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ABSTRACT 

 

PLACEMENT INTO FIRST COLLEGE MATHEMATICS COURSE: A 

COMPARISON OF THE RESULTS OF THE MICHIGAN STATE UNIVERSITY 

PROCTORED MATHEMATICS PLACEMENT EXAMINATION AND THE 

UNPROCTORED MATHEMATICS PLACEMENT EXAMINATION 

 

By 

 

Samuel Drake 

 

  The primary purpose of this study was to compare the results of the Michigan 

State University (MSU) unproctored examination to the results of the proctored 

examination.  Both examinations are used to determine whether first time freshmen at 

MSU are ready for a standard mathematics course or if a remedial course is necessary.  In 

addition to producing higher placement examination scores, the unproctored examination 

placed students into higher level courses and a larger proportion of student who was 

placed with the proctored examination enrolled in a course at a level lower than the 

course in which they were placed.  Therefore, the first conclusion was that the 

unproctored examination produced more inappropriate placements than the proctored 

examination.  

 The second conclusion was that when the mathematics placement examination 

was considered alone, it was a significant predictor of the log odds of success in 

Intermediate Algebra (MTH1825), College Algebra (MTH103), and Calculus 1 

(MTH132).   When ACT Mathematics score, their high school GPA, the type of exam 

used for placement, whether a student enrolled in mathematics during his or her senior 

year of high school, and the last high school mathematics course taken were considered, 

the prediction of the log odds of success was improved for each of these courses. The 

additional variables improved the “hit rate” of the model containing only placement 
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examination score. In addition, the additional variables decreased the false positive rate 

of the model containing placement examination only.  Therefore, the placement 

examination alone is not sufficient for placing students into their first college 

mathematics course.   

 Thirdly, students placed into remedial mathematics less often with the 

unproctored examination.   In fact, the odds of placing into one of  MSU‟s non-remedial 

mathematics courses with the proctored examination was approximately 1.5 times greater 

than the odds of placing into a non-remedial mathematics course with the unproctored 

examination.   Therefore, placement into remedial mathematics was dependent on the 

type of examination used for placement.  

Finally, there were students who enrolled in courses lower than the level in which 

they were placed.  For example, approximately 30.8% of the students who enrolled in 

MTH103 and were placed with the proctored examination were eligible to enroll in a 

higher level course.   Approximately 45.9% of the students who enrolled in MTH103 and 

were placed with the unproctored examination were eligible to enroll in a higher level 

course. This difference in percentages was significant.   

 It is important to the validity of the placement examination as well as the 

comparability of the proctored and unproctored placement examinations to determine 

why students enroll in courses lower than the level in which they were placed. Study 

limitations are discussed and suggestions for future research are given.  
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CHAPTER 1 

STATEMENT OF THE PROBLEM 

 

Introduction 

 According to Jacobson (2006), a common requirement for obtaining a bachelor‟s 

degree is College Algebra, Statistics, or some other type of standard mathematics course.  

However, not all students have the mathematics background needed to be placed into a 

standard mathematics course during their first semester of college.  Colleges and 

universities have taken on the responsibility of deciding on the type of mathematics 

course that is most appropriate for the first time college student.  

To determine the type of course in which students should begin, some colleges 

and universities use information from students‟ academic background, others make 

decisions by using nationally standardized tests (ACT, SAT, COMPASS, etc,), yet others 

have developed their own mathematics placement examination.   All of this is done in an 

effort to give students the best chance of succeeding in their first college mathematics 

course.  In fact, Abraham (1992) conducted a study in which he found that 15 states have 

used a combination of 75 different examinations to determine placement in reading, 

writing, and mathematics.  Also in a literature review, Sawyer and Schiel (2000) found 

that approximately 90% of postsecondary institutions offer some form of placement 

examination.  Based on the scores on these examinations, students are labeled as either 

prepared or underprepared (Flores, 2007). 

 Additionally, according to Morante (1989), thousands of underprepared students 

enter American colleges not yet ready to handle college level coursework, and that 
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between one-third and one-half of all entering college students do not possess the basic 

reading, writing and mathematics skills.  In a study conducted by the American Council 

on Education (1996) it was found that approximately 17% of community college students 

and approximately 11% of students enrolled in four year public institutions were enrolled 

in remedial courses.  

 Lacking these fundamental skills may cause students to reconsider their choice of 

major.  In fact, the Center for American Institutional Data Exchange and Analysis (as 

cited in Chang, 2002) found that almost 50% of the students entering college with the 

intention of majoring in science, mathematics, or engineering change from one of these 3 

fields to another within the first 2 years.  One of the reasons given for the change in 

major was the lack of science and mathematics skills needed to persist (Chang, 2002).   

If students began in the appropriate college mathematics course, the attrition rate 

for majors in science, mathematics and engineering may be reduced.  Requiring a 

mathematics placement criterion prior to students enrolling into their first college 

mathematics course could make it more likely that those students will begin in the most 

appropriate mathematics course.    

 Morante (1987) describes placement testing as merely a means for placing 

students into an appropriate first course. Therefore, institutions that use placement testing 

use it precisely for the reason of placing students into the most appropriate first college 

course.  The most appropriate course is one that is neither too challenging nor too simple.   

 A course that is too challenging may have several repercussions, such as 

“dropping back” to a lower level course.  If the student is fortunate enough to realize 

early that the course in which he or she is enrolled in not appropriate, then the student 
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may be able to “drop back” to a lower, more appropriate course during the same semester 

and not have to spend a semester – possibly even  two- away from mathematics.  

On the other hand, the student may realize that the course is too challenging but 

persists in hope that he or she will be able to just pass the course.  Perhaps the student 

passes but does not gain the skills necessary to do well in subsequent courses.  The 

student may persist and be unsuccessful and may then be required to repeat the course. 

Either of the above scenarios could lead to the student developing a negative attitude or a 

more negative attitude toward mathematics.  Nolting (2004) noted that students‟ attitude 

toward mathematics can play a major role in their success. Furthermore, students with 

poor attitudes stop attending class, procrastinate in doing homework, or avoid taking 

math altogether.  

 Failing or withdrawing from a course could increase the amount of time needed to 

graduate.  In a study conducted by ACT (2008), it was found that less than one-half of 

students admitted to college graduate within five years. Furthermore, ACT (2002) 

reported that despite the many efforts to increase retention, graduation rates have been 

declining over the last 20 years. The National Center for Education Statistics (2010) 

determined that about 57% of first time students seeking a bachelor‟s degree and 

attending a 4-year institution full-time in 2001-2002, graduated within six years.    

 Research has also indicated how important success in mathematics can be to the 

length of time it takes to graduate from college. Seidman (2005) reported that students 

who failed College Algebra during their first term, and who were required to take the 

course at some time during their academic career, were less likely to graduate from 

college than those students who took and passed the course in their first semester. In 
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contrast, Parker (2005) found that students who were more successful in mathematics 

were more likely to be retained and graduate in four years.  

 If a student does not graduate from college, his or her earning potential could be 

significantly affected.  In 2002 the United States Census Bureau estimated that an 

average annual income of fulltime workers between the ages of 25 and 64, with a 

bachelor‟s degree, was approximately $22,000 more than the average annual income for 

fulltime workers in the same age group with a high school diploma but no bachelor‟s 

degree, and the gap was expected to widen (Cotter, 2007). 

 Incorrect placement could negatively affect what material is taught in the 

classroom or how that material is taught.  If a classroom have many underprepared 

students, instructors may spend valuable class time working with the underprepared 

students. This may result in a neglect of the quality and rigor needed for subsequent 

mathematics classes.  

 Placing students into a course that is too easy can also have a negative effect.  If 

students are placed into a course in which they feel the material has been presented in 

previous coursework, then the students may not put forth maximum effort.  Although the 

student may pass the course, he or she may not have acquired the skills necessary for 

success in subsequent mathematics courses.  Because of these consequences, placement 

into first college courses should be evaluated regularly. 

 

Unproctored Placement Examinations 

When examinations are proctored, the examinees are monitored, identities are 

confirmed, and the rules are followed.  When examinations are unproctored, examinees 
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are not monitored, and there is no way to be certain that rules are followed.  When 

examinations are proctored, there is a reasonable assumption that distractions are 

minimized (or at least the testing environment is similar for each student).  This may not 

be true of unproctored examinations.  So besides administration differences, the 

proctored and unproctored examination could differ in environmental factors.  

Institutions relying on mathematics placement examinations as tools for placing 

students into their first college mathematics course have the added responsibility of 

evaluating the effectiveness of these examinations. This becomes especially true when 

there are two examinations that purport to be a measure of a student‟s readiness for 

college mathematics, but are administered under different conditions.  Schmitz and 

DelMas (1991) suggest that, once a placement system is employed, institutions have the 

responsibility of periodically evaluating the placement system.  

If scores on an unproctored examination are going to be used in the same way as 

scores on a proctored examination, every effort should be made to verify that similar 

scores on either administration would result in similar placement as well as similar 

success in the course in which students are placed.  In addition, students with similar 

skills and similar pre-college characteristics should be placed similarly regardless of the 

type of examination used for placement.   

One concern of an examination should be its validity. Messick (1989) defines 

validity as “an integrated evaluative judgment of the degree to which empirical evidence 

and theoretical rationales support the adequacy and the appropriateness of inferences and 

actions based on test scores” (p. 13).   When an examination is given in both a proctored 

and unproctored setting, the inference is that both perform equally well and it is the 
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responsibility of the college or university to make sure that the two examinations are 

comparable. 

 

Purpose of the Study 

 The primary purpose of this study was to compare the results of the Michigan 

State University Proctored Mathematics Placement Examination (hereafter known as the 

proctored examination) to the results of the Michigan State University Unproctored 

Examination (hereafter known as the unproctored examination).  Comparing results 

mean not only comparing the scores across the two type of examinations but also the 

results of the decisions made as a result of the scores received on the two examinations.  

If significant differences exist across the examinations, this study will attempt to explain 

those differences by examining the pre-college characteristics of the students who are 

placed with the proctored examination and examining the pre-college characteristics of 

the students who are placed with the unproctored examination.   Since placement 

decisions are made as a result of the scores on the placement examinations then 

examining the results of those decisions is an important aspect of evaluating the 

effectiveness of the placement examination.  

 

Research Questions 

 This study was guided by the following research questions: 

 Q1:  Are there significant differences in the pre-college characteristics of the 

students who were placed with the proctored examination and the pre-college 
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characteristics of the students who were placed with the unproctored 

examination.  If so, what are the differences? Furthermore, after controlling for 

these differences, are there significant differences in placement examination 

scores across the two groups? 

 Q2: Are the proctored and unproctored examination functioning similarly? 

 Q3: How well does the mathematics placement examination predict success in 

students’ first college mathematics course? Furthermore, can the prediction of 

success in students’ first college mathematics course be improved using the ACT 

Mathematics score, high school GPA, the type of mathematics courses taken in 

high school, and whether or not students took a mathematics course during their 

senior year of high school? 

 Q4:  How do the grades in each course compare across different levels of 

placement examination scores? 

 

Placing students into the correct mathematics course is essential for the success of 

student.  Furthermore “it affects the morale of the students and the workload of the 

instructors; and it ultimately affects the reputation of the university” (Rodgers & Wilding, 

1998, p.203).  
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CHAPTER 2 

LITERATURE REVIEW 

 

Structure of the chapter 

 This chapter is organized into several parts.  First, there is a discussion of the 

factors that should be considered when designing or choosing a placement examination.  

This includes choice of the assessment, the content of the assessment, test validity, test 

reliability, and the examination‟s ability to discriminate between examinees.  Second, 

there is a review of students‟ pre-college variables that are related to mathematics 

placement.  These variables include ACT Mathematics score, SAT Quantitative scores   

high school GPA, high school mathematics GPA, race, gender, type of classes taken 

during high school, and whether the student took mathematics during his or her senior 

year of high school.  Third, there is a review of the factors that are related to students‟ 

success in their first college mathematics course.  These factors include ACT 

Mathematics score, SAT Quantitative score, high school GPA, high school mathematics 

GPA, mathematics placement examination scores, race, and gender.  Fourth, there is a 

discussion of the methods used to assess the validity of placement examinations.  These 

methods range from placement validity to validating cut scores.  Fifth, there is a review 

of some specific placement practices used by various colleges and universities to place 

students into their first college mathematics course.  Finally, there is a discussion of 

proctored and unproctored examinations.  This discussion includes situations in which an 

unproctored examination is appropriate and methods for comparing results of 



  

9 
 

 

unproctored examinations to the results of proctored examinations to determine if the 

results are comparable.   

 

Selecting a Mathematics Placement Test 

 When deciding on a mathematics placement examination, institutions have the 

option of using a nationally standardized assessment (i.e., COMPASS, ACCUPLACER, 

ACT scores, SAT scores, etc.,) or a locally designed assessment (i.e., a placement 

examination designed by the university).  There are advantages and disadvantages of 

each.  For example, one of the more obvious advantages to using a locally designed 

assessment is that its content may more closely resemble the course and the curriculum of 

the department (McDonald, 1989).  Burton and Ramist (2001) believed that locally 

developed exams are customized to the institution‟s curriculum, student demographics, 

and the institution‟s standards.  

One disadvantage to using a locally designed assessment is that mathematics 

faculty may not be trained in the design and validation of tests and, therefore, there is a 

greater temptation to ignore periodic reviews of the assessment (McDonald, 1989).   This 

is important because alternate forms are an important part of testing and retesting and 

most faculty either do not have or do not use the level of psychometrics required to 

review these assessments in the appropriate manner (Morante, 1987).  Ebel and Fisbie 

(1986) found that locally developed assessment tend to have low reliability. 

 One of the advantages of using standardized tests is that they tend to have high 

reliability; often 0.9 or higher (McDonald 1989).    .   
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When deciding on whether to use a standardized examination or a locally 

designed examination for placement, Morante (1987) recommends that the following 

nine factors be considered: 

 Test content. With respect to a mathematics placement test, arithmetic 

and elementary algebra are essential components. Arithmetic exercises 

should be both problem solving and word problems and make use of 

fractions, decimals, and percents.  While algebraic exercises should 

also include problem solving and word problems, they should also 

include linear equations involving numeral, fractional, and literal 

components.  

 

 Criterion reference. Levels of difficulty and proficiency should be 

established by faculty judgments of what students should know. 

 

 Discriminatory power. Discriminate accurately among students along a 

continuum of proficiencies.  

 

 Speededness. Time limit should be such that 100 percent of the students 

can complete at least 75% of the items and 90% of the students can 

attempt all the items 

 

 Reliability. Test-retest and split half are methods most often used. 

Reliability should be at least 0.90. 

 

 Validity. Content, concurrent, and predictive.  
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 Guessing. Guessing can inflate scores.  Provisions should be made to 

reduce the effects of guessing.  

 Alternate forms. Every placement examination should have an alternate 

form for retesting or post-testing 

 Cost. Includes cost of materials, cost to administer, and cost to score.  

 

When deciding on a placement examination it is clear that 1) faculty need training 

in test design, test validation, and psychometrics if they are going to design a local 

assessment and 2) whether local or standardized, there are important guidelines to 

consider. 

 

Pre-college Variables Affecting Mathematics Placement 

Pre-college variables are factors such as high school rank or high school grade 

point average, type of mathematics courses taken in high school, grades earned in high 

school mathematics courses, taking mathematics during senior year of high school, and 

standardized achievement tests such as the ACT or SAT.  When placing students into 

their first college mathematics course, these pre-college variables can each have an 

isolated effect on placement or can be put together to have a combined effect on 

placement.   Either way determining how these pre-college variables effect placement 

may not be a simple task.  

   Hudson (1989), Matthew-Lopez (1989), Pugh and Lowther (2004), and Hill 

(2006) found strong correlations between ACT Mathematics scores and scores on locally 

developed mathematics placement examinations.  Mathew-Lopez (1989) conducted a 

study using 200 students who took the Ohio University mathematics placement 
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examination  and found the correlation between ACT Mathematics score and scores on 

the mathematics placement examination is r(198) = 0.767 (p <.01).  In their study of 920 

students at Auburn University, Pugh and Lowther (2004) found a correlation of 0.682 

and, in his study of 2386 students at Michigan State University, Hill (2006) found a 

correlation of 0.647.  Even for “high risk” students, Pugh and Lowther (2004) found a 

significant correlation between ACT Mathematics scores and mathematics placement 

examination scores of 0.506. Pugh defined „high risk” students as students who did not 

take mathematics during their senior year or go beyond algebra II.  

Wattenbarger and McLeod (2008) conducted a study of 605 first time college 

students in which they correlated scores on the mathematics portion of the ACT and SAT 

with grades earned in first college mathematics courses and found that over half of the 

correlations were negative and only two of the positive correlations were above 0.5.  

When Hill (2006) examined his data further, he found that students who earned a 

grade of B or better in AP Calculus improved their placement examination score (beyond 

what was predicted by their ACT Mathematics score); some of the improvements were 

statistically significant while others were not. Hill also found that students who received 

an A- or better in FST (functions, statistics, and trigonometry) received significantly 

higher placement examination scores than what was predicted by their ACT Mathematics 

scores. Overall, students who took challenging high school mathematics course were 

more likely to increase their placement score beyond what was predicted by ACT 

Mathematics score alone.  

Pugh and Lowther (2004) also found significant correlations between high school 

GPA and scores on a mathematics placement examination (r(2384) =0.462, p < .001) and 
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students who had higher high school GPAs tend to receive higher placement examination 

scores. They also found that students who had  high GPAs and no mathematics course 

during the senior year of high school resulted in lower placement scores than students 

who had high GPAs and were enrolled in mathematics during their senior year of high 

school.    

 Hill (2006) looked at students who placed into remedial mathematics and found 

that taking a mathematics course during senior year of high school was not enough to 

increase placement.  He found that 18.4% of the students in the remedial mathematics 

course had taken a mathematics course during their senior year of high school. However 

these students either took a non-algebraically demanding course (below algebra II) or 

took an algebraically demanding course (above algebra II) and received a low grade (less 

than a C). 

Matthew-Lopez (1998) developed a model to predict math placement examination 

score in an effort to circumvent the use of a placement test.  She found that both high 

school percentile rank and ACT Mathematics score were correlated with math placement 

scores and together, they significantly predicted scores on the placement examination.    

Prior research suggests that although universities are using placement 

examination scores, variables such as ACT Mathematics scores, high school GPA, type 

of mathematics course taken during high school, and taking mathematics during senior 

year of high school should also be considered when placing students.  
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Predictors of Success in First College Mathematics Course 

 Determining factors that predict success in mathematics can also be a very 

difficult process. First there are the factors that precede students‟ enrollment into their 

first college mathematics course. These factors include high school background, ACT 

Mathematics scores, and SAT Quantitative scores. These factors have been found to 

produce an isolated effect as well as a combined effect.  

 Pugh and Lowther (2004) examined the individual correlation of high school 

GPA, high school math GPA, ACT Mathematics scores, and SAT Quantitative scores on 

grades in first college mathematics courses.  They found all of these pre-college factors to 

be significantly correlated with grades in first college mathematics courses with the 

highest correlation occurring between high school math GPA and grade in first college 

mathematics course.  They then proceeded to construct a regression model and found that 

both high school mathematics GPA and math placement test accounted for 25% of the 

variation in first college mathematics course grade.  Furthermore, the mathematics 

placement test significantly added to the prediction of course grade beyond the prediction 

using only high school mathematics GPA. However, when the “at risk” students were 

examined not only did the strength of the relationships with the dependent variables and 

first college math course grade decrease, but placement examination scores no longer 

added to the prediction of first college mathematics grade beyond high school 

mathematics GPA.  

 Nelson and Leganza (2006) looked at the relationship between several pre-college 

factors and grade in first college mathematics course for three different courses: liberal 
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arts mathematics, applied calculus, and theoretical calculus.  They found that high school 

GPA, gender, SAT Quantitative score, high school class rank, and SAT verbal score were 

significant predictors of grades in the liberal arts mathematics course.  However, for the 

applied calculus course, only SAT Quantitative score, high school GPA, and gender were 

significant predictors of course grade.  For theoretical calculus, the logistic regression 

model produced significant effect from high school GPA, SAT Quantitative score, and 

type of institution (public or private), but there was no gender effect.  They also found 

that gender became less significant for higher level math courses.  High school GPA was 

more significant for applied calculus and less significant for liberal arts mathematics.  

Using information from 266 first time freshmen enrolled in a College Algebra 

course, Rodgers and Wilding (2006) developed a regression equation to predict final 

course grade. They found that the best model to predict grades in College Algebra used a 

combination of pre-college variables: algebra placement score, percentile rank, and SAT 

Quantitative score.   

Hudson (1989) conducted a study involving 1854 students and found neither the 

ACT subscores nor the ACT composite score to be significantly correlated with final 

grades in students‟ first college mathematics course. However, when Hudson performed a 

multiple regression analysis, she found that ACT-M to be a significant predictor of final 

grade in only one of the three math courses included in the study.   

Bridgeman and Wendler (1989) studied a total of nine different algebra and pre-

calculus courses at several universities and found that SAT Quantitative scores 

significantly improved prediction of course grade. They also found that the gender of the 

student improved the prediction of course grade above SAT Quantitative scores alone, 
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but gender had no increased effect in three of the courses where both SAT Quantitative 

and high school GPA were used as predictors of course grade.  At one college, adding the 

experience score (the highest level mathematics course taken in high school) to SAT 

Quantitative and high school GPA significantly improved the prediction of course grade. 

At another college, when high school GPA and placement test were considered together, 

there was a greater effect on course grade than each of high school GPA and SAT 

mathematics considered alone.  

Armstrong (2000) developed a model to predict course grade using mathematics 

placement score, student‟s situational variables (employment hours, support for attending 

school, financial aid, part-time ore full-time attendance, and family responsibilities), 

dispositional variables (cognitive, behavioral and affective traits), and instructor 

characteristics (instructor grading practices, full-time instructor, part-time instructor) and 

found that instructor characteristics accounted for the greatest variation in course grade. 

Armstrong also found that placement exam score was not a significant predictor of course 

grade for courses with full-time faculty members and believed that the interaction of 

instructor characteristics and student characteristics may explain the lack of the effect of 

the placement exam on course grade.  

Gupta, Harris, Carrier, and Caron (2006) did not use placement scores to predict 

course grade. Instead, they used students‟ demographic information (sex, race, and 

college major), factors that could impact study time (number of hours employed per 

week, other coursework, number of children at home), academic background (number of 

high school math courses, number of year since last math course was taken),student 

learning behaviors (class absences and number of hours of tutoring), students‟ attitude 
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toward mathematics, and students‟ course experience (type of technology used, instructor 

rank, number of times per week that course met).  The final model indicated that older, 

male students, who are taught by lower ranked instructors,  have positive attitudes, have 

taken a high number of high school mathematics courses, and have missed fewer classes 

are more likely to receive better course grades.  All of this supports that no single 

measure should be used when placing students into their first college mathematics course.   

 

Validating Placement Examinations 

 McDonald (1989) and Schmitz and Demas (1991) offered a set of guidelines for 

validating placement examinations. McDonald suggested that department faculty 

examine the items to make sure the items relate to the curriculum.  Additionally, a sample 

of students should be tested, descriptive statistics computed, and the distribution of the 

scores from the sample should agree with what is expected.   McDonald also suggested 

that the scores from the placement examinations should be correlated with one or more 

suitable criteria.  McDonald says caution should be used when using end of course grades 

as a criterion because “grades are a composite measure of achievement that tend to vary 

greatly across instructors (pg 22).”  The guidelines presented by Schmitz and DelMas 

(1991) focused on improving the criterion – related validity of the placement 

examination.  

 Schmitz and DelMas (1991) developed a set a guidelines for validating placement 

examinations.   First evidence that the placement examination contributes to the 

prediction of course grades needs to be gathered before placement recommendations are 

put into effect.  Otherwise, decisions made after students have been placed are 
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confounded.  Second, multiple regression, rather than correlation, is the preferred 

approach to judging the predictive validity of placement examination scores.  

Furthermore, it is suggested that the incremental validity of the examination be assessed.  

Incremental validity refers to the unique contribution an examination makes to a 

prediction equation and thus an examination is said to be valid if it produces a significant 

increment in the predictive accuracy over other entry level data (Schmitz and DelMas, 

1991). Third, cutscores should be considered.  Cutscores should be set so that the 

maximum number of correct decisions is made. 

In 1969, Shevel and Whitney wanted to determine if the mathematics placement 

examination offered sufficient improvement in the prediction of college mathematics 

grades to warrant its addition to a college testing program.   Additionally, they wanted to 

compare the predictive validity of the mathematics placement examination to that of ACT 

scores and high school mathematics grades for classes that differed in average math 

ability and classes that covered different types of material. They concluded that the 

addition of the mathematics placement examination improved college mathematics 

grades predictions over ACT scores and high school mathematic grades.  Also, the 

improvement was greater for higher level courses.  

 Pugh and Lowther (2006) developed a regression equation and found that the 

placement test significantly added to the predictive power of the regression equation; 

beyond high school math GPA.  However, when using students that were categorized as 

“at risk” the placement examination did not significantly add to the predictive power of 

the regression equation; beyond high school math GPA. 
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Other researchers have examined the cut scores as a way of supporting the 

validity of a placement test. Slark et al. (1991) examined the final grades of students 

scoring above and below the cut score across three different math courses: elementary 

algebra, elementary algebra review, and Intermediate Algebra. They found that of the 

students in elementary algebra, 48% of those scoring above the placement test cut score 

were successful compared with 41% of those scoring below the placement test cut score. 

Of the students in elementary algebra review, 62% of those scoring above the placement 

test cut score was successful compared with 47% of those scoring below the placement 

test cut score. Of the students in Intermediate Algebra, 65% of those scoring above the 

placement cut score were successful in the course compared with 58% of those scoring 

below the placement cut score. A successful student was defined as a student who 

received a grade of C or higher in the course.  

  Gabe (1989) examined the academic achievement of students who scored below 

or just above college level on a math placement examination and who did not enroll in a 

college preparatory (remedial) mathematics course at Broward Community College.  A 

score of 12 or more resulted in placement into a college level mathematics course. Gabe 

defined just above college level placement as receiving a score of 12 or 13 on the 

placement test.  Of the 1986 cohort who enrolled in college level mathematics 

(MAT1033), 60% were not successful.  Furthermore, approximately 70% of the student 

who scored just above the cut score did not successfully complete MAT1033 within 7 

terms.   

 Gabe also found that approximately 61% of the 1987 cohort who enrolled in 

MAT1033 with scores of 13 or below was not successful.  Furthermore, approximately 
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85% of the students who scored just above the cut score did not successfully complete 

MAT1033 in 4 terms.  

 In his dissertation, Cotter (2007) examined the cut scores of a mathematics 

placement examination by computing the odds of success for different cut scores in three 

different courses at Georgia State University: Math Modeling for Non-Science Majors 

(Math1101), College Algebra (Math1111), and Pre-Calculus (Math1113).   When 

defining success in first math course as receiving a course grade of D or better, Cotter 

found that of the students who met or exceeded the cut score for placement Math1101, 

Math1111, or Math1113 were approximately 2 times, 3.5 times, and 2 times more likely 

to be successful than those students who scored below the cut scores for placement into 

those courses. When defining success as receiving a grade of C or better, students who 

scored above the cut score for placement into the same courses were approximately 2 

times, 3 times, and 1.5 times more likely to be successful than students who scored below 

the cut score. In both cases, those who scored above the cut score had a greater 

probability of being successful in the course than those students who scored below the cut 

score. 

 Sawyer (1989) developed placement validity indices based on logistic regression 

methods for determining course placement.  Logistic regression can be used to estimate 

the conditional probability that a student would be successful in a course given the 

student‟s score on a given predictor variable. Using these conditional probabilities of 

success, the placement validity indices are computed. The validity indices are based on 

the following four possible estimated outcomes of a give cut off score  
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 True positive: A student who is predicted to pass the course actually passes the 

course. (correct decision) 

 False positive: A student who is predicted to pass the course actually fails the 

course. (incorrect decision) 

 True negative: A student who is predicted to fail the course actually fails the 

course. (correct decision) 

 False negative: A student who is predicted to fail the course actually passes the 

course. (incorrect decision) 

 Ang & Nobel (1993) used these four decisions to compute the following two 

indices: accuracy rate (AR) and change in accuracy rate (AR). AR is the proportion of 

students for whom the correct decision would be made using the cutoff score and the 

success criterion. The optimum cut off score will be the score for which the conditional 

probability of success is approximately 0.5. This cut off score is where the maximum AR 

will be attained.  AR is the difference between the maximum AR and the “base line” 

AR – the proportion of correct decisions associated with using the lowest possible cutoff 

score.   

 Matthews-Lopez (1998) used a cross validation technique to assess the validity of 

a mathematics placement examination.   First a simple random sample of 200 students 

was drawn from a population of 3200 students who took the mathematics placement tests.  

Second, a multiple regression equation was developed using the scores from the 

placement examination as the dependent variable and ACT Mathematics exam and high 

school percentile rank as the independent variables.  Third, an independent sample of 200 

students was drawn from the same population and the multiple regression equation was 
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used to predict scores on the placement test for this independent sample of students. The 

results of the comparison between predicted and actual placement level (for either data 

set) agreed in approximately 55% of the cases.  Of the remaining 45%, recommended 

placement was lowered in 18% of the cases and in about 8% of the cases, the placement 

was raised.  

 The above research establishes that the validation of placement examinations 

should be an ongoing process and should consist of a combination of approaches.  These 

approaches range from establishing the predictive validity of the examination to 

validating the cut scores to establishing the consistency of examination results for 

comparable groups to examining the decisions that are made as a result of the scores.   

 

Unproctored and Proctored Examinations 

 There is extensive research on online unproctored examinations.  Some of the 

advantages are the reduction in the number of computers and manpower needed to 

administer the test (McCloy, 2008; Sticha and Barber, 2003). Additionally, there is the 

reduction in travel costs for the test taker as well as the expansion of the applicant base 

(McCloy, 2008).  One of the more serious disadvantages is the increase likelihood of 

cheating. 

 Proctored testing is most relevant when the examination is high stakes (Rovai, 

2001).  However, if the examination is not high-stakes then an unproctored examination 

may be appropriate because students may not be motivated to cheat.  Kennedy, Nowak, 

Raghuraman, Thomas, and Davis (2000) reported that cheating was more likely to occur 

doing online tests than on tests that were administered face to face.  However, another 
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study, Charlesworth, Charlesworth, and Vlica (2006) reported that cheating was no more 

likely to occur in online examinations than on examinations administered in a face to face 

setting.  

 Harmon, Lambrinos, and Kennedy (2008) developed a model to predict the scores 

on an unproctored economics final examination.   In order to detect cheating they used 

the model for the proctored examination to predict the final examination score for the 

unproctored examination.   Harmon et al believed that if the class which took the 

unproctored examination had many students whose predicted score was far from their 

actual score, this would be an indication that cheating has occurred.   

Davies, Norris, Turner, and Wadlington (2005) conducted an analysis of an 

unproctored administration of The Hogan Personality Inventory. They believed that if 

cheating was occurring then it would manifest itself as near perfect assessment scores.   

However, they did not find enough evidence to support cheating across administrations. 

If examinations are given online as an unproctored examination it should be assumed that 

the test items and scores may be compromised (Sticha and Barber, 2003).  To minimize 

the negative consequences of the potential compromised information, procedures must be 

put in place. 

Examples of such procedure would be to use items that have been retired from 

previous forms of an examination, administer the items in an adaptive format, have an 

extensive item pool, have ongoing item development and calibration, or verify the results 

with additional assessments under supervised conditions (McCloy, 2008). 

Sticha and Barber (2003) describe a verification process associated with the 

administration of an unproctored online version of the Armed Services Vocational 
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Aptitude Battery (ASVAB).   When an examinee takes the unproctored internet version 

of the ASVAB, they must have their scores verified by going to a Military Enlistment 

Processing Station (MEPS) and taking a short verification test; maybe less than 15 

minutes. If the examinee does not pass this verification test, he or she would be forced to 

retake the complete test.  If a verification process is used, this fact must be made clear to 

the examinees. Otherwise too many people will fail the verification process (Sticha and 

Barber 2003).   

 Rueda and Sokolowski (2004) compared the results of an unproctored placement 

examination to the results of previous monitored examination.  They found no difference 

in the percentages of students who placed into the various mathematics courses.  

 Schumacher and Smith (2008) conducted a study in which they compared the 

scores of a proctored paper and pencil mathematics placement test (given in 2004) to the 

scores of an unproctored online test (given in 2005).  They found that scores on the 

unproctored placement examination was significantly higher than scores on the proctored 

placement examination.  However, they noted that students who took the unproctored 

placement examination had – on average – higher SAT Quantitative scores than students 

who took the proctored placement examination (576.81 unproctored vs. 568.58 

proctored).  Thus there is an implication that students who took the unproctored 

examination had higher mathematics ability than those who took the proctored 

examination the previous year and therefore the higher placement scores should be 

expected.  

Finally, Schumacher and Smith (2008) develop a logistic regression model using 

placement into remedial math as the dependent variable and SAT verbal, SAT 
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Quantitative, placement test scores, and high school GPA as independent variables. The 

2005 values were substituted into the model that used the 2004 data. This resulted in a 

prediction accuracy of approximately 94%.   

Davies and Wadlington (2006) compared scores on The Hogan Personality 

Inventory (HPI) across proctored and unproctored settings.  They compared the means, 

standard deviations, and coefficient alpha reliabilities of each personality scale across the 

two groups (proctored and unproctored). Although they found that the unproctored 

administration of the assessment resulted in significantly higher means on four of the 

scales, the effect sizes were small.  Davies and Wadlington also conducted a DIF analysis 

and found that at least one item with significant DIF was found on each scale and four of 

the seven scales had more items with significant DIF across the two groups than would 

be expected by chance.   

The above studies indicate that determining if an unproctored examination and a 

proctored examination are comparable, there mean scores can be compared and a DIF 

analysis can be conducted to see if items and functioning differently across examination 

types.  To protect against cheating, a verification process can be implemented.  This 

verification process can increase the validity of the unproctored examination. One vital 

piece of information that is missing is the examination of the course outcomes once 

students are placed by each type of examination.  

 Mathematics Placement Procedures 

 Colleges and Universities vary in the procedures used to place students into their 

first college mathematics course. These colleges and universities vary in the type of 

placement test used and how placement decisions are made.  For example, Odell and 
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Schumacher (1995) developed a formula for placing students into their first college 

mathematics course: 2*placement test score + Math SAT score.  At the time this equation 

was developed, this particular university was using a test designed by the Mathematics 

Association of America.  

 At St. Olaf College, students choose one of three different placement exams.  This 

choice depends on the student‟s academic plans. Using placement test scores and a large 

number of regression equations, students were placed into courses in which they would 

have a high probability of being successful (Flores, 2007).  

 A placement process described by Krawczyk and Toubassi placed students into 

their first mathematics course according to their score on one of two placement 

examinations and other factors such as high school GPA (as cited in Rueda and 

Sokolowski 2004).  

 To understand the similarities and differences of the current placement systems at 

various United State Colleges and Universities, a non scientific study was conducted in 

which information was gathered about the placement procedures at a sample of 50 

colleges and universities.  These institutions responded as follows: 

 17 schools indicated that they currently administered a placement examination 

developed by the Mathematics Department. 

 5 schools indicated that they use ACT Mathematics scores or SAT Quantitative 

scores to determine initial placement.  If the students would like to improve their 

placement, they must take a placement examination designed by the Mathematics 

Department.   
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 12 schools indicated that they offer the placement exam only in an unproctored 

setting. 

 7 of the schools indicated that the results of the placement test were used as 

recommended placement and students were allowed to enroll in a course at a 

level higher or lower than what was indicated by their placement exam score.  

 10 of the schools indicated that they use a combination of placement exam scores 

and high school information to place students into their initial mathematics 

course 

Procedures for placement vary across universities.   Some universities place students 

using nationally standardized examinations, others use their own examination, and others 

use a combination of variables.   Some universities use proctored examinations, others 

use unproctored examinations, and others use a combination of the two.  Some allow 

multiple attempts and others allow only a single attempt.   Whatever the case may be, 

these procedures need to be evaluated regularly and modified if necessary.  

 

MSU Mathematics Placement Examination 

 Approximately 7000 first time college students enter Michigan State University 

(MSU) each fall with hopes of obtaining an undergraduate degree some years later.  To 

graduate from MSU, each student must fulfill certain university requirements. These 

requirements consist of a series of courses which students must complete regardless of 

the major they have chosen.  Among these courses are choices of several mathematics 

courses.  In order to determine the most appropriate beginning math course, most 

students must take the MSU mathematics placement examination.  The results of the 



  

28 
 

 

examination are used to determine the most appropriate course mathematics course in 

which students must begin.  

 

Description of the Michigan State University Mathematics Placement Examination 

Figure 1 shows the structure of the MSU Mathematics Placement Examination. 

The placement examination was designed by the MSU Mathematics Department.  The 

examination consists of a total of 28 multiple-choice items.  There are about 14 different 

versions of each item thus allowing for multiple forms. An examinee begins with a group 

of 14 items (Group A).   These initial 14 items are pre-calculus items. The examinee 

received 1 point for a correct answer and 0 points for an incorrect answer.  If the 

examinee responds to 8 or fewer of these items correctly, the examinee is given another 

group of 14 algebra items (Group B).  A correct response to a group B item is worth ½ 

point while an incorrect response is worth 0 points.   The score from group B is added to 

the score from group A and this sum is rounded up to the next integer.  This score is the 

examinee‟s total score on the placement examination and is used to determine the highest 

level course in which the student will be allowed to enroll.   Examinees who go from 

group A to group B, can receive a maximum score of 15.  

If an examinee responds to 9 or more of the initial 14 items correctly, the 

examinee is given another group of 14 items (Group C) that contains algebra, 

trigonometry, and precalculus items.   A correct response is worth 1 point and an 

incorrect response is worth 0 points.   The score from group A is added to the score from 

group C and this sum is the examinee‟s total placement examination score.  Thus an 
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examinee that goes from group A to group C will have a total placement examination 

score between 9 and 28.  

  

 

 

 

 

 

 

 

 

 

 

Figure 1. Structure of the MSU Mathematics Placement Examination 

 

  

Group C 

14 algebra, trigonometry, and pre-

calculus items 

1pts each 

 8 or less  9 or more 

Group A 

14 pre-calculus items 

1pt each 

 

Group B 

14 algebra items 

½ pt each 
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Placement 

Based on the total score, students are placed into one of five levels of courses. 

These levels are described below.  A description of the courses is given in appendix A. 

Each course is a one semester course. The levels are a modified version of the tiers used 

by Hill (2006). 

 

Level 1: Intermediate Algebra (MTH1825).  This is the university’s remedial 

mathematics course. The credits received in this course do not count toward a 

student’s degree but it is included in the calculation of a student’s GPA.  

 

Level 2: College Algebra (MTH103) or Finite Mathematics and Elements of 

College Algebra.   Students who enroll in MTH103 must take at least one 

additional math course above MTH103 to satisfy the university mathematics 

graduation requirement. MTH103 is worth 3 credits and MTH110 is worth 5 

credits.  The credits received in any of these courses count toward the minimum 

number of credits needed to obtain a degree.  Placement at this level requires a 

minimum placement examination score of 10.  

 

Level 3: College Algebra and Trigonometry (MTH116). This 5 credit course is 

intended to prepare students for technical calculus. The credits received in this 

course counts toward the minimum number of credits needed to obtain a degree.  

Placement at this level requires a minimum placement examination score of 12.  
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Level 4: Finite Mathematics: Applications of College Algebra (MTH112), Survey 

of Calculus 1(MTH124), Elementary Mathematics for Teachers (MTH201) or 

Statistical Methods (STT200 or STT201).  MTH112, MTH124, MTH201, and 

STT200 are each 3 credits and STT201 is 4 credits. The credits earned in any of 

these courses do count toward the minimum number of credits needed to obtain a 

degree.  Placement at this level requires a minimum placement examination score 

of 15.   

 

Level 5: Calculus 1 (MTH132).  This 3 credit course requires a minimum 

placement examination score of 19.   

 

The MSU mathematics placement examination is offered as a proctored 

examination or as an unproctored examination.  Students are required to complete the 

examination before enrolling in classes at MSU or before their MSU Academic 

Orientation Program (AOP) session; whichever occurs first.  Students who decide to take 

the proctored examination can do so at AOP or by making arrangements at one of several 

MSU extension offices.  Students who decide to take the unproctored examination can do 

so from any location that has full internet access.  Students can attempt the mathematics 

placement examination up to three times, but can only take the proctored examination 

once.  Students must wait at least four weeks between each attempt.  If students attempt 

the placement examination more than once, the highest score obtained will be used to 

determine placement.  Any student receiving a minimum score of 19 – on the proctored 

examination - will be given credit for the university‟s mathematics requirement.  
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Who Must Take the Mathematics Placement Examination? 

 While most first time college freshmen are required to take the mathematics 

placement examination, there are a few exceptions. According to the MSU Mathematics 

Placement Service any students falling into any of the following categories are not 

required to take the mathematics placement examination:  

 Students with credit in at least one of the following: MTH103, MTH116, 

MTH124, MTH132, MTH133
1
, MTH234

2
 or any math course above MTH234. 

 Students who have already been granted Advanced Placement (AP) Mathematics 

credits for calculus before their Academic Orientation Program (AOP).  

 Students who have ACT Mathematics scores of at least 28 or SAT Quantitative 

scores of at least 640 and who will be taking math at MSU. 

 

Summary 

This chapter points out several ideas.  First, predicting mathematics placement as well 

as success in first college mathematics course is a very complex task. Using high school 

background information can be difficult because high school transcripts are difficult to 

interpret.  In addition, predicting student‟s grades in their first college mathematics 

course using pre-course information can be difficult because of student‟s situational 

factors, dispositional factors, and even variability in instructors‟ grading pattern that take 

effect once students enroll in the course.  

Second, because of the important decisions that are made as a result of the placement 

examination, it is important that the validity of the examination be assessed regularly.   

                                                   
1
 Calculus II: Integral Calculus 

2
 Calculus III: Multivariate Calculus 2
 Calculus III: Multivariate Calculus 



  

33 
 

 

This includes assessing the predictive validity of the examination, examining cut scores, 

and investigating false positives.  

Lastly, “how a test is administered can also significantly affect student‟s scores and 

therefore test validity” (Akst and Hirsh, 1991, p4).   Therefore, it is important that the 

scores across the different type of examinations be compared.  If the scores are found to 

be different, then finding reasons for the difference is the only next logical step.  

What is missing from the research on proctored and unproctored examination is the 

investigation of the course outcomes for each course in which students are placed into as 

a result of the each type of examination.  This study will add to the body of research by 

investigating these course outcomes.      
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CHAPTER 3 

METHOD 

 

This chapter describes the study‟s design and research methodology. First there is 

a brief description of the design of the study, followed by a description of how the sample 

was determined.  Second, there is an overview of the data collection process. This 

includes where the data was obtained, how the data was coded and a description of the 

variables created for this study. Finally, the methods of data analysis, for each research 

question, are introduced.   

 This study takes placed at Michigan State University (MSU); a public research 

university located in the northeastern part of the United States with a total student 

population of approximately 47,000.  Each year, the university accepts approximately 

7000 new freshmen.  Many of these students are required to take a mathematics 

placement examination prior to enrolling in any mathematics course.  Students have the 

option of taking a proctored examination or an unproctored examination. Hence the 

opportunity to evaluate the effectiveness of each type of examination presented itself. 

 

Design 

The study‟s general design is an ex post facto, quasi-experimental design with 

two non- randomized groups. The participants were divided into two groups according to 

the type of examination that was used as placement. The first group was the group of 

students who were placed with the proctored examination.  This group consisted of 598 

first time college freshmen who enrolled in mathematics during fall semester 2008.  The 
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second group was the group of examinees who were placed with the unproctored 

examination.  This group consisted of 4382 first time college freshmen who enrolled in 

mathematics during fall semester 2008.  

 

Sample 

 Because of the small number of students who were placed with the proctored 

examination, the entire group of 598 students was used in this study.  To determine the 

minimum sample size needed for the group of students who were placed with the 

unproctored examination, the following formula was used 

 

                                                       
        

  
                 ( 1) 

Where  

n is the minimum sample size 

z-score is the standard normal score that cuts off the top (1 – desired confidence level) 

area of the normal curve 

p is the estimated proportion of the attribute that exists in the population (for this study, 

the attribute was the proportion of students who were successful in their first college 

mathematics course) 

e is the level of precision 
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 For this study, a confidence level of 95% was used with a precision level of 3%.  

Since the variability was unknown, p =.5 allowed for maximum variability. Thus, the 

minimum sample size needed was computed as  

  
                   

       
      

 The students in the unproctored group were placed in alphabetical order (by last 

name) and a systematic random sample was taken using every 4
th

 student.  This 

procedure produced a sample of 1098 students from the unproctored group.  Table 1 

gives the demographics for the sample of students used in this study.  

 

Table 1 

Distribution of Race and Gender for Proctored and Unproctored Data 

       Group 1 

(Proctored) 

Group 2 

(Unproctored) 

Male 47.32% 44.08% 

Female 52.68% 55.92% 

White 66.56% 75.77% 

Black 17.39% 8.11% 

Asian 2.85% 5.10% 

Hispanic 1.84% 3.01% 

American 

Indian 

0.50% 0.73% 

Not 

indicated 

10.87% 7.29% 
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Data Collection 

 Data was collected from students‟ college and high school transcripts obtained 

from the Michigan State University Registrar‟s Office.  The registrar‟s office was asked 

to alphabetize the list of students in group 2 and take a systematic sample of every 4
th

 

student.  The registrar‟s office then provided a file that contained information for all 

students in group 1 and the selected students from group 2.  The file contained each 

student‟s mathematics placement examination score, ACT Mathematics score, type of 

examination used to place the student (proctored or unproctored), first college 

mathematics course, grade in first college mathematics course, gender and race.  

 The registrar‟s office then provided the high school transcripts of the students 

who were selected for this study.  Taken from these transcripts were students‟ high 

school mathematics courses from ninth grade through twelfth grade and the grades 

received in each course.  These grades were used to compute each student‟s mathematics 

GPA.  This information was added to the file received from the registrar‟s office.   

 

 Letter Grade Conversion 

 The grading system varied across high schools.  For example, some high schools 

graded students using only the traditional letter grades: A, B, C, D, and F.  In addition to 

these traditional letter grades, other high schools used grades of A+, B+, C+, and  D+. 

Additionally, some high schools gave grades of A-, B-, C-, and D-.  Instead of letter 

grades, some schools awarded number grades.  Some school awarded grades on a four 

point scale (4.0, 3.0, 2.0, 1.0, 0.0) while others included half grades (3.5, 2.5, 1.5) as well. 

Some school awarded grades that were not included in the calculation of students‟ GPA 
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(P = Pass, CR = Credit, NC = No Credit). These grades were not included in the 

calculation of students‟ mathematics GPA.   

 High schools also varied in the quality points awarded to each letter grade. For 

example, at one high school a B+ grade was awarded 3.5 points while at another high 

school a grade of B+ was awarded 3.33 points. Yet another high school awarded 3.30 

points for a grade of B+.  

 Quality points also varied within high schools. Within schools, a grade of B 

received for an honors course was awarded more quality points than a B grade in a non-

honors course.  However, for this study, grades earned in an honors course were given the 

same quality points as similar grades earned in a non-honors course. 

 To develop a letter grade to number grade conversion table, each letter grade was 

converted to a range of quality points and the midpoint of the range was used as the point 

value for that letter grade. The range of quality points was determined from an analysis of 

the high school transcripts.  The analysis of the transcripts revealed that the lowest 

quality points awarded to a grade of C- was 1.67 while the highest quality points awarded 

was 1.75.  For the next highest grade, C, every high school awarded 2 points. So the 

quality point range for a C- was 1.67 to 2.00 (including 1.67 but not including 2.00). The 

midpoint of this range is 1.84 and this value was use as the point value for a grade of C-. 

The point value for the other letter grades was computed similarly. Table 2 lists the 

quality point range and the value used as the point value for each letter grade 
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Table 2  

Letter Grade Conversion Chart Used to Compute Students’ High School Mathematics 

GPA 

GRADE 

QUALITY 

POINT 

RANGE VALUE GRADE   

QUALITY 

POINT 

RANGE  VALUE   

A+ 4.30 +  4.30 C  2.00 - 2.30 2.15 

A  4.00 - 4.30 4.15 C- 1.67 - 2.00 1.84 

A- 3.67 - 4.00  3.84 D+ 1.30 - 1.67 1.49 

B+ 3.30 - 3.67 3.49 D  1.00- 1.30 1.15 

B  3.00 - 3.30 3.15 D- 0.67 - 1.00 0.84 

B- 2.67 - 3.00 2.84 F 0 - 0.67 0.34 

C+ 2.30 - 2.67 2.49 

    

 

Definition of Pre-college Characteristic Variables 

 For this study, there were several pre-college characteristic variables. One 

variable was students‟ high school grade point average (HSGPA).  This continuous 

variable was included with the data file that was received from the MSU registrar‟s 

office.  Because some schools award grades above 4.0, several students had high school 

GPAs greater than 4.0 

 Another pre-college characteristic variable was students‟ high school mathematics 

grade point average (HSMGPA).  This continuous variable was constructed by 

converting the letter grade received in each mathematics course to its corresponding point 

value using table 2.  These values were then averaged to produce a HSMGPA for each 

student.  Some students were enrolled in one mathematics class for an entire school year 

while others were enrolled in one mathematics class during the first semester and a 
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different mathematics class during the second semester.  Students who were enrolled in 

one class for an entire school year usually had two grades recorded on their transcripts: 

one grade for semester 1 and another grade for semester 2.  When this happened, both 

grades were used in the calculation of HSMGPA.   

  The course in which a student was enrolled at each grade level was used as a 

variable. The variable MATH9S1 and MATH9S2 represented students‟ 9
th

 grade 

mathematics course for semesters 1 and 2 respectively.  If a student was enrolled in the 

same course for the entire ninth grade, then that course was recorded for both MATH9S1 

and MATH9S2. Similarly MATH10S1, MATH 10S2, MATH11S1, MATH11S2, 

MATH12S1, and MATH12S2 represented the courses in which students were enrolled 

during each semester of their tenth, eleventh, and twelfth grade years respectively. 

GR9LS1 and GR9LS2 are the letter grades that students received in the ninth 

grade of semester 1 and semester 2 respectively. Similarly GR10LS, GR10LS2, 

GR11LS1, GR11LS2, GR12LS1, and GR12LS2 are the letter grades for each semester of 

students‟ tenth, eleventh, and twelfth grades respectively.   

The last mathematics course taken in high school was also used as a pre-college 

characteristic variable.  For this study, calculus, pre-calculus, and trigonometry were 

considered algebraically demanding courses and therefore, the most challenging courses 

in which a high school student could enroll.  A course in algebra or Geometry was not 

considered algebraically demanding and not challenging enough for students who 

intended to pursue some type of postsecondary education.  Therefore these courses were 

considered to be the lowest level of courses in which a high school student could enroll. 

Then, there were courses that were considered to be more challenging than algebra or 



  

41 
 

 

geometry, but not as challenging as calculus, pre-calculus, or trigonometry.  Courses in 

probability or statistics were considered to be one level below calculus, pre-calculus, or 

trigonometry.  Courses in finite math, discrete math, math analysis, and FST (functions 

statistics, and trigonometry) were considered to be a level above algebra and geometry. 

The variable LAST was created and was given the value 1 if a student‟s last high school 

mathematics course was calculus (including AP calculus), pre-calculus, or trigonometry, 

the value 2 if a student‟s last high school math course was probability or statistics 

(including AP statistics), the value 3 if a student‟s last high school mathematics course 

was FST, discrete math, finite math, or math analysis, and the value 4 if a student‟s last 

math course was algebra or geometry.  

For this study a passing grade in a high school course was considered to a grade 

of C or better.  From this, the variable CABOVE was created. This variable had a value 

of 1 if a student received a grade of C or better in his or her last high school mathematics 

course and the value 0 if the student received a grade lower than C in his or her last 

mathematics course.  

 Whether or not a student took a mathematics course during his or her senior year 

was also included as a pre-college variable. This categorical variable was named SYM 

and was given the value 0 if the student was not enrolled in a mathematics course during 

his or her senior year of high school or the value 1 if the student was enrolled in a 

mathematics course during his or her senior year of high school. 

ACT Mathematics score was used as a pre-college characteristic variable.  This 

continuous variable was named ACTM. This variable was included in the data file that 

was received from the MSU registrar‟s office.  
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Definition of College Variables 

 Several college level variables were included in this study. One variable was the 

mathematics placement examination score. This continuous variable was named MPE 

and was included in the data file. This variable had a range of 0 to 28.  

 There were two type of mathematics placement examinations administered to 

students: proctored or unproctored.  This dichotomous variable was named TYPE and 

was given the value 0 if the student was placed into their first mathematics course with 

the unproctored examination and the value 1 if the student was placed into their first 

mathematics course with the proctored examination.  

 First college mathematics course was another college variable.  This categorical 

variable was called FMC.  For this study, students‟ first mathematics course was one of 

the following:  Intermediate Algebra (MTH1825), College Algebra (MTH103), Finite 

Mathematics (MTH110), College Algebra and Trigonometry (MTH116), Finite 

Mathematics: Application of College Algebra (MTH112), Survey of Calculus 1 

(MTH124), Calculus 1 (MTH132), Math for Elementary Teachers 1 (MTH201), or 

Statistical Methods (STT200/STT201).  

 The variable GRADE was used to represent the grades given in the MSU 

mathematics course.  MSU uses the following grading scale 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 

1.0, 0.0, W (withdrawal), or I (incomplete).  No student in this study received a grade of 

W or I.  
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Demographic Variables 

 There were two demographic variables used in this study. The first was Gender. 

This dichotomous variable was coded 0 if the student was a male and 1 if the student was 

female. The other demographic variable was RACE. This variable represented the 

race/ethnicity of the student and was coded 0 if the student was white, 1 if the student 

was black, 2 if the student was Hispanic, 3 if the student was American Indian, 4 if the 

student was Asian or a Pacific Islander, and 9 if a student‟s race was not indicated. 

 

Analysis 

 The statistical analysis software package PASW Statistics 18 (formerly SPSS) 

was used to conduct the data analysis for this study. The research questions required the 

use of several statistical techniques. Among them were multiple linear regression (MLR), 

binary logistic regression (BLR), 2 independent sample t – tests, and Pearson chi-square 

test.  

 

Multiple Linear Regression (MLR) 

MLR expresses the linear relationship between a dependent variable (or outcome 

variable) and two or more independent variables (or predictor variables). The dependent 

variable must be continuous and the independent variables can be continuous or 

categorical. The prediction equation is given by: 

                                          (2) 
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Where   

   is the estimated value of the dependent variable 

b0 is the estimated value of the regression intercept 

bi is the estimated value of the regression slope for the i
th

 predictor 

xi is the value of the i
th

 predictor 

  

Assumptions 

MLR has several assumptions. When these assumptions are satisfied, the estimates of 

the regression coefficients are unbiased, efficient, and consistent (Ostrom, 1990).   An 

estimator is unbiased if its expected value is equal to the true value of the parameter.  An 

estimator is efficient if its variance is smaller than the variance of any other estimator. An 

estimator is consistent if it converges in probability to the true value of the parameter.  

MLR requires that the following assumptions be met: 

 Linearity: MLR requires that a linear relationship exists between the outcome 

variable and each of the predictors.  Visual inspection of a scatterplot can verify 

this assumption (Triola, 2010).   

 Multicollinearity: Multicollinearity occurs when two or more predictor variables 

are highly correlated.  This assumption can be checked by inspecting the 

correlation matrix of the predictors.  
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 Normality: The variables used in the model should be normally distributed. This 

assumption can be checked by visually inspecting the histogram associated with 

each variable used in the model. 

 Normally distributed errors with mean = 0: The histograms of the error terms can 

be visually inspected for normality.  Additionally, a normal probability plot can 

be used to assess the normality of the errors. If the points form a straight line, the 

normality assumption of errors is supported.  

 Homoscedastiscity: Homoscedastiscity means that the variance of the errors is the 

same across all levels of each predictor and can be checked by visually inspecting 

the scatterplot of the standardized residuals and the standardized predicted values 

(Osborn and Waters, 2002). 

 

Model Fit 

In addition to checking the model assumptions, the model fit should also be checked. 

The fit of the MLR model can be checked in three ways. 

 Test of overall model fit: PASW Statistics 18 produces an ANOVA table that is 

associated with the MLR model.  This table has an F statistics that can be used to 

test the overall fit of the model. A significant finding indicates that at least one of 

the model coefficients is significantly different from zero.  

 Test of individual model coefficients: The significance of each model coefficient 

can be tested using a t-test. A significant finding indicates the regression 

coefficient is significantly different from zero.  The test of the individual model 

coefficients is given in PASW Statistics 18. 
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 Coefficient of Determination (R
2
):  This is a measure of the proportion of 

variation in the dependent variable accounted for by its linear relationship with 

the predictor variables. R
2
 can also be used as a test of global model fit.  R

2
 

ranges in value from 0 (no variation in the dependent variable is accounted for 

and therefore poor model fit) to 1 (all the variation is accounted for and therefore 

perfect model fit).  R
2
 can be requested in the multiple regression procedure in 

PASW statistics 18. 

 

Binary Logistic Regression (BLR) 

BLR is similar to MLR but is used when the dependent variable is dichotomous. The 

independent variables could be continuous or categorical. BLR models the log odds of 

belonging to a particular group. Usually the dependent variable takes on the value 1 when 

an observation belongs to the group and 0 when the observation does not belong to the 

group. The BLR model is given by: 

    
 

   
                                     ( 3 ) 

Where  

P is the probability that the dependent variable takes on the value 1 

b0 is the regression intercept 

bi is the estimated value of the regression slope for the i
th

 predictor 
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xi is the i
th

 predictor 

 

  BLR can be used to calculate the conditional probability of achieving a score of 1. 

Manipulating equation (3), the conditional probability of achieving a score of 1 is given 

by 

                      
                    

                      
   (4) 

 The following components are usually included when presenting BLR results; 1) 

overall goodness – of –fit statistics; 2) estimates of the model coefficients with test 

statistics, odds ratios, p –values, confidence intervals; and 3) classification tables (Cotter, 

2007; Garson, 2010).   

Model Fit 

 The Hosmer Lemeshow Test: The Hosmer and Lemeshow test is usually preferred 

as the test of overall fit of the BLR model (Hosmer and Lemeshow, 2000). A non-

significant finding indicates that the BLR model fits the data well. The Hosmer 

and Lemeshow test can be requested as part of the logistic regression procedure in 

PASW Statistics 18. 

 Omnibus Test of Model Coefficient:  This test is similar to the F test of overall 

model fit in MLR and tests the null hypothesis that that the model with additional 

predictors does not fit the data better than the intercept only model. 
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 Wald 
2
 statistic: This statistic is similar to the t-test used to test the significance 

of the individual coefficients in MLR.  A significant finding indicates that the 

coefficient is different from zero.  The Wald 
2
 statistic is a standard output of the 

logistic regression procedure in PASW Statistics 18. 

 Classification Table: The classification table can be used to determine the 

percentage of correct decisions made by the model.  When the model predicts that 

a student will be successful and the student is actually successful, then the model 

has produced a correct decision. Also, when the model predicts that a student will 

be unsuccessful and the student is actually unsuccessful, the model has also 

produced a correct decision.  The percentage of correct decisions made will be 

called the “hit rate”.   The classification table can also be used to compute the 

percentage of false positives and false negatives produced by the BLR model 

 

When variables are added to a BLR model, one is concerned about whether the 

additional variables improve the prediction of the model.   The deviance statistic can be 

used to determine if additional variables improve the prediction of the model.  In PASW 

Statistics 18, the deviance statistic is given by the -2log likelihood statistic.  To determine 

if the additional variables improve the fit of the overall model, the deviance of the model 

that was constructed with the additional variables is subtracted from the deviance of the 

model without the additional variables.  This difference has a chi-square distribution with 

the degrees of freedom equal to the number of variables added to the model.   A 

significant finding indicates that the additional variables improve the prediction. 
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Two Independent Sample T-Test   

 A 2 independent sample t-test is used to determine if there is a statistically 

significant difference in the means of two independently sampled groups.   A significant 

finding indicates that the two group means are different.  

 

Assumptions 

 Groups are sampled from two different populations: This assumption is part of the 

research design. 

 Normality of independent variables: This can be checked by visually inspecting 

the histogram of the independent variables 

 Homogeneity of variances: Levene‟s test can be used to test this assumption. 

Levene‟s test is part of the PASW Statistics 18 output. A non-significant finding 

indicates that the group variances are equal.  

  

Pearson Chi-Square Test of Independence 

When two variables are not associated they are considered to be statistically 

independent (Frankfort-Nachmias & Leon-Guerrero, 2009).  This study looks for 

dependence in course success across various groups by using Pearson‟s chi-square test of 

independence.   This is done by computing the cell frequencies that are expected under 

the null hypothesis that there is no association between the two variables.  If these 

expected cell frequencies are statistically different from the observed cell frequencies, 
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then the variables are said to be statistically dependent (Frankfort-Nachmias & Leon-

Guerrero, 2009).      

 

Assumptions 

 The chi-square test of independence has two important assumptions: 

 The sample size is large 

 Each expected cell count is at least 5 

 

 If either of these assumptions is not satisfied, then Fisher‟s exact test can be used as 

an alternative to Pearson‟s chi-square test.  Fisher‟s exact test computes the conditional 

probability of getting the observed contingency table. Pearson chi-square test and 

Fisher‟s exact test can be requested as output in PASW statistics 18. 

 

Effect Size Measures 

 Neill (2008) noted that statistical significance is not a direct indicator of effect 

size and that statistical significance is a function of sample size. Also, in the case of large 

samples, significant testing can give misleading results because even small or trivial 

effects can be statistically significant. Thus a measure of effect size can be used in these 

situations.  The effect size measures used in this study is R
2
, odds ratio, and Cohen‟s 

standardized difference (Cohen‟s d). 

 An effect size measure that is often used with MLR is the proportion of variance 

in the dependent variable that is due to its relationship with the independent variables. 
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This is known as R
2
. The value of R

2
 ranges from 0 to 1 with proportions close to one 

indicating perfect model fit.  The value of the adjusted R
2
 is also reported when there are 

a large number of independent variables.  If there are a small number of independent 

variables, R
2
 and adjusted R

2
 will be close but if there are a large number of independent 

variables, the adjusted R
2
 may be lower than R

2
.  This effect size is reported with all 

MLR models used in this study.  Frankfort-Nachmias & Leon-Guerrero, 2009, Gravetter 

& Wallnau, 1985 and Triola, 2010 should be consulted for more information on R
2
. 

 For binary logistic regression, the odds ratio is used as a measure of effect size.  If 

the independent is dichotomous, the odds ratio can be interpreted as the odds of success 

of one group relative to the odds of success for the other group.  If the independent 

variable is continuous, then the odds ratio can be interpreted as the factor by which the 

independent variable changes (increases or decreases) the odds of the dependent 

variables.  The odds ratio was used as an effect size measure for all BLR models used in 

this study.  

 The odds ratio can also be used as an effect size when performing a 2 x 2 

contingency table analysis.  In this situation, the odds ratio can be used to determine 

whether two dichotomous variables are associated.  Below is an example of a 2 x 2 

contingency table.  To calculate the odds ratio, one can simply divide the product of A 

and D by the product of B and C (e.g. (A*D)/(B*C) ) .   Of course, the computation of the 

odds ratio will depend on the odds of interest.   For this study, the odds ratio was 

computed for each analysis involving a 2 x 2 contingency table. 
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Table 3 

Example of a 2 x 2 Contingency Table  

    

Variable 

1  Total 

Variable 

2 A B A+B 

 
C D C+D 

 

A+C B+D 

  

  

Cohen‟s standardized difference (Cohen‟s d) is the effect size measure most used 

with 2 independent sample t-tests. Cohen‟s d is given by: 

                                    
         

 
        

          
 

     

                  (5) 

Where  

    = mean score of the independent variable on the proctored examination 

    = mean score of the independent variable on the unproctored examination 

  
 = variance of the independent variable on the proctored examination  

  
 

 = variance of the independent variable on the unproctored examination 

   = sample size of the independent variable on the proctored examination 

   = sample size of the independent variable on the unproctored examination 
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This value gives the mean difference of two variables expressed in standard deviation 

units (Neill, 2008).  For Cohen‟s d, an effect size below 0.2 is a small; an effect size 

between 0.2 and 0.5 is a moderate, and an effect size greater than 0.5 is a large (Cohen, 

1989).  For this study, Cohen‟s d was reported for each test involving the comparison of 

two means.  

 

Question 1 

Are there significant differences in the pre-college characteristics of students 

who were placed with the proctored examination and the pre-college characteristics of 

those students who were placed with the unproctored examination?  If so, what are the 

differences? Furthermore, after controlling for these differences, do significant 

differences exist in the placement examination scores across the two groups? 

 One important aspect of comparing group performance is to determine whether 

the groups are equivalent.  This could be of particular importance when the researcher 

was not involved in the group assignment process.  If the two groups are not similar then 

difference in performance on the placement examination or in the grade received in their 

first college mathematics course, may not be attributed to differences the type of test used 

for placement.  Therefore the following null hypotheses were tested: 

H01: There is no significant difference in the mean ACT Mathematics scores of 

the students who were placed with the proctored examination and the mean ACT 

Mathematics scores of the students who were placed with the unproctored 

examination. 



  

54 
 

 

 

H02: There is no significant difference in the mean high school GPA of the 

students who were placed with the proctored examination and the mean high 

school GPA scores of the students who were placed with the unproctored 

examination. 

 

H03: There is no significant difference in the mean high school mathematics GPA 

of the students who were placed with the proctored examination and the mean 

high school mathematics GPA of the students who were placed with the 

unproctored examination.  

 

 If there are significant differences in the mathematics ability of each group, then it 

should come as no surprise to see differences in placement examination scores across the 

groups.  If similar students are considered, then there should be no difference in 

placement examination scores.  To address this question a multiple linear regression 

model was constructed.  This model used mathematics placement examination score 

(MPE) as the criterion and ACT Mathematics score, high school GPA, high school 

mathematics GPA, and type of exam used for placement as predictors (TYPE). If the 

variable TYPE was significant then students with similar combinations of ACT 

Mathematics scores, high school GPA, and high school mathematics GPA, received 

higher placement examination scores on one type of examination.  The MLR model was 

run using PASW Statistics 18. The model assumptions were checked and the value of R
2
 

was reported.    
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Question 2 

 Are the proctored and unproctored examinations functioning similarly? 

 

 This question is an important one because it can determine if a particular exam 

type is more (or less) advantageous for a particular group of students. If the exams are 

used in the same way, then similar students should see similar results.  

 First of all, the reliability of the placement examination was computed using the 

Kuder-Richardson 21 (KR21) reliability index as an estimate. KR21 was computed using 

the following formula: 

                                        
 

   
   

        

   
                    (6) 

where  

rxx is the estimate of the test reliability 

n is the number of items on the examination 

   is the mean examination score 

  
  is the variance of the examination scores 

The data for this study consisted of total examination scores; not the item responses. 

Thus, KR21 reliability was the most appropriate reliability index to compute because the 

formula uses the total number of test items as well as the mean and variance of the 

examination scores. These values could be easily computed from the data.  KR21 

assumes that all items are of equal difficulty. When this is not the case KR21 will 

underestimate the exam‟s true reliability (Allen and Yen, 1979).  Thus, KR21 is a 
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conservative estimate of the reliability of the exam and the exam‟s true reliability would 

be higher.  

 Second, a separate correlation matrix was constructed for the entire data set, for the 

proctored data, and for the unproctored data.   The following variables were included in 

each of the correlation matrices: 

 ACT Mathematics score 

 High school GPA 

 High school mathematics GPA 

 Math placement examination score 

 Grade in college mathematics course 

 Gender (1 if female, 0 if male) 

 Senior year math  (1 if the student took  math during their senior year of high 

school, 0 other wise) 

 CPT (1 if student took calculus, pre-calculus, or trigonometry; 0 otherwise) 

 RACE/ETHNICITY  (1 if the student was white, 0 otherwise) 

If the proctored and unproctored examinations are functioning similarly, the 

correlation matrix for the unproctored data should be similar to the correlation matrix for 

the proctored data.  For example, variables that are highly correlated in the unproctored 

matrix should be highly correlated in the proctored matrix.  So the correlations of the 

variables in the unproctored correlation matrix were compared to the correlations of the 

variables in the proctored correlation matrix.  

To test the equality of the correlation matrix each correlation was normalized 

using Fisher‟s Z transformation (Thorndike and Dinnel, 2001). This formula is given by 
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                    (7) 

where r is the value of the correlation coefficient.  

 After each correlation is transformed, a statistical test is conducted to determine if 

the corresponding entries in the proctored and unproctored correlation matrices are 

statistically equivalent.  The test statistic can be found in Thorndike and Dinnel (2001) 

and is given by: 

                                               
       

 
 

    
 

 

    

                          (8) 

where  

ZrP is the Fisher‟s Z transformation of the proctored correlation  

ZrU is the Fisher‟s Z transformation of the unproctored correlation 

NP is the sample size used to compute the proctored correlation 

NU is the sample size used to computed the unproctored correlation 

  

Multiple Hypothesis Testing 

When a hypothesis test is conducted, the decision is either to reject the null 

hypothesis or retain the null hypothesis.  If the null hypothesis is actually true and the 

decision is to reject it, then a Type I error has been committed.  This Type I error (usually 

referred to as alpha () is usually assigned at the beginning of the study.  One of the 
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problems with conducting multiple hypothesis tests is that the Type I error becomes 

inflated and it becomes more likely that the null hypothesis will be rejected when it is 

true (Abdi, 2010).   

There are several methods of correcting for the inflation in the Type 1 error rate 

and the reader is encouraged to consult Shaffer (1995). One way of controlling this 

inflation in Type 1 error is by testing each of the n significance tests at a significant level 

of  
 

 
.  The procedure is known as the Bonferroni Correction Method.   Any hypothesis 

test with a p –value ≤  
 

 
  is rejected.  The Bonferroni Correction Method was chosen 

because it is easy to calculate. 

Another method used to determine if the two examinations are functioning 

similarly was to create a model to predict placement examination scores using the 

proctored data and fitting that model to the unproctored data.  This would give an 

estimate of the placement exam scores in which a student who was placed with the 

unproctored examination would have received had he or she been placed with the 

proctored examination.   Predicted placement should agree with actual placement. 

Similarly, a model to predict placement examination scores using the unproctored data 

was created.  This model was fitted to the proctored data to determine the unproctored 

placement of the students who were placed with the proctored examination.  

Without concern for their significance, the MLR model used to predict placement 

examination scores used MPE as the dependent variable and ACTM, HSGPA, HSMGPA, 

SYM, GENDER, RACE, LAST, C_ABOVE and TYPE as the independent variable and 

PASS as the dependent variable.  Dummy variables were created for the variables LAST 



  

59 
 

 

and RACE. LAST was a categorical variable with 4 levels and RACE was a categorical 

variable with 5 levels.   

For LAST, students whose last mathematics course was calculus (including AP), 

pre calculus, or trigonometry were used as the reference group. The variables PSTT, 

ALG, and OTHER were created as dummy variables for LAST.  PSTT took on the value 

1 if a student‟s last class was probability or statistics (including AP statistics) and 0 

otherwise. ALG took on the value 1 if a student‟s last high school math class was algebra 

1, algebra 2, algebra 3, algebra 4, or geometry and the value 0 otherwise. OTHER took 

on the value 1 if a student‟s last high school mathematic course FST (functions, statistics, 

and trigonometry), discrete math, math analysis, or finite math.  The reference group was 

represented in each of PSTT, ALG, and OTHER have a value of 0.  

White was used as the reference group for RACE. Thus, the dummy variables for 

RACE were BLACK (1 if the student was black and 0 otherwise), HISPANIC (1 if the 

student was Hispanic and 0 otherwise), INDIAN (1 if the student was American Indian 

and 0 otherwise), and ASIAN (1 if the students was ASIAN and 0 otherwise).   

 Three groups were created. The first group, AGREE, consisted of the subjects 

whose predicted placement agreed with their actual placement.  For example, if a 

student‟s predicted placement with the proctored regression model was MTH103 and the 

student‟s actual placement using the unproctored examination was MTH103, then this 

student would belong to the AGREE group.  

 The second group, LOWER, consisted of students whose predicted placement 

with the proctored regression model was lower than their actual placement with the 

unproctored examination. For example, if a student‟s predicted placement using the 
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proctored model was MTH103 but the student was actually placed into MTH132 with the 

unproctored examination, then this student would belong to the LOWER group. 

The HIGHER group consisted of students whose predicted proctored placement 

was higher than their actual placement.  For example, if a student‟s predicted placement 

using the proctored regression model was MTH132 but the student was actually placed in 

MTH132 with the unproctored examination, then this student would belong to the 

HIGHER group. If the unproctored examination and proctored examination are 

functioning similarly, there should be a high level of agreement between the placement 

predicted by the proctored model and the actual placement by the unproctored 

examination.    

Also, to help support the idea that both examinations are functioning similarly, the 

success rates in each course across both exams were considered.    To determine if the 

success rates differ across examinations, a series of contingency table analyses were 

performed.  The Pearson chi–square test was used to determine if the success rates were 

different.   If there were significant differences in success rates across the two types of 

examinations, then the success rates among different groups of examinees across 

examination types were examined.   

 

Question 3 

 How well does the mathematics placement examination predict success in students’ 

first college mathematics course? Furthermore, can the prediction of success in 

students’ first college mathematics course be improved using ACT Mathematics score, 
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high school GPA, the type of mathematics courses taken in high school, and whether 

or not students took a mathematics course during their senior year of high school? 

 At the time of this study, MSU used only the placement examination to place 

students into their first college mathematics course.  Thus the obvious concern is whether 

the placement examination significantly predicts success in first college mathematics 

course.   A binary logistic regression model was developed to predict the log odds of 

success in Intermediate Algebra (MTH1825), College Algebra (MTH103), College 

Algebra and Trigonometry (MTH116), Survey of Calculus 1 (MTH124) and Calculus 1 

(MTH132) was constructed using placement examination scores as the predictor and the 

variable PASS (1 if the student received a 2.0 or better and 0 otherwise) as the outcome. 

The next task was to determine if the prediction of success in first college 

mathematics course can be improved by using student background information in 

addition to placement examination scores.  To do this, ACT Mathematics scores 

(ACTM), high school GPA (HSGPA), whether a student took a math course during 

senior year of high school (SYM), type of examination used for placement (TYPE) and 

the dummy variables PSTT, ALG, and Other were added to the model containing MPE of 

each of the courses.    

To determine if the new model added to the prediction of success in first college 

mathematics course, the change in the deviance was tested. The deviance is also known 

as the -2 log likelihood in PASW Statistics 18. The change in the deviance has a chi-

squared distribution with degree of freedom equal to the number of predictors added to 

the model.  A significant finding indicates that the model with the predictors added 

improved the prediction of success beyond MPE.  If the model containing the additional 
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variables provides a better prediction of success, then the additional variables should 

improve the “hit rate” and decrease the false positives.  

Question 4 

How do the grades in each course compare across different levels of placement 

examination scores? 

 When a placement examination places a student into a mathematics course, the 

exam is predicting that the student will be successful in the course in which he or she is 

placed.  Furthermore, it is assumed that the student will be successful in any course lower 

than the one in which he or she was placed.  When students are predicted to be successful 

and are actually unsuccessful, we say that the exam has given a false positive.   

A crosstabulation of course grades by placement examination score was done to 

examine the distribution of grades at each placement exam score for MTH1825, 

MTH103, MTH110, MTH116, MTH124, and MTH132.  As the placement examination 

scores become higher, more students should receive high course grades than low course 

grades.  This crosstabulation also shows the number of false positives.  Crosstabulations 

of course grade by placement examination score by type of examination was also 

examined to determine which examination, if any, produces the greater number of false 

positives.   

 Some of the students in this study enrolled in a course lower than that which was 

recommended by their placement examination score. Some of these students received 

placement scores just above the minimum score while others received placement scores 

well above the minimum score. For this study, a student is said to have received a score 

just above the minimum score needed for placement into a course if the student was 
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eligible for a course one level higher than the course in which he or she enrolled.  

Additionally, a student is said to have received a score well above the minimum score 

needed for placement if the student was eligible to enroll in a course two or more levels 

above the course in which he or she enrolled.   

 It is important to the validity of the placement examination that 1) explanations be 

sought as to why a student would enroll in a course lower than the level at which he or 

she was placed and 2) students who scored well above the minimum cut score needed for 

placement into a course would be unsuccessful in the course.  If these reasons are 

associated with the examination, then it is the researchers recommendation that the 

examination be revised (e.g. revision or deletion of items, change in administration 

procedures). 

 This section demonstrates that validating placement examination requires a 

variety of evidence from different sources. The process becomes even more tedious when 

there are two types of examinations that are administered differently.  Not only is there a 

concern about the validity of the placement examination as a whole, but the 

comparability of the results from the two types of examinations.  
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CHAPTER 4 

 RESULTS 

 

Introduction  

 The primary purpose of this study was to determine if the proctored and 

unproctored examinations are functioning similarly.  This means that no group should be 

advantaged (or disadvantages) by the type of examination used for placement. This 

means that placement is independent of examination used for placement. This means that 

the type of examination used for placement should not have an effect on course 

outcomes.  This section is divided according to the research questions. 

 

Question 1 

 Are there significant differences in the pre-college characteristics of students who 

were placed with the proctored examination and the pre-college characteristics of those 

students who were placed with the unproctored examination?  If so, what are the 

differences? Furthermore, after controlling for these differences, are there significant 

differences in placement examination scores across the two groups? 

 

Table 4 shows that the mean ACT Mathematics score, mean high school GPA, 

mean high school mathematics GPA, and mean placement examination score were all 

higher for the students in the unproctored group than for students in the proctored group.  

It came as no surprise that the mean placement examination score for the unproctored 

examination was higher than the mean placement examination score for the proctored 
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examination.  A larger proportion of the students who were placed with the proctored 

examination may have been given the secondary group of items that are scores ½ point 

each (Group B). In contrast, a larger proportion of the students who were placed with the 

unproctored examination may have been given the secondary group of items that are 

scored 1 point each (group C). This difference alone could account for the large 

difference in the mean placement examination scores. Nonetheless, if math achievement 

and skill is determined by ACT Mathematics score and high school math GPA, it appears 

that the students who were placed with the proctored examination were less talented, 

mathematically, than the students who were placed with the proctored examination. The 

differences in the mean of the proctored examination and the mean of the unproctored 

examination (P – U) were each tested using the independent sample t-test in PASW 

Statistics 18.   

 

Table 4 

Descriptive Statistics for ACT Math Scores, High School GPA, High school Mathematics 

GPA, and Mathematics Placement Examination for Proctored and Unproctored Group 

  Proctored (P) Unproctored (U) P - U 

Category N M SD N M SD M 

ACTM 521 22.87 4.16 1006 23.58 3.83 -0.72 

HSGPA 544 3.52 0.35 1032 3.57 0.31 -0.05 

HSMGPA 576 3.32 0.58 1090 3.39 0.49 -0.07 

MPE 598 12.06 5.05 1098 14.18 5.65 -2.12 
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Figures 2 thru 9 show the histograms and the normal probability plots for ACTM, 

HSGPA, HSMGPA, and MPE.  The assumption of normality does not appear to hold for 

HSMGPA (Figures 6 and 7).  The histogram is negatively skewed and the points on the 

normal probability plot stray from the straight line at the low and high ends.   The normal 

probability plot (Figure 8) for MPE show the existence of few outliers, how not enough 

to effect the normality of the distribution.  Otherwise the assumption of normality does 

not appear to be violated for HSGPA and ACTM.  

 

             

Figure 2  Histogram of ACT Mathematics Scores
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 Figure 3.  Normal Probability Plot of ACT Mathematics Scores   
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Figure 4. Histogram of High School GPA 
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Figure 5. Normal Probability Plot of High School GPA 
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Figure 6. Histogram of High School Math GPA
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  Figure 7. Normal Probability Plot of High School Mathematics GPA



  

72 
 

 

 

 

 

Figure 8. Histogram of Mathematics Placement Examination Scores
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Figure 9. Normal Probability Plot of Math Placement Exam Score
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Homoscedastiscity Assumption: Levene‟s test was used to check the homoscedastiscity 

(equal variance) assumption.  PASW Statistics 18 conducts Levene‟s test as part of its 2 

independent sample t-test. Table 5 gives the results of Levene‟s test for each dependent 

variable, the results of the t-test, and the value of Cohen‟s mean difference effect size.  

For Levene‟s test, the F statistic is significant for ACTM, HSGPA, and MPE. Thus equal 

variances cannot be assumed and the corresponding test statistics are significant.   

The students who were placed with the proctored examination appear to have 

lower mean ACT Mathematics scores, lower mean HSGPA, and lower mean placement 

examination scores.  Cohen‟s d indicates that the difference in the mean ACT 

Mathematics scores was small (d = 0.117) and the difference in the mean high school 

GPA was small (d = 0.151), however the difference in mean placement examination 

scores is somewhat more substantial (d = 0.584).   
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Table 5 

Test of the Equality of Variances and Equality of Means 

  

Levene's Test 

for Equality of 

Variance 

T-test for Equality of 

Means 

 

  

F p t df p d 

ACTM 
Equal variances 

assumed 10.41 .001 -3.498 1504 .000 .177 

  
Equal variances 

not assumed     -3.399 957.477 .001   

HSGPA 
Equal variances 

assumed 9.454 .002 -2.681 1504 .007 .151 

  
Equal variances 

not assumed     -2.595 947.412 .010   

HSMGPA 
Equal variances 

assumed 1.214 .271 -1.014 1504  .311 .055 

  
Equal variances 

not assumed     -0.994 980.123 .320   

MPE 
Equal variances 

assumed 11.261 .001 -6.879 1504 .000 .584 

  
Equal variances 

not assumed     -7.109 1133.37 .000   

 

 

 To determine if there were group differences in the proportion of students who 

took math during their senior year or group differences in the proportion of students who 

were enrolled in algebraically demanding courses (calculus, pre-calculus, or 

trigonometry), a Pearson‟s chi-square test was used.  Table 6 shows the contingency table 

.of senior year math by examination type.  Approximately 78.5% of the students who 

were placed with the proctored examination were enrolled in a math course during their 

senior year of high school compared to approximately 82% of the students who were 

placed with the unproctored examination. The chi-square test statistics was not significant 
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
2
(1, N =1147) = 29.75,  p =.085. Therefore, the proportion of students who took a math 

class during senior year of high school and were placed with the proctored examination 

was not different from the proportion of students who took mathematics during their 

senior year and was placed with the proctored examination.  

 

Table 6 

2 x 2 Contingency Table for Senior Year Math by Type of Examination 

 

Type of Exam 

Senior Year 

Math Proctored Unproctored 

No 21.55% 17.93% 

Yes 78.45% 82.07% 

Total 100.00% 100.00% 

 

It is also possible that the two groups could have differed on the type of 

mathematics classes in which they were enrolled in high school. Therefore, a chi-square 

test was conducted to determine if there was a difference in the type of high school math 

courses in which students were enrolled.  Table 7 show a 4 x 2 contingency table with the 

type of high school math course by type of examination.  From the table, approximately 

57% of the students who were placed with the proctored examination had calculus, pre-

calculus, or trigonometry as their last high school math course compared to 

approximately 61%.  The chi-square statistic was not significant 
2
(3, 1669) = 3.838,  p 

=.281. Therefore there was no difference in the distribution of last high school math 

courses taken by the students in each group.  

 

Table 6 
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Table 7 

 4 x 2 Contingency Table of Last High School Mathematics Course by Type of 

Examination 

 

Type of Exam 

Last High School 

Math Course Proctored Unproctored 

CPT
a 

57.34% 61.01% 

PSTT
b 

9.84% 7.98% 

ALG
c
  15.20% 12.94% 

OTHER
d 

17.62% 18.07% 

Total 100.00% 100.00% 

 
a
CPT = calculus, pre-calculus, or trigonometry, 

b
PSTT = probability or statistics, 

c
ALG 

= algebra I, algebra II, or geometry, 
d
OTHER = FST (function, statistics, and 

trigonometry), business math, consumer math, or math analysis 

  The students who were placed with the proctored examination were different from 

the students who were placed with the unproctored examination due to their lower 

average ACT Mathematics score; lower highs school GPA, and lower placement 

examination scores.  However, both groups appear to have taken similar type of courses 

and enrolled in mathematics during their senior year of high school.  

.  It was already determined that the students who were placed with the unproctored 

examination received higher placement examination scores (M = 14.18, SD =5.65) than 

the students who were placed with the unproctored examination (M =12.06, SD =5.05). 

This should come as no surprise because the mean ACT Mathematics score of the 

students who were placed with the unproctored examination (M =23.58, SD = 3.83) was 

higher than the mean ACT Mathematics score of the student who were placed with the 

Table 7 
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proctored examination (M = 22.87, SD = 4.16) and the mean high school GPA of the 

students who were placed with the unproctored examination (M = 3.57, S = 0.31) was 

higher than the mean high school GPA of the students who were placed with the 

proctored examination (M = 3.52, S = 0.35).  However, if ACT Mathematics scores and 

high school GPA were controlled, is there still a significant difference between the mean 

placement examination score of the students who were placed with the proctored 

examination and the mean placement examination score of the students who were placed 

with the unproctored examination?  

 To determine if controlling for ACT Mathematics score and high school GPA 

would still produce an examination effect, a multiple linear regression (MLR) equation 

was developed using PASW Statistics 18. MPE was used as the dependent variable and 

ACTM, HSGPA, and TYPE were used as predictors.  
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Multiple Linear Regression (MLR) 

Normality Assumption. The normality of ACTM, HSGPA, and MPE was 

illustrated in Figures 2 thru 9 above.    

Linearity Assumption: Figures 10, 11, and 12 shows a scatterplot of ACTM, 

HSGPA, and MPE. The scatterplot shows that both ACTM and HSGPA are linearly 

related to MPE. Also, ACT Mathematics scores appear to have a stronger linear 

relationship with placement examination score.  
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 Figure 10. Scatterplot of Math Placement Scores and ACT Math Scores 
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Figure 11. Scatterplot of ACT Math Scores and High School GPA 
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Figure 12. Scatterplot of High School GPA and Math Placement Scores 
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Multicollinearity Assumption: Table 8 gives the correlation matrix for the independent 

variables used in the MLR model. The predictors are not highly correlated with one 

another and, therefore, multicollinearity is not a problem.  

 

Table 8 

Correlation Matrix for ACTM, HSGPA, and TYPE 

 

HSGPA TYPE 

ACTM 0.366* -0.086* 

HSGPA 1.000 -0.079* 

TYPE 

 

1.000 

 

* p < 0.01 

 

 
 

Multiple Linear Regression Model 

 A multiple linear regression model was constructed to determine if, after 

controlling for ACTM and HSGPA, the students who were placed with the unproctored 

examination received higher placement examination scores than the students who were 

placed with the proctored examination.  The regression equation was given by: 

MPE = -13.858 + -0.807*ACTM + 2.415*HSGPA – 1.230*TYPE 

 

The test of overall fit was significant F(3,1509) = 459.619, p = .000, indicating that at 

least one of the regression coefficients is significantly different from zero.  

 Table 9 lists the regression coefficients, standard error, t value, and p-value. The 

table shows that each of the regression coefficients are a significant predictor of 

placement examination score. 

Table 8 
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 The multiple linear regression equation also indicates that keeping ACTM and 

HSGPA constant, students who were placed with the proctored examination scored, on 

average, just over 1 point less on the placement examination score than the students who 

are placed with the unproctored examination.    

  

Table 9 

 Multiple Linear Regression Results 

Predictor b 

Std. 

Error t p 

Intercept -13.858 1.126 -12.304 0.000 

ACTM 0.807 0.027 30.157 0.000 

HSGPA 2.415 0.330 7.307 0.000 

TYPE -1.230 0.207 -5.927 0.000 

 

 

Residual Analysis of the Multiple Linear Regression Model 

Figure 13 below shows the histogram of the residuals generated by PASW Statistics 

18. The figure clearly shows that the distribution of the error terms is normal with a mean of 

0. Additionally, the normal probability plot in figure 14 shows that the points form a straight 

line and the figure supports the assumption of the normality of the error terms.   

Table 9 
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Figure 13. Histogram of the Residuals Associated with the Linear Regression Model 

Described in Table 9
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Figure 14.  Normal Probability Plot of the Residuals Associated with the Regression Model in Table 9
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Question 2  

Are the proctored and unproctored examinations functioning similarly? 

Reliability 

Determining whether the two types of examinations are functioning similarly 

required several analyses.  Table 10 shows the estimated reliabilities of the combined 

placement examination, the proctored examination, and the unproctored examination 

using equation (6).  As indicated, the reliability estimate of the unproctored examination 

is higher than the reliability estimate of the proctored examination.    All the reliability 

estimates are greater than 0.70 so the reliabilities are high enough for the examinations to 

be used.  The formula for KR21 uses mean score and variance. Since the proctored 

examination produced higher mean examination scores and higher variance, it was no 

surprise that the reliability estimate for the unproctored examination was higher than the 

reliability estimate for the proctored examination.  Additionally, students were able to 

take the proctored examination more than once.  This could have accounted for the higher 

reliability estimate of the unproctored examination.  

 

Table 10 

Reliability Estimates of the Overall Examination, the Proctored Examination, and the 

Unproctored Examination  

Overall Proctored Unproctored 

0.80 0.76 0.81 

 

 

Table 10 
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The next step was to compare the correlation matrix of the variable using the 

proctored data to the correlation matrix of the variables using the unproctored 

examination.   Second was to determine if placement was dependent on the type of 

examination used for placement.  Third, a multiple linear regression equation was created 

using the proctored data.  This equation was then fitted to the unproctored data to 

determine if the students who were placed with the unproctored examination would have 

received the same placement if they had been placed with the proctored examination.  

Also, a multiple linear regression equation was created using the unproctored data.  This 

equation was fitted to the proctored data to determine if the students who were placed 

with the proctored examination would have received the same placement if they would 

have been placed with the unproctored examination.   

Finally, the success rates of the different courses were examined to determine if 

success rates were dependent on type of examination used for placement.    

 

Correlation for Combined Data (Proctored data and Unproctored Data) 

Table 11 is the correlation matrix for all the variables that will be used in the 

overall (proctored data and unproctored data combined) MLR model.  As indicated, all 

the variables are significantly correlated with the scores on the mathematics placement 

examination. The table shows that the variable that is most highly correlated with 

placement examination scores is ACTM. Thus, student with high ACT Mathematics 

scores tend to receive higher placement examination scores.  ACTM is also the variable 

that is correlated most highly with grades in first college mathematics course.  HSGPA, 



  

89 
 

 

HSMGPA and MPE are moderately correlated with the scores on the mathematics 

placement examination as well as grades in first college mathematics course.  

The correlations between the dichotomous variables (C_ABOVE, GENDER, 

SYM, WHITE, and CALC) and MPE or GRADE are point biserial correlations.  A point 

biserial correlation is used as a measure of association between a dichotomous variable 

and a continuous variable (Allen & Yen, 1979). Positive values are an indication that 

moving from a value of 0 to a value of 1, for example, tends to result in higher scores on 

the continuous variables. Similarly negative values of the point biserial correlation 

indicates that moving from a value of 0 to 1 tend to result in a decrease on the continuous 

variable.  Thus, the correlation between CPT and MPE indicates that students, who took 

calculus, pre-calculus, or trigonometry as their final high school math course; tend to 

have higher placement examination scores than the students who took a course other than 

calculus, pre-calculus, or trigonometry as their final high school math course. Also, 

females tend to receive lower placement examination scores than males, non-whites tend 

to receive lower placement examination scores than whites, students who received a 

grade of C or better in their last high school mathematics course tend to received higher 

placement scores than students who received a grade lower than a C in their final high 

school math course. The reader should ignore the perfect correlation between the variable 

G and W.  Both variables are dichotomous and therefore the Pearson‟s correlation 

coefficient is not an appropriate measure of association for the two variables. Also, the 

correlations between these two variables have no substantive interpretation.  
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Table 11  

 Correlation Matrix for the Combined Data (Proctored and Unproctored) 

 

A GR H HM C S W CPT MPE 

G -.275 .035 .064* -.012 -.005 .019 1.000** -.099** -.154** 

A 1.000 .383** .366** .376** .156** .059* -.275** .294** .666** 

GR 

 

1.000 .353** .392** .137** .064* .035 .150** .364** 

H 

  

1.000 .670** .197** .017 .064* .186** .379** 

HM 

   

1.000 .411** .028 -.012 .116** .379** 

C 

    

1.000 -.038 -.005 -.048 .122** 

S 

     

1.000 .019 .279** .121** 

W 

      

1.000 -.099** -.154** 

CPT 

       

1.000 .341** 

MPE 

        

1.000 

 

Note: G = Gender, A = ACTM, GR = GRADE,  H = HSGPA, HM = HSMGPA, C = 

CABOVE, S = SYM, W = WHITE, CPT = Calculus, pre-calculus, or trigonometry 

*p < .05. **p < .01 

 

 

 

 

 

 

 

 

  

Table 11 
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Correlations for Proctored Data 

 Table 12 gives the correlation of variables using the proctored data.  Of particular 

interest are the variables that are correlated with placement examination score and grade 

in first college mathematics course. As indicated in the matrix, all variables are 

significantly correlated with scores on the mathematics placement examination with ACT 

mathematic score being the variable that is most highly correlated with mathematics 

placement examination score.    

 The matrix also indicates that all the variables are significantly correlated with 

grades in first college mathematics course except taking a math course during senior year 

of high school (S) and race/ethnicity (W).  Therefore, those students who took a 

mathematics course during their senior year of high school was did not tend to received 

better grades in their first college mathematics course. Additionally, white students who 

were placed with the proctored examination did not tend to do better in their mathematics 

course than non-whites who were placed with the proctored examination.    
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Table 12 

Correlation Matrix for the Proctored Data 

 

A GR H HM C S W CPT MPE 

G -.289** .006 .016 -.042 -.060 .034 1.000** -.047 -.214** 

A 1.000 .493** .429** .450** .188** .027 -.289** .222** .722** 

GR 

 

1.000 .421** .413** .139** .071 .006 .174** .448** 

H 

  

1.000 .697** .221** .000 .016 .197** .394** 

HM 

   

1.000 .476** -.009 -.042 .104* .393** 

C 

    

1.000 -.042 -.060 -.055 .152** 

S 

     

1.000 .034 .298** .084* 

W 

      

1.000 -.047 -.214** 

CPT 

       

1.000 .334** 

MPE 

        

1.000 

Note: G = Gender, A = ACTM, GR = GRADE,  H = HSGPA, HM = HSMGPA,  

C = CABOVE, S = SYM, W = WHITE, CPT = Calculus, Pre-calculus, or Trigonometry 

*p < .05; **p < .01 
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Correlations for Unproctored Data 

 Table 13 shows the correlation matrix for the unproctored data.  Just as with the 

proctored data, the interest in these correlations is in the variables that are correlated with 

placement examination scores and grades in first college mathematics course.  As shown 

in the table, all the variables are significantly correlated with the unproctored placement 

examination with ACT Mathematics score being the variable that is most highly 

correlated with scores in placement examination score.  

The correlation matrix also shows that all the variables are significantly correlated 

with grades in first college mathematics course except S and W (similar to the correlation 

matrix for the proctored data).   However, unlike the proctored correlation matrix, high 

school mathematics GPA is the variable that is most highly correlated with grades in first 

college mathematics course.  
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Table 12 

Correlation Matrix for Unproctored Data 

 

A GR H HM C S W CPT MPE 

G -.289** .006 .016 -.042 -.060 .034 1.000** -.047 -.214** 

A 1.000 .493** .429** .450** .188** .027 -.289** .222** .722** 

GR 

 

1.000 .421** .413** .139** .071 .006 .174** .448** 

H 

  

1.000 .697** .221** .000 .016 .197** .394** 

HM 

   

1.000 .476** -.009 -.042 .104* .393** 

C 

    

1.000 -.042 -.060 -.055 .152** 

S 

     

1.000 .034 .298** .084* 

W 

      

1.000 -.047 -.214** 

CPT 

       

1.000 .334** 

MPE 

        

1.000 

Note: G = Gender, A = ACTM, GR = GRADE,  H = HSGPA, HM = HSMGPA,  

C = CABOVE, S = SYM, W = WHITE, CPT = Calculus, Pre-calculus, or Trigonometry 

*p < .05; **p < .01 

 

 

  

Table 13 
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 Table 14 shows the matrix of p-values associated with the test of equality of correlations.  

There were a total of 44 tests. Thus, each test was conducted using the Bonferroni 

Correction Method with a significance level of  
    

  
      .  Table 13 shows that 

correlation between ACT Mathematics score and grades in first college mathematics 

course could not be assumed equal across examination types. Also, the correlation 

between grades in first college mathematics course and placement examination scores 

was marginally significant.     

 

 

P-values for the Test of Equality of Correlations 

  A GR H HM C S W CPT MPE 

G .718 .410 .156 .373 .088 .639 - .131 .119 

A 

 

.000 .019 .010 .278 .396 .718 .029 .003 

GR 

  

.010 .372 .800 .735 .410 .478 .001 

H 

   

.137 .354 .653 .156 .751 .509 

HM 

    

.006 .282 .373 .707 .571 

C 

     

.942 .088 .840 .214 

S 

      

.639 .541 .373 

W 

       

.131 .119 

CPT 

        

.671 

 

Note: G = Gender, A = ACTM, GR = GRADE,  H = HSGPA, HM = HSMGPA,  

C = CABOVE, S = SYM, W = WHITE, CPT = Calculus, Pre-calculus, or Trigonometry 

 

 

  

Table 14 
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Placement into Intermediate Algebra (MTH1825) 

Table 15 shows the crosstabulation for placement into remedial mathematics by 

type of examination.  The table shows that approximately 25% (147/598) of the students 

who were placed with the proctored examination were placed into MTH1825 and 

approximately 17% (188/1098) of the students who were placed with the unproctored 

examination were placed into remedial mathematics.   The Pearson chi-square statistic 

was significant, 
2
(1, n = 1698) = 14.772, p =.000, indicating that the percentage of 

students placing into remedial mathematics was higher for those students placed with the 

proctored examination.  The odds ratio associated with table 13 was computed to be 

approximately 1.6 ((24.92*82.87)/(75.08*17.13)) indicating that the odds of being placed 

into a remedial mathematics course with the proctored examination was about 60% more 

than the odds of being placed into a remedial mathematics course with the unproctored 

examination.  

 

 

Table 13 

Crosstabulation of Type of Course by Type of Exam 

 

Type of Exam 

 Course Type Proctored Unproctored Total 

Non-Remedial 75.08% 82.87% 78.95% 

Remedial 24.92% 17.13% 21.05% 

Total 100% 100% 

  

   

Table 15 
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Multiple Linear Regression Model for the Combined Data 

Table 16 gives the results of the regression coefficients of the overall MLR model 

used to predict placement examination scores.  The type of examination used to place 

students was a significant predictor of placement examination scores.  The coefficient of 

TYPE indicates that when holding all other predictors constant, students who were placed 

with the proctored examination scored, on average, about 1 point lower on the placement 

examination than the students who were placed with the unproctored examination.  The 

multiple linear regression equation has R
2 

 = 0.523 so that the predictors explain 52.3% 

of the variation in mathematics placement examination scores. The overall model is 

significant, F(14, 1289) =100.947 p = .000.   
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Table 16 

Results of Multiple Linear Regression Coefficients Use to Predict Mathematics 

Placement Examination Scores (N=1304) 

Predictor b SE(b) t p 

Intercept -11.819 1.422 -8.312 0.000 

GENDER -0.239 0.216 -1.108 0.268 

ACTM 0.739 0.032 23.080 0.000 

HSGPA 1.245 0.459 2.710 0.007 

HSMGPA 1.109 0.304 3.645 0.000 

SYM 1.393 0.295 4.714 0.000 

CABOVE -0.520 0.451 -1.153 0.249 

 BLACK -0.129 0.363 -0.357 0.721 

HISPANIC -0.356 0.593 -0.601 0.548 

INDIAN -0.564 1.110 -0.508 0.612 

ASIAN 0.257 0.495 0.520 0.603 

TYPE -1.186 0.216 -5.496 0.000 

PSTT -2.448 0.352 -6.957 0.000 

ALG -1.151 0.360 -3.196 0.001 

OTHER -1.474 0.300 -4.922 0.000 

Note. R
2
 = 0.523 and adjusted R

2
 = 0.517 

Residual Analysis of Overall Regression Model 

 Figure 15 below shows the histogram of the residuals generated by PASW 

Statistics 18. The figure clearly shows that the distribution of the error terms is normal 

with a mean of 0.  

 Also, the normal probability plot in figure 16 also supports the assumption of the 

normality of the error terms.  Although there are a few point that stray from the straight 

line,   
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Figure 15. Histogram of the Residuals of the Regression Model for the Combined Data 
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Figure 16.  Normal Probability Plot of Residuals for the Overall Data 

 Figure 17 checks the homoscedastiscity assumption. Clearly the errors are 

randomly distributed about zero and therefore the assumption of homoscedastiscity is 

verified.  
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Figure 17. Scatterplot of Standardized Residuals vs. Standardized Predicted Value  

  

The assumptions of the multiple linear regression model are satisfied and 

therefore, the model fits the data well.   
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Multiple Linear Regression Model for the Proctored Data 

Table 17 gives the results of the regression coefficients used to predict 

mathematics placement examination scores using the proctored data.  The predictors in 

this model explained 58.6% of the variation in the proctored mathematics placement 

examination. The overall model fit was significant (F(13,436) = 47.524, p = .000). Unlike 

the overall model, HSGPA and HSMGPA were not significant predictors of scores on the 

proctored examination.   

 

Table 14 

 Summary of Multiple Linear Regression Coefficients used to Predict Placement using the 

Proctored Examination (N=450) 

Predictor b SE(b) t p 

Intercept -11.080 2.152 -5.149 0.000 

GENDER -0.471 0.319 -1.474 0.141 

ACTM 0.752 0.049 15.371 0.000 

HSGPA 0.866 0.697 1.243 0.215 

HSMGPA 0.789 0.469 1.680 0.094 

SYM 1.380 0.428 3.223 0.001 

CABOVE -0.396 0.627 -0.632 0.528 

BLACK 0.496 0.497 0.999 0.319 

HISPANIC -1.068 0.988 -1.081 0.280 

INDIAN 1.705 1.847 0.923 0.357 

ASIAN 0.507 0.899 0.564 0.573 

PSTT -2.375 0.498 -4.772 0.000 

ALG -1.107 0.531 -2.084 0.038 

OTHER -1.026 0.439 -2.339 0.020 

Note. R
2
 = 0.586 and adjusted R

2
 = 0.574 

 

  

Table 17 
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Residual Analysis of Proctored Multiple Linear Regression Model 

Just as with the overall multiple regression model, the errors were checked for 

normality and the equal variance assumption was checked.  Figure 18 shows a histogram 

of the error terms.  The histogram shows that the error terms are normally distributed 

with a mean of zero. The Q-Q plot (figure 19) also supports the normality of the errors 

assumption. 

Figure 20 is a plot of the standardized residuals against the standardized predicted 

values. The errors appear to be randomly distributed about zero, so the homoscedastiscity 

assumption is verified.  
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Figure 18. Histogram of the Residuals of the Regression Model for the Proctored 

Regression Model 
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Figure 19.  Normal Probability Plot of the Residuals for the Proctored Regression Model 
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Figure 20.  Scatterplot of Standardized Residuals of the Proctored Regression Model  
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When the unproctored data was substituted into the above proctored model the 

resulting scores were an estimate of the scores in which the students who were placed 

with the proctored examination would have received if they had been placed with the 

proctored examination. The correlation between these predicted scores and the actual 

unproctored placement scores was significant, r(909) = 0.682, p = .000, indicating the 

presence of a linear correlation between the predicted unproctored examination scores 

and the actual unproctored examination scores.  

Despite the high correlation coefficient, only about 35% of the students who were 

placed with the unproctored examination would have received the same placement if they 

would have been placed with the proctored examination.  Additionally, approximately 

21.5% and 43.5% of the students would have received higher and lower placements 

respectively.  Therefore, the unproctored examination does not place students in the same 

way as the proctored examination.  In fact, the unproctored examination appears to be 

more likely to place students into higher level mathematics courses than the proctored 

examination.  

 

Multiple Linear Regression Model for the Unproctored Data 

Table 18 gives the results of the regression coefficients used to predict 

mathematics placement examination scores using the unproctored data.  The predictors in 

this model explained 48.2% of the variation in the unproctored mathematics placement 

examination. The overall model fit was significant F(13,840) = 60.149, p = .000, 

indicating that at least one of the predictors significantly predict the scores on the 

unproctored placement examination. In this model, both HSGPA and HSMGPA are 
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significant predictors of the unproctored mathematics placement examination scores 

whereas HSGPA and HSMGPA were not significant predictors of proctored placement 

examination scores.    

 

Table 15 

Summary of Multiple Linear Regression Coefficients used to Predict Placement using the 

Unproctored Examination (N=909) 

Predictor b SE(b) t p 

Intercept -13.103 1.854 -7.068 0.000 

GENDER -0.100 0.284 -0.354 0.723 

ACTM 0.737 0.042 17.724 0.000 

HSGPA 1.454 0.598 2.431 0.015 

HSMGPA 1.323 0.393 3.369 0.001 

SYM 1.344 0.394 3.410 0.001 

CABOVE -0.600 0.620 -0.968 0.333 

BLACK -0.940 0.521 -1.804 0.072 

HISPANIC -0.102 0.739 -0.139 0.890 

INDIAN -1.263 1.391 -0.908 0.364 

ASIAN 0.188 0.600 0.313 0.754 

PSTT -2.458 0.475 -5.170 0.000 

ALG -1.117 0.477 -2.343 0.019 

OTHER -1.700 0.396 -4.295 0.000 

Note.  R
2
 = 0.482 and adjusted R

2
 = 0.474. 

 

Residual Analysis of the Unproctored Regression Model 

 Just as with the overall multiple regression model, the errors were checked for 

normality and the equal variance assumption was checked.  Figure 21 shows a histogram 

of the error terms.  The histogram shows that the error terms are normally distributed 

Table 18 
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with a mean of zero. The Q-Q plot (figure 122) also supports the normality of the errors 

assumption. 

Figure 23 is a plot of the standardized residuals against the standardized predicted 

values. The errors appear to be randomly distributed about zero, so the homoscedastiscity 

assumption is verified.  

 

 

Figure 21. Histogram of Residuals of the Regression Model of the Unproctored 

Regression Model 
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Figure 22. Normal Probability Plot of Residuals of the Unproctored Regression Model 
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Figure 23. Scatterplot of the Standardized Residuals vs. Standardized Predicted Values 

for the Unproctored Regression Model  
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When the proctored data was substituted into the unproctored model the resulting 

scores were an estimate of the scores in which the students who were placed with the 

proctored examination would have received if they had been placed with the unproctored 

examination. The correlation between these predicted proctored scores and the actual 

proctored placement scores was significant, r(450) = .749, p = .000, indicating the 

presences of a linear relationship between predicted proctored examination scores and 

actual proctored examination scores.  

Despite the high correlation coefficient, approximately 41% of the students who 

were placed with the proctored examination would have received the same placement if 

they would have been placed with the unproctored examination. Additionally, 

approximately 39% and 20% of the students would have received higher and lower 

placements respectively.  Although there is indication that more of the students who were 

placed with proctored examination would have received the same placement if they 

would have been placed with the proctored examination than vice versa, this agreement 

rate was less than ½.    

 Another technique that was used to determine if the unproctored examination is 

functioning in the same way as the proctored examination was to determine if a particular 

group of students received an advantage as a result of being placed with a particular 

examination.  So the success rates of several groups of students, under each type of exam 

were determined using a contingency table analysis.  
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Success Rate for Combined Data 

 Table 19 shows the 2 x 2 contingency table of course success by type of 

examination.  As indicated almost 79% of the students who were placed with the 

proctored examination were successful in their first college mathematics course 

compared to approximately 86% of the students who were placed with the unproctored 

examination.  This difference in percentage of students who were successful was 

significant 
2
(1, n=1698) = 5.883, p = .015, indicating that course success was dependent 

on the type of examination used for placement with the students who were placed with 

the unproctored examination being more successful in their first college mathematics 

course.  Also, the  ratio associated with table 17 is approximately 1.36 ( (83.2*21.6)/ 

(78.4*16.8) ) indicating that odds of a student being successful in their first college 

mathematics course when placed with the unproctored examination is about 36% more 

than the odds of a student being successful when placed with the proctored examination.  

This was a surprising outcome. 

 

Table 16 

 2 x 2 Contingency Table of Math Course Outcome by Type of Examination 

 

Type of Examination 

Course 

Outcome 

Proctored 

(n = 598) 

Unproctored 

(n = 1098) 

Unsuccessful 21.6% 16.8% 

Successful 78.4% 83.2% 

Total  100.00% 100.00% 

 

Table 19 
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Success in Intermediate Algebra (MTH1825)   

 Table 20 shows a 2 x 2 contingency table of MTH1825 course outcome by the 

type of examination.   According to the table, approximately 73.3% of the students who 

were placed with the unproctored examination were successful in MTH1825. Also, 

approximately 53.1% of the students who were placed with the proctored examination 

were successful in MTH1825. This difference in percentage of students who were 

successful was significant 
2
(1, n = 335) = 14.328, p = .000, indicating that the students 

who were placed into MTH1825 with the unproctored examination were more likely to 

be successful in MTH1825 than the students who were placed with the proctored 

examination.  The odds ratio associated with table 18 is 2.42 

((73.30*46.90)/(53.10*26.70).  So the odds of being successful in MTH1825 under the 

unproctored examination was over 140% more than the odds of being successful in 

MTH1825 under the proctored examination.  

 

Table 17 

2 x 2 Contingency Table of MTH1825 Course Outcome by Type of Examination 

 

Type of Examination 

Course 

Outcome 

Proctored 

(n = 147) 

Unproctored 

(n = 188) 

Unsuccessful 46.90% 26.70% 

Successful 53.10% 73.30% 

Total  100.00% 100.00% 

 

  

Table 20 
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White students: Table 21 shows a 2 x 2 contingency table of MTH1825 course 

outcome by the type of examination for the white students who were placed into 

MTH1825.  According to the table, approximately 78.2% of the white students who were 

placed with the unproctored examination were successful in MTH1825 compared to 

approximately 77.4% of the white students who were placed with the proctored 

examination.   The value of the test statistic to test the null hypothesis that the proportion 

of white students in MTH1825 students who were successful when placed with the 

unproctored examination is the same as the proportion of white students in MTH1825 

students who were successful when placed with the unproctored examination was not 

significant 
2
(1, n = 262) = 0.013, p = .908.  Therefore there were no significant 

difference in the percentage of white students who were successful in MTH1825 with the 

proctored examination and the percentage of white students who were successful in 

MTH1824 who were placed with the unproctored examination. 

 

Table 18 

2 x 2 Contingency Table of Course Outcome by Type of Examination for the White 

Students Enrolled in MTH1825 

 

Type of Examination 

Course 

Outcome 

Proctored 

(n = 53) 

Unproctored 

(n = 119) 

Unsuccessful 22.60% 21.80% 

Successful 77.40% 78.20% 

Total  100.00% 100.00% 

 

Table 21 
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Black Students: Table 22 shows a 2 x 2 contingency table of MTH1825 success 

rate by type of examination for the black students who were placed in MTH1825.  As 

indicated, approximately 38% of the black students who were placed into MTH1825 with 

the proctored examination were successful compared to approximately 60.4% who were 

placed with the unproctored examination. The value of the test statistic to test the null 

hypothesis that the proportion of black students in  MTH1825 students who were 

successful when placed with the unproctored examination is the same as the proportion of 

black students in MTH1825 students who were successful when placed with the 

unproctored examination was significant 
2
(1, n = 119) = 5.762, p = .016. Thus, there 

was a significant difference in the success rate for the black students who were placed 

into MTH1825 with the proctored examination and the success rate of the black students 

who were placed into MTH1825 with the unproctored examination.  

The odds ratio of 2.49 ( (60.40*62)/(38*39.6) ) indicates that the odds of being 

successful for black students who took the unproctored examination and enrolled in 

MTH1825 were 149% more than the odds of being successful for black students who 

took the proctored placement examination and enrolled in MTH1825. 
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Table 19 

2 x 2 Contingency Table of Course Outcome by Type of Examination for the Black 

Students Enrolled in MTH1825 

 

Type of Examination 

Course 

Outcome 

Proctored 

(n = 71) 

Unproctored 

(n = 48) 

Unsuccessful 62.00% 39.60% 

Successful 38.00% 60.40% 

Total  100.00% 100.00% 

 

Gender: Table 23 shows a 2 x 2 contingency table of MTH1825 course outcome 

by type of examination for the male students who were placed in MTH1825.  As 

indicated, approximately 55% of the male students who were placed into MTH1825 with 

the proctored examination were successful compared to approximately 73.3% who were 

placed with the unproctored examination. The value of the test statistic to test the null 

hypothesis that the proportion of male students in  MTH1825 students who were 

successful when placed with the unproctored examination is the same as the proportion of 

male students in MTH1825 students who were successful when placed with the 

unproctored examination was significant 
2
(1, n =111) = 4.109, p =.043.  Thus, for the 

male students who placed into MTH1825, success was dependent on the type of 

examination used for placement.  Furthermore, the odds ratio of 2.26 

(73.30*45.10)/(54.9*26.70) indicates that the odds of being successful for the male 

students who enrolled into MTH1825 with the unproctored examination was 126% more 

than the odds for the males who enrolled with the proctored examination.  

 

Table 22 
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2 x 2 Contingency Table of Course Outcome by Type of Examination for the Male 

Students Enrolled in MTH1825 

 

Type Of Examination 

Course 

Outcome 

Proctored 

(n = 51) 

Unproctored 

(n = 60) 

Unsuccessful 45.10% 26.70% 

Successful 54.90% 73.30% 

Total  100.00% 100.00% 

 

 

Table 24 shows a 2 x 2 contingency table of MTH1825 course outcome by type of 

examination for the female students. As indicated, approximately 54.2% of the female 

students who were placed into MTH1825 with the proctored examination were successful 

compared to approximately 73.4% who were placed with the unproctored examination. 

The value of the test statistic to test the null hypothesis that the proportion of female 

students in  MTH1825 students who were successful when placed with the unproctored 

examination is the same as the proportion of female students in MTH1825 students who 

were successful when placed with the unproctored examination was significant 
2
(1, n = 

124) = 8.976, p = .003.  Furthermore, the odds ratio of 2.33 ((73.40*45.80)/(54.20*26.60) 

indicates that the odds of being successful for the female students who were placed into 

MTH1825 with the unproctored examination was 133% more than the odds for females 

who were placed with the proctored examination.  

 

  

Table 23 
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Table 20 

2 x 2 Contingency Table of Course Outcome by Type of Examination for the Female 

Students Enrolled in MTH1825 

 

Type of Examination 

Course 

Outcome 

Proctored 

(n = 96) 

Unproctored 

(n = 128) 

Unsuccessful 45.80% 26.60% 

Successful 54.20% 73.40% 

Total  100.00% 100.00% 

 

Senior Year Math: Table 25 shows a 2 x 2 contingency table of MTH1825 

course outcome by type of examination for the students who were not enrolled in 

mathematics during their senior year of high school.  As indicated, approximately 51.6% 

of the students who were placed into MTH1825 with the proctored examination were 

successful compared to approximately 71.7% who were placed with the unproctored 

examination. The value of the test statistic to test the null hypothesis the proportion of 

students in the proctored group who were successful is the same as the proportion of 

students in the unproctored group who were successful was not significant 
2
(1, n  = 84) 

= 3.437, p = .064.    

 

  

Table 24 
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Table 21 

2 x 2 Contingency Table of Course Outcome by Type of Examination for Students Who 

Were Not Enrolled in Math during Senior Year of High School and Enrolled in MTH1825 

 

Type Of Examination 

Course 

Outcome 

Proctored 

(n = 31) 

Unproctored 

(n = 53) 

Unsuccessful 48.40% 28.30% 

Successful 51.60% 71.70% 

Total  100.00% 100.00% 

 

Table 26 shows a 2 x 2 contingency table of MTH1825 course outcome by type of 

examination for the students who were enrolled in a mathematics course during their 

senior year of high school.   As indicated, approximately 56.0% of the white students 

who were placed into MTH1825 with the proctored examination were successful 

compared to approximately 73.8% who were placed with the unproctored examination. 

The difference in the percentages was significant 
2
(1, n =321) = 80.63, p = .005.   The 

odds ratio 2.21 ((73.8*44.00)/(56.00*26.20)).  So the students who were enrolled in a 

mathematics course during their senior year of high school were more likely to be 

successful in MTH1825 if placed with the unproctored examination.  

 

  

Table 25 
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Table 26 

 2 x 2 Contingency Table of MTH1825 Course Outcome by Type of Examination for 

Students Who Were Enrolled in Math during Senior Year of High School 

 

Type Of Examination 

Course 

Outcome 

Proctored 

(n = 109) 

Unproctored 

(n = 122) 

Unsuccessful 44.00% 26.20% 

Successful 56.00% 73.80% 

Total  100.00% 100.00% 

 

Last high school mathematics course: Table 27 is a 2 x 2 contingency table of 

the MTH1825 course outcome by type of examination for students whose last high 

school math course was either calculus, pre-calculus, or trigonometry.  As indicated, 

approximately 60% of the students who were placed into MTH1825 with the proctored 

examination were unsuccessful compared to approximately 76.5% who were placed with 

the unproctored examination. The value of the test statistics used to test the null 

hypothesis that there is no difference between the proportion of these students who were 

successful in the proctored group is the same as the proportion of these students who 

were successful in the unproctored group was  significant 
2
(1,151) = 4.794, p = .029.  

The odds ratio was 2.17 ((76.50*40.00)/(60.00*76.50)) indicating that the students who 

were placed with the unproctored examination and took calculus, pre-calculus, or 

trigonometry during their senior year of high school were more likely to be successful in 

MTH1825 than the students who were placed with the proctored examination.  
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Table 22 

 2 x 2 Contingency Table of the MTH1825 Course Outcome by Type of Examination for 

Students Whose Last High School Math Course was Calculus, Pre-Calculus, or 

Trigonometry in High School 

 

Type Of Examination 

Course 

Outcome 

Proctored 

(n = 70) 

Unproctored 

(n = 81) 

Unsuccessful 40.00% 23.50% 

Successful 60.00% 76.50% 

Total  100.00% 100.00% 

 

   

Table 28 shows the 2 x 2 contingency table of the MTH1825 course outcome by 

type of examination for students whose last high school mathematics class was either 

algebra I, algebra II, or geometry.   As indicated, approximately 37.5% of these students 

who were placed with the proctored examination were successful compared to 

approximately 71.4% who were placed with the unproctored examination. The value of 

the test statistics used to test the null hypothesis that there is no difference between the 

proportion of male students who were successful in the proctored group is the same as the 

proportion of students who were successful in the unproctored group was significant  


2
(1, n = 81) = 9.149, p = .002.  The odds ratio was 2.17 ((76.5*40)/(60*23.5)). So the of 

being successful for students who enrolled in MTH1825, who were placed with the 

unproctored examination and took either algebra I, algebra II, or geometry as their last 

high school math course was over 2 times the odds of being successful for students who 

Table 27 
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enrolled in MTH1825, who were placed with the proctored examination, and took either 

algebra I, algebra II, or geometry as their last high school math course.  

 

Table 28 

 2 x 2 Contingency Table of MTH1825 Course Outcome by Type of Examination For The 

Students Whose Last High School Math Course Was Algebra I, Algebra II, or Geometry 

 

Type Of Examination 

Course 

Outcome 

Proctored 

(n = 32) 

Unproctored 

(n = 49) 

Unsuccessful 62.50% 28.60% 

Successful 37.50% 71.40% 

Total  100.00% 100.00% 

 

Table 29 shows the 2 x 2 contingency table of the MTH1825 course outcome by 

type of examination for students whose last high school mathematics course was statistics 

or probability.   As indicated, approximately 57.1% of these students that were placed 

with the proctored examination were successful in MTH1825 compared to 66.7% of 

those who were placed with the unproctored examination.  The value of the test statistics 

used to test the null hypothesis that there is no difference between the proportion of male 

students who were successful in the proctored group is the same as the proportion of 

students who were successful in the unproctored group was significant  
2
(1, n  = 67) = 

0.632, p = .427. 
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Table 29 

2 x 2 Contingency Table of MTH1825 Course Outcome by Type of Examination for the 

Students Whose Last High School Math Course Was Statistics or Probability 

 

Type Of Examination 

Course 

Outcome 

Proctored 

(n = 28) 

Unproctored 

(n = 39) 

Unsuccessful 42.90% 33.30% 

Successful 57.10% 66.70% 

Total  100.00% 100.00% 

 

 

Success in College Algebra (MTH103) 

 Table 30 shows a 2 x 2 contingency table for MTH103 course outcome by type of 

examination.  As indicated, approximately 85.1% of the students who were placed in 

MTH103 with the proctored examination were successful compared to approximately 

77.1% who were placed with the unproctored examination. The value of the test statistics 

used to test the null hypothesis that there is no difference between the proportion of 

MTH103 students who were successful in the proctored group is the same as the 

proportion of MTH103 students who were successful in the unproctored group was not 

significant 
2
(1, n = 270) = 2.016, p = .156. 
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Table 30 

2 x 2 Contingency Table of MTH103 Course Outcome by Type of Examination 

 

Type Of Examination 

Course 

Outcome 

Proctored 

(n = 101) 

Unproctored 

(n = 169) 

Unsuccessful 14.90% 21.90% 

Successful 85.10% 77.10% 

Total  100.00% 100.00% 

 

Success in College Algebra and Trigonometry (MTH116) 

 Table 31 shows the 2 x 2 contingency table of the math 116 course outcome by 

type of examination.  As indicated, approximately 81.1% of the students who were placed 

in math 116 with the proctored examination were successful compared to approximately 

81.1% who were placed with the unproctored examination. The value of the test statistics 

used to test the null hypothesis that there is the proportion of students who were  

successful in the proctored group is the same as the proportion of students who were  

successful in the unproctored group was not significant 
2
(1, n = 127) = 0.000, p = .994. 

 

Table 31 

 2 x 2 Contingency Table of Math 116 Course Outcome by Type of Examination 

 

Type of Examination 

Course 

Outcome 

Proctored 

(n = 53) 

Unproctored 

(n = 74) 

Unsuccessful 18.9% 18.9% 

Successful 81.1% 81.1% 

Total  100.0% 100.0% 
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Success in Survey of Calculus 1 (MTH124) 

 Table 32 shows the percentage of students who were unsuccessful in MTH124 by 

the type of examination used to place the students. As indicated, approximately 94.1% of 

the students who were placed in MTH124 with the proctored examination were 

successful compared to approximately 90.8% who were placed with the unproctored 

examination. The value of the test statistics used to test the null hypothesis that there is 

no difference between the proportion of students who were successful in the proctored 

group is the same as the proportion of students who were unsuccessful in the unproctored 

group was not significant 
2
(1, n = 121) = 0.354, p = .552. 

 

Table 32 

 2 x 2 Contingency Table of MTH124 Course Outcome by Type of Examination 

Course 

Outcome 

Proctored 

(n = 34)   

Unsuccessful 5.9% 9.2% 

Successful 94.1% 90.8% 

Total  100.0% 100.0% 

 

 

Success in Calculus I (MTH132) 

 Table 33 shows the percentage of students who were unsuccessful in MTH132 by 

the type of examination used to place the students. As indicated, approximately 93.7% of 

the students who were placed in MTH132 with the proctored examination were 

successful compared to approximately 86.1% who were placed with the unproctored 

examination. The value of the test statistics used to test the null hypothesis that there is 
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no difference between the proportion of students who were successful in the proctored 

group is the same as the proportion of students who were unsuccessful in the unproctored 

group was not significant 
2
(1, n = 147) = 1.368, p = .242. 

 

 Table 33 

2 x 2 Contingency Table of MTH132 Course Outcome by Type of Examination 

Course 

Outcome 

Proctored 

(n = 32) 

Unproctored 

(n = 115) 

Unsuccessful 6.3% 13.9% 

Successful 93.8% 86.1% 

Total  100.0% 100.0% 

 

  

 The contingency table analysis of the overall data set revealed that the students 

who were placed with the unproctored examination were more likely to be successful in 

the course in which they were placed.  Upon further analysis, it was revealed that this 

phenomenon was only true of the university‟s remedial mathematics course (MTH1825) 

and not the non-remedial mathematics courses.   

 

 Question 3 

How well does the mathematics placement examination predict success in students’ 

first college mathematics course? Furthermore, can the prediction of success in 

students’ first college mathematics course be improved using ACT Mathematics score, 

high school GPA, the type of mathematics courses taken in high school, and whether 

or not students took a mathematics course during their senior year of high school? 
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 Michigan State University currently uses the results of the mathematics placement 

examination to place students into their first college mathematics course.    

 

Predicting Success in Intermediate Algebra (MTH1825) 

 Since Michigan State University uses the scores on the placement examination to 

place students into their first college math course, the first logistic regression model 

(Model 1) uses mathematics placement examination score (MPE) as the predictor and 

PASS as the criterion. Table 34 shows the logistic regression results.  As indicated in the 

table, the odds ratio for MPE is 1.386. Thus, for a 1 point increase in placement 

examination score, the odds of passing MTH1825 increase by about 39%.  The Hosmer 

and Lemeshow Test is not significant (
2
(5 , N = 335 ) = 9.877, p = .079) indicating that 

there is a linear relationship between MPE and the log odds of being successful in 

Intermediate Algebra and therefore Model 1 fits the data well.  The binary logistic 

regression equation is given by 

Ln(odds(success)) = -1.470 + 0.326*MPE 

 

 

Table 34 

Summary of Logistic Regression Results of Model 1 

 

Predictor b S.E. Wald df Sig. 

Odds 

Ratio 

95% C.I. for the 

Odds Ratio 

MPE   0.326 0.065 25.617 1 0.000 1.386 (1.221, 1.573) 

Constant -1.470 0.423 12.097 1 0.001 0.230 
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 Student #218 was unsuccessful in MTH1825. This student had a placement 

examination score of 5. Using the logistic regression equation above and equation 4, the 

predicted probability of success in MTH1825 for student #216 was 0.539. Thus the above 

model predicted this student to be successful although the student was not successful.  

 Table 35 is the classification table that corresponds to the logistic regression 

model above. The model correctly predicted 87.6% (191/218) of the successes but only 

21.4% (25/117) of the non-success. Overall, the correct decision was made 64.4% of the 

time.  Also, a total of 283 students were predicted to be successful in MTH1825 based on 

their scores on the placement examination but 92 of them were not successful. Hence this 

model has a false positive rate of 32.5% (92/283). Similarly, the model has a false 

negative rate of 52% (27/52). 

Table 35 

Classification Table Corresponding to Model 1 

  Predicted 

   

  Unsuccessful Successful 

observed Unsuccessful 25 92 

 Successful 27 191 

  Hit Rate =64.4% 

 

 In an attempt to improve the prediction of success in Intermediate Algebra, 

ACTM, HSGPA, SYM, last math course taken in high school, and the type of 

mathematics used for placement was added to Model 1.  The resulting model will be 

referred to as Model 2. The logistic regression results are given in table 36.   

The table shows that SYM, TYPE, and the last math course taken in high school. 

SYM and the last high school math course taken in high school were kept in the model 
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because researchers (Hill, 2006; Adelman 1999, Berry 2003) concluded that taking a 

challenging math course in high school (beyond algebra 2) and taking mathematics 

during senior year is important to success in college level mathematics as well as college 

success overall.   Additionally, TYPE remained in the model because of the a priori 

interest in the effect of type of examination on success in first college math course.   

 

Table 36 

 Summary of Logistic Regression Coefficients for Model 2 

Predictor b SE(b) Wald df p 

Odds 

Ratio 

95% C.I. for 

the Odds Ratio 

MPE 0.231 0.085 7.487 1 0.006 1.260 (1.068 , 1.487) 

ACTM 0.235 0.060 15.476 1 0.000 1.264 (1.125 , 1.421) 

HSGPA 1.337 0.436 9.400 1 0.002 3.806 (1.620 , 8.943) 

TYPE -0.406 0.292 1.932 1 0.164 0.667 (0.376 , 1.181) 

SYM 0.227 0.356 0.407 1 0.523 1.255 (0.625 , 2.520) 

PSTT 0.380 0.528 0.519 1 0.471 1.462 (0.520 , 4.112) 

ALG 0.072 0.395 0.033 1 0.856 1.074 (0.495 , 2.332) 

Other
a 

-0.261 0.388 0.453 1 0.501 0.770 (0.360 , 1.649) 

Constant -9.584 1.878 26.036 1 0.000 0.000   
a 

Includes FST (functions, statistics, and trigonometry), Business math, Consumer math, 

Math Analysis, Discrete Math 

 

MPE, ACTM, and HSGPA were all significant predictors of success in 

Intermediate Algebra.  According to the table, a 1 point increase in the placement 

examination score increases the odds of being successful in MTH1825 by about 26%. A 

1 point increase in ACT Mathematics score also increases the odds of success in 

Intermediate Algebra of about 26%.  The odds ratio for HSGPA is 3.806 and therefore, a 

1 point increase in HSGPA increases the odds of being successful in MTH1825 by about 
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280%.  However, if an increase of 0.1 points in HSGPA is considered, then the odds ratio 

would be 3.806
0.1

 = 1.14. Thus an increase of 0.1 points in the HSGPA results in an 

increase in the odds of being successful in Intermediate Algebra of about 14%.   The odds 

ratio for TYPE indicated that the students who were placed into MTH1825 with the 

proctored examination had odds of success that were 0.667 times the odds of success of 

the students who were placed into MTH1825 with the unproctored examination.  This 

odds ratio was not statistically significant.  

 The reader should be reminded that the variables PSTT, ALG, and Other are 

dummy variables created from variable LAST (last high school mathematics course 

taken) where a calculus, pre-calculus, or trigonometry was used as the reference group. 

Thus the odds ratio for ALG indicates that an Intermediate Algebra student, whose last 

high school math course was algebra I, algebra II, or geometry had odds of passing 

Intermediate Algebra that were 1.074 times greater than the odds of an Intermediate 

Algebra student who took calculus, pre-calculus, or trigonometry as their last high school 

math course. However, this odds ratio was not significant.  

 The values of the deviance for Model 1 and Model 2 were 403.989 and 298.639 

respectively. This difference was significant 
2
(7, n = 332) = 105.35, p = .000.   Thus, 

Model 2 improves the prediction of success in Intermediate Algebra beyond Model 1.  

The logistic regression equation is given by 

Ln(odds(success)) = -9.584 + 0.231*MPE + 0.235*ACTM + 1.337*HSGPA – 

0.406*TYPE – 0.227*SYM + 0.380*PSTT +0.072*ALG – 0.261*Other 

Students #218 had MPE = 5, ACTM = 17, HSGPA = 2.78 , was placed with the 

proctored examination, and was enrolled in probability and statistics during his senior year of 
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high school  Using the logistic regression model and equation 4, this student‟s predicted 

probability of passing MTH1825 of  0.374.  If this student was placed with the unproctored 

examination, the probability of being successful would increase to 0.472. Using only the 

placement examination score, this student was predicted to pass. Using information in the 

student‟s background, in addition to placement examination score, this student was predicted 

to be unsuccessful; and he was unsuccessful.  With the low ACT Mathematics score, low 

mathematics placement examination scores, and high school GPA below 3.0, this student 

could be singled out and referred to academic resources within the university (e.g. tutoring).  

Table 37 gives the classification table associated with Model 2. The model correctly 

predicted 89.5% (170/190) of the successes and 54.2% (52/96) of the non-successes. Overall, 

the correct decision was made 77.6% of the time. Also, using this model, a total of 214 

students were predicted to be successful in MTH1825, but 44 of them were not successful. 

Hence this model has a false positive rate of 20.6% (44/214). Similarly, the model has a false 

negative rate of 27.7% (20/72).   
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Table 37 

Classification Table for Model 2 

  Predicted 

   

  Unsuccessful Successful 

observed Unsuccessful 52 44 

 Successful 20 170 

  Hit Rate =77.6% 

 

As indicated, Model 2 fits the MTH1825 data better than Model 1. Furthermore, 

Model 2 has a smaller false positive rate than Model 1.  

 

Predicting Success in College Algebra (MTH103) 

 Table 38 gives the logistic regression results for the logistic regression model 

used to predict success in MTH103 with placement examination scores (Model 3).  As 

indicated by the model, placement examination score is a significant predictor of the log 

odds of being successful in College Algebra. The odds ratio for MPE indicates that a 1 

point increase in the placement examination score increases the odds of being successful 

in college algebra by about 25%.   The Hosmer and Lemeshow Test produced a 

significant chi-square value, 
2
(5, N = 477) = 4.014, p = .547.  Therefore, Model 3 fits 

the data well.  Furthermore the Omnibus Test of Model Coefficients produces a 

significant chi-square value, 
2
(1, N = 477) = 15.502, p = .000 so that Model 3 fits the 

data better than the intercept only model.  The binary logistic regression equation is given 

by 

Ln(odds(success)) = -0.854 + 0.224*MPE 
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Table 38 

Summary of Logistic Regression Results for Model 3 

Predictor b SE(b) Wald df p 

Odds 

Ratio 

95% C.I. for the 

Odds Ratio 

MPE 0.224 0.060 14.096 1 0.000 1.251 (1.113, 1.407) 

Constant -0.854 0.647 1.742 1 0.187 0.426 

  

 Student #1681 received a placement examination score of 10.  Using Model 3 and 

equation 4 the predicted probability of success in college algebra for a student who scores 

10 on the placement examination is 0.80.  Student #1681 was not successful. 

 The classification table corresponding to Model 3 is given in table 39. The model 

correctly predicted 100% of the successes and 1.3% of the failures for an overall “hit 

rate” of 83.4% (388/477).  Model 3 predicted that 476 of the students would be 

successful in College Algebra.  However, 79 of these students were unsuccessful. Thus, 

Model 3 has a false positive rate of 16.6% (79/476).   

 

Table 39 

Classification Table Corresponding to Model 3 

  Predicted 

   

  Unsuccessful Successful 

observed Unsuccessful 1 79 

 Successful 0 397 

  Hit Rate =83.4% 

  

Attempting to improve on the prediction of success in MTH103, Model 4 was 

created by adding the variables ACTM, HSGPA, SYM, TYPE, PSTT, ALG, and Other to 

Model 3. The logistic regression results of Model 4 are given in Table 40.  MPE, ACTM, 
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and HSGPA are all significant predictors of the log odds of being successful in college 

algebra.   The odds ratio for ACTM indicates that when all the other predictors are held 

constant, the odds of being successful in college algebra increases by about 11% for a 1 

point increase in ACT Mathematics score.  The odds ratio for HSGPA indicates that, 

when all the other predictors are held constant, the odds of being successful in college 

algebra increases by over 270% when the for a 1 point increase in the high school GPA.  

However, if an increase of 0.1 points in HSGPA is considered, then the odds ratio would 

be 3.794
0.1

 = 1.14 and an increase of 0.1 points in high school GPA increases the odds of 

being successful in college algebra by about 11%.  

The odds ratio for TYPE indicated that, when all the other predictors are held 

constant, the odds of being successful in college algebra when placed with the proctored 

examination is about 87% more than the odds of being successful in college algebra when 

placed with the unproctored examination.  However, the variable TYPE was not 

significant.    

The Hosmer Lemeshow chi-square produced a non significant chi-square value, 


2
(8, n = 405) = 37.15, p = .882.  Thus, Model 4 fits the data well. Also, the omnibus test 

of model coefficients produced a significant chi–square, 
2
(7, n = 405) = 38.455, p = 

.000 indicating that Model 4 fits better than the intercept only model.   The value of the 

deviance for Model 3 and Model 4 were 215.125 and 165.239 respectively. The 

difference was significant 
2
(7, n = 405) = 46.886, p = .000. Therefore the Model 4 

significantly adds to the prediction of success in college algebra beyond placement 

examination score. The logistic regression model is given by  
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Ln(odds(PASS)) = -8.117 + 0.293*MPE+ 0.105*ACTM + 1.333*HSGPA + 

0.626*TYPE + 0.243*SYM  + 0.015*PSTT – 0.628*ALG +0.240*Other 

 

Table 40 

 Summary of Logistic Regression Results for Model 4 

Predictor b SE(b). Wald df p 

Odds 

Ratio 

95% C.I. for 

the Odds 

Ratio 

MPE 0.243 0.078 9.780 1 0.002 1.274 (1.095, 1.481) 

ACTM 0.105 0.050 4.449 1 0.035 1.111 (1.007, 1.224) 

HSGPA 1.333 0.441 9.141 1 0.002 3.794 (1.598, 9.006) 

TYPE 0.626 0.330 3.600 1 0.058 1.870 (0.980, 3.569) 

SYM 0.243 0.078 9.780 1 0.002 1.274 (0.480, 2.141) 

PSTT 0.015 0.493 0.001 1 0.976 1.015 (0.386, 2.667) 

ALG -0.628 0.402 2.434 1 0.119 0.534 (0.243, 1.174) 

Other
a 

0.240 0.426 0.318 1 0.573 1.271 (0.552, 2.930) 

Constant -8.117 2.027 16.039 1 0.000 0.000   
a 

Includes FST (functions, statistics, and trigonometry), Business math, Consumer math, 

Math Analysis, Discrete Math 

 

 

 Student #1016 was placed into college algebra with the unproctored examination 

with a score of 11.  This student had ACTM = 21, HSGPA = 3.722, and his last 

mathematics course was Pre-calculus during his junior year of high school.  Using Model 

4 and equation 4, his predicted probability of success was given as 0.848. A similar 

student placed with the proctored examination would have a predicted probability of 

success of 0.913.  This student was not successful in college algebra.   
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 The classification table is given in table 41.  The table shows Model 4 correctly 

predicted almost 84.2% of correct course outcomes.  Model 4 predicted 398 successes but 

62 of the students were actually unsuccessful corresponding to a false positive of 15.6% 

(62/398). The model also gives a false negative rate of 28.6% (2/7).  Model 4 improved 

the “hit rate” of Model 3 and have lower false positive and false negative rates.  

 

Table 41 

Classification Table Corresponding to Model 4 

   Predicted 

   

  Unsuccessful Successful 

observed Unsuccessful 5 62 

 Successful 2 336 

  Hit Rate = 84.2% 

 

 

Predicting Success in College Algebra and Trigonometry (MTH116) 

 Table 42 shows the binary logistic regression results for the model used to predict 

the log odds of success in MTH116 using MPE as the only predictor (Model 5).   The 

odds ratio for MPE is 1.020 indicating that the odds of being successful in MTH116 

increases by about 2% for a 1 point increase in placement examination score. This ratio is 

not significant.  Also the Hosmer and Lemeshow Test is significant (
2
(5 , N = 249) = 

4.774, p =.573) indicating that Model 5 fits the data well.  However, the omnibus test of 

model coefficients produced a non-significant chi-square (
2
(1, N = 249) = 0.095, p 
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=.758)  indicating that Model 5 does not fit the data better than the intercept only model.    

The binary logistic regression equation is given by 

Ln(odds(success) )= 1.324 + 0.019*MPE 

 

Table 42 

 Summary of Logistic Regression Results for Model 5 

Predictor b SE(b). Wald df p 

Odds 

Ratio 

95% C.I. for the 

Odds Ratio 

MPE 0.019 0.063 0.094 1 0.759 1.020 (0.901, 1.154) 

Constant 1.314 0.927 2.009 1 0.156 3.722 

  

 Student #1510 scored 12 on the placement examination.   Using Model 5 and 

equation 4, the predicted probability of being successful in MTH116 was 0.824. 

 Table 43 is the classification table for Model 5.  Model 5 gives a hit rate of 

83.1%.   Also, 249 of the students were predicted to be successful but 42 of them were 

not successful corresponding to a false positive rate of 16.9%.  

 

Table 43 

Classification Table Corresponding to the Model 5 

  Predicted 

   

  Unsuccessful Successful 

observed Unsuccessful 0 42 

 Successful 0 207 

  Hit Rate = 83.1% 
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Attempting to improve on the prediction of the log odds of success in MTH116, 

the variables ACTM, HSGPA, SYM, TYPE, PSTT, ALG, and Other were added to 

Model 5. The logistic regression results of the new model (Model 6) are given in table 44. 

ACTM and HSGPA are both significant predictors of the log odds of being successful in 

MTH116.  The odds ratio for ACTM indicates that the odds of being successful in 

MTH116 increases by almost 17% for each 1 point increase in ACT Mathematics score.  

The odds ratio for HSGPA indicates that the odds of being successful in MTH116 

increases by over 17% for a 1 point increase in high school GPA.  If we consider an 

increase of 0.1 points, then the odds ratio would be 18.461
0.1

 = 1.34. Thus, for every 0.1 

point increase in high school GPA, the odds of being successful in MTH116 increased by 

about 34%.   The odds ratio for TYPE is 0.614 indicating that the odds of being 

successful in MTH116 when placed with the proctored examination is about 0.614 times 

the odds of being successful  in MTH116 when placed with the unproctored examination.  

This odds ratio is not significant.  Although the only significant predictors were ACTM 

and HSMGPA, the other variables remained in the model because either prior research 

indicated their effect on success in mathematics or the a priori interest in their effect on 

course success.  The value of the deviance for Model 5 and Model 6 were 225.887 and 

147.282 respectively. The difference was significant 
2
(7, n = 209) = 78.605, p =.000. 

Therefore the predictors that were added to Model 5 significantly adds to the prediction 

of success in MTH116 beyond placement examination score. Model 5 is given by: 

Ln(odd(success)) = - 12.652 + 0.052*MPE + 0.155*ACTM +2.916*HSGPA – 

0.495*SYM + 0.243*TYPE- 0.530*PSTT – 0.142*ALG + 0.071*Other 
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Table 44 

 Logistic Regression Results for Model 6 

Predictor b SE(b). Wald df P 

Odds 

Ratio 

95% C.I. for the 

Odds Ratio 

MPE 0.052 0.092 0.317 1 0.573 1.053 (0.875 , 1.262) 

ACTM 0.155 0.075 4.275 1 0.039 1.168 (1.008 , 1.362) 

HSGPA 2.916 0.876 11.085 1 0.001 18.461 (3.318 , 102.725) 

SYM -0.495 0.788 0.395 1 0.530 0.610 (0.130 , 2.854) 

TYPE 0.243 0.481 0.255 1 0.614 1.275 (0.496 , 3.274) 

PSTT -0.530 0.755 0.493 1 0.483 0.589 (0.134 , 2.585) 

ALG 0.142 1.004 0.020 1 0.888 1.152 (0.161 , 8.240) 

Other
a
 0.071 0.637 0.013 1 0.911 1.074 (0.308 , 3.740) 

Constant -12.652 3.780 11.203 1 0.001 0.000   
a 

Includes FST (functions, statistics, and trigonometry), Business math, Consumer math, 

Math Analysis, Discrete Math 

 

 Table 45 shows the classification table associated with Model 6.  Model 6 

improved the “hit rate” of Model 5 to 86.9%.  Also, Model 6 predicted that 202 students 

would be successful in MTH116, but 26 were unsuccessful. This resulted in a false 

positive rate of 12.9% (26/202). Similarly, Model 6 resulted in a false negative rate of 

25%. 
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Table 45 

 Classification Table Corresponding to Model 6 

   Predicted 

   

  Unsuccessful Successful 

observed Unsuccessful 3 26 

 Successful 1 176 

  Hit Rate = 86.9% 

 

Predicting Success in Survey of Calculus I (MTH124) 

Table 46 shows the logistic regression results for predicting the log odds success 

in MTH124 using MPE as the only predictor (Model 7).  The odds ratio for MPE indicate 

that a 1 point increase in placement examination score results in an increase in the odds 

of being successful in MTH124 of about 11%. The Hosmer and Lemeshow chi-square 

statistic was not significant 
2
(8, n = 256) = 8.873, p =.353  indicating that Model 7 fits 

the data well.  However the omnibus test of model coefficients was not significant 
2
(1, n 

= 256) = 2.355, p = .125 indicating that Model 7 does not fit the data better than the 

intercept only model.   Model 7 is given by 

Ln(odds(success)) = 0.758 + 0.104* MPE 

Table 46 

 Summary of Logistic Regression Results for Model 7 

Predictor b SE(b). Wald df p 

Odds 

Ratio 

95% C.I. for the 

Odds Ratio 

MPE 0.104 0.067 2.396 1 0.122 1.110 (0.973,1.267) 

Constant 0.758 1.206 0.395 1 0.530 2.133   
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 Using Model 7 and equation 4, the probability that a person with a score of 15 on 

the placement examination will be successful in MTH124 is 0.913 

The classification table for Model 7 is given in table 47.  Model 7 has predicted 

that 256 of the students enrolled in MTH124 would be successful. However, 17 of the 

students were not successful resulting in a false positive rate of 6.6%.  The model has a 

“hit rate” of 93.4%.  

 

Table 47 

Classification Table Corresponding to Model 7 

   Predicted 

   

  Unsuccessful Successful 

observed Unsuccessful 0 17 

 Successful 0 239 

  Hit Rate = 93.4% 

 

Just as with previous models, Model 8 was constructed by adding ACTM, 

HSGPA, SYM, TYPE, PSTT, ALG, and Other to Model 7. The logistic regression results 

are given in Table 48.  HSGPA was the only significant predictor of success in MTH124.  

The odds ratio for HSGPA indicates that the odds of being successful in MTH124 is 

almost 26 times the odds of being unsuccessful when high school GPA increases by 1 

point.  However, if an increase in HSGPA of 0.1 point is considered then the odds of 

being successful in MTH124 is 25.876
0.1

 = 1.38 times the odds of being unsuccessful in 

MTH124.  Also, when considering an increase in HSGPA of 0.1 point, the 95% 

confidence interval is reduced to (1.09, 1.73).  The Hosmer and Lemeshow test produced 
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a non significant chi-square 
2
(8 , n =183) =  3.833, p = .872.   Therefore, Model 7 fits 

the data well.  Although the other variables were not significant, they remained in the 

model because of the interest in their effect on success.  The deviance statistics for Model 

7 and 8 were 122.697 and 71.286.respectively. This difference was significant (
2
(7 , n 

=183) =  51.411, p =.000).  Therefore, the predictors that were added to Model 7 added to 

the prediction of the log odds of success in MTH124.  

 

Table 48 

 Logistic Regression Results for Model 8 

Predictor b SE(b). Wald df p 

Odds 

Ratio 

95% C.I. for the 

Odds Ratio 

ACTM -0.017 0.122 0.020 1 0.887 0.983 (0.773,1.249) 

HSGPA 3.253 1.144 8.089 1 0.004 25.876 (2.749 ,243.522) 

SYM -0.305 1.216 0.063 1 0.802 0.737 (0.058,7.994) 

TYPE -0.092 0.758 0.015 1 0.904 0.912 (0.207,4.031) 

PSTT 18.731 8317.058 0.000 1 0.998 1.38E+08 

 ALG -0.533 1.245 0.183 1 0.669 0.587 (0.051,6.739) 

Other
a 

-0.265 0.913 0.084 1 0.771 0.767 (0.128,4.583) 

Constant -8.045 4.836 2.768 1 0.096 0.000 

 a 
Includes FST (functions, statistics, and trigonometry), Business math, Consumer math, 

Math Analysis, Discrete Math 

 

 

Table 49 shows the classification table for Model 8.  Model 8 improved the “hit 

rate” to 94%.  Model 8 has a false positive of 6% (11/182).  
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Table 49 

Classification Table Corresponding to Model 8 

   Predicted 

   

  Unsuccessful Successful 

observed Unsuccessful 0 11 

 Successful 1 171 

  Hit Rate = 94.0% 

 

 

Predicting Success in Calculus 1( MTH132) 

Table 50 shows the logistic regression results for predicting success in MTH132 

with math placement examination scores only (Model 9).  Model 9 indicates that the odds 

of being successful in MTH132 is 1.298 times the odds of being unsuccessful in 

MTH132 for a 1 point increase in the placement examination score.  The Hosmer and 

Lemeshow test produced a non significant chi-square value 
2
 (7, N = 177) = 6.415, 

0.492.  This indicates that the model containing MPE fits the data well.  The logistic 

regression equation is given by  

Ln (odds(success)) =  -1.929+ 0.181*MPE 
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Table 23 

Summary of Logistic Regression Results for Model 9 

 

Predictor b SE(b) Wald df p 

Odds 

Ratio 

95% C.I. for the 

Odds Ratio 

MPE 0.181 0.057 9.953 1 0.002 1.298 (1.071 , 1.340) 

Constant -1.929 1.123 2.949 1 0.060 0.145   

 

 Using Model 9 and equation 4, a person who scores a 19 on the placement 

examination has a predicted probability of being successful in MTH132 of 0.819.  

 The classification table for Model 9 is given in table 51. Model 9 has a hit rate of 

84.2%.   Furthermore, the model predicted that 175 students would be successful but 27 

students were not successful. Thus, the model had a false positive of 15.4 % (27/175). 

  

Table 51 

Classification Table for Model 9 

  Predicted 

   

  Unsuccessful Successful 

observed Unsuccessful 1 27 

 Successful 1 148 

  Hit Rate = 84.2% 

 

Model 10 was created by adding ACTM, HSGPA, SYM, TYPE, PSTT, ALG, and 

Other. MPE and HSGPA are the only significant predictors in Model 10. However, just 

as in the previous models all the predictors were retained in the model.   The logistic 

regression results are given in table 52.  The odds ratio for ACTM indicates that the odds 

of being successful in MTH132 are 1.142 times the odds of being unsuccessful.  
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However, the odds ratio is not significant.  The odds ratio for HSGPA indicates that the 

odds of being successful in MTH132 are 18.355 times the odds of being unsuccessful.  If 

an increase of 0.1 in the GPA is considered then the odds of being successful in MTH132 

is 1.34 (18.355
0.1

) times the odds of being unsuccessful. The confidence interval is then 

reduced to (1.065, 1.679).  The model also shows that the odds ratio for TYPE is 5.132 

indicating that the odds of being successful in MTH132 when placed with the proctored 

examination is over 5 times the odds of being successful in MTH132 when placed with 

the unproctored examination.   This odds ratio is not significant.  The table also shows 

that students whose last high school mathematics course was either calculus, pre-

calculus, or trigonometry had higher odds of being successful in MTH132, than the 

students whose last high school mathematics course was of course other than calculus, 

pre-calculus, or trigonometry.  The Hosmer and Lemeshow test produced a significant 

chi-square ( 
2
(8 , n =177) =  18.567, p = .017).  The omnibus test of model coefficient, 

however, produces a significant chi-square statistic 
2
(7 , n =177) =  25.61, p =.001 

indicating the Model 10 fits better than the intercept only model.  The deviance statistics 

for Model 9 and Model 10 were 144.200 and 84.94 respectively.   The difference was 

significant 
2
(6 , n =121) =  59.506, p = .000.  Thus, Model 10 fits the MTH132 data 

better than Model 9. Model 10 is given by 

Ln(odds(success)) = -16.357  + 0.241*MPE+ 0.133*ACTM + 2.910*HSGPA + 

1.636*TYPE – 0.809*SYM  - 0.455*PSTT – 3.775*Other 
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Table 52 

Logistic Regression Results for Model 10 

 Predictor b SE(b) Wald df p 

Odds 

Ratio 

95% C.I. for the Odds 

Ratio 

MPE 0.241 0.096 6.248 1 0.012 1.273 (1.053 , 1.538) 

ACTM 0.133 0.101 1.731 1 0.188 1.142 (0.937, 1.393) 

HSGPA 2.910 1.160 6.292 1 0.012 18.355 (1.889, 178.315) 

SYM -0.809 1.162 0.485 1 0.486 0.445 (0.046, 4.343) 

TYPE 1.636 0.963 2.884 1 0.089 5.132 (0.777, 33.892) 

PSTT -0.455 1.276 0.127 1 0.722 0.635 (0.052, 7.748) 

Other
a
 -3.775 1.561 5.852 1 0.016 0.023 (0.001, 0.488) 

Constant -16.357 5.509 8.817 1 0.003 0.000 

 a 
Includes FST (functions, statistics, and trigonometry), Business math, Consumer math, 

Math Analysis, Discrete Math 

 

 Student #1666 was placed into MTH132 with a score of 22 on the unproctored 

examination, had an ACT Mathematics score of 27, had a high school GPA of 3.369, and 

his last course was pre-calculus during his senior year of high school. Model 10 and 

equation 4 predicted that the student would be successful in MTH132 with probability 

0.822.   

The classification table for Model 10 is given in table 53.  Model 10 improves the 

“hit rate” of Model 9 to 89.1%. Model 10 also decreased the false positive rate to 11.5%. 
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Table 53 

Classification Table for Model 10 

  Predicted 

   

  Unsuccessful Successful 

observed Unsuccessful 5 14 

 Successful 1 117 

  Hit Rate = 89.1% 

 

Question 4 

How do the grades in each course compare across different levels of placement 

examination scores? 

 When students enroll in a course in which they received a placement examination 

score that was higher than the minimum score needed for placement into that course, then 

that student should be more likely to be successful in that course than someone who 

scored at the cut score. This phenomenon should not be dependent on the type of 

examination used for placement.  

Intermediate Algebra (MTH1825) 

Table 54 shows the crosstabulation of grades in Intermediate Algebra by 

mathematics placement examination scores.  The placement examination scores for 

students who enrolled in Intermediate Algebra ranged from 1 to 11.  As the placement 

examination scores get higher, more students received high course grades than lower 

course grades. This phenomenon would be expected.   However, a student who scores 1 

point on the placement examination would not be expected to receive a 4.0 in 

Intermediate Algebra.    
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Student #1671 was the student who received the grade of 4.0. This student was 

placed with the unproctored examination, had a high school GPA of 3.21, had a high 

school math GPA of 3.15, enrolled in a pre-calculus course during her senior year of high 

school and received a B in the pre-calculus course. Given her high school record, it is no 

surprise that the student received a 4.0 in Intermediate Algebra.  However, it is surprising 

that the student would score so low on the placement examination that she would be 

placed into Intermediate Algebra.  

 Student #295 was the student who scored 1 on the placement examination and 

received a grade of 0.0 in Intermediate Algebra.  This student scored 14 on the 

mathematics section of the ACT, had a high school GPA of 2.8, had a high school 

mathematics GPA of 2.37, did not take a mathematics course during his senior year of 

high school, but took trigonometry in 11
th

 grade and received a B.  Although scoring 1 

point on the placement examination is surprising for any student, it is not surprising that 

the student received a 0.0 in Intermediate Algebra. 

 The crosstabulation shows that 117 students were not successful in MTH1825 

resulting in a false positive rate of 34.9% (117/335).   Recall that Model 1 (the model 

used to predict success in MTH1825 using MPE as the only predictor) produced a false 

positive rate that was slightly lower than the actual false positive rate (32.5%) while 

Model 2 had a false positive rate of 20.6%.  MTH1825 is the lowest level mathematics 

course at MSU so if a student is predicted to be unsuccessful in MTH1825 it can be 

recommended that they take a lower level course at a community college or these 

students can be given access to academic resources within the university.  
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Table 54 

 Crosstabulation of Grades in Intermediate Algebra by Placement Examination Score 

 

Grade in Intermediate Algebra (MTH1825) 

MPE 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Total 

1 1 0 0 0 0 0 0 1 2 

2 4 0 0 0 0 0 1 0 5 

3 9 1 1 4 1 1 0 0 17 

4 7 2 0 3 8 6 0 2 28 

5 14 2 9 8 10 4 0 0 47 

6 9 6 7 7 8 4 5 4 50 

7 9 7 6 15 9 7 10 4 67 

8 7 2 7 6 11 11 9 4 57 

9 3 2 2 17 9 12 8 4 57 

10 0 0 0 2 0 1 1 0 4 

11 0 0 0 0 0 0 0 1 1 

Total 63 22 32 63 56 46 34 20 335 

 

Students who received a placement examination score of 10 or 11 can enroll in 

College Algebra (MTH103).  Table 52 shows that 4 of the students in Intermediate 

Algebra received a score of 10 on the placement examination and 1 student received a 

score of 11 on the placement examination.   All 5 of these students were successful in 

Intermediate Algebra.  

Table 55 shows the characteristics of the five students who were eligible to enroll 

in MTH103 but enrolled in MTH1825.  Although student #549 scored 17 on the 

mathematics section of the ACT there is nothing else in his record that would explain 

why the student would not enroll in MTH103.  Similarly, there is nothing in the other 

students‟ background that would explain why the others would not enroll in MTH103 
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Table 55 

Students Who Placed into College Algebra but Enrolled in Intermediate Algebra 

ID MPE ACTM HSGPA HSMGPA 

LAST 

(Grade) 

MTH1825 

Grade P
a 

4 10(P) 22 3.96 3.96 FST (A) 3.5 0.93 

46 10(P) 22 3.90 3.84 Calc (A-) 2.0 0.92 

277 11(P) 27 3.85 3.96 Calc (B) 4.0 0.95 

549 10(P) 17 3.47 3.60 Precalc (B+) 3.0 0.79 

1489 11(U) 24 3.00 3.51 Math Studies (A-) 2.0 0.80 
a
Probability of passing College Algebra 

 

Table 56 is a crosstabulation of grades in MTH1825 by placement examination 

score by type of examination.  The distribution of MTH1825 course grades appears to be 

exhibiting the pattern that is expected.  That is, students with low placement examination 

scores have low grades.  However, as the placement examination scores increase, the 

grades began to shift to the right and until most, if not all, of the students with high 

placement examination scores have grades above 2.0.  This pattern does not appear to be 

happening with the unproctored data.  In fact, the grades do not appear to be shifting to 

the right as the placement examination scores become larger.  
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Table 56  

Crosstabulation of Grades in Intermediate Algebra by Placement Examination Score by 

Type of Examination 

    Grades in Intermediate Algebra (MTH1825) 

  MPE 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Total 

Proctored 1 1 0 0 0 0 0 0 0 1 

 
2 2 0 0 0 0 0 0 0 2 

 
3 6 1 0 1 0 0 0 0 8 

 
4 4 1 0 0 2 4 0 0 11 

 
5 10 1 6 4 5 1 0 0 27 

 
6 5 1 4 4 1 0 1 1 17 

 
7 5 6 5 10 5 4 1 0 36 

 
8 4 0 3 2 4 4 5 1 23 

 
9 2 0 0 7 5 2 0 2 18 

 
10 0 0 0 1 0 1 1 0 3 

 
11 0 0 0 0 0 0 0 1 1 

 
Total 39 10 18 29 22 16 8 5 147 

Unproctored 1 0 0 0 0 0 0 0 1 1 

 
2 2 0 0 0 0 0 1 0 3 

 
3 3 0 1 3 1 1 0 0 9 

 
4 3 1 0 3 6 2 0 2 17 

 
5 4 1 3 4 5 3 0 0 20 

 
6 4 5 3 3 7 4 4 3 33 

 
7 4 1 1 5 4 3 9 4 31 

 
8 3 2 4 4 7 7 4 3 34 

 
9 1 2 2 10 4 10 8 2 39 

 
10 0 0 0 1 0 0 0 0 1 

 
Total 24 12 14 33 34 30 26 15 188 

 

College Algebra (MTH103) 

Table 57 shows the crosstabulation of grades in College Algebra by placement 

examination scores.   The table shows the pattern of the shift in grades as the placement 

examination scores become higher.  There were 195 students who enrolled in MTH103 
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but were eligible to enroll in a course whose level was higher than MTH103   Eighteen of 

these students were not successful in MTH103.   Also, there were 5 students who 

enrolled in college algebra but were eligible to enroll in Calculus 1. One of these students 

was not successful.  Overall, the placement examination produced a total of 80 false 

positives for MTH103 resulting in a false positive rate of 16.8% (80/477).   Model 5 

above had a slightly lower false positive rate (15.6%).  Again, the distribution of grades 

appears to be exhibiting the expected pattern.  There appears to be a shift to the right in 

grades as the MPE scores become larger.  

   

Table 57 

Crosstabulation of Grades in College Algebra by Placement Examination Score 

 

Grade in College Algebra (MTH103) 

MPE 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Total 

10 - 11 25 10 27 52 48 66 40 14 282 

12 - 14 5 5 7 31 24 44 27 23 166 

15 - 18 0 0 0 2 2 7 11 2 24 

19 + 0 0 1 0 0 0 1 3 5 

Total 30 15 35 85 74 117 79 42 477 

 

    

Table 58 also shows that of the 17 students who were eligible to enroll in 

MTH116 but enrolled in MTH103, 15 of them were placed with the unproctored 

examination.  Of these 15 students 
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 One had an ACT Mathematics score of 17, was enrolled in algebra during his 

senior year of high school and received a D+, and had a high school mathematics 

GPA of 2.443. 

 Five enrolled in trigonometry, pre-calculus, or calculus during their senior year of 

high school. 

 Five had high school mathematics GPA‟s below 3.0. 

 One took FST (functions, statistics, and trigonometry) during his senior year of 

high school and received a C+ 

The unproctored placement examination indicated that there were 15 students who 

were prepared for MTH116 but they were not even successful in MTH103.  Chances are 

that these 15 students would not have been successful in MTH116.  
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Table 58 

Crosstabulation of Grades in College Algebra by Placement Examination Score by Type 

of Examination 

    Grades in College Algebra (MTH103) 

  MPE 0 1 1.5 2 2.5 3 3.5 4 Total 

Proctored 10 - 11 14 3 5 19 21 30 16 2 110 

 
12 - 14 0 1 1 11 5 14 9 4 45 

 
15 - 18 0 0 0 0 0 1 2 0 3 

 
19 + 0 0 0 0 0 0 1 0 1 

 
Total 14 4 6 30 26 45 28 6 159 

Unproctored 10 - 11 11 7 22 33 27 36 24 12 172 

 
12 - 14 5 4 6 20 19 30 18 19 121 

 
15 - 18 0 0 0 2 2 6 9 2 21 

 
19 + 0 0 1 0 0 0 0 3 4 

  Total 16 11 29 55 48 72 51 36 318 

 

Table 58 also appears to be exhibiting the expected pattern for both the proctored 

and unproctored data.  As the placement examination scores increase, the grades appear 

to be shifting to the right. This pattern is what should be expected.  

Table 58 shows that 49 of the 159 students (30.8%) who were placed with the 

proctored examination enrolled in math 103, but were eligible to enroll in a higher level 

course.  Also, 146 of the 318 students (45.9%) who were placed with the unproctored 

examination were eligible to enroll in a higher level course.  The difference in the 

percentages was significant (z = -3.16, p =.001) indicating that the percentage of students 

who enrolled MTH103, but were eligible to enroll in a higher level course was higher 

under the unproctored examination.  
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Table 59 shows the characteristics of the students who were eligible to enroll in 

MTH132, but enrolled in MTH103 instead.  Four of these five students were placed with 

the unproctored examination.  Student #677 scored 21 on the unproctored placement 

examination and received a grade of 1.5 in college algebra.  This student scored 22 on the 

mathematics section of the ACT, had a high school GPA of 3.42, had a high school 

mathematics GPA of 3.75, took pre-calculus during her senior year of high school and 

received a grade of A-.  With such a background, it is surprising that this student received 

a 1.5 in college algebra.  If this student received such a low grade in college algebra, one 

can only conclude that the student would not have been successful in calculus.  

Student #340 took AP Calculus in her senior year of high school and received a 

D-.  This student may not have felt comfortable with taking a college calculus course 

given her poor performance in AP Calculus.  The remaining 3 students had pre-college 

characteristics that would suggest that they would be prepared for a college calculus 

course, but these students enrolled in College Algebra.     

 

Table 59 

 Students Who Were Eligible to Enroll in Calculus I, but Enrolled in College Algebra 

ID MPE ACTM HSGPA HSMGPA LAST (Grade) 

MTH103 

Grade P
a 

340 19(P) 26 3.80 3.16 AP Calc(D-) 3.5 0.99 

677 21(U) 22 3.42 3.76 Pre-calculus(A-) 1.5 0.99 

1151 21(U) 27 4.48 4.15 Trigonometry(A) 4.0 0.99 

1189 19(U) 26 4.00 4.15 Pre-calculus(A) 4.0 0.99 

1472 19(U) 25 3.83 4.04 

Discrete 

math(A) 4.0 0.99 
a
Probability of passing Calculus 1 
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Finite Mathematics (MTH110) 

 Table 60 shows the distribution of grades in finite mathematics by scores on 

mathematics placement examination.   A minimum score of 10 is needed for placement 

into finite mathematics.   As the placement examination scores get higher fewer students 

receives course grades below 2.0.   There were 2 students who received were eligible to 

enroll into calculus but enrolled in finite mathematics.  One of the students received a 

grade of 2.0 and the other received a grade of 3.5.   It is this researcher‟s belief that a 

student will enroll in finite mathematics instead of calculus because their choice of major 

does not require a course in calculus.   Overall, the placement examination produced 15 

false positives for MATH110 for a false positive rate of 14% (15/104). 

 

Table 60 

Crosstabulation of Grades in Finite Mathematics by Placement   

 

Grade in Finite Math (Math110) 

MPE 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Total 

10 - 11 4 0 3 9 9 11 5 3 44 

12 - 14 2 4 2 8 12 11 5 11 55 

15 - 18 0 0 0 0 0 2 0 1 3 

19+ 0 0 0 1 0 0 1 0 2 

 Total 6 4 5 18 21 24 11 15 104 

 

 Table 61 shows the crosstabulation of grades in finite mathematics by placement 

examination scores by type of examination.  The table shows that 26 of the 49 students 

(53.1%) who were placed with the proctored examination enrolled in math 110, but were 

eligible to enroll in a higher level course.  Also, 34 of the 55 students (63%) who were 

placed with the unproctored examination were eligible to enroll in a higher level course.  
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The difference in the percentages was not significant (z = -0.9, p =.367) indicating that 

there was no evidence that the percentage of students who enrolled in MTH110, but were 

eligible to enroll in a higher level course, was difference across examination types 

 

Table 61  

Crosstabulation of Grades in Finite Mathematics by Placement Examination Scores by 

Type of Placement Examination 

    Grades in Finite Mathematics (MATH110) 

  MPE 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Total 

Proctored 10 - 11 2 0 1 5 5 6 3 1 23 

 
12 - 14 0 4 1 1 5 3 3 7 24 

  15 - 18 0 0 0 0 0 2 0 0 2 

 
Total 2 4 2 6 10 11 6 8 49 

Unproctored 10 - 11 2 0 2 4 4 5 2 2 21 

 
12 - 14 2 0 1 7 7 8 2 4 31 

 
15 - 18 0 0 0 0 0 0 0 1 1 

 
19 + 0 0 0 1 0 0 1 0 2 

 
Total 4 0 3 12 11 13 5 7 55 

 

  

College Algebra and Trigonometry (MTH116) 

 Table 62 shows the distribution of grades in college algebra and trigonometry by 

placement examination scores.   The minimum placement exam score needed for 

placement into this course is 12.  As the placement examination scores get higher, more 

students earn higher course grades.  Of the 249 students who enrolled in MTH116, 42 of 

them were not successful. The placement examination produced a false positive rate of 
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approximately 16.9% (42/249) form MTH116. Model 6 above produced a false positive 

rate of 12.9% 

 

 

Table 62 

Crosstabulation of Grades in College Algebra and Trigonometry by Placement Scores 

 

Grade in College Algebra and Trigonometry (MTH116) 

MPE 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Total 

12 - 14 12 4 10 26 26 29 18 17 142 

15 - 18 4 2 4 8 14 19 17 21 89 

19 + 3 2 1 2 0 2 4 4 18 

  19 8 15 36 40 50 39 42 249 

  

Table 63 shows the crosstabulation of grades in MTH116 by placement 

examination score by type of examination.   Of the students who enrolled in MTH116 

and were placed with the proctored examination, approximately 34.7% (34/98) of them 

were eligible to enroll in a higher level math course.   Of the students who were enrolled 

in MTH116 and were placed with the unproctored examination, approximately 48.3% 

(73/151) of them were eligible to enroll in a higher level math course.  The difference in 

percentages was significant (z = -2.13, p =0.03). 
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Table 63 

Crosstabulation of Grades in College Algebra and Trigonometry by Placement 

Examination Scores by Type of Examination 

  

Grades in College Algebra and Trigonometry (MTH116) 

  MPE 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Total 

Proctored 12 - 14 5 2 4 11 14 10 8 10 64 

 

15 - 18 1 0 2 3 6 5 6 9 32 

 

19 + 0 0 1 0 0 1 0 0 2 

 

Total 6 2 7 14 20 16 14 19 98 

Unproctored 12 - 14 7 2 6 15 12 19 10 7 78 

 

15 - 18 3 2 2 5 8 14 11 12 57 

 

19 + 3 2 0 2 0 1 4 4 16 

 

Total 13 6 8 22 20 34 25 23 151 

 

 

Table 64 shows the characteristics of the 5 students who were eligible for 

Calculus 1, but were unsuccessful in MTH116.  Although student #1272 scored a 22 on 

the placement examination and received a 22 on the mathematics section of the ACT, 

both her high school GPA and high school mathematics GPA are below 3.0. This student 

also took a pre-calculus course during her senior year of high school and received a grade 

of C.  Student #1250 scored 19 on the placement examination, 18 on the mathematics 

section of the ACT, and took a geometry course during his senior year of high school and 

received a grade of C-.  There appears to be something in all 5 students‟ background that 

may explain their enrollment into MTH116 instead of Calculus 1.  
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Table 64 

 Characteristics of the Students Who Were Eligible for MTH132, but Enrolled in 

MTH116 and Were Unsuccessful 

ID MPE ACTM HSGPA HSMGPA LAST (Grade) 

MTH116 

Grade 

1250 19 18 3.475 3.288 Geometry (C-) 1.0 

1273 22 22 3.361 3.669 Statistics (A) 1.0 

1606 21 24 2.906 2.375 Pre-calculus (C)  0.0 

1655 20 -
a 

-
a 

-
a 

None 0.0 

1668 20 26 -
a 3.483 Pre-calculus

b 
0.0 

a
 missing value  

b
 no grade recorded 

Survey of Calculus 1 (MTH124) 

Table 65 shows the crosstabulation of grades by placement examination score for 

the students who were enrolled in survey of Calculus I (MTH124).   The placement 

examination gave a total of 19 false positives for MTH124 resulting in a false positive 

rate of 7.4%.  Model 8 above produced a false positive of 6% for MTH124. 

Table 65 

Crosstabulation of Grades in Survey of Calculus by Placement Scores 

  Grade in Survey of Calculus 1 (MTH124) 

MPE 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Total 

15 – 18 4 3 6 10 25 34 29 27 138 

19 + 1 0 5 4 13 17 26 54 120 

Total 5 3 11 14 38 51 55 81 258 

 

 Table 66 shows the distribution of grades by placement examination scores by 

type of examination.  Of the 67 students who enrolled in MTH124 under the proctored 
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examination, approximately 32.8% (22/67) of them could have enrolled in Calculus 1 

(MTH132)   Of the 191 students who enrolled in MTH124 under the unproctored 

examination, approximately 51.3% of them could have enrolled in Calculus 1. There was 

no significant difference in the percentage of students who were unsuccessful in MTH124 

across examination types (z = -2.61, p =.009).  Therefore, there was a difference in the 

percentage of students who enrolled in MTH124 but could have enrolled in MTH132.   

 It should be noted, however, that MTH124 is a course that is taken mostly by 

students who intend to major in business related courses whereas MTH132 is a course 

that is taken mostly by students who intend to major in science, mathematics, or 

engineering.  Thus, the significant difference that is observed here could be the result of 

the differences in intended major and not differences in examination type.  
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Table 66 

Crosstabulation of Grades in MTH124 by Placement Scores by Type of Exam 

    Grades in Survey of Calculus 1 (MTH124) 

  MPE 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Total 

Proctored 15 - 18 3 1 1 4 6 9 12 9 45 

 
19 + 1 0 1 1 3 3 4 9 22 

 
Total 4 1 2 5 9 12 16 18 67 

Unproctored 15 - 18 1 2 5 6 19 25 17 18 93 

 
19 + 0 0 4 3 10 14 22 45 98 

 
Total 1 2 9 9 29 39 39 63 191 

 

 

Calculus 1 (MTH132) 

Table 67 shows the crosstabulation of grades by placement examination scores for 

the students who enrolled in Calculus 1.  As the placement examination scores get higher, 

the number of students who receive high course grades increase. The placement 

examination produced a total of 28 false positives for MTH132 resulting in a false 

positive rate of 14.7% (28/191). Model 10 above produced a false positive of 11.5% for 

MTH132.  
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Table 67 

Crosstabulation of Grades in Calculus 1 by Placement Examination Scores 

 

Grade in Calculus 1 (MTH132) 

MPE 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 total 

19 7 6 4 4 11 12 5 6 55 

20 0 1 1 8 2 5 8 4 29 

21 0 1 1 3 2 3 3 8 21 

22 2 0 2 1 3 1 6 6 21 

23 0 0 0 2 3 3 5 1 14 

24 2 0 0 0 1 0 2 6 11 

25 0 0 0 2 0 0 4 4 10 

26 0 1 0 2 0 0 2 5 10 

27 0 0 0 0 0 1 1 2 4 

28 0 0 0 0 1 0 0 1 2 

total 11 9 8 22 23 25 36 43 177 

 

 

Table 68 shows the crosstabulation of grades in MTH132 by placement exam 

score by exam type.  A score of 19 is the minimum score needed to place into MTH132. 

Overall, there were a total of 55 students who received a score of 19 on the placement 

examination. Thirty percent (17/55) of these students were not successful in MTH132. Of 

the 122 students who placed into MTH132 with a placement exam score of more than 19, 

9% of them were unsuccessful in MTH132.  This could suggest an increase in the 

minimum score needed to place into calculus is needed.  
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Table 68  

Crosstabulation of Grades in Calculus 1 by Placement Exam Score by Type of 

Examination 

  Grades in Calculus 1 (MTH132) 

  MPE 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 total 

Proctored 19 3 2 0 1 5 4 2 1 18 

 
20 0 0 0 2 1 3 1 2 9 

 
21 0 0 0 1 0 0 1 3 5 

 
22 0 0 0 0 1 0 0 0 1 

 
24 1 0 0 0 0 0 0 2 3 

 
25 0 0 0 0 0 0 1 0 1 

 
26 0 0 0 1 0 0 0 2 3 

 
27 0 0 0 0 0 0 1 0 1 

 
28 0 0 0 0 1 0 0 1 2 

 
Total 4 2 0 5 8 7 6 11 43 

Unproctored 19 4 4 4 3 6 8 3 5 37 

 
20 0 1 1 6 1 2 7 2 20 

 
21 0 1 1 2 2 3 2 5 16 

 
22 2 0 2 1 2 1 6 6 20 

 
23 0 0 0 2 3 3 5 1 14 

 
24 1 0 0 0 1 0 2 4 8 

 
25 0 0 0 2 0 0 3 4 9 

 
26 0 1 0 1 0 0 2 3 7 

 
27 0 0 0 0 0 1 0 2 3 

 
Total 7 7 8 17 15 18 30 32 134 

 

 Overall, 21% of the students enrolled in a course lower than the level indicated by 

their placement examination score. In addition, there were 598 students placed with the 

proctored examination.  Of these approximately 19% (113/598) enrolled in a course at a 

level lower indicated by their placement examination score.   There were 1098 students in 

this study who were placed with the unproctored examination.  Of these students, 

approximately 23% (253/1098) of them enrolled in a course lower than the level 
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indicated by their placement examination score.   It is important to the validity of the 

placement examination to understand the reasons in which students enroll in a course 

lower than that in which they were placed.   
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CHAPTER 5 

DISCUSSION 

 

The primary purpose of this study was to compare the results of the proctored 

mathematics placement examination to the results of the unproctored mathematics 

placement examination.  Of particular interest was whether the students tend to score 

higher on the unproctored examination than on the proctored examination.  Also of 

interest was whether the type of examination used for placement produced an effect on 

grades in students‟ first college mathematics course or on course performance.    

 This section begins with a discussion of the conclusions reached as a result of 

this study.  Then there is a discussion of the threats to the validity of this study. Finally, 

there are some recommendations for future research. 

 

Conclusion 1 

The unproctored examination has more inappropriate placements than the 

proctored examination. 

This study concluded that students who were placed with the unproctored 

examination received higher average placement examination scores than the students who 

were placed with the proctored examination.  As a result, students are placed into higher 

level mathematics courses with the unproctored examination.  

 Moreover, of the 598 students who were placed with the proctored examination, 

approximately 19% (113/598) enrolled in a lower course.   Of the 1098 students who 

were placed with the unproctored examination, approximately 23% (253/1098) of them 

enrolled in a lower level course.  Although a higher proportion of students are placing 
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into higher level math courses with the unproctored examination, a larger proportion of 

those students are enrolling in courses that are lower than the level in which they are 

placed.  

   

Conclusion 2 

The proctored examination and the unproctored examination are not functioning 

similarly.  

 When the unproctored examination is used in the same manner as the proctored 

examination, it is important to make sure that the two exams are comparable.  In other 

words, similar students should receive similar placements regardless of the exam used to 

place them.  In addition to course placement, the effect on the course outcomes (i.e. 

grades) should be similar for similar students. Clearly, this is not happening.    

First of all, students are not being placed similarly.  The multiple linear regression 

model that was constructed with the proctored data predicted that about 35% of the 

students who were placed with the unproctored examination would have received similar 

placement had they been placed with the proctored examination.  Additionally, about 

21.5% would have received higher placement and about 43.5% would have received 

lower placement.  

The multiple linear regression model that was constructed using the unproctored 

data predicted that about 41% of the students who were placed with the proctored exam 

would have received the similar placement if they would have been placed with the 

unproctored examination.  Additionally, about 39% would have received higher 
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placement and about 21% would have received lower placement.  Either model indicates 

that students are placed higher with the unproctored examination.  

 Second the test of equality of the correlations revealed that the correlation 

matrices were not equal. Specifically, the correlation of ACT Mathematics score with 

grades in first college mathematics course was not equal across examination types. Also, 

the correlation between ACT Mathematics scores and placement examination scores was 

marginally significant across examination types.  Additionally, ACT Mathematics score 

was the variable that was most highly correlated with the grades first college mathematics 

course for the proctored data.  However, for the unproctored data, high school 

mathematics GPA was the variable that was most highly correlated with grades in first 

college mathematics course.  

Additionally, the unproctored placement examination has a higher reliability than 

the proctored examination (rxx = 0.81 for the unproctored examination, rxx = 0.76 for the 

proctored examination). 

 

Conclusion 3 

The mathematics placement examination alone is not sufficient for deciding 

placement.  

 Currently, students are placed into their first college mathematics course as a 

result of the scores on the placement examination.   Binary logistic regression models 

were constructed to predict the conditional probability that a student would be successful 

in their first college mathematics course.  When the placement examination score was 

considered alone, it was found to be a significant predictor of the success in Intermediate 
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Algebra (MTH1825), College Algebra (MTH103) and Calculus 1 (MTH132).  However, 

when ACT Mathematics scores, high school GPA, type of exam used for placement, 

whether a mathematics course was taken during senior year of high school, and the type 

of high school mathematics course taken last was considered in addition to placement 

examination score, the prediction of the success in each course was improved.  The 

classification tables showed an increase in the percentage of correct decisions as well as a 

decrease in the false positive rate for each course when the additional variables are 

considered.  Therefore ACT Mathematics scores, high school GPA, type of exam used 

for placement, whether a mathematics course was taken during senior year of high 

school, and the type of high school mathematics course taken last should all be 

considered when placing students into their first college mathematics course.   

 

Limitations 

This study has several limitations.  First, the results of this study cannot be 

generalized to all college students. The students in this study chose to take mathematics 

during their first semester at MSU. However some students do not enroll in their first 

mathematics course until their second semester or their second year at MSU.  

 Random group assignment was not possible. Students chose the type of 

examination to take and, therefore, the groups used in this study were predetermined. The 

groups however were found to be non-equivalent. 

 Some of the students at MSU participate in summer “bridge” programs prior to 

their enrollment in mathematics.  Some of these programs are designed to help improve 

students reading, writing, and/or mathematics skills.  These students may have had 
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exposure to the type of mathematics that they would be studying the following fall.   

Students in this study may have participated in these programs.  

 Some of the courses in this study may have been special courses designed for 

either exceptional students or for “at risk” students.   These courses may provide more 

(less) rigor to the students enrolled than what a regular course would provide. Thus, there 

may be an effect on course grade due to class type.   Students in these courses may have 

been included in this study. 

 The students in this study were allowed 3 attempts at the placement examination 

but only one attempt at the proctored examination.  Students with multiple attempts may 

have attempt the proctored examination as one of their attempts or they have not 

attempted the proctored examination at all. The placement scores used in this study are 

the highest scores received by students on any attempt of the placement examination. 

Students who took the examination more than once may have matured between attempts. 

The multiple attempts may have better prepared students for their first mathematics 

course. Additionally, differences that were found could be due to the fact that the students 

may have attempted the unproctored examination more than once.   

 Grades in first college mathematics course were used as a criterion variable in 

this study.   There are multiple sections of the same course.  Sometimes the assessments 

are uniform across these multiple sections while other times the assessments are not 

uniform. 

  



  

172 
 

 

Future Research  

  This study has found that students who are placed with the unproctored 

examination received higher placement exam scores than students who are placed with 

the proctored examination; even after controlling for ability.   To help explain this 

phenomenon, an investigation of the items may be necessary. Differential item 

functioning (DIF) occurs when “examinees from each group with equal knowledge 

exhibit different probabilities of success on an item” (Schumacher, 2005, p. 1).  Although 

guessing is not encouraged it is this researcher‟s belief that students do guess. Therefore, 

the three parameter logistic item response theory model could be fitted to both the 

proctored and unproctored data and the item difficulty and item discrimination 

parameters could be estimated.   Item characteristic curves can be constructed for each 

item and differences in the parameters can be tested by estimating the area between the 

item characteristic curves (Clauser & Mazor, 1998). Items are then flagged for DIF if the 

item characteristics curves for each group are different.  Items flagged for DIF can be 

scrutinized to determine if they require modification or removal from the examination.    

 Once a student enrolls in a course, there are other variables that could affect their 

course performance.  As a follow up to this study, consideration should be given to 

classroom variables as well as student variables.  Classroom variables include but are not 

limited to instructor classification (full-time, part-time, graduate student) and class size. 

Student variables include, but are not limited to, number of other courses in which the 

students are enrolled, whether or not students receive tutoring, students‟ study skills, 

students‟ motivation, and choice of major. Understanding how these variables influence 
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students‟ success in mathematics can help university advisors recommend appropriate 

courses as well as appropriate academic services for the struggling student.  

 This study contained students who enrolled in a course at a level lower than the 

level in which they were placed. For example, 30.8% of the students who were placed 

with the proctored examination and enrolled in MTH103 were eligible to enroll in a 

higher level course while 45.9% of the students who were placed with the unproctored 

examination and enrolled in MTH103 were eligible to enroll in a higher level course.  It 

is however, unclear whether students began in the lower level course or “dropped back” 

to the lower level course.  In either case, it is important to the validity of the placement 

examination, as well as the comparability of the proctored and unproctored examination, 

to further investigate why students are in course that are lower than the level in which 

they were placed.  

  

Summary 

 This study was motivated by the interest in determining if the MSU unproctored 

mathematics placement examination can and should be used to place students into their 

first college mathematics course. The short answer is no.  Placement into remedial 

mathematics was shown to be dependent on the type of test used for placement with the 

unproctored examination placing students into remedial mathematics less often than the 

proctored examination.  Scores on the unproctored examination are significantly higher, 

on average, than the scores on the proctored examination and students are placing at a 

higher level with the unproctored examination.     

 Although students are being placed at a higher level with the unproctored 

examination, there is a greater proportion of students enrolling into courses lower than 
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the level at which they were placed.  It is, however, unclear as to whether students are 

“dropping back” to the lower level courses or beginning in the lower level courses.  

Whatever the case may be, users of the mathematics placement examination must 

consider the unproctored examination differently when using it to place students into 

their first college mathematics course.  

 This study also shows that pre-college variables (e.g. ACT Mathematics scores, 

high school grade point average) can be used to help increase the prediction of success in 

students‟ first college mathematics course.   The models developed in this study increased 

the “hit rate” beyond that predicted by placement examination score alone and decrease 

the false positive rate. While there are no courses at a level lower than MTH1825, these 

pre-college characteristics can be used to help identify students who may benefit from 

some of the academic support services offered by Michigan State University.    

 Mathematics has influenced college graduation rates, choice of college major, and 

even earning potential.  It can be the difference between receiving a bachelor‟s degree in 

4 years or in 7 years (or not at all).  It can be the difference between completing a 

bachelor‟s degree in a mathematics based field or completing a bachelor‟s degree in a 

non-mathematics based field.   Whatever the case may be, mathematics is not going away 

and it is everyone‟s responsibility to help students overcome their difficulties with 

mathematics. One way colleges and universities can help is by examining their 

mathematics placement procedures so that it is very likely that a first time college student 

begins in the appropriate mathematics course.    
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Appendix 

Description of Mathematics Courses
3
 

 MTH1825 (Intermediate Algebra)
4
 

Description: Properties of real numbers. Factoring. Roots and radicals. First and 

second degree equations. Linear inequalities. Polynomials. Systems of equations. 

   

 MTH103 (College Algebra) 

Description: Number systems; functions and relations; exponents and logarithms; 

elementary theory of equations; inequalities; and systems of equations. 

 MTH110 (Finite Mathematics and Elements of College Algebra) 

Description: Functions and graphs. Equations and inequalities. Systems of 

equations. Matrices. Linear programming. Simplex algorithm. Probability and 

statistics. 

 Math 112 (Finite Mathematics: Applications of College Algebra) 

Description: Combinatorics, probability and statistics, mathematics of finance, 

geometry, transition matrices, and linear programming. The course emphasizes 

applications and includes work using spreadsheets. 

 Math 116 (College Algebra and Trigonometry) 

Description: Functions and graphs. Equations and inequalities. Exponential and 

logarithmic functions. Trigonometric functions. Systems of equations. Binomial 

theorem. 

 MTH124 (Survey of Calculus I) 

Description: Study of limits, continuous functions, derivatives, integrals and their 

applications. 

 MTH132 (Calculus I) 

Description: Limits, continuous functions, derivatives and their applications. 

Integrals and the fundamental theorem of calculus. 

 STT200 (Statistical Methods) 

Description: Data analysis, probability models, random variables, estimation, tests 

of hypotheses, confidence intervals, and simple linear regression. 

 STT201 (Statistical Methods) 

Description: Probability and statistics with computer applications. Data analysis, 

probability models, random variables, tests of hypotheses, confidence intervals, 

simple linear regression. Weekly lab using statistical software. 

                                                   
3
 http://www.reg.msu.edu/Courses/Request.asp 

4
 This course does not count toward a student‟s degree 
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