> THE COMPARATVE COSTS OF TWO DIFFRENT TYPES OF WADING POOLS FOR DODGE BROTHERS PARK NO, 8 THENS POR THR DEGRR OR B. S. R. L. Bowers 1930 L. L. Miller

SUPPI EMENTARY MATERIAL IN BACK OF BOOK

TEE CCIMPAFATIVE COSTS OF TWO DIFEEFENT TYPES CF MADI: :'G POOLS FCR DODGE BFOTHERS PARK NO. 8

A FFIESIS SUBMITTED TO
THE FACULTY OF
IIICHIGAN STATE COLIEGE OF
AGRICULTURE AND APPLIED SCIE:CE

BY

F.L. BCMERS
L:L. NILLER
CANDIDATES FOR THE DEGFEE OF EACFELOR OF SCIENCE

JUNE 1930

THESIS

$$
\therefore 0<\cdots
$$

OOMLINE

A. INTRODUCTION

B. DIRECT FICW SYSTE:

1. Wading Pool
a. Estimete गf attendonce
b. Design of wecing pool
c. Piping system
d. Selection of chlorination aparatus
2. Dam
a. Investigation of Stream Flow
b. Design of Dam
c. Cost of Dam

- 3. Cost of Direct Flow System
C. INDIEECT FLCN SYSTEA

1. Design of System a. Design of piping for recirculation
b. Selection of chlorination apparatus
c. Desicn of Filtration Plant
2. Cost of Indirect Flow System
D. DRAI:AGE SYSTEM AND GRADING
3. Desiun of system
4. Cost of Drainage System and Grading
E. CO:CLUSION.

FREFACE

This thesis was choser, becruse, first of all, it presented a real croblen. A oroblem that had been oroposed and was likely to be carried out in the near future. Healith and happiness are the two thinfs which stand foremost in our minds. When it is possible, to change existing conditions, to safecuard health and establish a better meens for recrestion, it 1 shouli be considered a great accomplishment.

Because of the limited amount of time aveiloble it w?s impossible to go into detail in the design of all parts of the system. It was the wish of the authors to go into such detail as to effect a sound estimete of costs of different systems.

It is difiicult to mention all the sources from which have come help and inspiration for the preparation of the thesis. Be are indebted to Nr. Taylor, Engineer in charee of pontiac water \#orks for informetion and advice concerning the inveetigetion of the clinton Fiver; Professor Theroux at aichigen State College for advice on desien of wadine pool and filtration olant; Professor Cade at Lichisan State College for advice concerning desicn of dem end ċreinage system; professor Vallmann at Vichigen state College for advice concerning anelysis and method of purification of the river water.

Dodse Brothers State Fark No. 8 is lodated 'in Macomb county two miles south of Utica or nine miles northwest of lit. Clemens. This park lies either side of Clinton Fiver and extends alorg the river a distance of 3,400 feet. It contains 31 acres of ground.

Playground ecuipment hes been installed
and additional equipment in the way of tables, benches and garbase cans have been adoed. At the oresent time many children are allowed to bathe in Clinton River at this park. Due to the fact thet raw sewace is emptied in Clinton River at Utica a distance of less than two miles upstream, the river is in s:ach a sanitary condition that it is unfit for bathing vurposes.

A sample was taken April 19, 1930. From
this sample 5 tubes of lactose broth each of which had been inoculated with 10 c.o. of the sample shows from 20 to 55% of gas production in 24 hrs . A count of 13,000 bacteria per c.c. was obtained from agar plates. The presence of Escherichia coli was confirmed by use of eosin methylene-blue and Endo's media. Typical colonies were fished from Endo's nedium and was placed in lactose broth which showed a gas production of from 15 to 45% in 48 hours.

The presence of Escherichia coli, an
intestinal bacteria indicates fecal pollution and waters with fecal pollution are dangerous from a standpoint of the
disease, typhoid fever.
Warning can be given to bathers of this water as to its ciancerous conaition,but until such time that a suitable place for bathing is constructed there is a grave dancer of disease from this source.

The purpose of this thesis is to compare economically the estimated costs of the supply for a wadins pool. The supply will be furnished either by a direct flow or recirculation system.

In the direct flow systam a dom will De designed to furnish jhe head. This dem will support a. footbridge. The supply in this system will only be chlorinated as a means of purification.

In the recirculation system the suoply can either be taken fron Clinton Fiver or a well which is in operation at present time. The supply in this system will be filtered through a racid sand filter and treated with chlorine as a means of purification. Pumps will be installed io furnish required head.

This thesis also deals with design of a drainage system for Dodge Brothers Park $\# \delta$.

An Estimate of the Cost of an Installation of a Direct Flow Mading Dool.

Design Data
On the following pase a table shows total weekly attendence at Dodse Fari \#Z, also attendance on the Sunday of that week and the per cent of a total weekly attendence visiting nark on Sunday.

Following is a table showing the attendance at Dodee Park ${ }_{\pi} \tilde{\delta}$ in previous years.

Year	Table No.l No Visitins Fark during year	\% Tracrease
1927	245,700	
1928	431,400	43
1929	753,108	43.5

From this above table no.l assuming a 43\% increase for year 1930 the total yearly attendance would be $1,000,000$ neople.

Table No.

The average $\%$ of a total weekly attendance visitine ger'r on Sunday is 67.6 with a maximum of 96.5% and a minimum of 12%. We will use 75% as a value for design data. With 75,000 as an estimated value for average maximum weekly attendance for year 1929 we have:

$$
\begin{aligned}
& 763,110: 75,000:: 1,000,000: x \\
& x=100,000 \text { (aporox) averase }
\end{aligned}
$$

moximum weekly attendance for year 1930.
Using 75% as referred to above we
have $100,000 \mathrm{x} \cdot 75=75,000$ neople; the maximum number a.ttending park on Sunday for maximum year.

$$
\text { Assuning that } 10 \text { of the total }
$$

number in a maximum dey will be children using wading pool we have:

$$
75,000 \times .01=750 \text { children }
$$

using pool on a maximum day.
From a report of the Joint Cominittee
on Bathing Places of the American Fublic Health Association and the Conference of State Sanitary Engineers we have stated that, "at large outdoor pools where a considerable proportion of the water in shallow water, we may assume thet 50 per cent of the non-swimmers would be on shore. The average syace allowance for each nonswimmer in the water is aŋproximately one-half that of the swimmer in deep weter. Combining these factors an allowance of 10 square feet per bather should be ellowed for this portion of the pool."

In consideration of the fact that this is a weding pool and only chilaren using it we will use 5 scuare feet per child.

Then $750 \times 5=3,750 \mathrm{sg}$. ft. of weter surface required. naximum deptin of wading pool 24"

Assume that 500 children will be the maximum number using the pool per hour. Again from the Feport of the Joint Comittee as before referred to it states in regard to the frequency of changing water that lthe total number of bathers using a swimming pool during any period of tix:e shall rot exceed 20 persons for each l,000 gellons of clean water adied to the pool durjne that period." Therefore we have $\frac{500}{20} \times 1,000=25,000 \mathrm{gal} . / \mathrm{hr}$. $\frac{25000}{00}=416$ gral./ min. (water to be sumnlied to nool) Also the Feport of the Joirt ömaittee states that "the slope of the bottom of any port of a pool where the water is less than 6 feet deep must not be more than 1 foot in each 15 feet.".

Summing up these specifications for the pool we heve: yaximum number of children using ool in one day 750

Laximum number using pool per hour 500 Total water surface area to be not less than 3,750 sq. ft.

There shell be 410 gal/ min. of fresh water supplied at time of maximum load. laximum depoh of meter to be $24 \prime$.

Inlets and outlets to be so arrengei tinet there will be no dead ende，no short circuiting and even distribu－ tion．l！aximum width to be 401 and nool shall be located in a naturəl ox－bow which exists in nark．Pool shsll slove to a central outlet and can be droined for cleanine．Pool shall be lined with a corcrete slab б＂$^{\prime \prime}$ in thickness and to be reinforced with expanded metal reinforcing．With this design deta in mind we will design pool as follows：The pool will be semi－circulor， 401 wide with a center line of 2101 radius．The inner edee a semi－circle with lラ刀＇radius and the outer edge a semi－circle with 230^{\prime} radius．Tne pool will be 1501 long with serri－circular corners of 12.51 radi三．The poil wili have a vertical wall aroun̉ outside g＂in height the top of which is $3^{\prime \prime}$ soove surface of water． The elevation of the surface of the water in the pool will de óoc．40．At one ena there will be three inlets， each 1＇x3＂，discharging from a distribution chember． From this erd of pool the bottom will slope down to a．point at elevation o00． 10 which is 25^{\prime} along center line from end of pool．Tnerce the bottom of the will slope to a point 25^{\prime} from opposite end which is at elevation 600．40．At tris point there will be located a main outlet with en auxiliary outlet at opposite end from irlet near the vertical wall．For details see plate Mo． 4.

At irlet end of pool there will be located a districution chamber with three outlets into pool．This is to orovicie ever distribution of irlet water over entire length of in－ let end of pool see plate No． 4 for deteils．

At a cistence of 150 from distribution chomber toward river these will be loceted the chlorine anperatus inclosed in a small kuildirg which will also orovide for storage of chlorine cylinders etc．＂enr this vill be located a swell cherber in which there will we a floot valve winch will keep the woter surface at a corstrnt elevation of 002.40 ．The building will be constructed of wateroroof corcrete as showa on rlate $\because \mathrm{O} .4$ ．

The pool thus specified has an area of $5, \varepsilon=\$$ sq．ft of water surfoce，a meximum dentin of 2411 ，riditn of 401 ，maximum slope of bottom of I^{\prime} in 13 定 feet and a circulation system such trat there will be even distri－ bution，no short circuiting or dead ends．The velocity of flow is

$$
\begin{gathered}
Q=A V \\
\frac{416}{7.5 \times 00}=50 \mathrm{xV} \\
V=.0185 \mathrm{ft} . / \mathrm{sec} . \text { or vinich is equel to }
\end{gathered}
$$

$1.11 \mathrm{ft} . / \mathrm{min}$.
This velocity is low but it is satjsfactory．Copacity of tank eçuals $6,278 \mathrm{cu} . f t$ ．or $47,085 \mathrm{gol}$ llons． This concludes the design of weding nool，chlorination plent end piping system．

Stre-m Flow Investigation of Clinton River

In consiceration of drewing the supoly for
the wading pool from the river, and suphlying the recessery head by means of a dam; it will be necescory to investigate the variation of etream flow in the Clinton Fiver. It is hoped to accurately determine the maximum stream flow that will probably occur once in a given number of years.

An exhaustive secrch for stream flow records was made throueh the publications of the United States Weather Bureau, and the office of the state Highway Department, but without success. The only existine records were taken at the Water Works in Pontiac; bui due to the large difference in the characteristics of the drainage area at Dontiac and that at Utica, fr. Teylor, Engineer in charge of the pontiac water \%orks advised us aganst their use in this investigation. inr. Maylor sueested that we obtain tre stream flow records for the Furon Fiver at Am Arbor as the characteristics of the furon fiver drainage area and that of tre chinton Fiver are very similar. The sugestion of wr.teylor was followed. Monthly average stream flow of the furon Fiver at Eorton Dam were obtained from the State Board of Health. The records were complete and extended from 1904 to 1928 inc. The records are tabulated on the following page, and are also plotted on a hydrograph.

$$
-10-
$$

of the Clinton Fiver from the records of the Euron Fiver as follows:-A comparison of the various types of soil that exist in each drainage area will be made by determining what percent each particular type of soil is of the drainage area in which it exists. The percentages of the various soils in the two areas will be compared, and a ratio between the relative perviousness of the two drainage areas will be jeterained by a method explained later.

In tre followine table, the percentages of the various types of soil as they are measured in each cirainage are listed. Tine ereas used in conputireg these percentages of soil was measured by a plenimeter from the soil mop published by the aichigan State Department of Agriculture.

The relative Derviousness of the various soils are expreseed in whet one might tern as perviousress irdices. After reviewing texts on soils it was decided that the perviousness of the soils were related in noout the proportion indicoted by the uerviousness incex in the table.

The perviousness retio between the two drainage areas is detemined by aiviuine the sum of the moments (the procilct of the percent of a soil ia clinton ares, times the perviousness incex, times the ratio of soil in Clinton area to soil in Furor area) by the averafe of the indices. By wey of explenation, it is quite logical to assume that the perviousness ratio shoulci be the average of tre irdividual soil ratios and directly proportional to the percent of their existence in the Clinton area, and directly proportional to the perviousness index.

The results of the following calcula-
tions indicate that the clinton drainase area obove utica is 1.18 times as pervious as the Furon Fiver drainage area above Ann Arbor. Hence, in view of these calculations, the
$-1^{i}-$
discharse of the Clinton Eiver in c.f.s. ger scuare mile at Uitica is probably $\frac{1.00}{1.18}$ of the discharce of the furon River, considerine for the oresent that the rainfall upon the two arees is the seme.

$$
\begin{aligned}
& \text { Average index }=\frac{6}{4}=1.50 \\
& \text { Perviousness ratio }=\frac{1.771}{1.50}=1.18
\end{aligned}
$$

> Drainaee Area Characteristics
> Huron and Clinton Fivers
> Huron and Clinton Fivers

The next factor to be co:sidered is the rainfall over the two drainage areas. From the United States Weather Eureau Report of 1920 (1930 recort is not eveilable) the average yearly rainfell over the Huron Eiver drainage area from the year ly\$0 to 1920 is $31.59 "$. This record is complete. From the same report the averose rinfall over the Clincon fiver Dreinsce fren from the year 1887 to 1920 is 30.01 . The records over this area are rather incomplete. For this reason, and because of the fact that there exists very little cifference between the two averages, no correction will be mede for rainfall in estimating the dischare of the Clinton Fiver at Utica. There remains only the simple operation of dividing each monthly discheree as plovted on the Furon Fiver hyarograph by the constent 1.7%, and the result will be the probable discharge for the Clinton Fiver at that time, expressed in c.f.s per sq. mile. These results ere listed on the following table.

Tabulation of the probeble stream dischare of the Clinton Fiver. Averse monthly discinsee in cubic feet per second per scuare mile.

Drainage area $=320$ sçure miles. These velues are 'determined from discharge records covering the period from Apr. 1904 to Oct. 1925 on the Huron Fiver a:d a study of its drainąe area.
 05.228 .190 .830 . 746 . 6771.212 . 445 . 333 . 291.287 . 510 . 546 06 . 7068 . 476 . 578 . 693 . 509 . 361 . 165 . 174 . 092 . 156 . 305 . 501 07 1.098.434 . 606 . 961 . 899 . 459 . 268 . 155 . 248 . 354 . 405 •506 08.7541 .9602 .31 .980 . 701 . 298 . 108 . 302 . 161.243 . 168 . 265 09.338 . 921 . 741.5531262 . 544 . 196 . 128 . 128 . 140 . 390.453 10.523 . 554 . 929 . 546 . 855 . 430 . 137 . 119 . 170 . 180 . 195 . 199 11.342 . 706 . 475 . 631.299 . 188 . 092 .092 . 135 . 371 . 503 . 535 12.281 . 251 . 9351.870 . 688 . 278 . 129 . 309 . 394 . 566 . 856 . 522 131.389 . 8091.6042 .0421273 . 612 . 258 . 178 . 206 . 273 . 430.527 14 . 409 . 448 . 7391.0011 .517 . 402 . 436 . 175 . 461 . 394 . 338 . 338 15.4091260 .840 .559 .431 . 454 . 413 . 531.856 .616 . 458.451 $161040.94914081 .8221188 . .893$. 388 . 186 . 158.242 . 288 . 357 17.452 . 326 . 8001201 • 703 . 789 . 460 . 164 . 242 . 293 . 370 . 265 18.19124752705 . 746 . 405 . 189 . 114 . 086 . 157 . 168 . 283 . 571 19.403 . 3231.14216401167 . 388 . 226 . 187 . 190 . 268 . 387 . 387 20.223 .2411420 . 916 . 561 . 296 . 162 . 162 . 155 . 149 . 292.542 21.439 .280 . 912 . 895 . 497 ..266 . 214 . 187 . 428 . 484 . 654 . 800 22.470 .565 . 9601.891 . 776 . 306 . 164 . 137 . 176 . 197 . 218 . 215

23 . 230 . 220 . 904 . 530 . 395 . 430 . 146 . 109 . 147 . 162 . 190 . 376 24.324 .3201 .008 .855 .549 .439 .284 .131 .146 .147 .137 .195 25.153 .444 .605 .378 .219 . 111 . 070.131 .182 .480 .798 .521 26.418 .5411 .4621 .897 .500 .283 .138 .212 .480 .459 .515 .468 $27.322 .511 .815 .501 .464 .474 .249 .125 \cdot 172.244 .326 .924$ 28.667 .682 .710 .784 .419 .422 .247 .205 .153 .181

From the above table a typicel yearly discharee curve is plotted which shows the probably discharge of the clinton River. The ordinates are obtained by finiing the average for each month in the preceding table.

The above data is also arranged into a frequency cistribution which shows tie number of times each rate of flow wold have probably occured durine the period covered by the deta. The third column in the frequency distribution shows the number of times the particular flow is equal to or greater than its self. The fourth colum shows the percent of time and the fifth and sixth the freouency of occurance of each particular rate of flow. The vercent of time and frecuency in years is ploted on probability paper. The resulting probability curve will be used to deterrine the size of flood to be expected once in a given number of years.

Frequendy Distibution of Clinton River strom flow

-21-					
Averace	:.umber	Eurmetion of	Percent	Fr	ncy
Sonthly	of	occurrences	of time	yorins	Yeers
Discheree	cocurrenc-				
c.f.s./	es				
sc.mi.					

.100	5	295	99.9	1.001	. 0835
. 150	23	2.90	98.1	1.02	. 085
. 200	42	257	90.4	1.11	. 0925
. 250	21	225	76.1	1.31	. 109
. 300	24	204	69.0	1.45	. 121
. 350	15	180	b. 9.9	1.55	. 137
. 400	15	165	55.7	1.80	.150
. 450	21	150	$\therefore 2.7$	2.97	. 3.4
- 200	27	129	43.5	2.30	. 192
. 550	15	102	34.4	2.91	. 242
. 600	8	87	29.3	3.42	. 285
. 650	3	79	20.6	3.76	. 313
. 700	6	70	25.6	3.91	. 325
. 750	8	70	23.6	4.24	. 353
. 200	8	62	20.8	4.00	. 400
. $\times 50$	6	54	18.1	5.52	. 460
-900	8	43	16.1	6.21	. 518
. 950	7	40	13.4	7.46	. 021
1.000	5	33	11.0	9.09	. 755
1.050	3	28	9.32	10.72	. 9.93
1.100	2	25	8.31	12.03	1.003
1.150	1	23	7.63	13.10	J. 009
1.200	4	22	7.30	13.70	1.14
1.250	2	18	5.94	10.85	1.40

Average !onthiy Discharees c.f.s./sc.mi	\#umber of ccurrences	$\begin{aligned} & -22- \\ & \text { Surntion } \\ & \text { of } \\ & \text { occurrences } \end{aligned}$	Eercent of time		
				$\begin{gathered} \text { Fies } \\ \text { Fontis } \end{gathered}$	Years
1.300	2	10́	5.26	19.00	1.58
1.350	0				
1.400	1	14	4.58	21.85	1.82
1.450	2	13	4.24	23.60	1.97
1.500	2	11	3.56	28.10	2.34
1.550	1	9	2.83	34.85	2.90
1.600	0				
1.650	2	8	2.54	39.40	3.28
1.700	c				
1.750	0				
1.800	0				
1.850	1.	6	1.86	53.80	4.48
1.900	2	5	1.53	6.54	5.44
1.950	0				
2.030	0				
2.050	1	3	0.848	118.0	9.83
2.100	0				
2.150	0				
2.200	0				
2.250	0				
2.300	0				
2.350	1	2	0.509	196.7	16.3
2.400	0				
2.450	0				

Aversze	\because Uuber of	Sumation	Fercer.t	Frecuency
י'onthly	cocurrences	of	of tine	nonths Years
$\begin{aligned} & \text { Discharges } \\ & \text { c.f.s./sq.ni } \end{aligned}$		cocurrences		
2.500	0			
2.550	0			
2.600	0			
2.650	0			
2.700	0			
2.750	$\frac{1}{295}$	1	0.1.60,	59249.4

To meke the various curves useful in the ciesign of the dam it will be necessary to determine the area of the Clinton Eiver Drainage ares above Utica. An accurate determination of the area of tiee Clirton Fiver drainage Easin would be possible from the ouadrangles published oy the U.S. Geological Survey, but unfortinately only a portion of the Clinton Area has been covered by the U.S. Geological Survey. In view of this fact, tre area wes obteined by a planimeter from a drainage map published by the Michigan State Department of Agriculture. The area of the Drainage Basin above Ütice is $3 \equiv 0$ sq. miles

In concluding the atudy of the flom of the Clinton Fiver, an attempt is made to estimate the elevation of the water surface at the dam site under different conaitions of stream discherge. The hydraulic radius and crosssectional area being determined from the cross section of the river at the dam site. The hyareulic radius and sectional area wes determined for each half foot interval between elevation 598.5 and 602. The slope of the water surface was obtained by measuring between the contours which cross the river as shown by the topographical map. The average velocity of the stream and consequently the discherge was taken from a curve (by Fred C. Scobey Fig. 71 Creacer and Justin Hydro Electric hond book) for each half foot interval of elevation. These discharges and elevations were plotied, resulting in a curve of water surface elevation for various
discharges. We must acknowledge that this curve is based unon the assumption that the slope remains constant and thet the slope was deterained accurately in the first instance, which of course is rot çuite true.
Computations for the gage curve

Elevation	Area	D	R	V	Q
598.5	32	43.2	.742	.94	30.0
599	53	40.1	1.15	1.35	71.6
599.5	77.5	47.9	1.62	1.70	132
600	100	49.2	2.04	2.00	200
600.5	124	50.3	2.46	2.35	292
601	146	51.6	2.83	2.67	390
601.5	109	52.9	3.20	2.80	473
602	192	55.7	3.45	2.96	559

The purpose of the curve is to determine the height of the drainage system outlet and to determine as near as possible the elevation.

-29-
Desien of Dam
The dam, as shown on plate ino. 2 will be a crest grevity type with spillway and flash boards in the center section. The flash boards and supporting structure will be so arraned as to enable an operator to instantly onen the spillway section when such on occasion arises. The flash boards and their supporting structure may also be removed during that part of the year when the park is closed. Fhara need not remain in nlace, any thing during the winter excent thecresi section and the spillwoy piers. In aaiition to the above provisions, there exists three controlline factors; the minimum water surface elevetion to be mintained in tie wedine cool and the minirium stream flow to be expected over the crest of the dem, the careful consideration of these two fectors will determine the correct crest elevetion; the third factor, upon which depends the dimensions of the soillway, is the maximum strean flow.

Crest Elevation
Water surface elevation of weding pool=602.40

Min. " " " of pond =б02.40 (Head loss between pond and wading pool is negligible)

The probable minimum monthly flow was selected from the crobable average monthly flow table on pace 17 Frobeble mini:num flow 0.086 c.f.s. per sa.mi.
or

$$
.086 \times 320=27.5 \text { c.f.s. }
$$

As there are two crest dars over winch tre woter will
flow, $\quad \frac{1}{2} \times 27.5=13.75$ c.f.s. over ench dem Ietermination of deoth on crest fromerrancis' formula

$$
\begin{aligned}
& Q=c l\left(h z h_{v}\right) \\
& Q=\text { discherse in c.f.s. }=15.75 \\
& l=\text { lenğth of crest in ft }=101 \\
& h=\text { head on crest } \\
& h_{V}=\frac{v 2}{2 G}=\text { velocity heed } \\
& C=\text { Coefficient of discharee }
\end{aligned}
$$

From curve 77, Fydiroelectric Fandoook, by Creager and Justin $C=3.95$ Velocity head, h_{V} Area as measured fron cross-section of strean = 217 so. ft.

Velocity of stream

The velocity head may be neglected

$$
\begin{aligned}
& 13.75=3.95 \times 10(h)^{3 / 2} \\
& h=
\end{aligned}
$$

He above results woula be correct if there were no leakage around the flash boards. Blit due to the nunerous small owenines around the flash boards, there will be considerable leakage. It is quite probable, and for the want of more accurate data, that 20% of the minimun flow
will leak through the flash boarcis.
Hence 80% of $13.75 \mathrm{c} . \mathrm{f} . \mathrm{s}=11.00 \mathrm{c} . f . \mathrm{s}$. dis1
charge over each crest dam.
ry Francis' formula

$$
\begin{aligned}
Q & =C / h^{\frac{3}{2}} \\
11.00 & =3.95 \times 10(h)^{3 / 2} \\
h & =\left(\frac{11.00}{3.95 \times 10}\right)^{\frac{2}{3}}=(.278)^{\frac{2}{3}}=.426^{\circ}
\end{aligned}
$$

minimum elevation of water surface 602.40
n head on crest dam

Let crest elevation at 602.0'

Capacity of Spillway last. Trial.
The capacity of the spillway depends upon the maximum flow that will probably occur once in 30 years a frequency consistent with a development of this type. From the stream flow probability curve on page 24 , the average monthly flow that will probably occur once in 36 years is 2.7 c.f.s. per sc. mile

Or $320 \times 2.7=304 \mathrm{c} . f . \mathrm{s}$.
It is also desired to limit the elevation of the water surface when Sot 4 c.f.s. are flowing to 604.00 , as this elevation is only slightly lower than the adjoinins land.

By Creager \& Justin formula (43) for spillways

$$
Q=1 d \sqrt{2 g\left(h+h_{v}-d\right.}
$$

Where in \dot{a} would equal $2 / 3\left(\mathrm{~h} \nexists \mathrm{~h}_{\mathrm{v}}\right)$
if the conditions were such that the hydraulic
jump would operate. But in this case the down strew m slope
through the silllwy is not sufincient to couse the nydraulic jump. Fonce there remairs the oossiciliuv oi dotermininz d from the probeble elevsiion of the weter surface below the svillway. From the gese carve on pree \qquad Ghe water suriace elevaiion shoulı be óo 3.5 when the river inschere 804 c.f.s.
hence $h=004-598.5=5.51$
sow streat head $h=033.5-558.5=5.01$
上, $8.5=$ elevation ot soillway floor.
Also ascure soillwry width $=$ 2o'
therefore $d=\frac{h_{1}}{h} h=\frac{5.0}{5.5} h=.909 h$

$$
\begin{aligned}
& h_{v}=\frac{v^{2}}{7 g} ; a=308 \quad \text { From cross-section } \\
& w_{v}=\frac{864}{308}=2.8 \mathrm{Ft} . \mathrm{p} . \mathrm{sec} \\
& h_{v}=\frac{\overline{2.8}^{2}}{2 \times 32.2}=.164 \mathrm{Ft}
\end{aligned}
$$

$$
\begin{aligned}
& Q=d \rho h \sqrt{2 g\left(h+h_{r}-d\right.} \\
& Q=.909 \times 5.5 \times 26 \sqrt{6414(5.5+.164-.909 \times 5.5} \\
& Q=.909 \times 5.5 \times 26 \sqrt{64.4 / .091 \times 5.5+.164} \\
& Q=.909 \times 5.5 \times 26 \times 6.54=851 \quad c .7 .5
\end{aligned}
$$

Flow ouer crest dams

$$
Q=c c_{1} \rho\left(h+h_{\sigma}\right)^{3 / 2}
$$

From table 24 Creager t Nustin

$$
c=3.8 ; c, .817
$$

$$
Q=3.8 \times .817 \times 10(2.168)^{\# / 2}=3.8 \times .817 \times 10 \times 3.18=96.3 \text { c.f.s. }
$$

$2 \times 96.3=192.6$ suer erest dams

$$
351 \text { - thri spillwar }
$$

1043 c.f.s. total discharga

The above calculations were based lifo the assuretimon that couroximately $804 \mathrm{c} . \mathrm{f} . \mathrm{s}$. Were flowing and that the elevation of the tail water os taken from tie gating curve was 003.5 The results indicate that the elevation of the tail water should be higher.

Capacity of Spillway and Trial
Assume 925 c.f.s.
Elevation of tail water from gagging curve 003.65

$$
\begin{aligned}
& d=\frac{h_{1}}{h} h=\frac{5.15}{5.50} h=.935 h \\
& Q=0.9351 \mathrm{~h} \sqrt{2 g\left(.065 h+h_{2}\right.}
\end{aligned}
$$

Velocity head

$$
\begin{aligned}
& \text { ity herd } \\
& r=\frac{925}{305}=3.01 \mathrm{ft}, \mathrm{f} .5 \mathrm{scc} \text {; } h_{r}=\frac{3.01}{64.4}=.136^{\circ} .
\end{aligned}
$$

$$
Q=0.935 \times 5.5 \times 26 \sqrt{64.4(.065 \times 5.5+136)}
$$

$$
Q=0.935 \times 5.5 \times 26 \times 5.64=753 \text { c.f.s. }
$$

Over crest of dorms
From table 24 Greaser and Justin

$$
\begin{aligned}
& C=3.8 ; C=.739 \\
& Q=3.8 \times .739 \times 10(2.130)^{3 / 2}=07.5
\end{aligned}
$$

Over crest dams $2 \times 87.5=175.0$
Through spillway

$$
=\frac{703}{y \in S} \mathrm{c} . \mathrm{f} . \mathrm{s} .
$$

The open spillway and the direst dams will discharge 928 c:f.s. at a surface elevation of 604.0 winch discharge exceeds 864 c.f.s. Hence the assumed spillway dimensions will be adopted.

```
Sillwoy width 20'
Floor elev:tion 5g&.5
Aay. wrter surfacejot.o
Top Oi spillwry
    piers ó05.0
```

Spillway Design
The fish bor rds will be held in glace by vertical studding secured at the bottom io y iron shoes, end at the top by a horizontal steel truss. Tie truss will be e five paneled Pratt, 28 ft . long and 5' wide.

Selection of flash boards.

$$
\begin{aligned}
& \text { Too elevation of boards }=633.0 \\
& \text { Floor elevation }=\frac{595.5}{\text { head on dot ion cones }}=4.5
\end{aligned}
$$

Water pressure at bottom $4.5 \times 52.5=282 \mathrm{lb} / \mathrm{ft}$

$$
\text { seen of board }=\frac{26}{5}=5.51
$$

B.M. $\frac{1}{8} \mathrm{wd}^{2}=\frac{282 \times 5.6 \times 5.6}{8}=110516 . \mathrm{ft}$.

1105 10 $\mathrm{ft}=13300$ lb. in
Extreme fiber stress of Douglas Fur from onrmesie Hond book $1200 \mathrm{lb} / \mathrm{in}^{2}$
$M=\frac{I S}{C}=13300$
$\frac{I}{C}=\frac{13300}{1200}=11.05 \mathrm{in}^{3}$
for 3 "plank (measure $23 / 4$)
$\frac{I}{c}=\frac{1.733 \times 12}{1.375}=15.1 \mathrm{in}^{3}$
3" Douslas Fur timber rill be used for Flash boards.

Flash bora studding

Fesultent water res sure $P=\left(\frac{1}{2} \mathrm{mh}^{2}\right) 5.6$

$$
\begin{aligned}
& F=\frac{5.5}{2} 62.5 \times 4.5 \times 4.5-35504 \\
& \text { B. } \left.2 .=\frac{-5}{0.5} 350\right) 1.5=41001 \mathrm{ft}=49200 \mathrm{lc} . \mathrm{in} \\
& \frac{I}{C}=\frac{11}{S}=\frac{4920}{1000}=3.07 \text { in } 3 \\
& \text { Carnegie Coss Tire }-25: \frac{I}{C}=5.5 \\
& \text { ToD reaction }=\frac{1.5}{6.5} 3550=820: \\
& \text { bottom " }=3550-320=2730 \% \\
& \text { Steel Truss }
\end{aligned}
$$

Iris truss will be rather unusual in the it must support its own weight in a horizontal position, a died load of a temporary foot bride, a live load and impact, and the horizontal panel point load, the londires which makes the truss necessary.

Length of diagonal =

Influence line for sherr in ponel $2-3$

Influence line for shear in panel 3-4

Full load stresses (horizontal)
(by index method)

: Cm ember	Index Sturess	Factor	Stress
$\mathrm{V}_{1}-\mathrm{V}_{2}$	-1640	$\frac{5.5}{5}$	-1837
$V_{2}-V_{3}$	-2460	5.5	-2755
$\mathrm{V}_{3}-\mathrm{V}_{4}$	-2400	$\frac{5.0}{5}$	-2755
$\mathrm{V}_{4}-\mathrm{V}_{5}$	-2400	$\frac{5.5}{5}$	-2755
$V_{5}-V_{6}$	-1640	$\frac{5.6}{5}$	-1837
$L_{1}-L_{2}$	0		0
$L_{2}-L_{\text {, }}$	± 1640	$\frac{5.6}{5}$	± 1837
$\mathrm{I}_{3}-\mathrm{L}_{4}$	± 2460	$\underline{5.6}$	± 2755
$\mathrm{L}_{4}-\mathrm{L}_{5}$	± 1540	$\frac{5.6}{5}$	11.537
$L_{5}-L_{6}$	0		0
$V_{1}-L_{1}$	-1.340	1	-1640

member
$\mathrm{V}_{2}-\mathrm{L}_{2}$
$V_{3}-I_{3}$
$\mathrm{V}_{4}-\mathrm{L}_{4}$
$V_{5}-I_{5}$
$V_{6}-I_{6}$
$V_{1}-L_{2}$
$V_{2}-L_{3}$
$V_{3}-L_{4}$
$\nabla_{\varphi}-L$,
$\nabla_{5}-I_{4}$
$\mathrm{V}_{6}-\mathrm{I}_{5}$

Index Stress
-820
0
0
-820
-1640
216!0
7820
0
0
7 220
± 1640

Factor
1
1
1
1
1
$\frac{7.51}{5}$
$\frac{7.51}{5}$
$\frac{7.51}{5}$
$\frac{7.51}{5}$
$\nexists 1231$
0
0
Stress
-820
0
0
-820
-1540
z2452
± 1231
z240́2

Determination of maximum Stresses
The maximum stress occurs in top and bottom chord when all panel points are fully loaded. The quantity for the chord members on the preceding page is maximum.

Maximum shear in panel l-2 occurs when $2 l l$ panel points are fully loaded, as shown by influence line.

Hence values for $U_{0} L_{9} ; U_{6} L_{6} V, L_{2}$; and
$V I$ on preceding page are a maximum.
Maximum shear occurs in panel $2-3$, with points
3,4 end 5 loaded.

$$
V=\frac{1+2+3}{5} 820=985
$$

$$
V_{2} L_{2}=-985 ; \quad V_{5}-L_{5}=-985 \mathrm{~N} / 0 \mathrm{x} .
$$

$$
V_{2}-L_{3}=\frac{7.51}{5} 985=+1480 \quad 1 / 10 x .
$$

$$
V_{5}-L_{4}=\frac{751}{5} 985=+1480 \quad \text { No. }
$$

Laximum sher occurs in peel 3-4, with points 4 and 5 loaded.

$$
V=\frac{1+2}{5} 820=492
$$

$$
\begin{aligned}
& V_{3}-L_{3} \text { and } V_{4}-L_{4}=-492 \\
& V_{3}-L_{4} \text { and } V_{4}-L_{4}=\frac{2.51}{5} 492=+749^{0}
\end{aligned}
$$

$V_{*}-L_{4}$ is Considered as a tension Counter
lifximum stresses

Top chord
Bottom chord
$V,-I$, and $V_{6} L_{6}$
$V_{2}-L_{2} \quad{ }^{\prime \prime} V_{5} L_{5}$
$\mathrm{V}_{3}-\mathrm{L}_{3} \quad \mathrm{IV}_{4} \mathrm{~L}_{4}$
$V_{1}-L_{2} \| V_{6} L_{5}$
$V_{2}-L_{3} \| V_{4} V_{r}$
$\mathrm{V}_{3}-\mathrm{L}_{4} \quad \mathrm{IN} \mathrm{V}_{4} \mathrm{~L}_{3}$
-2755
± 2755
-1540

- 985
- 492

ま2452
71400
¥ 749

Chord Members.
The chord members are subject to two loadings . A vertical load causing bending and tension due to horizontall loading

Vertical load

Foot bride e (see drawing Noe)
 Amount of bride e timber per foot l. 68% c.f.

Weight of yellow pine 44 lb per cu.ft.
$44 \mathrm{x} \cdot 1.683=75 \mathrm{~F} / \mathrm{ft}$
37.5 per ft for inch I Beam.

Live Load
Assume 100 los per lin. foot
50 lb per foot per I Beam
Live Loment $=\frac{W_{1}}{8}=\frac{50 \times 28 \times 8}{8}=4900 \mathrm{lb} . \mathrm{ft}$
Impact $=\frac{300}{300 \pm \frac{25 \times 28}{100}}=490 \times .975=4780$
Live liniment z Impact $9680 \mathrm{lb} . f t$

Assume weight of I Beam as 25 lb per ft.
Total dead load $=25 \pm 37.5=62.5 \mathrm{lb}$ per ft.
Dead moment $\quad=\frac{62.5 * 2 S x 28}{8}=6120 \mathrm{lb} \mathrm{ft}$

Live loment	$=\frac{9680}{15800 \mathrm{lb} \mathrm{ft}}$
Total loment	
	$189,500 \mathrm{lb} \mathrm{in}$.

Design of Lower Chord

$$
\text { Allow } 4-3 / 8 " \text { rivet holes in }
$$

The design of this member is exactly similar to that
of an escentrically loaded column for which Spofford in Theory of Structures, gives the formula (26)

$$
S=\frac{P}{A} \quad z \quad \frac{M y}{I z \frac{P L}{C E}}
$$

in which

$$
\begin{aligned}
& M=\text { Bending moment due to vertical load. } \\
& P=\text { Axial load } \\
& Y=\text { Distance from coG to extreme fiber } \\
& C=\text { Constant } \frac{I}{C}=\frac{5}{4} \text { for uniform load. } \\
& S=\text { maximum stoss } \\
& L=\text { Unsupported length } \\
& E=\text { Modulus of elasticity } \\
& I=\text { Moment of Inertia }
\end{aligned}
$$

Assuming 18.4" \&" I Beam

$$
\begin{aligned}
& \text { A area from Carnegia } A=5.34-1.5=3.84 \mathrm{in}^{2} \\
& \mathrm{~S}= \frac{2755}{3.84} \frac{189500 \times 4}{56.97} \frac{2755 \times 5 \times 144 \times 28 \times 28}{28 \times 29000000} \\
& S= 717 \pm \frac{758000}{50.9 \pm 1.12}=717 \pm 13050=137671 \mathrm{~b} / \mathrm{in}^{2}
\end{aligned}
$$

Try 7" 20:\# I

$$
\begin{gathered}
A=5.83-1.5=4.33 \\
S=\frac{2755}{4.33} \neq \frac{189500 \times 3.5}{41.9 \frac{16755 \times 5 \times 144 \times 28 \times 28}{48 \times 29,000,000}} \\
I= \pm 30 \pm \frac{663000}{41.9 \pm 1.12}=635 \neq 15430=10056 \\
18.48 \# 8 \prime \text { I Beam will be used for lower chord. }
\end{gathered}
$$

41

Desin $0 i^{\circ}$ urer jinord
The formuia is the sixie for a compressi a nembur with the excertin of ciange insisn, trius

$$
S=\frac{P}{A}+\frac{M V}{I-\frac{P L}{C Z}}
$$

Try 18.4 : 8 " I beam
by formula 22 spof ford's Structur es
$\frac{P}{A}=16000-50 \frac{1}{P}$
$\frac{L}{r}=-\frac{28 \times 12}{3.26}=103$
or $-\frac{5.6 \times 12}{64}=80$
$\frac{P}{A}=26000-50 \times 103-10,850$ \# per in ${ }^{2}$
$S=\frac{2755}{5.24}+\frac{139500 \times 4}{56.9-275 \times 5 \times 144 \times 28 \times 25}$
$S=517+\frac{75000}{56.9-1.12}=51712560$
$S=14097 \% / \operatorname{in}^{2}$
Iry 21.8 Ib 9" I beam

$$
\begin{aligned}
\frac{y}{L} & =16000-\frac{28 \times 12}{3.67} 50=11520 \text { lb yer in } 2 \\
S & =\frac{2755}{6.32}+\frac{189500 \times 4.5}{44.9-\frac{2755 \times 5 \times 144 \times 28 \times 28}{48 \times 29,000,000}} \\
\Delta & =456+\frac{853000}{84.9-1.12}=436+10180 \\
& =1061616 \text { fer in } 2
\end{aligned}
$$

21.8 " " $^{\prime \prime}$ I Deams vill be used for both top and bottom chords.

42

Jesinn oímeiuers $\quad T_{1} i_{2}$ and $V_{E} \quad I_{5}$ losd $24 \in \mathcal{L}$

$$
\text { Fecuired } \therefore x \in a=\frac{2 \hat{i} 2}{1 \epsilon 000}=.154 \mathrm{sq} \cdot \text { in. }
$$

Try $2 \times 2 \times 1 / 4^{2} \mathrm{~L}=1.06$
$-1 /$ 中 $\times 1 / 2=-\frac{.13}{.3 E \mathrm{sq}}$. in.
Iry $2 \times 11 / 4 \times 1 / 4=.75$

$$
-1 / 4 \times 1 / 2=-\frac{.13}{.62} \text { sc. in. }
$$

Üse $2 \times 11 / 4 \times 1 / 4 L^{s}$ for diagonals.

Jesin of lembers $\quad V_{1} L_{1}$ and $V_{6} L_{\hat{c}} \quad$ load 0 lefo commessione
Use Ciarnel for stability of I beams.
Use ϵ " 8.2 / ft channel

üse 4" $5.4 \ddot{\%}$ ciannel $\frac{985}{1.50}=.601 \mathrm{li} / \mathrm{in}^{2}$
Also use some ciannel for $\ddot{u}_{3} L_{z} ; V_{4} L_{4} \frac{492}{1.56}=0.2151 b$ rer in ${ }^{2}$
Jesien of joints an upyer ciorad.
Üse nitchare les $4^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$ L to cuinect Eto I bexms
$1-3 / 8$ "rivet in S. S. $=1220$
$1-5 /$ " " $^{\prime \prime} \quad$ " Bearing $=1800^{\circ}$
$\frac{16 \div 0}{1520}=1.25$
novever use 4 rivets in each les.
Use 1.4" gusset piate to cunect angle to ciennel.
Load in $J_{1} I_{2}=24 E 2 \mathrm{lbs}$.
$\frac{2462}{1520}=1.87$
Use 3 rivets in loth channel ariaryit cumection.

Jesign of lover ciord joint

Üse hitch angle $4 \times 4 \times 1 / 4$ L
Shear in rivets of channel leg of hitch ang le $=820$, Fowever use 4 rivets as are usedin urper joints.

Givets for I bean leg of hitch arele.
Use 4 rivets for siear.
$3 / 8^{\prime \prime}$ rivets in tersion . $11 \times 16000=1760:$
Teas iun transferred from I lean to connection equals 8: 0: use 2 rivets for tension wich makes a total of $6 \mathrm{~J} / \varepsilon^{\prime \prime}$ rivets in horizontal leg of hitch angle.

Uns ti:e same curset flate as is used for uny joints.

44

Desin of opillay fiers.
Sraclet to taie horizontal thr ast of truss.

Bexdine moment $=1640 \times 4.5=7300 \mathrm{lb}$. in.

$$
\begin{aligned}
& V=60 \text { for siear wen wed is reinforced } \\
& d=\frac{7}{6 i d v}=\frac{1040}{9 \times \cdot 875 \times 60}=3.5 \prime
\end{aligned}
$$

However it would be advisabie to use $6^{\prime \prime}=d 9^{\prime \prime} \cdot \mathrm{D}$

$$
\Delta_{s}=\frac{M_{i}}{f_{s j} \dot{d}}=\frac{7080}{16000 \times .875 \times 6}=.088 \mathrm{sq} \cdot \text { in. }
$$

Use $1 / 4 " \emptyset Y$ Bars for mo:ant.

$$
\begin{aligned}
& 2 \times .049=098 \text { sq. in. } \\
& v=\frac{V}{g 0 j d}=\frac{1640}{2 \times \cdot 785 \times \cdot 875 \times 6}=109 \text { per } \mathrm{in}^{2}
\end{aligned}
$$

Extend bars 40 bar diameters $10^{\prime \prime}$
\#eb reinforcintj; üse $1 / 4 \emptyset \mathrm{X}$ bars.
If vertical steel were used, load curried by steel wold be ($60-\dot{4} 0$) $9 \times 6=$ 1080 "; at $45^{\circ} \frac{1080}{1.41}=765 \mathrm{lb}$.
Capacity of $: \mathrm{Bar}=2 \times .049 \times 16000 \times 1570 \mathrm{lbs}$.

45

-iers
Ifter testime riers of various desien for overtumine sliding wrd scil vressure, tie following desien was found satisfuctorje

Factur 0 : safety ackinst wortuming

$$
\frac{105590}{22050}=3.2 \text { f.s. fur overtiuniting }
$$

ractur of sufety againct sliàing

47

Sliding force $=4 E 70$
तesistirs force $=21214 \times 0.53=7071$

$$
\frac{7071}{4070}=1.62 \text { f.s. for sh mains }
$$

Soil pressure

$$
\begin{aligned}
& p=\frac{w}{t}\left(1 \pm \frac{6 c}{t}\right) \\
& p_{1}=\frac{21214}{5 \times 9.77}-\left(1+\frac{6 \times 1.51}{9.77}\right)=724(1+.922)=13.92 \mathrm{~F} / \mathrm{ft}^{2} \\
& \mathrm{p}_{2}=724(1-.925)=56 \mathrm{f} / \mathrm{ft}^{2}
\end{aligned}
$$

From table on p le !aol's Concrete Construction Yod 2 allowable soil pressure for soft cloy is $2 C O C$ loss, ier sf. ft.
resin of Spillway Floor.

"filth between flesh board studding 5.6'
Sutton reaction of flash board stud $=2730$.
The floor will be a 6 " slab reinforced with wire mesh, : isth a z^{\prime} cat of f wall on line of up stream ede of pier. arimontai thrust of flash boer d stiddire to be carried into soil by cantilever wail.

48

$$
b=5 \cdot E=E c^{n}
$$

 シriction ancie for clay on yage $10=25$ décees.

$$
\begin{aligned}
& I=1 / 2 \sin ^{2} \frac{1+\sin d}{1-\sin \varnothing} \\
& \frac{1+\sin 25}{1-\sin 2 i}=\frac{1+0.23}{1-0423}=2.47
\end{aligned}
$$

In as micin as a fectur of saiety acainst sliui.. of l. if if aivisable, the riessue F used in formis will oumativlieu oy lo

$$
\begin{aligned}
& 1.5 \times 2750=\left(\frac{1}{2} 100 \mathrm{~h}^{2} \times 2.47\right) 5.6 \\
& h=\sqrt{\frac{400}{20 \times 2000}}=2.44
\end{aligned}
$$

asis derth of wall 2.5^{\prime}
Denuỉn roonent $=4100 \times 1.2 \bar{x} \times 12=81500$ 10 in.
üse $f_{c}=650, f_{s}=16000, \mathrm{~K}=107.7$
$d=\sqrt{\frac{I}{I B}}=\sqrt{\frac{61500}{107.7 \times 60}}=2.34^{\prime \prime} \quad$ üse $3^{\prime \prime}$
Allowaile va 40 lo y er sí in

$$
\begin{aligned}
& \nabla=\frac{T}{b j d} ; \quad d=\frac{V}{b_{j v}}=\frac{4100}{6 \pm \times \cdot 074 \times 40}=1.79^{\prime \prime} \\
& d=3 \prime ; D=6 " \\
& p=.0077 \\
& A_{s}=.0077 \times 3 \times 60=1.53 \mathrm{sq} \text { in. }
\end{aligned}
$$

Use 11 - $3 / E!$ 中 Dars $\frac{7}{4} 6^{\prime \prime}$ sracing

$$
11 x .14=1.54 \mathrm{~s} \cdot \text { in}
$$

49
こesig of Orist Mmity Dan。
Tre ends 0 : tie dan will be pravity sections over michine
 De in acuor iance with tiat subested on race doe-9 of rydro -iectiric

 used in an atten to arive at a fariny accurate formaia ix the curve; as it vill be necessary to find tie areamier the carve ainits centroid. Buch vinius aill de necessary in determining tie veigt and monent of trie datio.

> Curve of crest (un streara face vertical).

Representative coordinates of curve for unit head and upstream face vertical

$$
X=0.7 ; \quad Y=0.257 \quad X=2.7 ; \quad Y=2.52
$$

The curve is of the form

$$
X^{n}=A Y
$$

$$
\begin{aligned}
\cdot 7^{n} & =.257 a \\
2 \cdot 7^{n} & =2.82 a
\end{aligned}
$$

$$
\text { N log. } \cdot 7=\log \cdot \cdot 257+\log \cdot \theta
$$

$$
\mathrm{N} \log \cdot 2 \cdot 7=\log \cdot 2.82+\log \cdot a
$$

Subtracting

$$
\begin{aligned}
& N(\log \cdot 2.7-\log \cdot \cdot 7)=\log \cdot 2.82-\log \cdot .257 \\
& N=\frac{\log \frac{2.82}{.257}}{\log \frac{2.7}{.7}}=\frac{1.04}{.587}=1.773 \\
& (2.7)^{1.773}=2.82 \mathrm{a} \\
& \mathrm{~A}=2.07 \\
& \text { Na } \quad \mathrm{X}^{1.773}=2.07 \mathrm{y}
\end{aligned}
$$

Formula
A comparison between the coordinates given in the handbook and those computed by the formula will be made below.

Coordinates from handbook
by formula

\mathbf{x}	y	y
0	0	0
0.1	.007	
0.3	.060	.057
0.5	.142	
0.7	.257	.257
0.9	.397	
1.1	.565	.572
1.4	1.270	
1.7	1.96	
2.2	2.82	1.96
2.7	3.82	3.81
3.2	4.93	
3.7	6.22	6.18
4.2		

The usual head under which this dam will operate is 2 feet, and both coopdinates of the above curve should be multiplied by the head (2 feet) to obtain the proper curve of the crest. Hence the formula will be changed to comply with the 2 ft. head.

Let x. of unit curve equal $\frac{1}{2} x$ of new curve.
Let y. of unit curve equal $\frac{1}{2} y$ of new curve.
hence

$$
\begin{aligned}
& \left(\frac{x}{2}\right)^{1.773}=2.07\left(\frac{y}{2}\right) \\
& \frac{x^{1.773}}{3.42}=\frac{2.07}{2} y \\
& x^{1.773}=3.54 y
\end{aligned}
$$

52

Area under curve.

$$
\begin{align*}
x^{1.773} & =3.54 y \\
x & =2.04 y .564 \tag{o}\\
A & \left.=\int_{0}^{3.5} \mathrm{x} y=2.04 \int_{0}^{3.5} \mathrm{y} .564 \mathrm{dy}=2.04 \frac{1}{1.564} \mathrm{y}^{1.564}\right] \\
& \left.=1.304 \mathrm{y}^{1.564}\right]_{0}^{3.5}=1.304 \times \overline{3.5}^{1.564}=9.26 \mathrm{sa.ft} .
\end{align*}
$$

Centroid

$$
\begin{aligned}
& A x=\int_{0}^{3.5} \frac{1}{2} x^{2} d y=\int_{0}^{3.5} \frac{1}{2} 2.04 y^{2} x(.564) \\
&=2.08 \int_{0}^{3.5} 1.128 \\
& d y \\
& A x=.976 \times \frac{2}{3.5}^{2.128}=.976 \times 14.4=14.07 \\
& x\left.=\frac{14.07}{9.26}=128\right]_{0}^{3.5}
\end{aligned}
$$

Determination of the dimensions of the footing under the dam so that the resultant will pass through the middle third. Up lift will be considered as being effective under the main portion of the dam only. A moment equation will be set up, and the equation will be solved for additional width of base (x)
$M_{\mathrm{d}}=$ Moment of dam
$u_{w}=" \quad "$ water
$W_{\mathrm{d}}=$ Weight of dam
$c=$ Unit wt. of Concrete
$\mathrm{F}={ }^{\prime}{ }^{n}$ " water
$\mathrm{b}=$ base width of crest section
$y=$ depth of base.
Uplift $=\frac{1}{2}$ what $\frac{2}{3} \mathrm{~b}$.
$M_{d}=W d x+\frac{1}{2} C y x^{2}-M_{w}-\frac{1}{2} w h_{2} b \frac{2}{3} b$
uplift
$=1 / 3\left(\pi_{d}+c x y\right)(b+x)$
$u_{d}+T_{d} x+\frac{1}{2} c y x^{2}-w_{w}-\frac{1}{3} W h_{2} \sigma^{2}=-$
$\frac{1}{3}\left(w_{d} b+w_{d} x+b c y x+c y x^{2}\right)$
$\left(\frac{1}{2} C y-\frac{1}{3} c y_{y}\right) x^{2}-\left(\frac{1}{3} \pi_{d}-w_{d}+\frac{1}{3} b c y\right) x$
$+\left(k_{d}-M_{w}-\frac{1}{3} w_{d} b-\frac{1}{3} W h_{2} b^{2}\right)=0$
The equation is now in quadratic form
Valuation of the known quantities.

Static Water Pressure $P=\frac{1}{2} W\left(h_{2}^{2}-h^{2}\right)$

$$
=\frac{1}{2} 62.4\left(\overline{9} .5^{2}-\overline{6} .5^{2}=1500^{\#}\right.
$$

Centroid of Water Pressure

$$
Y=\frac{3 h \cdot h+h^{2}}{6 n \cdot+3 h}=\frac{3 \times 3 \times 6.5+6.5 \times 6.5}{6 \times 3+3 \times 6.5}=2.68
$$

$$
M_{w}-2.68 \times 1500=4020 \mathrm{lb} . \mathrm{ft}
$$

Impact $P_{1}=\frac{n \cdot w v^{2}}{g} \neq \frac{62.4 \times 6.5 \times 4 \times 4}{32.2}=202 \mathrm{lb}$.
Considered to act $\frac{1}{2} \mathrm{~h}$.
$M_{I}=202 \times 1.75=354 \mathrm{lb} . \mathrm{ft}$.
$M_{\mathrm{d}}=4020+354=4374 \mathrm{lb} . \mathrm{ft}$.
Substituting the above values in formula and solving for 'x'
$\left(\frac{1}{2} 150 \times 3-\frac{1}{3} 150 \times 3\right) x^{2}-\left(\frac{1}{3} 3835-3835+\frac{1}{3} 4.73 \times 150 \times 3\right) x$ $+\left(10025-4374-\frac{1}{3} 3835 \times 4.73-\frac{1}{3} 62.4 \times 9.5 \times 4.73 \times 4.73\right.$) $=0$ $75 x^{2}+1846 x-4809=$
$x=\frac{-6 \pm \sqrt{6^{2}-4 a c}}{2 a}=\frac{1846}{150} * \frac{\sqrt{1846^{2}+4 \times 75 \times 4809}}{150}$
$x=-12.3 \pm \sqrt{\frac{3,410,000+1,442,000}{150}}$
$x=-12.3$ I 14.7
$x=2.4$ or -27.0
The width of the base will be increased 2.4 feet

Resistance to sliding
$\mathrm{N}=$ Weight of dam - uplift
$N=3835+3 \times 2.4 \times 150-\frac{2.5 \times 62.4}{2} 4.73=3515 \mathrm{lb}$.
Coefficient of friction on wet clay $=0.33$
$3515 \times \cdot 33=1171$
Total horizontal force $=1500+202=1702$

$$
=\frac{1171}{1702} \pm 0.69 \quad \text { Not safe }
$$

Cantilever cut off wall will be used to prevent sliding.
As it is desirable to have factor of safety against sliding off 1.5 , the horizontal force will be multiple by 1.5

To be taken by cantilever wall =

$$
1.5 \times 1702-1171=1389 \mathrm{lb} .
$$

Passive earth pressure $P=\frac{1}{2} \pi h^{2} \frac{1+\sin }{1-\sin }$
Angle of internal friction $=25^{\circ}$
$\frac{1+\sin 25^{\circ}}{1-\sin 25^{\circ}}=\frac{1.423}{1-.42 \overline{3}}=2.47$
$P=\left(\frac{1}{2} 100 h^{2} \times 2.47\right)$
$h=\sqrt{\frac{2 \times 1389}{100 \times 2.47}}=3.36$, use $h=3.5^{\prime}$

Bending Loment $=1075 \times 12 \times 1389=29200 \mathrm{lb}$.in.

$$
\begin{aligned}
& d=\sqrt{\frac{M}{b K}}=\sqrt{\frac{29200}{12 \times 107.7}}=4.76 . \\
& d=\frac{v}{b j v}=\frac{1389}{12 \times .874 \times 40}=3.3011 \\
& d=5^{\prime \prime} ; \quad D=8^{\prime \prime} \\
& \mathrm{p}=.0077 \\
& A_{5}=.0077 \times 12 \times 5=0.463 \text { sain. }
\end{aligned}
$$

Use $\frac{1}{2}$ " at 6"

$$
u=\frac{V}{20 j d}=\frac{1389}{3.00 \times .874 \times 3}=1771 b \text {. per in }
$$

Extend bars 50 bar diameter 25"

Design of Retaining wall.
Gravity Type
After various trials, the following dimensions were adopted.

Moment

Part	dimension	Wt.	\bar{x}	Moment
a	$\frac{.54 \times 6.5}{2} 150$	273	.82	224
b	$1 \times 6.5 \times 150$	975	1.5	1463
c	$\frac{1.5 \times 6.5}{2} 150$	732	2.5	1830
d	$1 \times 4 \times 150$	600	2.0	1200
e	$\frac{1.5 \times 6.5}{2} 100$	488	3.0	1463
f	$.5 \times 6.5 \times 100$	$\frac{325}{3393}$	3.75	$\frac{1220}{7400}$

$P=\frac{1}{2} 100 \times 7.5^{2} \quad \frac{1-\sin 25^{\circ}}{1+\sin 25^{\circ}}$

$$
50 \times 7 \cdot \overline{5}^{2} \times \cdot 402=1130 \#
$$

Overturning moment $=1130 \times 2.5=2820 \mathrm{lb} . \mathrm{ft}$.

$$
\text { F.s. of overturning }=\frac{7400}{2 \$ 20}=2.62
$$

Earth Pressure

$$
\begin{aligned}
& x=\frac{7400-2820}{3393}-1.35 \\
& C=2-1.35=0.65 \mathrm{ft} . \\
& P=\frac{3393}{4}\left(1+\frac{6 x .65}{4}\right)=848 \times 1.975=1675 \mathrm{lb} . \mathrm{ft} . \\
& p_{2}=848 \times .025=2110 . \text { per ft. }
\end{aligned}
$$

$\begin{aligned} & \text { Sliding } \\ & \text { Coefficient of sliding friction for wet clay }\end{aligned}=.33$
Resisting force $=3390 \times \cdot 33=1131 \mathrm{lb}$.
Sliding force $=1130 \mathrm{lb}$.
Factor of Safety $=\frac{1131}{1130}=1$
A cantilever wall will be used to resist sliding. The sliding force will be increased 150%.
$1130 \times 1.50-1131=564 \mathrm{lbs}$.
Earth pressure $P=\frac{1}{2} W h^{2} \frac{(1+\sin \phi)}{(1-\sin \phi)}$

$$
\frac{1+\operatorname{sIN} 25}{1-\sin 25}=2.47
$$

$564=50 \times 2.47 \mathrm{~h}^{2}$
$\begin{aligned} h & =\sqrt{\frac{564}{50} \times 2.47}=2.14 ; 2.5 \mathrm{ft} . \\ & =564 \times 2.5 \times 12=17000^{\#} \mathrm{in} .\end{aligned}$
$\alpha=\gamma \frac{17000}{12 \times 107.7}=3.6 \cdot$ use $4{ }^{\prime \prime}{ }^{\prime \prime}$
$v=\frac{v}{b j d}=\frac{564}{12 \times .874 \times 4}=13.51 b \mathrm{in}^{2}$
$\theta=.0077$
$A_{s}=.0077 \times 4 \times 12=0.37 \mathrm{sq}$. in.
Use $\frac{1}{2}$ " ϕ bars at $6^{\prime \prime}=.392$ sq. in.
Cost of Dam
(exclusive of foot bridge)
Spillway

Crest Gravity Dam

Dam	26.4 c y	© 20.00	$=528.00$	
Apron	1.5 c y	© 20.00	$=30.00$	
Retaining Wall	$39.2 \mathrm{c.y}$	© 20.00	$=784.00$	

Cost of the different factors in the installation of a Direst Flow Wading Pool.
Cost of dam (not including foot bridge) *1,008.10
135.7 cu.yd.concrete in place $\frac{1}{4} 10.70$ 1,450.00
260 sq.ft. of roof surface $\frac{1}{4} .25$ 65.00
8 sheets of 3-9-30,in $12{ }^{\prime}$ widths of expanded metal © $\$ 4.30$ 34.40
1 Type D.B.ı Paradon direct feed chlorinator 250.00
$2-61 \times 21$-j" $\times 3 / 8 "$ cover plates © 10.50-- 21.00
1-8" globe tank float value 115.00

\# 5,328. 20
An Estimate of the Cost of Installation of a
Recirculation Flow Wading Pool
Design Data For Pool
The report of the Joint Committee on Bathing Places of the American Health Association and the Conference of State Sanitary Engineers states that, "In a recirculation or flowing through pool in which the dirty or used water is continually being withdrawn and replaced by fresh or filtered water, purification of the pool water proceeds by consecutive dilution. The first portion withdrawn from the pool will all be dirty water, but, owing to the constant admixture of entering clean water with dirty water remaining in the pool, each succeeding portion of water withdrawn will consist of a decreasing proportion of dirty water mixed with an increasing proportion of clean water. In proportioning the rate at which fresh water should be added to a flowing through pool or the capacity of pumps, filters, etc., for a recirculation pool, this law must be taken into consideration."

In view of tinis fact and assuming as we did in direct flow pool that 500 children will be maximum per hour, but in this case adding only 500 gal. for each 20 children using pool in an
hour, we have
$\frac{500}{20} \times 500=12,500$ gal. phr., the amount of water to be added to pool per hour.

12,500 gal. $\mathrm{hr}=208.33 \mathrm{gal}$. min.
Inlets for fresh or re-purified water should be located at points so as to produce as far as possible a uniform circulation of water throughout the entire pool. Eight inlets will be used; located at intervals entirely around the perimeter of the pool as shown on plate No. 5. Three outlets will be used which will be located on center line of pool, one at midpoint between the two ends and the others 50^{\prime} in opposite directions along center line from the one at center of pool.

Total water surface to be not less than 3,750 sq.ft. as was obtained in direct flow data of design. Max. depth; 21"

Max. wide of pool 40^{\prime} but there shall be a 6^{\prime} side wall with low curb on outside of walk all of the way around pool. This walk will be not less than 4 in thickness.

With this design data in mind, the pool will be semicimlar, 40^{\prime} wide. The center line will a semi-circle of 210^{\prime} radius and inner edge of pool to be a semi-circle of 190' radius and outer edge a semi-circle of 230^{\prime} radius. This pool will have circular corners of 12.5^{\prime} radius, also about the outside there will be a $6^{\prime \prime}$ sidewalk with low curb on outside of walk. This walk will be $4^{\prime \prime}$ in thickness. The bottom of pool will slope to central outlet at center of pool and this will be connected to 12 " drain pipe. This is to serve the purpose of draining pool for cleaning without pumping the water back to filters. The location and size of inlet
and outlet pipes are shown on Plate No. 5
The pool will be 6" in thickness reinforced with expanded metal reinforcing. The elevation of the water surface will be 602.671.

Rapid Sand Filter

Assuming the filter will take care of 2 gal. per minute for each square foot of surface, the area required would be $\frac{208.33}{2}=104.17 \mathrm{sa} . \mathrm{ft}$. of filter bed surface. We will use a $9^{\prime} \times 121$ bed. The sand bed will be $27^{\prime \prime}$ thick and will have a uniformity coefficient of not greater than 1.7 and an effective size of 35 mm . The upper edge of the wash water gutters will be 30 " abote top of sand. There will be 18" of gravel varying in size, the larger stones being at the bottom. The collection system will consist of galvanized iron pipe $3^{\prime \prime}$ in diameter with two rows of $3 / \delta^{\prime \prime}$ holes spaced $4^{\prime \prime}$ center to center along under side. These will connect with a 8 " central drain pipe which will empty into the storage tank. To wash the filter the fiow will be reversed through the collection system and upward velocity of water will be $18{ }^{\prime \prime}$ per min. To maintain this velocity it will require 1326 gal. \mid min.

The pipe and the throat of the tube is proportional to the square of the rate of flow through the tube. As the foat A drops, it opens the balanced valve so that the level of water in compartment A is the same as in B. The effective head forcing chemical solution through the control valve is, therefore, proportional to the difference of pressure causing the flow through the venturi tube. The rate of flow of chemical is, therefore, proportional to the flow through the Venturi tube. There will be two pumps, the smaller one of 250 gal.per min.

6/

capacity to be operated whenever filter is supplied with water. The larger pump of 1200 gal. per min. capacity will be operated whenever filter is washed. When water is added to pool after it has once been filled with either be taken from river or from a well which is in operation at the park as their supply is not reliable and, using a rate of 1326 gal. per min. it will be possible to wash filter for a period of 6 min. before supply of stored water is exhausted.

There will be 28 holes of $3 / g^{\prime \prime}$ diameter in each piece of pipe in collection system. Then $\frac{28 \times 16 \times 3.1416 \times .1875^{2}}{108 \times 144}=$.0318\%. orifice ratio.

The walls and floor will be 8 in in thickness and it will be possible to obtain a head of $5 \frac{1}{2} f t$ above sand before the filter must be washed.

There will be an apparatus for dosing supply to filter with a sufficient amount of alum to effect a layer of schmutzdecke. The successful operation of the filter is dependent upon this layer. A detail cross section of this dosing apparatus is shown on plate No. 5, and it operates as follows: The water to be treated passes through the venturi tube from right to left. The difference in pressure between may contain objectional minerals. The supply from river is the better to use.

The pool will occupy relatively the same position as direct flow pool did as shown on plage No. IV. The building will be located at any convenient place near outlet to pool. For general arrangement of recirculation system, see plate No. V.
Chlorination.

In either the direct flow or recirculation system, a type D B M Pardon Direct Feed Chlorinator will be used. The chlorine

11162
will be applied in the small chamber where the float valve is located. In case of direct flow system, the residual chlorine content must be considerably greater than in the recirculation system. Also the dose of chlorine of direct flow must be greater in most cases because of the condition of water than in the recirculation system.

Estimated Cost of a Recirculation System Wading Pool
$206 \mathrm{Cu} . \mathrm{Yd}$. of concrete in place © \$11.50
\$2369.00
1170 Sq.Ft. of roof surface in places 0254 292.50
1 Type D B M Paradon Direct Feed Chlorinator 250.00
1 Proportional chemical feed apparatus including $\begin{gathered}\text { venturi meter } \\ 160.00\end{gathered}$
Expanded metal reinforcing $\quad 34.40$
$1,250 \mathrm{ft}$. of $12^{\prime \prime}$ drain tile in plece $390 \phi 125.00$
1 8" globe float valve 115.00
9.34 cu. yd. of sand @ $\$ 5.00$. 46.70
5.73 cu. yd. of gravel 3 \$2.00 11.50

1 - 250 gal . per min. centrifugal pump,including $\begin{gathered}\text { motor }\end{gathered}$ 1000. 00
1 - 1200 gal. per min. centrifugal pump, including motor

2,000.00
$20 \frac{1}{2} f t$. of $2^{\prime} \times 3 / 8^{\prime \prime}$ C.I.coverplate
28.90

9 - $\mathbf{g n}^{\prime \prime}$ gate valves ©
360.00

1 - 12 ${ }^{\text {n }}$ gate valve (3) $\$ 80.00$
80.00

4 Windows including gass \& frame © $\$ 9.00$
36.00

3 Doors including frames @ $\$ 8.00$ 24.00

725.00

Suitable intake constructed of concrete, lump sum
50.00

63
 Drainage

It is desired to lay out an underdrain system that will drain the entire park. The 10 w land along the river will be drained by a system of drain tile placed 50 feet apart, the high ground will be drained by tile placed 100 feet apart. This spacing of drains as chosen should be entirely adequate as the top 2 or 3 feet of the low land is a sandy loam and auite porous. The higher ground is mostly sand and gravel through which percolation is very rapid.

The low land drainage system is designed to work with in very narrow limits of elevation. It vill be noted on the profile of the main draine which is also used to drain the wading pool, that there is less than a foot difference between the invert elevation of the outlet and the elevation of the bottom of the wading pool.

The plan of the drainage system is shown on the topographical map, drawing No. 1.

To determine the size of the mains, it was necessary to determine the rate at which the water is to be removed. It is the usual practice on large drainage systems to arrive at this value by predicting the largest storm that will probably occur once in a predetermined number of years. But in the case of a drainage system of so small an extent and where a rise in the elevation of the river of only two feet would render the system practically useless, a thorough investigation of past rainfall records and large storms is entirely unnecessary.

According to Pickle's Drainage and Flood Control, the average drainage modulus based on years of record is $3 / 8 \mathrm{hn}$ of rain to be removed in 24 hogrs in the State of Michigan. Tins

64

value is equivalent to 0.0151 cubic feet per second per acre.
By the use of this value, the discharge and slope of the mains will be comprited.

$$
\begin{gathered}
65 \\
\text { An Estimate of the Cost of a Drainage System for } \\
\text { Dodge Park \#8. }
\end{gathered}
$$

A run-off modulus of .0151 was used for the design of this drainage system. This value was obtained from the study of the Clinton River drainage area. For the main drain, (A b C H I J K L M), a l2" main was used. This main had a slope of . 055^{\prime} / 100 ' and was designed to carry . 984 cu. ft. / sec. To obtain size of all mains a table on page 161 of the 1925 edition of Drainage and Flood Control Engineering by Pickels, was used.

The elevation of 599.25^{\prime} was chosen as lowest elevation for outlet. $5^{\prime \prime}$ drain tile was used for all laterals. For general layout of drainage system see plate No. l, and for elevations, size, and slope of all mains, see cross section Sheet No. 6

Standard drain tile of clay will be used and following is lengths of the different sized drains with cost of same.

The above prices in place include all wyes, reducers, and other connections, also wi th a suitable outlet to be made of concrete, in place.

Grading•

It will be necessary to fill over pipe lines $D S P G F$, $J \quad 0$ and part of the natural ox-bow; also some filling and grading underneath pool. The average length of haul will be about 500
feet as the earth used in the fill can be obtained frorn the higher portion of park.

To make these proper fills it will be necessary to haul approximately $5,000 \mathrm{cu}$. yd. At $80 \$$ per cu. yd. the cost would be $\$ 4,000$.

Conclusion.

In conclusion may present a comparison of the costs of the two different types of wading pools and their respective water supplies. Also a summary of the cost of drainage and grading.

Cost of Wading Pool with direct flow system *5,326. 20 Cost of Rading Pool with indirect flow system 8,698.00 Cost of drainage system 9,998.40 Cost of Grading 4,000.00

In view of the above tabulations the Direct Flow System is the most economical to construct. It is also the most economical to maintain, because no pumping is necessary as the dam furnishes the head.

On the other hand, a more pure water is obtained with the indirect Flow System, because recirculation necessarily requires filtration as well as chlorination.

