulses is just the

Fourier integral transform (or amplitude distribution function) of these

two pulses.

When the Fourier integral transform of these input and output

pulses are taken they will be represented as functions of frequency.

The pulses are now in a form in which they can be compared so that the

results obtained will also be functions of the frequency. This is what

was desired. The method for comparing the transformed input and out—

put pulses will be explained later.

The equation for the Fourier integral will be developed. Since

the same general method of using the transform will apply to both the

input and output curves we can represent both of them by F(t) 0f, t 400.

As shown symbolically in Figure 7, the Fourier Integral representation
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is then no

F(t) Z I A'(C4),).. sin cat dog

0

where

no

A'(Cd) 2:. E- ( F(t) sinwt dt

'0" .'

/

o

This reduces to

6 ' i

. , _b. (- l) i

. 2L 24111.

A (cu) : A(f) :: ““2 Z 1 z 2 (3)
In”. i.14(fL)-i

The details of the above calculation and method of plotting are given in

the Appendix. These curves for A(f) are plotted in Figs. 8—13 for white felt,

nylon, and neoprene at 1500 lbs. and 4000 lbs. each.

The transformed input and output curves are now compared in

such a manner as to give the relative energy loss as a function of the

frequency. This is done by taking the ratio of the mean squared (over

small frequency bands) amplitude distribution function for the input

and output pulse. This ratio will be called the ”mean squared amplitude

distribution ratio".

If Rf is this ratio for a frequency band "f", then

 

{L- /

3’ 1a.2 ’

1

1 "' . n~ '- I

Rf - n

"X Z /

1“ CJ I
. “r- n

1 ': I

This is shown for a frequency band centered at fin Figure .14.

For this investigation a frequency band width of 5000 cycles/sec.

and subintervals of width 1000 cycles/sec. was used. These ratios (Rf)

are plotted as histograms in Figures 15 - 20.
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CHAPTER IV

RESULTS AND CONCLUSIONS

The results of this investigation are the mean squared amplitude

distribution ratio histograms (shown in Figures 15-20). These graphs

give a qualitative view of the energy loss (or gain) as a function of

frequency.

The first thing to be noticed from these graphs is that for the

lower loads there is less energy transmission than for the higher loads.

This would be expected since for a higher load the specimen becomes

more compressed and the acoustic resistance comes closer to matching

the acoustic resistance for the steel. As was stated in the introduction,

if the acoustic resistances are well matched than there will be better

energy transmission (poorer sound isolation).

From looking at the two histograms for white felt at 4000 lbs.

and 1500 lbs. , it is seen that the maximum ratios occur at the same

frequency bands (20 kps and 40 kps) and that the general shapes of these

two histograms are almost proportional in form to each other, the 1500 lb

load histogram naturally being proportionally smaller for all values.

The same effect is noticed from the histograms for nylon, but

the correlation is not quite as good as for the white felt. The two

histographs for neoprene show no such correlation. Therefore it could

be said that for materials which are not rubbery (such as white felt) the

mechanical properties are not a function of the stress which is applied.

But for materials which are rubber-like the mechanical properties are

a function of the stress. The degree of dependence on the stress is

somewhat related to the degree of rubberiness, for instance nylon is much

less rubber-like than neoprene.
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It is also seen from these histograms that some of the ratios are

more than one. This is not hard to justify heuristically if one thinks of

the effects which cause this phenomenon to be analogous to the factors

causing resonance in a vibrating system.

On the same graphs as the histograms can be seen the ratio of

the squared maximum amplitudes of the output to input pulses plotted

at the fundamental frequency of the input pulse. One sees that these

values fall fairly close to the mean squared amplitude distribution ratios

at the fundamental frequency. Therefore if one wished to obtain a rough

measure of the energy transmission at the fundamental frequency it

could be obtained by taking the ratios of the squared maximum amplitudes

of the output to input pulses. But for values at higher frequencies it would

be necessary to go through the complete mathematical procedure

described.

It should. be noted that an assumption has to be made in order to

justify the use of the Fourier analysis which has been used. The Fourier

analysis requires a linear system (perfectly elastic) for the superposition

principle to be valid. This assumption then is that the materials we are

dealing with are perfectly elastic. This assumption would be completely

erroneous, obviously, for the materials being used (neoprene, nylon,

etc.) except for the fact that the strains caused by the stress wave are

of very small magnitude (ISO/Itin/in). Since, even though a material

may have a nonlinear stress—strain curve, the portion in the neighbor-

hood of the static stress can be assumed to be linear with not too great

an error.

Because of the above assumption any wave can be obtained by a

simple superposition (a linear combination) of separate monochromatic
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waves, each of which is propagated independently and which do not

intersect with one another. However, these properties no longer hold

if the nonlinearities of the specimen are very pronounced.

The effects which appear due to the nonlinearities, though small,

may be of importance in certain phenomena. These effects are usually

called "anharmonic effects", since the corresponding equations of motion

are nonlinear and do not have simple periodic (harmonic) solutions.

These anharmonic effects will now be discussed. It has been

shown (La 59) that the superposition of two monochromatic waves

satisfying certain conditions (relations between their frequency and wave

vectors) leads to resonance. In other words a new monochromatic wave

is formed, whose amplitude increases with time and eventually is no

longer small. This anharmonic effect involving resonance occurs not

only when several monochromatic waves are superposed, but also when

there is only one wave. From the single monochromatic wave there may

result (if the frequency and wave vector satisfy certain conditions) be-

sides this original wave, waves with twice the frequency and the amplitude

increasing with time.

These anharmonic effects are most probably the reason for ratios

being more than one in the mean squared amplitude distribution histograms

of some of the specimens.

The results of this study could be checked by using different

lengths of striker bars (therefore different pulse shapes) on the same

materials under the same conditions. The data obtained should all be

fairly close to those obtained here.

Another field of investigation in connection with this study would

be to see what correlation existed between these results and results obtained
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using input excitation composed of a single frequency. In other words

using steady state inputs, at various frequencies, on materials statically

compressed.



(Au 61)

(Ba 44)

(Ba 49)

(Hi 49)

(Hi K 49)

(Hu 49)

(Iv 49)

(Ko 53)

(La 59)

(Li 60)

(No 48)

(Ta 60)

(Wh 54)
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APPENDIX

CALCULATION OF THE FOURIER INTEGRAL TRANSFORM

(AMPLITUDE DISTRIBUTION FUNCTION)

Using the well known formulae,

co

F(t) 2'. S A'lw) sincut (1(4)

4’

O

m

A' (cu) : 3. f F(t) sincut dt
17’

o

and Figure7

f(t) 0 f t E: L

F(t) ::

0 L f t 1. 09

\

one gets

(L

A'(Cd): ~2- f(t)sinwt dt - ,

’17’ j
0

From Eq. (1)

 

L 6

A' ((0) 2 4% J /E bi sin 11:1: sinwt dt

‘31o \1

Since the functions are continuous the order of summation and

integration can be interchanged. Therefore,

,L

‘
o
x

i1Tt

:
1

I
N

U
H

H
-

\
\
_
,
.
-

_
‘
\

t
"

A' ((0):. sin sinwt dt 

p H p
—
a

O

For convience let
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Then integrating by parts one obtains

6 i
-..-_._~._. bi (— 1)

A'(w): ZLsinwL '

14:, (mm?- - (imz

 

Changing to frequency units of cycles/unit time

C4): ZITf

 

then
6

1.

A(f): A' (Zfl’f) 2 2L 51W b. (-1) 21 2 (3)

W” .1... Wm -

Eq. (3), as it stands, looks pretty frightening to plot, so it will now be

simplified in order to see the behavior of the function A(f). First it is

seen that when f :2 all the terms drop out except the ith term; since

1

2L

in this term the denominator goes to zero and there is an indeterminate

form of % . So using L'Hospital’s rule,

 

 

A(1 ) ;- 21‘ b. (-1)11 L"? sin Zfl'Lf

7L- TTZ 1 fan. 41.2337

_~ 2L i. Lim ZTTL cos ZTT’Lf

" "'2' fi ('1) 1 . 2
.. f““’—2}T_j 8 L f

blL (4)

11'

From Eq. (4) six values of A(f) are immediately known at

f~_1__ .3. .6.
" 2L ’ ZL' ""21.

Another simplification of Eq. (4) is obtained when
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f:T ..’ m:1, 2 ..... O

sothat

6 i

A(z mL— 1):%(_1)m+1 Z bi (— 1) 1 (5)

i=1 [mZ—m-fZI-J -i2

Eq. (5) can be put in the form of a matrix equation to facilate computation

__ 2L m4—1

Am” E2 (' I) Bmi bi (9)

Where Bmi is a six by six matrix and bi is a six element column matrix.

By observing Eq. (5) it is seen that Bmi is the same for any set

of bi's. Therefore one can look at Bmi as a transformation matrix

which transforms the coefficients of a finite Fourier series into values

of the amplitude distribution function (Fourier tranqbrm).

Eq. (6) gives six more values of A(f) equally spaced between

those given by Eq. (4). So with Eqs. (4) and (6) enough information is

given to see how the function A(f) behaves.
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