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ABSTRACT

PLATES ON ELASTIC FOUNDATIONS
SUBJECTED TO MOVING LOADS

by William C. Moody

An analytical study is made of the dynamic behavior of
rectangular elastic plates on elastic foundations (of the
Winkler type) subjected to moving loads of constant magnitude.
The method of analysis is based on a discretization of the
plate by a combination of the finite difference and lumped
parameters technique. The resulting equations of motion are
integrated numerically.

Numerical results are obtained for a 10 ft. x 10 ft.
concrete slab, 12 in. thick, and free on all edges. The
foundation stiffnesses used are varied to correspond to a
practical range of subgrade soil stiffness. Most of the data
are for the load moving along one edge of the plate, as this
load track produces the largest deflection and bending moment
in the plate.

It was found that for speeds less than 70 mph the dynamic
effects are rather small. Beyond this speed, the dynamic ef-
fects can become appreciable. The maximum deflection gen-
erally occurs at the departure corner. The maximum bending
moment occurs near the center of the load track. Although an
increase in foundation stiffness generally tends to decrease
both the values of the maximum deflection and moment, its in-
fluence on the maximum moment is substantially smaller than

that on deflection.
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CHAPTER 1

INTRODUCTION

The purpose of this thesis is to study the dynamic be-
havior of plates on elastic foundations subjected to moving
loads. This investigation is limited to rectangular plates
subjected to loads of constant magnitude.

Although the above system may represent such structures
as pontoon bridges, the chief motivation for the study is to
examine the dynamic response of pavements for airport runways
and for highways. At the present time such pavements are
designed primarily on a static basis. With the advent of
heavier loads moving at faster épeeds, it seems appropriate
that the problem be considered from a dynamic point of view.

The dynamic analysis of plates on elastic foundations
is a difficult problem; the case of moving loads is even more
so. However, two works based on rather drastic simplifica-
tions of the problem have been reported in the literature.

Livesley(5) has investigated the influence of load
speed on the response of an infinite plate. Harr (2) also
has considered the influence of load speed treating the
plate as a single degree freedom system. It is apparent
that such simplified systems have only a limited degree of
realism in representing the actual physical problem.

The system considered in this thesis is more realistic

in that the plate has finite dimensions, practical boundary



conditions, and it can reflect the multi-degree freedom be-
havior of the structures.

The approach used in this thesis consists of a replace-
ment of a continuous system by a discrete system. This is
done by first dividing the plate into a rectangular grid work
and then "lumping" the plate properties at the mass or node
points. By replacing the space derivatives in the equation
of motion by finite difference patterns, the equation of
motion for the mass at each mode point is derived. The
system of equations is then integrated numerically. Much of
this method is described in Reference 9. However, the prob-
lem of moving loads was not considered therein. 1In this
thesis, the method of analysis is explained in Chapter II.

In Chapter III the numerical results are presented.

The effect on the response of the plate due to the velocity
of the moving load, the stiffness of the foundations, and
the load tracking is discussed. Also included are the ef-
fects of damping.

A summary and some concluding remarks are presented in
Chapter 1IV. The computer program prepared for this study

and some notes on its use are presented in the Appendix.

1.3 Notations

The notation listed in the following has been adopted
in this thesis. Each symbol is defined when first intro-
duced and is collected here in alphabetical order for con-
venience of reference. '"Fortran' notation is listed sep-

arately in the Appendix.
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BHO

M ®m A O 0

length of the longer side of the plate;
tributary area to point (i);

length of the shorter side of the plate;

vt, distance to front of load from entry edge;
v 4, the biharmonic operator in finite differ-
ences form;

foundation viscous damping constant;

Eh3/12 (1 - V2), flexural rigidity of the plate;
distance from node point to back of load;
modulus of elasticity of plate material;

*] 'Pij’ non-dimensional forcing function at
point (i,J);

plate thickness;

variable subscripts to denote points in space;
foundation stiffness constant;

mass per unit area of plate;

algebraically larger principal bending moment;
algebraically smaller principal bending moment;
M; a/D, dimensionless M 3

M, a/D, dimensionless M,
moment at a point (i) derived from derived
deflections wj;

a/~ , number of grid divisions;

load intensity at point (i);

intensity of moving load in psi;

concentrated load at point (i);
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lateral loading of plate;

4 1/2
(ma_ ; factor to divide t, to make it
D

dimensionless;

shortest period of the plate system;
time;
time/ 5 AN /3

W, dimersionless deflectiong

h

dimensionless deflection at the point (i j);

velocity of moving load;
ﬁijg
deflection;

deflection at point (i)g

dW/dt, velocity at point (i)
dzw/dt,29 acceleration at point (i)
space cocrdinatej

space coordinate;

ka?

<2, dimensionless foundation stiffness constantg

D

ca"

~——; dimensionless foundation damping constant;

(o]

VI,/as dimensionless velocity parameter;

dimensionless velocity at the point (i ;j)g
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2

prefix denoting '‘incremernt';
biharmonic operator;

grid size;

Poisson'’s ratio

t/T

o» dimensionless time;

aa/Dh; factor to be multiplied to Pj

it dimensicnless,

J

to make



CHAPTER I1

METHOD OF ANALYSIS

2.1 General
The governing equation of motion for a plate on an
elastic foundation with damping (see Figure 2.1) is given
by:
4 1 . .
Vi = E[q - kw - cw - mw] (2.1)

in which w denotes the deflection of the plate, q denotes

the lateral loading, m the mass of the plate, and k and ¢

the stiffness and damping coefficients of the foundation,
respectively. The symbol D denotes the flexural rigidity

of the plate. The loading q is in general a function of the
space variables (x, y) as well as time t, i.e., q = q(x,y,t).
If it is moving on the plate, the position of the load is
also a function of time, thus q = q[x(t),y(t),t].

An exact solution of the problem of plates on elastic
foundations subjected to moving loads is almost impossible
except for a few special cases, such as rectangular plates
simply supported on all edges. To obtain a solution for
plates with free edges, one has to resort to approximate
methods. The method used in this investigation consists of
a combination of a formal application of finite difference
(in expanding the v%w term in Equation 2.1), lumped
parameters (in treating the other terms in Equation 2.1),
and numerical integration (of the equations of motion of

the resulting discrete system).



2.2 Discretization of the Equation of Motion

The discretization of the equation of motion is accom-

plished by first replacing the v*

operator in Equation 2.1
by the finite difference patterns given in Figure 2.8, assum-
ing that the domain of the plate is divided into square grids.
There are six general types given, depending on the location
of the point on the plate. It should be noted that these
patterns shown have already taken into account the free edge
boundary conditions of the plate, and involve only the node
points on the plate; there is no need to consider any im-
aginary points outside the domain of the plate.

Denoting these patterns by the symbols BHO (for Bi-

harmonic Operator), for any node point (i), Equation 2.1

may be written as:

1
;:2'[BHO]W]°_ = %[Pi + PiAi] (2.2)

where ™~ is the size of grid used, P; represents the concen-
trated load at point (i), pj is the load intensity at point
(i), and A; is the "tributary area' for point (i). For a
corner point, Aj = 7\2/4, and for a typical exterior and
interior point, A; = 7~2/2 and '>~2, respectively.

For the present problem, P; will represent the portion
of the moving load lumped to point (i). The load intensity
P{ includes the foundation forces and the inertia forces:

+ mwe
i mwl)

Substituting these into Equation 2.1 the discrete form of

the equation of motion is obtained:



1 1 .o
ﬁ[BHO]wi = B[Pi - kwjAj - cwjA{ - mWiA{] (2.3)

Written out for Point 1 of the plate shown in Figure 2.6,

this would be:

3%2[(-3 +2) + V) (awy + Wy + Wig) *+ %(l - \)2)(w2 + W) *

v 1 7\2 . \2 . 7\2
(2 - 2V )w].l] = B[Pl - kw]_ _4_. - cwp T - mlT]
(2.4)

2.3 Treatment of Moving Load

The moving load considered is distributed over an area
equal to one square grid panel of the plate. The load moves
with a constant velocity v in a direction parallel to one
edge. Also, the load intensity P remains constant through-
out the travel. A schematic diagram of the load-plate
system is shown in Figure (2.1).

It is apparent that the load will always be moving in
between two rows of node points. To discretize the load,
some mechanism for distributing the total load to the various
node points must be found. To begin, the load is lumped
transversely and considered to be a distributed load of
magnitude PN/2 acting on each of the two rows of grid
points as shown in Figure (2.2). Then, this distributed
load is replaced by concentrated loads Py calculated as re-
actions on the node points assuming that a simple beam spans
between two adjacent node points. Thus, at the three points

which the load may affect, the concentrated loads are cal-



culated from the following equations (see Figure (2.3)):

. P 2

P; v 1 = 52°-<‘A2/2 £ an~ - dd) (2.5)
Pi + 2 = ?dz

When the load begins entering the plate, the concentra-
ted loads may be calculated from a consideration of Figure

(2.4) and the equations are:

. Pb
Py —5(7\ - B5/2) (2.6)

—2
Pb
Pz- 4
where b = vt denotes the distance between the front edge of
the load to the entry edge of the plate. When b equals N\,
then Equation (2.5) applies.

When the load starts to leave the plate, by Figure (2.5)

the equations for P, Pn _ 1 are:
P2 .2
Pn = 2(7\ - d ) (207)
P 2
Pn -1 - 2(7\ - d)
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2.4 Dimensionless Form of Equations of Motion

In order to facilitate computation, it is convenient
to make the quantities dimensionless in the equations of
motion. If Equation (2.3) is multiplied by a®/Dh, it may be
written in the following dimensionless form:

2

o ui d Ui 1 4
272 - O'Pi/Ai - auj - ﬂ? - g[BHO]ui a /Ai (2.8)
in which:

uj = L, dimensionless deflection

T . L, dimensionless time

-
"

o (maa/D)l/z, a parameter

ka4/D, dimensionless foundation stiffness constant

a =
B = ca4/DT°, dimensionless foundation damping constant
e = a4/Dh, a parameter

2.5 Numerical Integration

By the above process, the partial differential equa-
tion is reduced to a set of simultaneous ordinary differen-
tial equations. In this study these equations are integrated

numerically by use of the following formulae (Reference 6):
. N - A .o oo.
uj(T +a7 ) = v ¢ —2?—[\11(3—)"' Ui(T + AT )] (2.9)

2
X (AT )“.
Ui(T+aT ) "8 * BT 8y * T3 BT
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The dimensionless time increment A7Y used was selec-
ted as 1/5 n? where n is the number of grid divisions. This
value corresponds to a time increment equal to a fraction of
the smallest period of the plate, which is approximately
equal to the fundamental period of a simply supported plate

one grid square in size.

2.6 Evaluation of Bending Moments

The deflection of the plate at the node points can be
computed as described above. By replacing the space deriva-
tives in the expressions for bending moments by the appro-
priate finite difference patterns, the moments in the plate

can be evaluated.



CHAPTER 111
NUMERICAL RESULTS

3.1 General

In this section the method of analysis developed in
the preceding chapter is applied to a particular plate,
subjected to moving loads. The results obtained are pre-

sented in the following pages.

3.1l.1 Properties of Plate Considered

The properties of the plate are chosen so as to approx-
imate a concrete slab. The plate used is 10 feet by 10 feet
and has a thickness of one foot. It rests on a Winkler type
elastic foundation, and is assumed to be in contact with the
foundation at all times. The plate is free on all edges.
The surface is assumed t§ be perfectly smooth in a no-load
condition. For this study, the plate is divided into an
8 by 8 grid.

The material of the slab is assumed to have the follow-
ing physical properties: Poisson's ratio-1/4; Young's

modulus-2 x 10%psi; density-1/12 peci.

3.1l.2 Definition of Moving Load

The load to be applied to the above plate is an approx-
imation of the wheel load of a highway vehicle or of an air-
craft during landing. The load as used consists of a pressure
of 35 psi acting over a finite area equal to one grid panel,
or 1/64 of the entire plate area. This load moves parallel

to an edge of the plate with a constant velocity.
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3.1.3 Parameters

The parameters considered in this investigation include:
(i) the load velocity; (ii) foundation stiffness; (iii)
foundation damping; (iv) load tracking (the distance of the
load track to the near parallel edge).

The velocity of the load is varied between 70 and 1000
mph. It is recognized that the upper range of the speeds is
too high from the standpoint of current practice. This
upper limit was used because the numerical data indicated
that dynamic effects did not become conspicuous until the
speed exceeded approximately 70 mph. The two intermediate
speeds used are 200 and 600 mph. The dimensionless parameter
for velocity is ¥ = vIy/a where v, T, and a have been de-
fined earlier. The values of ¥ corresponding to the four
velocities, 70, 200, 600, 1000 mph, are .43, 1.21, 3,64,

5.71 respectively.

The stiffness of the foundation is characterized by the
stiffness constant k in units of #/in/in?. 1In this thesis
the value of k used ranges from 150 pci to 800 pci, which
approximately covers the practical range of soil and gravel
foundations (Reference 10). The dimensionless form of the
foundation parameter is a = ka4/D. The value of a corre-
sponding to the four foundation stiffnesses, 150, 250, 6l14.4,
800 pci, are 101.25, 168.75, 417.72, 540.00 respectively.

Some data, including the effects of foundation damping,
were also obtained. The dimensionless parameter for damping

is B = ca4/DT0. In this study B = 15 which corresponds to
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about 25% of the critical damping for the first mode if the
plate is simply supported.

The tracking of the load is referred to by the first,
second, and third track, etc. The first load track repre-
sents the edge grid row. The second track refers to the
second grid row, etc. Most of the data was taken for a load
on the edge or the first load track because, in general, it

corresponds to the worst, or governing, case.

3.2 Effects of Load Speed and Foundation Stiffness on

Deflections

3.2.1 Response Histories

The response histories of deflections are plotted only
for the entry corner and the departure corner (Point 1 and
Point 9, respectively, in Figure (2.6)). The greatest de-
flection of the plate generally occurs at either of these
points. The response history of the entry corner is shown
in Figure (3.1]). 1In this Figure, the deflections for four
velocities and a '"static curve' are shown. The static curve
was obtained by setting the load velocity ¥ = .06 corre-
sponding to 10 mph and the damping parameter f = 15. All
curves are obtained for a foundation stiffness a = 417.72,
an average to good base. The responses are plotted against
the dimensionless time variable:

T - t (3.1)
(a +N) /v
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in which t is time (= 0 when the front of the load touches
the plate). Thus t represents time scaled by the total time
needed by the load to cross the plate. It also denotes the
position of the load on the plate; at £ = 0.5, the load is
halfway across the plate.

It is seen from the figure that the response curve for
¥ = 0.43 oscillates around the static curve with a small
amplitude. This indicates that at this speed the response
does not differ appreciably from the static load response.
As the speed increases the response still oscillates about
the static curve, but the amplitude grows larger. It is ob-
served that the largest value of the response occurs at
¥ =1.21. At still higher speeds, the maximum response de-
creases. At ¥ = 5.71, the maximum deflection is below that
of the static curve,

As the speed increases the 'apparent period'" of the os-
cillations (based on the t scale) is seen to increase. This
is because t is proportional to the load speed (see Equation
3.1). Actually, the periods in terms of time are approxi-
mately the same and equal to the fundamental period of the
plate. The latter is calculated by considering that the
plate vibrates as one unit; that is, every point on the
plate would have the same deflection at the same instant.

In Table I are presented the period of oscillation for each
load speed and the fundamental period for a foundation
stiffness q = 417.72. Also shown in Table I, for each of

the curves in Figure (3.1), is the quantity t; ., which
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denotes the time of maximum response. It is seen that the

value of t decreases with increasing speed.

max
Figure (3.2) shows, for the same system considered in

Figure (3.l1), the deflection of Point 9, the departure

corner. It is seen that the same general trend exists as in

Figure (3.1), except that the largest value of the response

now occurs at § = 3.64.

3.2.,2 Maximum Effects

Each of the preceding curves shows the complete re-
sponse history for a given load speed. By taking only the
maximum response for each speed, a graph such as Figure (3.3)
may be constructed. This Figure shows the maximum deflection
at Point 1 as a function of the dimensionless velocity
parameter ¥ . Each curve in the Figure represents one
foundation stiffness. In general, it is seen that the maxi-
mum deflection decreases with speed, as was indicated in the
previous section. An exception to this is seen for the two
lower curves (stiffer foundations) which "peak"™ at § =
1.21, but then gradually drop as do the others.

As expected, as the foundation stiffness increases, the
magnitude of deflections decreases. All the curves appear
to be flattening out at greater velocities and approaching
some "limiting'" deflection, but there is no confirmation of
this.

It seems that the response of plates on softer founda-

tions is more sensitive to changes in load speed than are
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plates on stiffer foundations. Also, since the spread of
points at slower speeds is greater, one could conclude that
the response is more sensitive to changes in foundation
stiffness at slower speeds. This may be seen also in
Figure (3.4) in which the data in Figure (3.3) are re-
plotted using the dimensionless foundation parameter as the
abscissa. It is seen that as the speed increases, the
curves tend to flatten out. In summary, for Point 1, the
maximum response generally decreases with increasing speed.
Furthermore, as the speed increases, the effect on response
of changes in foundation stiffness decreases.

Similar to the data presented in the preceding two
Figures, Figures (3.5) and (3.6) give the maximum deflec-
tions for Point 9. In contrast to the trend shown in
Figure (3.3), it is seen in Figure (3.5) that the deflection
generally increases with speed for speeds up to ¥ = 3.64.
Beyond that, the value of maximum response decreases, except
for the stiffest foundation, a = 540.00, at which the de-
flection at ¥ = 5.71 is greater than the value at ¥ =
3.64.

It may be noted that the spread of points is approxi-
mately the same at all speeds except ¥ = 5.71. This would
indicate that the foundation does not affect the maximum de-
flections at Point 9 as greatly as at Point 1.

Figure (3.6) shows the maximum deflection at Point 9
versus the dimensionless foundation parameter a. As the

load velocity increases, the slopes of the lines stay about
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the same with an exception for the curve ¥ =5.71
which flattens. This would indicate that, except for the
¥ = 5,71 speed, the response for all speeds is about
equally sensitive to changes in foundation stiffness. At
4 = 5,71 it is less sensitive.

The above presentation has dealt with the entry and
departure corners separately. It was found that the maxi-
mum deflection of the plate always occurs at either of
these two points. In general, the deflection at Point 9
was largest for higher speeds,Awhile that at Point 1 was

largest for lower speeds.

3.3 Effects of Load Speed and Foundation Stiffness on

Bending Moments

3.3.1 Response Histories

Figure (3.7) shows the time history of the first prin-
cipal bending moment, M;, (scaled by a/D to make it dimen-
sionless), for the center point on the loaded edge (Point 5
in Figure (2.6) - the direction of the moment corresponds
to that of the load). The foundation used in this Figure
is a = 417.72. The static curve is shown, as well as curves
for the four load velocities used previously.

It is seen that, irrespective of the load speed, the
maximum response occurs at approximately t = 0.5, or when
the load is at the center of the plate edge. Again, the
slower speed deviates only slightly from the static curve.

At greater load speeds, the amplitude of the oscillation in-
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creases. It is interesting to note the large negative
moments. At higher speeds they have the same order of
magnitude as the positive moments. At ¥ = 3.64 the maxi-
mum positive moment is seen to be about 1.5 times the static
maximum. At ¥ = 5.71, the maximum negative moment is
almost numerically equal to the static (positive) maximum.
Shown in Figure (3.8) is the moment history for Point 14
(see Figure (2.6)) which, like Point 5, lies in the middle
of the load track, but is one grid length away from the edge.
For this point the response curves do not exhibit well de-
fined peaks as observed in the Figure for Point 5. The maxi-
mum occurs at § = 3.64 and is about 1.67 times the maximum
static value. In general, the dynamic effects increase with
load speed. This is particularly marked for the ¥ = 5.71
curve which shows little relationship to the static curve at
the latter part of the passage.
Figure (3.9) shows the moment at Point 23 (see Figure
(2.6) which, like Points 5 and 14, lies on the center line
of the plate, but is two grid lengths toward the interior of
it. This location differs from the preceding two in that
the load does not pass directly over it. The response curves
are similar to those for Point 14, but the differences with
those of Point 5 are even more pronounced here. Thus, at t
= 0.5 the maximum response again occurs for ! = 3.64, and
is now more than twice the static maximum. For the highest
load speed, the maximum occurs at t = 0.8 instead of at 0.5.
From the three preceding figures, it may be concluded

that, while the static bending moment decreases at an appreci-
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able rate going toward the interior of the plate, the in-
cremental dynamic bending moment, i.e., the difference be-
tween maximum dynamic and static moments, tends to stay un-
changed. This may be explained by the fact that the natural
modes of vibration, excited by the moving load, involve de-
formation of the entire plate.

Figure (3.10) shows how the foundation stiffness af-
fects the response history of the moment at Point 5. For
the speed ¥ = 5.71, the bending moment is plotted against
t for the four foundation stiffnesses. It is seen that the
curves are virtually on top of one another for the first 70%
of the passage. As indicated by previous data, this portion
shows largely the static effect. Since for all foundation
stiffnesses the curves almost coincide, this would indicate
that for a given speed foundation stiffness has little ef-
fect on moments during this stage of the travel. 1In the
latter stages (in which the dynamic effects predominate)
however, there is an appreciable difference among the curves
for different foundation values. Generally speaking, the

dynamic effects are larger for softer foundatioms.

3.3.2 Maximum Effects

The maximum moments at Point 5 due to different load
speeds are plotted in Figure (3.1l1l) for the four values of
foundation stiffness. Each value of the foundation stiff-
ness is represented by one line in the Figure. It is seen
that at the lowest speed the foundation causes appreciable

variations in moment, the softest foundation giving the
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largest value. As the load speed increases, the influence
of foundation stiffness diminishes; all curves tend to bunch
together. The maximum response occurs at § = 3.64 for all
curves.

The maximum moment at Point 5 as a function of founda-
tion stiffness is shown in Figure (3.12). Here each curve
is for one value of load velocity. For the curve ¥ = .43,
there is a moderate decrease in the value of the maximum
moment for increasing foundation stiffness. The other
curves appear rather flat, which is simply another way of
indicating that at higher speeds the value of the moment is
not appreciably affected by foundation stiffness.,

Instead of considering the maximum moment at a fixed
point as in the above two cases, the maximum moment that has
ever occurred in the plate for a given load velocity and
foundation stiffness may be considered. This quantity is
denoted by the symbol Ml,max' In Figure (3.13) its dimension-
léss form is plotted against the speed parameter ¥ .
Again, there is one curve for each value of foundation stiff-
ness. Generally there is an increase in this moment with in-
creasing speed. The softer foundations appear to be level-
ling off and approaching a single value. The overall values
are greater for the softer foundations as would be expected.
Beside each plotted point the location where the moment oc-
curred is indicated. As may be seen, the location tends to

move toward the departure edge as the load speed increases.
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With foundation stiffness as the abscissa, the same
data in Figure (3.10) are replotted in Figure (3.14). The
flattening of the curves with increasing speed is again evi-
dent, indicating a decrease in the influence of foundation

stiffness with increasing speed.

3.4 Effects of Damping

The previous results were obtained assuming the founda-
tion to be free from any damping. To obtain some idea about
the effect of foundation damping the following data were ob-

tained which included a damping coefficient § = 15,

3.4.1 Deflections

A typical deflection history curve for Point 1 is shown
in Figure (3.15). Comparing this Figure to Figure (3.1), it
is apparent that the damping has substantially lessened the
dynamic effect. The curve for ¥ - .43 now fallows the
static curve almost exactly. In general, the maximum values

were reduced by about 25% from those of the undamped case.

3.4.,2 Bending Moments

A typical moment history curve is shown in Figure
(3.16) for Point 5. 1In comparing this with Figure (3.l15),
a reduction in the dynamic effects is again seen. The curve
for ¥ = .43 almost coincides with the static one. The max-

imum values are, in general, reduced by about 25%.

3,5 Effects of Load Tracking

All of the above data were obtained with the load
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moving down the first load track, or along an edge of the
plate. It was assumed that this would produce greater maxi-
mum response in the plate than for the load to move on any
of the interior tracks. To verify this assumption, some
data were taken with the load moving along the following
tracks: the second (between Points 10 and 19); the third
(between Points 19 and 28); and the fourth track (between
Points 28 and 37). Due to the symmetry of the plate, these
tracks cover all possible positions of the load. Two pairs
of load speeds and foundation stiffnesses were used in order
to cover a reasonable range of dynamic effects. The first
set is obtained for ¥ = .43 and a foundation stiffness

a = 417.70. These values were chosen because it was thought
they would cause smaller dynamic effects. The second set
corresponds to ¥ = 5,71 and a foundation stiffness of a =
101.25. It was thought that these values would produce the
largest dynamic effects.

The response histories of the deflection of Point 1
showed only that the response decreased as the load track
moved further from the point. No graphs will be presented
for this. The history curves for moment at Point 5 for the
load on each of the four tracks is shown in Figure (3.17).
As the load track is further away from the point, the sharp-
ness of the peaks of the curve decreases. At the latter part
of the passage (for which the dynamic effects predominate)
the response could be larger for load at further tracks.
However, the differences are small. This, of course, again

shows the evenness of the distribution of the dynamic effects.
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The data in Figure (3.17) is concerned with the response
at a fixed point as the load track changes. Figure (3.18)
shows the moment histories for the mid-points on the load
tracks, i.e., for the first track - Point 5; for the second
track - Point 14; for the third track - Point 13; and for
the fourth track - Point 32. It may be seen that the moment
for the load on the first track greatly exceeds that for
any other case. Thus, the assumption is validated that

edge loading represents the most critical case.



CHAPTER 1V

SUMMARY OF RESULTS AND CONCLUSIONS

The results obtained in this study are summarized as
follows:

1. Position of Load Track--the largest response, for
both deflections and bending moments, is obtained when the
load moves along an edge of the plate. Therefore, the bulk
of the data was obtained for this case.

2., Deflection Behavior--the maximum deflection occurs
at either the entry corner or the departure corner. The de-
parture corner generally gives the absolute maximum. The
deflection history for this corner shows that the deflection
increases with load speed to a point and then decreases at
the highest speed considered. The maximum deflection tends
to decrease with increasing foundation stiffness.

3. Moment Behavior--the maximum moment occurs at or near
the center of the load track, and generally increases with
increasing speed. In contrast to tﬁe deflection behavior,
the moment is not as sensitive to changes in foundation
stiffness. At higher load speeds the value of the maximum
moment is almost independent of the values of foundation
stiffness considered.

4, Foundation Damping--as expected, damping reduces the
sharpness of the peaks of response curves as well as the

magnitude of the maximum response. The above data were ob-
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tained for load speeds in the range of 10 to 1000 mph., As
mentioned earlier, the large value for the upper limit was
used because it was found that below 70 mph the dynamic ef-
fects were quite small.

It should be noted that for this study the intensity of
the load is taken to be constant and the pavement surface
absolutely smooth., The results presented here would thus
indicate that under these conditions the moving load effects
are not too significant for speeds currently in use, Usually,
however, the surface of the pavement is not absolutely smooth
and the load intensity does not remain constant because the
load itself is in general a mechanical system with mass and
stiffness, A closer approximation to the actual problem
would be to consider the dynamic behavior of the load as well
as that of the supporting plate. It seems to the author that

it is in this direction that future work should be done.,
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APPENDIX

COMPUTER PROGRAM

A.l1 Generation of Equations of Motion

The main problem in generating the equations of motion
is the evaluation of the BHO operator at a point. There are
six basic BHO patterns as shown in Figure (2.8). Again,
these patterns have incorporated the influence of the bound-
ary conditions of the plate. One BHO pattern is taken at a
time., Point which are similar in location on the plate,
e.g., all corner points, are handled in one sequence, using
one particular pattern. To take care of the orientation of
the BHO pattern, two variable subscripts, IS and JS, are
introduced. These are added to I and J subscripts, such
that by changing IS or JS from one to minus one, or vice
versa, the orientation of the BHO pattern is changed. For
example, for the upper left hand corner, point type one,
using BHO pattern 1 (Figure (2.8)), I = 3, J = 3, IS =1,

JS = 1., To treat the upper right hand corner, point type 2,
the subscripts are 1 = 3, J = NC+2, IS = 1, JS = -1. This
changes the BHO pattern to include the correct deflection
points. The remaining points on the edges adjacent to
corners and interior adjacent to the corner are handled in
a similar manner using the patterns (2) and (4) of BHO.
Points on the edges and adjacent to the edges are handled as

above, using patterns (3) and (5). DO loops are used for
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points on the same edge. The points in the interior, points
type (25), are all handled at once using pattern (6) by a DO

loop.

A.2 Input Parameters

Generally, only basic parameters need to be supplied as
input to the program. If such quantities as the dimensions
of the slab or its physical properties are to be different
than the ones used in this thesis, they may be changed by
consulting the list of variables in Section A.4.

The foundation stiffness desired is input as the vari-
able SEK. This should be given directly in units of peci
and the computer calculates the value of the corresponding
dimensionless parameter. The damping parameter is input as
the variable SDC, and is likewise converted to dimensionless
form by the computer.

The parameters (which have most to do with the "accuracy"
of the solution and time required) are the time increment and
the grid size. The time increment of numerical integration
may be varied by changing TF. The time increment is defined

as:
1

TF(NL)

so that by changing the Time Factor a larger or smaller time
increment is obtained. The number of grid divisions may be
varied by changing NL to the desired number of panels.

The parameters of the moving load may be changed to

give any desired intensity or load track, as well as any
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velocity. The intensity of the load is changed by changing
the value of the variable P to the desired psi. The velocity
of the load must be input in units of inches per seconds.

The input velocity is called VEL. It should be noted that
because of the way the load is distributed to the mass points
it is imperative that the load be positioned exactly over a
mass point after an integer number of steps. This being so,
the value of d will always range from O to ™. Also, this
is required for changing the subscripts of the load equations
as the load advances over the plate. Since an arbitrarily
specified velocity will not necessarily fulfill this re-
quirement, the program computes the number of steps to

cross one panel on the basis of input velocity; this vari-
able is NUMSTP in the program. By rounding off to the
nearest even step (EVSTEP) the velocity required is found.
This is called VELL and is then used throughout the program.
The variance between VEL and VELL is a small percent. VELL
is printed at the beginning of each output set.

The track of the load is specified by LII. The input
value for this must be equal to the smaller of the two index
numbers associated with the first pair of node points at
which the load enters the plate and between which the load

is to travel. For an edge load, LII is one.

A.3 Time Requirement

The time requirement for the program on the CDC 3600
computer of Michigan State University is about 4 x 10-3
sec/degree of freedom/step of integration. The number of

degrees of freedom is equal to that of grid points. The
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step of integration is equal to the time of crossing
divided by the time increment as defined in the numerical
integration procedure. For the 8 x 8 grid used herein,

the computer times required for ¥ = .43 and Y = 1.21 with

a = 417.72 are 2 min 50 sec and 2 min 8 sec, respectively.

A.4 List of Fortran Variables

A list of Fortran variables used in the programs and

in this appendix is given in the following:

A = d, distance of back of load from last mass point;

AA = q, dimensionless soil elastic constant;

ABAR = distance back of load is from edge of plate;

ACA(I) = agsumed acceleration of point (I); .

ACD(I) = derived acceleration of point (I1);

ACF(I) = final acceleration of point (I);

ANGLE = orientation of the direction of principal moment;

ANGl* = orientation of space-maximum M'l;

ANGLT = orientation of the maximum M'lg

B = B, diﬁensionless soil damping constant;

BEE = b, distance front of load is from edge, used in
load computation;

BETA = parameter of Beta method;

BMX = M'y, dimensionless bending moment M ;

BMY = M'y, dimensionless bending moment My 3

BMXY = M'xyv dimensionless twisting moment Mxy;

*Number 2 in the suffix similarly will correspond to M'z.
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BMP1 = M'l, dimensionless principal bending moment;
BMPIMS = space-maximum Mj;

BMPLST = maximum M';;

neh
RN

C= , factor used in the evaluation of moments;

CLF = conditioning load factor ’Aij used in BHO;

D = D, flexural rigidity of plate;

DELTAT = t, real time increment;

DELTAU = AT , or H;

DPA(I) = assumed deflection of point (I) obtained by
using Beta-formula;

DPF(I) = final deflection of point (I);

DPFMS = space maximum deflection at any instant;

DPFST = maximum deflection;

DV = n in floating point;

E = E, modulus of elasticity;

EVSTEP = number of steps of int/grid;

FK = load position parameter;

GRID = NL;

GS = 7\ , grid size;

H = AT , time increment in numerical integration;

I, J, K, L, M = variable subscripts;

JUMP = second mass point, used in loading mechanism;

KANCEL = last mass point, used to exit;

LII = load initial point, determines track of travel;

IR = a/b, aspect ratio;

LOCDPF = location of occurrence of maximum deflection;
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LOCMPLl = location of occurrence of maximum M'I;

LOX = load control parameter;

MDS = location of maximum deflection at any instant;

MEVSTEP = fixed form of EVSTEP;

MID = subscript for the center point;

MP1S = location of occurrence of maximum M'l at any instant;

MR = number of rows of grid lines;

N = number of first order differential equations;

NB = number of grid divisions on smaller side;

NC = number of columns;

NE = number of second order differential equations and also
the number of dependent variables;

NL = n, number of grid divisions on larger side;

NQP = gsubscript for the quarter point;

NUMSTP = fixed form of TOTSTP;

ONCE = V x At, distance load moves in one step;

PBAR = load intensity in psi;

P(1) = forcing function at a point (I);

PP = printing counter ;

PR = ~), Poisson's ratio;

R; = (1L =V2)/2

Ry = =4 + 2V + 232

Ry = =3 + 2V ANE

Ry = 2 -9

Rg = -6 + 2J

2 -2V

A x
o
] ]

s =8 - 4) - 392
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Rg = 7.5 = 4) - 2.5)2;

SIZE = a, length of the longer side of the plate;

STEPS = number of steps/grid based on VEL;

T = 8, constant to be multiplied to p(x,y,t) to make it
dimensionless;

TBAR = time/totime = % through load travel;

TDPST = time of occurrence of maximum deflection;

TF = time factor to set AT s

THICK = h, thickness of plate;

TIME = 7, dimensionless time;

TMP1ST = time of occurrence of maximum M'l;

TO = T,, a parameter;

TOLER = tolerance for testing the convergence in Beta
method;

TOTIME = total time load takes to cross plate;

TOTSTP = total number of steps in problem;

VEA(I) = assumed velocity of point (I) obtained by using
Beta formula;

VEF(1) = final velocity of point (I);

VEL = input velocity;

VELL = velocity used on basis of even number of steps;

WCI = weight per cubic inch of plate;

w(I,J) = u(i,j), dimensioniess deflection of point (i,j);

WPR = variable used in peaking section;

Wl = m, mass per unit area of plate;

ZIP = GS - VELL * DELTAT, parameter to change base of load

equations.
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A.5 Fortran Computer Program

PROGRAM LOADRUN

DIMENSION ACA(625)+ACD(625) +ACF (625) +VEA(625) 4 VEF (625) ¢+DPA(625)
1.DPF(625)W(29¢29) +BHO(625) +P(625)

1 BMX(625) +BMY(625) ¢BMXY (625) s ANGLE (625) +BMP1 (625) +BMP2 (625)
COMMON ACAACDJACF VEA,VEF s DPA DPF s W+«BHO P BMX BMY ,BMXY
1 yANGLE ,BMP1 BMP2

PLATE ST ZE%%3%%3% 3% %3855 5% 3 336353 336 3 3 98 34 3 3% %

LR=1 o

SIZE=120.

THICK=12,

ARRRAEBCRID S 1 ZE %445 555093 33 5% 3% 5% %

NL = 8 '

NB=NL /LR

DV=FLOATF (NL)

GS=S1ZE/DV

CaDV#THICK/GS

GRID = NL

PLATE MATERIAL PROPERTIES*'*****!&**&!{*{**&*
wWCl=144,/1728.

E=z2e%#10 %26

PQ=.25.

R1=(1e~PR¥PR) /2.

R2zZ=4 ¢ +2 ¢ #PR+2 ¢ #PR#PR

R3==3¢4+2 ¢ ¥PR+PR#PR

R4=2¢~-PR

RE==6e+2¢ PR

R6=2¢~2¢ *#¥PR

R7328¢ ~4 ¢ #PR~3 ¢ #PR¥#PR

RB8=T7e5-43 ¢ #PR-2 ¢ SHPRRPR

FOUNDATION MATERIAL AND LOADING PROPERTIEsa*&;*;c;g;;ga#&;**.&*
READ 292, SEKe VELe LI11

FORMAT(EFIO.ZoIS)

SDCSOQ

PBAR = 35,

PRINTING COUNTER PARAMETERS ****ll&i*l**#li!liilli

PP = 6,005

Aunnntx¥BETA METHOD OF INTEGRATION PARAME TERS# %% 383 % %% %% ¥#
BETA=0,

TOLER=,00000005

D= (E¥THICK®#%#3)/(12e% (1 ¢ ~PR¥%2))

WT=WCI*THICK/386+4

TF = S, '

TO=SQRTF ((WTXSIZE*#4) /D)

AA= (SEK®*SI1ZE*%4)/D

B=(SDCR®SIZE##4) /(D*TOQ)

Ta(SIZE##4) / (D¥THICK)

DELTAU = 1,/ (TFRGRID#%2)
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PRINT 696, TFs GRID
696 FORMAT (1HA ¢30X+sSHTF OF ¢ 1XeFSe 1 +42X9s4HAND +FSel 42X¢9HDIVISIONS/)
PRINT396, LI1I4SEK ’
396 FORMAT (1H 30X+13HLOAD POSITION,14,3X¢13HFOUNDATION = ,F8.2)
H = DELTAU =~ -
DELTAT = TO*DELTAU
STEPS = GS/(VEL#DELTAT)
EVSTEP = XFIXF(STEPS+0e5)
VELL = GS/(EVSTEP#DELTAT)
ONCE = VELL#DELTAT

TOTSTP = GRID®EVSTEP
NUMSTP = TOTSTP
MEVSTP = EVSTEP

TOTIME = (SIZE + GS)/VELL
PRINT 203, Ds TOs DELTAUs DELTAT

205 FORMAT(1HOWAHD = 4E17,10/1H +SHTO = 4E1710/1H 9HDELTAU =
1E17610/1H OHDELTAT = 4E17.10)
PRINT 211, ONCE

211 FORMAT(1H +6HONCE =4E17.10)
PRINT 202, STEPSs EVSTEP.VELLe TOTSTPs NUMSTP

202 FORMAT(IH o BHSTEPS = 4 E17¢10/ 1H OHEVSTEP = 4E17410/
11H W7HVELL = +E17e¢10/1H +GHTOTSTP = +E17610/1H +OHNUMSTP = o, 16/)
PRINT 424, B ' ' S

424 FORMAT(1IH +4HB = 4E17,10)
TIME = O '
EVALUATION OF NUMBER OF ROWS AND COLUMNS NUMBER OF EQUATIONS ETC
NC=NL+1 '
MR=NB+1
NE =MR#NC
MM=MR+2
NN=NC+2
MID=NCXNL/2+(NC+1) /2
MIM=MID-1
MIP=MID+1
L =LI11
LOX ='1°
FK = LOX
NEXT = L
KANCEL =
JUMP = L
TDOPST=0.
LOCDPF =0,
DPFST=0De
TMP18T=0,
LOCMP1=0,
BMP1$T=0,
TMP2ST=0,
LOCM¢2=O.
BMP2$T=0,
ANG1T=0,
ANG2T=0,
DO 100 I=14NE
ACA(1)=0,
ACD(1)=0.

NL - 1
+ NUL

+C+
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ACF(1)=0,
VEA(1)=0,
VEF(I)=0oe
DPA(1)=0,
P(I) = 0.
BMP1(1I) = O
BMP2(1) = O
BMXY(1) = O
BMX(I) = O
BMY(I) =0
BHO(IY = O
ANGLE(1) = O
100 DPF(1)=0e
DO 969 I = 1 ,4NC
DO 969 JU = 1 (MR
969 W(l.J) = O
BEGIN COMPUTATION OF INITIAL ACCELERATIONiiii**l§§ii*il***i*{*i**i
DO 102 I=1¢NE
ACF(I)zHRHETRP(1)
102 ACD(I)=ACF (1)
END COMPUTATION OF INITIAL ACCELERATION
999 TIME = TIME + DELTAT
TBAR = TIME/TOTIME
300 DO 301 1=:14NE
ACA(I1)=ACDI(1)
DPA(I):DPP(!)+VEF(I)+(.5-BETA)*ACF(!)+BETA*ACA(I)
301 VEA(I)=VEF(1)++S*(ACF(1)4+ACA(]I )
i****i***i******i*i*i{i*BEGIN LOAD sELECTIoniiiiiiiﬁiiniilinﬁiﬁiti
ABAR' = VELL#TIME-GS ‘
IF(ABAR) 122,103,103
122 BEE = VELL#*TIME
P(L) = PBAR#BEE#(GS~BEE/2e¢)/2¢
P(L+1) = PBAR¥BEE®%2./4¢
P(L + NC) = P(L)
P(L + NC + 1) = P(L + 1)
GO TO 106
103 A = ABAR -~ FK#*GS
IF(L=NEXT) 10441054105
104 P(L) = PBAR#(GS=A)R%2,/4¢
P(L+1) = PBAR®((GS¥#2)/2¢ + AXGS - ARR2) /2,
P(L+2) = PBAR®A®®2/4,
P(L + NC) = P(L)
P(L +# NC + 1) = P(L '+ 1)
P(L + NC + 2) = P(L + 2 )
GO TO 106 ‘
105 P(L) = PBARR(GS~A)%#2/4,
P(L+1) = PBAR®(GS#%#2 ~ A#R2)/4,
P(L + NC) = P(L)
P(L + NC + 1) = P(L + 1)
106 IF(L~-JUMP) 107, 108, 108
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P(L-1) = O

P(L + NL)Y = Oe

CONTINUE

HERFHRRFERRERRRR AR AR X RREND LOAD SELECT I ONF #3555 35 35 -8 319 51 355 -8 5

BEGIN GENERATION OF DIFFERENTIAL EQUATIONS FOR FOR PLATE wIlTH ALL EDGE
FREE**Q****!******&!{**iiiiii**llill*ill*li*&’*il*ii&ii*i*li!ii
DO 10 =3 .MM

DO 10 JUx=3 4NN

Kz(1=3)#NC+J-2

W(Ie.J)=DPA(K)

POINTS AT CORNER ON BOUNDARY(POINTS 1 THRU &)

1=23

J=3

18=1

JS=1

CF=025

CLF = GS¥#%2/4.,

K=(1=-3)#NC+JU-2
BHO(K)-R3*(-W(I.J)+U(loJ+JS)+w(I+ISqJ))+Q1*('(I.J+2§Js)+w(l+2*lSoJ))
1))+REXW(I+ISJ+JS)

ACD(K) = H*H*(T*P(K)/CLF -AAIDPA(K)-BHO(K)*DV§*4/CF’-B*H§vEA(K)

1=3 '

J=NC+2

1S8=1

JS=-1

K=z(1~-3)#NC+U-2
BHO(K)=Q3*(-W(I.J)+N(I.J+JS)+U(l+lSqJ))+Rl§('(loJ+2lJ$)+'(l+2*I$oJ))
1)I4+REXW(I+IS 4 J+JUS)

ACD(K) = HXH¥(T®#P(K)/CLF -AA*DPA(K)—BHO(K)*DV**d/CF)-B*H*VEA(K)

1 =MR+2 : ' ' '

J=NC+2

IS=-1

JS=-1

Kz(1=3)#NC+J-2

BHO(K)=R3# (=W(T o J)H+W(I 4 J+ISIH+W(IFISIJIIF+RIN(W(] ¢ J+2RISI+W(I+2%][S4J))
1))+REXW( I+ IS U+US)

ACD(K) = H*H*(TlP(K)/CLF -AA{DPA(K)—BHO(K)*DV§*4/CF)-B*H*VEA(K)

1 =MR+2

J=3

I1S=-1

JS=1

Ks(1=3)#NC+J~2

BHO(K)=R3#%(-W( ], J)+U(l'J+JS)+U(l+lSoJ))+RI*(U(I0J+2§JS)+V(I+2*ISQJ))
1))+REXW(TI+IS J+US)

ACD(K) = HEHR(T#P(K)/CLF -AA&DPA(K)-BHO(K)*Dv§*4/CF)-B{H*vEA(K)
POINTS AT INTERIOR CORNER(POINTS 5 THRU 8)

1=4

Jead

1S=1

JS=1
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CP=1le

CLF = GS#x2

Kx(I-3)#NC+J=-2

BHO(K)=18e#¥W( 14 J)=8e# (Wl s J+ISI+W(I+ISeU) ) +2e#W(I+IS 4 I+JIS)
141 e ¥ (W(IH+2RISeUIHW(] o J+2%US) I +RAX (W I=1S s J+JIS)+W(I+I1SeJI=US))
14REX(W(I=1SeJ)I+W(I4J=US)I+REXW(I=1S¢I=-US)

ACD(K) = H¥H®(T#P(K)/CLF —AA#DPA(K)-BHO(K)#DV#%4/CF)-B*H®VEA(K)
1=a . _ ‘ _ , :
JeNC+1

1s=1

JS=-1

Ke(1=3)#NC+U=-2

BHO(K) =18 ¥ W(1eJ)=8Be R (W (I J+USIH+W(I+ISeJII+2eRW(1+IScI+IS)
141 e R (W(IH2HISeJI+W(T o J+2%US) I+RAX (W I-1SsJ+ISI+W(I+IS4I=US))
1+RSHE(W(I=1S ) +W(14J-US))I+REXW(I-ISJ-JS)

ACD(K)Y = H¥H®* (T#P(K)/CLF —-AA#DPA (K)=-BHO(K) #DV##4/CF ) -B#H#VEA (K)
I=MR+1 . .

J=NC+1

1S=~-1

JS=-1

Kx(I~3)#NC+J-2

BHO(K) = 18e#W(1eJ)=BeH(W(IsJ+ISIHW(I+ISeJII+2e%W(I+ISeI+IS)
141 e (WCIH2% IS J)+W(I 4 J+2%US) I +RAX(W(I=ISsJ+JUS)+W(I+ISeJI=~JS))
1+RSHE(W(I=IS s JI+W(14U=US))I+REXW(I=18,U-US)

ACD(K) = H#H*(T¥P(K)/CLF -AA%DPA(K)=-BHO(K)2DVY##4/CF)-B#H#VEA (K)
I1=MR+1 . ’ I -
Jx4

18=~1

Js=1

Ka(]-3)#NC+J-2

BHO(K)=1Be¥W(I e J) =B8R (W(1 o J+ISIHW(IHISeU) V42 RW(IH+ISI+JS)
141 e ¥ (W(I42%ISeJ)+W( T J+2FUS) I +RAR(W(] - lSoJ+J5)+l(l+l$oJ~JS)’
I+RSH(W(I-IS JI+W(]l 4 U=US)I+ROEXW(I=IS,U=-US) ’

ACD(K) = H®H#®# (T#P(K)/CLF -AA*DPA(K)-eHo(K)aov**4/CF:—a*H&vEA(K)
POINTS ON BOUNDARY ADJACENT TO CORNERS(POINTS9 THRU 16)

ROWS (POINTS 9.10.11 12)

1=3

J=4

1s=1

Js=1

CFz=e¢S

CLF = GS#%2/2.

Ka(1-3)#NC+J-2

BHO(K) =RB8#W( I s J)+R3IXW( I 4 I~JS)I+R2XW( I ¢ J+JIS)+R1BW (] ¢ J+2#JIS)
14+RAX (W IH+ISJ-JUSI+W(I+IS I+ IS I+RSHW(I+IS I +W(I+2R]S4J)
ACD(K) = H®*H* (T¥P(K)/CLF -AAXDPA (K)=BHO(K)*#DV%##4/CF)-BR#H#VEA (K)
123 '
J=NC+1

1s=1

JS=-1



40

K=(1-3)#NC+J=-2
BHO(K)=RB#¥W( 1 ¢ J)+R3I%¥W( ] 4 J=JSI+R2XW( 1 ¢ J+US)I+RIXW (]I ¢ J+2%IS)
1+RAX (W(IH+IE 4 U=US)I+W(IH+IS e J+IS) I+RS*EW(I+IS I +W(I+2¥1IS,J)
ACD(K) = H¥H* (T#P(K)/CLF -AAXDPA(K)-BHO(K)#DV##4/CF ) -B#H#VEA (K)
I =MR+2 ‘

J=NC+1

1s=-1

Js=-1

K=(I-3)#NC+J=-2

BHO(K)=RB¥W( 14 JU)+RIHW(] 4 J=JS)+R2%¥W (] 4 J+US)+R1¥W(] ¢ J+2%#JS)
14RAXR (W I+IS e J=US)+W(I4+ISeJ+JIS)I4+RSEW(I+ISJI+W(I+2%18,J)

ACD(K) = H#¥H¥(T#P(K)/CLF —-AA#DPA(K)-BHO(K) #DV#%#4/CF)-B#H*VEA (K)
1 =MR+2 :

J=a

1S=-1

JS=1

Ke(1-3)#NC+JU-2

BHO(K)=RE8%#W( I s J)+RIXW( 1 4 J=JUS)I+R2HW(I ¢ J+US)I+R1#W (] 4 J+2%US)
14RA¥ (W IFIS ¢ J=JS)IHW(THISJ+ISIIHRSHW(I+ISJI+W(I+2H]S,J)

ACD(K) = H¥HX(T®#P(K)/CLF -AARXDPA(K)-BHO(K) #Dv##4/CF ) -B¥#HX*VEA (K)
COLUMNS ((POINTS 13414,15,16)

1=4

J=3

1S=1

JS=1

K=(I-3)#NC+JU~-2

BHO(K)=RB¥W(I 4 J)+RI¥W(I=ISs I +RIRW(I+2HIS4JI+RE4X(W(I=1S ¢ J+JS)
14+WUI+HIS J+US) I+RSEW( ] ¢ J+ISI+W( ] ¢ JH2¥US)+R2HW(IF+ IS J) ’
ACD(K) = H®*H*(T#P(K)/CLF -AA#DPA(K)-BHO(K)#DV##4/CF)-B#*H&VEA(K)
=4 ) )

JeNC+2

K=(1-3)#NC+JU-2

1S=1

JS=~1

BHO(K)zRB8¥W( I+ J)+RI¥W(I=ISJI+RIFW(I+2HIS,JI+RAX(W(I-1SeJ+JIS)
14W(I+IS J+JUS) I+RSHW( I 4 J+IS)I+W( I ¢ J+2RUSI+R2EW(I+ISeJ)

ACD(K) = H&*HX*(T#P(K)/CLF -AA¥DPA(K)-BHO(K)*DVv¥*#4/CF)-Ba#HRVEA (K)
1=MR+1 ‘

J=NC+2

1s=~1

JS=-1

K=(1=3)#NC+JU-2

BHO(K)=REB¥W( 14 J)+RIXW(I=IS4J)+RI¥W(I+2% IS J)+RAK(W(I=]1SeJ+JS)
14+W(ITHIS G UHJS) V+RSHW( I ¢ J+US)I+W( I ¢ J+2HUSI+R2AW( I+ ]IS J)

ACD(K) = HEH® (T*#P(K)/CLF —AA#DPA(K)~BHO(K)#Dv##4/CF)-B#H*VEA (K)
I=MR+1 ‘ ' ' ‘
J=3

1S==1

JS=1

K=(1-3)#NC+J-2

BHO(K)=RBX*W( I 4 U)+RIMW(I=-IS JI+RINW(I+2RHISGJUI+RAX(W(I-1SsJ+JS)
1+WCIHIS e J+US)IIHRSHW( ] 4 J+JS)+W( ] qJ+2RIS)+R2¥W(IH+ISJ)

ACD(K) = H®H®* (T#P(K)/CLF —-AA%DPA(K)-BHO(K)#DV¥##4/CF )~-B#H¥VEA (K)
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POINTS ON THE BOUNDARY THIRD FROM CORNERS

TOP ROW(POINTS TYPE 17)

1=3

1S=1

CF=ze5

DO 12 JU=54NC

Ks(1+-3)#NC+J-2

BHO(K)=R7H#¥W( 14 J)+R2¥ (W( 1o J=1)+W(IsJ+11)+RIM(W(I4J=2)+W(]I4U+2))
1+RAM (W(I+IS =1 )+W(IH+IS J+1)I+REXW(I+IS I +W(I+2#]IS,,J) ’

12 ACD(K) = H#H®(T#P(K)/CLF —AA%DPA (K)~-BHO(K) #DV##4/CF)-B#H#VEA(K)

BOTTOM ROW(POINTS TYPE 18)

1=MR+2

18=-1

DO 13 U=S.NC

K=(1=-3)%#NC+U-2

BHO(K)=R7#W( 1+ J)+R2¥ (W(ToJ=1)+W(I s J+1))+RIF (W] J=2)+W (] ¢J+2))
T4RE¥ (W(I+IS U=-1)4W(I+IS U+ ) I+RSHW(I+ISII+W(I+2%¥IS,J)

13 ACD(K) = HR¥HX(T¥P(K)/CLF —-AAXDPA(K)-BHO(K) #DV##4/CF)-B#H#VEA (K)
LEFT "COLUMN BOUNDARY (POINTS . TYPE 19)
J=3
JS=1

DO 14 1=5,MR
K=(1=3)%NC+Jy=-2
BHO(K)=R7#W( I ¢ J)+R2Z¥(W(I=1 4 ) +W(I+1 e J)I+RIB(W(I=24sU)+W(I+2,J))
14RAX (W(I=14J+JISIH+WETHT 4 IHUS)I+RSHEW(T ¢ J+IS)I+W(] ¢ J+2#US)
14 ACD(K) = HEHX*(T¥*P(K)/CLF -AA*DPA(K)-BHO(K)*DV**A/CF)-B*HlVEA(K)
RIGHT COLUMN BOUNDARY(POINTS TYPE 20)
J=NC+2 '
JS==1
DO 15 1=5,MR
Kz(I-3)%NC+u=-2
BHO(K) =R7HW (I s J)+R2¥(W(I=14 ) +W(I+1 4 J))+RIB(W(I=24J)+W(]1+24J))
14RAK(W(T=14J+JS)+W(T+1 4J+JUS) I +RSHW( ] 4 J+JUS)+W (1, J+2%#US)
15 ACD(K) = H¥H®*(T*P(K)/CLF -AA*DPA(K)—BHO(K)*DV**4/CF)-B§H*VEA(K)
POINTS INTERIOR AND ADJACENT To BOUNDARY
TOP ROW(POINTS TYPE 21)
{=4 '
is=1’
CF=10
CLF = GS#x2

DO 16 U=5,4NC
K=(I1-3)#NC+J-2

BHO(K)ZIO¢¥W( (I oJ) =B8R (W(lsJ=1)+W(TsJ+1)+W(I+ISeJ))+2eR(W(I+ISeJ~1)
1+W(I+XSQJ+1))+W(I+2*IS.J’+R4*(U(I*IS.J~1)+W(I ISeJ+1 ) )+REXW(I=-IS,J

1Y+WCT s U+2)+W( 14 U=-2)
16 ACD(K) = H¥H*(T#P(K)/CLF -AA*DPA(K)~-BHO(K) %DVv##4/CF)-B#H*#VEA(K)
BOTTOM ROW(POINTS TYPE 22)
I1=MR+1
1S==~}
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DO 17 U=5,NC
K=(1-3)#NC+u-2 ‘
BHO(K)S1Q¢#W(I4J)=8e X (W(IloJ=1)+W(IoJ+1)+W(IH+ISoJ)I+2eR(W(I+ISeJ-1)

1+N(I+IS.-+1))+w(I+2*l$9J)+R4*(V(I—I$0J~1)+W(I-IS.J+I))+R5*WII 1SeJ
1)+W(lsU+2)+W (1 4U=~-2)

17 ACD(K) = H*H®*(T*P(K) /CLF —AA*DPA(K)-—BHO(K)*DV**4/CF)-B*H*VEA(K)

LEFT COLUMN(POINTS TYPE 23)

J=4

Js=1

DO 18 1=54MR

K=(1=-3)#NC+J-2

BHO(K) =19 #W(14J) =Bt (W(I=14J)+W(I+1,J)+W(14J+JIS)I+2e % (W(I1=1,J+JIS)

14WCI+1 4 J4US) I +W(T o U+2%#US)+RAX(W( ]~ loJ-JS)*w(1+10J—JS’)+R5*'(I'J—JS
1)+W(I-2¢=)+W(1+24J)

18 ACD(K) = H¥H®* (T*P(K)/CLF —AA*DPA(K)-BHO(K)*DV**4/C?)—B*H*VEA(K)

RIGHT COLUMN(POINTS TYPE 24)
J=NC+1

JS=-1

DO 19 1=5,NC

K=(1=-3)#NC+U-2

BHO(R) =19 ¥W(TeJ)=Be# (W(I=14I)+W(1+1,J)+W(IsJ+IS))I+2e%(W(I=1¢J+JS)

14WCI+1 4 J+US)IY+WIT, J+2*JS)+R4*(W(I—I.J—JS)+U(l+qu-Js))+R5*V(I'J-JS
1Y+W(I=2.U0)+W (142, )

19 ACD(K) = H#*HR(T*P(K)/CLF -AA#DPA(K)~-BHO(K)#DV#%#4/CF )-B#H®VEA(K)

20

600
500
800

801

601

POINTS IN THE 1NTERIOR(5.5>»(ScN).(M.S)o(M N)

POINTS TYPE 25.

CF=1e ‘

DO 20 I1=5.MR

DO 20 JU=354NC

Kz (1=3)#NC+JU=-2

BHO(K) =20 e X W( T 4 J)=8e® (W(IoJ=1)+W (I J+1)4+W(I=1,4J)+W(1I+1,J))

14268 (W(I=14J=-1)+W(I=1,JU+1)+W(I+1eJ=1)4+W(I+1, U+1))
2HW(T=24J)+WCIH+20IIHW(T 4 U=-2)+W( 1 4J+2)

ACD(K) 3 H#HR(T*P(K)/CLF —-AAXDPA(K)-BHO(K) #DV#%#4/CF ) -B#H#VEA (K)
END GENERATION OF EQUATTONS ¥ 338553 3 3 53 3 3 336 3353 3 36 96 36 3 39 3¢ 390 9 36 36 36 38 9 3% % %
TEST CONVERGENCE*******!******i*&*

MARK=0

DO 500 I=1,4NE

ERROR=ABSF(ACD(I)-ACA(1))

IF(ERROR-TOLER)500.500.600

MARK=1 '

CONTINUE

XF(MARK)BOO.BOO.300

DD 8D1 I=1,4NE

ACF(T)sACD(1)

VEF(1)Y=VEA(L])

DPF(1)=DPA(I)

RRRXRERRBRERNRCOMPUTE MOMENT S 39636 3 3 38 305 36 3630363038 3033095 309038 438 96 3 303036 3¢ 3¢
DO 601 [=3,MM

DO 601 JU=3.NN

K=(1=3)%(NN=-2)+J=-2

W(lsJ)=DPF(K)
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604

605

606
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MMM =MM-1

NNN=NN-1

DO 602 =4 MMM

DO 602 J=4 ,NNN

Kz (I=3)%(NN-2)+U-2

BMX(K)==CH(~(2e+2e ¥PR)FW(I ¢ J)+W(I g J—- 1)+w(l.4+1)+pn«(u¢l-x JI+w(
1I141eJ)))

BMY(K):-C*(-(E +2.*PR)*w(l.J)+U(I-l.J)+w(l+loJ)+PRi(U(I.J—1)+w(loJ
1+1)))
BMXY(K)=CH(1e~=PR)¥(W(I=14U=1)+W(I+14J+1)=W(l+1l,40=1)=w(I=-1,U+1))/4,
TOP ROwl{iilliiiil***{!’*’****{i**

1=3

IS=1

DO 603 JU=4 ¢NNN

K=(I=-3)#NC+u-2

BMX(K)==Cx(w(]l,J~ l)—E.*H(I.J)+w(!.J+1)+PR*(2olw(I J)I=Se¥y(I+1S,J)
1+4.*I(!+2*IS.J)-U(I+3*IS.J)))

BMY(K)=0,

BMXY(K)=0,

BOTTOM ROw*********ﬁ**&;lﬁi**i****

I1=MM

1S=-1

DO 604 U=4 yNNN

Kz(]=3)%#NC+U-2

BMX(K)z=CH(W(]eJ=1)=2e#W(I o) +W(I ¢ J+1I+PRE(2eRW(I ¢ J)=Se*W(I+ISeJ)
144 ¥W(142%15,0) -W(1+3%1S40)))

BMY(K)=0,

BMXY(K)=0,

LEFT HAND COLUMN*****}*}*******%**

Je3

JS=1

DO 605 1=4 .MMM

Ke(I- 3)*NC+J—2

BMX(K)=0a
BMY(K)2~CH(W(I=10J)=2e%W(l o) +W(I+1,J)+PR*(2ehW(IsJ)=Bew(]J+JS)
l+4o*U(IoJ+2*JS)~U(I.J+3§J$)))

BMXY(K)=0,

RIGHT HAND COLUMN

J=NN’ '

JS=~1

DO 606 1=4.MMM

Kz(1=3)#NC+JU=-2

BMX(K)=0'
BMYIK)z=CR(W(I=10J)=2e%#W(1 s J)+W(I+]1 4 J)+PR¥ (2% W(]14J)=SedW(l J+JS)
144 X W (I 4 J+2%US) =W (] 4 J+32US)))

BMXY(K)=0,

NEM = NE -~ 1

DO 607 I = 24NEM

663 IF(BMX(1)~BMY(1)) 664,607+664
664 ANGLE(1)=ATANF (2+#BMXY(1)/(BMX(1)=-BMY(1)))#.5%#57.2958

BMP1(1)=(BMX(I)+BMY (1)) %eS+SQRTF(((BMX(1)-BMY (1)) #e5) #%2+BMXY (1) *%*
12)
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BMP2(1)=(BMX(1)+BMY (1)) #e5~SQRTF(((BMX(I)=BMY (1)) %#e5) %¥X24+BMXY (] )%
12)
607 CONTINUE
END MOMENT EVALUAT T ON 3333 4% 336 3 363 20 5 3 3 3 33 % 3 3% 3% %
BEGIN MAXIMUM QUANTITIES EVALUATION IN SPACE##%3%% %% %1% %8333 33 5% 34 %
BMP1MS=0, ’
BMP2MS =0,
DPFMS =0,
DO 608 I=1NE
IF(ABSF(BMP1(1))-ABSF(BMP1IMS) 608,608,609
609 BMPIMS=BMPL1 (1)
ANG1=ANGLE( 1)
MP1S=1
608 CONTINUE
DO 700 I=1,4NE
IF(ABSF(BMP2(1))-ABSF (BMP2MS) ) 700,7004+701
701 BMP2MS =BMP2( 1)
ANG2=ANGLE (1}

Mp2S=]

700 CONTINUE
DO 702 1=14NE
IF(ABSF(DPF (1))-~ABSF(DPFMS) ) 702,702,703

703 DPFMS=DPF (1)
MDS=1

702 CONTINUE

' ENDIN MAXIMUM QUANTITIES EVALUATI ONE®®#®EE 8555 595 590330930 349 3 30 5 5 -0 %

BEGIN MAXIMUM QUANTITIES EVALUATION 'IN TIME&%{******iii&&{*l&iuﬁl*
IF(ABSF(BMPIMS) -ABSF(BMPIST))704.704.705

705 BMP1ST=BMP1MS
LOCMP1 =MP1S
ANG1T=ANG1
TMPLIST=TIME

704 IF(ABSF(BMP2MS) —-ABSF(BMP2ST))706¢706+707

707 BMP2ST=BMpP2MS ’
LOCMP2=MP2S
ANG2T=ANG2
TMP2ST=TIME

706 IF(ABSF(DPFMS)—ABSF(DPFST))708o708.709

709 OPRPFST=DPFMS
LOCDPF=MDS
TORPST=TIME

708 CONTINUE'
END MAY EVALUATION IN TIMEi!ll0i!l*l*I}i!ll*&l'i&!QQQQ!G!QQQ{QQG&i
IF(TBAR-~-PP) 802‘8030803 ' :

803 CONTINUE

© PRINT 8031, TIME. TBAR

8031 FORMAT(1HO¢SSX«7HTIME = ¢F1l1e¢7¢4Xe7THTBAR = 4E17,10)

PRINT B888+ ABAR
888 FORMAT (1H 7HABAR = ,Ell1e4)
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PRINT 804 ,MDSDPFMS MP1S,BMP1MS MP2S ,BMP2MS
804 FORMAT (1H +4HMDS=413¢3X6HDPFMS=4F11e7¢3XeSHMP1S=, 13.3)(07”8"91"330
1F11.7.3x.5HMp25~.l3.3x.7HBM92Ms=.F11.7)
PRINT 8044 ,ANG1 (ANG2
8044 FORMAT(1H +SHANGLI=4F763¢5X+SHANG22F7e3)
PRINT 761
761 FORMAT(1H 4HBMP1)
PRINT 762, (BMP1(1)e]l = 1445)
762 FORMAT (1H 49(Flle741X))
PRINT 763
763 FORMAT(1H +4HBMP2)
" PRINT 764,(BMP2(I)s 1 = 1445)

764 FORMAT(1H o 9(F114741X))

PRINT 765, DPF(1)s DPF(9)+DPF(21) +DPF(26) +DPF(41)

765 FORMAT(1H +9HDPF (1) 3 4F11e¢7+43Xe9HDPF(9) = ¢ F1lle7+¢3Xs
110HDPF(21) = +F11e7¢3X¢10HDPF(26) = (F11¢7+3Xe10HDPF(41) = ,
2F11e7)

PP = PP + 4005

802 CONTINUE

113 IF(ABAR) 999, 115, 115

115 ZIP = GS -~ VELL*DELTAT

116 IF(A = ZIP) 118, 117, 117

117 L =L + 1 ‘ ‘

LOX = LOX + 1
FK = LOX -« 1
118 IF(L - KANCEL) 999,364,364
364 DO 365 MOP = 1 4NE
P(MOP) = O
365 CONTINUE
WPR = DPF(9) +2«%10e%%(~4)
IF(WPR = DPFST) 1194366,366
366 TIME = TIME + DELTAT ‘
TBAR = TIME/TOTIME
DO 367 1=1,4NE
ACA(1)=ACD(1)
DRPA(1)=DPF (1 )+VEF (1)+(«5-BETA)*ACF (1 )+BETA*ACA(1)
367 VEA(1)=VEF(!)+.5*(ACF(1)+ACA(I)>
GO TO 368
119 CONTINUE
PRINT 80504 TDPST+LOCDPF 4DPFST
8050 FORMAT(1HO +6HTDPST=eF9e743X s 7HLOCDPF=413, 3x.6HDpFST=.F11.7)
PRINT 8051¢TMP1STLOCMP1,BMPIST
8051 FORMAT (1H 7HTMP1$T-.F9.7.3x.7HLOCMPl=.13 3x.7HBMP15T=.F11.7)
PRINT 8052, TMP2ST LOCMP2 4BMP2ST
8052 FORMAT(1H .7HTMPZST=.F9.7.3x.7HLOCM92=.13.3x.7HBMPZST=.F11.7)
' PRINT BO53,ANGIT +ANG2T
8053 FORMAT(1H +6HANGI T= ¢F7e3¢5X+s6HANG2T= 4FTe3)
1000 CONTINUE
1001 CONTINUE
END
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TABLE 1

PERIOD OF OSCILLATION AND tpgay FOR k = 614.4 pci

Load Speed (mph) Period (Seconds) tnax (Seconds)
70 .0ll .012660
200 014 .006661
600 013 004441
1000 .015 003788

Fundamental Period .0129
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