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ABSTRACT

FORCED RAYLEIGH SCATTERING
IN LIQUIDS
By

Verence D. Moore

Forced Rayleigh Scattering was used to determine the
thermal diffusivity of a water-polymer solution. We
found we could get consistent results to within 1% for
fixed d, with our equipment. Solutions of up to 5%
by weight of polymer in pure water, had the same thermal
diffusivity of pure water. When we used methyl-red to
color our solution, we observe two times. One time Tg
which was due to the thermal diffusivity. The second
time 'tl was due to some property of methyl-red in a

basic solution.
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I. INTRODUCTION

While Dr. Cowen was in France on Sabbatical, he was
introduced to the technique of using Forced Rayleigh
Scattering to determine the thermal diffusivity of liquid.
The purpose of me doing this experiment was twofold.
First, to test the apparatus and furnace to see if they
were working and also to estimate the accuracy of the
measurements. Secondly, to determine if we could see
any effect of rather large amounts (up to 5% by weight
of a high molecular weight polymer on the thermal
diffusivity of water-polymer solutions.

The reason we only went up to 5% is because for
solutions with greater amounts of polymer the solution can
be considered a solid and we couldn't be able to get the
solution into the cell. The polymer is Dow Separan
AP30-high molecular weight (f~106) polyacrylamide.

The interesting property of this polymer is that when
it is mixed with water the solution becomes a gel.
The gel's viscosity varies directly as the percent by
weight of the polymer in the solution.

The way the solutions were made up was that we
weighed out an amount of water. Then we weighed the
approximate amount of polymer to correspond to 1%, 2.5%
or 5% by weight of polymer to water. When we first
started we put the polymer in first then added the water,
but this caused a mixing problem. At the polymer water

interface there was a high concentration solution, with
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almost pure water and polymer on either side. By heating
the samples for several hours (24 to 72), we were able to
get a uniform solution. Later I found that I could get a
uniform solution in about 16 to 32 hours by putting in
half the water first, followed by the polymer, then the
rest of the water.

The solution is normally clear so we had to add a
dye to color the solution. The dye we used was methyl-
red. The dye didn't readily mix with the solution, so
heating the solution also help dissolve the dye.

After we had a uniform mixture we filtered the solution,
to get rid of large particles of dye. We use five micron
filter paper when filtering the solution. We use a
millipore filter with a syringe to filter the solution.
The syringe was used to force the solution through the
filter system. We then put the filtered solution into

our cells.
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IT. THE EXPERIMENT

A. Introduction

In this experiment we are using forced Rayleigh
scattering to determine the thermal diffusivity
of liquids. This is done by using two lasers of different
wavelengths. One wavelength is transmitted by the liquid.
The other wavelength is absorbed by the liquid. This
absorption of light is used to heat the sample in a small
region. The heating laser beam is pulsed, heating the
sample while the laser is on, and allowing it to cool while
the laser is off. The heating beam, as it comes from the
laser, is sent through two lenses which focus the beam.
This allows us to choose the laser beam size inside the
sample. The beam size we use is about one millimeter in
diameter. Once the beam passes through the lenses it goes
to a beam splitter. The beam splitter divides the beam
into two equal intensity beams. The beam splitter consists
of two mirrors; one fifty percent reflecting and the
other one hundred percent reflecting. As the beam passes
through the first mirror, fifty percent of the beam is
reflected and fifty percent is transmitted. When the
transmitted beam gets to the second mirror, one hundred
percent of the beam is reflected. The beam splitter is
positioned so that the two beams intersect inside of the
sample. When the two beams intersect they form an interference
pattern. This interference pattern causes a temperature

grating in the region where the two beams meet.
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Because of this the beam intensity in this region can
be approximated as I = Iocos ky, where IO is the maximum

beam intensity inside the sample, and k = 249 where d
d

is the distance between fringes.

If we superimpose the second laser beam, which is
transmitted by the liquid, over the two intersecting
heating beams the transmitted laser beam sees a diffrac-
tion grating. This grating is caused by the heat grating
Because there is a temperature grating, the index of
refraction is different for different areas inside this
region where the heating is going on. Therefore, the
effective path length the light must travel is different
for different areas. Since the transmitted beam sees a
diffraction grating as it passes through the sample, it
forms a diffraction pattern after it leaves the sample. If
we put a detector at the place where the first order’
maximum is formed, we can observe the heating and cooling
of the sample. Since we expect the cooling is exponential
and that the time constant is inversely proportional to
the thermal diffusivity, we can measure the thermal
diffusivity of the sample. Figure 1 shows our

experimental setup.
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B. Lasers

In this experiment we are using two lasers. The
first laser is Coherent Radiation - CR500 K Krypton Laser,
used to heat the samples. The second is a small Helium-
Neon laser, used as a probe. The Krypton laser has the
ability to let the user choose from eight different wave-
lengths in the visible; two in the infrared and one in the
ultraviolet. We are only interested in the visible range.
In Table 1 are listed the wavelengths A in nanometers,
the color, and the maximum output power, in milliwatts.

The ability to change the wavelength of the heating laser is
important because the heating comes from the absorption

of the laser light. Our samples have different absorption
curves, therefore, a wavelength which is absorbed by one
sample may be transmitted by another sample.

The second laser is a Spectra-Physics Model 120
Helium-Neon laser, which has a wavelength of 632.8
nanometers with a maximum output power of five milliwatts.
This laser light should be transmitted by the sample (should
not be absorbed). This is the light which is diffracted
by the grating created by the heating laser.

For the experiment to work the heating laser must be
pulsed. This is done by a modulator. The one we use is a
Coherent Associates Model 304 Acousto-Optic Modulation
System. It is ideal for our use because it has the ability
to put 75 to 80 percent of the laser power into the first

order maximum.
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TABLE 1 - POWER OUTPUT OF LASER

Wavelength Power Measured

Color Nanometers Milliwatts Power*
Red - 1 676.4 120 25
Red - 2 647 .1 500 180
Yellow 568.2 150 100
Green - 1 530.9 200 30
Green - 2 520.8 70 90
Blue - 1 482.5 30 8
Blue - 2 476.2 50 30
Blue - 3 468.9 5 5

*You only get the maximum power with all the laser mirrors
clean.

The modulator is controlled by a waveform generator
and two pulse generators. The waveform generator is used
to generate a pulse. The rise and fall time is
approximately one microsecond. It is used also to trigger
one of the pulse generators. The waveform generator allows
you to vary the repetition rate while the pulse generator
allows you to vary the heating pulse width. The second
pulse generator is used as a trigger for the computer
and the oscilloscope. It also allows you the choice of
triggering on the positive or negative edge of the
heating pulse. The triggering pulse generator is triggered
by the heating pulse generator. We are using Tektronix
Type 162 Waveform Generator and Tektronix Type 163 Pulse

Generator.



C. The Computer

We used a PDP 8/e computer to take and analyze data.
The computer is equipped with an analog to digital converter
which takes the analog signal from the detector, converts'
it into digital form and stores the numbers. The computer
can take values which are between plus and minus one
volts. The detector is nonlinear near zero volts, there-
fore we don't use negative values. This is where the
oscilloscope comes in.

The oscilloscope is used to make sure that the
signal from the detector is between zero and plus one
volts. It is also used to adjust the equipment until we
obtain the maximum signal size. The oscilloscope allows us
to measure the size of the D.C. signal from scattered light
from dirt on the cell walls, or small bubbles or large
particles in the sample. By large particles we mean
particles whose diameter is larger than five microns.
This then allows us to adjust the D.C. offset on the
detector to minimize the D.C. level. We can also use
the oscilloscope to get an approximate value for Tk,
the time constant. From this we can tell which program
to use in taking the data.

The computer has two basic programs for taking data.
The first one is RM4 which has three versions. The
difference between the three versions is the time between

data points. See Table 2.
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The RM4 series of programs was written by Mr. Daniel Edmonds.

TABLE 2 - RM4 PROGRAMS

Program Time Between Points Data
Name _In Microseconds File
RM4AS 3.6 RM4E__.DA
RM4A6 7.2 RM4G__.DA
RM4A7 14.4 RM4F__.DA

The second data program is Basic Averager. Both
programs do the same thing. The main difference is in
the time between points. In basic averager we can choose
any value between 30 microseconds and 4095 microseconds
to be the time between points. Where in RM4 we have
the choice of 3.6 microseconds, 7.2 microseconds, and 14.4
microseconds. The other difference is in the number of
sums. In RM4 you can do 2* number of sums. Where x is
equal to any positive integer between 0 and 11. In
Basic Averager you can take any integer number of sums
up to 4095. This is because in RM4 you read in the
number of sums from the switch register, while in Basic
Averager the number of sums is read in from the tele-
type. Basic Averager came with the computer as part of
the software.

The programs are designed to take the numerical value
of each point every x microseconds. (x is the time you
pick determined by the program you choose), and add this
value to the sum of these points from previous scans.

It repeats this process y times; where y is equal to the
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number of sums you ask it to do. The program gives

us the sum at each point. The reason we want to take

the total sum is to eliminate noise. If you look at the
signal from the detector on the oscilloscope you will see
that it hops up and down. This hopping is caused by

large particles inside the sample drifting through

the beam. By taking a large number of sums, in some cases
2048, we can cancel out most of the noise, which gives us
a nice smooth curve. Since the noise is random and the
signal is always there, the randomness of the noise should
cancel itself out.

For analyzing the data we have five interacting
analyzing programs written in Fortran IV. The programs
are basically the same. They differ only in the number
of parameters and the parameters themselves used in fitting
the data. The programs were written by Mr. Edward
Grabowski. He took the program from a book.1

The reason they are called interacting programs is
because they allow you to interact with the computer. You
can have the computer display the data, display the data
plus the best curve superimposed, display their difference,
and you can have it plot the data.

It is a least-squares fitting program which allows you
to vary up to ten parameters. It is called Curfit: Program
11-5. The reason for five analyzing programs is that some-
times there are two times and if one time is much longer

than the other then we can assume we had a single time
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with a sloping base line. This is used when you are
only interested in the shorter time. If you want the
longer time or both times you want a program that will
fit two different times. This is the purpose for the first
three programs. One to fit a single time, one to fit a
single time with a sloping base line, and one to fit two
times. For the programs to work properly at least one
third of the data must be base line.

The reason for the next two programs is caused by
having the light being homodyne. In the program above
we say that the light is heterodyne. By heterodyne we
mean that the light causing the D.C. level of the detector
has a definite phase with respect to the light causing the
first order maximum. The detector is a square law
device: so that:

I )2

(E.~ + E

het~—""DC signal

since E ;.01 ~Epg exp(-t/ Ty)
2
Let—Epc *+ ZEDC E o exp(-t/’tk) + Eosz exp(-2t/ ’Ck)

If ED,)) EOS then:
2
et =Fpc + 2Epc Eq exp(-t/ )

If there is no D.C. signal or if the D.C. signal has no
definite phase relationship to the signal then we call
the signal homodyne and using the same detector

2 2 .
Ihomo*ﬂvEDC + E%sig

2 2
Thomo ~Epc” + E7y g exp(-2t/T,)
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n
Thus we must be able to analyze data with two times Lk

TS
and (k corresponding to a mixture of heterodyne and

homodyne signals. This is the reason for the fourth
i~ O~
and fifth programs. One to fit ‘k and Lk with a straight

A=
base line and another to fit’tk and Lk with a sloping

base line. For a listing of the programs see Table 3.
The reason we use these programs is because they can

calculate‘tk much more accurately than we can by plotting
the data points on semilog graph paper. Also they have

a subroutine that calculates the difference between the
data and its calculated curve. This is helpful because
most times you can't see any difference by just looking

at the fit. The computer displays the data and its
calculated curve simultaneously superimposed on each other

so you can see how good the fit is.
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TABLE 3 - ANALYZING PROGRAMS

PROGRAM NAMES FIT TO

FAST 1 A(1) + A(2) * EXP(-X/A(3))

heterodyne; fitting one time

FAST 2 A(1) + A(2) * EXP(-X/A(3)) + A(4) * X
heterodyne; fitting one time
with sloping base line

FAST 3 A(1) + A(2) * EXP(-X/A(3)) + A(4) =%
EXP (-2X/A(3))

heterodyne and homodyne; fitting

T and 1y
2

FAST 4 A(1) + A(2)*EXP(-X/A(3) + A(4)*EXP(-X/A(5))
heterodyne; fitting two independent times
FAST 5 A1) + A(2) * EXP(-X/A(3)) + A(4) *
EXP(-2X/A(3)) + A(5) * X
heterodyne and homodyne; fitting tk

and‘t-k with a sloping base line

2
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D. Detector

The detector is a silicon photodiode. The photo-
diode is a P-N junction diode. A diode can be thought
of as a resistor, which allows current to flow in one
direction. If you connect a battery to the diode so that
current tries to flow in the opposite direction, you
create a region around the P-N junction which is neutral.
Now if a photon enters this neutral region it can knock
an electron free from one of the atoms, forming an
electron-hole pair. The hole travels toward the negative
terminal of the battery and the electron travels toward
the positive terminal, causing a current.

The current is fed into a current-to-voltage converter
which is an operational amplifier. From there it goes to
a second operational amplifier which amplifies the signal.
This operational amplifier is equipped with a D.C. offset.
The amplifier is also designed to allow you to vary the
gain. The photodiode is an EG & G SGD-040B. The elec-

tronics were designed by Mr. Edward Grabowski.
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E. Furnace

One of my projects in this experiment was to build
a furnace which would allow us to take data at temperatures
other than room temperature. One of the design problems
was that the furnace had to heat the sample and at the
same time allow us to observe the sample. Also, our
samples were rectangular in shape. The basic design of
the furnace came from an article by G. G. Hacker, III,

D. M. Eshelman, and R. L. Schmidt.?

Our furnace was a
little simpler in design. Their furnace was designed to
be able to control temperature fluctuations of the sample
to plus or minus two millidegrees over a several hour
period. We were only interested in maintaining a stable
temperature with fluctuations of the order of plus or
minus 0.25°C. The major difference between the two furnaces
is that theirs was built for circular samples and our
samples are rectangular. In Figure 2 there are some
drawings of our furnace. When the furnace is connected to
the controller we can obtain temperatures which range from
room temperature to 300°C., theoretically. Because of the
fact that we are using liquid samples we never go above
80°C. even though the furnace is designed to go up to
300°C. The controller we use was designed and built by

3
Edward Grabowski. It has the ability to control the

temperature to within 0.5°C in the on-off mode and theore-
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tically it should control the temperature to plus or minus
0.1°C in the proportional mode. We only used the on-off
mode which give the plus or minus 0.5°C needed in this
experiment.

The controller in the on-off mode is basically a
differential amplifier. When the reference voltage is
less than the signal voltage the heater is on. When the
reference voltage is equal to or greater than the reference
voltage the heater is off. The only problem with this is
that it takes some time before the controller can tell
that the furnace is being heated. Therefore, there is
overshooting and undershooting of the set temperature.
This causes the temperature to oscillate about the desired
temperature.

In the proportional mode, the furnace is heated in
pulses, not continuously as in the on-off mode, where
the heating pulse becomes shorter as the furnace reaches
the set temperature. This is done by sending in a ramp
signal. To have the mode working correctly you must know
the time constant of your furnace. By time constant we
mean the time interval between the time you put heat into
the furnace and the time the controller sees a change
in temperature. The furnace uses a thermistor to

measure the temperature.
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FIGURE -2C- TOP VIEW OF BRASS CONTROL BLOCK AT
BEAM LEVEL
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F. Measurement of d

On our beam splitter is a micrometer. The micrometer
is used to vary the distance between the mirrors. We use
the readings on the micrometer to determine d (spacing
between fringes). Following is the theory that justifies
this.

The way we obtained a grating is by splitting the
heating beam into two equal beams and letting them intersect
inside the sample. This will cause a diffraction pattern
in the region where they overlap. The spacing between

the fringes, d, is equal to d = for small
sin(® /2)

angles sin ( ©/2)=0/2. See Figure 3. Therefore d = _A__
where © is defined as the angle between the two beams..9
But for small angles @ = x/D where x is defined as the
distance between the two mirrors of the beam splitter,

and D is the distance between the beam splitter and where

the two beams intersect. This leads to the equation:

d=AD

X
If we let x =Y - C, where C is equal to a constant and

Y is equal to a micrometer reading which is attach to
the beam splitter. C is put in the equation, because
the micrometer doesn't read zero when the distance between

the mirrors is zero. Therefore d = AD
Y-C

We can measure D and we select A. Therefore if we measure
d and plot 1 _ using our least square program we can get
d

C and Y from the program. Now if we plot d vs. AD
Y -C
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we get a curve that translates the dial setting on
the micrometer into d (fringe spacings).

This has a great advantage over the old system of
measuring fringes. In the old system it was almost
impossible to get the same d back after you have changed
it. But with the new system all we have to do is set the
micrometer to the setting it was previously and we have
the same d value. In the old system we projected the
image of the intersecting beam on a screen superimposed
over a scale and counted the number of fringes for a

certain length.



23
G. Theory
The thermal diffusivity of a sample which has one
dimensional heat flow can be derived as follows.4 The
total amount of heat entering the differential face
dxdz at y is given by dQ = -dxdz (K ( %—))dt

See Figure 4.

FIGURE 4 - VOLUME ELEMENT dxdydz

where K is defined as the thermal conductivity and Q is
defined as heat. To find the amount of heat leaving the
element at y + dy, let
- g (4L
F(y,T) = K (dy )
By Taylor's series expansion:

F(y + dy,T) = F(y,T) + dF dy

dy
_ ., dT ., d dT
= K & +-a§ (K 5§) dy

This leads to the fact that

dr , _d
aQ (v + dy) = dxdz (K g + 5 (K%)dy) dt
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If we add to this dE, which is defined as the total
quantity of heat which goes into increasing the internal
energy of the volume element:
dE = CP dxdydz 3% dt
where C is defined as the specific heat, and P is defined
as the density. Also if we add ng which is defined as
the total amount of heat generated in the volume element.
Where,
ng = q" Vdt = q" dxdydzdt
where q" is the rate at which heat is being generated
internally. Therefore using conservation of energy we
have:
dQ(y) + Qg - dQ(y + dy) -dE =0
Q) + dQ, = dQ(y + dy) + dE
This leads to
-dxdz (K Q) dc + q" dxdydz dt
dT

=-dxdz ((K ) dt +-4- (K }T,) dy ) dt + CP dxdydz—gf dt

Divide by dxdydzdt which reduces to

q='%—y( )+CPgE
Therefore,
2
" __ dT dT
q" = -K 4 = + CP at
2Y
d=T dT
q" + K -CP5+==0
dyz dt
which leads to
2
d°T " CP dT
2"‘q/K‘Kdt

dy

where DTh = K which is defined as the thermal diffusivity.
Cp
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Therefore:
dT,1._ 1 dr
dyz K Dy, dt
where in our case q" = 61, where © is defined as the light

absorption coefficient of the sample. Ie is defined as

the incident intensity. Therefore;
D dc - 2 =% 9, (equation 1)

If the depth of penetration (9'1) is very large compared
to d (the distance between the fringes), and if d is very
small compared to the sample thickness, then at the end
of the heating pulse (t = 0) there is a temperature distri-
bution which varies with position.
AT (0,y) =T (0)cos ky (equation 2)
T is the temperature amplitude and K = th .
Now if we assume a solution to equation 1 for time
t = 0, that is I, = 0, then if we replace T with AT
using equation 2 then:
T(t,y) = T(t) cos ky = T(0) exp(-t/’L‘Q cos Ky

Now if we insert this into equation 2, we have:

2
Q—Z(AT)-L a(AT) _

Therefore:
2
4 (a7) =1 4(AT)
dyz DTh dt
2

L, (T (0) exp(-t/f) cos ky)
dy

- ;—Th—g? (T (0) exp(-t/ ) cos ky)
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Now take the derivative of both sides
k2T ) exp(-t/'fk) cos ky

"l 7 (0) exp(-t/‘tk) cos ky
Th1%;

which reduces to

D

DThT%:

which leads to"tk = 1
but Dp =K' and k = 2
therefore:
T = EC (452,

The temperature decreases exponentially with a time
constant of T, which depends on dz, and 1/DTh or
dz, P, C, and 1/K. This shows that if we measure the
_relaxation time of a liquid, and know what d is, we
can calculate the thermal diffusivity of the liquid.
And from the thermal diffusivity we can obtain the thermal
conductivity of the 1'1quid.5

When the two beams meet there is a temperature
grating formed. Since the liquid has a temperature
variance which can be approximated as

T =T cos ky

We can say it has an index of refraction that varies
as An= -n' (1 + cos Kky)
where n' is the peak value for the change in the index

of refraction divided by two.
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This is caused by the fact that when the sample is
heated its density changes which changes its index of
refraction.

The next question is why this change in density
doesn't change Tk since Dy (the thermal diffusivity)
is dependent on density. This is because heating the
sample we only change the temperature a few millidegrees.
Therefore, the change in the density is very small.

If we have a plane wave in the region of the heat
grating we will see that some of the light is refracted.

See Figure 5.

P(a,b)

FIGURE 5 - DIFFRACTION GEOMETRY

The light intensity at a point P(a,b) outside of

the sample can be determined as follows:

D =Ja2 + (b-y)

Where D is the distance from the heat grating to point p(a,b),
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a is the x component of D and b is the y component of D
measured from y = 0.

Let n = n(y) = n_ -n' (1 + cos ky).

o
The phase shift through the mediums

e (Y) = %‘1 t n(Y)
where t = the thickness of the temperature grating. Ais
the wavelength of the transmitted beam.

The total phase shift of point P is;

O total = Z'Kt n(y) + 2;" ‘[az + (b-y)?

at © = 0 plane, let E = E,
Also lets assume D> d.

Therefore at point P;
I=|S3 exp (i0 total) dy |

I (a,b) = I_SE)1 exp (i 21;-1: n(y) + 52715 Ja2+(b_y)2) dy[ 2

There is no closed form solution to this equation but

you can get a numerical solution. All we are interested
in is the relative position of point P and we can get a
good approximation of this by assuming that in the sinewave
is a step function. If we let the sinewave be a step
function and assume that the grating is caused by intensity
variation and not phase variations our problem reduces to
the one of a classical multislit diffraction grating.6

The major difference is when you take the Fourier

transform of a sinewave you get a sinewave back, but the
Fourier transform of a step function is a family of
sinewaves. Therefore by replacing a sine function with a

step function the theory will predict a first order maximum,
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a second order maximum, a third order maximum, and so on.
In our case all we should get is a first order maximum.
The reason we feel that the grating is caused by an
intensity variation and not a phase variation is because
if it were a phase variation a change in the intensity of
the heating beam should change the position of the first

order maximum. We never saw this change in position.
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ITI. RESULTS

There were two things which we tried to do in this
experiment.
1) Demonstrate that the apparatus and furnace
worked and estimate the accuracy of measurement.
2) Determine if we could see the effect of rather
large amounts (up to 5%) of a high molecular
weight polymer on the thermal diffusivity of
water-polymer solution.
The apparatus including the furnace did work, it was
possible to take data for d ranging from 15 microns to
120 microns, and at temperatures from room temperature
to 80°C. If the samples were clean and if not much local
heating of the samples occur we can get consistent results
to within 1% for fixed d. If we vary d, the results are
consistent to several percent which is the accuracy
to which we can measure d. Table 4 gives a set of results
obtained on pure water, 1%, 2.5%, and 5% polymer at
fixed d = 50.3 microns and T = 22°C. Data was taken with
RM4A6 and analyzed at FAST 2. The variation is less
than 1%. This demonstrates that we did not observe any
effect of the polymer on the thermal diffusivity of the
solution in this concentration range.
If we compute the thermal diffusivity of the solution:

1 g2 1 (50.3 x 10-%cmy2

D = =
Th = 49?2 T 41?374 x 1070 sec

=1.71 x 10'3 cm2/sec
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Compare it with

DTh = F%_ obtained from data on water in the Handbook

of Chemistry and Physics.
_1.43 x 10-3 cal/sec - cm - °K
Th = (,997 gn/cm?) (.998 cal/gm - °K)

= 1.44 x 10'3 cmz/sec

We see that the difference is rather large, approximately
19 percent. We do not understand this large discrepancy
but it may come in part from air dissolved in the water
and in part from a possible error in d.

The solution of polymer in water with a little methyl-
red to absorb the light gave interesting results which we
now think we understand. We saw two relaxation times,‘té
(w~ 400 microseconds) and'fi (many milliseconds). T, was
dependent on dz, was independent of temperature or of
the polymer concentration. “ti was iﬁdependent of 4d,
strongly dependent on temperature and on polymér concen-
tration. After many experiments with different concen-
trations of polymer and also with the dye dissolved in
water whose pH we changed by adding an acid or a base,
we found that the long time was apparently due to the
bleaching of the dye. ’tl was very long in basic solutions
and vanished in acid solutions. (The color of the solution
also changed). We think that 11 was the time for recovery

of the dye and therefore it did not depend on d. The

apparent dependence of 1& on polymer concentration was
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due to the fact that the polymer was strongly basic. A
1% solution has a pH of 10.3 so that changing the concen-
tration also changed the pH. We do not understand why
13 depends so strongly on either pH or temperature but it
must be related to the change of optical and chemical
properties of this organic dye.

‘ts was the thermal relaxation time and as demon-
strated above in Table 4 it was independent of polymer
concentration and also of temperature. Figure 6 is a

picture of a typical signal with heating pulse.
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TABLE 4 - DATA AT 22°C

7% Polymer

0
1%
2.5%
5%

Average

Microseconds
376
375
376
371
374 + 2
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FIGURE 6 VIEW OF TYPICAL SIGNAL WITH
HEATING PULSE
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