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ABSTRACT

ESSAYS IN ECONOMETRICS

By

Otávio Augusto Camargo Bartalotti

This dissertation is divided in three self-contained chapters. The first extends the GMM

redundancy results of Prokhorov and Schmidt (2009) for nonsmooth objective functions,

giving sharp guidelines about how to obtain efficient estimates of parameters of interest (

βo) in the presence of nuisance parameters (γo). The use of one-step GMM estimators for

both sets of parameters is asymptotically more efficient than two-step procedures. These

results are applied to Wooldridge (2007)’s inverse probability weighted estimator (IPW),

generalizing the framework to deal with missing-data in this context. Even though two-

step estimation of βo is more efficient than using known probabilities of selection, this is

dominated by a one-step joint estimation procedure. Examples for quantile regression with

missing data and instrumental variable quantile regression are provided.

The second chapter analyzes the asymptotic distribution of local polynomial estimators

in the context of regression discontinuity designs. The standard “small-h” approach in the

literature (Hahn et al., 2001; Porter, 2003; Imbens and Lemieux, 2008; Lee and Lemieux,

2009) is to assume the bandwidth, h, around the discontinuity shrinks towards zero as the

sample size increases. However, in practice, the researcher has to choose an h > 0 to imple-

ment the estimator. This chapter derives the fixed-h asymptotic distribution that allows for

the bandwidth to be positive, providing refined approximations for the estimator’s behavior.



When h > 0, the small-h asymptotic variance is equivalent to assuming that the density

of the running variable and the conditional variance of the dependent variable are constant

around the cutoff. Simulations provide evidence that fixed-h asymptotic distributions better

describe the behavior of both bias and variance of the estimator, leading to improved infer-

ence. Estimators for fixed-h standard errors are proposed and incorporate the theoretical

gains of the improved approximations. The fixed-h variance estimators improve markedly

over small-h estimators in the presence of some forms of heteroskedasticity. Interestingly,

in the special case of homoskedastic errors using a local linear estimator, the variance esti-

mators based on small-h asymptotics produce tests with similar size to the fixed-h variance

estimators proposed in this chapter.

Chapter 3 develops the asymptotic properties of quantile regression estimators under stan-

dard stratification sampling, following Wooldridge (2001). Formulas for the asymptotic vari-

ance and feasible estimators are provided. Under exogenous stratification the usual quantile

regression estimators and standard errors are still valid.
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CHAPTER 1

GMM Efficiency and IPW for

Nonsmooth Functions

1.1 Introduction

This chapter extends Prokhorov and Schmidt (2009) analysis to the estimation of a gen-

eral GMM problem with nonsmooth objective functions in which nuisance parameters are

present. The framework developed encompasses several interesting problems in econometrics

such as missing data, censored or truncated data, treatment effects, instrumental variables,

etc. More importantly, by allowing nonsmooth objective functions, the analysis extends to

models that have gained additional importance in recent years, e.g., least absolute deviations

(LAD), quantile regression (QR), censored LAD, quantile treatment effects and instrumental

variables quantile regression (IVQR).

The core results of this chapter extend Prokhorov and Schmidt (2009) results on GMM re-

dundancy by allowing the use of nonsmooth objective functions. These results rely on Newey

and McFadden (1994) to obtain the asymptotic variance of the GMM estimator under less

restrictive assumptions on the smoothness of the objective functions. For that consider two

sets of moment conditions, where the first includes both the parameters of interest (βo) and
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certain nuisance parameters (γo) while the second set includes only the nuisance parame-

ters. By defining four competing estimators based on different assumptions regarding the

information available about these nuisance parameters and the moment conditions utilized,

results about the relative efficiency of each proposed estimator are derived. These results

provide guidance to applied work in the presence of nuisance parameters.

As discussed by Prokhorov and Schmidt (2009), joint estimation of nuisance parameters

and parameters of interest is more efficient than a two-step procedure or knowing the true

nuisance parameters and disregarding the second set of moment conditions. This fact is due

to the information contained in correlation between both sets of moment conditions, which

is useful even when γo is known. Using only the first set of moment conditions and known

values of γo in the estimation procedure does not use the additional information embedded

in the second set of moment conditions. These results are shown to hold when the objective

functions are nonsmooth.

The general results are directly applicable to missing data problems and encompass

Wooldridge (2002b, 2007) analysis of inverse probability weighting (IPW) estimators, ex-

tending its use for nonsmooth objective functions under the usual “ignorability” assumptions

about the selection process. The general estimation results described confirm the validity of

the puzzle described by Wooldridge (2007), i.e., that it is better (in an efficiency sense) to

estimate the selection probabilities, even if the latter are known. In other terms, we obtain

more efficient estimates for βo if we estimate γo than if we use the true γo. This result

is “puzzling” because knowledge of γo, if properly exploited, cannot be harmful. Previous

works discussed this result, such as Wooldridge (2002b, 2007) in the context of IPW. Hirano

et al. (2003); Hitomi et al. (2008); Prokhorov and Schmidt (2009) addressed the problem for

the smooth objective function case. Even though this issue has been considered by Chen,

Hong, and Tarozzi (2008) in a semiparametric context with nonsmooth objective functions,

the parametric approach proposed here provides, as a novelty, the conditions under which

this puzzle is valid and, furthermore, shows that the two-step estimator is usually dominated
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by a one-step joint estimation procedure that uses both the weighted moment conditions and

the conditions associated with the selection model.

There have been several papers devoted to general theories of estimation in settings where

nonsmooth objective functions are allowed, following Daniels (1961) and Huber (1967). Stud-

ies that allow for estimation of models based on nonsmooth objective functions include,

among others, Pollard (1985); Pakes and Pollard (1989) and Newey and McFadden (1994,

section 7). Recent studies have approached the problem of nonsmoothness with focus on

semiparametric models, see Chen, Linton, and Van Keilegom (2003) for a general estimation

approach; Chen et al. (2008) for an approach for missing data problems with nonparametric

first stage; and Cattaneo (2010) for an approach on the estimation of multi-valued treatment

effects on a semiparametric framework.

The remainder of the chapter is organized as follows. Section 1.2 sets up the general GMM

framework used in the analysis and presents results regarding efficiency and redundancy of

the estimators proposed, as well as estimators for the asymptotic variances of the parameters

estimated. Section 1.3 studies the IPW approach to missing data problems proposed by

Wooldridge (2002b, 2007), extending its scope to nonsmooth objective functions. Section

1.4 provides examples of the uses of the framework proposed here by, first, considering a

model for the conditional quantile in a context with missing data; secondly I consider a

simplified IVQR model as proposed by Chernozhukov and Hansen (2005, 2006). Section 1.5

concludes.

1.2 General Estimation Problem

Let ω∗ ∈ Q∗ ⊂ Rdim(ω∗) be a random vector; θ∈ Θ ⊂ RP be a parameter vector, Θ is a

compact set, and the population condition

go(θo) = E[g(ω∗, θo)] = 0 (1.1)

where g : Q∗ ×Θ→Rm is a vector of known real-valued moment functions.
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Newey and McFadden (1994) have shown consistency and asymptotic normality of the

Generalized Method of Moments (GMM) estimator that minimizes a squared Euclidean

distance of the random sample analogues of the population moments, i.e. gn(θ) = n−1
n∑
i=1

g(ω∗i , θ), from their population counterparts (which equal zero). I am interested in the case

in which the moment functions, g(·), are allowed to be nonsmooth, so we can deal with a

wider range of interesting problems. The GMM estimator minimizes the objective function

gn(θ)′Ŵgn(θ) (1.2)

where Ŵ converges in probability to W , the appropriate positive semidefinite weighting

matrix. Assume ω∗i , i = 1, ..., n, are i.i.d. Two useful results from Newey and McFadden

(1994) will be used to derive the asymptotic variance of the estimators. The first regards

the consistency of the GMM estimator.

Theorem 1 (Newey and McFadden, 1994, Theorem 2.6) Let ‖•‖ denote the Eu-

clidean norm. Suppose that:

(i) ω∗i are i.i.d. for i=1,2,...;

(ii) Ŵ
p−→ W ;

(iii) W is positive semi-definite and W E[g(ω∗, θ)] = 0 only if θ = θo;

(iv) θo∈ Θ ⊂ RP , and Θ is compact;

(v) g(ω∗, θ) is continuous at each θ with probability one;

(vi) E
[
supθ∈Θ ‖g(ω∗, θ)‖

]
<∞;

Then θ̂
p−→ θo.

This result relies on relatively weak conditions, and allow for discontinuities in the objective

function.

The second theorem demonstrates the asymptotic normality of the GMM estimator under

a certain form of nonsmoothness of the objective function.

Theorem 2 (Newey and McFadden, 1994, Theorem 7.2) Suppose that:

4



(i) gn(θ̂)′Ŵgn(θ̂) ≤ infθ∈Θ gn(θ)′Ŵgn(θ) + op(n−1);

(ii) θ̂
p−→ θo;

(iii) Ŵ
p−→ W , and W is positive semi-definite;

(iv) go(θo) = 0;

(v) go(θ) is differentiable at θo with derivative G such that G′WG is nonsingular;

(vi) θo is an interior point in Θ;

(vii)
√
ngn(θo)

d−→ N(0,Σ);

(viii) for any δn
p−→ 0,

sup
‖(θ−θo)‖≤δn

√
n ‖gn(θ)− gn(θo)− go(θ)‖

[1 +
√
n ‖(θ − θo)‖]

p−→ 0

Then,
√
n(θ̂−θo)

d−→ N
[
0, (G′WG)−1G′WΣWG(G′WG)−1

]
.

As shown by Pollard (1985) the differentiability of the objective function g(ω∗i , θ) can

be replaced by the differentiability of go(θ) for the purpose of obtaining the asymptotic

normality of these estimators. As emphasized by Newey and McFadden (1994) the key

condition to allow for nonsmooth objective functions is condition (viii), which is a “stochastic

equicontinuity” assumption that guarantees uniform convergence in probability of the linear

approximation of go(θ) by g(ω∗i , θ) in a shrinking neighborhood of θo . This is similar to the

stochastic differentiability condition in Pollard (1985) and primitive conditions are available

in Pollard (1985), Andrews (1994) and Chen et al. (2003). Those simplify the task of checking

its validity to specific moment functions, however this is beyond the scope of this work and

I refer the reader to those papers.

Suppose that θ can be partitioned into subsets of parameters (β′,γ′)′∈ B×Γ ⊂ Rp1×Rp2

and that g(·) can be partitioned into subsets of functions (g1(·)′, g2(·)′)′ as defined below.

For notational convenience, ω∗ is suppressed in the following discussion, then

E[g1(βo,γo)] = 0 (1.3)

E[g2(γo)] = 0 (1.4)
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where β ∈ B, γ ∈ Γ, g1(·) and g2(·) are m1 and m2 vectors of known functions, respectively

(m = m1 +m2). Note that the second set of moment conditions does not depend on β while

the first set of moment conditions depend on the full parameter set θ. Let gn1(θ) = n−1
n∑
i=1

g1(ω∗i , θ) and gn2(γ) = n−1
n∑
i=1

g2(ω∗i ,γ). The framework developed here is valid for the

general case of overidentification, i.e., m1 > p1 and m2 > p2. This guarantees that γo is

identified by 1.4 alone, and that for a given γ, βo can be identified by 1.3 alone, hence, two

step estimation is possible. Let the asymptotic covariance matrix for the moment functions,

Σ, be defined as

Σ = V [g(θo)] ≡

[
C11 C12
C21 C22

]
where we assume Σ is finite and nonsingular so its inverse exists:

Σ−1 ≡

[
C11 C12

C21 C22

]
=

[
C−1

11 (I + C12E
−1C21C

−1
11 ) −C−1

11 C12E
−1

−E−1C21C
−1
11 E−1

]

since Σ (and Σ−1) is symmetric C12 = C′21 and the second equality holds (see White, 1984,

p. 80) for E ≡ C22 − C21C
−1
11 C12.

Define the matrix of derivatives as

G ≡ Oθgo(θo) = OθE[g(θo)] ≡

[
G11 G12

0 G22

]
G11 ≡ ∇βE[g1(βo,γo)]

G12 ≡ ∇γE[g1(βo,γo)]

G22 ≡ ∇γE[g2(γo)]

where the lower off-diagonal matrix equals zero since the second set of moment conditions

does not depend on β.

Following Prokhorov and Schmidt (2009), define four different possible GMM estimators

that differ in which moment conditions are used and/or whether γ is treated as known.

Definition 1 Call the estimator of θo that minimizes

gn(θ)′Ŵgn(θ) (1.5)
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with the weighting matrix Ŵ = Σ−1 the ONE-STEP estimator.

This is the usual GMM estimator that uses all the available orthogonality conditions jointly

to estimate βo and γo.

Definition 2 Call the estimator of βo that minimizes

gn1(β,γo)
′C−1

11 gn1(β,γo) (1.6)

and γo is treated as known the KNOW-γ estimator.

This estimator ignores the second set of orthogonality conditions 1.4, treating γo as a

known vector of parameters and estimating βo using only the information available in the

first set of moment assumptions. This could arise if one has information about the true

values of γo or if he disregards the fact that γo was estimated in the first stage and, hence

its variability, in what could be called a “naive” estimator.

Definition 3 Call the estimator of βo that minimizes

gn(β,γo)
′Σ−1gn(β,γo) (1.7)

and γo is treated as known the KNOW-γ-JOINT estimator.

This is the GMM estimator for βo in the form considered by Qian and Schmidt (1999). In

this case, one has information about the true values of γo but still uses both set of moments

conditions in obtaining an estimate for βo.

Definition 4 Call the estimator of θo obtained in the following fashion, the TWO-STEP

estimator:

(i) the estimator γ̂ is obtained by minimizing

gn2(γ)′C−1
22 gn2(γ) (1.8)

7



(ii) the estimator β̂ is obtained by minimizing

gn1(β, γ̂)′C−1
11 gn1(β, γ̂) (1.9)

and γ̂ is treated as given.

This is the sequential estimator that uses only the second set of moment conditions 1.4 to

obtain a consistent estimator of the unknown parameter vector γo and then uses only the

first set of moment conditions 1.3 to obtain the estimator of βo. This estimator is widely

used in the applied economics literature and encompasses several common problems.

The estimators defined above depend on a known Σ. In practice, Σ is not known and has

to be replaced by an initial consistent estimate.

To compare the properties of these different estimators we need to obtain their asymptotic

variances. Those are derived directly by Theorem 2.

Theorem 3 Let VONE−STEP , VKNOW−γ ,VKNOW−γ−JOINT and VTWO−STEP de-

note the asymptotic variance of ONE-STEP, KNOW-γ, KNOW-γ-JOINT and TWO-STEP

respectively. Then, under the conditions described in Theorem 1 and 2.

VONE−STEP =
(
G′Σ−1G

)−1
(1.10)

VKNOW−γ =
(
G′11C

−1
11 G11

)−1
(1.11)

VKNOW−γ−JOINT =
(
G′11C

11G11

)−1
(1.12)

VTWO−STEP = BΣB′ (1.13)

where,

B =

[
B11 B12

0 B22

]
with

B11 = −
(
G′11C

−1
11 G11

)−1
G′11C

−1
11

B12 =
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 G12

(
G′22C

−1
22 G22

)−1
G′22C

−1
22

B22 = −
(
G′22C

−1
22 G22

)−1
G′22C

−1
22

8



Proof. All proofs are provided in the appendix.

It is possible to analyze the relative asymptotic efficiency of these estimators.1

Theorem 4 For the estimators defined above as the ONE-STEP, KNOW-γ, KNOW-γ-

JOINT and TWO-STEP with asymptotic variances given by 1.10, 1.11, 1.12 and 1.13, re-

spectively, the following statements hold:

1. KNOW-γ-JOINT is no less efficient than ONE-STEP, KNOW-γ and TWO-STEP for

βo.

2. If C12 = 0 then KNOW-γ-JOINT and KNOW-γ are equally efficient for βo.

3. If G12 = 0 then TWO-STEP and KNOW-γ are equally efficient for βo.

4. If C12 = 0 and G12 = 0, then ONE-STEP, KNOW-γ, KNOW-γ-JOINT and TWO-

STEP are equally efficient for βo, and ONE-STEP and TWO-STEP are equally efficient for

γo.

5. ONE-STEP is no less efficient than TWO-STEP.

6. If m1 = p1 then the ONE-STEP and TWO-STEP estimates of γo are equal.

7. If m1 = p1 and m2 = p2 then the ONE-STEP and TWO-STEP estimates are equal

for both βo and γo.

8. If m1 = p1 and C12 = 0 then the ONE-STEP and TWO-STEP estimates are equally

efficient for both βo and γo.

9. If G12 = C12C
−1
22 G22, then KNOW-γ-JOINT and ONE-STEP are equally efficient for

βo.

10. If G12 = C12C
−1
22 G22, then ONE-STEP, KNOW-γ-JOINT and TWO-STEP are no

less efficient for βo than KNOW-γ.

1 I denote the asymptotic variance of θ̂ as V meaning that
√
n(θ̂ − θo) converges in

distribution to N(0, V ).
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The statements that form Theorem 4 are direct extensions of Prokhorov and Schmidt

(2009) for the case in which nonsmooth objective functions are allowed.

Statement 1 shows, as expected, that KNOW-γ-JOINT dominates the other estimators.

This is an intuitive result since the known value of γo is at least as efficient as any estimate

of γo, and KNOW-γ-JOINT uses the full set of relevant moment conditions.

Statement 2 is the result Qian and Schmidt (1999), where it is shown that using additional

moment conditions that include no unknown parameters (as is the case for KNOW-γ-JOINT)

improves efficiency except in the special case in which C12 = 0. In other words, the second

set of moments is redundant in the estimation of βo, Prokhorov and Schmidt (2009) call this

M-redundancy.

Statement 3 gives the condition under which the first stage estimation of the nuisance

parameter γo does not affect the asymptotic behavior of the second stage estimate of

βo. This result is similar to the one shown in Wooldridge (2002a), however in this

case we are dealing with a nonsmooth objective function and, therefore, the restriction

G12 ≡ ∇γE[g1(βo,γo)] = 0 differs from the one proposed by Wooldridge since the deriva-

tive of g1(βo,γo) is not necessarily available.

Statement 4 provides conditions under which the ONE-STEP, KNOW-γ, KNOW-γ-

JOINT and TWO-STEP estimators are equally efficient for βo, hence the use of the ad-

ditional moment conditions in 1.4 by the ONE-STEP, KNOW-γ-JOINT and TWO-STEP

estimators does not improve the precision of the estimated parameters of interest as in the

previous statement; and the knowledge of γo does not help in estimating βo. This would

hold if two sets of moment conditions are asymptotically uncorrelated (C12 = 0) and γ is

not present in the first set of moment conditions (G12 = 0).

Statement 5 is the usual result that in general, sequential estimation procedures are less

efficient than joint (one step) estimation.

Statement 6, 7 and 8 follow directly from Ahn and Schmidt (1995) and show that the GMM

separability holds in the framework that allows non-smooth objective functions. The GMM

10



estimates for γo are not improved by the inclusion of an equal number of additional moment

conditions and parameters. It can be shown that if G11 is nonsingular, the ONE-STEP

estimator for βo can be written in terms of the ONE-STEP estimator of γo using the equation

gn1(β̂, γ̂) = C12C
−1
22 gn2(γ̂) (see appendix for details). Thus, as described by Prokhorov

and Schmidt (2009) the ONE-STEP and TWO-STEP estimators for βo will be derived from

the same equation as long as gn2(γ̂) = 0, which will be true under exact identification of

γo, and asymptotically equally efficient if C12 = 0, since the moment conditions will be

asymptotically uncorrelated, not adding to the information set exploited by ONE-STEP

relatively to TWO-STEP.

Statement 9 and 10 are direct extensions of Prokhorov and Schmidt (2009). Statement 9

says that KNOW-γ-JOINT and ONE-STEP are equally efficient for the estimation of βo,

which means that knowledge of γo is not useful in terms of the efficiency of the estimates

for βo if we are using the full set of moment conditions and G12 = C12C
−1
22 G22.

Statement 10 shows that under the same condition about G12, KNOW-γ is dominated by

ONE-STEP, KNOW-γ-JOINT and TWO-STEP. This happens because knowledge of γo is

not useful in the estimation of βo in this case, and the KNOW-γ estimator does not use the

information in the second set of moment conditions, which is useful unless C12 = 0.

The statements presented in theorem 4 show that the results for GMM redundancy pre-

sented by Prokhorov and Schmidt (2009) extend to GMM estimation procedures based on

nonsmooth objective functions.

Under the conditions of parts 9 and 10 of theorem 4, the following corollary can be ob-

tained.

Corollary 1 If G12 = C12C
−1
22 G22 and G22 is invertible, then

V (β̂TWO−STEP ) =
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 DoC

−1′
11 G11

(
G′11C

−1
11 G11

)−1
(1.14)

Additionally, if G11 is invertible, then

V (β̂TWO−STEP ) = G−1
11 DoG

−1′
11 (1.15)
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where

Do = E
[
eie
′
i

]
ei =

[
g1(ω∗i , θ)− C12C

−1
22 g2(ω∗i , γ)

]

Note that ei is the residual of the linear projection of the first set of moments conditions on

the second set of moment conditions. This result is useful in the estimation of the asymptotic

variance of the estimators, as I discuss below. Unfortunately, this applies only if the second

set of moment conditions is exactly identified for formula 1.14 and if both sets of moment

conditions are exactly identified for formula 1.15.

An arresting issue is to obtain estimates of the variance matrices described in theorem 3.

The nonsmoothness of the objective function creates some obstacles to the usual estimations

procedures. As described by Lee (2008) the fact that the estimates for the variances de-

pend on the derivative of the expectation of the estimating function in the nonsmooth case

warrants a more careful approach in estimating the variances used for inference.

A general approach that work in most cases is offered in Newey and McFadden (1994),

and consists on obtaining consistent estimators for the separate components of the variance

matrix. For estimating Σ or its relevant components a standard estimator is available.

This procedure can be used in a first-step to obtain consistent estimates of the appropriate
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weighting matrix for the desired estimation procedure.

Σ̂ = n−1
n∑
i=1

g(ω∗i , θ̂)g(ω∗i , θ̂) (1.16)

Ĉ11 = n−1
n∑
i=1

g1(ω∗i , θ̂)g1(ω∗i , θ̂) (1.17)

Ĉ12 = n−1
n∑
i=1

g1(ω∗i , θ̂)g2(ω∗i , γ̂) (1.18)

Ĉ22 = n−1
n∑
i=1

g2(ω∗i , γ̂)g2(ω∗i , γ̂) (1.19)

Ĉ21 = Ĉ′12 (1.20)

To be able to plug this estimates on the equations derived in Theorem 3 we need to obtain

estimates of G, which can be difficult to obtain due to the nonsmoothness of the objective

function. In this approach an estimate of G is obtained by numerical derivatives. Following

Newey and McFadden (1994) let ei denote the ith unit vector, εn denote a small positive

constant that depends on the sample size. Define the estimators for G and its components

as

Ĝj =
1

2εn

n−1
n∑
i=1

g(ω∗i , θ̂ + ejεn)− g(ω∗i , θ̂ − ejεn)


Ĝ11j

=
1

2εn

n−1
n∑
i=1

g1(ω∗i , β̂ + ejεn, γ̂)− g1(ω∗i , β̂ − ejεn, γ̂)


Ĝ12j

=
1

2εn

n−1
n∑
i=1

g1(ω∗i , β̂, γ̂ + ejεn)− g1(ω∗i , β̂, γ̂ − ejεn)


Ĝ22j

=
1

2εn

n−1
n∑
i=1

g2(ω∗i , γ̂ + ejεn)− g2(ω∗i , γ̂ − ejεn)


Where the subscript j denotes the jth column of the matrix being estimated. Newey and

McFadden (1994, Theorem 7.4) shows that if εn converges to zero and
√
nεn converges to

infinity as n gets larger, these estimators will be consistent for the terms of the variances
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presented in theorem 3, and plugging them in the formulas provide consistent estimators for

the variances of the parameters being estimated.

However, these estimators are cumbersome and not practical. As emphasized by Newey

and McFadden, the choice of εn is a difficult problem and the formulation described above,

using a unique value for εn would be good only if the estimated parameters had been scaled

to have similar magnitudes. If that is not done, we would have to pick different εn for

different components.

On specific cases, other estimators are available. As discussed in Newey and McFadden

(1994) if g(ω∗, θ̂) is differentiable with probability one, with Oθg(ω∗, θ̂) that is continuous

at θo with probability one and dominated by an integrable function in a neighborhood of

θo, then Ĝ = n−1
n∑
i=1

Oθg(ω∗i , θ̂) is a consistent estimator for G. Hence, the more standard

estimator is available and would be easier to implement.

Clearly, alternatives could be available for specific moment conditions. Section 1.4 provides

the example for the leading case of IPW for linear quantile regression.

Even in this case, the calculation of the matrix B that is present in the asymptotic variance

of the TWO-STEP estimator could be cumbersome. For the cases in which the conditions

from part 9 and 10 of theorem 4 hold, namely G12 = C12C
−1
22 G22, corollary 1 offers a

different approach to the problem of estimating the asymptotic variance in those cases (even

though we still need to resort to one of the estimators above to obtain Ĝ11). We can obtain

an estimate of the matrix E
[
eie
′
i

]
by regressing the first set of moment conditions on the

second set of moment conditions in the sample to obtain the residuals êi = g1(ω∗i , β̂, γ̂) −[
n−1

n∑
i=1

g2(ω∗i , γ̂)g1(ω∗i , β̂, γ̂)

][
n−1

n∑
i=1

g2(ω∗i , γ̂)g2(ω∗i , γ̂)

]−1

g2(ω∗i , γ̂), and calculating

the sample analogue of the desired matrix D̂ = n−1
n∑
i=1

êiê
′
i. Unfortunately, this simple

procedure is valid only for the asymptotic variance of the TWO-STEP estimator under the

condition above and under exact identification of at least the second set of moment condi-

tions.
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For most of the relevant problems, we could use a bootstrap procedure to obtain consistent

estimates of the variance of θ̂ directly, but these could be computationally demanding for

models in which the solution of the optimization problem for both sets of moment conditions

require numerical optimization of the objective function.

1.3 Estimation with missing data

This section specializes the results of the section 1.2 to a model in which missing data is

allowed in a framework that expands that proposed by Wooldridge (2002b, 2007) to allow

nonsmooth objective functions.

Consider ω ∈ Q ⊂ Rdim(ω) a random vector with density f(ω); β∈ B ⊂ Rp1 a parameter

vector, where B is a compact set. Suppose there is the population moment equation

go(βo) = E[g(ω, βo)] = 0 (1.21)

where g : Q ×B→Rm1 is a vector of known real-valued moment functions with m1 ≥ p1,

so βo could be overidentified. Assume βo is the unique solution to 1.21. I am interested in

estimating βo.

Note that the moment conditions presented above hold in the unselected population.

Assume nonrandom sampling occurs and it is characterized by a selection indicator, s ∈

{0, 1}, such that ωi is observed if and only if si = 1. Keep in mind that all or part of ωi is

not observed when si = 0.

The GMM estimator based on 1.21 using the selected sample, in effect makes the em-

pirical moments n−1
n∑
i=1

sig(ωi, β) close to zero. These empirical moments are the sample

analogues of the population moments of the form

E [sg(ω, β)] = 0 (1.22)

which are referred to as the unweighted selected population moments (Prokhorov and

Schmidt, 2009; Wooldridge, 2002b). The name emphasizes that they are evaluated at the

15



selected rather than the full population of interest and differentiates them from the weighted

selected population moments defined below. The selectivity problem occurs exactly because

1.22 may not hold; in other words, the value βo that solves 1.21 may not also solve 1.22

(Prokhorov and Schmidt, 2009). If that happens, the estimate for βo obtained through this

procedure is not generally consistent. In fact, its consistency and potential solutions for the

data selection problem will depend on the relationship between the selection process and

both the dependent and independent variables.

1.3.1 Data Selection under Ignorability

A straightforward solution is to solve the nonrandom sampling problem using inverse prob-

ability weighting (IPW) as shown by Wooldridge (2002b, 2007). To be able to use IPW we

need some variables that are reasonable predictors of selection as described in Wooldridge

(2007). This is formally stated as an “ignorability” of selection assumption.

Assumption 1 (Wooldridge, 2007, Assumption 3.1) (i) ωi is observed whenever si =

1;

(ii) For a random vector zi such that P (si = 1 | ωi, zi) =P (si = 1 | zi) ≡p(zi);

(iii) For all z ∈ Z ⊂ RJ , p(z) > 0;

(iv) zi is observed whenever si = 1.

Item (ii) in this assumption requires that s ⊥ ω | z. In other words, the selection has

to be independent of the y and x conditional on z. As discussed at length by Wooldridge

(2007), assumption 1 encompasses a variety of selection schemes common in the missing

data literature, including “missing at random”, “variable probability sampling”, “selection

on observables’ etc. This allows, for example, that the probability of observing ωi to depend

on the stratum in which ωi falls into; or that zi is observed only along with ωi; or that

partial information is known about the incompletely observed data. Assumption 1 does not
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apply to the “selection on unobservables”2 case as generally used in econometrics. I will not

explore these possibilities directly here, referring the reader to Wooldridge (2007).

Assume that a conditional density determining selection is correctly specified and that a

maximum likelihood estimator of the selection model is available.

Assumption 2 (Wooldridge, 2007, Assumption 3.2) (i) G(z, γ) is a parametric model

for p(z), where γ ∈ Γ ⊂ Rp2 and G(z, γ) > 0 for all z ∈ Z and γ ∈ Γ;

(ii) There exists γo in the interior of Γ such that p(z) = G(z, γo);

(iii) For a random vector vi such that D(vi | ωi, zi) = D(vi | zi), the estimator γ̂ solves

a conditional maximum likelihood problem of the form

max
γ∈Γ

n∑
i=1

ln [f(vi | zi, γ)] (1.23)

where f(v | z, γ) > 0 is a conditional density function known up to the parameters γo, and

si = h(vi, zi) for some nonstochastic function h(·, ·);

(iv) The solution to 1.23 has the first-order representation

√
n(γ̂ − γo) =

{
E
[
di (γo) di (γo)

′
]}−1

n−1
2

n∑
i=1

di (γo)

+ op(1)

with di (γ) ≡ ∇γf(vi|zi,γ)′
f(vi|zi,γ)

, which is the p2 × 1 score vector for the MLE.

The assumption above requires standard regularity conditions about G(z, γ), including

smoothness of the parametric model. Even though this restricts the possibilities to model

the selection process, it includes the most used probability models used in the literature.

By doing so, we concentrate on the impacts of nonsmoothness in the model of interest

and provide results about the use of IPW in correcting sample selection for those cases.

Assumption 2 covers the cases presented by Wooldridge (2002b) in which the conditional

log-likelihood was for a binary response model. The advantage of using this slightly more

2 A quantile regression estimator for the case wheen selection is on unobservables is

provided by Buchinsky (1998)
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complicated framework is to allow zi to be only partially observed and to permit si to be a

function of another random variable vi which includes a broader class of selection problems.

For a deeper discussion on the extensions allowed by assumption 2, see Wooldridge (2007).

Note that the MLE estimator for γo described above can be obtained in a GMM setting

as follows.

Let γ̂ the Maximum Likelihood Estimator (MLE) of γo, that is γ̂ solves

max
γ∈Γ

n∑
i=1

ln [f(vi | zi, γ)]

Define g2(z,γ,s) ≡ d (γ) =
∇γf(vi|zi,γ)′
f(vi|zi,γ)

and gn2(γ) ≡ n−1∑n
i=1 g2(zi, γ, si). Hence,

gn2(γ)
p−→ g2o(γ) ≡ E [g2(z, γ, s)]. Then, the problem above is characterized by the fol-

lowing first order conditions

n−1
n∑
i=1

g2(zi,γ̂,si) = n−1
n∑
i=1

[
∇γf(vi | zi, γ̂)′

f(vi | zi, γ̂)

]

= n−1
n∑
i=1

di (γ̂) = op(n
−1

2 )

and,

E [g2(z,γo,s)] = E [d (γo)] = 0

Under assumption 1, the following lemma, presented in Wooldridge (2002b) is valid.

Lemma 1 (Wooldridge, 2002b, Lemma 3.1) Under the conditions presented in As-

sumptions 1 and 2, for any real-valued function g(ω) such that E
[ |g(ω,βo)|
G(z,γo)

]
<∞,

E

{[
s

G(z, γo)

]
g(ω, βo)

}
= E

{[
s

p(z)

]
g(ω, βo)

}
= E [g(ω, βo)] (1.24)

Lemma 1 suggests that we use the sampling probabilities to consistently estimate βo

Consider the weighted selected population moments that weight 1.22 by the inverse of the
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selection probability:

E

{[
s

G(z, γo)

]
g(ω, βo)

}
= 0 (1.25)

Given an estimator for γo, γ̂, we can form G(zi, γ̂) for all i with si = 1 and we are able to

obtain consistent estimates for βo by using the weighted selected population moments 1.25

as described in Wooldridge (2007). Note that, by the Law of Large Numbers and Law of

Iterated Expectations, assumptions 1, 2 and consistency of γ̂ for γo (see Wooldridge, 2002b,

theorem 3.1).

n−1
n∑
i=1

si
G(zi, γ̂)

g(ωi,β)
p−→ E

[
si
p(zi)

g(ωi,β)

]
= E

{
E

[
si
p(zi)

g(ωi,β) | ωi,zi
]}

= E

{
1

p(zi)
E [s | ωi,zi]E [g(ωi,β) | ωi,zi]

}
= E

{
p(zi)

p(zi)
E [g(ωi,β) | ωi,zi]

}
= E [E [g(ωi,β) | ωi,zi]] = E [g(ωi,β)] = go(β)

Therefore,

n−1
n∑
i=1

si
G(zi, γ̂)

g(ωi,βo)
p−→ go(βo) = 0

Hence, this provides a set of valid moment conditions that could be used to estimate βo.

Efficiency Comparisons

The relative efficiency of the estimators for βo that use IPW to correct a missing data problem

under assumption 1 and 2 can be analyzed under the framework developed in section 1.2.

Consider the two sets of moment functions

g1(ω, z, β, γ, s) =
s

G(z, γ)
g(ω,β)

g2(z, γ, s) ≡ d (γ) =
∇γf(v | z, γ)′

f(v | z, γ)

and the following moment conditions are valid,
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E [g1(ω, z, β, γ, s)] = 0 (1.26)

E [g2(z, γo, s)] = 0 (1.27)

Any of the estimators discussed in section 1.2 can be used, differing on the set of moment

conditions used and the knowledge about the weights.

Under the assumptions on the moment conditions and the selection process discussed in

this section, the following lemma holds.

Lemma 2 If the conditions of Theorem 1 and 2; Assumptions 1 and 2 hold, and the moment

conditions are defined by 1.26 and 1.27, then G12 = C12C
−1
22 G22.

By using this result, we can see that under these assumptions, the results of Theorem 4

can be directly applied to this specific case and the ONE-STEP, TWO-STEP and KNOW-

γ-JOINT estimators will be no less efficient than the KNOW-γ.

Theorem 5 Under the conditions of Lemma 2 , ONE-STEP, KNOW-γ-JOINT and TWO-

STEP are no less efficient for βo than KNOW-γ. Furthermore, ONE-STEP and KNOW-γ-

JOINT are equally efficient for βo.

Hence, unless C12 = 0 (in which case the four estimators would be equally efficient), using

ONE-STEP or TWO-STEP that estimate γo through MLE produce more efficient estimates

for βo than using known weights (if we knew them) in the KNOW-γ estimator. The KNOW-

γ-JOINT estimator is as efficient as ONE-STEP as well, indicating that the knowledge of γo

is not useful in terms of the efficiency of the estimates for βo. The efficiency gains relatively

to KNOW-γ are due to the use the information in the second set of moment conditions.

Therefore, the puzzle described in Wooldridge (2002b, 2007) that KNOW-γ is inefficient

relative to TWO-STEP, extends to a larger set of estimators in which the original set of

unweighted moment conditions is nonsmooth as it was discussed by Chen et al. (2008) and
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Hitomi et al. (2008). In these cases we are better off estimating the weights by a conditional

MLE than knowing them. Nonetheless, the TWO-STEP estimator is dominated by both

ONE-STEP and KNOW-γ-JOINT and those should be used to obtain relatively efficient

estimates of βo.

It is important to note that the framework developed in this chapter does not extend

directly to semiparametric cases in which the probability of selection is estimated nonpara-

metrically. That can be a serious inconvenience when we have limited information about

the selection process and would benefit from a more flexible estimator to those probabilities.

However, as it is shown in the section 1.3.2 we can obtain consistent estimates for βo even

if using misspecified selection probabilities, as long as the data selection is exogenous.

1.3.2 Data Selection under Exogeneity of Selection

The literature in sample selection has long established that sample selection does not nec-

essarily cause bias in unweighted estimators. As shown in Wooldridge (2007) if selection

is exogenous conditional on the vector of covariates x the estimators of interest using the

unweighted moment conditions will be consistent and, in fact, more efficient (Prokhorov and

Schmidt, 2009) than the weighted estimators. Following Wooldridge (2007), I analyze the

properties of the estimators obtained under exogenous selection but with potential misspec-

ification of the selection model. The main results about consistency of the estimators for

the parameters of interest shown in Wooldridge (2007) and Prokhorov and Schmidt (2009)

remain unaltered by the fact that the moment conditions are allowed to be nonsmooth as

summarized below.

Consider that we have a potentially misspecified model for the probability of selection

given by G(z, γ∗), which is not necessarily equal to the true p(zi). Assume that the estimate

γ̂ obtained based on that model is consistent to some parameter vector γ∗ and
√
n(γ̂−γ∗) =

Op(1).
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In this case, the weighted moment condition

n−1
n∑
i=1

si
G(z, γ̂)

g(ωi,βo)
p

−→ E

[
s

G(z, γ∗)
g(ω,β)

]
(1.28)

instead of E [g(ω,β)] = 0, as seen in section 1.3.1.

Assume that the selection process is exogenous conditional on z.

Assumption 3 (Wooldridge, 2007, Assumption 4.1) (i) ωi is observed whenever si =

1;

(ii) For a random vector zi such that P (si = 1 | ωi, zi) =P (si = 1 | zi) ≡p(zi);

(iii) zi is observed whenever si = 1.

(iv) βo ∈ B solves the problem

E [g(ω, β) | z] = 0

for all z ∈ Z.

This assumption is the same as in Prokhorov and Schmidt (2009) and as shown by them

in Lemma 4.1 and Theorem 4.1 (p.53), which are not altered due to the use of nonsmooth

objective functions, it implies

E [g(ω, β) | z, s] = 0

Hence, any function of z and s is uncorrelated with g(ω, β) and both weighted and un-

weighted moment conditions hold in the selected sample for any weighting (that is a function

of z and s) that we could use. Therefore, the weighted moment condition in equation 1.28

will hold in the selected sample for any misspecified model G(z, γ∗). Obviously, this holds

for the unweighted moment conditions as well since it is equal to the special case in which

G(z, γ∗) = 1.

Then, we conclude that under exogeneity of selection, the IPW estimator for βo proposed

is consistent, regardless of the misspecification of the model for probability of selection3.

3 This conclusion is equivalent to Theorem 4.1 in Wooldridge (2007), extending it for

nonsmooth objective functions.
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This robustness is an important feature of the IPW procedure and adds to its usefulness in

applications.

1.4 Examples

1.4.1 Quantile Regression under Ignorability of Selection

Quantile regression is one of the main motivations for this research. As an example of the use

of the results presented here, consider I am interested in estimating the conditional quantile

function (CQF) of a random variable y conditional on a vector of explanatory variables x.

This is defined by,

Qτ (Y | X) = inf {y : FY (y | X) ≥ τ}

where τ ∈ (0, 1) indexes the τ th quantile of the conditional distribution of Y .

Suppose that the CQF is a linear model

Y = X ′βτo + ε

and that Qτ (ε | X) = 0. Then,

Qτ (Y | X) = X ′βτo

In the population, βo solves the following problem

min
β∈B

E
(
ρτ (Y −X ′βτ )

)
where, ρτ (u) = (τ − 1 [u ≤ 0])u

Given a random sample from the population of size n, it is possible to obtain consistent

estimates of βo by a standard quantile regression (QR) estimator.

min
β∈B

n−1
n∑
i=1

ρτ (yi − x′iβτ )
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Note that the population minimization problem has the following first order conditions

E
{(
τ − 1

[
y − x′βτo ≤ 0

])
x
}

= 0

and their sample analogue is (Buchinsky, 1998)

n−1
n∑
i=1

(
τ − 1

[
yi − x′iβ̂τ ≤ 0

])
xi = op(n

−1
2 )

Hence, we frame this problem as a GMM estimator that uses as moment conditions the

first order conditions of the QR problem, since these identify βτo . However, suppose a

random sample of (y, x) is not observed. We have a selection problem such that the full

vector (yi, xi) is observed only if a certain binary variable that defines selection equals the

unity, si = 1, if si = 0 at least some part of (yi, xi) is not observed. Then, in the selected

sample, we can only estimate

n−1
n∑
i=1

si

{(
τ − 1

[
yi − x′iβ̂τ ≤ 0

])
xi

}
= op(n

−1
2 )

which is the sample analogue of

E
{
s
[(
τ − 1

[
y − x′βτo ≤ 0

])
x
]}

= 0

but the value βτo that solves the population moment condition does not necessarily solve the

selected population moment condition. Additionally, assume that the probability of selection

can be written as a parametric function of some vector of variables (xi, zi) and parameters

γo and that conditional on zi, the terms of xi that are not included in zi and yi are irrelevant

for the probability of selection (Assumption 1).

P (si = 1 | yi, xi, zi) =P (si = 1 | zi) ≡p(zi, γo)

In this situation, we can estimate consistent and asymptotically normal estimates for

βτo using the selected sample by weighting the original observations by the inverse of the
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probability of selection. Note that,

E

{
s

p(z, γo)

[(
τ − 1

[
y − x′βτo ≤ 0

])
x
]}

= E

{
E

[
s

p(z, γo)

[(
τ − 1

[
y − x′βτo ≤ 0

])
x
]
| x, y, z

]}
= E

{
E (s | z)

p(z, γo)

[(
τ − 1

[
y − x′βτo ≤ 0

])
x
]}

= E
{[(

τ − 1
[
y − x′βτo ≤ 0

])
x
]}

= 0

then E
{

s
p(z,γo)

[(
τ − 1

[
y − x′βτo ≤ 0

])
x
]}

= 0 holds. Therefore, we can estimate βτo by

using those weighted moment conditions. Naturally, we would need to estimate the weights

if they are unknown.

Let the true selection model be a standard binary response model for simplicity. Then,

estimate the selection of probability by MLE, or more conveniently, a GMM procedure that

uses the first order conditions of the MLE for the selection model as moment conditions.

The MLE maximization problem and its first order condition are given by, respectively,

max
γ∈Γ

N∑
i=1

{si ln [p(zi,γ)] + (1− si) ln [1− p(zi,γ)]} (1.29)

n−1
n∑
i=1

[
∇′γp(zi, γ̂)

si − p(zi, γ̂)

p(zi, γ̂) (1− p(zi, γ̂))

]
= 0 (1.30)

where the estimator for γo is defined as the vector γ̂. Again, 1.30 is the sample analogue of

the following moment condition,

E

[
∇′γp(z, γo)

s− p(z, γo)
p(z, γo) (1− p(z, γo))

]
= 0

Hence, we have two sets of moment conditions that can be used to estimate both the

selection model and the conditional median model. The GMM estimator in this case would

be given by any of the four estimators proposed in section 1.2, with

gn1(θ) = n−1
n∑
i=1

si
p(zi, γ)

{(
τ − 1

[
yi − x′iβτ ≤ 0

])
xi

}
gn2(γ) = n−1

n∑
i=1

[
∇′γp(zi, γ)

si − p(zi, γ)

p(zi, γ) (1− p(zi, γ))

]
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the variance of the estimates will depend on the choice of estimator as stated by Theorem 4.

To estimate the variance of the estimated parameters we need to obtain valid estimates

for the components of G in the variance of θ̂.Note that, for example,

G11 ≡ ∇βE[g1(βo,γo)] = ∇βE
{

s

p(z, γo)

[(
τ − 1

[
y − x′βτo ≤ 0

])
x
]}

= ∇βE
{
E

[
s

p(z, γo)

[(
τ − 1

[
y − x′βτo ≤ 0

])
x
]
| z, x, s

]}
= ∇βE

{
s

p(z, γo)
E
[(
τ − 1

[
y − x′βτo ≤ 0

])
| z, x, s

]
x

}
= ∇βE

{
s

p(z, γo)

(
τ − Fy|z,x,s(x

′βτo)
)
x

}
= E

{
s

p(z, γo)
fy|z,x,s(x

′βτo)x′x
}

hence, consistent estimates can be obtained by the sample analogue,

Ĝ11 = n−1
n∑
i=1

si
p(zi, γ̂)

f̂y|z,x,s(x
′
iβ̂τ )x′ixi

Ĝ12 = n−1
n∑
i=1

−
∇′γp(zi, γ̂)

[p(zi, γ̂)]2
si

[(
τ − 1

[
yi − x′iβ̂τ ≤ 0

])
xi

]
Ĝ22 = n−1

n∑
i=1

[
∇′γp(zi, γ̂)

(
si − p(zi, γ̂)

p(zi, γ̂) (1− p(zi, γ̂))

)2
∇γp(zi, γ̂)

]

where the last equality is a direct application of GIME and f̂y|z,x,s(·) is a suitable estimator

of the conditional density of y, commonly by a kernel estimator.

Note that the same asymptotic variance formula for the KNOW-γ estimator for β̂τ is

obtained by a simple extension of the results for weighted quantile regression presented in

Koenker (2005) as shown in claim 1 in the appendix.

Since the conditions in Theorem 5 hold, we will obtain more efficient estimates by estimat-

ing the inverse probability weights than using the “true” weights, characterizing the puzzle

described in the literature (Wooldridge, 2002b, 2007). The relatively more efficient estimate

for βτo is given by the one-step estimator that jointly estimates both the probability weights

and the parameters of interest, βτo .
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One interesting point to note is that, even this relatively restrictive model for the CQF,

which assumes linearity, can be very insightful about the potentially nonlinear true CQF.

As discussed in detail by Angrist, Chernozhukov, and Fernández-Val (2006), a linear quan-

tile regression provides the best linear approximation of the true CQF in the sense that it

minimizes a weighted mean square error loss function. So even if we have reasons to believe

that the true CQF in which we are interested is nonlinear, the use of a linear quantile regres-

sion in the example above would provide us with the “best linear approximation” to it in a

similar way that a linear OLS model offers the best linear approximation to the conditional

mean function. Hence, by using IPW to correct the selection bias caused by missing data

we can recover this linear approximation to the CQF of interest, even if we don’t know its

true specification.

Nevertheless, this framework can be applied to nonlinear conditional quantiles of the form

Qτ (Y | X) = m
(
X, βτo

)
, with

gn1(θ) = n−1
n∑
i=1

si
p(zi, γ)

{
(τ − 1 [yi −m (xi, βτ ) ≤ 0])∇βm (xi, βτ )

}
Ĝ11 = n−1

n∑
i=1

− si
p(zi, γ̂)

f̂y|z,x,s
(
m
(
xi, β̂τ

))
∇′βm

(
xi, β̂τ

)
∇βm

(
xi, β̂τ

)
Ĝ12 = n−1

n∑
i=1

−
∇′γp(zi, γ̂)

[p(zi, γ̂)]2
si

[(
τ − 1

[
yi −m

(
xi, β̂τ

)
≤ 0
])
∇βm

(
xi, β̂τ

)]
and the remaining equations unchanged.

1.4.2 Instrumental Variable Quantile Regression

Consider a simplified version of the IVQR estimator described in Chernozhukov and Hansen

(2006). Focus on the basic linear model that allow for heterogeneous effects given by,

Yd = q(d, x, τ) = d′ατ + x′βτ

where d is a vector of (potentially endogenous) multi-valued treatment variables and x is a

vector of covariates. Under the conditions described in Assumption 1 of Chernozhukov and
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Hansen (2006), the IVQR estimator of the vector of parameters (α(τ)′, β(τ)′)′ proposed in

that paper approximately solves the estimating equation4:

n−1
n∑
i=1

(1
[
yi − d′iατ − x

′
iβτ ≤ 0

]
− τ)(x′i, Φ̂

′
iτ )′ = op(n

−1
2 )

where Φ̂iτ ≡ Φ̂τ (τ , xi, zi) is a vector of transformations of the instruments. In a simple

model Φ̂iτ can be formed by the least squares projection of d on z and x (and its powers)

(Chernozhukov and Hansen, 2006, 2008). In that simple case, we could write the sample

analogue of the moment conditions that will identify the parameters of the model as

gn1(θ) = n
−1

2

n∑
i=1

{
(1
[
yi − d′iατ − x

′
iβτ ≤ 0

]
− τ)(x′i, (x

′
i, z
′
i)γ)′

}
gn2(γ) = n−1

n∑
i=1

(x′i, z
′
i)
′[di − (x′i, z

′
i)γ]

Hence, the analysis developed in section 1.2 can be applied to the IVQR estimator pro-

posed by Chernozhukov and Hansen (2005, 2006, 2008) and the results shown above are

valid in its scope. Nevertheless, it is important to note that the framework developed here

does not extend directly to semiparametric cases in which the “first stage” is estimated

nonparametrically. That can be a serious inconvenience when we have limited information

about the form of the transformation on the vector of instruments that would be preferable

in estimating IVQR.

1.5 Conclusion

This chapter (i) extends the GMM efficiency and redundancy results of Prokhorov and

Schmidt (2009) to nonsmooth objective functions; (ii) analyzes the extent to which these

results could be useful in the context of inverse probability weighting (IPW) as a mechanism

to correct missing data issues, thus allowing its use in the LAD and quantile regression

4 For simplicity I’m assuming that the weights V̂iτ in Chernozhukov and Hansen (2006)

are equal to the unit.
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framework; (iii) verifies the conditions under which the puzzle of selectivity literature, i.e.,

that weighting using known probabilities of selection leads to a less efficient estimate than

using estimated probabilities of selection (Wooldridge, 2002b, 2007; Prokhorov and Schmidt,

2009; Hitomi et al., 2008), is valid under nonsmoothness of the objective functions that

characterize the models of interest; and (iv) shows that even in that case the widely used

two-step estimator is relatively less efficient than a one-step joint estimator.

Section 1.2 extends results on redundancy and efficiency due to Prokhorov and Schmidt

(2009) that can now be applied to a wide range of contexts in which nonsmooth objective

functions can be useful, including LAD, quantile regression, censored LAD and quantile

treatment effects. Joint estimation of nuisance parameters and parameters of interest is

more efficient than a two-step procedure or knowing the true nuisance parameters in the

nonsmooth case. This springs from the information contained in the correlation between

both sets of moment conditions which is useful, even when γo is known. Using only the

first set of moment conditions and known values of γo in the estimation procedure does

not use the additional information embedded in the second set of moment conditions, being

inefficient. Some possible consistent estimators for the variance of both sets of parameters

are presented.

Section 1.3 analyzes the missing data problem described in Wooldridge (2007). The se-

lection model is estimated by a conditional MLE procedure, but the assumptions about the

selection model are weak enough to cover most of the common parametric selection pro-

cesses in the literature, like attrition, variable probability, “missing at random”, etc. One

important case not covered is “selection on unobservables”. The results from Wooldridge

(2007) and Prokhorov and Schmidt (2009) extend to nonsmooth objective functions. If we

use both sets of moment conditions, knowledge about the nuisance parameters is not useful

for the efficiency of the estimates of the parameters of interest. Additionally, the moment

conditions that are associated with the selection model are not redundant, except in special

cases. Estimating the parameters of interest using only the first set of moment conditions
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with known probabilities of selection as weights is inefficient because it ignores information in

the second set of moment conditions. This is the type of puzzle referred to in the selectivity

literature, specially in the IPW approach to missing data.

In summary, IPW can be used to correct missing data problems when the model of interest

is based on nonsmooth objective functions. Furthermore, two-step estimation of βo is more

efficient than using known probabilities of selection. Nonetheless, the two-step estimator is

dominated by a one-step joint estimation procedure that uses both the weighted moment

conditions and the selection model’s conditions. Hence, the analysis by Prokhorov and

Schmidt (2009) extends to the relative efficiency of an IPW approach to deal with missing

data problems in which the moment conditions of interest are nonsmooth, encompassing, for

example, LAD, quantile regression, Censored LAD and IVQR.

Finally, two illustrative examples of interesting models are provided that are encompassed

by the general framework developed in this work. The first is a quantile regression model

with missing data and, the second one is a simplified version of the Instrumental Variable

Quantile Regression estimator (IVQR) presented by Chernozhukov and Hansen (2006).
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CHAPTER 2

Fixed Bandwidth Asymptotics for

Regression Discontinuity Designs

2.1 Introduction

Regression discontinuity (RD) designs have been propelled to the spotlight of economic

analysis in recent years1, especially in the policy and treatment evaluation literatures, as a

form of estimating treatment effects in a non-experimental setting. The appeal of RD comes

from the relative weak assumptions necessary for the identification of treatment effects and

inference, which rely on RD’s “quasi-experimental” characteristics.

The standard approach to derive the asymptotic properties of estimates obtained in RD

settings relies on the traditional assumption that the bandwidth, h, used in the estimation

procedure shrinks towards zero as the sample size grows. This guarantees identification of

the parameter of interest under mild conditions. Hence, the asymptotic distribution of the

estimator used as the basis for inference depends crucially on this small-h condition.

1 Lee and Lemieux (2009), in a broad review of the RD literature, compile a list of

more than 60 papers that apply RD design to many different contexts. The overwhelming

majority of the papers have been published in the last decade.

31



In practice, to obtain an estimate of the parameter of interest and perform inference about

it, the empiricist is required to choose a fixed bandwidth greater than zero. Hence, even

though the asymptotic theory requires that h→ 0, in practice h > 0 and fixed. Asymptotic

distributions that treat h as fixed can provide a more refined approximation of the asymptotic

behavior of the estimator than those derived under the assumption that h→ 0.

This chapter derives the asymptotic distribution for the local polynomial estimator when

the bandwidth is allowed to be any positive real number. The results shown in section 2.5

provide a new, fixed-h, approximation to the estimator’s bias and variance that incorporate

the bandwidth size chosen by the researcher.

Corollary 2 shows that the standard small-h asymptotic distribution of the parameter of

interest is a special case of fixed-h in which h→ 0. Also, corollary 3 shows that when a fixed

h > 0 is used the standard small-h result for the variance of the estimators is equivalent

to assuming that the density of the running variable and the conditional variance of the

outcome variable are constant around the discontinuity.

The increased theoretical interest in RD started with Hahn, Todd, and Van der Klaauw

(1999, 2001), who presented the conditions for identification of the average treatment effect of

interest and its estimation exploiting discontinuities in the probability of treatment provision,

which are determined by the so-called running variable. They also derived the asymptotic

distribution of the estimators by looking at a shrinking bandwidth around the discontinuity.

Porter (2003) provided widely used results on the asymptotic properties of the estimators

for the treatment effect of interest, obtaining limiting distributions for estimators based on

local polynomial regression and partially linear estimation.

Imbens and Lemieux (2008) and Lee and Lemieux (2009) offer a broad review of the

theoretical and applied literature with emphasis on the identification of the parameter of

interest and its potential interpretation as a weighted average treatment effect.

The analysis of asymptotic properties of estimators for fixed bandwidths has received

some attention in other literatures. Notably, Neave (1970), in the framework of spectral
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density estimation, obtains more accurate approximations to the variance of nonparametric

spectral estimates by acknowledging that, with a finite sample, the bandwidth used is fixed.

He asserts that, in the context of his paper, the assumption equivalent to the bandwidth

converging to zero: “(...) is a convenient assumption mathematically in that, in particular,

it ensures consistency of the estimates, but it is unrealistic when such results are used as

approximations to the finite case(...)”(Neave, 1970, p. 70). Also, Fan (1998) provides an

alternative approximation for goodness-of-fit tests for density function estimates in which the

bandwidth used in the test is fixed, obtaining improved approximations to the asymptotic

behavior of the test and more appropriate critical values for inference.

The same can be said in the regression discontinuity design. Even though h → 0 is a

convenient assumption that guarantees consistency of the estimates of the average treatment

effect, it will be unrealistic. It is of theoretical and practical interest to obtain more accurate

asymptotic distributions by treating h as fixed so that the theory used for inference is more

accurate and aligned with the practice of applied economists.

Monte Carlo simulations in section 2.7.1 indicate that, compared with small-h, asymptotic

distributions derived based on fixed-h better characterize the behavior of the estimators and

provide improved inference about the treatment effect, reducing size distortions in tests and

better approximating the bias in the estimates. These improvements are more important

when the bandwidth is farther from zero, as one would expect.

Section 2.6 proposes estimators for the asymptotic variance based on the fixed-h results

and provides evidence, through Monte Carlo simulations (section 2.7.2), that the feasible

inference incorporates the inference improvements predicted by the theory, suggesting that

the theoretical gains in robustness can be translated to practical benefits in applied work.

Section 2.7.2 also compares the performance of the small-h standard error estimators pro-

posed in the literature in performing inference. The fixed-h variance estimators can improve

markedly over small-h estimators in the presence of some forms of heteroskedasticity. Simu-

lations using heteroskedastic errors have provided evidence that feasible tests based on the
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fixed-h approach obtain better coverage, outperforming small-h starting at relatively small

bandwidths.

Interestingly, in the case of the widely used local linear estimator with homoskedastic errors

the variance estimators based on small-h asymptotics suggested in the literature produce well

behaved tests with similar size performance to the fixed-h variance estimators, performing

better than the standard theory would expect.

2.2 Model

The interest lies in estimating the average treatment effect, τ , of a certain treatment or

policy that affects part of a population of interest. As discussed in Porter (2003); Imbens

and Lemieux (2008) and Lee and Lemieux (2009), RD designs are closely associated with

the treatment effect literature.2 There are two types of RD designs, sharp and fuzzy, and

they differ as to how treatment is assigned to a certain observation and the impact of the

discontinuity in its assignment. I will focus on the sharp design in this section and emphasize

the differences of the fuzzy design when needed.

2.2.1 Sharp Regression Discontinuity Design

In the sharp design, the treatment status, D, is a deterministic function of a so called

“running” or “forcing” variable, x, such that,

di =

{
1 if xi ≥ x

0 if xi < x

}

where x is the known cut-off point. Then, let Y1 and Y0 be the potential outcomes cor-

responding to the two possible treatment assignments. As usual, we cannot observe both

potential outcomes, having access only to Y = dY1− (1− d)Y0. As described by Hahn et al.

2 Angrist and Pischke (2009) provide a simple introduction to the intuition of regression

discontinuity.
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(2001) and Porter (2003), under a smoothness assumption that E
[
Yj | X = x

]
is continu-

ous at x for j = 0, 1, the average treatment effect can be estimated by comparing points

just above and just below the discontinuity. The discontinuity in treatment assignment at x

provides the opportunity for identifying the average treatment effect at the cutoff without

any additional parametric functional form restrictions on the conditional expectations of the

outcome variable. The average causal effect of the treatment at the discontinuity is Imbens

and Lemieux (2008)

τS ≡ E [Y1 − Y0 | X = x]

= lim
x↓x

E [Y | X = x]− lim
x↑x

E [Y | X = x]

where the second equality holds under some smoothness assumptions regarding the condi-

tional expectations (discussed below). The sharp regression discontinuity design uses the

discontinuity in the conditional expectation of Y given X to uncover the average treatment

effect. If the treatment effect is deemed constant across individuals, τS is the effect of treat-

ment for each individual in the population. If we allow the treatment effect to differ among

individuals, τS is the average treatment effect for individuals at the cutoff. Interestingly,

Lee and Lemieux (2009) show that the so-called RD gap obtained by the comparison of

observations just above and just below the cutoff can be interpreted as a weighted average

treatment effect across all individuals, not only the individuals around the cutoff. In this

case each individual would have weights directly proportional to the ex ante likelihood that

an individual’s realization of X will be close to the threshold. For a comprehensive review

of RD designs and their applications and interpretation, see Lee and Lemieux (2009).

2.2.2 Fuzzy Regression Discontinuity Design

In the fuzzy design the probability of receiving treatment still changes discontinuously at the

threshold, but is not required to go from 0 to 1, allowing for a smaller jump in the probability
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of receiving treatment at the cutoff,

lim
x↓x

Pr(d | X = x) 6= lim
x↑x

Pr(d | X = x)

This framework allows for a greater range of applications since it includes cases in which

the incentives to receive (or assign) treatment change discontinuously at the threshold, but

are not strong enough to induce all individuals above it to be treated (and those below not

to be treated). The average treatment effect at the cutoff can be identified by the ratio

of the change in the conditional expectation for the outcome variable to the change in the

conditional probability of receiving treatment (Imbens and Lemieux, 2008):

τF ≡
limx↓xE [Y | X = x]− limx↑xE [Y | X = x]

limx↓xE [d | X = x]− limx↑xE [d | X = x]

This parameter’s interpretation is closely linked to the instrumental variables approach. As

emphasized by Hahn, Todd, and Van der Klaauw (2001); Imbens and Lemieux (2008) and

Lee and Lemieux (2009), a causal interpretation of this ratio requires the same assumptions

for local average treatment effects (LATE) presented in Imbens and Angrist (1994). For that

we assume monotonicity, i.e., that the treatment status is non-increasing in the cutoff value,

or, as stated by Lee and Lemieux (2009, p. 23): “(...)X crossing the cutoff cannot simulta-

neously cause some units to take up and others to reject the treatment.” Also, crossing the

cutoff cannot affect the outcome other than by the receipt of treatment, otherwise we would

erroneously attribute changes in the conditional expectation of Y due to changes in X to

the treatment.

Under these additional assumptions, τF has an interpretation similar to the IV estimator,

the average treatment effect for the individuals at the threshold (due to the RD design) and

only for those whose participation on treatment was affected by the cutoff. Those individuals

are described as compliers in the Average Treatment Effect literature3. Hence (Imbens and

Lemieux, 2008),

3 See Imbens and Angrist (1994); Hahn, Todd, and Van der Klaauw (2001); Imbens and

Lemieux (2008) and Lee and Lemieux (2009).

36



τF ≡ E [Y1 − Y0 | individual is a complier and X = x]

Similarly as in the sharp RD design, Lee and Lemieux (2009) show that the fuzzy RD

design estimator can be interpreted as a weighted LATE with an individual’s weight directly

proportional to the ex ante likelihood that an individual’s realization of X will be close to

the threshold.

2.3 Estimators

I analyze estimates for the parameter of interest, τS or τF , obtained by local polynomial esti-

mators. In applied work local polynomial estimators are a staple for estimation of treatment

effects in RD settings. This is partially due to their easy implementation, nice properties and

by the fact that the local linear estimator has been the focus on several papers that helped

to disseminate the technique (Hahn, Todd, and Van der Klaauw, 1999, 2001; Imbens and

Lemieux, 2008; Lee and Lemieux, 2009). Theoretically as well, local polynomial estimators

are attractive for estimation in the regression discontinuity setting given its nice boundary

behavior as described by Fan and Gijbels (1996).

The order p local polynomial estimator is defined as follows. In the sharp design case, given

data (yi, xi)i=1,2,...,n, let di = 1[xi ≥ x], k(·) be a kernel function, h denote a bandwidth

that controls size of the local neighborhood to be averaged over. Also, define the p + 1× 1

vector Z(x) =
(

1, (x− x) , (x− x)2 , ..., (x− x)p
)′

and let
(
α̂p+, β̂p+

)′
be the solution to

the minimization problem:4

min
a,b1,...,bp

1

n

n∑
i=1

1

h
k

(
xi − x
h

)
di
[
yi − a− b1(xi − x)− ...− bp(xi − x)p

]2
4 Note that in the sharp RD design, di will be identical to the treatment assignment

variable Di since the probability of being treated is zero below the threshold and one above

it.
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and similarly
(
α̂p−, β̂p−

)
minimizes the same objective function but with 1− di replacing

di. The estimator of the parameter of interest is given by

τ̂S ≡ α̂p = α̂p+ − α̂p−

This estimator fits a polynomial on X on a neighborhood just above and below the cutoff

for treatment, x, and encompasses some familiar estimators as special cases.

Case 1 If p = 0 is used, the Nadaraya-Watson estimator is obtained. The Nadaraya-Watson

estimator takes a kernel weighted average of observations at each side of the discontinuity

and its difference.

α̂ =
n−1∑

i h
−1k

(
x−xi
h

)
yidi

n−1
∑
j h
−1k

(
x−xj
h

)
dj

−
n−1∑

i h
−1k

(
x−xi
h

)
yi(1− di)

n−1
∑
j h
−1k

(
x−xj
h

)
(1− dj)

=

∑
i k
(
x−xi
h

)
yidi∑

j k

(
x−xj
h

)
dj

−

∑
i k
(
x−xi
h

)
yi(1− di)∑

j k

(
x−xj
h

)
(1− dj)

If in addition we use the rectangular kernel, α̂ simplifies to be the difference of the means of

yi in the bandwidths above and below the cutoff.

Case 2 If the rectangular kernel is used, the local least squares estimator of yi on a poly-

nomial of (xi − x) with order p is obtained on the neighborhood on each side of the cutoff.

Moreover, if the condition β̂p+ = β̂p− is imposed, the estimator α̂p is the coefficient on di

on the OLS regression of yi on di and the polynomial of (xi−x) with order p using the data

inside the bandwidth on both sides of the cutoff.

In both the theoretical and applied literatures, emphasis has been given to the case in

which a linear model (p = 1) on X is fitted on each side of the cutoff (Hahn, Todd, and

Van der Klaauw, 1999, 2001; Imbens and Lemieux, 2008; Lee and Lemieux, 2009).

Case 3 If p = 1, the local linear estimator is obtained. For the rectangular kernel α̂ simpli-

fies to the difference of the intercepts from the linear regression of yi on 1 and (xi−x) in the
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ranges above and below the cutoff. If, additionally, β̂1+ = β̂1− is imposed, the estimator of

the ATE of interest is the coefficient for di on the OLS regression of yi on 1, di and (xi−x)

using the data inside the ranges on both sides of the cutoff.

2.4 Assumptions

To derive the asymptotic distribution of the estimator for τ , the following assumptions are

sufficient.

Assumption 4 (a) k(·) is a symmetric, bounded, Lipschitz function, zero outside a bounded

set;
∫
k(u)du = 1.

(b) For a positive integer s,
∫
k(u)ujdu = 0, 1 ≤ j ≤ s− 1.

Assumption 4 allows for higher order kernels5 and a bounded support set for the kernel

avoids the use of a trimming function.

Let fo denote the marginal density of x and m(x) denote the conditional expectation of

y given x minus the discontinuity, i.e., m(x) = E [y | x]− α1[x ≥ x], where x is the value of

the running variable in which the discontinuity occurs.

Assumption 5 Suppose the data (yi, xi)i=1,2,...,n is i.i.d. and α is defined by

α = lim
x↓x

E [y | X = x]− lim
x↑x

E [y | X = x]

For some compact interval ℵ of x with x ∈ int(ℵ), fo is lf times continuously differentiable

and bounded away from zero; m(x) is lm times continuously differentiable for x ∈ ℵ�{x},

and m is continuous at x with finite right and left-hand derivatives to order lm.

In the sharp RD design τS = α and the average treatment effect is obtained directly

from the discontinuity in the conditional expectation of Y . In the following, I discuss the

5 If s ≥ 3, the kernel has to be negative for some region of its domain to satisfy part (b)

of the assumption.

39



estimation of α and interpret it as the estimate for the average treatment effect of interest.

For the Fuzzy RD design the average treatment effect will be given by the ratio of two such

discontinuities, the conditional expectations of the outcome and probability of receiving

“treatment”.

Assumption 5 guarantees smoothness of the density of x and the conditional expectation of

y on both sides of the discontinuity while allowing for different right and left-side derivatives

of m at x. Also, bounding the density of x on the neighborhood around x guarantees there

is density (“data”) around the discontinuity to estimate the jump size.

Assumption 6 describes the behavior of the moments of the outcome variable around the

discontinuity. Define, ε = y − E [y | X = x] = y −m(x)− α1[x ≥ x].

Assumption 6 (a) σ2(x) = E
[
ε2 | X = x

]
is continuous for x 6= x, x ∈ ℵ, and right and

left-hand limits at x exist.

(b) For some ζ > 0, E
[
|ε|2+ζ | X = x

]
is uniformly bounded on ℵ.

Assumption 6(a) allows the conditional variance of the outcome variable to be a function

of the running variable and assures it is well behaved around the cutoff. Part (b) bounds

the moments so that a central limit theorem can be applied.

The fixed-h asymptotic distributions described in section 2.5 do not require additional

assumptions over what is used in the standard, small-h literature, e.g., Hahn, Todd, and

Van der Klaauw (2001); Porter (2003) etc.

2.5 Asymptotic Distributions

This section develops the asymptotic distribution for the local polynomial estimator of the

average treatment effect for a fixed bandwidth, h.
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Theorem 6 Suppose Assumptions 4 (a) and 6 hold. If Assumption 5 (a) holds with lm ≥

p+ 1 and lf any nonnegative integer. If h is fixed and positive, as n→∞, then

√
nh(α̂p − α∗p)

d→ N
(

0, Vfixed−h
)

(2.1)

where

Vfixed−h = e′1
[(

Γ∗+
)−1 ∆∗+

(
Γ∗+
)−1 +

(
Γ∗−
)−1 ∆∗−

(
Γ∗−
)−1

]
e1 (2.2)

α∗p = α +Bfixed−h

Bfixed−h = e′1

{ (
Γ∗+
)−1 [∫∞

0 k (u)Z(x+ uh)m(x+ uh)fo(x+ uh)du
]
−

−
(
Γ∗−
)−1 [∫∞

0 k (u)Z(x− uh)m(x− uh)fo(x− uh)du
] } (2.3)

and

Γ∗
+(−)

=


γ

+(−)
0 · · · γ

+(−)
p

...
. . .

...

γ
+(−)
p · · · γ

+(−)
2p

 , ∆∗
+(−)

=


δ
+(−)
0 · · · δ

+(−)
p

...
. . .

...

δ
+(−)
p · · · δ

+(−)
2p

,

e1 =
[
1 0 · · · 0

]′
, γ+

j =
∫∞
0 k (u)ujfo(x+ uh)du,

γ−j = (−1)j
∫∞
0 k (u)ujfo(x− uh)du,

δ+j =
∫∞
0 k2 (u)ujσ2(x+ uh)fo(x+ uh)du,

δ−j = (−1)j
∫∞
0 k2 (u)ujσ2(x− uh)fo(x− uh)du

The proof is given in the appendix.

Theorem 6 provides the asymptotic distribution for the local polynomial estimator of the

parameter of interest for any bandwidth value.

The formula for asymptotic variance explicitly takes into consideration the choice of band-

width, without assuming h→ 0. The fixed-h approach used in theorem 6 captures the impact

of h on the asymptotic variance, Vfixed−h. Even though the asymptotic variance formulas

are somewhat cumbersome, these are still functions of known data and can be calculated for

given functions fo(x) and σ2(x) or estimated in a dataset (see section 2.6).

The bias term that arises under the fixed-h assumption does not vanish as the sample

size increases as suggested by the standard approximations but, for a given bandwidth, it
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converges to Bar. The bias is the difference of the (scaled) linear projection for m(x) on Z

evaluated at x = x (i.e., the difference in intercepts) inside the bandwidth above and below

the cutoff. Intuitively, the bias in α̂ is a difference between the conditional expectation of

the outcome above and below the cutoff that would have arisen in the absence of treatment,

i.e., the difference that would have happened nevertheless and are erroneously attributed

to the treatment or policy being analyzed. The fixed-h approach tackles the bias problem

“head on”, making explicit the impact of the bandwidth choice on the bias of the estimate

obtained.

The local polynomial approach mitigates the bias problem if it is able to approximate

m(x) appropriately, since it partially captures changes in m(x) above and below the cutoff

that would exist even in the absence of treatment by using the higher order polynomials.

Note that, as h→ 0 the results for the asymptotic distribution of α̂ in theorem 6 approach

the asymptotic variance and bias of small-h asymptotics (Porter, 2003).

Corollary 2 If the conditions in theorem 6 hold, h→ 0, then the asymptotic variance and

bias for α̂p are equal to the small-h approximation (Porter, 2003)

Vsmall−h =
σ2+(x) + σ2−(x)

fo(x)
e′1Γ−1∆Γ−1e1 (2.4)

α∗small−h = α +Bsmall−h

Bsmall−h =
limh→0 h

p+1

(p+ 1)!
[m(p+1)+(x)− (−1)p+1m(p+1)−(x)]e′1Γ−1

 γp+1
...

γ2p+1

(2.5)

and

Γ =

γ0 · · · γp
...

. . .
...

γp · · · γ2p

, ∆ =

δ0 · · · δp
...

. . .
...

δp · · · δ2p

,

e1 =
[
1 0 · · · 0

]′
, γj =

∞∫
0
k(u)ujdu, δj =

∞∫
0
k2(u)ujdu and m(l)+(−)(x) is the lth

right (left)-hand derivative of m(x) at point x.

Additionally, the small-h asymptotic distribution variance and bias in corollary 2 are equal

to that obtained by assuming that fo(x) and σ2(x) are constant around the cutoff and that
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m(x) can be exactly approximated by a polynomial of order p+ 1.

Corollary 3 Under the assumptions in theorem 6, if h > 0 and, in the bandwidth around the

cutoff, fo(x) and σ2(x) are constant and m(x) can be exactly approximated by an expansion

of order p+ 1. Then, the asymptotic variance and bias of
√
nh(α̂p − α) obtained by fixed-h

(theorem 6) and small-h (Porter, 2003) are the same.

Focusing on the formula for asymptotic variance in both fixed-h and small-h approaches,

it is clear that the refinements obtained by fixed-h are due to incorporating the behavior of

fo(x) and σ2(x) in the ranges around the cutoff, while small-h ignores it by considering only

the values at the cutoff, fo(x) and σ2(x). Hence, the benefits in using fixed-h asymptotics are

expected to be larger when the density of X and the conditional variance change markedly

inside the bandwidths around the cutoff, i.e., heteroskedasticity inside the bandwidth could

lead to poor performance by the small-h variance approximation relative to fixed-h.

It is relevant to note that both fixed-h and small-h asymptotic approximations are based

on the same estimator for α̂. For a given bandwidth the bias present in the estimate is

set. Small-h asymptotics may lead one to ignore the bias by arguing to have chosen the

bandwidth to “undersmooth”. However, once a bandwidth is chosen the bias is given and

should not be ignored.

To clarify the intuition on the results in theorem 6, it is interesting to analyze the special

case of the Nadaraya-Watson estimator.

Case 4 For the Nadaraya-Watson estimator case, we have

√
nh(α̂− α∗NW )

d→ N (0, VNW )

where

VNW =

∫∞
0 k2 (u)σ2+(x+ uh)fo(x+ uh)du(∫∞

0 k (u) fo(x+ uh)du
)2 +

∫∞
0 k2 (u)σ2−(x− uh)fo(x− uh)du(∫∞

0 k (u) fo(x− uh)du
)2

α∗NW = α +BNW

BNW =

∫∞
0 k (u)m(x+ uh)fo(x+ uh)du∫∞

0 k (u) fo(x+ uh)du
−
∫∞
0 k (u)m(x− uh)fo(x− uh)du∫∞

0 k (u) fo(x− uh)du
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If the rectangular kernel is used, the asymptotic variance and bias simplify to

VNW =

∫∞
0 σ2+(x+ uh)fo(x+ uh)du(∫∞

0 fo(x+ uh)du
)2 +

∫∞
0 σ2−(x− uh)fo(x− uh)du(∫∞

0 fo(x− uh)du
)2

BNW =

∫∞
0 m(x+ uh)fo(x+ uh)du∫∞

0 fo(x+ uh)du
−
∫∞
0 m(x− uh)fo(x− uh)du∫∞

0 fo(x− uh)du

The asymptotic variance is given by a weighted average of the conditional variance of Y

above and below the cutoff, and that the asymptotic bias is simply the difference in the

(local) averages of m(x) above and below the cutoff, i.e., the difference in outcome that

would have arisen even in the absence of treatment.

Intuitively, it is interesting to draw a parallel of the results in theorem 6 with the issue of

model misspecification. The problem of estimating the ATE at the cutoff discussed here can

be seen as one of correctly estimating E [Y | X] on both sides of the cutoff. In this sense,

the local polynomial estimator is a polynomial approximation to the unknown conditional

expectation inside the bandwidth on each side, not different from standard parametric meth-

ods. By choosing a relatively small bandwidth we are fitting the conditional expectation on

a restricted support and, hence, expect a polynomial of order p to produce a better fit than

if we were trying to fit E [Y | X] globally, this is the benefit associated with a nonpara-

metric approach, since it allows the conditional expectation to be unrestricted outside the

bandwidth.

Clearly, one does not expect the conditional expectation in the bandwidth to be completely

described by a polynomial of the chosen order p, so we can draw some intuition by looking

at the asymptotic results in Theorem 6 as those arising from potentially misspecified models

(White, 1982, 1996). The estimator converges to α∗ which is not equal to the parameter of

interest but still provides relevant information about the population.
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2.5.1 Fuzzy Regression Discontinuity Design

In the Fuzzy RD design the estimator of the parameter of interest is given by the ratio

τ̂F =
α̂

θ̂

where α̂ is any of the estimators described in the previous section and θ̂ is the estimator

for the change in the probability of being in the treated group at the cutoff. Note that θ̂ is

obtained by using the estimators described above with the treatment assignment variable,

Di, as the dependent variable.

To obtain the asymptotic distribution of the fuzzy RD estimator, the delta method can

be used, similarly to the result in Porter (2003).

Theorem 7 If ( √
nh(α̂− α∗)√
nh(θ̂ − θ∗)

)
d→ N

((
0

0

)
,

[
Vα Cαθ
Cαθ Vθ

])
then

√
nh

(
α̂

θ̂
− α∗

θ∗

)
d→ N

(
0,

1

θ∗2
Vα − 2

α∗

θ∗3
Cαθ +

α∗2

θ∗4
Vθ

)
where α∗ = α + Bα, θ∗ = θ + Bθ and Bα and Bθ are the bias terms for the estimators as

defined in theorem 6 for local polynomial estimators.

The proof of the proposition follows directly from the Delta Method and is omitted. The

condition of multivariate normality required in this proposition follows from usual multi-

variate central limit theorem using a Cramer-Wold device (James, 2004; Pagan and Ullah,

1999). Note that,

α∗

θ∗
=

α +Bα
θ +Bθ

=
α +Bα

θ

θ

θ +Bθ

=
α

θ

θ

θ +Bθ
+
Bα
θ

θ

θ +Bθ
(2.6)

for given values of α and θ, if |θ| < |θ +Bθ| then 0 ≤
∣∣∣∣ θ
θ+Bθ

∣∣∣∣ ≤ 1. Clearly, if there is no

bias in the estimate for α or θ, i.e., Bα = 0 and Bθ = 0, the fuzzy design RD estimator will
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be consistent for the true treatment effect. If Bα = 0 and Bθ 6= 0, the estimator will suffer

an attenuation bias and tests for the null hypotheses that the treatment is unimportant will

be conservative. If Bα 6= 0 and Bθ = 0, the estimator’s bias is similar to the one seem for

the sharp RD design, only being scaled by 1
θ . Finally, if Bα 6= 0 and Bθ 6= 0, any increase in

Bα increases the bias in the ATE estimator but there will be a trade-off regarding the size

of Bθ since its impact in the first and second terms will be in opposite directions.

All the terms that appear in the asymptotic distribution above, except for Cαθ, can be

obtained from theorem 6 by using local polynomial estimators discussed in section 2.3. It is

necessary to specify Cαθ in order to obtain the asymptotic distribution of the estimator in

the fuzzy RD design.

Theorem 8 Suppose σεη = E [εη | X = x] is continuous for x 6= x, x ∈ ℵ and the left and

right-hand limits at x exist. If α̂ and θ̂ are the local polynomial estimators and the conditions

of theorem 6 hold for both estimators, then

Cαθ = e′1
[(

Γ∗+
)−1 ∆

ρ
+

(
Γ∗+
)−1 +

(
Γ∗−
)−1 ∆

ρ
−
(
Γ∗−
)−1

]
e1

where ∆
ρ
+(−)

=


ρ
+(−)
0 · · · ρ

+(−)
p

...
. . .

...

ρ
+(−)
p · · · ρ

+(−)
2p

,

ρ+
j =

∫∞
0 k2 (u)ujσεη(x+ uh)fo(x+ uh)du,

ρ−j = (−1)j
∫∞
0 k2 (u)ujσεη(x− uh)fo(x− uh)du, Γ∗+ and Γ∗− are defined as in previous

Corollaries.

As h→ 0, the standard small-h asymptotic covariance is the same as the one in theorem

8, as one would expect.

Corollary 4 Letting h −→ 0 in the expressions of theorem 8, then the asymptotic covari-

ance, Cαθ, obtained by fixed-h (theorem 8) and small-h (Porter, 2003) are the same:

Cαθ =
σ+
εη(x) + σ−εη(x)

fo(x)
e′1Γ−1∆Γ−1e1
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Also, a result similar to the corollary 3 is readily available.

Corollary 5 Under the assumptions in theorem 8, if h > 0, and in the bandwidth around

the cutoff, fo(x) and σεη(x) are constant, then the asymptotic covariance, Cαθ, obtained by

fixed-h (theorem 8) and small-h (Porter, 2003) are the same.

In the case of the Nadaraya-Watson estimator, the asymptotic covariance simplifies in

similar fashion to the asymptotic variance in formula (2.6) and provides intuition about

the refinements obtained by the fixed-h asymptotic distribution relative to small-h. Those

improvements arise from incorporating the behavior of σεη(x) and fo(x) in the range around

the cutoff while small-h does not.

Case 5 For the Nadaraya-Watson estimator we have

Cαθ =

∫∞
0 k2 (u)σεη(x+ uh)fo(x+ uh)du(∫∞

0 k (u) fo(x+ uh)du
)2 +

∫∞
0 k2 (u)σεη(x− uh)fo(x− uh)du(∫∞

0 k (u) fo(x− uh)du
)2

If the rectangular kernel is used Cαθ simplifies to

Cαθ =

∫∞
0 σεη(x+ uh)fo(x+ uh)du(∫∞

0 fo(x+ uh)du
)2 +

∫∞
0 σεη(x− uh)fo(x− uh)du(∫∞

0 fo(x− uh)du
)2

2.6 Variance Estimators

To be able to perform inference about α using the information in a given sample, appropriate

estimates for the unknown terms in the asymptotic variance formulas from theorem 6 are

necessary. Note that the components of the asymptotic variance of
√
nh(α̂p − α∗p) can be

written as expectations of population quantities and estimated using sample analogues. We

have
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γ+
j = E

[
h−1k

(
x− x
h

)(
x− x
h

)j
d

]
,

γ−j = E

[
h−1k

(
x− x
h

)(
x− x
h

)j
(1− d)

]
,

δ+j = E

[
h−1k

(
x− x
h

)2(x− x
h

)j
dε2

]
,

δ−j = E

[
h−1k

(
x− x
h

)2(x− x
h

)j
(1− d)ε2

]
Then, define the sample analog estimators of those quantities as

γ̂+
j = (nh)−1

n∑
i=1

k

(
x− xi
h

)(
x− xi
h

)j
di,

γ̂−j = (nh)−1
n∑
i=1

k

(
x− xi
h

)(
x− xi
h

)j
(1− di),

δ̂
+
j = (nh)−1

n∑
i=1

k

(
x− xi
h

)2(x− xi
h

)j
diε̂

2
i ,

δ̂
−
j = (nh)−1

n∑
i=1

k

(
x− xi
h

)2(x− xi
h

)j
(1− di)ε̂2i ;

which are consistent by standard arguments based on the Law of Large Numbers. The

residuals used in these estimators will depend on the order of the local polynomial used to

estimate the Average Treatment Effect of interest and are given by

ε̂i = yi − di

(
α̂p+ + β̂1,p+(xi − x) + ...+ β̂p,p+(xi − x)p

)
− (1− di)

(
α̂p− + β̂1,p−(xi − x) + ...+ β̂p,p−(xi − x)p

)
Even though these estimators requires the calculation of 4(2p + 1) terms6 to obtain the

plug-in estimator of the fixed-h variance-covariance matrix,[(
Γ̂∗+
)−1

∆̂∗+
(

Γ̂∗+
)−1

+
(

Γ̂∗−
)−1

∆̂∗−
(

Γ̂∗−
)−1

]
, (2.7)

6 In fact, since we are interested only on the estimate for the ATE, α, one can potentially

only estimate the terms of both matrices that show up at the element at the [1, 1] position

of the variance-covariance matrix for the estimators.
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these are very simple averages of the data and kernel weights.

Porter (2003) suggests an estimator for the variance of α̂ using the small-h approximation

in corollary 2 which requires only the estimation of the conditional variance of the errors at

the cutoff approaching both from right and left and the density of x at the cutoff.7

σ̂2+(x) =
(nh)−1∑n

i=1 k
(
x−xi
h

)
diε̂

2
i

1
2 f̂o(x)

, (2.8)

σ̂2−(x) =
(nh)−1∑n

i=1 k
(
x−xi
h

)
(1− di) ε̂2i

1
2 f̂o(x)

, (2.9)

f̂o(x) = (nh)−1
n∑
i=1

k

(
x− xi
h

)
, (2.10)

then,

σ̂2+(x) + σ̂2−(x)

f̂o(x)
e′1Γ−1∆Γ−1e1 (2.11)

is the estimator for the asymptotic variance matrix.

This small-h variance estimator avoids estimating each component of the matrices by

assuming h → 0, which is similar to assuming that fo(x) and σ2(x) are constant in the

bandwidth around the cutoff as shown in corollary 3. The matrix Γ−1∆Γ−1 can be calcu-

lated directly because it is a deterministic function of the kernel. A drawback of the variance

estimator in formula (2.11) is the need to estimate fo(x), which is not necessary if one uses

the fixed-h variance estimator in formula (2.7). To obtain f̂o(x) we need to choose a kernel

and a bandwidth for the density estimator, increasing the number of tuning parameters to

be chosen. A natural choice would be both the kernel and bandwidth used in the estimation

of the parameter of interest. In section 2.7, I present evidence that using the same band-

width not only saves one the trouble of choosing another bandwidth, but also provides more

reliable inference than choosing a bandwidth that differs from the one used to estimate τ .

7 The estimator presented in formula (2.11) is not exactly the one presented in Porter

(2003). He never suggested a specific estimator f̂o(x), so I chose the standard Rosenblatt-

Parzen kernel estimator for fo(x) presented in Pagan and Ullah (1999).
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For the Nadaraya-Watson estimator, the variance estimator simplifies greatly.

Case 6 The fixed-h estimator of the asymptotic variance for the Nadaraya-Watson estimator

is given by

(nh)−1∑n
i=1 k

2
(
x−xi
h

)
diε̂

2
i(

(nh)−1∑n
i=1 k

(
x−xi
h

)
di

)2
+

(nh)−1∑n
i=1 k

2
(
x−xi
h

)
(1− di)ε̂2i(

(nh)−1∑n
i=1 k

(
x−xi
h

)
(1− di)

)2

=
(nh)

∑n
i=1 k

2
(
x−xi
h

)
diε̂

2
i(∑n

i=1 k
(
x−xi
h

)
di

)2
+

(nh)
∑n
i=1 k

2
(
x−xi
h

)
(1− di)ε̂2i(∑n

i=1 k
(
x−xi
h

)
(1− di)

)2

where nl and nu are the number of observations used below and above the cutoff, respectively.

Let ε̂
2
u = n−1

u
∑
x≤xi≤x+h ε̂

2
i and ε̂

2
l = n−1

l

∑
x−h≤xi≤x ε̂

2
i . For the case of the rectan-

gular kernel, equation (2.12) simplifies to

nh

nu
ε̂
2
u +

nh

nl
ε̂
2
l

and if nu = nl, simplifies further to

2nh

nu + nl

(
ε̂
2
u + ε̂

2
l

)
(2.12)

which is the estimator proposed for the asymptotic variance by Imbens and Lemieux (2008)

in the local linear case, adapted for the Nadaraya-Watson Estimator.

Imbens and Lemieux (2008) propose the plug-in estimator of formula (2.12) for

σ2+(x)+σ2−(x)
fo(x)

and obtain their estimate for the asymptotic variance of the local linear

estimator by scaling it by e′1Γ−1∆Γ−1e1. Note that e′1Γ−1∆Γ−1e1 equals 4 for the local

linear estimator and 1 for the Nadaraya-Watson estimator. If higher polynomial orders are

used in the estimator, the only change in the formula for the variance estimator is the scaling

term.

In fact, both small-h (Porter, 2003; Imbens and Lemieux, 2008) variance estimators are

based on an estimate for
σ2+(x)+σ2−(x)

fo(x)
and a scaling parameter that depends on the order

of the polynomial and kernel used on the estimation of the parameter of interest.

In section 2.7 I present simulation evidence on test coverage using the variance estimators

in formulas (2.7) and (2.11).
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2.7 Simulations

This section presents simulation evidence displaying the empirical coverage of a standard

t-statistic used to perform inference about the treatment effect of interest. All simulations

are based on a Sharp RD design. The objective of the simulations is to evaluate the rela-

tive performance of the asymptotic distributions obtained by fixed-h and small-h regarding

inference about the parameter of interest. As shown by corollary 3, assuming that h → 0

provides asymptotic variance and bias approximations that are equal to the ones obtained

by assuming that the probability density function of X and the conditional variance of the

outcome are constant in the bandwidth around the cutoff. In fact, one would reasonably

expect that the approximations should be similar for bandwidth values close to zero. Evi-

dence from simulations presented below indicates that inference about the treatment effect

of interest using the fixed-h theoretical approximation has better size behavior than the

small-h approach, especially for larger bandwidths. Simulations using feasible estimators for

the asymptotic variance indicate that tests based on fixed-h approach can improve over tests

based on small-h, especially for larger bandwidths and when some forms of heteroskedastic-

ity are present, however fixed-h can show slightly worse size behavior on tests that use small

bandwidths.

Let X be the running variable, Y is the outcome variable for which we would like to

estimate the average treatment effect at the cutoff and u be the error term. The details of

the simulations are listed below.

• Sample size (n): 750

• Number of replications of the experiment: 2,000

• X is drawn from a Normal(50, 100)

• u is drawn from a Normal(0, 1)

• The cutoff for receiving treatment is x = 55.
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• The treatment variable is defined as di = 1 [xi ≥ x]

• The bandwidths range from 0.2 to 20, or from 1
50 to 2 standard deviations of the

running variable.

The empirical coverages presented are the fraction of rejections in the 2,000 repetitions

for a test of size 5% (two-sided). I analyze 5 different data generating processes (DGPs) for

the outcome variable, Y .

• DGP 1: yi = µ+ αdi + ui

• DGP 2: yi = µ+ β1xi + αdi + ui

• DGP 3: yi = µ+ β1xi + β2x
2
i + αdi + ui

• DGP 4: yi = µ+ β1xi + β2x
2
i + β3x

3
i + αdi + ui

• DGP 5: yi = exp
( x

20

)
+ αdi + ui

The true value of the parameters is µ = 3, α = 10, β1 = 0.5, β2 = −0.005, β3 = 00002.

Two estimators for the parameter of interest α are used in the simulations, the first is the

Nadaraya-Watson estimator presented in case 1 and, second, the widely used local linear

estimator presented on case 3. For both estimators I use the Bartlett kernel8.

The next subsection compares the test coverages obtained by the theoretical fixed-h and

small-h asymptotic distributions derived in theorem 6 and corollary 2. The results obtained

are infeasible since they depend on knowledge about fo(x), σ2(x) and m(x) around the

cutoff. Nevertheless, they demonstrate the theoretical improvements that fixed-h provides

over small-h asymptotics. Subsection 2.7.2 compares the empirical coverages obtained with

(feasible) estimated standard errors.

8 Similar results were obtained when using a rectangular kernel and a truncated gaussian

kernel (weighted so that the kernel integrates to one). They are available from the author

upon request.
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2.7.1 Simulations for Infeasible Inference

Nadaraya-Watson Estimator

The first set of figures9 show the empirical coverage of the test for the (true) null hypotheses

that α = 10 when the Nadaraya-Watson estimator is used to obtain α̂ and the (infeasible)

variances for
√
nh(α̂− α∗) presented in theorem 6 and corollary 2 are used.

For DGP 1, shown in figure B.1, the dependent variable does not depend on X directly

and no bias is expected in the estimates for α using the Nadaraya-Watson estimator since

the relationship between Y and X would be correctly captured even for larger bandwidths.

As expected, the empirical size for the tests using fixed-h and small-h standard errors ap-

proximations behave very similarly for small bandwidths, but the differences increase with

the bandwidth, suggesting that the fixed-h asymptotic distribution presented in theorem 6

provide a better approximation for the behavior of the estimator α̂.

Figures B.2, B.3 and B.4 refer to DGP 2 in which Y is linearly related to X. In general,

a large bias on the Nadaraya-Watson estimate is expected to arise for any bandwidth away

from zero, since the estimator does not capture the relationship between Y and X. Hence,

the estimates erroneously attribute differences in m(x) above and below the cutoff to the

treatment or policy. The steep decline on the empirical coverage in figure B.2 reflects the

deleterious effects of the bias on the estimate and inference. This effect overwhelms the gains

obtained by the better approximation for the variance of the estimates.

Nevertheless, since the DGP, fo(x) and σ2(x) are known I can obtain a bias approximation

for this estimator using BNW for fixed-h and Bsmall−h
10with p = 0 for small-h. Figure

B.3 shows the empirical coverage for the (infeasible) bias corrected test.

To better understand the role of the improved bias and standard error approximations

separately, figure B.4 adds the empirical coverage that would be obtained if small-h bias and

fixed-h’s variance approximation were used to obtain the test-statistic and vice-versa. In this

9 See appendix.
10Formulas (2.6) and (2.5), respectively.
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case, the majority of the improvement is due to better (infeasible) approximation of the bias

but the more precise calculations for the standard error provide non-trivial improvement.

The results for the remainder DGPs are qualitatively similar to the ones observed for

DGP 2 and the graphs are omitted for brevity.11The “speed” with which the bias becomes

a problem for inference varies depending on the DGP, but in general it becomes relevant for

relatively small bandwidths.

To be fair, the comparisons between the Nadaraya-Watson bias approximations by fixed-h

and small-h are not adequate for any true model in which the relationship of y and x could

be described by a polynomial of order higher than linear (or order higher than p + 1 in the

local polynomial case) since the small-h approximation (Porter, 2003) describes the bias as

being a function of the derivative of m(x) limiting its accuracy to more complex functional

forms. Nevertheless, from the simulations it is clear that the fixed-h approximation for the

bias developed in theorem 6 better describes the asymptotic behavior of the estimator than

the small-h bias given by corollary 2.

In summary, for all the simulations we have evidence that the asymptotic distribution

of
√
nh(α̂ − α∗) is best described by the fixed-h approach developed in theorem 6, which

explicitly considers the effects of the choice of bandwidth, than by the standard small-h

asymptotic approximation, which assumes that h→ 0. The gains in the approximation are,

as one would expect, larger for bandwidths further away from zero.

The importance of the asymptotic bias is substantial in the Nadaraya-Watson estimator’s

case and serves as cautionary evidence of the risks of dismissing the presence of bias in the

estimation by arguing some “undersmoothing” in the choice of bandwidth. The bias can be

greatly reduced by the use of local polynomial estimators (see next subsection).

11The graphs are available from the author upon request.
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Local Polynomial Estimator

This section presents simulations in which the “empiricist’s favorite” local linear estimator

is used. This estimator has been a staple in the applied literature that uses RD designs and

has been shown to have nice theoretical bias reduction properties.

For DGPs 1 and 2, no bias is expected in the estimates, since the local linear estimator

correctly captures the relationship between Y and X inside any of the bandwidths used. In

these cases, the local linear estimator correctly captures the DGP on the bandwidth and no

bias arises.

The empirical coverage for DGP 2 is presented on figure B.5.12For smaller bandwidths,

the use of small-h asymptotic variance generates similar empirical coverages to the ones

obtained using the refined fixed-h variance approximation, but there is a significant decrease

in the small-h coverage as the bandwidth increases, with the fixed-h approach outperforming

the standard approximation on both DGPs 1 and 2. The improvement increases with the

bandwidth size as one would expect.

For the remaining DGPs (X has a quadratic, cubic or exponential relationship to Y )

both the asymptotic bias and variance approximations are relevant.13Figures B.6, B.7 and

B.8 show the empirical coverage under DGP 3. Figure B.6 compares the test coverages

using fixed-h versus small-h standard error approximations while ignoring the bias. It is

clear that the general pattern observed till this moment remains, with fixed-h outperforming

small-h, specially for larger bandwidths. Figure B.7 graphs the empirical coverage obtained

by (infeasible) bias corrected tests and; figure B.8 separate the gains due to improvement

in bias and variance refinements by adding the graphs of the “counterfactual” coverages

12The empirical coverages for DGP 1 and 2 are very similar. Only DGP 2’s graph is

reported here.
13As discussed in section 2.5 the local polynomial estimator could be analyzed under

a parametric framework as the problem of estimating a (potentially) misspecified model.

(White, 1982, 1996).
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that calculate the test statistics using small-h bias and fixed-h variance approximation and

vice-versa.14

For DGP 3 and 4, the bias do not seem to be greatly important, being successfully reduced

by the use of the local linear estimator. Naturally then, the difference in bias approximations

is not the main source of improvement in the empirical coverage as can be seem in figure B.8.

This contrasts with the results for the same DGPs using the Nadaraya-Watson estimator.

In that case, the bias had a large effect on the test’s coverage and the majority of the gains

associated with the use of fixed-h asymptotics were due to the bias’ refinement.

For DGP 5, even though the bias is substantially mitigated by the use of local linear

estimator, the empirical coverage is still significantly reduced for bandwidths larger than

one standard error of the running variable (h = 10). As in the case of the Nadaraya-Watson

estimator, the bias is an important component of the improvement in coverage and infeasible

fixed-h bias correction correctly captures the bias and provides coverages that outperform

the small-h approach.

As described in section 2.5, the refinements obtained by fixed-h are due to considering the

behavior of fo(x) and σ2(x) inside the bandwidth, while small-h in effect ignores it. Note that

the previous simulations were based on DGPs with homoskedastic errors. In the presence of

heteroskedasticity, one would expect the improvements of the fixed-h approximation to be

even more important.

To exemplify the distortions heteroskedasticity can create and how well the fixed-h asymp-

totic approximation can capture it, I have simulated empirical coverages for two heteroskedas-

tic cases. For the first and second cases the standard error of the error term is defined as

σ(x) = 1 + 0.25x2 and σ(x) = 1 + 0.25 (x− x)2, respectively.15The (infeasible) tests based

14The graphs for GDPs 1, 4 and 5 are available from the author upon request.
15These examples are not intended to be representative of any empirical problem com-

monly faced in the applied literature and are intended to highlight the behavior of the fixed-h

and small-h approximations in different heteroskedastic contexts.
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on the fixed-h asymptotic approximation behave very well on both cases, highlighting its

robustness. In the first case, for GDPs 2 and 3 (figures B.9 and B.10) , the small-h asymp-

totic approximation holds up relatively well, with a pattern similar to the one obtained in

the homoskedastic case. In contrast, the second case in figures B.11 and B.12, the small-h

based test has a steep decline16in coverage as the bandwidth increases, since it is not able

to properly capture the effect of the heteroskedasticity in its asymptotic variance.

The difference of the small-h performance in the two cases can provide useful intuition to

when its weaknesses can prove most relevant. The second case was designed to be a “worst

case scenario” heteroskedasticity for small-h asymptotics since the conditional variance of

the error at the cutoff, σ2(x) is at the extreme of the range of values assumed by σ2(x) in any

given bandwidth. As can be seen from formula (2.4), the small-h and fixed-h asymptotic

variances will be more similar the closer σ2(x) is from the “weighted average” of σ2(x)

inside the bandwidths. In the first case, since σ2(x) is at the “middle” of the range for the

conditional variance, the distortion produced by the heteroskedasticity is less marked than

in the second case.

Some points are worth emphasizing. First, the general pattern is that, as expected, the

empirical coverages obtained using the fixed-h results from theorem 6 outperform the small-h

approximations, especially for larger bandwidths.

Second, both the asymptotic variance and asymptotic bias refined calculations improve

the precision of inference relative to the standard approach. For smaller bandwidths small-h

asymptotics provide similar coverages to the fixed-h approach, making clear that the core

difference is due to the suitability of the restrictions imposed on fo(x), σ2(x) and m(x) as

the bandwidth increases (corollary 3). Naturally, those restrictions tend to be less realistic

for larger bandwidths.

16Note the change in the scale of the y-axis, which now emcompasses the interval from

0 to 1.
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Third, the use of the local linear estimator reduces significantly the coverage distortion17

introduced by the bias present in the estimates, even when the linear approximation does

not fully capture the local relationship between Y and X. This is in line with the results in

Porter (2003) and justifies the reliance on the local linear estimator in applications.

Fourth, in the presence of heteroskedasticity, the small-h asymptotic approximation can

have very poor performance, while the fixed-h approach still provides a reliable asymptotic

approximation for the estimator’s behavior.

2.7.2 Simulations for Feasible Inference

The simulations in the previous subsection have established that fixed-h asymptotic distri-

bution approximations based on theorem 6 improve over the usual approximations in the

literature, with better test size behavior by incorporating the choice of bandwidth by the

researcher on the formulas for asymptotic variance and bias. In obtaining those results I used

knowledge about the true DGP that is unavailable to the practitioner when implementing

such estimators.

As described in section 2.6 natural estimators for the asymptotic variance of the parameters

of interest are readily available and can be easily calculated for a given sample. This section

presents simulations for the empirical coverage of the tests using two different estimated

standard errors. The first one is based on the fixed-h asymptotic distribution and is given

by formula (2.7). The second is proposed by Porter (2003) and described by formula (2.11).

Figures B.13 and B.14 present the empirical coverages for the tests based on the Nadaraya-

Watson estimator for DGPs 1 and 2 described above.18It also includes the coverages obtained

17Note the change in the y-axis’ range relatively to most cases presented in the Nadaraya-

Watson simulations.
18The graphs for GDPs 3, 4 and 5 in the Nadaraya-Watson estimator case and 1, 4 and

5 in the local linear estimator case are available from the author upon request.
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by the (infeasible) theoretical formulas19so one can compare the feasible coverage relative

to the infeasible coverage in section 2.7.1. Figures B.15 and B.16 perform the same exercise

using the local linear estimator for DGPs 2 and 3.

In figure B.13,20it is clear that even though both tests tend to overreject for small band-

widths, due to the small amount of data available in those cases, the coverages obtained by

the fixed-h variance estimators provide meaningful improvements for larger bandwidths over

the tests based on small-h variance estimators.

For DGPs 2 through 5, the presence of a strong bias overwhelms the tests even for relatively

small bandwidths, as expected given the results from section 2.7.1. Nevertheless, the general

pattern that the variance estimators based on formula (2.7) reflect the theoretical gains is

maintained.

Similarly, when the local linear estimator is used, the empirical coverage obtained using

the fixed-h standard errors’ estimator incorporates the gains of improved inference described

in the theory and shown in the infeasible simulations even for large bandwidths. As in the

Nadaraya-Watson case, the tests overreject for very small bandwidths, probably due to the

relative small amount of data available on these cases but hold very good size behavior for

larger bandwidths.

Surprisingly, when the local linear estimator is used, the tests obtained using small-h stan-

dard error estimates behave very similarly to fixed-h ones especially for larger bandwidths,

for which the results in section 2.7.1 would lead one to expect a significantly smaller coverage

based on the small-h approach.

In fact, the small-h estimators provide tests with better size behavior for small (close

19Those lines, named fixed-h and small-h, are exactly the same presented in Figures B.1

and B.2, respectively.
20In figure B.13, the Nadaraya-Watson estimator is used for DGP 1, correctly capturing

the relationship between Y and X around the cutoff. As discussed in section 2.7.1 there is

no asymptotic bias in this case.
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to zero) bandwidths, due to the fact that fixed-h standard errors require the estimation of

several more terms for the components of the asymptotic variance, suffering more acutely

with the restricted amount of data on the smaller bandwidths.

It seems that the small-h variance estimators are benefiting from the fact that, in practice,

one cannot actually restrict the bandwidth too close to zero. Since the estimator for the

standard errors sums across ε̂2i it (partially) captures the behavior of fo(x) in the range

around the cutoff that the small-h asymptotic approximation ignores by forcing h→ 0.

As discussed in section 2.7.1 the presence of heteroskedasticity can generate substantial

problems for the size of tests using the theoretical small-h approximation. Figures B.17

through B.20 show simulations for the coverage of feasible tests using the fixed-h and small-

h asymptotic variance estimators in the two heteroskedastic cases described in section 2.7.1.21

The results clearly show that, differently from the homoskedastic case, the fixed-h variance

estimator produces better test sizes than the one based on the small-h approach. In the first

case (figures B.17 and B.18), the use of the fixed-h estimator in formula (2.7) provides

better empirical size for bandwidths larger than 5. It is important to emphasize that, even

though small-h tests have better sizes for small bandwidths, both tend to overreject due

to constrained data availability, and a researcher would be ill advised to use too small of a

bandwidth.

In figures B.19 and B.20, the second case, the fixed-h variance estimator produces tests

with coverage very close to the test’s nominal size, while for the small-̇h the coverage rapidly

increases to 1 as the bandwidth increases. Hence, there is evidence that heteroskedasticity

can be accurately captured by tests based on fixed-h asymptotic approximations but small-h

estimators can produce tests which perform substantially worse.

It is possible that these results are somewhat dependent on the DGPs chosen and, even

though the empirical coverages obtained are similar using any of the asymptotic variance

21For the first case the standard error of the error term is defined as σ(x) = 1 + 0.25x2,

in the second case (“worst case scenario”) it is given by σ(x) = 1 + 0.25 (x− x)2.
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estimators in some cases, it seems the fixed-h standard error estimator is a “safer choice” for

practitioners since it is based on a more robust asymptotic approximation and its computa-

tion is very easy once a kernel and bandwidth are chosen. Using standard error estimates

based on small-h asymptotics can lead to serious size distortions for larger bandwidths,

especially in the presence of heteroskedasticity, even in the absence of bias.

Furthermore, the fixed-h variance estimator has the advantage of not requiring the esti-

mation of fo(x). This entails the choice of (potentially different) kernel and bandwidth for

f̂o(x). The additional choice of these two tuning parameters might significantly alter the

empirical size of the tests performed about τ̂ and depends on the discretion of the researcher.

To exemplify this issue, figures B.21 and B.22 show the simulated empirical coverages

obtained by using the small-h variance estimator for DGPs 2 and 322using the Bartlett

kernel for five different scenarios. Each scenario differs by the choice of the bandwidth, hf ,

used in formula (2.10) to obtain f̂o(x). The first reproduces the small-h result described

above by choosing the same bandwidth used to estimate τ̂ , i.e., hf = h, the other lines

are the empirical coverages obtained by using bandwidth of 1, 5, 10 and 2023 for f̂o(x)

independent of the bandwidth used for τ̂ .

The choice of bandwidth on the estimation of f̂o(x) can have a relevant impact on the test

coverages. Interestingly, choosing the same bandwidth as used in estimating the parameter

of interest provides more stable empirical coverages for a wide range of h relative to the cases

in which the bandwidths are different. The cautious practitioner using the small-h variance

estimator would be well advised to choose the same bandwidth for both estimators.

One key problem (especially the ones with the Nadaraya-Watson estimator), is how to

deal with the bias in practice. The bias is a main contributor for the divergence between the

empirical and nominal sizes of the tests being performed. Adequate estimation of the bias

based on the results on theorem 6 would require observing or estimating the counterfactual

22The graphs for GDPs 1, 4 and 5 are available from the author upon request.
23 1

20 ,
1
4 ,

1
2 and 1 standard deviations of the running variable, respectively.
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conditional expectation of y around the cutoff in the absence of treatment, which is not

available for most cases where the RD design is relevant.24

2.8 Conclusion

The use of regression discontinuity designs to obtain estimates of treatment effect, τ , has

been widely used in recent years by researchers in economics. Special attention has been

given to the use of local polynomial estimators to obtain the ATE of interest.

The standard literature on RD designs (Hahn, Todd, and Van der Klaauw, 2001; Porter,

2003; Imbens and Lemieux, 2008) assumes that the bandwidth around the discontinuity, h,

shrinks fast enough towards zero, h → 0, to guarantee identification of the parameter of

interest (small-h asymptotics).

This chapter derives, in the RD design context, a refined asymptotic distribution for

the local polynomial estimators by treating h as fixed. This fixed-h asymptotics explicitly

acknowledges the fact that a researcher has to choose bandwidth to implement the estimator

and are usually bounded in their ability to reduced the bandwidth size by data availability

constraints.

The fixed-h asymptotic distributions obtained are more precise and provide refined infer-

ence relative to asymptotic distributions based on small-h approach. The fixed-h asymptotic

approximation provides more precise formulas for both bias and variance of the estimators

of interest (theorem 6). The standard small-h asymptotic bias and variance can be obtained

24The small-h asymptotic bias approximation (Porter, 2003) lends itself for estimation,

since estimates for m(p+1) above and below the cutoff can be obtained. However, the results

in section 2.7.1 indicate that this would be a relatively poor approximation. Furthermore,

to a large degree, bias reduction could be obtained by increasing the order of the local

polynomial fitted above and below the cutoff, reducing the “misspecification” in the model

(see section 2.5).
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by allowing h → 0 in the fixed-h distribution (corollary 2). Also, when h > 0 the small-h

result for the variance of the estimators is equivalent to assume that the density of the run-

ning variable and the conditional variance of the dependent variable are constant around the

cutoff (corollary 3). Similar results are shown for both sharp and fuzzy RD designs.

Simulations provide evidence that fixed-h asymptotic distributions more accurately de-

scribe the behavior for both bias and variances than the usual small-h results used in the

literature. This is reflected on improved test size, specially when larger bandwidths are used.

Simple feasible estimators for the refined, fixed-h, standard errors are provided and shown

to incorporate the theoretical gains of the improved approximations in simulations. These

estimators are simple to implement and have the advantage of not requiring the estimation of

the density of the running variable at the discontinuity. The fixed-h variance estimators can

improve markedly over small-h estimators in the presence of heteroskedasticity and should

be generally preferred. Simulations using heteroskedastic errors have provided evidence that

feasible tests based on the fixed-h approach obtain better coverage, outperforming small-h

starting at relatively small bandwidths.

Interestingly, in the case of the widely used local linear estimator with homoskedastic errors

the variance estimators based on small-h asymptotics suggested in the literature produce well

behaved tests with similar size performance to the fixed-h variance estimators, performing

better than the standard theory would expect. In other words, when errors are homoskedastic

(inside the bandwidth) the inability of the empiricist to mimic what theory suggests ends up

improving the properties of the tests and its robustness to the choice of bandwidth, relative

to what the theory that spawned those estimators would have provided.

The results indicate that the fixed-h standard error estimator is a “safer choice” for prac-

titioners since it is based on a more robust asymptotic approximation and its computation

is very easy once a kernel and bandwidth are chosen.
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CHAPTER 3

Asymptotic Properties of Quantile

Regression for Standard Stratified

Samples

3.1 Introduction

Quantile Regression (QR) has been widely used in the social sciences in recent decades, and

provides a useful characterization of the distributional features of variables in which the

researcher is interested. In economics, for example, a very natural use of quantile regression

has been to analyze the wage structure and potential differences in the determinants of

the observed wages at different levels of the wage distribution, e.g., Albrecht et al. (2003);

Buchinsky (1998, 2001); Machado and Mata (2005); Martins and Pereira (2004) and Melly

(2005).

In those analyses it is very common to use datasets generated by stratified sampling.

In standard stratified sampling (SS sampling) the population is divided into J mutually

exclusive, exhaustive strata, and a random sample of size Nj is taken from stratum j.

As described by Wooldridge (2001) when stratification is based on exogenous variables it
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usually does not cause serious problems. The usual estimators that ignore stratification are

consistent and asymptotically normal and the usual variance estimators are still valid.

When stratification is based on endogenous variables, the standard unweighted estimators

are generally inconsistent. Wooldridge (2001) studies the asymptotic properties of general

weighted M-estimators under SS sampling which will be consistent, asymptotically normal

and provides estimators for standard errors of the parameters of interest that can be used to

perform inference for general stratification. However, those results are not directly applicable

to the quantile regression case due to the nonsmoothness in the objective function that

provides the QR estimates.

This chapter fills that gap, extends the analysis to the quantile regression case, analyzes

the asymptotic properties of the weighted QR estimates under general SS sampling, and

provides consistent estimators for the standard errors that take the stratification of the data

into account. Under exogenous stratification the usual unweighted QR estimators are still

valid as well as its standard error estimates.

3.2 The Quantile Regression Population Problem

We are interested in estimating the conditional quantile function (CQF) of a random variable

Y conditional on a vector of q explanatory variables X. This is defined by,

Qτ (Y | X) = inf {y : FY (y | X) ≥ τ}

where τ ∈ (0, 1) indexes the τ th quantile of the conditional distribution of Y . Let the CQF

be described by a known function g (·) of the parameters and the explanatory variables,

Qτ (Y | X) = g
(
X, βτo

)
A special case of interest is given by the linear model1

1 This formulation assumes the error term is additive and, hence, separable. For a

65



Y = X ′βτo + ε

with Qτ (ε | X) = 0. Throughout this chapter I concentrate on the linear CQF, since it is

the most widely used by practitioners and for ease of exposition. Nevertheless, the results

presented are valid for a nonlinear, correctly specified CQF, g (·). In the population, βτo

solves the following problem

min
βτ∈B

E
[
ρτ

(
Y −X ′βτ

)]
(3.1)

where, ρτ (u) = (τ − 1 [u ≤ 0])u and B ∈ RK is the parameter space.

Given a random sample from the population of size n, it is possible to obtain consistent

estimates of βo by a standard quantile regression (QR) estimator.

min
βτ∈B

n−1
n∑
i=1

ρτ (yi − x′iβτ ) (3.2)

Note that the minimization problem has the following first order conditions and sample

analogue (Buchinsky, 1998)

E
[(
τ − 1

[
y − x′βτo ≤ 0

])
x
]

= 0

n−1
n∑
i=1

(
τ − 1

[
yi − x′iβ̂τ ≤ 0

])
xi = 0 (3.3)

Hence, we can frame this problem as a GMM estimator that uses as moment conditions

the first order conditions of the QR problem that identify βτo . Under random sampling, the

standard QR procedures can be used to estimate βτo and perform inference.

3.2.1 Quantile Regression under Stratified Sampling

Suppose our sample is obtained by a standard stratification scheme as formally described

by Wooldridge (2001). Assume that the population is divided into J nonempty, mutually

treatment of the more general formulation with (potentially) non-separable ε see Powell

(1991).
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exclusive, and exhaustive strata, W1,W2, ...,WJ , where J is a finite integer. Let w denote

a random variable having the population distribution of interest.

Definition 5 Standard stratified sampling: For j = 1, ..., J , draw a random sample of size

Nj from stratum j. For each j, denote this random sample by {wij : i = 1, 2, ..., Nj}.

The strata sample sizes Nj are nonrandom. Therefore, the total sample size, N = N1 +

...+NJ , is nonrandom. Notice that for a given j, {wij : i = 1, 2, ..., Nj} is an independent,

identically distributed (i.i.d.) sequence having the same distribution conditional on being

part of a strata, D(w|w ∈ Wj).

Then, one can rewrite the minimization problem and its moment conditions as

min
βτ∈B

E
[
ρτ (Y −X ′βτ )

]
= min

βτ∈B

J∑
j=1

QjE
[
ρτ (Y −X ′βτ )|w ∈ Wj

]

E
[(
τ − 1

[
y − x′βτo ≤ 0

])
x
]

=
J∑
j=1

QjE
[(
τ − 1

[
y − x′βτo ≤ 0

])
x|w ∈ Wj

]
= 0(3.4)

where Qj = P (w ∈ Wj), j = 1, ..., J and its sample analogue

J∑
j=1

Qj

 1

Nj

Nj∑
i=1

(
τ − 1

[
yij − x′ij β̂τ ≤ 0

])
xij

 = 0

1

N

J∑
j=1

Qj

Hj

Nj∑
i=1

(
τ − 1

[
yij − x′ij β̂τ ≤ 0

])
xij

 = 0

with Hj =
Nj
N . This can be rewritten as,

1

N

N∑
i=1

Qj

Hj

(
τ − 1

[
yi − x′iβ̂τ ≤ 0

])
xi = 0 (3.5)

This is the empirical moment condition that is used to estimate the parameters of interest,

defining the weighted quantile regression estimator. This estimator is consistent for the

parameters of interest under standard stratified sampling (Wooldridge, 2001, theorem 3.1).2

2 As a minor point note that if one wants to implement the weighted estimator by

applying a standard quantile regression to weighted data, the weights for each observation
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The asymptotic distribution of the weighted quantile regression estimator can be obtained

by a direct application of Newey and McFadden (1994) Theorem 7.1,with careful considera-

tion to the formulation of V ar
[
g(βτo)

]
due to the stratified nature of the data.

Corollary 6 If the conditions in Newey and McFadden (1994) theorem 7.1 hold,{
wij : i = 1, 2, ..., Nj ; j = 1, 2, ..., J

}
follows the standard stratified sample scheme,

Nj
N →

Hj > 0 as N →∞ for each j. Then
√
N
(
β̂τ − βτo

)
a∼ N

(
0, A−1

w BwA
−1
w

)
, where

Aw = E

[
fy|x(g

(
x, βτo

)
)
•
g
•
g
′
]

and

Bw =
J∑
j=1

Q2
j

Hj
V ar

[(
τ − 1

[
y − g

(
x, βτo

)
≤ 0
]) •
g|w ∈ Wj

]
where

•
g ≡ ∂g(x,β)

∂β |β=βτo

In the special case of the linear CQF, g (X, β) = x′β,

Aw = E
[
fy|x

(
x′βτo

)
xx′
]

and

Bw =
J∑
j=1

Q2
j

Hj
V ar

[(
τ − 1

[
y − x′βτo ≤ 0

])
x|w ∈ Wj

]

Corollary 6 provides a general form for the asymptotic variance of the quantile regression

estimators under standard stratification. Two main points are relevant when analyzing Bw.

The first, which is general to the standard stratification literature, is that we cannot replace

V ar
[(
τ − 1

[
yij − g

(
xij , βτo

)
≤ 0
]) •
gi|w ∈ Wj

]
by the outer product of the score as in

the random sampling case because in general E
[(
τ − 1

[
y − x′βτo ≤ 0

])
x|w ∈ Wj

]
6= 0,

will be given by
Qji
Hji

instead of the

(
Qji
Hji

)1
2

usually required when implementing least

squares estimators and its variants.
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as pointed out by Wooldridge (2001). It is also interesting to note that, differently from

the standard results in quantile regression for random sampling, Bw does not simplify to

τ(1− τ)E[xx′] in this case. That is due to the fact that the variance of the binary variable

1
[
yij − x′ijβτo ≤ 0

]
is not necessarily the same for each stratum, in other words, x′ijβτo

will not represent the τ quantile in every stratum.

If we assume that

E
[(
τ − 1

[
y − x′βτo ≤ 0

])
x|w ∈ Wj

]
= 0, for j = 0, 1, 2, . . . , J. (3.6)

then an alternative formula for Bw is available.

Bw =
J∑
j=1

Q2
j

Hj
E

[(
τ − 1

[
y − x′βτo ≤ 0

])2
xx′|w ∈ Wj

]

A sufficient condition for equation 3.6 is that the conditional distribution of Y is indepen-

dent from strata, in which case E
[
1
[
y − g

(
x, βτo

)
≤ 0
]
|x,w ∈ Wj

]
= τ for all j. Then

Bw = τ(1− τ)
J∑
j=1

Q2
j

Hj
E
[
xx′|w ∈ Wj

]

3.2.2 Quantile Regression Estimation under Exogenous Stratifi-

cation

If we are modeling the quantiles of Y given X, and stratification is based solely on the

conditioning variables X, stratification is said to be exogenous. Let the sample space for X be

partitioned into J nonempty, mutually exclusive, and exhaustive strata, χ1, χ2, ..., χJ , where

J is a finite integer, then we can analyze the effects of stratification under the framework of

the previous section.

The weighted quantile regression estimator in equation 3.5 can be used both when the

stratification is exogenous or not. Under exogenous stratification the unweighted quantile
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regression estimator is also consistent (Wooldridge, 2001).3 This estimator drops the weights
Qj
Hj

, solving

1

N

N∑
i=1

(
τ − 1

[
yi − x′iβ̂τ ≤ 0

])
xi =

J∑
j=1

Hj

 1

Nj

Nj∑
i=1

(
τ − 1

[
yij − x′ij β̂τ ≤ 0

])
xij

 = 0

(3.7)

so that each stratum average is just weighted by its sample frequency, i.e., this is the usual

QR estimator that would be used under random sampling.

Under exogenous stratification the unweighted quantile regression estimator has asymp-

totic distribution as described in the corollary below.

Corollary 7 If the conditions in Newey and McFadden (1994) theorem 7.1 hold,{
wij : i = 1, 2, ..., Nj ; j = 1, 2, ..., J

}
follows the standard stratified sample scheme, and,

stratification is a deterministic function of X,
Nj
N → Hj > 0 as N → ∞ for each j.

Then
√
N
(
β̂τ − βτo

)
a∼ N

(
0, A−1

u BuA
−1
u

)
, where

Au =
J∑
j=1

HjE[fy|x
(
g
(
x, βτo

)) •
g
•
g
′
|x ∈ χj ]

and

Bu = τ(1− τ)
J∑
j=1

HjE

[
•
g
•
g
′
|x ∈ χj

]

where
•
g ≡ ∂g(x,β)

∂β |β=βτo

3 As emphasized in Wooldridge (2001) the consistency of the unweighted estimator will

hold under exogenous stratification if the conditional quantiles of Y are correctly specified.

The unweighted estimator solves

min
βτ∈B


J∑
j=1

HjE
[
ρτ

(
Y −X ′βτ

)
|x ∈ χj

]
which solution is not necessarily βτo under misspecification.
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In the special case of the linear CQF, g (X, β) = x′β,

Au =
J∑
j=1

HjE[fy|x
(
x′β̂τo

)
xx′|x ∈ χj ]

and

Bu = τ(1− τ)
J∑
j=1

HjE
[
xx′|x ∈ χj

]

3.2.3 Sequence of Quantile Regressions

The discussion above considers only the estimation of a single quantile regression for a given

value τ but one might be interested in estimating several quantile regressions for diverse

points of the conditional distribution of Y . As emphasized by Buchinsky (1998), because

the coefficients are estimated utilizing the same data with different weighting schemes, the

estimators will be correlated.

Consider that we are still interested in estimating the linear conditional quantile function

for p separate quantiles, τ ,

Y = X ′βτr + ετr

and that Qτr(ετr | X) = 0 for r = 1, . . . , p. Also, let 0 < τ1 < τ2 < . . . < τp < 1, and

β′τ = (β′τ1
, β′τ2

, . . . , β′τp) For each τr define

ψr(y, x, βτr) ≡
(
τr − 1

[
y − x′βτr ≤ 0

])
x

and Ψ
(
y, x, βτ1

, βτ2
, . . . , βτp

)′
=

[
ψ1(y, x, βτ1

)′, ψ2(y, x, βτ2
)′, . . . , ψp(y, x, βτp)′

]
.

Hence

E
[
Ψ
(
y, x, βτ1

, βτ2
, . . . , βτp

)]
=

J∑
j=1

QjE
[
Ψ
(
y, x, βτ1

, βτ2
, . . . , βτp

)
|w ∈ Wj

]
= 0
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By the analogy principle, the estimator β̂τ for βτ solves

1

N

J∑
j=1

Qj

Hj

Nj∑
i=1

Ψ
(
yij , xij , β̂τ1

, β̂τ2
, . . . , β̂τp

)
=

1

N

N∑
i=1

Qji
Hji

Ψ
(
yi, xi, β̂τ1

, β̂τ2
, . . . , β̂τp

)
= 0

which can be solved separately if no cross-quantile restrictions are imposed on

β̂τ1
, β̂τ2

, . . . , β̂τp or simultaneously otherwise. Then, we can show that β̂
′
τ follows an asymp-

totic multivariate normal distribution as well.

Corollary 8 If the conditions in Newey and McFadden (1994) theorem 7.1 hold,{
wij : i = 1, 2, ..., Nj ; j = 1, 2, ..., J

}
follows the standard stratified sample scheme,

Nj
N →

Hj > 0 as N → ∞ for each j. Then
√
N
(
β̂τ − βτ

)
a∼ N (0,Λτ ), where Λτ ={

Λτ l,k

}
l,k=1,...p

with typical element defined as

Λτ l,k = E

[
fy|x(g

(
x, βτ l

)
)
•
gl
•
g
′
l

]−1
×

×

 J∑
j=1

Q2
j

Hj
Cov

[
ψl(y, x, βτ l

), ψk(y, x, βτk
)|w ∈ Wj

]×
×E

[
fy|x(g

(
x, βτk

)
)
•
gk
•
g
′
k

]−1

where, in this case, ψr(y, x, βτr) =
(
τr − 1

[
y − g

(
x, βτr

)
≤ 0
]) •
gr for r = l, k and

•
gl ≡

∂g(x,β)
∂β |β=βτl

.

In the special case of the linear CQF, g (X, β) = x′β

Λτ l,k = E
[
fy|x

(
x′βτ l

)
xx′
]−1
×

×

 J∑
j=1

Q2
j

Hj
Cov

[
ψl(y, x, βτ l

), ψk(y, x, βτk
)|w ∈ Wj

]×
×E

[
fy|x

(
x′βτk

)
xx′
]−1

with ψr(y, x, βτr) =
(
τr − 1

[
y − xβτr ≤ 0

])
x for r = l, k.

Once again, the notable difference of the result relative to the usual QR under random

sampling is that the center term on Λτ l,k does not simplify as neatly as in standard the
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random sampling case, since the covariance of the binary variables 1
[
yij − x′ijβτ l ≤ 0

]
and

1
[
yij − x′ijβτk ≤ 0

]
are not necessarily the same for each stratum.

3.3 Asymptotic Variance Estimation

To perform inference about the parameter’s estimates, β̂τ , we need to obtain valid estimators

for its asymptotic variance. From corollary 6 we have that for linear CQF

V ar
[√

N
(
β̂τ − βτo

)]
= A−1

w BwA
−1
w

= E
[
fy|x(x′βτo)x′x

]−1
×

×

 J∑
j=1

Q2
j

Hj
V ar

[(
τ − 1

[
y − x′βτo ≤ 0

])
x|w ∈ Wj

]×
×E

[
fy|x(x′βτo)x′x

]−1

Natural estimators for Aw and Bw, as suggested by Wooldridge (2001), are given by

Âw ≡
J∑
j=1

Qj

N−1
j

Nj∑
i=1

f̂y|x,w∈Wj
(x′ij β̂τ )xijx

′
ij


= N−1

N∑
i=1

Qji
Hji

f̂y|x,w∈Wj
(x′iβ̂τ )xix

′
i

B̂w ≡
J∑
j=1

Q2
j

Hj

N−1
j

Nj∑
i=1

[
sij

(
β̂τ

)
− sj

(
β̂τ

)]′([
sij

(
β̂τ

)
− sj

(
β̂τ

)])
= N−1

J∑
j=1

(
Qj

Hj

)2
Nj∑
i=1

[
sij

(
β̂τ

)
− sj

(
β̂τ

)]′ [
sij

(
β̂τ

)
− sj

(
β̂τ

)]

where sij

(
β̂τ

)
≡
(
τ − 1

[
yij − x′ij β̂τ ≤ 0

])
xij , sj

(
β̂τ

)
= N−1

j

Nj∑
i=1

sij

(
β̂τ

)
and

Qji
Hji

=

Qj
Hj

for the stratum j of xi. In the more general, nonlinear framework, a similar estimator for

the covariance matrix is given by replacing sij

(
β̂τ

)
≡
(
τ − 1

[
yij − g

(
xij , β̂τ

)
≤ 0
]) •̂
gi
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and the outer terms

[
N−1

N∑
i=1

Qji
Hji

f̂y|x,w∈Wj

(
g
(
xij , β̂τ

)) •̂
gi
•̂
g
′
i

]−1

with
•̂
gi ≡

∂g
(
xij,β

)
∂β |

β=β̂τ
.

Then,

V̂ ar
[√

N
(
β̂τ − βτo

)]
= Â−1

w B̂wÂ
−1
w

To estimate the out of diagonal terms Λτ l,k when we are interested in performing inference

about the parameters on a sequence of quantile regressions, we can use a similar approach

for estimating the middle term by

J∑
j=1

Q2
j

Hj

N−1
j

Nj∑
i=1

[
sij

(
β̂τ l

)
− sj

(
β̂τ l

)]′([
sij

(
β̂τk

)
− sj

(
β̂τk

)])
and we can still use the same estimators, Âw, for the outer terms of Λτ l,k , noticing that

they are based on the estimates for τ l and τk, respectively.

Finally, under exogenous stratification and correct specification of the underlying CQF,

the score will generally have a zero conditional mean for all X when evaluated at βτo . Then

the asymptotic variance estimator for the unweighted quantile regression estimator (with

linear CQF) is given by:

V̂ ar
[√

N
(
β̂τ − βτo

)]
= Â−1

u B̂uÂ
−1
u

with

Âu =
1

N

N∑
i=1

f̂y|x(x′iβ̂τ )xix
′
i

B̂u = τ(1− τ)
1

N

N∑
i=1

xix
′
i

which are the usual variance matrix estimators from the quantile regression literature under

random sampling as described by Buchinsky (1998) and Koenker (2005). This confirms

that the usual quantile regression estimators and standard errors are valid when the sample
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is exogenously stratified, this is the same result as obtained by Wooldridge (2001) for the

general M-estimators with smooth objective functions.

A main issue, which is specific to quantile regression, is that we need to estimate

f̂y|x,w∈Wj
(x′iβ̂τ ) taking in consideration the stratification. An intuitive approach is to take

advantage of the fact that we have assumed random sampling for each stratum and apply a

standard nonparametric density estimator for each stratum and simply plug in the formula

above. For example, using the Rosenblatt-Parzen kernel estimator described in Pagan and

Ullah (1999)

f̂y|x,w∈Wj
(x′ij β̂τ ) =

(
Njhnj

)−1
Nj∑
i=1

K

yij − x′ij β̂τ
hnj


where K (·) is a kernel function and hnj is a bandwidth parameter such that hnj → 0 and√
Njhnj → ∞. Another option is to bypass the estimation of f̂y|x,w∈Wj

(x′iβ̂τ ) itself and

revert to the estimator for

Awj = E[fy|x,w∈Wj

(
x′βτo

)
x′x|w ∈ Wj ]

that is referred to as the Powell Sandwich by Koenker (2005). This takes account of the fact

that estimating Awj is just as estimating a matrix weighted density estimator (Koenker,

2005).

Âwj =
(
Njhnj

)−1
Nj∑
i=1

K

yij − x′ij β̂τ
hnj

xijx
′
ij

Then, we can obtain Âw =
J∑
j=1

QjÂwj . Powell (1991) has shown that under some additional

conditions regarding f (·), Âwj converges is probability to Awj . Two drawbacks of this

estimator are the necessity of choosing kernels and bandwidths (which could be different

for each stratum) and the fact that, in practice, the researcher might have some stratum

for which only a small amount of data is available, reducing the confidence in the obtained

75



estimates for Âwj .4

When the stratification is exogenous, we can take advantage of the fact that

fy|x,x∈χj
(x′ijβτ ) = fy|x(x′iβτ ) for all strata and obtain f̂y|x(x′ij β̂τ ) or Âw directly as

f̂y|x(x′iβ̂τ ) = (Nhn)−1
N∑
i=1

K

(
yi − x′iβ̂τ

hn

)

Âw = (Nhn)−1
N∑
i=1

K

(
yi − x′iβ̂τ

hn

)
xix
′
i

The choice of estimator for f̂y|x,w∈Wj
(x′ij β̂τ ) as well as any nuisance parameters associated

with its estimation is an important issue that remains open. It seems advisable for researchers

to be cautious regarding the impacts of the choice of estimator and nuisance parameters on

the standard errors used in QR. Pagan and Ullah (1999) present several possible estimators

for such densities and discuss their advantages and drawbacks.

3.4 Conclusion

This chapter addressed the issue of inference on quantile regressions when the data is obtained

through standard stratified sampling. Extending results from Wooldridge (2001) I derive

the asymptotic distribution of the weighted quantile regression estimator for the case with

general stratification and of the unweighted quantile regression estimator in the case that

the stratification is a deterministic function of the conditioning variables. Valid estimators

for the asymptotic variance matrix of those estimators are provided.

The results shown here provide confirmation to the intuition that the results for general

M-estimators with smooth objective functions transfer neatly to the quantile regression case.

This adds to literature a more careful treatment of the quantile regression case for stratified

sampling that had not been available.5

4 For the nonlinear case, one can use Âwj =
(
Njhnj

)−1
Nj∑
i=1

K

yij−g
(
xij,β̂τ

)
hnj

 •̂gi•̂g′i.
5 And this fact has probably played a significant role in the absence of probability
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Weighted quantile regression provides a simple and reliable way to deal with data obtained

through stratified sampling, albeit requiring adjustments to the usual standard errors in

the literature. Valid estimators for the standard errors are provided. Under exogenous

stratification one could use the usual unweighted estimators, which retain its properties of

consistency (Wooldridge, 2001) and asymptotic normality. Even more relevant, in that case,

some usual standard error estimators in the literature (Koenker, 2005; Buchinsky, 1998, etc)

are still valid.

weighted and “survey” methods for quantile regression in popular statistical packages like

STATA.
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APPENDIX A

Proofs to “GMM Efficiency and IPW

for Nonsmooth Functions”

Proof. [Proof of Theorem 1] For VONE−STEP , VKNOW−γ and VKNOW−γ−JOINT

this result is a direct application of known results in the literature (see, e.g., p. 2186 in

Newey and McFadden 1994 or more generally p. 1594 in Chen, Linton and Van Keilegom

2003) and the simplifications that take effect by the use of the appropriate weighting matrix.

For VTWO−STEP I rely on the approximations used by Newey and McFadden (1994) in

theorem 7.2 and Pakes and Pollard (1989) theorem 3.3 and lemma 3.5. Following Pakes and

Pollard (1989), I claim that gn(θ) is very well approximated by the linear function

Ln(θ) =

[
Ln1(θ)

Ln2(θ)

]
= gn(θo) +G(θ − θo)

=

[
gn1(βo,γo) +G11(β − βo) +G12(γ − γo)

gn2(γo) +G22(γ − γo)

]

within a Op(n
−1

2 ) neighborhood of θo. More precisely, I need the approximation error to

be of order op(n
−1

2 ) at θ̂ and at θ∗ which minimizes ‖Ln(θ)‖ globally. In the case analyzed
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here, ∥∥∥gn(θ̂)− Ln(θ̂)
∥∥∥ =

∥∥∥gn(θ̂)− gn(θo)−G(θ̂ − θo)
∥∥∥

=
∥∥∥gn(θ̂)− gn(θo)−G(θ̂ − θo)− go(θ̂) + go(θ̂)

∥∥∥
≤

∥∥∥gn(θ̂)− go(θ̂)− gn(θo)
∥∥∥+

∥∥∥go(θ̂)−G(θ̂ − θo)
∥∥∥

≤ op(1)n
−1

2
[
1 +
√
n
∥∥∥(θ̂−θo)

∥∥∥]+ op(
∥∥∥(θ̂−θo)

∥∥∥)

= op(n
−1

2 )

where in the last equality I used the fact that
∥∥∥(θ̂−θo)

∥∥∥ ≤ Op(n
−1

2 ) (see Newey and Mc-

Fadden, 1994, p. 2191). To correspond to a minimum of ‖Ln(θ)‖, the vector G(θ∗ − θo)

must be equal to the linear projection of −gn(θo) onto the space G. Hence,

G(θ∗ − θo) = −G(G′G)−1G′gn(θo)

from this equation, we can obtain

√
n(θ∗ − θo) = −

√
n(G′G)−1G′gn(θo)

from Pakes and Pollard (1989, lemma 3.5) the result above holds for the case in which we

use the appropriate positive semidefinite weighting matrix Ŵ that converges in probability

to W , in which case

√
n(θ∗ − θo) = −

√
n(G′ŴG)−1G′Ŵgn(θo)

as shown by Pakes and Pollard (1989, p. 2042) under the conditions listed above θ∗ and θ̂

are close enough in this shrinking neighborhood around θo such that we can write

√
n(θ̂ − θo) =

√
n(θ∗ − θo) + op(1)

Hence, for the first step estimator, the following approximation is valid

√
n(γ̂ − γo) = −

√
n
(
G′22C

−1
22 G22

)−1
G′22C

−1
22 gn2(γo) + op(1) (A.1)
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Then, for the second step, using the same results, we can approximate

√
n(β̂ − βo) = −

√
n
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 gn1(βo, γ̂) + op(1)

= −
√
n
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 [gn1(βo,γo) +G12(γ̂−γo)] + op(1)

= −
√
n
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 gn1(βo,γo)+

+
√
n
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 G12

(
G′22C

−1
22 G22

)−1
× (A.2)

×G′22C
−1
22 gn2(γo) + op(1)

then, by combining A.1 and A.2 we can write

√
n(θ̂ − θo) = B

√
ngn(θo) + op(1)

where,

B =

[
B11 B12

0 B22

]
with

B11 = −
(
G′11C

−1
11 G11

)−1
G′11C

−1
11

B12 =
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 G12

(
G′22C

−1
22 G22

)−1
G′22C

−1
22

B22 = −
(
G′22C

−1
22 G22

)−1
G′22C

−1
22

hence,

VTWO−STEP = BΣB′

Proof. [Proof of Corollary 1] The proof follows directly from Prokhorov and Schmidt (2009)

since theorem 3 has shown that the variance structure of the four estimators considered is

the same as in Prokhorov and Schmidt (2009). The proof that the result hold directly for the

case in which the objective functions considered are nonsmooth is available under request.
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Proof. [Proof of Corollary 2] Note that the asymptotic variance of
√
n(β̂TWO−STEP −βo)

can be rewritten as (note that B12 = B11G12

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 )

V (β̂TWO−STEP ) = B11C11B
′
11 +B12C21B

′
11 +B11C12B

′
12 +B12C22B

′
12

= B11E
[
g1(ω∗i , θ)g1(ω∗i , θ)

′
]
B′11 +B12E

[
g2(ω∗i , γ)g1(ω∗i , θ)

′
]
B′11+

+B11E
[
g1(ω∗i , θ)g2(ω∗i , γ)′

]
B′12 +B12E

[
g2(ω∗i , γ)g2(ω∗i , γ)′

]
B′12

= B11E


(
g1(ω∗i , θ)−G12

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 g2(ω∗i , γ)

)
×

×
(
g1(ω∗i , θ)−G12

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 g2(ω∗i , γ)

)′
B′11

if G12 = C12C
−1
22 G22

= B11E


(
g1(ω∗i , θ)− C12C

−1
22 G22

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 g2(ω∗i , γ)

)
×

×
(
g1(ω∗i , θ)− C12C

−1
22 G22

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 g2(ω∗i , γ)

)′
B′11

Since it is assumed that G22 is invertible,

= B11E

[(
g1(ω∗i , θ)− C12C

−1
22 g2(ω∗i , γ)

)(
g1(ω∗i , θ)− C12C

−1
22 g2(ω∗i , γ)

)′]
B′11

If we define ei = g1(ω∗i , θ)− C12C
−1
22 g2(ω∗i , γ), and Do = E

[
eie
′
i

]
, we can write,

V (β̂TWO−STEP ) =
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 DoC

−1′
11 G11

(
G′11C

−1
11 G11

)−1

In this case, we can write the variance of the two-step estimator for βo in a quadratic form

in which the term in the middle of the matrix is the residual of the linear projection of the

first set of moment conditions on the second set of moment conditions.

If, in addition to the conditions above, we assume G11 is invertible, the result follows.

V (β̂TWO−STEP ) = G−1
11 DoG

−1′
11
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Proof. [Proof of Lemma 2] First, note that,

E
[
sg2(z, γo, s)

′ | z
]

= E

[
s
∇γf(vi | zi, γ)′

f(vi | zi, γ)
p z

]

=

∞∫
−∞

s
∇γf(v | z, γ)′

f(v | z, γ)
f(v | z, γ)dv

=

∞∫
−∞

h(v, z)∇γf(v | z, γ)′dv

= ∇γ

 ∞∫
−∞

h(v, z)f(v | z, γ)′dv


= ∇γE [s p z]

= ∇γp(z, γo)

this is nonzero in general. Hence,

C12 = E
[
g1(ω∗, βo, γo, s)g2(z,γo,s)

′
]

= E

[
s

p(z,γo)
g(ω,βo)g2(z,γo,s)

′
]

= E

[
E

[
s

p(z,γo)
g(ω,βo)g2(z,γo,s)

′ p z
]]

= E

[
E

[
1

p(z,γo)
g(ω,βo)sg2(z,γo,s)

′ p z
]]

= E

[
1

p(z,γo)
E [g(ω,βo) p z]E

[
sg2(z, γo,s)

′ p z
]]

, by ignorability

= E

[
g(ω,βo)

p(z,γo)
E [sg2(z, γo, s) p z]′

]
= E

[
g(ω,βo)

p(z,γo)
∇γp(z, γo)

]
which is generally nonzero.

Analyzing G12,

G12 = ∇γE[g1(ω∗, βo, γo, s)]

= ∇γE
[

s

p(z,γo)
g(ω,βo)

]
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since, g1(ω∗, βo, γo, s) = s
p(z,γ)

g(ω,β), is smooth in γ,

G12 = E

[
∇γ
(

s

p(z,γo)

)
g(ω,βo)

]
= E

[
− s

(p(z,γo))
2
∇γp(z,γo)g(ω,βo)

]

= E

[
− s

p(z,γo)
g(ω,βo)

∇γp(z,γo)
p(z,γo)

]
= −E

[
E

[
s

p(z,γo)
g(ω,βo)

∇γp(z,γo)
p(z,γo)

]
p z
]

, by LIE

= −E
[
E(s p z)

p(z,γo)
E [g(ω,βo) p z]

∇γp(z,γo)
p(z,γo)

]
= −E

[
g(ω,βo)

∇γp(z,γo)
p(z,γo)

]
, since E [s p z] = p(z,γo)

= −C12

Then, to prove the lemma 2 I need that G22 = −C22, which follows from the Generalized

Information Equality (remembering g2(z,γo,s) is a smooth function).

G22 = ∇γE[g2(z,γo,s)]

= E[∇γg2(z,γo,s)]

= −E
[
g2(z,γo,s)g2(z,γo,s)

′
]

= −C22

hence, G12 = −C12 = −C12(−C−1
22 G22) = C12C

−1
22 G22.

Proof. [Proof of Theorem 2] This follows directly from Lemma 2 and statements 9 and 10

in Corollary 1.

Claim 1 Consider the conditional quantile function

Qτ (Y | X) = X ′βτo

and the weighted linear quantile estimator obtained as

β̂τ = arg min
b∈Rp

∑
wiρτ (yi − x′ib)
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for some known weight wi that could be a function of exogenous variables. Under conditions

7 and 8, we have
√
n
(
β̂τ − βτ

)
∼ N

(
0, τ(1− τ)D−1

1 DoD
−1
1

)
with, D2 = limn→∞

∑n
i=1wifi(x

′
iβτo)xix

′
i and Do = limn→∞

∑n
i=1w

2
i x
′
ixi

Assumption 7 For Y1, Y2, . . . , Yn independent random variables with distribution functions

F1, F2, . . . , Fn, {Fi} are absolutely continuous with continuous densities fi (·) and weights,

wi, uniformly bounded away from 0 and ∞ at the points fi
(
x′iβτo

)
for every i.

Assumption 8 There exist positive definite matrices Do and D1 such that

i) limn→∞ 1
n
∑n
i=1w

2
i xix

′
i = Do

ii) limn→∞ 1
n
∑n
i=1wifi(x

′
iβτo)xix

′
i = D1

iii) max
‖xi‖√
n
→ 0

Proof. [Proof of Claim 1] This proof follows the steps presented on Koenker (2005, p. 120).

Consider ui = yi − x′iβτo , then

β̂τ = arg min
b∈Rp

n∑
i=1

wi

[(
yi − x′ib

)(
τ − 1

[
yi − x′ib ≤ 0

])]
= arg min

b∈Rp

n∑
i=1

wiρτ (ui)

Consider the following convex objective function, with unique minimizer at
√
n
(
β̂τ − βτo

)
,

Zn(δ) =
n∑
i=1

wi

[
ρτ

(
ui − x′i

δ√
n

)
− ρτ (ui)

]

using Knight’s identity ρτ (u − v) − ρτ (u) = −vΨτ (u) +
v∫
0

(1 [u ≤ S]− 1 [u ≤ 0]) dS, with

Ψτ (u) = τ − 1 [u ≤ 0]

Zn(δ) =
n∑
i=1

wi

−x′i δ√nΨτ (ui) +

x′i
δ√
n∫

0

(1 [ui ≤ S]− 1 [ui ≤ 0]) dS


= Z1n(δ) +

n∑
i=1

Z2ni(δ) = Z1n(δ) + Z2n(δ)
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Note that, by the Lindeberg-Feller central limit theorem,

Z1n(δ) = −δ′ 1√
n

n∑
i=1

wix
′
iΨτ (ui)

= −δ′ 1√
n

n∑
i=1

wix
′
i (τ − 1 [ui ≤ 0])

∼ −δ′W

W ∼ N

0, τ(1− τ) lim
n→∞

n∑
i=1

w2
i xix

′
i


Also,

Z2n(δ) =
n∑
i=1

Z2ni(δ)

=
n∑
i=1

E [Z2ni(δ)] +
n∑
i=1

Z2ni(δ)− E [Z2ni(δ)]

but,

n∑
i=1

E [Z2ni(δ)] =
n∑
i=1

wi

x′i
δ√
n∫

0

E [1 [ui ≤ S]− 1 [ui ≤ 0]] dS

=
n∑
i=1

wi

x′i
δ√
n∫

0

Fi(x
′
iβτo + S)− Fi(x′iβτo)dS

let S = t√
n

, then

n∑
i=1

E [Z2ni(δ)] =
1

n

n∑
i=1

wi

x′iδ∫
0

√
n

[
Fi

(
x′iβτo +

t√
n

)
− Fi(x′iβτo)

]
dt

=
1

n

n∑
i=1

wi

x′iδ∫
0

fi(x
′
iβτo)tdt+ o(1)

=
1

2n

n∑
i=1

wifi(x
′
iβτo)δ′xix

′
iδ + o(1)

→ 1

2
δ′

 lim
n→∞

1

n

n∑
i=1

wifi(x
′
iβτo)xix

′
i

 δ =
1

2
δ′D1δ
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Under A2(iii):

Zn(δ) ∼ Zo(δ) = −δ′W +
1

2
δ′D1δ

then

√
n
(
β̂τ − βτ

)
= δ̂n = arg minZn(δ) ∼ δ̂o = arg minZo(δ)

δ̂o = D−1
1 W

hence,
√
n
(
β̂τ − βτ

)
∼ N

(
0, τ(1− τ)D−1

1 DoD
−1
1

)

87



APPENDIX B

Figures to “Fixed Bandwidth

Asymptotics for Regression

Discontinuity Designs”

B.1 Simulations for Infeasible Inference

B.1.1 Nadaraya-Watson Estimator
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Figure B.1. Nadaraya-Watson Estimator - DGP: No X - Homosk. Errors
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this and all other figures, the reader is referred
to the electronic version of this dissertation.
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Figure B.2. Nadaraya-Watson Estimator - DGP: Linear - Homosk. Errors
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Figure B.3. Nadaraya-Watson Estimator - DGP: Linear - Bias Corrected - Homosk. Errors
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Figure B.4. Nadaraya-Watson Estimator - DGP: Linear - Comparison - Homosk. Errors
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B.1.2 Local Linear Estimator

Figure B.5. Local Linear Estimator - DGP: Linear - Homosk. Errors
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Figure B.6. Local Linear Estimator - DGP: Quadratic - Homosk. Errors
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Figure B.7. Local Linear Estimator - DGP: Quadratic - Bias Corrected - Homosk. Errors
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Figure B.8. Local Linear Estimator - DGP: Quadratic - Comparison - Homosk. Errors
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B.1.3 Heteroskedastic Errors

Figure B.9. Local Linear Estimator - DGP: Linear - Heterosk. Errors Case 1
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Figure B.10. Local Linear Estimator - DGP: Quadratic - Heterosk. Errors Case 1
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Figure B.11. Local Linear Estimator - DGP: Linear - Heterosk. Errors Case 2
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Figure B.12. Local Linear Estimator - DGP: Quadratic - Heterosk. Errors Case 2
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B.2 Simulations for Feasible Inference

Figure B.13. Nadaraya-Watson Estimator - DGP: No X - Feasible - Homosk. Errors
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Figure B.14. Nadaraya-Watson Estimator - DGP: Linear - Feasible - Homosk. Errors
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B.2.1 Local Linear Estimator

Figure B.15. Local Linear Estimator - DGP: Linear - Feasible - Homosk. Errors
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Figure B.16. Local Linear Estimator - DGP: Quadratic - Feasible - Homosk. Errors
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B.2.2 Heteroskedastic Errors

Figure B.17. Local Linear Estimator - DGP: Linear - Feasible - Heterosk. Errors Case 1
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Figure B.18. Local Linear Estimator - DGP: Quadratic - Feasible - Heterosk. Errors Case 1
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Figure B.19. Local Linear Estimator - DGP: Linear - Feasible - Heterosk. Errors Case 2

0 5 10 15 20

0.
80

0.
85

0.
90

0.
95

1.
00

Local Linear Estimator Empirical Coverage

DGP: Linear Model − Heteroskedastic Errors (Case 2)
Bandwidth (h)

E
m

pi
ric

al
 C

ov
er

ag
e

Small−h
Estimated Small−h
Fixed−h
Estimated Fixed−h
95% line

107



Figure B.20. Local Linear Estimator - DGP: Quadratic - Feasible - Heterosk. Errors Case 2
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B.2.3 Bandwidth Choice for f̂o(x)

Figure B.21. Small-h Sensitivity to Density Bandwidth - DGP: Linear
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Figure B.22. Small-h Sensitivity to Density Bandwidth - DGP: Quadratic
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APPENDIX C

Proofs to “Fixed Bandwidth

Asymptotics for Regression

Discontinuity Designs”

Proof. [Proof of Theorem 6] The local polynomial estimator is given by

α̂p = α̂p+ − α̂p−

note that,

α̂p+ = e′1

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZiZ

′
i

−1  1

nh

n∑
i=1

k

(
xi − x
h

)
diZiyi


= e′1Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZiyi


with Dn+ =

[
1
nh

∑n
i=1 k

(
xi−x
h

)
diZiZ

′
i

]−1
and,

α̂p− = e′1Dn−

 1

nh

n∑
i=1

k

(
xi − x
h

)
(1− di)Ziyi


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with Dn− =
[

1
nh

∑n
i=1 k

(
xi−x
h

)
(1− di)ZiZ′i

]−1
. Then,

α̂p+ = e′1Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZi [m(xi) + αdi + εi]


= e′1Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZim(xi)

+

+αe′1Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZi

+

+e′1Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZiεi


note that Zi = ZiZ

′
ie1, e′1e1 = 1 then

e′1Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZi

 = e′1Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZiZ

′
i

 e1 = 1

and

α̂p+− α = e′1Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZim(xi)

+ e′1Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZiεi


similarly

α̂p− = e′1Dn−

 1

nh

n∑
i=1

k

(
xi − x
h

)
(1− di)Zim(xi)

+e′1Dn−

 1

nh

n∑
i=1

k

(
xi − x
h

)
(1− di)Ziεi


Then

√
nh(α̂p − α) =

√
nh(α̂p+ − α− α̂p−)

= e′1Dn+
√
nh

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZim(xi)

+

+e′1Dn+

 1√
nh

n∑
i=1

k

(
xi − x
h

)
diZiεi

−
−e′1Dn−


√
nh
[

1
nh

∑n
i=1 k

(
xi−x
h

)
(1− di)Zim(xi)

]
+

+

[
1√
nh

∑n
i=1 k

(
xi−x
h

)
(1− di)Ziεi

] 
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For the denominator terms Dn+ and Dn−,

D−1
n+ =

1

nh

n∑
i=1

k

(
xi − x
h

)
diZiZ

′
i

and each element of this matrix is given by[
D−1
n+

]
l,j

=
1

nh

n∑
i=1

k

(
xi − x
h

)
di

(
xi − x
h

)j+l−2

which has asymptotic variance converging to zero since

V ar

([
D−1
n+

]
j,l

)
=

1

(nh)2
V ar

 n∑
i=1

k

(
xi − x
h

)
di

(
xi − x
h

)j+l−2


=
1

nh2
V ar

(
k

(
xi − x
h

)
di

(
xi − x
h

)j+l−2
)

≤ 1

nh
E

[
1

h
k2
(
x− x
h

)
d

(
x− x
h

)2(j+l−2)
]

=
1

nh

∫ x+h

x

1

h
k2
(
x− x
h

)(
x− x
h

)2(j+l−2)
fo(x)dx

Note that the terms in the integral and the integral itself are O(1) and 1
nh = o(1). Hence,

V ar

([
D−1
n+

]
l,j

)
→ 0. Now,

[
D−1
n+

]
l,j

= E

{[
D−1
n+

]
l,j

}
+ op(1)

=
1

nh
E

 n∑
i=1

k

(
xi − x
h

)
di

(
xi − x
h

)j+l−2
+ op(1)

= E

[
1

h
k

(
xi − x
h

)
di

(
xi − x
h

)j+l−2
]

+ op(1)

=

∫ x+h

x

1

h
k

(
x− x
h

)(
x− x
h

)j+l−2
fo(x)dx+ op(1)

=

∫ ∞
0

k (u)uj+l−2fo(x+ uh)du+ op(1)

Let, γ+
j =

∫∞
0 k (u)ujfo(x+uh)du and Γ∗+ is the (p+1)× (p+1) matrix with (j, l) element

γ+
j+l−2 for j, l = 1, ..., p+ 1. Then,

Dn+
p→
(
Γ∗+
)−1
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Similarly,

Dn−
p→
(
Γ∗−
)−1

where Γ∗− is the (p+ 1)× (p+ 1) matrix with (j, l) element γ−j+l−2 for j, l = 1, ..., p+ 1, and

γ−j = (−1)j
∫∞
0 k (u)ujfo(x− uh)du.

Now we will derive the asymptotic distribution of 1√
nh

∑n
i=1 k

(
xi−x
h

)
diZiεi. Following

Porter (2003) I use the Cramer-Wold device to derive the asymptotic distribution. Let λ be

a nonzero, finite vector. Then,

E


∣∣∣∣∣∣ 1√
nh

n∑
i=1

k

(
xi − x
h

)
diλ
′Ziεi

∣∣∣∣∣∣
2+ζ


=

n∑
i=1

(
1

nh

)ζ
2 1

nh
E

[∣∣∣∣k(xi − xh

)∣∣∣∣2+ζ
di

∣∣∣λ′Zi∣∣∣2+ζ
|εi|2+ζ

]

=

(
1

nh

)ζ
2 1

h
E

∣∣∣∣k(x− xh
)∣∣∣∣2+ζ

d

∣∣∣∣∣∣
p∑
l=1

λl

(
x− x
h

)l∣∣∣∣∣∣
2+ζ

E
[
|ε|2+ζ | X = x

]
≤

(
1

nh

)ζ
2 1

h
E

∣∣∣∣k(x− xh
)∣∣∣∣2+ζ

d

 p∑
l=1

∣∣∣∣∣λl
(
x− x
h

)l∣∣∣∣∣
2+ζ

E
[
|ε|2+ζ | X = x

]
≤

(
1

nh

)ζ
2 1

h
sup
x∈ℵ

E
[
|ε|2+ζ | X = x

]
E

∣∣∣∣k(x− xh
)∣∣∣∣2+ζ

d

p∑
l=1

∣∣∣∣∣λl
(
x− x
h

)l∣∣∣∣∣
2+ζ


=

(
1

nh

)ζ
2 1

h
sup
x∈ℵ

E
[
|ε|2+ζ | X = x

] x+h∫
x

∣∣∣∣k(x− xh
)∣∣∣∣2+ζ p∑

l=1

∣∣∣∣∣λl
(
x− x
h

)l∣∣∣∣∣
2+ζ

dFo(x)

=

(
1

nh

)ζ
2
O(1)O(1) = O

( 1

nh

)ζ
2

 = o(1)

then, 1√
nh

∑n
i=1 k

(
xi−x
h

)
diZiεi follows Liapunov’s CLT. Note that,

E

 1√
nh

n∑
i=1

k

(
xi − x
h

)
diZiεi


= E

[√
n√
h
k

(
xi − x
h

)
diZiE [ε | X = x]

]
= 0
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and

V ar

 1√
nh

n∑
i=1

k

(
xi − x
h

)
diZiεi


=

1

h
V ar

[
k

(
xi − x
h

)
diZiεi

]
=

1

h
E

[
k2
(
xi − x
h

)
diZiZ

′
iε

2
i

]
=

1

h
E

[
k2
(
xi − x
h

)
diZiZ

′
iE
[
ε2i | X = x

]]
=

∫ x+h

x

1

h
k2
(
x− x
h

)
ZZ′σ2(x)fo(x)dx

It helps to remember that ZiZ
′
i is a function of the x,

ZiZ
′
i =



1
(
xi−x
h

)
· · ·

(
xi−x
h

)p(
xi−x
h

) (
xi−x
h

)2
· · ·

(
xi−x
h

)p+1

...
...

. . .
...(

xi−x
h

)p (
xi−x
h

)p+1
· · ·

(
xi−x
h

)2p


Let δ+j =

∫ x+h
x

1
hk

2
(
x−x
h

)(
x−x
h

)j
σ2(x)fo(x)dx =

∫∞
0 k2 (u)ujσ2(x + uh)fo(x + uh)du

and ∆∗+ is the (p+ 1)× (p+ 1) matrix with (j, l) element δ+j+l−2 for j, l = 1, ..., p+ 1. Then,

1√
nh

n∑
i=1

k

(
xi − x
h

)
diZiεi

p→ N(0,∆∗+)

Similarly we can show that

1√
nh

n∑
i=1

k

(
xi − x
h

)
(1− di)Ziεi

p→ N(0,∆∗−)

where ∆∗− is the (p+ 1)× (p+ 1) matrix with (j, l) element δ−j+l−2 for j, l = 1, ..., p+ 1, and

δ−j =
∫ x
x−h

1
hk

2
(
x−x
h

)(
x−x
h

)j
σ2(x)fo(x)dx = (−1)j

∫∞
0 k2 (u)ujσ2(x−uh)fo(x−uh)du.

The bias term is given by

√
nhe′1

Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZim(xi)

−Dn−
 1

nh

n∑
i=1

k

(
xi − x
h

)
(1− di)Zim(xi)


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Notice that if the rectangular kernel is used this is nothing else than the difference between

the intercepts estimated by the linear projection of m(x) on Z, above and below the cutoff

point using only the data inside the bandwidth.

Note that,

E

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZim(xi)

 = E

[
1

h
k

(
xi − x
h

)
diZim(xi)

]

=

∫ x+h

x

1

h
k

(
x− x
h

)
Z(x)m(x)f(x)dx

=

∫ ∞
0

k (u)Z(x+ uh)m(x+ uh)f(x+ uh)du

and similarly,

1

nh

n∑
i=1

k

(
xi − x
h

)
(1− di)Zim(xi)

p→
∫ x

x−h

1

h
k

(
x− x
h

)
Z(x)m(x)dx

Hence, the bias term can be approximated by,

e′1

{ (
Γ∗+
)−1 [∫∞

0 k (u)Z(x+ uh)m(x+ uh)f(x+ uh)du
]
−

−
(
Γ∗−
)−1 [∫∞

0 k (u)Z(x− uh)m(x− uh)f(x− uh)du
] }

Proof. [Proof of Corollary 2] First, note that, if h→ 0,

γ+
j = lim

h→0

∫ ∞
0

k (u)ujfo(x+ uh)du

= fo(x)

∫ ∞
0

k (u)ujdu (C.1)

= fo(x)γj

and

δ+j = lim
h→0

∫ ∞
0

k2 (u)ujσ2(x+ uh)fo(x+ uh)du

= σ2+(x)fo(x)

∫ ∞
0

k2 (u)ujdu (C.2)

= σ2+(x)fo(x)δj
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and similarly for γ−j and δ−j . Then, for the variance,

lim
h→0

(
Γ∗+
)−1 ∆∗+

(
Γ∗+
)−1 +

(
Γ∗−
)−1 ∆∗−

(
Γ∗−
)−1

= (fo(x)Γ)−1
[
σ2+(x)fo(x)∆

]
(fo(x)Γ)−1 + (fo(x)Γ)−1

[
σ2−(x)fo(x)∆

]
(fo(x)Γ)−1

=
σ2+(x) + σ2−(x)

fo(x)
e′1Γ−1∆Γ−1e1

For the bias, if we approximate m(x+ uh) = m(x) just above m(x) :

m(x) = LP+(m(x) on Z(x)) +
1

(p+ 1)!
m(p+1)+(x) (x− x)p+1 + o

(
hp+1

)
and similarly for approximating m(x) just below the cutoff. When we evaluate LP+(m(x)

on Z(x)) at x, we get the intercept m(x) and the “residual” as described above. A helpful

fact is that, by the definition of Z(x),∫ ∞
0

k (u)Z(x+ uh)up+1du =

∫ ∞
0

k (u)

 1
...

up

up+1du =

 γp+1
...

γ2p+1

 (C.3)

∫ ∞
0

k (u)Z(x− uh)up+1du =

∫ ∞
0

k (u)

 1
...

(−u)p

up+1du =

 γp+1
...

(−1)pγ2p+1

 (C.4)

Note that Γ−1

 γp+1
...

γ2p+1

 is equal both above and below the cutoff. The bias formula in

theorem 6 is given by

e′1

{ (
Γ∗+
)−1 [∫∞

0 k (u)Z(x+ uh)m(x+ uh)fo(x+ uh)du
]
−

−
(
Γ∗−
)−1 [∫∞

0 k (u)Z(x− uh)m(x− uh)fo(x− uh)du
] } (C.5)

as discussed in section 2.5 the main term is just the difference between the intercepts of the

linear projections of k (u)m(x) on k (u)Z(x) in the bandwidth above below the cutoff, which

is equal to the linear projections evaluated at x. Hence, plugging the bias formula for the

linear projection, formula (C.5) can be written as (plus an o
(
hp+1

)
term),

e′1

[(
Γ∗+
)−1

∫ ∞
0

k (u)Z(x+ uh)

(
1

(p+ 1)!
m(p+1)+(x) (uh)p+1

)
fo(x+ uh)du

]
−e′1

[(
Γ∗−
)−1

∫ ∞
0

k (u)Z(x− uh)

(
(−1)p+1

(p+ 1)!
m(p+1)−(x) (uh)p+1

)
fo(x− uh)du

]
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=
hp+1

(p+ 1)!
e′1

[(
Γ∗+
)−1

∫ ∞
0

k (u)Z(x+ uh)m(p+1)+(x)up+1fo(x+ uh)du

]
− hp+1

(p+ 1)!
e′1(−1)p+1

[(
Γ∗−
)−1

∫ ∞
0

k (u)Z(x− uh)m(p+1)−(x)up+1fo(x− uh)du

]
=

hp+1

(p+ 1)!
e′1m

(p+1)+(x)

[(
Γ∗+
)−1

∫ ∞
0

k (u)Z(x+ uh)up+1fo(x+ uh)du

]
− hp+1

(p+ 1)!
e′1 (−1)p+1m(p+1)−(x)

[(
Γ∗−
)−1

∫ ∞
0

k (u)Z(x− uh)up+1fo(x− uh)du

]

where

(
m(x)

mp+(−)

)
, is the vector of coefficients of the linear projection of m(x) on Z(x) is

the bandwidth above (below) the cutoff. If h → 0, using the equalities in equations (C.3),

(C.4), (C.2) and (C.1),

=
limh→0

(
hp+1

)
(p+ 1)!

[
m(p+1)+(x)− (−1)p+1m(p+1)−(x)

]
e′1Γ−1

 γp+1
...

γ2p+1



Proof. [Proof of Corollary 3] First, note that, if h > 0 and, in the bandwidth around the

cutoff, fo(x) = fo(x), σ2(x) = σ2(x) and

m(x) = m(x)+m′+(x) (x− x)+ ...+
1

p!
m(p)+(x) (x− x)p+

1

(p+ 1)!
m(p+1)+(x) (x− x)p+1

then,

γ+
j =

∫ ∞
0

k (u)ujfo(x+ uh)du

= fo(x)

∫ ∞
0

k (u)ujdu (C.6)

= fo(x)γj

and

δ+j =

∫ ∞
0

k2 (u)ujσ2(x+ uh)fo(x+ uh)du

= σ2+(x)fo(x)

∫ ∞
0

k2 (u)ujdu (C.7)

= σ2+(x)fo(x)δj
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and similarly for γ−j and δ−j . Then, for the variance,

(
Γ∗+
)−1 ∆∗+

(
Γ∗+
)−1 +

(
Γ∗−
)−1 ∆∗−

(
Γ∗−
)−1

= (fo(x)Γ)−1
[
σ2+(x)fo(x)∆

]
(fo(x)Γ)−1 + (fo(x)Γ)−1

[
σ2−(x)fo(x)∆

]
(fo(x)Γ)−1

=
σ2+(x) + σ2−(x)

fo(x)
e′1Γ−1∆Γ−1e1

For the bias, the strategy is basically the same as in the proof of corollary 2:

m(x) = LP+(m(x) on Z(x)) +
1

(p+ 1)!
m(p+1)+(x) (x− x)p+1

and similarly for approximating m(x) just below the cutoff. When we evaluate LP+(m(x)

on Z(x)) at x, we get the intercept m(x) and the “residual” as described above. Once again,

using formulas (C.3) and (C.4), the bias formula in theorem 6 is given by

e′1

{ (
Γ∗+
)−1 [∫∞

0 k (u)Z(x+ uh)m(x+ uh)fo(x+ uh)du
]
−

−
(
Γ∗−
)−1 [∫∞

0 k (u)Z(x− uh)m(x− uh)fo(x− uh)du
] }

as discussed in section 2.5 the main term is just the difference between the intercepts of the

linear projections of k (u)m(x) on k (u)Z(x) in the bandwidth above below the cutoff, which

is equal to the linear projections evaluated at x. Hence, plugging the bias formula for the

linear projection:

e′1

[(
Γ∗+
)−1

∫ ∞
0

k (u)Z(x+ uh)

(
1

(p+ 1)!
m(p+1)+(x) (uh)p+1

)
fo(x+ uh)du

]
−e′1

[(
Γ∗−
)−1

∫ ∞
0

k (u)Z(x− uh)

(
(−1)p+1

(p+ 1)!
m(p+1)−(x) (uh)p+1

)
fo(x− uh)du

]

=
hp+1

(p+ 1)!
e′1

[(
Γ∗+
)−1

∫ ∞
0

k (u)Z(x+ uh)m(p+1)+(x)up+1fo(x+ uh)du

]
− hp+1

(p+ 1)!
e′1(−1)p+1

[(
Γ∗−
)−1

∫ ∞
0

k (u)Z(x− uh)m(p+1)−(x)up+1fo(x− uh)du

]
=

hp+1

(p+ 1)!
e′1m

(p+1)+(x)

[(
Γ∗+
)−1

∫ ∞
0

k (u)Z(x+ uh)up+1fo(x+ uh)du

]
− hp+1

(p+ 1)!
e′1 (−1)p+1m(p+1)−(x)

[(
Γ∗−
)−1

∫ ∞
0

k (u)Z(x− uh)up+1fo(x− uh)du

]
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where

(
m(x)

mp+(−)

)
, is the vector of coefficients of the linear projection of m(x) on Z(x) is

the bandwidth above (below) the cutoff. Using fo(x) = fo(x) and the equalities in formulas

(C.3), (C.4), (C.7) and (C.6),

=
hp+1

(p+ 1)!

[
m(p+1)+(x)− (−1)p+1m(p+1)−(x)

]
e′1Γ−1

 γp+1
...

γ2p+1



Proof. [Proof of Theorem 8] To obtain the Covariance term for the asymptotic variance of

the Fuzzy Regression Discontinuity estimator, note that the covariance will be determined

by the expectation of the product of the stochastic terms.

The covariance between the estimators for the outcome of interest and the treatment

probability will be given by two independent terms, one for each side of the threshold. The

upper side is given by

E

e′1Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZiyi

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZiti

Dn+e1


Where ti is the dummy variable indicating that the observation has received treatment. In

obtaining the asymptotic covariance, the bias term of the estimator can be ignored, hence

E

e′1Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)
diZiεi

 n∑
i=1

k

(
xi − x
h

)
diZiηi

′Dn+e1


= E

e′1Dn+

 1

nh

n∑
i=1

n∑
j=1

k

(
xi − x
h

)
k

(
xj − x
h

)
didjZiZ

′
jεiηj

Dn+e1


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= E

e′1Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)2
diZiZ

′
iE [εiηi | X = x]

Dn+e1


= E

e′1Dn+

 1

nh

n∑
i=1

k

(
xi − x
h

)2
diZiZ

′
iσεη(xi)

Dn+e1


= E

[
e′1Dn+

(
1

h
k

(
xi − x
h

)2
diZiZ

′
iσεη(xi)

)
Dn+e1

]

= e′1Dn+

[∫ x+h

x

1

h
k

(
x− x
h

)2
ZZ′σεη(x)fo(x)dx

]
Dn+e1

where I used the assumption that E
[
εiηj | X = x

]
= 0 for j 6= i.

Similarly for the second term,

e′1Dn−

[∫ x

x−h

1

h
k

(
x− x
h

)2
ZZ′σεη(x)fo(x)dx

]
Dn−e1

Let ρ+
j =

∫ x+h
x

1
hk

2
(
x−x
h

)(
x−x
h

)j
σεη(x)fo(x)dx =

∫∞
0 k2 (u)ujσεη(x + uh)fo(x +

uh)du, ∆
ρ
+ is the (p+1)×(p+1) matrix with (j, l) element ρ+

j+l−2 for j, l = 1, ..., p+1, ρ−j =∫ x
x−h

1
hk

2
(
x−x
h

)(
x−x
h

)j
σεη(x)fo(x)dx = (−1)j

∫∞
0 k2 (u)ujσεη(x−uh)fo(x−uh)du and

∆
ρ
− is the (p+ 1)× (p+ 1) matrix with (j, l) element ρ−j+l−2 for j, l = 1, ..., p+ 1 Then the

asymptotic covariance is given by

Cαθ = e′1
[(

Γ∗+
)−1 ∆

ρ
+

(
Γ∗+
)−1 +

(
Γ∗−
)−1 ∆

ρ
−
(
Γ∗−
)−1

]
e1

The asymptotic covariance for the Nadaraya-Watson estimator will be given by the special

case when p = 0.

Cαθ =

∫ ∞
0

k2 (u)
σεη(x+ uh)fo(x+ uh)(∫∞
0 k (u) fo(x+ uh)du

)2 +
σεη(x− uh)fo(x− uh)(∫∞
0 k (u) fo(x− uh)du

)2du

Proof. [Proof of Corollary 4] Using the results in equations C.1 and noting that, if h→ 0

ρ+
j = lim

h→0

∫ ∞
0

k2 (u)ujσεη(x+ uh)fo(x+ uh)du

= σ+
εη(x)fo(x)δj
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and similarly for ρ−j . Then,

lim
h→0

e′1
[(

Γ∗+
)−1 ∆

ρ
+

(
Γ∗+
)−1 +

(
Γ∗−
)−1 ∆

ρ
−
(
Γ∗−
)−1

]
e1

= e′1
[
(fo(x)Γ)−1 σ+

εη(x)fo(x)∆ (fo(x)Γ)−1 + (fo(x)Γ)−1 σ−εη(x)fo(x)∆ (fo(x)Γ)−1
]
e1

=
σ+
εη(x) + σ−εη(x)

fo(x)
e′1Γ−1∆Γ−1e1

Proof. [Proof of Corollary 5] The proof follows very closely corollary 4. Using the results

in equations C.1 and noting that, if h > 0 and fo(x) = fo(x) and σεη(x) = σεη(x) for any

x in the range around the cutoff

ρ+
j =

∫ ∞
0

k2 (u)ujσεη(x+ uh)fo(x+ uh)du

= σ+
εη(x)fo(x)δj

and similarly for ρ−j . Then,

e′1
[(

Γ∗+
)−1 ∆

ρ
+

(
Γ∗+
)−1 +

(
Γ∗−
)−1 ∆

ρ
−
(
Γ∗−
)−1

]
e1

= e′1
[
(fo(x)Γ)−1 σ+

εη(x)fo(x)∆ (fo(x)Γ)−1 + (fo(x)Γ)−1 σ−εη(x)fo(x)∆ (fo(x)Γ)−1
]
e1

=
σ+
εη(x) + σ−εη(x)

fo(x)
e′1Γ−1∆Γ−1e1
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APPENDIX D

Proofs to “Asymptotic Properties of

Quantile Regression for Standard

Stratified Samples”

Proof. [Proof of Corollary 6] The general form of the variance follows directly from Newey

and McFadden (1994) theorem 7.1. The specific formulas for Aw and Bw, are obtained

by checking that the proof used by Wooldridge (2001) still holds for the estimator that

minimizes the objective function given by equation 3.2. I follow his procedure below.

Since within each stratum we have a i.i.d. sequence
{
wij : i = 1, 2, ..., Nj

}
for each j, a

CLT for i.i.d. observations can be applied for each stratum.

N
−1

2
j

Nj∑
i=1

[
sij
(
βτo

)
− µj

]
d→ N(0, Bj)

where sij
(
βτo

)
≡
(
τ − 1

[
yij − g

(
xij , βτo

)
≤ 0
]) •
gi, with

•
gi ≡

∂g
(
xij,β

)
∂β |β=βτo

,

µj ≡ E
[
sij
(
βτo

)]
= E

[(
τ − 1

[
yij − g

(
xij , βτo

)
≤ 0
]) •
gi|w ∈ Wj

]
, and Bj ≡

V ar
[
sij
(
βτo

)]
= V ar

[(
τ − 1

[
yij − g

(
xij , βτo

)
≤ 0
]) •
gi|w ∈ Wj

]
. As seen in equation
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3.4,
J∑
j=1

Qjµj = 0

The score of the objective function, multiplied by N
1
2 and evaluated at βτo can be written

as

N
−1

2

J∑
j=1

Qj

Hj

Nj∑
i=1

sij
(
βτo

) = N
−1

2

J∑
j=1

Qj

Hj

Nj∑
i=1

sij
(
βτo

)
− µj


=

J∑
j=1

Qj

H
1
2
j

N−1
2

j

Nj∑
i=1

sij
(
βτo

)
− µj

 d→ N(0, Bw)

with Bw =
J∑
j=1

Q2
j

Hj
Bj =

J∑
j=1

Q2
j

Hj
V ar

[(
τ − 1

[
yij − g

(
xij , βτo

)
≤ 0
]) •
gi|w ∈ Wj

]
. Where

I used the fact that sampling is random within stratum and the observations are inde-

pendent across strata. In the linear case this formula simplifies to Bw =
J∑
j=1

Q2
j

Hj
Bj =

J∑
j=1

Q2
j

Hj
V ar

[(
τ − 1

[
yij − x′ijβτo ≤ 0

])
xij |w ∈ Wj

]
.
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For the outer part of the variance matrix it is enough to note that

Aw = ∇β
J∑
j=1

QjE[
(
τ − 1

[
y − g

(
x, βτo

)
≤ 0
]) •
g|w ∈ Wj ]

=
J∑
j=1

Qj∇βE[
(
τ − 1

[
y − g

(
x, βτo

)
≤ 0
]) •
g|w ∈ Wj ]

=
J∑
j=1

Qj∇βE[
(
τ − 1

[
y − g

(
x, βτo

)
≤ 0
]) •
g|w ∈ Wj ]

=
J∑
j=1

Qj∇βE
[
E
[
τ − 1

[
y − g

(
x, βτo

)
≤ 0
]
|x,w ∈ Wj

] •
g|w ∈ Wj

]

=
J∑
j=1

Qj∇βE
[(
τ − Fy|x,w∈Wj

(
g
(
x, βτo

))) •
g|w ∈ Wj

]

=
J∑
j=1

QjE[fy|x,w∈Wj
(
g
(
x, βτo

)) •
g
•
g
′
|w ∈ Wj ]

= E

[
fy|x

(
g
(
x, βτo

)) •
g
•
g
′
]

And that the Jacobian of
J∑
j=1

Qj

 1
Nj

Nj∑
i=1

(
τ − 1

[
yij − g

(
xij , βτ

)
≤ 0
]) •
gi

converges

in probability uniformly to Aw. In the linear case this formula simplifies to Aw =
J∑
j=1

QjE[fy|x,w∈Wj
(
x′βτo

)
xx′|w ∈ Wj ] = E

[
fy|x(x′βτo)xx′

]
.

Proof. [Proof of Corollary 7] The general form of the variance follows directly from

Newey and McFadden (1994) theorem 7.1. Under exogenous stratification, the follow-

ing changesneed to be made to the definitions used to prove corollary 6: (a) µj ≡

E
[
sij
(
βτo

)]
= E

[(
τ − 1

[
yij − g

(
xij , βτo

)
≤ 0
]) •
gi|x ∈ χj

]
= 0 for every stratum j;

(b) Bj ≡ V ar
[
sij
(
βτo

)]
= V ar

[(
τ − 1

[
yij − g

(
xij , βτo

)
≤ 0
]) •
gi|x ∈ χj

]
. Then, the
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score of the objective function, multiplied by N
1
2 and evaluated at βτo can be written as

N
−1

2

N∑
i=1

sij
(
βτo

)
=

J∑
j=1

H
1
2
j

N−1
2

j

Nj∑
i=1

sij
(
βτo

)
=

J∑
j=1

H
1
2
j

N−1
2

j

Nj∑
i=1

sij
(
βτo

) d→ N(0, Bu)

with Bu =
J∑
j=1

HjBj =
J∑
j=1

HjV ar
[(
τ − 1

[
yij − g

(
xij , βτo

)
≤ 0
]) •
gi|x ∈ χj

]
. Where

I used the fact that sampling is random within stratum and the observations are inde-

pendent across strata. In the linear case this formula simplifies to Bu =
J∑
j=1

HjBj =

J∑
j=1

HjV ar
[(
τ − 1

[
yij − x′ijβτo ≤ 0

])
xij |x ∈ χj

]
.

Note that in this case, since E
[
1
[
yij − x′ijβτo ≤ 0

]
|x
]

is the same to every stratum,

V ar
[(
τ − 1

[
yij − x′ijβτo ≤ 0

]) •
gi|x ∈ χj

]
= τ(1− τ)E

[
•
gi
•
g
′
i|x ∈ χj

]

and Bu =
J∑
j=1

Hjτ(1− τ)E

[
•
gi
•
g
′
i|x ∈ χj

]
= τ(1− τ)

J∑
j=1

HjE

[
•
gi
•
g
′
i|x ∈ χj

]
. In the in the

linear CQF case, Bu =
J∑
j=1

Hjτ(1− τ)E

[
•
gi
•
g
′
i|x ∈ χj

]
= τ(1− τ)

J∑
j=1

HjE
[
xx′|x ∈ χj

]
.

For the outer part of the variance matrix it is enough to note that

Au =
J∑
j=1

Hj∇βE[
(
τ − 1

[
y − g

(
x, βτo

)
≤ 0
]) •
g|x ∈ χj ]

=
J∑
j=1

Hj∇βE
[
E
[
τ − 1

[
y − g

(
x, βτo

)
≤ 0
]
|x
] •
g|x ∈ χj

]

=
J∑
j=1

Hj∇βE
[(
τ − Fy|x

(
g
(
x, βτo

))) •
g|x ∈ χj

]

=
J∑
j=1

HjE[fy|x
(
g
(
x, βτo

)) •
g
•
g
′
|x ∈ χj ]

In the linear case this formula simplifies to Au =
J∑
j=1

HjE[fy|x
(
x′ij β̂τo

)
xx′|x ∈ χj ].
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Proof. [Proof of Corollary 8] The asymptotic multivariate normality result fol-

lows directly from the use of a standard Cramer-Wold device argument for the

vector of the scores for each quantile applied separately for each stratum. Let

sij (βτ ) =
[
s1ij

(y, x, βτ1
)′, s2ij (y, x, βτ2

)′, . . . , spij (y, x, βτp)′
]

and µj ≡ E
[
sij (βτ )

]
=

E
[
s1ij

(y, x, βτ1
)′, s2ij (y, x, βτ2

)′, . . . , spij (y, x, βτp)′
]

then,

N
−1

2
j

Nj∑
i=1

[
sij (βτ )− µj

]
d→ N(0, Bj)

with Bj a p× p variance covariance matrix with typical element,

Bjl,k
≡ Cov

[
sij

(
βτ l

)
, sij

(
βτk

)]
= Cov

[(
τ l − 1

[
y − g(x, βτ l

) ≤ 0
]) •
gl,
(
τk − 1

[
y − g(x, βτk

) ≤ 0
]) •
gk|w ∈ Wj

]
Then,

N
−1

2

J∑
j=1

Qj

Hj

Nj∑
i=1

sij (βτ )

 = N
−1

2

J∑
j=1

Qj

Hj

Nj∑
i=1

sij (βτ )− µj


=

J∑
j=1

Qj

H
1
2
j

N−1
2

j

Nj∑
i=1

sij (βτ )− µj

 d→ N(0, Bs)

where Bs =
{
Bsl,k

}
l,k=1,...p

with typical element

Bsl,k =

 J∑
j=1

Q2
j

Hj
Bjl,k


and the outer part of each term is given by the Awl ≡ E

[
fy|x(g (x, βτ l))

•
gl
•
g
′
l

]
and Awk ≡

E

[
fy|x(g

(
x, βτk

)
)
•
gk
•
g
′
k

]
as argued in Buchinsky (1998).

Hence,
√
N
(
β̂τ − βτ

)
a∼ N (0,Λτ ), where Λτ =

{
Λτ l,k

}
l,k=1,...p

with typical element

defined as

Λτ l,k = E

[
fy|x(g

(
x, βτ l

)
)
•
gl
•
g
′
l

]−1
 J∑
j=1

Q2
j

Hj
Bjl,k

E [fy|x(g
(
x, βτk

)
)
•
gk
•
g
′
k

]−1
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and, in the special case of the linear CQF, g (X, β) = x′β

Λτ l,k = E
[
fy|x

(
x′βτ l

)
xx′
]−1

 J∑
j=1

Q2
j

Hj
Bjl,k

E [fy|x (x′βτk)xx′]−1
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