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ABSTRACT

FORCED RAYLEIGH SCATTERING

IN LIQUIDS

By

Verence D. Moore

Forced Rayleigh Scattering was used to determine the

thermal diffusivity of a water-polymer solution. We

found we could get consistent results to within 1% for

fixed d, with our equipment. Solutions of up to 5%

by weight of polymer in pure water, had the same thermal

diffusivity of pure water. When we used methyl-red to

color our solution, we observe two times. One time 1%

which was due to the thermal diffusivity. The second

time ’tl was due to some prOperty of methyl-red in a

basic solution.
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I. INTRODUCTION

While Dr. Cowen was in France on Sabbatical, he was

introduced to the technique of using Forced Rayleigh

Scattering to determine the thermal diffusivity of liquid.

The purpose of me doing this experiment was twofold.

First, to test the apparatus and furnace to see if they

were working and also to estimate the accuracy of the

measurements. Secondly, to determine if we could see

any effect of rather large amounts (up to 5% by weight

of a high molecular weight polymer on the thermal

diffusivity of water-polymer solutions.

The reason we only went up to 5% is because for

solutions with greater amounts of polymer the solution can

be considered a solid and we couldn't be able to get the

solution into the cell. The polymer is Dow Separan

AP30-high molecular weight (cv106) polyacrylamide.

The interesting property of this polymer is that when

it is mixed with water the solution becomes a gel.

The gel's viscosity varies directly as the percent by

weight of the polymer in the solution.

The way the solutions were made up was that we

weighed out an amount of water. Then we weighed the

approximate amount of polymer to correspond to 1%, 2.5%

or 5% by weight of polymer to water. When we first

started we put the polymer in first then added the water,

but this caused a mixing problem. At the polymer water

interface there was a high concentration solution, with
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almost pure water and polymer on either side. By heating

the samples for several hours (24 to 72), we were able to

get a uniform solution. Later I found that I could get a

uniform solution in about 16 to 32 hours by putting in

half the water first, followed by the polymer, then the

rest of the water.

The solution is normally clear so we had to add a

dye to color the solution. The dye we used was methyl-

red. The dye didn't readily mix with the solution, so

heating the solution also help dissolve the dye.

After we had a uniform mixture we filtered the solution,

to get rid of large particles of dye. We use five micron

filter paper when filtering the solution. We use a

millipore filter with a syringe to filter the solution.

The syringe was used to force the solution through the

filter system. We then put the filtered solution into

our cells.
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II. THE EXPERIMENT

A. Introduction

In this experiment we are using forced Rayleigh

scattering to determine the thermal diffusivity

of liquids. This is done by using two lasers of different

wavelengths. One wavelength is transmitted by the liquid.

The other wavelength is absorbed by the liquid. This

absorption of light is used to heat the sample in a small

region. The heating laser beam is pulsed, heating the

sample while the laser is on, and allowing it to cool while

the laser is off. The heating beam, as it comes from the

laser, is sent through two lenses which focus the beam.

This allows us to choose the laser beam size inside the

sample. The beam size we use is about one millimeter in

diameter. Once the beam passes through the lenses it goes

to a beam splitter. The beam splitter divides the beam

into two equal intensity beams. The beam splitter consists

of two mirrors; one fifty percent reflecting and the

other one hundred percent reflecting. As the beam passes

through the first mirror, fifty percent of the beam is

reflected and fifty percent is transmitted. When the

transmitted beam gets to the second mirror, one hundred

percent of the beam is reflected. The beam splitter is

positioned so that the two beams intersect inside of the

sample. When the two beams intersect they form an interference

pattern. This interference pattern causes a temperature

grating in the region where the two beams meet.
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Because of this the beam intensity in this region can

be approximated as I = Iocos ky, where I0 is the maximum

beam intensity inside the sample, and k = 2 F where d

d

is the distance between fringes.

If we superimpose the second laser beam, which is

transmitted by the liquid, over the two intersecting

heating beams the transmitted laser beam sees a diffrac-

tion grating. This grating is caused by the heat grating

Because there is a temperature grating, the index of

refraction is different for different areas inside this

region where the heating is going on. Therefore, the

effective path length the light must travel is different

for different areas. Since the transmitted beam sees a

diffraction grating as it passes through the sample, it

forms a diffraction pattern after it leaves the sample. If

we put a detector at the place where the first order’

maximum is formed, we can observe the heating and cooling

of the sample. Since we expect the cooling is exponential

and that the time constant is inversely proportional to

the thermal diffusivity, we can measure the thermal

diffusivity of the sample. Figure 1 shows our

experimental setup.
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B. Lasers

In this experiment we are using two lasers. The

first laser is Coherent Radiation - CRSOO K Krypton.Laser,

used to heat the samples. The second is a small Helium-

Neon laser, used as a probe. The Krypton laser has the

ability to let the user choose from eight different wave-

lengths in the visible; two in the infrared and one in the

ultraviolet. We are only interested in the visible range.

In Table l are listed the wavelengths )-in nanometers,

the color, and the maximum output power, in milliwatts.

The ability to change the wavelength of the heating laser is

important because the heating comes from the absorption

of the laser light. Our samples have different absorption

curves, therefore, a wavelength which is absorbed by one

sample may be transmitted by another sample.

The second laser is a Spectra-Physics Model 120

Helium-Neon laser, which has a wavelength of 632.8

nanometers with a maximum output power of five milliwatts.

This laser light should be transmitted by the sample (should

not be absorbed). This is the light which is diffracted

by the grating created by the heating laser.

For the experiment to work the heating laser must be

pulsed. This is done by a modulator. The one we use is a

Coherent Associates Model 304 Acousto-Optic Modulation

System. It is ideal for our use because it has the ability

to put 75 to 80 percent of the laser power into the first

order maximum.



7

TABLE 1 - POWER OUTPUT OF LASER

 

Wavelength Power Measured

Color Nanometers Milliwatts Power*

Red - 1 676.4 120 25

Red - 2 647.1 500 180

Yellow 568.2 150 100

Green - 1 530.9 200 30

Green - 2 520.8 70 90

Blue - 1 482.5 30 8

Blue - 2 476.2 50 30

Blue - 3 468.9 5 5

*You only get the maximum power with all the laser mirrors

clean.

The modulator is controlled by a waveform generator

and two pulse generators. The waveform generator is used

to generate a pulse. The rise and fall time is

approximately one microsecond. It is used also to trigger

one of the pulse generators. The waveform generator allows

you to vary the repetition rate while the pulse generator

allows you to vary the heating pulse width. The second

pulse generator is used as a trigger for the computer

and the oscilloscOpe. It also allows you the choice of

triggering on the positive or negative edge of the

heating pulse. The triggering pulse generator is triggered

by the heating pulse generator. We are using Tektronix

Type 162 Waveform Generator and Tektronix Type 163 Pulse

Generator.



C. The Computer

We used a PDP 8/e computer to take and analyze data.

The computer is equipped with an analog to digital converter

which takes the analog signal from the detector, converts'

it into digital form and stores the numbers. The computer

can take values which are between plus and minus one

volts. The detector is nonlinear near zero volts, there-

fore we don't use negative values. This is where the

oscilloscope comes in.

The oscillOSOOpe is used to make sure that the

signal from the detector is between zero and plus one

volts. It is also used to adjust the equipment until we

obtain the maximum signal size. The oscilloscope allows us

to measure the size of the D.C. signal from scattered light

from dirt on the cell walls, or small bubbles or large

particles in the sample. By large particles we mean

particles whose diameter is larger than five microns.

This then allows us to adjust the D.C. offset on the

detector to minimize the D.C. level. We can also use

the oscillosc0pe to get an approximate value for 2k,

the time constant. From this we can tell which program

to use in taking the data.

The computer has two basic programs for taking data.

The first one is RM4 which has three versions. The

difference between the three versions is the time between

data points. See Table 2.
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The RM4 series of programs was written by Mr. Daniel Edmonds.

TABLE 2 - RM4 PROGRAMS

 

Program Time Between Points Data

Name In.Microsecongs File

RM4A5 3.6 RM4E__.DA

RM4A6 7.2 RM4G__.DA

RM4A7 14.4 RM4F__.DA

The second data program is Basic Averager. Both

programs do the same thing. The main difference is in

the time between points. In basic averager we can choose

any value between 30 microseconds and 4095 microseconds

to be the time between points. Where in.RM4 we have

the choice of 3.6 microseconds, 7.2 microseconds, and 14.4

microseconds. The other difference is in the number of

sums. In RM4 you can do 2x number of sums. Where x is

equal to any positive integer between 0 and 11. In

Basic Averager you can take any integer number of sums

up to 4095. This is because in RM4 you read in the

number of sums from the switch register, while in Basic

Averager the number of sums is read in from the tele-

type. Basic Averager came With the computer as part of

the software.

The programs are designed to take the numerical value

of each point every x microseconds. (x is the time you

pick determined by the program you choose), and add this

value to the sum of these points from previous scans.

It repeats this process y times; where y is equal to the
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number of sums you ask it to do. The program gives

us the sum at each point. The reason we want to take

the total sum is to eliminate noise. If you look at the

signal from the detector on the oscillosc0pe you will see

that it h0ps up and down. This hopping is caused by

large particles inside the sample drifting through

the beam. By taking a large number of sums, in some cases

2048, we can cancel out most of the noise, which gives us

a nice smooth curve. Since the noise is random and the

signal is always there, the randomness of the noise should

cancel itself out.

For analyzing the data we have five interacting

analyzing programs written in Fortran IV. The programs

are basically the same. They differ only in the number

of parameters and the parameters themselves used in fitting

the data. The programs were written by Mr. Edward

Grabowski. He took the program from a book.1

The reason they are called interacting programs is

because they allow you to interact with the computer. You

can have the computer display the data, display the data

plus the best curve superimposed, display their difference,

and you can have it plot the data.

It is a least-squares fitting program which allows you

to vary up to ten parameters. It is called Curfit: Program

11-5. The reason for five analyzing programs is that some-

times there are two times and if one time is much longer

than the other then we can assume we had a single time
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with a leping base line. This is used when you are

only interested in the shorter time. If you want the

longer time or both times you want a program that will

fit two different times. This is the purpose for the first

three programs. One to fit a single time, one to fit a

single time with a sloping base line, and one to fit two

times. For the programs to work properly at least one

third of the data must be base line.

The reason for the next two programs is caused by

having the light being homodyne. In the program above

we say that the light is heterodyne. By heterodyne we

mean that the light causing the D.C. level of the detector

has a definite phase with respect to the light causing the

first order maximum. The detector is a square law

device! so that:

1 )2(E +E
hetv‘r DC signal

since Esignalvchos eXp(-t/’Ck)

2

IhetV‘E DC + 2EDC Eos exp(-t/’tk) + E03
2 eXp(-2t/ TR)

If ED,)) EOS then:

2
Ihet3==EDC + ZEDC EOS exp(-t/1&)

If there is no D.C. signal or if the D.C. signal has no

definite phase relationship to the signal then we call

the signal homodyne and using the same detector

2 2 .
Ih0m0“"EDC i E 31g

2 2
IhOmO~EDC + E 08 eXp(-2t/’C'k)
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Thus we must be able to analyze data with two times Lk

A

and (dc corresponding to a mixture of heterodyne and

homodyne signals. This is the reason for the fourth

A A.

and fifth programs. One to fit Lk and Lk with a straight

A!

base line and another to fit Tk and LR with a sloping

base line. For a listing of the programs see Table 3.

The reason we use these programs is because they can

calculate’tk much more accurately than we can by plotting

the data points on semilog graph paper. Also they have

a subroutine that calculates the difference between the

data and its calculated curve. This is helpful because

most times you can't see any difference by just looking

at the fit. The computer displays the data and its

calculated curve simultaneously superimposed on each other

so you can see how good the fit is.
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TABLE 3 - ANALYZING PROGRAMS

PROGRAM NAMES FIT TO

FAST 1 A(l) + A(Z) * EXP(-X/A(3))

heterodyne; fitting one time

FAST 2 A(l) + A(Z) * EXP(-X/A(3)) + A(4) * X

heterodyne; fitting one time

with leping base line

FAST 3 A(1) + A(2) * EXP(-X/A(3)) + A(4) *

EXP(-2X/A(3))

heterodyne and homodyne; fitting

TR and TR

.2-

FAST 4 A(1) + A(2)*EXP(-X/A(3) + A(4)>'<EXP(-X/A(5))

heterodyne; fitting two independent times

FAST 5 A(1) + A(2) * EXP(-X/A(3)) + A(4) :‘c

EXP(-2X/A(3)) + A(S) 9: X

heterodyne and homodyne; fitting'tk

andvtk with a sloping base line

'7'
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D. Detector

The detector is a silicon photodiode. The photo-

diode is a P-N junction diode. A diode can be thought

of as a resistor, which allows current to flow in one

direction. If you connect a battery to the diode so that

current tries to flow in the opposite direction, you

create a region around the P-N junction which is neutral.

Now if a photon enters this neutral region it can knock

an electron free from one of the atoms, forming an

electronLhole pair. The hole travels toward the negative

terminal of the battery and the electron travels toward

the positive terminal, causing a current.

The current is fed into a current#to-voltage converter

which is an Operational amplifier. From there it goes to

a second Operational amplifier which amplifies the signal.

This Operational amplifier is equipped with a D.C. offset.

The amplifier is also designed to allow you to vary the

gain. The photodiode is an EC & G SGD-040B. The elec-

tronics were designed by Mr. Edward Grabowski.
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E. Furnace

One of my projects in this experiment was to build

a furnace which would allow us to take data at temperatures

other than room temperature. One of the design problems

was that the furnace had to heat the sample and at the

same time allow us to observe the sample. Also, our

samples were rectangular in shape. The basic design of

the furnace came from an article by G. G. Hacker, III,

D. M. Eshelman, and R. L. Schmidt.2 Our furnace was a

little simpler in design. Their furnace was designed to

be able to control temperature fluctuations of the sample

to plus or minus two millidegrees over a several hour

period. We were only interested in maintaining a stable

temperature with fluctuations of the order of plus or

minus 0.250C. The major difference between the two furnaces

is that theirs was built for circular samples and our

samples are rectangular. In Figure 2 there are some

drawings of our furnace. When the furnace is connected to

the controller we can obtain temperatures which range from

room temperature to 3000C., theoretically. Because of the

fact that we are using liquid samples we never go above

80°C. even though the furnace is designed to go up to

300°C. The controller we use was designed and built by

3

Edward Grabowski. It has the ability to control the

temperature to within 0.50C in the on-off mode and theore-
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tically it should control the temperature to plus or minus

0.10C in the proportional mode. We only used the on-off

mode which give the plus or minus 0.500 needed in this

experiment.

The controller in the on-off mode is basically a

differential amplifier. When the reference voltage is

less than the signal voltage the heater is on. When the

reference voltage is equal to or greater than the reference

voltage the heater is off. The only problem with this is

that it takes some time before the controller can tell

that the furnace is being heated. Therefore, there is

overshooting and undershooting of the set temperature.

This causes the temperature to oscillate about the desired

temperature.

In the proportional mode, the furnace is heated in

pulses. not continuously as in the on-off mode, where

the heating pulse becomes shorter as the furnace reaches

the set temperature. This is done by sending in a ramp

signal. To have the mode working correctly you must know

the time constant of your furnace. By time constant we

mean the time interval between the time you put heat into

the furnace and the time the controller sees a change

in temperature. The furnace uses a thermistor to

measure the temperature.
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FIGURE ~2A- CROSS-SECTIONAL VIEW OF FURNACE
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FIGURE -2B- CROSS-SECTIONAL VIEW OF CONTROL BLOCK
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FIGURE -2C- TOP VIEW OF BRASS CONTROL BLOCK AT

BEAM LEVEL
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F. Measurement of d
 

On our beam splitter is a micrometer. The micrometer

is used to vary the distance between the mirrors. We use

the readings on the micrometer to determine d (spacing

between fringes). Following is the theory that justifies

this.

The way we obtained a grating is by splitting the

heating beam into two equal beams and letting them intersect

inside the sample. This will cause a diffraction pattern

in the region where they overlap. The spacing between

the fringes, d, is equal to d = for small

sin «9 /2)

angles sin ( 9/2)==9/2. See Figure 3. Therefore d = _;L_

where 9 is defined as the angle between the two beams..9

But for small angles Q a x/D where x is defined as the

distance between the two mirrors of the beam splitter,

and D is the distance between the beam splitter and where

the two beams intersect. This leads to the equation:

d = QED

x

If we let x = Y - C, where C is equal to a constant and

Y is equal to a micrometer reading which is attach to

the beam splitter. C is put in the equation, because

the micrometer doesn't read zero when the distance between

the mirrors is zero. Therefore d = AD

‘Z-C

We can measure D and we select.1. Therefore if we measure

d and plot 1_ using our least square program we can get

d

C and Y from the program. Now if we plot d vs. AD

Y - C
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- We)

FIGURE 3 - GEOMETRY OF THE TWO INTERSECTING

BEAMS

- - - Is the fringes
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we get a curve that translates the dial setting on

the micrometer into d (fringe spacings).

This has a great advantage over the old system of

measuring fringes. In the old system it was almost

impossible to get the same d back after you have changed

it. 'But with the new system all we have to do is set the

micrometer to the setting it was previously and we have

the same d value. In the old system we projected the

image of the intersecting beam on a screen superimposed

over a scale and counted the number of fringes for a

certain length.
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G. Theory

The thermal diffusivity of a sample which has one

dimensional heat flow can be derived as follows.4 The

total amount of heat entering the differential face

dxdz at y is given by dQ 5: -dxdz (K( %))dt

See Figure 4.

 

 

 

 

 

  
 

 
FIGURE 4 - VOLUME ELEMENT dxdydz

where K is defined as the thermal conductivity and Q is

defined as heat. To find the amount of heat leaving the

element at y + dy, let

_ $1.1;
F(y.T) — K(dy

By Taylor's series expansion:

F(y + dy.T) = F(y.T) + QT dy

dy

_QT_<1_.QI
— K dy + dy (K dy) dy

This leads to the fact that

dQ (y+ dy) = dxdz (K3—;+—q— (Kgl)dy) dt
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If we add to this dE, which is defined as the total

quantity of heat which goes into increasing the internal

energy of the volume element:

dE= CP dxdydzd£11 dt

where C is defined as the specific heat, and P is defined

as the density. Also if we add ng which is defined as

the total amount of heat generated in the volume element.

Where,

ng = q" th = q" dxdydzdt

where q" is the rate at which heat is being generated

internally. Therefore using conservation of energy we

have:

dQ(y) + ng - dQ(y + dy) -dE =0

dQ(y) + ng = dQ(y + dy) + dB

This leads to

-dxdz (K %E) dt + q" dxdydz dt

+-3‘-y <=-dxdz ((K%—T) dt+ K 91%) dy ) dt + CP dxdydz—ELI dt
dt

Divide by dxdydzdt which reduces to

q" = -‘g_ dT

dy (K dy)'+ CP dt

Therefore,

2

dT dT
q" = -K + CP

gyz dt

d T dT
q" + K.-—2 - CP -— = 0

which leads to

2
dT " CP dT

2+q/K: K dt
dY

where DTh =_K_ which is defined as the thermal diffusivity.

CP
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Therefore:

__d2T+lqn=1_ Ell
dyz K DTh dt

where in our case q" = Ole, where 9 is defined as the light

absorption coefficient of the sample. Ie is defined as

the incident intensity. Therefore;

lgl_dT_l .
D dt 2 — K OI (equation 1)

Th

If the depth of penetration (9'1) is very large compared

to d (the distance between the fringes), and if d is very

small compared to the sample thickness, then at the end

of the heating pulse (t = 0) there is a temperature distri-

bution which varies with position.

.ATT(0,y) = T (0)cos ky (equation 2)

T is the temperature amplitude and K.= Zfit .

Now if we assume a solution to equation 1 for time

t = 0, that is I8 = 0, then if we replace T with AI?

using equation 2 then:

T(t,y) = T(t) cos ky = T(O) exp(-t/’tQ cos ky

Now if we insert this into equation 2, we have:

2

 

d j; d§A.T) _

33;: (AT) - pm dt - 0

Therefore:

2

9_ (AI) = 1 MAT)

dyz DTh dt

2

g_2 (T (0) eXp(-t/‘tk) cos ky)

dy

%_Th—3E ('T’ (o) exp(-t/“L‘k) cos ky)
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Now take the derivative of both sides

2
-k T (9) exp(-t/'Tk) cos ky

D-1 T (0) exp(-t/‘tk) cos ky

Th1%;

which reduces to

 

 

DTh TR

which leads to’tk = l

D

 

2

Thk

=_K; and k = 24?

PC d

but DTh

therefore:

T=£§d2

k K(Fr)'

The temperature decreases exponentially with a time

constant of‘tk, which depends on d2, and l/DTh or

d2
, P, C, and l/K. This shows that if we measure the

“relaxation time of a liquid, and know what d is, we

can calculate the thermal diffusivity of the liquid.

And from the thermal diffusivity we can obtain the thermal

conductivity of the liquid.5

When the two beams meet there is a temperature

grating formed. Since the liquid has a temperature

variance which can be approximated as

T = T cos ky

We can say it has an index of refraction that varies

as A11: -n' (l + cos ky)

where n' is the peak value for the change in the index

of refraction divided by two.
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This is caused by the fact that when the sample is

heated its density changes which changes its index of

refraction.

The next question is why this change in density

doesn't change Tk since DTh (the thermal diffusivity)

is dependent on density. This is because heating the

sample we only change the temperature a few millidegrees.

Therefore, the change in the density is very small.

If we have a plane wave in the region of the heat

grating we will see that some of the light is refracted.

See Figure 5.

P(a,b)

 

   

FIGURE 5 - DIFFRACTION GEOMETRY

The light intensity at a point P(a,b) outside of

the sample can be determined as follows:

=‘fa2 + (b-y)

 

Where D is the distance from the heat grating to point P(a,b).
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a is the x component of D and b is the y component of D

measured from y = 0.

Let n = n(y) = n -n' (l + cos ky).
o

The phase shift through the medium:

9 (y) = 3711 t n(Y)

where t = the thickness of the temperature grating. Ais

the wavelength of the transmitted beam.

The total phase shift of point P is:

 

9 total = 91-17-5— n(y) + 2*” ‘fa2 + (b-y)2
 

at 9 = 0 plane, let E = E0

Also lets assume D>>d.

Therefore at point P;

I =53 exp (i 9 total) dyl2

I w = I52 exp (123-1: n<y> + .4.. WW «w
There is no closed form solution to this equation but

 

you can get a numerical solution. All we are interested

in is the relative position of point P and we can get a

good approximation of this by assuming that in the sinewave

is a step function. If we let the sinewave be a step

function and assume that the grating is caused by intensity

variation and not phase variations our problem reduces to

the one of a classical multislit diffraction grating.6

The major difference is when you take the Fourier

transform of a sinewave you get a sinewave back, but the

Fourier transform of a step function is a family of

sinewaves. Therefore by replacing a sine function with a

step function the theory will predict a first order maximum,
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a second order maximum, a third order maximum, and so on.

In our case all we should get is a first order maximum.

The reason we feel that the grating is caused by an

intensity variation and not a phase variation is because

if it were a phase variation a change in the intensity of

the heating beam should change the position of the first

order maximum. We never saw this change in position.
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III. RESULTS

There were two things which we tried to do in this

experiment.

1) Demonstrate that the apparatus and furnace

worked and estimate the accuracy of measurement.

2) Determine if we could see the effect of rather

large amounts (up to 5%) of a high molecular

weight polymer on the thermal diffusivity of

water-polymer solution.

The apparatus including the furnace did work, it was

possible to take data for d ranging from 15 microns to

120 microns, and at temperatures from room temperature

to 800C. If the samples were clean and if not much local

heating of the samples occur we can get consistent results

to within 1% for fixed d. If we vary d, the results are

consistent to several percent which is the accuracy

to which we can measure d. Table 4 gives a set of results

obtained on pure water, 1%, 2.5%, and 5% polymer at

fixed d = 50.3 microns and T = 220C. Data was taken with

RM4A6 and analyzed at FAST 2. The variation is less

than 1%. This demonstrates that we did not observe any

effect of the polymer on the thermal diffusivity of the

solution in this concentration range.

If we compute the thermal diffusivity of the solution:

1 d2 1 (50.3 x 10'4”“)2
D = =

Th 41r2 “ck 41r2‘ 374 x 10‘6 sec

= 1.71 x 10'3 cmZ/Sec



31

Compare it with

DTh = §%— obtained from data on water in the Handbook

of Chemistry and Physics.

= 1.43 x 10"3 cal/sec - cm - 0K

Th (.997 gm/cmz) (.998 cal/gm - OK)

= 1.44 x 10'3

D

cm2/sec

We see that the difference is rather large, approximately

19 percent. We do not understand this large discrepancy

but it may come in part from air dissolved in the water

and in part from a possible error in d.

The solution of polymer in water with a little methyl-

red to absorb the light gave interesting results which we

now think we understand. We saw two relaxation times,’ts

(«~.400 microseconds) and'ti (many milliseconds). '1; was

dependent on d2, was independent of temperature or of

the polymer concentration. ‘11 was independent of d,

strongly dependent on temperature and on polymer concen-

tration. After many experiments with different concen-

trations of polymer and also with the dye dissolved in

water whose pH we changed by adding an acid or a base,

we found that the long time was apparently due to the

bleaching of the dye. ’tl was very long in basic solutions

and vanished in acid solutions. (The color of the solution

also changed). We think that‘ti was the time for recovery

of the dye and therefore it did not depend on d. The

apparent dependence of'1a on polymer concentration was
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due to the fact that the polymer was strongly basic. A

1% solution has a pH of 10.3 so that changing the concen-

tration also changed the pH. We do not understand why

‘11 depends so strongly on either pH or temperature but it

must be related to the change of Optical and chemical

properties of this organic dye.

“ts was the thermal relaxation time and as demon-

strated above in Table 4 it was independent of polymer

concentration and also of temperature. Figure 6 is a

picture of a typical signal with heating pulse.
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TABLE 4 - DATA AT 220C

  

% Polymer Microseconds

0 376

1% 375

2.5% 376

5% 371

Average 374 i 2
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FIGURE 6 VIEW OF TYPICAL SIGNAL WITH

HEATING PULSE
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