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ABSTRACT
SYSTEM IDENTIFICATION AND CONTROL DESIGN FOR INTERNAL COMBUSTION
ENGINE VARIABLE VALVE TIMING SYSTEMS
By
Zhen Ren

Variable Valve Timing (VVT) systems are used on internal combustion engines so that
they can meet stringent emission requirements, reduce fuel consumption, and increase output.
Also, VVT plays a critical role in order for the engine to smoothly transit between spark ignition
(SI) and homogeneous charge compression ignition (HCCI) combustion modes. In order to
achieve these performance benefits and SI/HCCI transition, it is required that the VVT system be
controlled accurately using a model based controller. This work studies hydraulic and electric
VVT system modeling and controller design.

The VVT system consists of electric, mechanical, and fluid dynamics components.
Without knowledge of every component, obtaining physical-based models is not feasible. In this
research, the VVT system models were obtained using system identification method. Limited by
the sample rate of the crank-based camshaft position sensor, a function of engine speed, the
actuator control sample rate is different from that of cam position sensor. Multi-rate system
identification is a necessity for this application. On the other hand, it is also difficult to maintain
the desired actuator operational condition with an open-loop control. Therefore, system
identification in a closed-loop is required. In this study, Pseudo Random Binary Sequence
(PRBS) g-Markov Cover identification is used to obtain the closed-loop model. The open-loop
system model is calculated based on information of the closed-loop controller and identified

closed-loop system model. Both open and closed-loop identifications are performed in a



Hardware-In-the-Loop (HIL) simulation environment with a given reference model as a
validation process. A hydraulic VVT actuator system test bench and an engine dynamometer
(dyno) are used to conduct the proposed multi-rate system identification using PRBS as
excitation signals. Output covariance constraint (OCC) controllers were designed based upon the
identified models. Performance of the designed OCC controller was compared with those of the
baseline proportional integral (PI) controller. Results show that the OCC controller uses less
control effort and has less overshoot than those of PI ones.

An electric VVT (EVVT) system with planetary gear system and local speed controller
was modeled based on system dynamics. Simulation results of the EVVT system model provided
a controller framework for the bench test. The EVVT system test bench was modified from the
hydraulic VVT bench. Multi-rate closed-loop system identification was conducted on the EVVT
system bench and a model based OCC controller was designed. The bench test results show that
the OCC controller has a lower phase delay and lower overshoot than a tuned proportional
controller, while having the same or faster response time. It is also observed that engine oil
viscosity has a profound impact on the EVVT response time. The maximum response speed is
saturated at a slow level if the viscosity is too high.

From the bench and dyno tests, it is concluded that multi-rate closed-loop identification is
a very effective way to retrieve controller design orientated VVT models. It is possible to use an
OCC controller to achieve lower energy consumption, lower overshoot, and better tracking

compared to PI and proportional controllers on both hydraulic and electric VVT systems.
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Chapter 1 Introduction

1.1 Background and Motivation

Continuously variable valve timing (VVT) systems used in internal combustion engines
were developed in the nineties [1] and have since been widely used due to growing fuel economy
demands and emission regulations. A VVT system is capable of changing the intake and/or
exhaust valve timing(s) to the optimal positions at different operating conditions while the
engine is still running. By doing so, the VVT system improves fuel economy and reduces
emissions at low engine speed, as well as improves engine power and torque at high engine
speed.

There are different kinds of VVT systems. Conventional electronic-hydraulic VVT ([1]
and [2]), also called hydraulic VVT, is the most widely used in the industry today. The hydraulic
VVT systems require minor changes when applied to a previously non-VVT valve-train [1],
which makes design and engineering relatively easy. However, due to its mechanism, the
hydraulic VVT system also has its limitations [3]. The response and performance of the
hydraulic VVT system are significantly affected by the engine operating conditions such as
engine oil temperature and pressure. For instance, at low engine temperature, the hydraulic VVT
system cannot be activated and has to remain at its default position so that the cold start
performance and emissions cannot be improved [3]. This leads to the study of other variable
valve-train systems, such as electromagnetic [4]; hydraulic [5]; electro-pneumatic [6]; and
electric motor driven planetary gear system ([7] and [8]).

Electric motor driven VVT operational performance is independent of engine oil
temperature and pressure [3]. Compared to a hydraulic VVT system, an electric motor driven

VVT system is less limited by engine operating conditions and therefore gives better



performance and better emission in a wider operational range. Especially, since the electric VVT
(EVVT) is independent of the engine oil pressure, the response time is greatly improved. Also,
the (EVVT)can be phased while the engine is not running. This allows for overlapping of the
intake and exhaust valves during the engine crank start. As a result, the pumping loss can be
significantly reduced when the engine starts, and the vehicle can achieve better fuel economy.
This feature is particularly useful in hybrid vehicles, which involve a great number of engine
stop-start cycles. The research work in this paper mainly focused on the dynamic system
modeling and control design of both hydraulic and electric VVT’s.

The major advantage of Homogeneous Charge Compression Ignition (HCCI) combustion
is realized by eliminating the formation of flames. This results in much lower combustion
temperature. As a consequence of the low temperature, the formation of NOx (nitrogen oxides) is
greatly reduced. The lean burn nature of the HCCI engine also enables un-throttled operation to
improve engine fuel economy. Unfortunately, HCCI combustion is feasible only over a limited
engine operational range due to engine knock and misfire. To make a HCCI engine work in an
automotive internal combustion engine, it has to be capable of operating at both a Spark Ignition
(SI) combustion mode at high load and an HCCI combustion mode at low and medium load ([9]
and [10]). This makes it necessary to have a smooth transition between SI and HCCI combustion
modes.

Achieving the HCCI combustion and controlling the mode transition between SI and
HCCI combustions in a practical engine require implementation of enabling devices and
technologies. There are a number of options, and the necessary prerequisite for considering any
of them is their ability to provide control of thermodynamic conditions in the combustion

chamber at the end of compression. The range of devices under consideration include variable



valve actuation (cam-based or camless), variable compression ratio, dual fuel systems (port and
direct fuel injection with multiple fuel injections), supercharger and/or turbocharger, exhaust
energy recuperation and fast thermal conditioning of the intake charge mixture, spark-assist, etc.
Variable Valve Actuation can be used for the control of the effective compression ratio (via the
intake valve closing time), the internal (hot) residual fraction via the negative valve overlap (also
called recompression), or secondary opening of the exhaust valve (residual re-induction) ([11]
and [12]). In addition to providing the basic control of the HCCI combustion, i.e., ignition timing
and burn rate or duration, the VVT systems plays a critical role in accomplishing smooth mode
transitions from SI to HCCI and vice versa ([13] to [17]). Due to the fast response time and
independence to the engine operation, the EVVT system is selected for the HCCI engine. The
EVVT controls the engine valve timings when it is operated at SI and HCCI combustion modes.
During the combustion mode transition, the EVVT is controlled to track a desired trajectory.

1.2 Research Overview

1.2.1 Control Oriented Modeling

There are two approaches to obtain a VVT model for control development and validation:
physics based system modeling [18] and system identification. In this paper, the closed-loop
system identification approach is employed to obtain the hydraulic VVT system model. In order
to provide a control framework for the electric VVT system, physics-based modeling is used to
obtain the electric VVT system model for simulation purposes. Closed-loop identification is used
to obtain the system model on the test bench.

System identification using closed-loop experimental data was developed in the seventies
[19], and it has been widely used in engineering practice ([20], [21], and [22]). Closed-loop

system identification can be used to obtain the open-loop system models when the open-loop



plant cannot be excited at the conditions ideal for system identification. For instance, the open-
loop plant could be unstable. In this paper, closed-loop identification was selected due to many
factors. One main reason is that the system gain of a VVT actuator is a function of engine speed,
load, oil pressure, and temperature, which made it impossible to maintain the cam phase at a
desired value. Therefore, open-loop system identification at a desired cam phase is not practical.
In order to maintain at a desired operational condition for identifying the VVT actuator system,
closed-loop identification was selected.

The purpose of using closed-loop system identification is to obtain linear system models
for the VVT actuator system at certain operating conditions using the indirect closed-loop system
identification method that is discussed in [21]. In this paper, the g-Markov COVariance
Equivalent Realization (g-Markov COVER) system identification method ([23], [24], and [25])
using Pseudo-Random Binary Signals (PRBS) was used to obtain the closed-loop system models.
The g-Markov cover theory was originally developed for model reduction. It guarantees that the
reduced order system model preserves the first g-Markov parameters of the original system. The
realization of all g-Markov Covers from input and output data of a discrete time system is useful
for system identification. Q-Markov Cover for system identification uses pulse, white noise, or
PRBS as input excitations. It can be used to identify a linear model representing the same
input/output sequence for a nonlinear system [25]. It was also been extended to identify multi-
rate discrete-time systems when input and output sampling rates are different [26].

For the proposed study, the multi-rate system identification is required, because the
actuator control signal is updated at a different sample rate from that of the cam position sensor,
which is a function of engine speed. For our test bench setup, the cam position sample rate is

limited to eight samples per engine cycle. That is, when the engine is operated at 1500 rpm, the



sample period is 10ms, while the control output is updated at a fixed period of every Sms. In this
paper, the multi-rate PRBS closed-loop identification was used to conduct closed-loop system
identification on a VVT actuator HIL (Hardware-In-the-Loop) system for debugging and
validation. The HIL simulation results show that the closed-loop identified models represent the
system dynamics very well. Then, the HIL simulator was replaced by a hydraulic VVT test
bench and an engine dynamometer (dyno) with hydraulic VVT. The closed-loop system
identification was repeated on these systems. The test bench consists of an AC motor driven
crank shaft that is connected to the cam shaft on a cylinder head through a VVT actuator.
The engine on the dyno has two hydraulic VVT systems controlling both intake and exhaust
valve timing. The PRBS g-Markov Cover system identification was applied to both hydraulic
VVT systems, and control oriented models were obtained from the bench and dyno tests. On the
test bench, the hydraulic VVT system was also identified at different operating conditions. A
family of the system models was obtained and a linear parameter varying (LPV) system ([27] to
[32]) was constructed. The varying parameters are functions of engine speed and engine oil
pressure.

The EVVT system consists of a planetary gear train and a driving motor. Its kinematics
and dynamics can be solved using the relationship of their numbers of teeth, and equations of
motions. To construct a controller framework for the EVVT, the system was modeled based on
physical dynamics. It is shown in this paper that an EVVT system can be modeled as a first-order
dynamic in simulation. An EVVT system bench was constructed and the closed-loop

identification method was used to model its dynamics.



1.2.2 Control Design

The OCC (Output Covariance Constraint) control design approach ([33], [34], and [35])
minimizes the system control effort subject to multiple performance constraints on output
covariance matrices. An iterative controller design algorithm [35] with guaranteed convergence
can be used to find an OCC optimal controller. Note that an OCC controller is a H» controller
with a special output weighting matrix selected by the OCC control design algorithm. The OCC
control scheme was applied to many aerospace control problems due to its minimal control effort
([33], [34], and [35]). In this paper, a nominal model was selected from the family of the
identified VVT models for the OCC control design. Multiple OCC controllers were designed
based upon closed-loop identified models, and their performances were compared against these
of the well-tuned baseline PI controller. In order to eliminate steady-state error, system control
input was increased to add an additional integral input to the system plant used for the OCC
control design. A gain-scheduling controller ([36] and [37]) was also designed for the hydraulic
VVT test bench based on the LPV system.

In order to control the EVVT system with planetary gears, a feedback controller was
introduced ([8]). Due to the steady-state and transient control accuracy requirements of the HCCI
combustion, the closed-loop electric VVT system needs not only to meet steady-state
performance requirement but also to track a desired trajectory during the combustion mode
transition. Therefore, a feedback controller with feedforward control was developed in Simulink
environment. In a VVT system, the cam phase is the integration of speed difference between the
electric VVT motor and crankshaft. This leads to using the rate of the reference cam phase as

feedforward command. OCC controller was used in feedback to reduce the tracking error. For



the EVVT bench, half engine crankshaft speed was used as feedforward, and OCC controller was
used as feedback.
1.2.3 Simulation, Bench and Dyno Tests

The OCC controller was tested on a test bench as well as an engine dyno with hydraulic
VVT systems. Bench test results show that the OCC controllers were able to achieve the similar
system settling time as the PI controller with significantly less overshoot and control effort. The
LPV controller was also tested on the test bench and it has advantages of lower overshoot, lower
control effort similar to the OCC controller, while having a fast response time similar to the PI
controller. On the engine dyno, the feedback signal was limited to one sample per engine cycle.
It is shown from the dyno test that low sample rate penalizes the OCC controller performance
more than the PI controller.

Simulation and bench test results were presented for the EVVT system. In the simulation,
performance of the OCC controller was compared to a well-tuned proportional-derivative (PD)
controller, and the OCC with feedforward provides better cam phase tracking performance than
the PD controller. Different cam phase sample rates were also studied. Simulation results show
that four samples per engine cycle are sufficient for the OCC feedback controller. The OCC
controller was also tested on the EVVT test bench, the test results show that the OCC controller
has a superior target tracking performance than a well-tuned proportional controller. The OCC
controller has a lower overshoot, same or faster response time, and lower phase delay at high
frequency references than the proportional controller.

It was also observed from the EVVT bench test that the engine oil viscosity has a large
impact on EVVT performance. The engine oil is used to lubricate the planetary gear system.

Friction of the engine oil limits the top speed of the EVVT motor. As a result the maximum



phasing speed is limited. Two different engine oil viscosity weightings were tested on the test
bench. The results show that at room temperature, the EVVT system response is 1.6 times slower
using SAE 30 than using SAE 5W20 engine oil.

1.3  Organization

This dissertation is organized as the follows: Chapter 2 studies the closed-loop system
identification error when a dynamic integral controller is used. Chapter 3 applies closed-loop
system identification modeling to hydraulic VVT actuator systems, and model based controllers
were designed based on the identified models. Chapter 4 discusses modeling, controller design
and test for EVVT systems. Conclusion is provided in chapter 5, with suggestions of future

works.



Chapter 2 Closed-loop System Identification Framework

2.1 Introduction

System identification using closed-loop experimental data was developed in seventies [19]
and it has been widely used in engineering practice ([20], [21], and [22]). Closed-loop system
identification can be used to obtain the open-loop system models when the open-loop plant
cannot be excited at the conditions ideal for system identification. For instance, the open-loop
plant could be unstable.

There are many approaches to identify a system model in a closed-loop framework
shown in Figure 2-1. The closed-loop system identification approach falls into three main groups:
direct, indirect, and joint input-output approaches [21]. The direct approach ignores the feedback
loop and identifies the open-loop system using measurements of plant input and output; the
indirect approach identifies the closed-loop system model and then determines the open-loop
system model using the knowledge of the linear controller; and the joint input-output approach
regards the input and output jointly as the output and uses certain system identification methods
to obtain open-loop models. For this study, we mainly use the indirect and joint input-output
approaches.

In this paper, the g-Markov COVariance Equivalent Realization (g-Markov Cover)
system identification method ([23], [24], and [25]) with PRBS (Pseudo-Random Binary Signals)
was used to obtain the closed-loop system models. The g-Markov cover theory was originally
developed for model reduction. It guarantees that the reduced order model preserves the first g-
Markov parameters of the original system. The realization of all g-Markov Covers from input

and output data of a discrete time system is useful for system identification. Q-Markov Cover for



system identification uses pulse, white noise, or PRBS as input excitations. It has also been

extended to identifying multi-rate discrete-time systems [26].

rz n

— U

rljfi K(s) v W G(s) :%__y>

Figure 2-1. Closed-loop system identification framework

This paper was motivated by unexpected low frequency identification error of an open-
loop system model when a PI (proportional and integral) controller was used for closed-loop
system identification; while the low frequency identification was eliminated when the PI
controller was replaced by a proportional controller. For both cases, the PRBS g-Markov Cover
was used to obtain the closed-loop system transfer function and the open-loop system models
were obtained using the indirect approach. Note that the bandwidth of a PRBS signal is bounded
by its sample period at high frequency and its period (or order) at low frequency. It was also
observed that the system identification error occurs at the frequency around the PRBS signal
bandwidth. For this study system identification was applied to both first-order and second-order
systems using open-loop system identification and closed-loop system identification with
proportional, first-order dynamic, and PI controllers. The system identification results were
compared and analyzed at the end of the paper. The effects of different system identification
frameworks shown in Figure 2-1 were also studied.

Works introduced in this chapter can be found in [38].

The chapter is organized as the following. Section 2.2 provides the definition of the
PRBS signal used in the system identification process, and Section 2.3 describes the framework

and formulation of closed-loop identification. System identification results for the first and
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second-order systems are provided in Section 2.4, along with the discussions of the simulation

results. Conclusions are provided in Section 2.5.

2.2 Inverse PRBS

The most commonly used PRBSs are based on maximum length sequences (called m-

sequences) [39] for which the length of the PRBS signals is m=2" —1, where n is an integer

(order of PRBS). Let 7! represent a delay operator, and define f)(z_l) and p(z_l) to be

polynomials

piz H=a, "M@ @ @ = pH T @1,

where g; is either 1 or 0, and @ obeys binary addition, 1.e.

1©1=0=000 &0®1=1=1@0,

and the non-zero coefficients a; of the polynomial are defined in the following Table 2-1.

Table 2-1. Nonzero coefficients of PRBS polynomial

Polynomial order (n) Period of sequence (m) Non-zero Coefficient
2 3 al, a2
3 7 a2, a3
4 15 a3, a4
5 31 a3, a5
6 63 as, a6
7 127 ad, a7
8 255 a2, a3, a4, a8
9 511 a5, a9
10 1023 a7, al0
11 2047 a9, all

Then the PRBS can be generated by the following formula:

11
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ik +1) = p(z i), k=0,1,2,..., (2.3)

where #(0)=1 and #(—1)=#(-2)=---=1i(—n)=0. Defined in the following sequence:
a;, Ifkiseven;
s(k)= ) (2.4)
—a; If k 1s odd.
Then, the signal
u(k)=sk)®[-a + 2 au (k)] (2.5)
is called the inverse PRBS, where ® obeys
a®a=-a=-a®-a &a®-a=za=-a®a. (2.6)

It is clear after some analysis that u has a period 2m and u (k) = -u (k+m). The mean of
the inverse PRBS is
1 2m—1
my, = Eyu(k)=— > u(k)=0 .7
2m ;2o

and the autocorrelation (R, (7) = E,, u(k+7)u(k)) of u is

a2, 7=0;
] 2t —a*,  r=m;
Ry(@=—— > ulk+nuk)=y 2.8)
2m k=0 —a”/m, T even;
a*/m, 7 odd.

The inverse PRBS is used in the g-Markov Cover identification algorithm. For
convenience, in the rest of this paper, the term “PRBS” is used to represent the inverse PRBS.

2.3 Closed-loop System Identification Framework

Consider a general form of a linear time-invariant closed-loop system shown in Figure

2-1 (see [21], [22], and [40]), where 7 is the reference signal, » is an extra input, n is the

measurement noise, # and y are input and output.
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As discussed in the Introduction section, there are many approaches for the closed-loop
identification, which are categorized as direct, indirect, and joint input-output approaches. The
indirect approach utilizes the knowledge of the closed-loop controller [41] while the joint input-
output approach obtains the open-loop system model using only the identified closed-loop model.
In this chapter, both indirect and joint input-output approaches are used. Noise is ignored in the
discussion.

The input and output relationship of the generalized closed-loop system, shown in Figure

2-1, can be expressed below

T

T
(GKa+GK)™) {rl} (29)

5|
y=|H H { } =
[ 1 2] I, (G(I+GK)_1)T r)

Let ﬁl and ﬁz be identified closed-loop transfer functions from 7 and », to y, respectively.
When both excitations 7 and r, are used, the open-loop system model G, can be calculated
using identified ﬁl and ﬁz (joint input-output approach); see below.

G,p=H,1-H) " (2.10)

Assuming that (I —ﬁl)'1 is invertible. We also consider two special cases 1y =0 and » =0. For

both cases the indirect approach will be used, that is, the closed-loop controller transfer function

is used to solve for the open-loop system models. For the case that » =0, we have

G,p=Ha-a)'K! (2.11)

and for the case that ; =0,

G =H,1-Ki,)". (2.12)

13



We define system identification using (2.10) as the general setup, (2.11) as the controller setup,
and (2.12) as the compensator setup.

2.4 Simulation Results

Bode Diagram

Magnitude (dB)
S

20 Original Plant
........ Identified Open_loop Plant

45 .
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-90 | L L L L .
1

-3 -2 -1 0
10 10 10 10 10
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Figure 2-2. Frequency response of identified and original first-order models
To study the identification error due to integral control we selected the following first and

second-order systems:

1 1
G(s)= and G,(s)=——.

(2.13)

PRBS g-Markov Cover was used to identify the open-loop transfer functions using r, as
excitation by setting K (s) =0, where the orders of the PRBS are n=8 for the first-order plant and
n=11 for the second-order plant. The magnitude of PRBS is a=1 (see Table 2-1). The identified

open-loop transfer functions

14



. —6x10725+0.984
G == ogs1 M

(2.14)
~1.7x107 5% —0.00375 +0.993

s2+0.98s+1

Gy(s) =

match the original plants (2.13) very well, see Figure 2-2 and Figure 2-3. Both identified and
original frequency responses are almost identical.

2.4.1 Closed-loop Model Controllers

Bode Diagram
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1 1
)
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| | |
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T
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O
S
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Figure 2-3. Frequency response of identified and original second-order models
Three closed-loop controllers are considered for this study. For the first-order system,

they are proportional ( K p;(s) ), dynamic ( Kj(s) ), and PI (K pj;(s)) controllers shown in Table

2-2. Then, the corresponding closed-loop system can be expressed as follows.

v=[H Hz]mﬂm, 2.15)

n
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where the closed-loop transfer functions (H) are provided in Table 2-2.

Table 2-2: CL controllers and transfer functions of the first order plant

Closed-loop Controllers

+0.5 0.25+5
Kpy(5)=02 Kl(s):ss+1 K pyy(s) =—=>

Corresponding Closed-Loop Transfer Functions H'

0.2 s+0.5 0.25+5
03s+1.2 0352 +23s5+1.5 0352 +1.25+5
1 s+1 )

0.3s+1.2 0352 +23s5+1.5 0352 +1.25+5

For the second order system, the proportional ( Kp,(s) ), dynamic ( K,(s) ), and PI
(K pyo(s)) controllers are used and defined in Table 2-3. The associated closed-loop system can

be written in the form of (2.15), where the closed-loop transfer functions (H) are provided in
Table 2-3.

Table 2-3: CL controllers and transfer functions of the second order plant

Closed-loop Controllers

+0.5 0.55+0.2
Kpo(s)=0.2 KZ(S):SSH Kppy(s) =—2 2=

Corresponding Closed-Loop Transfer Functions H'

0.2 s+0.5 0.55+0.2

s24s+12 1| | 2 +252+3s5+15 S +52+1.554+02
1 s+1 )

s24s+12] | L2 +252 43s5+15 S +52+1.554+02

In order to conduct closed-loop system identification, all models were discretized with a
sample period of Sms. Discrete closed-loop models were obtained using PRBS g-Markov Cover.

There are two approaches to obtain a continuous time plant model: a) solving the plant model in

16



discrete-time domain first, then converting it to a continuous-time model or b) converting the
identified closed-loop model into a continuous model, and then solving for the plant model in
continuous time. In this study, it is found that both approaches provide almost identical models.
The rest of paper only presents the results associated with approach b).
2.4.2 PRBS g-Markov Cover System Identification

The closed-loop system models are identified in discrete time domain using PRBS-GUI

(Graphic User Interface) [26] developed for PRBS g-Markov Cover. Identification parameters

used for this study are listed in Table 2-4. When general setup is used, both ﬁl and ﬁz are

identified. ﬁl is identified in controller setup and ﬁz is identified in compensator setup.

Table 2-4. PRBS g-Markov COVER system ID parameters

1* order System Identification settings

Controller Open-loop | Proportional | PI | First order
Sample rate (s) 0.005 0.005 0.005 0.005
PRBS order 8 8 9 10
Signal length (s) 25.6 25.6 51.2 102.4
# of Markov parameters 10 10 60 60
ID model order 1 1 2 2
2" order System Identification settings
Controller Open-loop | Proportional | PI | First order
Sample rate (s) 0.005 0.005 0.005 0.005
PRBS order 11 11 13 11
Signal length (s) 204.8 204.8 819.2 204.8
# of Markov parameters 60 60 60 60
ID model order 2 2 3 3
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2.4.3 Closed-loop ID for the First-order System

For the first-order plant, identified closed-loop models of proportional, first-order
dynamic, and PI controllers, and their corresponding open-loop models are listed in Table 2-5.
Figure 2-4 shows the frequency responses of the calculated plant when proportional controller is
used in closed-loop identification. The calculated plant models have almost identical frequency

response to the original system in all three setups.

Bode Diagram
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Figure 2-4. First-order OL models with a proportional controller in all setups
Similarly, it can be found from Figure 2-5 the open-loop models calculated from
identified closed-loop models with the first-order dynamic controller also have very close

frequency responses to these of original systems. There is only very small deviation of DC gain.
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However, open-loop models obtained from identified closed-loop models with PI
controllers have significant DC gain drop at low frequency (Figure 2-6). It also shows that

compensator setup generates the worst calculated plant model.

Bode Diagram
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Figure 2-5. First-order OL models with a first order controller in all setups

Therefore, for the first order system, the closed-loop system identifications with a
proportional controller are accurate for all three setups. For all setups with a first order controller,
the calculated plant models are similar to the original plant. With the PI controller, plant models
calculated from all setups have significant gain drop at low frequency. The compensator setup

with the PI controller provides the worst calculated plant model.
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Table 2-5. Identified closed/open-loop models for the first-order plant

o
% Controller | Identified Closed-loop Model Calculated Plant
wn
~1.40x10™ s + 0.665
992
Proportional S ?'02 _0992
—6.97x107° s + 3.33 0.298s+1
s + 4.02
5 | 2.26x107 % +3.345+1.99 |
& . 52 +7.785+5.65 1.035% +3.335+3.67
= Dynamic s 5 >
5 ~1.03x1072 5% +3.335+3.67 s2+ 4.435+3.65
S 52 +7.785+5.65
| 2.18x107552 +0.6575+16.9 |
. s2+4.035+16.7 1.3x10 %52 +3.345+0.046
0.00013252 +3.375 +0.0460 s2+3.375-0.19
s2+4.035+16.7
b . ~1.395x107° s + 0.6651 2.1x1075+0.99
roportional
= s + 4.019 0.2985 +1
(2 -5 2 -5 3 2
= o 2.263%107752+3.3395+1.775 | —1x1077 5% +3.335% +6.385+3
= Dynamic > 3 >
E 52 +7.6895+5.185 s +5215% +7.495+3.14
g -5 2 -5 3 2
O . —2.18x107752 +0.6625+16.7 | —2.2x107° 5> +0.66252 +16.75
s2+3.955+16.8 0.25° +5.665% +16.55+0.4
b . —6.97x10 5 + 3.33 211075 +0.992
roportional
g s + 4.02 0.298s +1
(% -5 2 -5 3 2
5 | Dynamic 1.03x107052 +3.335+3.05 | —1x107253 +3.335% +6.385+3
S s2+7.545+4.67 s +5215% +7.495+3.14
=
o 2 —4 3 2
O ol 0.00013252 +3.385—0.188 1.3x107* 53 +3.3852 —0.188s

s2+4.035+15.9

s> +3.385% —0.4335—0.939

20



Bode Diagram
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Figure 2-6. First-order OL models with a PI controller in three setups

2.4.4 Closed-loop ID for the Second-order System

For the second-order plant, identified closed-loop models and corresponding calculated
plants are listed in Table 2-6. From Figure 2-7, the calculated plant models with proportional
controllers have almost identical frequency response to the original system in all three
identification setups. However there is certain phase shift beyond the PRBS frequency
bandwidth (around 20Hz), indicating that high frequency PRBS excitation might needed.

Similarly, it can be found from Figure 2-8 the identified open-loop models with first
order controllers have similar frequency response to the original system. Plant models obtained
from closed-loop systems using controller and compensator setups have slight error in DC gain,
and phase shifts near corner frequency.

Figure 2-9 shows the frequency response for the identified open-loop plants when the PI

controller is used. The identified open-loop model using the general setup provides the closest
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frequency response to the original one. Plant models obtained from the compensator setup have
the worst accuracy.

Therefore, similar to the first-order system case, in the second-order system, the closed-
loop system identifications for all three setups are accurate with proportional controller. Plant
models obtained from closed-loop systems with the first order controller provide similar
frequency response as the original plant. With the PI controller, only the general setup provides

the accurate identified model.

Bode Diagram
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Figure 2-7. Second-order OL models with a proportional controller in all setups
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Table 2-6. Identified closed/open-loop models for the second-order plant

ol
% % Identified Closed-loop Model Calculated Plant
w
Q
E | 3.2%107052 +0.000645+0.2 |
-3 s2+1.05+1.2 1.6x107 5% +0.00325 +1.0
g 1.6x107° 5% +0.00325 +1 52 +1.05+0.99
S
A i s +1.0s+1.2 |
g1 | [ 37x107%53-0.000745% +5+035 |
] . —
2| g $3+1.857 +2.85+1.2 —3x107%5% —0.000615% +0.995 +0.84
< =
S| & | -3.0x107% —0.000615> +5+0.84 57 +1.852 +1.99+0.84
3 I S +1852+2.85+12
i —6 3 2 ]
~1.3%x107%5% —0.0002652 +0.55+0.2
= s> +1.0s% +1.55+0.2 1.505% -0.000352 + 5 +0.0022
1.5%107%53 +0.0003s2 + 5 +0.002 52 +1.0s% +0.995 +0.0017
52 +1.0s2+1.55+0.20
. 3.2x107%5% +0.000645 +0.20 1.6x107° 52 +0.00325 +1.0
o s +1.05+1.2 52 +1.05+0.99
S| o
9] B
5| E|  -37x107°6%-0.0007552 +5+0.2 | —4x107°s*~0.0015> + 52 +1.25+0.2
— (=}
g2 52 +1.75% +2.65+0.78 s* 42357 4255 +1.45+0.28
o
o
Q
= ~1.3x107%5% —0.000255%2 +0.55+0.2 | —=1.3x107%5* —0.0003s> +0.55% +0.2s
5> +1.0s% +1.55+0.20 0.55s% +0.75> +0.75% +0.25 +0.00034
. 1.62x107> 52 +0.0032s +1 1.6x107° 52 +0.0032s5 +1
= s2+1.0s+1.2 52 +1.05+0.99
3
Q
S E| -3.0x107%-0.00062s% +5+0.52  |=3x10"°5* ~0.00065° + 5% +1.55+0.5
17,) o
A 5> +1.55% +2.55+0.68 st 42553 4352 4+ 2.15+0.42
=
o
o = 1.5%x107%53 +0.0003s2 + 5 +0.0023 | —1.3x107%5* —0.0003s> + 52 +0.0025s

52 +1.0s% +1.55+0.20

s* 452 +0.9952 +0.00065 —0.00045
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2.4.5 Effect of the PRBS Signal Order

The following example is used to investigate the effect of PRBS order associated with
identification error at low frequency. Increasing PRBS order decreases identification excitation
signal bandwidth at low frequency. Using the first-order system in the compensator setup with a
PI controller, an eleventh-order PRBS signal was used with other parameters defined in 2.4, the

identified closed-loop system model is

P 4.071x107° 5% +3.3355+0.0001296

X > (2.16)
52 +4.003s +16.66

and the corresponding open-loop model is

G- 4.07x1070 5% +3.33552 +0.00013s
l —_ .
A 34333652 -0.0155—0.000648

(2.17)
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As expected (Figure 2-10), the low frequency identification error decreases as PRBS order
increases.

2.5 Conclusion

A low frequency system identification error was discovered when an integral controller is
used for PRBS g-Markov Cover closed-loop system identification using an indirect approach.
Significant low frequency gain of the identified open-loop model was observed when the
dynamic integral controller was used. Increasing the order of the PRBS signal decreases the error
at low frequencies. The general setup of the closed-loop system identification setup provides
fairly accurate identified open-loop models even with the dynamic integral controller. Using the
proportional controller in the closed-loop system identification leads to the most accurate plant
model. If feasible, it is recommended not to use a dynamic integral controller in the closed-loop
system identification when PRBS is used as excitations. In this paper, the framework used for

VVT system closed-loop identification is the controller setup with a proportional controller.
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Chapter 3 Hydraulic Variable Valve Timing System Identification and
Controller Design

3.1 Introduction

Continuously variable valve timing (VVT) system was developed in the early nineties [1].
The benefits of using VVT for internal combustion engines include improved fuel economy with
reduced emissions at low engine speed, as well as increased power and torque at high engine
speed. Vane-type VVT system [2] is a hydraulic mechanical actuator controlled by a solenoid.
Electric motor driven cam phase actuators have become available recently due to their fast
responses [42]. This chapter studies the modeling and control of hydraulic VVT systems.

There are two approaches to obtain a control oriented VVT system model for model-
based control development and validation: physics based system modeling [18] and system
identification using the system input and output data. In this paper, the closed-loop system
identification approached is employed to obtain the VVT subsystem model of an internal
combustion engine. System identification using closed-loop experimental input and output data
was developed in the seventies [19] and has been widely used in engineering practices ([20], [21],
and [22]). Closed-loop system identification can be used to obtain the open-loop system models,
especially when the open-loop plant cannot be excited at the operational conditions ideal for
system identification. For instance, closed-loop system identification is typically applied to
identify an unstable open-loop plant. In this paper, the closed-loop identification method was
selected due to many factors. The main reason is that the system open-loop gain of the VVT
actuator is fairly high and the cam shaft has a torque load disturbance, which makes it almost
impossible to maintain the cam phase at a desired operational condition. The other factor is that

the VVT system dynamic is also a function of engine speed, load, oil pressure, and temperature,
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which make open-loop system identification difficult. Therefore, open-loop system identification
at a desired cam phase is not feasible and the closed-loop identification was selected.

The first portion of this paper describes the process of obtaining linearized system models
of the VVT actuator subsystem at various operational conditions using the indirect closed-loop
system identification approach discussed in [21]. The ¢g-Markov COVariance Equivalent
Realization (g-Markov Cover) system identification method ([23], [24], and [25]) using PRBS
(Pseudo-Random Binary Signals) was used to obtain the closed-loop system models. The g-
Markov Cover theory was originally developed for model reduction. It guarantees that the
reduced order system model preserves the first ¢ Markov parameters of the original system. The
realization of all g-Markov Covers using input and output data of a discrete time system is
capable of system identification. Q-Markov Cover for system identification uses pulse, white
noise, or PRBS as input excitations. It can be used to obtain the linearized model representing the
same input/output sequence for nonlinear systems [25]. It was also been extended to identify
multi-rate discrete-time systems when input and output sampling rates are different [26].

For the proposed study, the multi-rate system identification is required due to event based
cam phase sampling (function of engine speed) and time based control sampling. For our test
bench setup, the cam position was sampled four times over an engine cycle. For instance, when
the engine is operated at 1500 rpm, the cam position sample period is 20ms, and the control input
is updated at a fixed sample period of Sms. For this study, multi-rate PRBS g-Markov Cover was
used for closed-loop system identification on the VVT test bench. System models at different
engine operational conditions were identified using closed-loop multi-rate identification.

The second portion of this chapter presents the control design and validation. The OCC

(Output Covariance Constraint) control design approach ([33], [34], and [35]) and LPV (Linear
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Parameter Varying) control were designed and validated on test bench and engine dynamometer
(dyno).

The OCC control minimizes system control effort subject to multiple performance
constraints on output covariance matrices. An iterative controller design algorithm [35] with
guaranteed convergence can be used to find an OCC optimal controller. Note that an OCC
controller is a H> controller with a special output weighting matrix selected by the OCC control
design algorithm. The OCC control scheme was applied to many aerospace control problems due
to its minimal control effort ([33], [34], and [35]). In this paper, a nominal model was selected
from the family of the identified VVT models for the OCC control design. Multiple OCC
controllers were designed based upon closed-loop identified models, and their performances
were compared against these of the well tuned baseline PI controller. In order to eliminate
steady-state error, system control input was increased to add an additional integral input to
system plant used for the OCC control design. Comparing with the PI control, the OCC
controllers were able to achieve the similar system settling time to PI ones with significantly less
overshoot and control effort.

The system model identification and controller design approach was tested and validated
on a VVT test bench. The control design model is obtained from the closed-loop system
identification, and the designed controller was evaluated in an actual VVT test bench. The same
approach was then used on an engine dyno with dual VVT system. Both test results show that the
integrated system identification and control design provides satisfactory controllers.

A modern internal combustion engine operates at a wide range of temperatures, as well as
different loads and speeds. Due to the physical dynamics of the VVT system, its performance is

affected by operating temperature, engine oil pressure, and engine rpm. In order to optimize the

29



performance at all the operating conditions, a family of VVT system models was identified at
different engine oil pressure and engine speed. A linear parameter varying (LPV) system ([27] to
[32]) was constructed based on the models. A gain-scheduling controller ([36] and [37]) was
designed based on the LPV system and was tested on the test bench.

Closed-loop identification and OCC design of a hydraulic VVT system on the test bench
introduced in the dissertation can also be found in [43] and [44]. The detailed work of LPV
modeling and gain-scheduling design can be found in [45].

The chapter is organized as the following. Section 3.2 provides framework and
formulation of closed-loop system identification for the VVT actuator system. Section 3.3
presents the OCC control problem and associated design framework. HIL simulation is
conducted in Section 3.4. Section 3.5 describes the test bench setup. Section 3.6 introduces the
closed-loop system identification and the OCC controller design results obtained from the test
bench, along with the discussions of the experiment results. LPV controller design and validation
is in Section 3.7. Section 3.8 introduces engine dyno setup and dyno test results are shown in
Section 3.9. Conclusions are provided in Section 3.10.

3.2  System Identification Framework

u y

n
l»?—» K(s) > G(s) ~>$——>

Figure 3-1. Closed-loop identification framework
Consider a general form of linear time-invariant closed-loop system in Figure 3-1, where
r is the reference signal, u is the input, and yis the output. As discussed in the Introduction
section, there are many approaches for the closed-loop identification, which are categorized as

direct, indirect, and joint input-output approaches. In this paper, we utilize the knowledge of the
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controller to calculate the open-loop plant model from identified closed-loop plant model, which
is called the indirect approach. To ensure the quality of the identified plant, the closed-loop
controller in this paper is selected to be proportional ([38], and [46]).

The input and output relationship of the generalized closed-loop system, shown in Figure

3-1, can be expressed below
y=H-r=GK(I+GK)'r 3.1)
Let H be identified closed-loop transfer functions from r to y. The open-loop system model
G p can be calculated using identified ﬁ, assuming that (I - ﬁ)'l is invertible. The closed-loop
controller transfer function is used to solve for the open-loop system models. We have
G,p =HI-B)'K! 3.2)

PRBS signal is used as an input signal for identifying the closed-loop system model. The

most commonly used PRBSs are based on maximum length sequences (called m-sequences) [39]
for which the length of the PRBS signals is m =2" —1, where n is an integer (order of PRBS).
Let 77! represent a delay operator, and define f)(z_l) and p(z_l) to be polynomials

pc H=a "M@ - @az ' ®a =pzH @1 (3.3)
where q; is either 1 or 0, and @ obeys binary addition, i.e.

1©1=0=020&0@1=1=1®0 (3.4)
and the non-zero coefficients a; of the polynomial are defined in the following Table 2-1 and
also in [39].

Then the PRBS can be generated by the following formula:

ik +1) = p(z Hak), k=0,1,2,... (3.5)
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where #(0)=1 and #(—1)=#(-2) =---=1i(—n)=0. Defined the following sequence:

s(k) = {a; If k %s even, 3.6)
—a; If k is odd.
Then, the signal
u(k)=s(k)®[-a +2 a i (k)] (3.7)
is called the inverse PRBS, where ® obeys
a®a=-a=-a®-a & a®-a=a=-a®a (3.8)

It is clear after some analysis that u has a period 2m and u (k) = -u (k+m). The mean of
the inverse PRBS is
1 2m—1
my, = Eyu(k)=— > u(k)=0 (3.9)
2m 2o

and the autocorrelation (R, (7) = E,, u(k+7)u(k)) of u is

az, 7=0;
| 2t —a®,  t=m
R, (D) =— > u(k+7)u(k)= ) (3.10)
2m k=0 —a”~/m, T even;
a*/m, 7 odd.

Note that the first and second-order information of the inverse PRBS signal is very close to these
of white noise for a large enough m. The inverse PRBS is used in the g-Markov Cover
identification algorithm. For convenience, in the rest of this paper, the term “PRBS” is used to
represent the inverse PRBS.

Consider an unknown (presumed nonlinear) system

X(k+1) = f(x(k), w(k))

3.11
¥(k) = g (x(k), w(k)) G-11)
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subjected to an input sequence  {w(0),w(l),w(2),...} generating the output sequence
{v(0), y(1), y(2),...} . The unknown system is g-identifiable, if there exists a linear model of the

form

x(k +1) = Ax(k) + Dw(k)

y(k) = Cx(k) + Hw(k) (3.12)

that can reproduced the same output sequence {y(0), y(1), y(2),..., y(g—1)}, subject to the same
input sequence {w(0), w(l),w(2),...,w(g—1)}. In case that the system is not g-identifiable, it is
possible for g-Markov cover to construct the least square fit using a linear model for the input-
output sequence ([47], and [48]).

In this paper, system models were identified in discrete time domain using the PRBS GUI
(Graphic User Interface) [34] developed for multi-rate PRBS g-Markov Cover. The advantage of
using the PRBS GUI is that the number of Markov parameters and the order of the identified
system model can be easily adjusted based upon the calculated Markov singular values from the
input-output data.

3.3 Output Covariance Control (OCC)

Consider the following linear time-invariant system:

xp(k+1) = ApX,(k)+Byu(k)+Dyw, (k)

ypk) = Cpxp(k) (3.13)
z(k) = Mpx, (k) +v(k)
where x , is the state, u is the control, w, represents process noise, and v is the measurement

noise. Vector y,, contains all variables whose dynamic responses are of interest. Vector z

represents noisy measurements. Suppose that a strictly proper output feedback stabilizing control

law, shown below, is used for plant (13)
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X (k) = Acxc(k)+Fz(k)
uk) = Gx.(k) -1
then the resulting closed-loop system is
x(k +1) = Ax(k) + Dw(k)
ypk) | |Cy (3.15)
k = = k =C k
y(k) {u(k)} {Cu X(k) = Cx(k)

where x = [Xg XE ]T and w = [wg VT]T. Formulas for A, C, and D are easy to obtain from
(3.13) and (3.14).

Consider the closed-loop system (3.15). Let W, and V denote positive definite

symmetric matrices with dimensions equal to the process noise wy, and noisy measurement

p
vector z , respectively. Define W =block diag [Wp V] and let X denote the closed-loop

_1
weighted controllability Gramian from the input W 2w . Since A is stable, X is given by

X =AXAT s pWDT (3.16)

In this paper we are interested in finding controllers of the form (14) that minimize the

(weighted) control energy trace(RCuXCE ) with R >0 and satisfy the constraints

Y=CXCc'<Y (3.17)
where Y >0 are given and X solves (16). This problem, which we call the output covariance
constraint (OCC) problem, is defined as: finding a full-order dynamic output feedback controller

for system (3.13) to minimize the OCC cost

J

occ

= trace(RCyXCY),  R>0 (3.18)

subject to (3.16) and (3.17).
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The OCC problem may be given several interesting interpretations. For instance, assume

first that wy, and v are uncorrelated zero-mean white noises with intensity matrices W), >0 and

p

V >0.Let E be an expectation operator, and

Elwy (k)] = 0. Elwy,(k)wp (k—n)]
E[v(k)]

Wp5(n)
(3.19)

0 Elvik)vY (k —n)] Vé(n)

Defining E,,[-]:= lim E[-] and W =block diag [Wp V], it is easy to see that the
k—oo

OCC is the problem of minimizing EMuTRu subject to the OCC constraint

Y= Eooy(k)yT(k) <Y. As it is well known, the constraint may be interpreted as constraint on

the variance of the performance variables or lower bounds on the residence time (in a given ball
around the origin of the output space) of the performance variables [49].
The OCC problem may also be interpreted from a deterministic point of view. To see this,

define the discrete time domain /, and ¢, norms

Iy = supgso ¥ T o)y (k)

oo (3.20)
2
[l =3 whtowck)
k=0
and define the (weighted) /, disturbance set
n —172 |7
#=w:R—R™ and HW wH2 <1 3.21)

where W >0 is a real symmetric matrix. Then, for any we %, we have (from [50], and [51])

||y||i <a|Y], and ||ul||i < [CUXCEJ . i=1,2,...n, (3.22)

i
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where n, is the dimension of u; &[-] denotes the maximum singular value; and [']ii is the i-th

diagonal entry. Moreover, references [50] and [51] show that the bounds in (22) are the least

upper bounds that hold for any signal we % .

Thus, if we define Y:=Z¢® in (17) and R =diag| ,7,....y,, | >0 in (18), the OCC

—
problem is minimizing the (weighted) sum of worst-case peak values on the control signals given
by
ny >
Joce = DT { sup ||u,-||°o} (3.23)
i=1 wew

subject to constraints on the worst-case peak values of the performance variables of the form

sup [y[[, <’ (3.24)

wel
This interpretation is important in applications where hard constraints on responses or
actuator signals cannot be ignored, such as space telescope pointing and machine tool control
[34].

Detailed proof can be found in [35]. The controller system matrices A, F, and G can be

calculated using an iteration algorithm introduced in [33] and [35].

3.4  System Identification Using an HIL Simulator

Closed-loop system identification was conducted using an HIL simulator. A plant model,
described in [52], is loaded into a dSPACE based HIL simulator.

—0.01348(s —2000)
5+26.96

G(s)= (3.25)

The pulse signal of the cam position sensor is generated in the HIL simulator. In every

engine cycle, the HIL simulator generates four evenly positioned pulses, which are sampled by
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an Opal-RT real-time controller. The real-time controller processes the cam position signal and
calculates the cam phase position. Figure 3-2 shows the architecture of the closed-loop system

identification.

Command S ASPACE Sensor pulse

|
y |
|
______________________ |

Opal-RT Controller
Figure 3-2. Closed-loop identification framework on an HIL simulator

After the error between the calculated cam phase and the reference PRBS signal is
calculated, the cam actuator command is generated and sampled by the dSPACE HIL simulator.

Reference PRBS signal r and the measured cam phase signal y are recorded for system

identification. In this study, the plant model refers to the transfer function between command

signal u and calculated phase y .

In this study, a proportional controller K =0.51s used. Note that at different engine
speeds, the ratio between input and output sample rates is different. Recorded system response
data were processed using MATLAB PRBS-GUI. The number of Markov parameter was
selected based on the quality of the identified model. The model order was selected based on the
dominant dynamics of the recorded data. The open-loop plant models shown in (3.26) are

obtained from identified closed loop transfer functions (3.2)

~0.0001s% —6.325 +768.6

G, (s)=
0007Pm ) 000152 +32.985 +1060.7
2
0.002525% — 635 +1339
G1500rpm (5) = > (3.26)
0.99852 +52.745 +1664.5
0.00065% —9.995+1911.6
GZOOOrpm(S )=

0.99952 +78.865 +2140.2
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Table 3-1. Closed-loop PRBS g-Markov COVER system ID results

_G
_30 EmEEEnm G_lOOO

o600 00 G_lSOO
- = G_2000 | . .

Magnitude (dB)

Engine Speed (rpm) 1000 | 1500 | 2000
DC Gain Error (dB) 28 | -1.9 | -1.0
L4 Sample Rate limit (Hz) 833 | 12.5 | 16.67
Plant Resp. Error at Freq. Gain (dB) | 24 | -29 | -2.8
above Phase (deg) | -92.8 | -84.7 | -87.5
Bode Diggr‘ar‘n‘ -

L M

Phase (deg)

2705 o,
. 10

Frequency (Hz)
Figure 3-3. Identified model frequency responses of the HIL simulator

From Bode diagrams, all identified models are accurate at low frequency, and the
accuracy improves as the engine speed increases (See Figure 3-3 and Table 3-1). Since the HIL
sends feedback signals at a rate of 4 cycles per engine cycle, the actual identified systems also
include a pure phase delay. Figure 3-4 shows that the identified phase is very close to the model

(3.25) with a time delay associated with the engine speed. This figure proved that the closed-loop
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identification method retrieved the whole

future bench tests.

system dynamics very well and can be

used for the

Phase 1000rpm (deg)

Known Plant with delay
Identified model

107

Phase 1500rpm (deg)

10

Phase 2000rpm (deg)

-270 =

107

10°
Frequency (Hz)

Figure 3-4. Identified phase delay at different engine speeds

Figure 3-5 compares the responses of original plant and closed-loop identified plants at

2000 rpm using PRBS excitation. The figure shows one fourth of eleventh-order PRBS length

(about 5 seconds of the responses). From the plot, one can observe that the responses between

the original and identified models are very close.
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Figure 3-5. Identified model and physical system responses with PRBS input
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3.5 VVT System Bench Tests Setup

3.5.1 System Configuration

| VVT Solenoid Cam

Position
Sensors

Figure 3-6. VVT phase actuator test bench

Closed-loop system identification and control design tests were conducted on the VVT
test bench (Figure 3-6 and Figure 3-7). A Ford 5.4L V8 engine head was modified and mounted

on the test bench. The cylinder head has a single cam shaft with a VVT actuator for one exhaust
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and two intake valves. These valves introduce a cyclic torque disturbance to the cam shaft. The

cam shaft is driven by an electric motor through a timing belt.

Hydraulic Oil

(Engine Qil) Actuator

-

Torque Magnets
Cam Shaft disturbance 1
4(7

]

@ Cam Position
-—
_ Sensor

Crank Pulley Crank Shaft ®. g TDC Position
and encoder Cam Sensor

Figure 3-7. VVT phase actuator test bench diagram

VVT Pulley —»

Timing Belt

An encoder is installed on the motor shaft (simulated the crank shaft), which generates a
crank angle signal with one degree resolution, along with a so-called gate signal (one pulse per
revolution). A plate with magnets attached was mounted at the other side of the extended cam
shaft. These magnets pass two hall-effect cam position sensors when the cam shaft rotates, where
one cam sensor was used to determine engine combustion TDC position (combustion phase),
along with the encoder signals and the other is used to determine the cam phase. This cam
position signal updates four times per cycle.

The cam phase actuator system consists of a solenoid driver circuit, a solenoid actuator,
and hydraulic cam actuator. The solenoid driver is controlled by a PWM signal, where its duty
cycle is proportional to the DC voltage command. An electric oil pump was used to supply
pressurized oil for both lubrication and as hydraulic actuating fluid of the cam phase actuator.
The cam actuator command voltage signal is generated by the Opal-RT prototype controller and
sent to the solenoid driver. The PWM duty cycle is linearly proportional to input voltage with
maximum duty cycle (99%) corresponding to SV. The solenoid actuator controls the hydraulic

fluids (engine oil) flow and changes the cam phase. The cam position sensor signal is sampled by
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the Open-RT prototype controller and the corresponding cam phase is calculated within the

Opal-RT real-time controller.

Cam Phaser Actuator System

|
Command\ |Solenoid

Hydraulic| | Cam ISensorpulse
Fluid Phaser| |

Opal -RT Controller
Figure 3-8. VVT system Diagram

Within an engine cycle, the cam position sensor generates four cam position pulses
sampled by the Opal-RT real-time controller. By comparing these pulse locations with respect to
the encoder gate signal, the Opal-RT controller calculates the cam phase with one crank degree
resolution. After the error between the calculated cam phase and the cam reference signal is
obtained, the cam actuator control command is obtained from the controller K. Figure 3-8 shows
the signal diagram of the VVT control system. Reference signal » and the measured cam phase
signal y can be recorded in the Opal-RT controller for system identification. In this paper,
“system model” refers to the transfer function between the control input u (voltage) and
calculated cam phase signal y (degree); “controller” refers to transfer function K between the
error and output.

3.5.2 VVT Open-loop Properties

The cam phase actuator has an output range of £30 crank degrees. Figure 3-9 shows an
open-loop step response of the VVT phaser. Input to the system is a step between OV (1% duty
cycle) and 5V (99% duty cycle). It can be found that the cam phase system has a settling time

about 1.5 seconds for advancing (rising) and 1.0 second for retard (falling), demonstrating its

42



nonlinear characteristics of the VVT system. This is mainly due to the fact that the VVT pulley
(See Figure 3-10) has different dynamics for advancing and retarding. For advancing, the
actuating torque generated by the oil pressure overcomes the cam load torque and moves the cam
phase forward; and for retarding, the oil trapped in the actuator bleeds back to the oil reserve
when the cam phase is pushed back by the cam shaft load. This difference leads to the response
characteristics difference for advance and retard operations, which makes the system nonlinear.

This phenomenon will be discussed in bench test section.

' ' Input duty cycle
100 — Cam phase 30
S
< 80 18
N —
z 3
= 60 6 =
‘é 3
£ &
o 40 -6 g
£ O
2
3 20 18
0 -30
2 3 4 5 6 7
time (s)

Figure 3-9. Cam phase actuator open-loop step response
Figure 3-11 shows the VVT system steady-state responses via open-loop constant inputs
with a 0.1V interval (2% duty cycle) between 0 and 5 volts. It can be observed that for open-loop
control, the cam phase actuator behaves almost like a binary state, and it is very difficult for the
VVT actuator to maintain at a desired non-saturated cam timing position due to the actuator
hysteresis characteristics, cam load and engine oil pressure variations. This indicates that open-

loop system identification, which requires to hold the actuator operate at a desired location
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during the system identification process, is almost impossible. Therefore, closed-loop system
identification is adopted in this research. A proportional controller is selected for the closed-loop

system identification in order to ensure good closed-loop system identification accuracy ([38],

and [46]).

Figure 3-10. Vane type cam phase hydraulic pulley
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Figure 3-11. Cam phase actuator open-loop steady-state responses
3.6  Bench Test Results
3.6.1 Closed-loop Identification
The operating point and controller gain need to be selected carefully due to the system
property. The solenoid drive circuit has an operational range between O and 5 volts that
corresponds to 1 and 99 percent of the solenoid PWM duty cycle. Therefore, in order to avoid
saturation, we have to select the phase actuator operation condition carefully; otherwise, the
control input might be saturated, leading to high system identification error. Therefore, the PRBS
signal magnitude was selected to be 12°, nominal operational condition was centered at -14° cam
phase, and the controller proportional gain was 0.1 (volt/degree). To obtain a family of system
transfer functions, the system identification bench tests were conducted at different engine

speeds and oil pressures. For demonstration, we selected two engine speeds at 1000 and 1500
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rpm and a constant oil pressure of 60 psi. Recorded reference signals and system response data

were processed using MATLAB PRBS-GUI [26].

Table 3-2. System identification parameters

Engine Speed (rpm) 1000 1500
Input Sample Rate (ms) 5 5
Output Sample Rate (ms) 30 20

Output/Input Sample Ratio 0.167 0.25
PRBS order 13 13

Signal length (s) 81.88 81.88
Markov parameter. # 90 60

ID open-loop model order 4 2 and 4

The number of Markov parameters to be matched by system identification was used to
optimize the identification accuracy (see Figure 3-12). Identified system model order was
determined by the dominant dynamics of PRBS response data (see Figure 3-13). Figure 3-13
shows the order selection diagram produced during PRBS system ID at 1500 rpm. It shows the
diagonal elements of Schur decomposition of the system response data matrix. The diagonal
elements of the Schur decomposition were plotted in a decreased order. Each dot in the plot
corresponds to one state of the identified model. Detailed algorithms can be found in [26]. The
plot shows a dominant first order dynamic because the order index chart has the largest gap
between the first and second dots. The gap between fourth and fifth dots is larger than the gap
between second and third dots. Therefore, the order of the identified model was selected to be
four in order to keep the model order low without losing major system dynamics. The rest of

system identification parameters are shown in Table 3-2.
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Figure 3-12. Identified and physical responses
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Figure 3-13. Identified model order selection
Using the identified closed-loop model and equation (3.2), a fourth order open-loop plant
model (see Table 3-3) at 1500 rpm is obtained. The corresponding open-loop Bode diagram
(Figure 3-14) shows that there exists a dynamic mode at around 12.5 Hz, which is equal to the
engine cycle frequency of 12.5 Hz (80ms/cycle) at 1500 rpm. It is believed that the resonance
observed was not due to the system dynamics of the cam phaser system but rather the external

disturbance due to the cyclic dynamics of the timing belt and cam shaft torque disturbance due to
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valve actuations. Therefore, we decided to exclude it from the identified model used for control
design. A second order model is obtained by selecting the order of identified closed-loop model
to be two. Plant model calculated from the identified second-order model has almost identical

behavior to the fourth-order model without the 12.5 Hz mode (see Figure 3-14 and Table 3-3).

~Bode Diagram
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Figure 3-14. Bode diagram of open-loop plant at 1500 rpm

A fourth-order closed-loop model was identified at 1000 rpm. Similar to the case at 1500

rpm, the identified model has a dynamic mode at about 8 Hz, which corresponds to the engine

cycle period (8.3 Hz, 120ms/cycle). However, in this case, a second-order open-loop model was

not obtained directly from system identification. Note that in this case there exists a pair of non-

minimal phase zeros shown in the Root Locus (Figure 3-15) at the frequency close to engine

cycle frequency. To eliminate the dynamics at this frequency, a second order model was obtained

by removing the pairs of pole-zero from the fourth-order plant model (Table 3-3). The second-
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order plant model has very similar frequency response to the fourth-order plant model except

without the dynamics introduced by the cyclic engine cam load (Figure 3-16).

Root Locus
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Figure 3-15. Root locus of the identified fourth-order plant at 1000 rpm

o

Table 3-3. Identified open-loop plant transfer functions

Condition Open-loop Plant Transfer Function
1000 rpm, identified | . 3.6x107%s% =535 +5865% —1.8x10% 5 +2.1x10°
_ 1000 4 -
fourth-order model - s +11.63s° +278052 +3.21x10% s+ 4.6x10%
1000 rpm, calculated G (s) = 3.56x10 452 —5.275+592.2
_ 1000 2 -
second-order model rpm _ S2 +11.635+16.7
1500 rpm, identified | . 0.012s* —3.15> +13545> —2.9x10%s +9.0x10°
_ 1500 4 -
fourth-order model - 5% +14.5453 +59715% +8.54x10% s +2.38x10°
1500 rpm, identified G . 0.01245% —2.045+1582
_ 1500 2 -
second-order model rpm _ S2 +16.78s +34.82
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Bode Diagram
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Figure 3-16. Bode diagram of open-loop plant at 1000 rpm

3.6.2 Validation of Identified Model

To evaluate the accuracy of these identified models, their step responses were compared
with those from the bench tests. Since the open-loop step response cannot be obtained for the
VVT actuator, their closed-loop responses were compared in this study. The same proportional
control gain of 0.1 Volts/degree was used for the step responses. A step input of 12 crank
degrees was used. For the identified models, simulations were conducted in Simulink under the
same conditions. The normalized step responses are compared in Figure 3-17 at 1000 rpm and
Figure 3-18 at 1500 rpm. Note that the oscillations in the recorded responses are mainly due to
the cyclic valve torque load disturbance and low cam phase sampling resolution, which
demonstrates the difficulty for a proportional controller to maintain the cam phase at a desired

level.
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Figure 3-17. Closed-loop step response comparison at 1000 rpm
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Figure 3-18. Closed-loop step response comparison at 1500 rpm
From both Figure 3-17 and Figure 3-18, it can be observed that the system DC gains of

both the actual system and the identified model are fairly close; and for the transient response,
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the step down responses are very close for both the model and actual system at both engine
speeds, but the step up responses of the identified model at 1500 rpm is faster than the actual
system. This is mainly due to the nonlinear characteristics of the VVT actuator discussed in the
VVT open-loop property section. When cam phase is advanced, the VVT actuator is driven by
the engine oil pressure to overcome the cam shaft torque load, while when cam phase is retarding,
the VVT actuator is pushed by cam load torque and returns freely. This is why the system has
different step up and step down responses. The test results show that the identified mode

approximates the step down response.
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Figure 3-19. Family of Identified models

A family of system models was obtained from bench tests at different engine speeds and
oil pressures (Figure 3-19). A second-order model (3.27) was selected as the nominal model for

control design below
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o 0.0003s% —0.065 +647.2

3 (3.27)
§°+7.6155+20.67

Note that this system plant has a pair of non-minimal phase zeros, indicating that high control
gain will destabilize the closed-loop system.
3.6.3 OCC Controller with Signal Input

In this section, controllers were designed and validated on the test bench. The step input
was used as reference signal and varies between -20 and O degrees. A PI controller was well
tuned for the VVT system on the test bench for comparison purpose. The PI tuning process was
completed at different engine speeds and oil pressures. The tuned PI controller (3.28) achieves
good balance between fast response time and little oscillations at different conditions

Ky (5) =024 21 (3.28)
S

For the OCC design, system plant matrices of the nominal model were obtained from

equation (3.27)

—7.62 —20.68 1

1 0 (3.29)
Cp=Mp=C=[-0.063 647.39] D=0
Controller design parameters were selected as
W, =1 V=00l R= [1] (3.30)
Using the OCC iterative control design algorithm in [35], an OCC controller was obtained
Koo direet(5) = 194.8 s + 2701 (3.31)

sZ+131s+8582

However, the controller was not able to maintain the cam phase at the desired level, and it

has large steady-state error (see Figure 3-20). To improve the performance, an integrator was
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added to the plant to eliminate steady-state error (see Figure 3-21). A fourth-order controller (the

third-order OCC controller plus the first-order integrator) was obtained below:

~239.95% 27515 —1.1x10*
= (3.32)

K .=
T (52 451,352 +13055 +1.97x10%)

Notice that the order of plant used for controller design is increased by one and as a result
the order of the full order controller is also increased by one. After combining the full order

controller with the added integrator, the order of the new controller is increased by two compared

with the original controller.

20 HE .
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15| L Single input Cov Citrl
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Time (s)

Figure 3-20. Step response for OCC controllers
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Figure 3-21. OCC design framework with an integrator
The OCC control with integrator has a large overshoot with oscillations (Figure 3-20). In order to
eliminate steady-state error and reduce response time, a multi-input control design with
proportional and integral inputs was proposed.
3.6.4 OCC Controller Design with Multi-input
For the dual-input control design, the controller has an additional integrator input to the

plant (Figure 3-22). Noise intensity matrices W), and V were the same as (3.28). The input

weighting matrix dimension increased to two due to additional integral input and it was selected

as R=diag[l 20]. Note that in this case the input effort cost ratio between direct control and

integral control is 1 to V20 . The dual-input controller was designed and shown in (3.33), and its
performance at 900 rpm with 45 psi oil pressure is compared with the base PI controller in (3.28).
Figure 3-23 shows that both controllers have very similar response times and steady-state errors
and the OCC controller has significantly less overshoot. The major reason for the OCC controller
(with an integrator) to have less overshoot than that of the PI controller, is due to the fact that the

full-order OCC controller contains more dynamics than the PI controller.

84.55> +935.25% +1164.55 + 220

K 4 3 2
s +122.25% +7464.75% +3022s

(3.33)

occ—2in —
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Figure 3-23. Step response comparison
3.6.5 Controller Performance Comparison
Table 3-4 shows the system response comparison of the PI and multi-input OCC closed-
loop systems. Both controllers have zero steady-state error, with oscillation magnitude of 1
degree (lowest possible and limited by measurement resolution). Both controllers have almost
identical 5% (within 1 degree) settling time and 10~90% rising time. Compared with the base
line PI controller, the OCC controller has much lower overshoot. In some operational conditions,

the OCC controller reduces PI controller’s overshoot by 50%. For the advance step (from -20 to

56



0 degree), multi-input OCC controller uses less control effort than the PI controller. In the retard
step, the control effort difference is small (Figure 3-24). The reason is that in the advance step,
all the control effort is created by the actuator; while in the retard step, engine oil pressure is
working with the actuator. At steady-state, the dual-input OCC controller shows larger
oscillation magnitude than that of the PI controller. This is due to the fact that the designed OCC
controller has a higher gain than the PI controller and therefore is more sensitive to the change in
the error signal, which has the resolution of one crank degree in this experiment. In the following
section, robust gain scheduling control design using identified models at different operating

conditions will be studied.
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Figure 3-24. Control effort comparison at 900 rpm with 45 psi oil pressure
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Table 3-4. Controller performance comparison

Engine 0il Advanced Performance
Speed pressure Overshoot (deg) Settling Time (s) Rising Time (s)
(rpm) | (s PI ocC PI 0CC PI 0CcC
900 7 3 2.16 2.24 0.39 0.34
1200 45 5 4 2.39 2.20 0.36 0.32
1500 5 4 2.01 2.26 0.32 0.28
1800 6 4 2.10 1.98 0.33 0.26
900 6 3 2.26 2.01 0.33 0.24
1200 60 6 3 2.49 2.00 0.30 0.20
1500 6 3 1.71 1.97 0.28 0.18
1800 5 3 1.61 1.84 0.25 0.18
Engine oil Retard Performance
Speed pressure Overshoot (deg) Settling Time (s) Rising Time (s)
(rpm) | (psh) PI ocC PI ocC PI ocC
900 4 3 2.38 2.10 0.19 0.17
1200 45 5 3 1.86 2.03 0.17 0.15
1500 3 3 1.91 2.1 0.20 0.21
1800 4 3 1.82 2.02 0.18 0.21
900 6 3 2.57 1.92 0.17 0.14
1200 60 5 3 1.82 1.88 0.20 0.20
1500 5 3 1.84 1.98 0.16 0.21
1800 5 3 1.84 1.82 0.16 0.20

3.7  LPV Design

A linear parameter varying (LPV) controller was designed as a performance comparison
to OCC controller. The tests were done using the same hardware setup as the previous bench
tests. In order to obtain parameters at different operating conditions, discrete VVT plant models

are identified and simplified. Through the study of the identified models, it is found that the pole
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locations of the models are all very close to each other. Engine speed and oil pressure contributes
mainly to the DC gain and zero locations of the models respectively. As a result, models are
assumed to have the same pole location. Gains of the models are determined by the engine speed

(Table 3-5), and zero locations are determined by the engine oil pressure (3.34).

G 0:08590497:0.0608905
45psi —
Pt 2 1 9546987 +0.955255
(3.34)
0.06147082-0.0364564
G60psi =K

22 —1.954698z +0.955255

Table 3-5. Plant gains At different operating conditions

Engine Oil Engine Speed
Pressure 900 rpm 1500 rpm 1800 rpm
45 psi 0.70 0.72 0.68
60 psi 0.95 0.98 0.93

The system response at 1200 rpm and 60 psi is shown in Figure 3-25. Mean performance
of advanced and retard steps are listed in Table 3-6 and Table 3-7. The results show that all the
controllers have almost identical rising time for the advance step. LPV and PI controllers have
similar settling time and rising time for the retard step, while the OCC controller is slightly
slower. The OCC controller has the lowest and the PI controller has the highest overshoot, with
the LPV controller in between. The OCC controller has the lowest and the PI controller has the

highest control effort, with the LPV controller in the middle (Figure 3-26).
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Figure 3-26. Control effort comparison of OCC, PI and LPV controllers
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Table 3-6. Controller mean advance performance comparison

Engine Oil ESlngeiél(;: Overshoot (deg) |Settling Time (s) | Rising Time (s)
Pressure (r%m) OCC| PI |LPV|OCC| PI |LPV|OCC| PI |LPV
900 4.1 | 57501227 (1.59(2.02/0.31]0.31|0.30

45psi 1200 | 4.0 | 5.5 ]4.5(2.23]1.63|2.02/0.31|0.30|0.31
1500 | 4.2 | 53 ]4.5(2.09|1.69|2.07/0.29(0.30{0.30

1800 | 4.2 | 5.5 |4.8(2.09]|1.59]2.34/0.29|0.28|0.29

900 37 | 6.1 |58 ]2.18|1.84|1.93]0.24|0.25|0.23

60psi 1200 | 3.5 | 6.1 |5.3]2.05|1.37|1.64/0.20/0.22|0.23
1500 | 3.3 | 5.6 |5.1(2.06]1.02]1.62(0.21|0.21]0.21

1800 | 3.9 | 6.0 |5.2(1.92|1.73|1.75/0.20(0.20|0.20

Table 3-7. Controller mean retard performance comparison

Engine Oil ESlrlljgeiélde Overshoot (deg) |Settling Time (s) | Rising Time (s)

Pressure | om) |OCC| PI |LPV|OCC| PI |[LPV|OCC| PI |LPV

900 36 | 481391221191 |1.32|0.23/0.16/0.16
1200 | 3.6 | 42 |3.62.27|1.40|1.61{0.24]/0.17/0.16

45psi
1500 | 3.1 | 3.6 |33 (2.16[1.45|1.43]/0.26{0.16/0.16
1800 | 4.0 | 4.1 |3.0(2.00|1.90|2.17{0.23{0.16]0.16
900 30 | 55(4.0(232]|1.98]0.89(0.18]0.16]0.16
1200 | 3.0 | 52 |39 (2.10|1.54|1.20{0.21]|0.15]|0.14
60psi

1500 | 3.0 | 4.7 |3.4(2.00|1.55|1.14|0.25|0.13{0.13
1800 | 3.5 |46 |32]190|1.80|1.39/0.21|0.13|0.13

3.8 VVT System Engine Dynamometer Test Setup

The closed-loop system identification and controller design were also conducted on an
engine dynamometer (dyno). A single cylinder engine with a dual hydraulic VVT system was

used in the test. The test engine is a 0.4 Liter, single cylinder, direct injection (DI) gasoline
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engine (Figure 3-27). The VVT system itself is very similar to the one used on the test bench
(Figure 3-7). The main difference is that intake and exhaust timings can be adjusted and
measured independently on the test engine. Both intake and exhaust cam valves can be advanced
or retarded by 20 degrees. Also, the cam phase is calculated every engine cycle instead of 4
times every cycle on the bench. The engine does not require a separate electric oil pump; as a
result, the engine oil pressure can no longer be adjusted from outside. The cyclic load
disturbance on the cam shaft was much greater than the cam shaft load on the VVT test bench

because the engine was combusting during the tests.

Figure 3-27. Single cylinder engine on the engine dyno

The engine dyno is controlled from the control room (Figure 3-28). The engine speed is
controlled by the dyno controller and can be maintained at a desired speed. An A&D Technology

Combustion Analysis System (CAS) system is used to monitor the combustion stability. An
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Opal-RT system is used as an engine controller, and it collects all the sensor signals from the
engine and sends out control signals to the engine. The throttle is fixed at a low load position. An
oxygen sensor, similar to the one used on a passenger vehicle, is used to monitor the air-fuel
ratio. The fuel quantity is manually controlled in the Opal-RT system so that air-fuel ratio is at
stoichiometric point.

An Opal-RT system used in the dyno test is able to calculate cam position with a
resolution of 1/64 degree. However, the cam phase calculation in Opal-RT was calibrated using
CAS. Due to the resolution limit of the CAS system (1 crank degree), the cam phase calculation

only has an accuracy of one crank degree.

Figure 3-28. Dyno control room

3.9 Engine Dyno Test Results

3.8.1 Closed-loop Identification Setup the Engine Dyno
The selections of PRBS signal and closed-loop control design are very similar to those of

the test bench. For the engine dyno test, the PRBS order was selected as 13, with magnitude 15,
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and a proportional controller gain of 0.1 was used. Similar to the bench test, the model was
identified at different engine speeds to obtain a family of VVT models. Both intake and exhaust
VVT systems were identified separately at 1200 and 1500 rpm. On the engine, the oil pressure is
a function of engine speed and cannot be adjusted from outside. In both of the engine speeds, the
engine oil pressure was 40~42 psi. Since the hydraulic VVT system fitted on the engine was very
similar to the one that was fitted on the test bench, the order of the identified models was
selected to be two. In order to get more accurate models, the feedback cam phase signal was
sampled at 4 times per engine cycle during the closed-loop system identification. The rest of the
system identification parameters are listed in Table 3-8.

Table 3-8. System identification parameters for engine dyno

Engine Speed (rpm) 1200 1500
Input Sample Rate (ms) 5 5
Output Sample Rate (ms) 25 20
Output/Input Sample Ratio 0.2 0.25

PRBS order 13 13
Signal length (s) 81.88 81.88
Markov parameter. # 100 100
ID open-loop model order 2 2

3.8.2 Closed-loop Identification Results

The closed-loop VVT models were identified and open-loop plant models were
calculated using the method same as the one used in the bench identification (3.2). The identified
models (Table 3-9) show that at different engine speeds, the system responses are very close to

each other. The responses of the intake and exhaust VVT systems are also very similar (Figure

3-29).
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Table 3-9. Identified intake and exhaust VVT system models

System Open-loop Plant Transfer Function
Intake VVT G )= 0.0199s% —27.85+911
1200 -
@1200 rpm - 52 +7.095+34.4
Intake VVT G )= ~0.0002835> ~13.85 + 675
1200 -

@1500 rpm - 52 +5.925+20.2
Exhaust VVT G (s) = 0.00519s> —31.2s+1191
i 1500 -

@1200 rpm - 52 +8.335+46.1

Exhaust VVT G )= 0.00609s> —13.45 +954
1500 -

@1500 rpm e 2 +6.345+25.8

As aresult, a single second-order model is used for both intake and exhaust cam phaser at
all engine speed for controller design. This approach allows for a simplified controller design
process. Three plant models were identified and calculated at each engine speed for both VVT
systems, and a nominal second-order model (3.35) was obtained by averaging all the calculated

plant models.

©0.0035855% —21.69s +900.4
52 +6.9285+31.68

G (3.35)

3.8.3 Validation of Identified Model

In order to evaluate the quality of the nominal model, the closed-loop response of the
nominal model is compared with the ones from the engine dyno. A proportional gain of 0.1
Volts/degree was used for the step response test. On the engine dyno, a step of 20 degree cam
phase change was used as a reference signal. For the nominal model, the step response was
simulated in MATLAB. The normalized step responses are compared in Figure 3-30. From

Figure 3-30, the nominal model has a very similar transient response to the actual VVT system
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response. The DC gain of the normalized model is smaller than the real system. This is mainly

due to the length limit of the PRBS excitation signal.

Bode Diagram
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Figure 3-29. Bode diagram for the identified VVT system models
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Figure 3-30. Step response of the physical systems and nominal model
3.8.4 Controller Design for VVT System on the Engine Dyno
In this section, an OCC controller was designed and its performance was validated on the
engine dyno. Similar to the bench test case, a step input varying between -10 and -30 crank
degrees was used as reference signal for both intake and exhaust VVT system. A well-tuned PI
controller was used on the engine dyno as a baseline performance comparison to the OCC
controller. The PI controller was tuned at different engine speeds to ensure balance between fast
response time and low overshoot. The baseline PI controller used on the engine dyno is
Kpuse =0.07+0.01s (3.36)
For OCC design, system matrices of the nominal plant model were calculated from the

transfer function (3.35)
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{—6.93 —31.69} {1}
A = B =
1 0 0 (3.37)

C=[-21.7 900.7] D=0
Due to the controller design results from the bench test, an input with an integrator was added to

the plant to eliminate the steady-state error. The resulting system matrices of the new multi-input

plant are
-6.93 -31.69 1 1 0
Ap=| 1 0 0 Bp=Dp|0 O
0 0 0 0 1 (3-38)
Cp=Mp=[-21.7 900.7] D=0
Controller design parameters were selected as
W, =1 V=001, R=diag [1 20] (3.39)

and resulting OCC controller with integrator is

3 2
K = 119.257 +1083s“ +1503s +292.4 (3.40)

% 4 1 065.853 +1.43x10% 52 + 5281

Performance tests were conducted at 1200 and 1800 rpm. The intake and exhaust cam
phaser responses and control efforts were compared between those of the PI and OCC controllers.
Figure 3-31 shows the step response of the closed-loop VVT systems at 1800 rpm with engine
combustion. It can be observed that both controllers lead to zero steady-state error, with the
steady-state oscillation of less than 1 degree. Both controllers have similar 10~90% rising time
of 2 to 3 engine cycles. The main advantage for the OCC controller in this case is that the OCC
controller has much less overshoot than that of the PI controller. The OCC controller reduces the
response overshoot by more than 50% compared to the PI controller in most cases. Compared to
the baseline PI controller, the OCC controller has a longer settling time. Although the OCC
controller has a much lower control effort on the test bench, both control efforts on the dyno are
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very similar (Figure 3-32). The main reason is that the feedback sample rate on the dyno is much
slower than on the bench. The slow sample rate penalizes OCC much more than the PI, because
the OCC is a higher order dynamic controller. As a result, the advantage of OCC in control effort

is not shown on the engine dyno.
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Figure 3-31. VVT system step response at 1800 rpm with combustion
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Table 3-10. Cam phaser performance when motoring

Advanced Performance

Engine Speed (rpm) | Cam | Overshoot (deg) | Settling Time (s) | Rising Time (s)
PI ocCC PI oCC PI OoCC
1200 10.60 | 3.10 1.00 2.17 0.20 | 0.20
Intake
1800 7.10 2.50 0.50 2.10 0.13 0.13
1200 6.90 1.90 0.90 2.30 0.20 | 0.30
Exhaust
1800 6.20 3.30 0.90 2.00 0.20 | 0.20
Retard Performance
Engine Speed (rpm) [ Cam | Overshoot (deg) | Settling Time (s) | Rising Time (s)
PI ocCC PI oCC PI OoCC
1200 9.00 2.80 1.70 2.60 0.20 | 0.20
Intake
1800 8.00 2.80 1.20 2.60 0.13 0.20
1200 8.20 2.80 2.90 2.30 0.20 | 0.20
Exhaust
1800 8.30 3.40 1.30 2.30 0.13 0.20

Table 3-11. Cam phaser performance when combusting

Advanced Performance

Engine Speed (rpm) | Cam | Overshoot (deg) | Settling Time (s) | Rising Time (s)
PI ocCC PI oCC PI OoCC
1200 9.80 2.90 2.30 2.40 0.20 | 0.20
Intake
1800 7.10 2.50 0.50 2.20 0.13 0.20
1200 7.80 2.90 1.50 2.60 0.20 | 0.20
Exhaust
1800 5.60 3.00 0.90 2.20 0.13 0.13
Retard Performance
Engine Speed (rpm) [ Cam | Overshoot (deg) | Settling Time (s) | Rising Time (s)
PI ocCC PI oCC PI OoCC
1200 9.00 2.90 1.10 2.70 0.20 | 0.20
Intake
1800. 7.60 2.90 0.70 2.30 0.20 | 0.20
1200 8.10 3.00 2.20 2.30 0.20 | 0.20
Exhaust
1800 7.30 3.40 0.90 2.40 0.13 0.20
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3.10 Conclusion

This chapter applies integrated system modeling and control design process to a hydraulic
continuously variable valve timing (VVT) actuator system. Constrained by the sample rate of the
crank-based cam position sensor (a function of engine speed) and time based control scheme, the
actuator control sample rate is different from the cam position sensor sample rate. Due to the
cam shaft torque load disturbance and the high actuator open-loop gain, it is also almost
impossible to maintain the cam phase at the desired level with an open-loop controller. To obtain
an adequate control design model, the closed-loop multi-rate system identification is required.
Closed-loop system identification using the PRBS g-Markov Cover was tested on a Hardware-
In-the-Loop simulator. The HIL simulation result shows that the closed-loop identification
successfully retrieved a lumped plant model, from the control input to the sensor output. The
closed-loop identification approach was then applied to obtain open-loop system models of a
VVT cam actuator system from a test bench. The proposed closed-loop system identification
approach provides models whose time responses are fairly close to bench responses. An output
covariance constraint controller was designed based on the identified model and tested on the test
bench. The controller utilizes an extra integrator to eliminate the steady-state error. Compared to
the PI controller, the multi-input OCC controller uses less energy and has the similar closed-loop
response time. OCC controller also reduces response overshoot by up to 50%. A Linear
Parameter Varying (LPV) system was developed based on the family of models identified at
different operating conditions. The LPV controller has lower control effort and lower overshoot
than PI, and has faster settling time than the OCC controller. A hydraulic VVT system was
modeled using closed-loop identification method on an engine dynamometer and an OCC

controller was designed based on the identified model. It is shown that the closed-loop
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identification method was able to retrieve hydraulic VVT system model from a working engine.
Similar to the bench results, the OCC controller has a much lower overshoot than PI controller.
However, due to the low sampling rate on the engine, the OCC controller does not demonstrate

the reduced control effort advantage on the engine dynamometer tests.
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Chapter 4 Electric Variable Valve Timing System Modeling and Controller
Design

4.1 Introduction

Continuously variable valve timing (VVT) systems used in an internal combustion engine
were developed in the nineties [1] and have since been widely used due to the growing fuel
economy demands and emission regulations. VVT systems improve fuel economy and reduce
emissions at low engine speed, and improve engine power and torque at high engine speed.
Conventional electronic-hydraulic VVT ([1], and [2]), also called hydraulic VVT, is the most
widely used in the industry today. The hydraulic VVT systems require minor changes when
applied to a previously non-VVT valve-train [1], which makes design and engineering relatively
easy. However due to its mechanism, the hydraulic VVT system also has its limitations [3]. The
response and performance of hydraulic VVT systems are significantly affected by the engine
operating conditions such as engine oil temperature and pressure. For instance, at low engine
temperature, the hydraulic VVT system cannot be activated and has to remain at its default
position so that the cold start performance and emissions cannot be improved [3]. This leads to
the study of other variable valve-train systems, such as electromagnetic [4], hydraulic [5],
electro-pneumatic [6], and electric motor driven planetary gear system ([7] and [8]). Electric
motor driven VVT operational performance is independent of engine oil temperature and
pressure [3]. Compared to the hydraulic VVT system, the electric motor driven VVT systems are
less limited to engine operating conditions and therefore give better performance and better
emission in a wider operational range. Especially, since the electric VVT (EVVT) systems are

independent of the engine oil pressure, their response times are greatly improved.
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The major advantage of homogeneous charge compression ignition (HCCI) combustion
is realized by eliminating the formation of flames. That results in much lower combustion
temperature. As a consequence of the low temperature, the formation of NOx (nitrogen oxides) is
greatly reduced. The lean burn nature of the HCCI engines also enables un-throttled operation to
improve engine fuel economy. Unfortunately, HCCI combustion is feasible only over a limited
engine operational range due to engine knock and misfire. To make a HCCI engine work in an
automotive internal combustion engine, it has to be capable of operating at both a spark ignition
(SI) combustion mode at high load and an HCCI combustion mode at low and medium load ([9]
and [10]). This makes it necessary to have a smooth transition between SI and HCCI combustion
modes.

Achieving the HCCI combustion and controlling the mode transition between SI and
HCCI combustions in a practical engine require implementation of enabling devices and
technologies. There are a number of options, and the necessary prerequisite for considering any
of them is their ability to provide control of thermodynamic conditions in the combustion
chamber at the end of compression. The range of devices under consideration includes variable
valve actuation (cam-based or camless), variable compression ratio, dual fuel systems (port and
direct fuel injection with multiple fuel injections), supercharger and/or turbocharger, exhaust
energy recuperation and fast thermal conditioning of the intake charge mixture, spark-assist, etc.
Variable Valve Actuation can be used for control of the effective compression ratio (via the
intake valve closing time), the internal (hot) residual fraction via the negative valve overlap (also
called recompression) ([11] and [12]), or secondary opening of the exhaust valve (residual re-
induction) ([11] and [12]). In addition to providing the basic control of the HCCI combustion,

1.e., ignition timing and burn rate or duration, VVT systems play a critical role in accomplishing
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smooth mode transitions from SI to HCCI and vice versa ([13], [15], and [16]). In this paper, the
EVVT system is selected to control the engine valve timings when it is operated at SI and HCCI
combustion modes, and during the combustion mode transition the electric VVT is controlled to
track a desired trajectory.

In order to control the electric planetary VVT system, a feedback controller was
introduced in [8]. Due to the steady state and transient control accuracy requirements of the
HCCI combustion, the closed-loop EVVT system needs not only to meet steady-state
performance requirement but also needs to track a desired trajectory during the combustion mode
transition. Therefore, a feedback controller with feedforward control was developed in the
simulation. In an EVVT system, the cam phase is the integration of speed difference between the
electric VVT motor and crankshaft. This leads to using the rate of the reference cam phase as the
feedforward command. An Output covariance constraint (OCC) controller ([33], [34], and [35]),
an H, controller, is used in feedback to reduce the tracking error. Performance of the OCC
controller was compared to well-tuned proportional-derivative (PD) controllers, and the OCC
controller with feedforward provides better cam phase tracking performance than PD controllers.
Different cam phase sample rates were also studied and results show that 4 samples per engine
cycle are sufficient for OCC feedback.

The physical based model and simulation results provided a control framework for the
EVVT bench. The EVVT system with a local speed controller was mounted on an engine head.
An electric motor was used to simulate the crankshaft of the engine. The EVVT pulley was
connected to the motor through a timing belt. Closed-loop system identification was used to

retrieve a plant model. An OCC controller was designed based on the identified model.
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Simulation result shows that OCC has a lower overshoot and lower phase delay than a tuned
proportional controller, while having similar or faster response time.

It was also observed from the EVVT bench test that the engine oil viscosity has a large
impact on EVVT performance. The engine oil is used to lubricate the planetary gear system.
Friction of the engine oil limits the top speed of the EVVT motor. As a result the maximum
phasing speed is limited. Two different engine oil viscosity weightings were tested on the test
bench. The results show that at room temperature, the EVVT system response is 1.6 times slower
using SAE 30 than using SAE 5W20 engine oil.

Modeling and simulation of EVVT introduced in this chapter can be found in [53].

This chapter is organized as following. Section 4.2 describes the electric VVT model and
system architecture. Section 4.3 presents the feedforward control strategy and the closed-loop
controller design using OCC. Section 4.4 provides the simulation results. EVVT test bench setup
is introduced in Section 4.5, and test results are shown in Section 4.6. Section 4.7 investigates
engine oil viscosity’s impact on EVVT performance. Conclusions are drawn in Section 4.8.

4.2  Modeling

4.2.1 Planetary VVT Components

The planetary gear VVT system studied in this paper consists of four major components
(see Figure 4-1). The ring gear, which serves as the VVT pulley, is driven directly by the
crankshaft through a timing belt at half crankshaft speed. The planet gear carrier is driven by an
electric VVT motor. Planet gears engage both ring and sun gears. The sun gear is connected to
the camshaft. The sun and planet gears are passive components that obtain kinetic energy from
the carrier and ring gears. Compared to other components, the inertia of engine flywheel and

crankshaft is very large. As a result, dynamics of the ring gear is ignored in this study. All other

77



components have known mechanical properties and their dynamics are considered in the
modeling.

Ring Gear
VVT Pulley

Sun Gear

Camshaft

Carrier
VVT Motor

Bold: Role in
................................................ planetary system

Planetary __| Italic: Role in VVT
Gears \.’: system

Timing Belt

Figure 4-1. Electric planetary gear VVT system
4.2.2 Planetary Gear System Kinematics
In a planetary gear system [54] shown in Figure 4-1, angular velocities of components are
determined by

a)s(t)_wc(t) :_&
o, (t)—a, (1) ng @

where @;, ®,., and o, are angular velocities of the sun, carrier, and ring gears respectively. n,
and ng are the teeth numbers of ring and sun gears. Laplace transformation of (4.1) can be

expressed as

Q(5) ==L, () -0 (5) +Q (5) 4.2)

A S

The cam phase angle ¢ is two times of the integration of the difference between camshaft and

crankshaft speeds. That is
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¢=2 jé[ws (0) -, (1)l (4.3)

and its Laplace transformation is
2
D(s) = ;[Qs (8)=Q,.(s)] (4.4)

Substituting (4.2) into (4.4), we have

o=2 0 —q,) 4.5)
S n

S

Equation (4.5) shows that the cam phase is an integral function of speed difference
between carrier and ring gears. In other words, by controlling the VVT motor speed with respect
to the engine speed, the cam phase can be adjusted. When the carrier speed is equal to the ring
speed, the cam phase is held; when the carrier speed is greater than the ring speed, the cam phase
is advancing; and when the carrier speed is slower than the ring speed, the cam phase is retarding.
Notice that equation (4.5) contains an integrator, and the target cam phase reference cannot be
used as feedforward control directly.

4.2.3 Planetary Gear System Dynamics

Planetary gear system dynamics with an electric motor are modeled in this section. In this

study, the gear system friction is ignored. Figure 4-2 shows free body diagrams of planetary gear

components.
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Figure 4-2. Free body diagrams of planetary gear components
Without loss of generality compared to the system in Figure 4-1, the system is treated as

having only one planet gear (Figure 4-2a). Since all the gears are properly engaged, we have
_s:_:_r’ rrzzrp"_rs (4.6)

where n,, is the number of teeth on the planet gear, and 7,

» and r, are the pitch circle radii

p b
of the sun, planet, and ring gears. In this study, the gears use a standard pressure angle € of 20

degrees. Since the ring has a very large inertia compared to the other components, angular

velocity of the ring @, is assumed to be constant during the phase shift. From (4.2)

. n.tng .
o, = @, (4.7)

ng

There are two torques applied to the sun gear (Figure 4-2b). They are camshaft load

T,

vam and torque from tooth force F34.

F34 Ig - COS 60— cam = Jsd)s (4'8)

where J is sun gear’s moment of inertia with respect to its center of gravity.
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Two tooth forces (Fy3 and Fj3) and one bearing force from carrier F,3 are applied to

the planet gear (Figure 4-2¢) which rotates around the bearing on the carrier at @,

@p(0=@.() _ n,
o, -0.()  n, *9)

and from torque balance with respect to bearing point
(Fy3+F3)-rp-cos@=J,w, (4.10)
where J, is the planet gear’s moment of inertia with respect to its center of gravity.
The planet gear also rotates about the center of sun gear. Therefore
[F13(2n.) = Fy3rglcos 0+ Fp3(r, +ry)cosa = J @, (4.11)
where the direction and magnitude of bearing force F,3 are unknown. The planet gear’s moment

of inertia with respect to the center of sun gear J ,, can be calculated by

ps
— 2

S ps =J pll+my, (rg+1r,)7] (4.12)

Since the carrier is driven directly by the motor shaft, the carrier’s inertia is also

considered to be part of motor shaft inertia, and modeled in the next sub-section. Torque balance

of the carrier is
F32cosa(rp+rs):Tload (4.13)
where Tj,,, 1s the mechanical load to the motor shaft and F3, is the bearing force from planet

gear.
Using (4.7) in (4.8), we have

n,+n
F3y-1rg-cos@=J,——=

O +Tgm 4.14)

ng

From (4.9) and (4.7)
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_ s p
Wy === + —
p p
) ng n,+ng ngtn,
W, =——= @, + @, (4.15)
n, N n,
—n,+n
= Lg
nS
As aresult, from (4.10)
—n,+n,
(F43+Fi3)’rp‘C059:Jp @, (4.16)
nS
Use (4.12) and (4.13) in (4.11)
[Fi3(2r,) — Fy3ry1c08 0+ Tjpqq = J p[1+m,, (1 +1,) 1, (4.17)
Use (4.14) in (4.16)
n.+ng p . 1 —-n,+n, .
Js%rla)c+rlem+Fl3-rp-COSQZJP%Q)C (4.18)
S S S S
Use (4.14) in (4.17)
n,+ng . 25,
F3(2r,.)cos@—J - O =Ty +Tioaq = J pl1+my, (g +1,)" 1@, (4.19)
S
Use (4.19) in (4.18)
2r,
_Tcam __rTcam +Tload
S
(4.19)
2r. —n,.+n +
= [l m, (1 +1,)? =Py g (s 2% ),
" ng ng Ty
Equations (4.6-4.13) can be simplified as follows.
Tload = Jgearsd)c + cham (4.20)
where constant J is an equivalent inertia of the planetary gear system, and k is a factor of

gears
the gear ratio, and
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2 2n, —ntn n,+ng 2n,

T gears = J pl1+m, (ry+71,) - n—”]+Js( p— +1)
p s s s
(4.21)
k= (142
n

S

4.2.4 Electric VVT Motor Dynamics
An electric motor is used to drive carrier in the planetary system. A local closed-loop
speed governor is used to control both the motor speed and direction. The input to the local
motor controller is the reference speed and direction. In this study, the motor and its controller
are treated as an actuator (Figure 4-3). It is modeled with two inputs of motor velocity command
and cam load, and one output of motor shaft speed.
The mechanical load of the motor can be modeled [55] as
Jo@ =T=BW ~Tjpqq (4.22)
where J,. is the moment of inertia of motor shaft and carrier, B is the friction coefficient, and 7
is the motor torque. Substituting (4.21) into (4.22) leads to
(Ve + gears )@ + B& =T kT qp (4.23)

and the associated transfer function can be written as

1
Q. (s)= T(s)—kT K

O T T s 1B ) eam ) (4.24)
kTcam Or

Ia - B Phase

1—_> I T 1 Qc 2(ns+nr) ¢
+ 7 sLm+Rm + (Je+Jgear)s+B + sns
Lim Km =

Figure 4-3. Block diagram of electric motor with planetary gear system

The modeling procedure of the electric portion can be found in [55]. Let J =J,. +J o4y,

and the electric motor with planetary gear load (Figure 4-3) can then be represented by
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Q. (5)=G,($)E,(5)+ Gy ()T, (5) (4.25)

where the voltage input transfer function is

K; K;
G, = = (4.26)
(L,s+R,)Js+B)+K K, R,(s+B)+K K,
and the mechanical input transfer function is
—(L,,s+R —R, k
s+ Byy) " (4.27)

G, = =
" (L,s+R,)(Js+B)+K.K, R,(Js+B)+K.K,
andK,, K,,, L,,, and R, are the motor parameters representing motor torque constant, back

EMF (electric magnetic field) constant, armature inertia and resistance, respectively [55].

4.3  Controller Design

4.3.1 Control Design Parameters

The electric motor VVT system model includes the VVT controller, the local motor
controller, motor/planetary dynamics, and planetary kinematics (Figure 4-4). The system
parameters are listed as the following and the controllers were designed based on these

parameters.

Engine Speed ¢

Cam Load Motor/ Planetary
VYT Control > Planetary =% i ematics [T o+
—————— onrorer __ | Dynamics Qc Cam

' Phase

Feed-forward utl : TEa
uFB : Local Motor
Feedback : 4 L Controller
Figure 4-4. Electric motor VVT control framework
The voltage input transfer function is
45
G, = 4.28
¢ 02s+1 (428

84



and the mechanical input transfer function is

-5
G. =
™ 0.25+1

and the motor has a local PI controller defined by

K

motor =
S

s+0.1

(4.29)

(4.30)

Table 4-1. Planetary system parameters

Component Sun

Ring

Planet

Number of teeth 30

60

15

2.5

—
(91

Torque Load (N.m)

o
W
T

Torque Load for single cylinder |

-0.5 | |
0O 01 02 03 04 05

Cycle

0.6

07 08 09 1

Figure 4-5. Torque load for single cylinder

The teeth numbers of the gear train components are listed in Table 4-1. Substituting these

values into (4.5), the planetary kinematics can be represented as

6
P=—(Q.-0,)
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The cam torque load for each cylinder (Figure 4-5) consists of three portions: constant
friction load, sinusoidal load representing cam profile, and steps representing the valve spring
pre-load. In the study, a 4-cylinder engine is simulated. The total load is a combination of four
single-cylinder loads with 180 degree phase shift for each cylinder.

4.3.2 Feedforward Controller

In order to improve the system response, a feedforward controller was employed in the
control design. Due to the physical characteristics of the EVVT system stated in the previous
section, the reference signal was not used directly as the feedforward; instead, the derivative of
the cam phase reference signal was used as a feedforward controller.

The feedforward gain was determined by the ratio between desired cam phase slope and

the motor speed. Using (4.21), feedforward gain K can be determined as

1
upp = Kppref + @, =gréf+wr (4.32)

where upp is the feedforward control effort, and réf is the filtered derivative of the reference
signal ref

S
o S 433
e = 0ss 1 (4.33)

4.3.3 Baseline Controllers
Since the electric phase actuator plant contains an integrator, proportional-derivative (PD)
controllers were used as our baseline controllers. These baseline feedback controllers were tuned

as performance comparison, where K; was tuned without feedforward and K, was tuned with

feedforward, and they are

K; =7+0.03s

4.34
K, =1+0.005s (434)
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4.3.4 OCC feedback Controller
For OCC design, considering mechanical cam load as a disturbance, VVT controller
output as a plant input, and the cam phase as an output, system matrices of the electric VVT

system (Figure 4-4) can then be written as

0 225 0 =25 0
0 -230 0.1 O 1
0 -225 0 O 1 (4.35)
0 O 0 -5 0
Cp=Mp=C=[6 0 0 0], Dy=[0 0 0 1]’
The control design parameters were chosen as
W, =2, V=00l R= [1] (4.36)

Using the control design algorithm introduced in [35], the resulting OCC controller is

a3 42 S5¢_ 4
o ~164s” ~3.9%10%5% ~2.9x10°5 - 2.8x10 (4.37)

st +208.85% +1.8x10%s2 +3.27x10° s +3.25x10%

4.4 Simulation and Results

Simulations were conducted in Simulink. To simulate the engine valve operation under
SI and HCCI transition, the reference signal was selected as a 40 crank degree phase retard that
completes in 3 engine cycles. For simplicity, the transition reference signal was divided into
three stages with a constant slope. For the first engine cycle the retard phase is 50% (20 degrees),
the second cycle is 33.3% (40/3 degrees), and the third 16.7% (20/3 degrees). The phase
controller output signal is sampled every Sms and the feedback signal is updated 4 times per
engine cycle. For instance, at 1500 rpm the cam phase is sampled every 20ms. The closed-loop

system performance at two engine speeds, 1500 and 2000 rpm, were evaluated.
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Figure 4-6. Output comparison at 1500 rpm

Figure 4-6 compares the cam phase responses between three controllers (OCC, PD with
feedforward, and PD without feedforward controllers) at 1500 rpm. It shows that the initial
response of the PD controller with feedforward is much faster than the PD controller without
feedforward. However, due to the relatively low gain of the PD controller with feedforward, after
the second cycle, it has a larger overshoot with longer settling time than the PD controller
without feedforward. The OCC controller has the advantage of fast response with small
overshoot. Table 4-2 shows output phase angles at the end of each engine cycle after the SI and
HCCI transition starts. The OCC controller with feedforward has the lowest overall tracking
errors. It is noticed that performance is quite different at different engine speeds of 1500 and
2000 rpm (see Figure 4-7 and Table 4-2) due to the different feedback sampling rates of the cam

phase signal at different engine speeds.

88



Phase (Deg)
NN
S O

—
(91
T

—
(=]
T

— Reference

""" PD w/o Feed-forward
""""" PD w Feed-forward
s OCC w/ Feed-forward

0 05

Table 4-2. Output comparison at end of each cycle

1 1.5

2

2.5

3

Engine Cycle @ 2000rpm
Figure 4-7. Output comparison at 2000 rpm

Engine | Cycle Error (Deg)
speed | Number | pp vl:/fo ?v?f(i
1 +3.5| +0.9 -0.5
1500 2 +2.3| -0.8 -1.0
rpm 3 +1.1| -1.5 -0.9
4 -0.1 | -1.5 -0.8
1 +2.8 | +1.6 +1.3
2000 2 +1.8 | -0.2 -0.5
pm 3 +0.8 | -1.2 -0.6
4 -0.1 | -1.5 -0.8
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Table 4-3. Output comparison at 1500 rpm with different sample rate

Error (Deg)
Sample | Cycle
Rate | Number | pp PD w/ | OCC w/
ff ff

1 +2.6 | +1.2 +0.3

8/ 2 +1.7 | +0.0 -0.3

cycle 3 |409] -06 | -04

4 +0.1 ] -0.9 -0.4

1 +2.6 | +1.8 +1.0

16/ 2 +1.8 | +0.7 +0.5

cycle 3 1409 -0.1 | +02

4 +0.1| -0.5 +0.0

As an investigation, the tracking error performances with higher feedback sampling rates
were also studied (Table 4-3). The simulation data shows that the tracking error reduces when
the sample number increased from 4 samples per engine cycle to 8 samples, but further
increment of sample number does not reduce the tracking error significantly. Especially, with the
OCC design, the tracking error is fairly small with 4 samples per cycle. Therefore, considering
the limited tracking error reduction and increased computational requirement, 4 samples per
cycle of the cam phase signal is proper for this application.

4.5 The Electric VVT Bench Setup

In order to model and design a controller for the EVVT actuator system, a test bench was
constructed. The test setup was very similar to the hydraulic VVT system bench, except the
hydraulic VVT was replaced by an EVVT system. The EVVT system has a phasing range of 45
degrees and is controlled by an AC motor with its own speed governor. An Opal-RT real-time

prototype controller adjusts the cam phase by adjusting the reference speed PWM signal sent to
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the motor speed governor. The PWM signal frequency is directly proportional to the command

rpm and the local motor controller has its cut-off frequencies at both high and low motor speeds.

EVVT

Torque Magnets
|Cam Shaft dislurbancne’/

o | Cam Position
Timing Belt__ Sensor
Crank Pulley
and encoder

Crank Shaft

Figure 4-8. EVVT system test bench diagram

Figure 4-9. EVVT test bench

The Ford 5.4L V8 engine head is the same as the hydraulic test bench. An electric motor

is used for simulating the crank shaft of an engine. An encoder was installed on the motor shaft
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generates crank angle signal and gate signal (360 degrees per pulse). A cam position magnetic
sensor was installed at other side of the engine head. A disc with 4 slot holes was mounted on the
extended cam shaft and between the magnetic sensor and the magnet. This setup generates four
pulses per engine cycle and the cam position is updated 4 times every engine cycle (Figure 4-8
and Figure 4-9). The cam position sensor system has a theoretical calculation resolution of 1/64
degree. However, it is calibrated manually by using an oscilloscope, so the actual resolution is
lower than the theoretical value. An electric oil pump was used to supply oil for cam shaft and
planetary gear lubrication. The EVVT bench was running at room temperature (25°C)

4.6  Electric VVT System Test the Test Bench

4.6.1 Closed-loop Identification for Electric VVT System on Test Bench

The bench test of closed-loop system identification process of the EVVT system is very
similar to that of the hydraulic system. The main difference is that the engine feedforward speed
is used in the system identification process. The main reason is that the EVVT model uses the
speed difference between the motor and half engine speed as the input (4.5). The engine speed
has much slower dynamics than that of the EVVT system, and can be considered as a constant

during the cam phasing. The resulting indentified model has the following form:

1
D =Gy (5)(u _ERPMengine) (4.38)

where @ is the cam phase, G,,,,(s) is the identified EVVT model, u is the speed command

from the controller and the constant 1/2- RPM is half engine speed. The PRBS was used

engine
as reference signal for the closed-loop identification and its amplitude was selected to be 10
degrees centered at 20 degrees from the most retarded position. A proportional controller with

gain of 70 was used for the system identification.
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Table 4-4. Closed-loop identification parameters for the EVVT system

Engine Speed (rpm) 1000 1500
Input Sample Rate (ms) 5 5
Output Sample Rate (ms) 30 20
Output/Input Sample Ratio 0.167 0.25

PRBS order 13 13
Signal length (s) 81.88 81.88
Markov parameter. # 100 100
ID open-loop model order 4 4

Due to the speed limitation on the test bench, the EVVT system was identified at 1000

and 1500rpm. A nominal system model was obtained as

~9.7253 +13952 + 57605 + 5785
sT412.175° +158.952 —62.335+11.2

(°/1000rpm) (4.39)

Gopyr ($) =

A proportional controller (4.40) was tuned for performance comparison. The proportional
controller was tuned to achieve balance between fast response time and low overshoot at both
1000 and 1500 rpm.

K,pi—p(s)=80(rpm/°) (4.40)
4.6.2 Control Design for Electric VVT System Test Bench

An OCC controller was designed for the EVVT system bench. The system plant matrices

of the nominal model were obtained from equation (4.39)

-12.17 -1589 6231 -11.19 1
Ap=A-= 1 0 0 0 Bp=Dp=B - 0
0 1 0 0 0 (4.41)
0 0 1 0 0
Cp=Mp=C=[-9.64 1399 5756 5783] D=0

Controller design parameters were selected as
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W,=1 V=001, R=[]] (4.42)

Using the OCC iterative control design algorithm in [35], an OCC controller can be

obtained

6.35x10% 53 +8.465%10° 5% +1x107 s+ 6.7x107
Kevi-occ($)=—3 3 3 T 7 pm/° (4.43)
st +147.65° + 693752 +8.62x10% s +8.17x10

4.6.3 Control Performance Evaluation

The controllers were tested at 1000 and 1500 rpm. Both proportional and OCC
controllers have feedforward portions from engine speed as in (4.38). Different reference signals
were used to validate the trajectory tracking performance of the EVVT system.

The first reference signal was a square wave ranging from 10 and 30 degrees from most
retarded position. As shown in the plots Figure 4-10, both controllers achieves zero steady-state
error. The rising time for the proportional controller is almost identical to that of OCC controller
at 1000 rpm. At 1500 rpm, both controllers have a similar rising time for the retarded steps,
while the OCC controller has a faster rising time than that of the proportional controller. At 1000
rpm, the proportional controller has about 3.5 degrees overshoot for the advancing step and 5.5
degrees overshoot for the retard step. The OCC controller has about 20% less overshoot than the
proportional controller at 1000 rpm. At 1500 rpm, the proportional controller has almost zero
overshoot, while the OCC controller has overshoot of about 1 degree. Similar to hydraulic VVT,
the proportional controller settles faster than the OCC controller, but the OCC controller

provides consistent performance over a wider speed range
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A 20 crank degree phase advance/retard that completes in 3 engine cycles, with the phase
changed by 10 (50%), 6.67 (33%) and 3.33 (16.7%), respectively, was also used as reference
signal to simulate the phase change during the SI-HCCI mode transition (Figure 4-11). From the
plot, it is shown that the OCC controller has less overshoot than the proportional controller at
1000 rpm. At 1500 rpm, overshoots for both controllers are very low. The OCC controller has a
faster response time than the proportional controller in both engine speeds. Settling times for the
two controllers are also very close to each other.

In order to further investigate trajectory tracking performance for the EVVT controllers, a
series of sinusoidal waves was used to test the frequency response of the closed-loop systems.
The amplitude of the sinusoidal signal was set to be 10 and centered at 20 degrees from the most
retarded position, and the frequencies of the signals vary from 0.01 Hz to 2 Hz. The test results
show that both controllers have very good tracking performance at low frequency (Figure 4-12
and Table 4-5). When the excitation frequency increases, both controllers have performance
decay. The two controllers have almost identical gains at different frequencies, but the OCC has
a lower phase delay compared to the proportional controller.

It is observed that when the engine is running at 1000 rpm, the closed-loop EVVT system
has overshoots when the excitation frequency is closed to 1 Hz. After 1.5 Hz, the system gain
quickly decays. The identified fourth order nominal model in (4.39) does not show similar
behavior at 1 Hz. A seventh order model was obtained using closed-loop identification at 1000
rpm and its predicted performance was compared to the measured data (Figure 4-13). The
overshoot of the closed-loop system is able to be duplicated under simulation environment using
the identified model at 1000 rpm. However the physical dynamics behind the phenomenon are

still unknown and will be investigated in the future.
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Table 4-5. Frequency response of close-loop EVVT system

1000 rpm 1500 rpm
Gain Phase (deg) Gain Phase (deg)
P OoCC P oCC P oCC P OoCC
0.01 Hz 1 1 6 5 1 1 4 4
0.1 Hz 0.98 0.98 21 16 0.97 0.97 21 9
0.2 Hz 0.97 0.96 30 19 0.95 0.96 33 19
0.4 Hz 0.95 0.97 46 30 0.93 0.95 50 21
0.8 Hz 1.18 1.18 74 49 0.96 1.02 66 46
1 Hz 1.33 1.35 94 58 0.95 0.98 87 58
1.5 Hz 1.05 1.04 161 108 0.82 0.78 119 91
2 Hz 0.70 0.72 202 137 0.60 0.61 144 115
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Controller performance evaluation at 0.1 Hz @1000rpm

30
25
=)
)
Q
c 20
9
‘B
C
o 19
(%)
©
<
o
10
—mmes Reference
S| ====- Proportional controller 1
— OCC controller | ’
30 35 40 45 50
Time (s)
Controller performance evaluation at 0.1 Hz @1500rpm
30
25
>
)
Q
c 20
9
‘B
g
o 19
(%)
©
<
o
10
—mmes Reference
S| ===m- Proportional controller 1
— OCC controller | ’
30 35 40 45 50

Time (s)
Figure 4-12. Frequency response of the closed-loop EVVT system (continued)

100



Controller performance evaluation at 1 Hz @1000rpm
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Controller performance evaluation at 2 Hz @1000rpm
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Figure 4-13. Measured and predicted VVT frequency response at 1000 rpm

4.7  Engine Oil Viscosity

Two different types of engine oil, SAE 5W20 and SAE 30, were used during the bench
test. The engine was running at 1500 rpm at room temperature (25°C ), and OCC controller (4.43)
was used in both cases. The reference signal was a 20 degree advance step. The 10 to 90 percent
rising time was 0.3 second with SAE 5W20, and 0.48 second with SAE 30 engine oil. The
response time difference is due to the friction in the planetary gear system caused by the engine
oil viscosity. Figure 4-14 shows the system response and normalized speed difference between
the EVVT motor and half engine speed (750 rpm). The VVT motor speed was saturated at 30
units above 750 rpm with SAE 30. With SAE 5W20, the motor speed was saturated at about 50
units above 750 rpm. The system response time is inversely proportional to the difference

between the EVVT motor speed and half of the engine speed. Notice that the EVVT motor speed
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is measured by calculating PWM frequency from the EVVT local speed controller and has some
error (spikes) during the calculation process.

The test result also suggests that the no-friction assumption during the simulation study is
not true. On an engine, the nominal operating temperature is much higher than room temperature
of the test bench and the engine oil has lower viscosity as a result. The EVVT system will

respond much faster when it is installed on an engine than on the test bench.
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4.8 Conclusion

An electric VVT system with planetary gear train was modeled based upon individual
component dynamics and kinematics. A closed-loop OCC control with feedforward control is
proposed to reduce the cam phase tracking error during SI and HCCI combustion mode transition.
Due to the physical characteristics of the electric VVT system, the filtered derivative of the cam
phase reference is used as the feedforward control. Compared to the well-tuned PD controllers,
simulation results show that the OCC controller provides fast response with low overshot and
low tracking error. It was shown in Simulink environment that with OCC controller the cam
phase signal sampled at 4 times per engine cycle is sufficient to meet the maximum tracking
error requirement of less than 1.5 degree. The simulation constructed a control framework for the
EVVT bench test.

An EVVT system was installed on an engine head and bench tests were conducted. The
EVVT system plant model was obtained by using closed-loop system identification. The model
has very similar closed-loop response compared to the physical system. An OCC controller was
developed based on the identified model. Different signals were used as reference to test the
controller performance. The test results showed that the OCC controller has a faster response
time compared to a well-tuned proportional controller. The OCC controller performance also has
less phase delay than the proportional controller under high frequency sinusoidal reference inputs.
The bench test results show that the OCC has a better overall performance and is suitable for
using in an HCCI engine.

The impact of engine oil viscosity was also investigated. The test results showed that the
engine viscosity has a heavy impact on EVVT response time. When operating at room

temperature, the EVVT motor speed is limited by the viscous friction due to the engine oil. As a
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result, the system with higher viscosity engine oil (SAE 30 single weight) responds
proportionally slower than the system with low viscosity oil (SAE 5W20 weight). The results
suggested that it is necessary to use low viscosity engine oil to achieve the maximum
performance. This could mean either operating at a high temperature or using low viscosity

weight engine oil.
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Chapter 5 Conclusions and Future Works

5.1 Conclusions

A low frequency system identification error was discovered when an integral controller
was used for PRBS g-Markov Cover closed-loop system identification using an indirect
approach. Using the proportional controller in the closed-loop system identification leads to the
most accurate plant model. If possible, it is recommended not to use a dynamic integral
controller in the closed-loop system identification when PRBS is used as excitations. This study
shows that controller setup with a proportional controller is an effective framework for the VVT
system closed-loop identification.

Due to the physical properties of the VVT systems, open-loop or single-rate system
identification was not feasible. Closed-loop multi-rate system identification is required.
Simulation results show that closed-loop identification retrieves plant models representing
system dynamics very well. Closed-loop system identification and control design processes were
then conducted on hydraulic VVT actuator systems. OCC controllers were designed based on the
identified model and tested on test benches and engine dyno with hydraulic VVT systems. The
simulation, bench and dyno tests proved that:

. Closed-loop system identification retrieves hydraulic VVT models suitable for controller
design purpose.

. The OCC controller demonstrated its advantages of lower overshoot and lower control
effort than proportional and integral controller on hydraulic VVT systems.

. With lower feedback sampling rate, the OCC controller still has lower overshoot than the

PI controller, but its control effort is penalized.
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Physical based modeling and simulation was used to construct control framework for the
EVVT system. An EVVT system plant model was obtained by using closed-loop system
identification on the test bench. OCC controller was designed based on the identified model and
tested on the bench. The controller performance was compared with a well-tuned proportional

controller. The test results conclude:

. An electric VVT system model was obtained using closed-loop system identification
method
. The model based OCC controller has lower overshoot and less phase delay than

proportional controller on EVVT systems, while having similar response time.
o The engine oil viscosity has a huge impact on electric VVT system response time. Low
viscosity engine oil or high temperature is required for achieving short response time.

5.2 Suggestions for Future Works

The electric VVT system was only tested on the bench and its performance was evaluated
at low speed. The performance difference at different engine speed was neglected during
modeling and control design process. An engine operates at a much wider speed range than the
bench. Due to the kinematics of the EVVT system, its performance varies with the engine speed.
For example, as the engine speed increases, the EVVT will have a faster retarding response and a
slower advancing response. This difference challenges controller design at higher engine speed
and it will be important to test the EVVT system at higher engine speed.

The EVVT system was tested at room temperature (25°C), and its full potential was
limited during the bench test. In an engine, the EVVT system will be operating at a higher
temperature (95°C). A faster response can be achieved due to the lower engine oil viscosity at

higher temperatures. At different engine oil temperature, the maximum EVVT motor speed is
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different. Also, the battery voltage at engine start is much lower than standard 13.5 Volts used in
the test. The engine speed, engine oil temperature and battery voltage can be included in an LPV
system as varying parameters.

During the EVVT bench test, the controller used only engine speed as feedforward
portion. On an engine, the controller needs to track arbitrary phase trajectory with as little
tracking error as possible. The controller will be able to further reduce tracking error if it
contains inverse dynamics of the EVVT plant as feedforward. During the design process, both
feedforward and feedback needs to be considered simultaneously, so that optimality is
guaranteed with both portions.

Last but not least, the EVVT system will be working with dual-lift valves on the HCCI
engine. The camshafts have two switchable cam profiles and switching between the cam profiles
introduces torque disturbance to the camshaft. The EVVT controller needs to compensate for the

disturbance from switching profile and combustion.

110



Bibliography

111



(1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Bibliography

Y. Moriya, A.-Watanabe, H. Uda, H. Kawamura, M. Yoshiuka, M. Adachi, “A Newly
Developed Intelligent Variable Valve Timing System - Continuously Controlled Cam
Phasing as Applied to New 3 Liter Inline 6 Engine”, SAE Technical paper, 960579, 1996.

P. H. Dugdale, R. J. Rademacher, B. R. Price, J. W. Subhedar, R. L. Duguay, “Ecotec 2.4L
VVT: A Variant of GM’s Global 4-Cylinder Engine”, SAE Technical paper, 2005-01-
1941, 2005.

M. Hattori, T. Inoue, Z. Mashiki, A. Takenaka, H. Urushihata, S. Morino, T. Inohara,
“Devalopment of Variable Valve Timing System Controlled by Electric Motor”, SAE
Technical paper, 2008-01-1358, 2008.

M. Theobald, B. Lequesns, and R. Henry, “Control of Engine Load via Electromagnetic
Valve Actuators,” SAE Technical paper, 940816, 1994.

Z. Sun, and T. Kuo, “Transient Control of Electro-Hydraulic Fully Flexible Engine Valve
Actuation System”, IEEE Transactions on Control Systems Technology, Vol. 18, No. 3,
May, 2010, pp 613-621.

J. Ma, G. Zhu, and H. Schock, “A dynamic model of an electro-pneumatic valve actuator
for internal combustion engines,” ASME Journal of Dynamic Systems, Measurement and
Control, Vol. 132, March, 2010 (DOI: 10.1115/1.4000816).

R. J. Pierik, J. O. Wilson, “Engine Timing Drive with Fixed and Variable Phasing”, U.S.
Patent 5,327,859, 1994.

H. Urushihata, H. Iida, “Variable Valve Timing Control Device of Internal Combustion
Engine”, U.S. Patent 7,363,896 B2, 2008.

Zhang, Y., H. Xie, N. Zhou, T. Chen, and H. Zhao, “Study of SI-HCCI-SI Transition on a
Port Fuel Injection Engine Equipped with 4VVAS,” SAE Technical paper, 2007-01-0199,
2007.

A. Cairns and H. Blaxill, "The Effects of Two-Stage Cam Profile Switching and External
EGR on SI-CAI Combustion Transitions,” SAE Technical Paper, 2007-01-0187, 2007.

G. M. Shaver, et al, “Dynamic modeling of residual-affected homogeneous charge
compression ignition engines with Variable Valve Actuation,” ASME Journal of
Dynamics, Measurement, and Control, Vol. 127, September, 2005, pp. 374-381.

G. M. Shaver, Physics based modeling and control of residual-affected HCCI engines
using Variable Valve Actuation, PhD thesis, Stanford University, September, 2005.

D. Law, D. Kemp, J. Allen, G. Kirkpatrick, T. Copland, “Controlled Combustion in an IC-
Engine with a Fully Variable Valve Train”, SAE Technical paper, 2001-01-0251, 2001.

112



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. Ogura, T. Sasaki and Y. Kawaguchi, “HCCI Combustion Control by Intake and
Exhaust Continuous Variable Valve Timing Mechanism in Premixed Gasoline Engine”,
SAE Technical paper, 2004-32-0096, 2004

N. Milovanovic, R. Chen, J. Turner, “Influence of the Variable Valve Timing Strategy on
the Control of a Homogeneous Charge Compression (HCCI) Engine”, SAE Technical
paper, 2004-01-1899, 2004.

F. Agrell, H. Angstrom, B. Eriksson, J. Wikander, J. Linderyd, “Integrated Simulation and
Engine Test of Closed Loop HCCI Control by Aid of Variable Valve Timings”, SAE
Technical paper, 2003-01-0748, 2003.

X. Yang, Modeling and Control of SI and SI-HCCI Hybrid Combustion Engines, PhD
dissertation, Michigan State University, 2011

J. Poole, J. Patton, B. Goodwin, “Modeling and Simulating a VVT System for Robust
Design”, SAE Technical paper, 2008-01-0901, 2008

G. I. Gustavsson, L. Ljung, and T. Soderstorm, “Identification of process in closed-loop —
identifiability and accuracy aspects,” Automatica, Vol. 13, pp59-75.

M. Leskens, L. B. M. Van Kessel, and P. M. J. Van den Hof, “MIMO closed-loop
identification of an MSW incinerator,” Control Engineering Practice, Vol. 10, pp.315-326.

U. Forssel and L. Ljung, “Closed-loop identification revisited”, Automatica, 35, pp. 1215-
1241, 1999

P. M. J. Van Den Hof, and R. J. P. Schrama, “Identification and control - closed-loop
issues”, Automatica, Vol. 31, No. 12, pp. 1751-1770, 1995.

R. E. Skelton and B.D.O. Anderson, “Q-Markov covariance equivalent realization,”
International Journal of Control, Vol. 53, No. 1, 1986

K. Liu and R. E. Skelton, “Identification and control of NASA’s ACES structure,”
Proceedings of American Control Conference, Boston, Massachusetts, USA, 1991.

G. G. Zhu, R. E. Skelton, and P. Li, “Q-Markov Cover identification using pseudo-random
binary signals,” International Journal of Control, Vol. 62, No. 1, 1995, pp. 1273-1290.

G. Zhu, “Weighted multirate g-Markov Cover identification using PRBS — an application
to engine systems,” Mathematical Problems in Engineering, Vol. 6, pp. 201-224, 2000.

M. Jung and K. Glover, “Calibratable Linear Parameter-Varying Control of a
Turbocharged Diesel Engine,” IEEE Transactions on Control System Technology, vol. 14,
no. 1, pp. 45-62, 2006

113



[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

X. Wei and L. del Re, “Gain Scheduled H_, Control for Air Path Systems of Diesel

Engines Using LPV Techniques,” IEEE Transactions on Control Systems Technology, vol.
15, no. 3, pp. 406415, 2007.

J. Salcedo and M. Martnez, “LPV identification of a turbocharged diesel engine,” Applied
Numerical Mathematics, vol. 58, pp. 1553-1571, 2008

R. A. Zope, J. Mohammadpour, K. M. Grigoriadis, and M. Franchek, ‘“Air-fuel ratio
control of spark ignition engines with TWC using LPV techniques,” Proceedings of ASME
Dynamic System and Control Conference, 2009

F. Zhang, K. M. Grigoriadis, M. A. Franchek, and I. H. Makki, “Linear Parameter-Varying
Lean Burn Air-Fuel Ratio Control for a Spark Ignition Engine,” Journal of Dynamic
System, Measurement and Control, vol. 192, pp. 404-414, 2007

A. U. Genc, Linear Parameter-Varying Modelling and Robust Control of Variable Cam
Timing Engines, Ph.D. dissertation, University of Cambridge, 2002

G. Zhu, R. E. Skelton, “Integrated Modeling and Control for the Large Spacecraft
Laboratory Experiment Facility”, Journal of Guidance, Control and Dynamics, Vol. 17,
No. 3, pp. 442-450, 1994

G. Zhu, K. M. Grigoriadis, R. E. Skelton, “Covariance Control Design for Hubble Space
Telescope”, Journal of Guidance, Control and Dynamics, Vol. 18, No. 2, pp. 230-236,
1995

G. Zhu, M. A. Rotea, R. Skelton, “A Convergent Algorithm for the Output Covariance
Constraint Control Problem”, SIAM J. Control Optim., Vol. 35, No.1, pp. 341-361, 1997

A. White, J. Choi, R. Nagamune, and G. Zhu, “Gain-scheduling control of port-fuel-
injection processes’, IFAC Journal of Control Engineering Practice, 2010, DOI:
10.1016/j.conengprac.2010.12.007

A. White, G. Zhu and J. Choi, “Hardware-in-the-loop Simulation of Robust Gain-
Scheduling Control of Port-Fuel-Injection Processes,” IEEE Transaction on Control
System Technology, 2010, DOI: 10.1109/TCST.2010.2095420

Z. Ren, G. G. Zhu, “ Pseudo-random binary sequence closed-loop system identification
error with integration control”, Journal Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering, Vol. 233, pp877-884,
2009

W. W. Peterson, Error Correcting Coding, MIT Technical Press, Cambridge,
Massachusetts, USA, 1961

P. Van Den Hof, “Closed-loop issues in system identification,” Annual Reviews in Control,
22, pp. 173-186, 1998.

114



[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

L. Ljung, System Identification — Theory for the User, second edition, Prentice Hall PTR,
1999

R. Simpson, “Worm gear driven variable cam phaser,” US Patent 6622667, 2003

Z. Ren, G. Zhu, “Multi-rate closed-loop system identification of a variable valve timing
actuator for an internal combustion engine,” Proceedings of 2010 American Control
Conference, Baltimore, MD, June-July 2010

Z. Ren, G. Zhu, "Integrated System Identification and Control design for an IC engine
variable valve timing system," ASME Journal of Dynamic Systems, Measurement, and
Control, 2011, DOI: 10.1115/1.4003263

A. White, Z. Ren, G. Zhu, and J. Choi, “Mixed H, / H,, Observer-Based LPV Control of

a Hydraulic Engine Cam Phasing Actuator”, accepted by IEEE Transactions on Control
Systems Technology, 2011

B. Codrons, B. D. O. Anderson, M.Gevers, “Closed-loop identification with an unstable or
nonminimum phase controller,” Automatica, 38, pp. 2127-2137, 2002

B. D. O. Anderson, R. E. Skelton, “The Generation of all g-Markov Covers”, IEEE
Transactions on Circuits and Systems, Vol. 35, No. 4, pp. 375-384, 1988

A. M. King, U. B. Desai, R. E. Skelton, “A Generalized Approach to g-Markov
Covariance Equivalent Realization for Discrete Systems”, Automatica, Vol. 24, No. 4, pp.
507-515, 1988

S. Meerkov, T. Runolfsson, “Output residence time control”’, IEEE Trans. Automat.
Control, 34, pp. 1171-1176, 1989

D. A. Wilson, Convolution and Hankel, “Operator norms for linear systems”, IEEE Trans.
Automat. Control, 34, pp. 94-97, 1989

G. Zhu, M. Corless, R. Skelton, “Robustness properties of covariance controllers”, in
Proceedings of Allerton Conf., Monticello, IL, 1989

A. G. Stefanopoulou, J. S. Freudenberg, J. W. Grizzle, “Variable Camshaft Timing Engine
Control”, IEEE Transactions on Control Systems Technology, Vol. 8, No.l, pp. 23-34,
2000

Z. Ren, G. Zhu, “Modeling and control of an electric variable valve timing system for SI
and HCCI combustion mode transition”, Proceedings of 2011 American Control
Conference, San Francisco, CA, June-July 2011

J. E. Shigley, and C. R. Mischke, Mechanical Engineering Design, 6th Edition, McGraw-
Hill, 2001.

115



[55] C. L. Phillips, and R. D. Harbor, Feedback Control System, 4th Edition, Prentice Hall,
2000.

116



