
GENETIC VARIATIONS AND THEIR EFFECTS ON CORONARY HEART DISEASE 

AND CERVICAL CANCER 

 

 

By 

 

 

Yalu Wen 

 

 

 

 

 

A DISSERTATION 

Submitted to 

Michigan State University 

in partial fulfillment of the requirements 

for the degree of 

 

DOCTOR OF PHILOSOPHY 

Epidemiology 

2012



ABSTRACT 

GENETIC VARIATIONS AND THEIR EFFECTS ON CORONARY HEART DISEASE 

AND CERVICAL CANCER 

By 

Yalu Wen 

Benefiting from high throughput technologies, significant progress has been made by genome 

wide association studies (GWASs) and gene expression profiling to map genetic susceptibility 

region for complex human diseases. Evidences show that the current findings can only explain 

part of the genetic etiologies, which could be partially due to the noise and artifacts introduced 

by high throughput technologies and the deficiencies in the current available analytical tools.  To 

reduce the effects of noise and artifacts and facilitate the genetic studies, I develop three 

statistical methods which aim at 1) providing accurate genotype calls by modeling the underlying 

hybridization process of microarray with the consideration of batch effect; 2) reducing false 

positive and false negative findings for differentially expressed gene identification by 

incorporating the variability of data preprocessing into the differentially expressed gene 

detection algorithm and 3) studying the genetic etiologies contributing to comorbidity between 

complex human diseases by proposing a multivariate Mann-Whitney method built based upon a 

U-statistic with forward selection algorithm. Through simulations, analyses of the Latin Square 

Data, and the HapMap data, I show that the three proposed methods outperform the current 

existing methods and are robust under various experimental conditions and disease models. I 

further apply these methods to datasets obtained from Wellcome Trust Case Control Consortium 

to identify the genetic susceptibility loci predisposing to coronary heart disease and to the 

comorbidity between coronary heart disease and Type II diabetes. With these newly developed 



 

methods, the loci identified for coronary heart disease are consistent with the findings by various 

technologies, which indicates the proposed method could provide accurate genotype calls and 

benefit the downstream analysis. No loci have been selected to be associated with the co-

morbidity of coronary heart disease and type II diabetes which may be due to the study design 

and the candidate gene approach used in this research. Further studies are needed to investigate 

the comorbidity between coronary heart disease and type II diabetes. I also apply my method to 

identify differentially expressed genes for a cervical cancer study. The findings replicate most of 

the original discoveries. In addition, several other genes, which potentially play an important role 

in the cervical cancer development, have also been identified.  
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CHAPTER 1 

BACKGROUND AND OBJECTIVES 

1.1 Background and Significance 

The genetic etiology of complex human diseases is of great interest to clinicians, researchers as 

well as the general public. Mapping the genetic susceptibility loci onto the genome relies on 

accurate and efficient algorithm to evaluate the effect of target loci. So far, many computational 

approaches have been proposed to improve the accuracy of genotype calls, the power of 

association and the sensitivity and specificity of the detection of differentially expressed gene [1-

17]. The ultimate goals of these genetic studies are to identify population at high risk, to promote 

new diagnostics and therapeutics, and to develop personalized medicine to treat patients. In this 

dissertation research, I focus on identifying genetic underlying mechanisms for two common 

complex human diseases, coronary heart disease and cervical cancer.  

1.1.1 Coronary Heart Disease 

Coronary heart disease (CHD) is one of the leading causes of death and disability worldwide, 

especially in the developed countries [18]. In the United States, though the death rate declines 

significantly during the past few decades possibly due to medical advances in disease prevention 

and treatment[19], the CHD is still responsible for about 30% of all deaths in people over 35 

years old[20, 21] and is one of the largest killer for both men and women. Evidences from the 

Behavioral Risk Factor Surveillance System (BRFSS) of the Centers for Disease Control and 

Prevention (CDC) show that 4% of the respondents had a history of myocardial infarction (MI) 

and 4.4% of the respondents had a history of CHD. The prevalence of CHD increases 

significantly with age, and men have a significantly higher prevalence than women (5.5% vs. 
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3.4%). Evidences suggest the CHD prevalence is negatively associated with education level, and 

among all racial groups the American Indian/Alaska Native has the highest prevalence [22]. The 

lifetime risks of CHD for people over 40 years old are 49% and 32% for men and women , 

respectively[23], and the CHD accounts for more than 50% of all cardiovascular disease for men 

and women over 75 years[24]. CHD incidence in women lags behind men by 10 years and 20 

years, respectively for total CHD and for serious CHD events such as sudden death[24]. The risk 

factors of CHD can be classified as modifiable risk factors and non-modifiable risk factors. Age 

and gender are two well known non-modifiable risk factors for CHD [22-24]. High blood 

cholesterol, cigarette smoking, hypertension, diabetes mellitus, obesity and overweight, physical 

inactivity, alcohol overconsumption, and diet low in antioxidants are well known modifiable risk 

factors for CHD, and the effects of these risk factors are consistent among different 

racial/ethnicity groups and across varied geographic regions[25-35].  

Family history of CHD is related to each stage of the disease[36]: it elevates risk 

factors[37], subclinical atherosclerosis[38], and clinical manifestation of CHD[39]. The 

increased susceptibility for people with family history of CHD may be due to the shared culture, 

lifestyle and environmental factors as well as multiple susceptibility genes [40-42]. For example 

in the Framingham Offspring Study, the odds ratio for men and women with family history of 

cardiovascular disease (CVD) is 2.6, and 2.3, respectively. With adjustment of traditional risk 

factors, the family history of CVD is still a significantly factor that contributes to the 

development of CVD [43], which indicates that the CVDs are heritable traits.  

Microarray technology allows for the simultaneous exploration of thousands of genes, 

and the knowledge of the new sequence variations of the genome shed light on the new causal 

biologic pathways of CHD which may lead to the improvement in the treatment and prevention 
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of CHD. The completion of the International HapMap Project and the Human Genome Project 

[15, 44] allows for genome-scale screening to detect the common genome variations contributing 

to the disease. Recent genome-wide linkage and association studies have successfully identified 

several genetic loci that are related to CHD[45]. For example through genetic linkage studies 

genes LDLR[46], APOB and PCSK9 [47, 48] have been identified to be associated with 

Mendelian lipid disorders which are well established risk factors contributing to CHD. Genome-

wide association studies have also made considerable progress in detecting the risk factors for 

CHD. For example, the Ottawa Heart Study [49], the deCODE Genetics [50] , and the Wellcome 

Trust Case-Control Consortium (WTCCC) [51] have identified a significant locus on 

chromosome 9p21. By the time of publications, no prior genetic studies have pointed out the 

identified genetic region and the region does not relate to any well known risk factors. 

Subsequent studies confirmed the association of the locus on chromosome 9p21 with MI and 

other type of vascular disease[45]. In addition to the locus on chromosome 9p21, the WTCCC 

study identified several other genetic risk loci, such as rs646776 on chromosome1p13, 

rs17465637 on chromosome 1q41, rs1746048 on chromosome 10q11, which later have been 

replicated by other studies[45, 52]. The first GWAS study for plasma lipid concentrations was 

conducted by the Diabetes Genetics Initiative, and the SNP for low-density lipoprotein 

cholesterol near the APOE gene, the SNP for high-density lipoprotein cholesterol near the CETP, 

and the SNP for triglycerides in an intron of GCKR gene have been successfully identified[53]. 

The subsequent GWASs on plasma lipid concentrations have identified loci that are located near 

the well-known lipid regulators [45, 51]. A number of loci associated with other risk factors of 

CHD also have been identified by GWASs [54-57], and recently GWAS has been applied to 

several emerging risk factors for CHD, such as fibrinogen, inflammatory biomarkers [58, 59].  
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Recently substantial evidences from both clinical and epidemiological studies suggest a 

considerable amount of comorbidity exist between cardiovascular disease and type II diabetes. 

For example, Martin et al. reported that in a German cohort, at the time of diagnosis of type II 

diabetes 22% of patients had coronary heart disease present [60]. According to the American 

Diabetes Association, an estimates of two third of diabetic people died from cardiovascular 

disease, and adults with diabetes are at least twice as likely to have heart disease or stroke than 

those without diabetes. Indeed, the American Heart Association recommends treating diabetes as 

one of the major controllable risk factors for cardiovascular disease[61, 62]. Various factors can 

determine the co-occurrences of the two diseases, ranging from genetic predisposition and 

lifestyle of individual to the general health policy on the public. According to the 13 co-

morbidity models proposed by Neale and Kendler, co-morbidity between coronary heart disease 

and type II diabetes may be due to the fact that one of the co-morbid conditions is the cause or 

consequence of the other [63-65]. It is also possible that the two diseases share the same or 

correlated risk factors, such as obesity, physical inactivity, and insulin resistance, making the co-

morbid conditions more likely to occur simultaneously [25, 34, 64, 66-73].   

Though a large proportion of coronary heart disease cases and type II diabetes cases can 

be explained by environmental factors, genetic factors also play an important role in 

predisposing to both diseases. It has been reported that single nucleotide polymorphism (SNP) 

rs1801282, which is located in gene PPARG, is associated with both cardiovascular disease and 

type II diabetes [54, 74, 75]. G allele of SNP rs4420638, which is located 14kb away from 

ApoC1 gene and co-inherited with ApoE, increases the risk of coronary heart disease as well as 

type II diabetes[53, 76]. The chromosome 9p21 region has also been identified to be associated 
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with both type 2 diabetes and cardiovascular disease, though different SNPs were reported to 

each disease in different studies[22, 77].  

Though remarkable progress has been made in the past few decades, the current findings 

of genetic susceptibility genes can only explain a small part of the heredity of CHD and the co-

morbidity between type II diabetes, highlighting the need of further exploration of CHD etiology 

and mapping the susceptibility loci on the genome.  

1.1.2 Cervical Cancer 

Cervical cancer is the second most common type of cancer [78] and is one of the leading causes 

of cancer-related death in women worldwide[79], especially in the low-income developing 

countries. It is estimated that 500,000 new cases arise every year and 80% occurs in developing 

countries [80-82]. In the US, based on the data from Surveillance Epidemiology and End Results 

(SEER) [83] , the age-adjusted incidence rate was 8.1 per 100,000 and the age-adjusted death 

rate was 2.4 per 100,000 in women for all racial groups. Hispanic women had the highest 

incidence rate (12 per 100,000), followed by Black, White, American Indian/Alaska Native and 

Asian/Pacific Islander, while the Black had the highest death rate (4.4 per 100,000), followed by 

American Indian/Alaska Native, Hispanic, White, and Asian/Pacific Islander. Both death rate 

and incidence of cervical cancer decrease over years, which are largely due to the regular Pap 

smear screening [83, 84]. From 2003 to 2007, the median diagnostic age of cervical cancer was 

48 years old and the median death age of cervical cancer was 57 years old. The 5-year relative 

survival rates were inversely related to the stage of the disease, with only 17% 5-year relative 

survival for women with cervical cancer that has metastasized [83].  
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It has been generally accepted that Human papillomavirus (HPV) infection with high-risk 

types is a necessary factor to cause cervical cancer [82, 85]. HPV infection is a very common 

infection in the US, and more than 6 millions of new HPV infections occur each year. To date 

more than 150 types of HPV have been identified, and among them types 16 and 18 contribute to 

70% of cervical cancer cases [85]. Numerous epidemiological studies consistently suggest that 

sexual activity including the number of sexual patterns, age of the first sexual activity and sexual 

activity of the partner is highly associated with cervical cancer [86-90]. In addition to sexual 

activity, several studies have shown that cigarette smoking [91], the number of live births[92], 

and diet are factors[93-96] that are associated with cervical cancer as well. Evidences suggest 

that women who smoke double the chance of developing cervical cancer. Diet high in vegetable 

and fruits are associated with a 54% decreased risk of persistence of HPV, which leads to a 

decreased risk of developing cervical cancer. Studies also have shown that a high intake in 

vitamin C and beta carotene may reduce the risk of cervical cancer, and diet might be one of the 

factors that explain the between-country difference in cervical cancer incidence rate [87].  

Though radical breakthrough has been made to understand risk factors of cervical cancer, 

the etiology at molecular level largely remains unknown. Evidences suggest that copy number 

increases on chromosome 20 at 20q11.2 and 20q13.1, and it is highly related to the stage of 

cervical cancer [97]. The survival rate of cervical cancer at advanced stage is significantly lower 

than the localized stage[84], and the failure to the treatment of advanced stage cervical cancer is 

partly due to the lack of understanding of the etiology of cervical cancer at the molecular level 

[97]. Further investigation of the mechanisms of cervical cancer at molecular level may help to 

improve treatment, which may reduce death rate of cervical cancer, especially for advanced stage 

cases. 
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1.1.3 Limitation of the Current Methods 

With microarray technology, extensive studies have been conducted to understand the genetic 

etiology contributing to coronary heart disease and cervical cancer, but only a small portion of 

the cases can be explained by the identified risk loci or genetic regions. The artifacts and noise in 

measured intensity of microarray may attenuate the effect of risk loci/biomarker or increase the 

effect of false-positive loci/biomarker, which leads to insufficient or invalid association results. 

Current methods in microarray data analysis mostly focus on developing association tests 

without careful consideration of the uncertainty introduced by the microarray experiment, but 

extensive evidences suggest that experimental conditions such as batch size and microarray 

probe sequence design can largely confound the association studies.  A considerable amount of 

risk loci contributing to either of the type II diabetes or coronary heart disease have been 

identified, but the underlying mechanism leading to the co-morbidity remains largely unknown. 

To the best of my knowledge, currently there is no statistical method that is capable of 

identifying risk factors contributing to co-morbid diseases with consideration of joint gene-gene 

actions. Identification of predisposing genetic variants and environmental factors common to the 

co-occurrence of diseases, unique to each co-morbid condition is of great importance to 

clinicians, researchers as well as the general public, as it helps elucidate the causes of co-

morbidity and promotes new diagnostic and therapeutic strategies for the diseases.  

1.2 Objectives 

The fast development of biotechnologies enables us to scan the entire genome and profile 

thousands of genes simultaneously in large scale epidemiological studies[98]. Marvelous 

progress has been made in identifying genetic susceptibility loci, differentially expressed genes 
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and teasing apart biological pathways in the past few decades through both candidate gene and 

genome-wide association study (GWAS) approaches[22, 99-104]. However, the current findings 

can only explain part of the disease susceptibility, and it is still a great challenge to understand 

the etiology of complex human diseases. The objective of this research is to develop statistical 

methods that aim at detecting various genetic susceptibility loci and differentially expressed 

genes for complex human diseases of high impact, including cardiovascular diseases and cervical 

cancer. This research holds great promise for identifying mechanism of disease and promoting 

the development of new interventions. The specific aims are: 

1.  Develop a Statistical Method for Accurate Genotype Calling and Apply the Proposed Method 

to a Coronary Heart Disease Study 

The first aim of this research is to develop an accurate genotype calling method based on Probe 

Intensity Composition Representation (referred to as PICR[105]) with Empirical Bayesian and 

Normal Mixture models, and applies it to genome wide association study to detect risk loci for 

coronary artery disease (CAD) which may help to unravel more susceptibility loci and elucidate 

the genetic etiology of CAD.  

2. Develop a Statistical Method for Detecting Genetic Risk Factors for Co-morbidity between 

Cardiovascular Disease and Type II Diabetes 

The second aim of this research is to develop a statistical method that can detect genetic 

architecture between co-morbid diseases with consideration of high order gene-gene interaction 

effects. The new proposed method is applied to datasets from Wellcome Trust Case-Control 

Consortium (WTCCC) to investigate the co-morbidity between CAD and type II diabetes (T2D), 

which may shed light on new therapeutic strategies that are effective for both diseases. 
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3. Develop a Statistical Method for Detecting Differential Expressed Genes and Apply the 

Proposed Method to a Cervical Cancer Study  

The third aim of this research is to develop a method that can preprocess and analyze microarray 

data simultaneously with consideration of the variability introduced in data preprocessing step. 

The proposed method uses Positional Dependent Nearest Neighbor (referred to as PDNN) model 

and Empirical Bayesian model and is applied to a gene profiling study of cervical cancer to 

unravel more differentially expressed genes, which may help to explain the different survival rate 

for cervical cancer at different stages.  
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CHAPTER 2 

MA-SNP — A NEW GENOTYPE CALLING METHOD FOR OLIGONUCLEOTIDE 

SNP ARRAYS MODELING THE BATCH EFFECT WITH A NORMAL MIXTURE 

MODEL 

2.1 Abstract 

Genome-wide association studies hold great promise in identifying disease-susceptibility 

variants and understanding the genetic etiology of complex diseases. Microarray technology 

enables the genotyping of millions of single nucleotide polymorphisms. Many factors in 

microarray studies, such as probe selection, sample quality, and experimental procedure and 

batch, have substantial effect on the genotype calling accuracy, which is crucial for downstream 

analyses. Failure to account for the variability of these sources may lead to inaccurate genotype 

calls and false positive and false negative findings. In this study, we develop a SNP-specific 

genotype calling algorithm based on the probe intensity composite representation (PICR) model, 

while using a normal mixture model to account for the variability of batch effect on the genotype 

calls. We demonstrate our method with SNP array data in a few studies, including the HapMap 

project, the coronary heart disease and the UK Blood Service Control studies by the Wellcome 

Trust Case-Control Consortium, and a methylation profiling study. Our single array based 

approach outperforms PICR, which is also a single array based genotype calling algorithm,  and 

is comparable to the best multi-array genotype calling methods. 

Keywords: Affymetrix, genotyping, hierarchical model, hybridization, normal mixture model 
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2.2 Introduction 

Genome-wide association study (GWAS) holds great promises in identifying genetic regions and 

variants that contribute to complex human diseases and understanding of disease etiology. 

Recent  GWASs have identified numerous novel disease-susceptibility loci for common diseases, 

such as coronary artery disease [1],  Crohn’s disease [1, 2], hypertension [1, 3], and Type 2 

diabetes [1, 4]. Microarray technology allows simultaneous genotyping of millions of single 

nucleotide polymorphisms (SNPs) across the entire genome [5, 6]. Affymetrix SNP arrays are 

among the most widely used array platforms in GWAS studies [6]. In general, two alleles are 

observed for each SNP (typically referred to as allele A and allele B). Genotype calling 

algorithms provide an estimate of the SNP genotype (AA, AB or BB assuming no copy number 

variation) and a corresponding confidence measure. Several statistical algorithms have been 

proposed and achieved relatively high accuracy in genotype calling, including RLMM[7], 

BRLMM[8], CRLMM[9, 10], CHIAMO [11], BIRDSEED [12, 13], BEAGLE [14]. Most of the 

calling methods need preprocessing of the array raw intensities and require multiple samples [15, 

16] depending on the between-array normalization procedure used. In addition, little attention 

has been paid to the underlying mechanisms of the hybridization process of microarray which 

may affect the accuracy of genotype calls. Extensive studies have shown that probe intensities of 

oligonucleotide arrays depend on not only the concentration of the target sequence but also the 

binding affinity of the probes[17-20]. For example, RLMM, BRLMM and CRLMM first 

preprocess the observed raw intensities with quantile normalization, and then fit a robust linear 

model to the normalized intensities before the final clustering procedure using the Mahalanobis 

distance. Both BRLMM and CRLMM apply a Bayesian approach to account for the variability 

introduced by low minor allele frequencies. In contrast to RLMM and BRLMM, the CRLMM 
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utilizes the GC content and DNA fragment length information, which has been shown to be 

highly important in microarray hybridization process, to remove artifacts and achieves higher 

accuracy [21]. It highly suggests that genotype calling accuracy can be improved by modeling 

the mechanism of the array underlying hybridization process. 

In a recent work, we studied a single array genotyping approach - the probe intensity 

composite representation (PICR) model[18], herein referred to as the PICR. The PICR makes 

genotype calls by decomposing the observed probe intensities into allelic target concentration 

obtained from specific binding signals, and the SNP-specific background obtained from 

nonspecific binding signals. It utilizes the probe sequence information, which remains the same 

and is independent of samples and laboratories, and models the physico-chemical properties of 

probe binding through probe sequence structure. The PICR yields accurate genotype calls 

consistently across samples, experiments and array platforms, and performs well in comparison 

to existing multi-array based methods, such as BRLMM and CRLMM. The single array 

approach is well suited to small studies. Though the physico-chemical properties of probe 

binding between the probe sequence and target sequence can be largely modeled with the probe 

sequence structure, the complicated hybridization process may also be influenced by certain 

unknown factors. This is indicated by the observation that different SNPs behave slightly 

differently [7, 9]. Because PICR applies a universal genotype calling criteria to all SNPs, it may 

fail to take into account SNP-specific factors that influence the intensities. Moreover, PICR does 

not provide a confidence measure for each genotype calls, which is needed to identify inefficient 

or invalid annotation that may further lead to invalid association findings [10, 22]. Indeed a valid 

confidence measure for the genotype uncertainty is of great importance for further analysis [10, 

22]. During the last two years, numerous studies have reported the effect of batch size and 
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composition on the genotype calling accuracies [10, 23, 24]. Though the random non-biological 

signals can be largely removed by SNP-specific background according to PICR, the batch 

specific factors may affect the hybridization process systematically, and lead to biased results. 

Failure to consider the potential batch effect may lower the genotype call rate and the calling 

accuracies. In addition, when batch is confounded with the study outcome, statistical associations 

may be artifacts of the experimental design/processing [25, 26].   

In this research, we develop a novel SNP-specific genotype calling algorithm and quality 

control criteria for each SNP based on the PICR model (referred to as MA-SNP). The MA-SNP 

has the following advantages: It 1) makes genotype calls based on only individual data; 2) 

applies to small sample studies and is robust across samples; 3) provides an efficient method to 

correct for batch effect; 4) yields standardized target sequence concentration that can directly be 

used for copy number variation studies. The rest of this chapter is arranged as follows. In Section 

2.3, we first give a brief review of PICR and the related statistical problems, and then outline a 

SNP-specific genotype model and parameter training procedure. We further construct a quality 

measure for assigned genotype calls, and develop a model for the potential batch effect 

correction. In Section 2.4, we illustrate our method with microarray data in three studies, 

including the data set from the HapMap project [27], the coronary artery disease (CAD) and the 

UK Blood Service Control (NBS) data sets from the Wellcome Trust Case Control study [1], and 

the data set from methylation profiling study [28]. In the last section of this chapter, we discuss 

and summarize our findings.  
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2.3 The Model  

2.3.1 Decomposing raw intensities into biological signals and noise  

Microarray data consist of biological signals of research interest, noise in the probe intensity 

measurement, and artifacts due to experimental procedure and design of the technology. For 

accurate genotype calls, it is imperative that the observed probe intensities be decomposed into 

biological signals and non-biological components so that the genotype estimation is not severely 

biased by the noise and artifacts. Our former PICR model, which can be applied to Affymetrix 

Mapping 100K Array and Mapping 500K Arrays, estimates the biological signals by studying 

the underlying mechanism of hybridization between the probe sequence and target sequence 

through the calculation of the binding free energy with the generalized positional-dependent-

nearest-neighbor (GPDNN) models[18]. The allelic target concentrations (denoted by NA and NB) 

are then estimated by PICR decomposition of probe intensity through equation (1), 

{ , } { , }

{ , } { , }

                      (1)

{ , } { , }

{ , } { , }

PA TA PA TBS S S S
I b N f N f
PA A B PA

PB TA PB TBS S S S
I b N f N f
PB A B PB

MA TA MA TBS S S S
I b N f N f
MA A B MA

MB TA MB TBS S S S
I b N f N f
MB A B MB













   


    




   



   







                                  

where Is are the observed raw probe intensities of a given SNP; b is the SNP- specific baseline, 

and f is a function of binding free energy of a perfect match probe or mismatch probe (denoted 
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by S
P

 and  S
M

 , respectively) and its corresponding target (denoted by S
T
 ) for a given SNP 

probe set. The parameters representing allelic target sequence concentrations (NA and NB) and 

SNP-specific baseline (b) are estimated through linear regression. Since biological signal is 

contained in the target sequence concentrations only[18], only the allelic target concentrations 

are used for subsequent analysis, including genotyping, association test and copy number 

variation studies.   

The above PICR model not only removes the artifacts of unequal footing of the array 

intensity across the samples as discussed in Wan et al. [18], but also removes the genomic wave 

artifacts[29]. The former is usually taken care of by a between-array normalization procedure, 

while the latter requires special techniques and procedures [29-31]. Unlike other models such as 

CRLMM and BRLMM, PICR makes genotype calling based on allelic target concentrations (i.e. 

NA,NB ) instead of normalized intensities (i.e. I), which makes PICR genotype calling procedure 

robust as the majority of the artifact has been taken care of by the SNP-specific baseline (i.e. b).  

Although PICR provides a single array based genotype calling algorithm, confidence 

scores that quantify the quality of genotype calls across SNPs are not available. While the 

physico-chemical properties of probe sequence binding can be largely modeled by probe 

sequence, the complicated hybridization process may also be affected by other unknown factors, 

which may potentially lead to biased estimation of the allelic concentrations. The estimated 

allelic concentrations may deviate slightly from their expected values (Figure 2.1). We are thus 

motivated to take the SNP specific factors into consideration aiming to improve the genotype 

calling accuracy. Compared to the universal genotype calling criteria to all SNPs across all 

batches and labs by the PICR (i.e. PICR applies 1/3 and 2/3 to NA/NB ratio as genotype calling 
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criteria for all SNPs, and this is equivalent to -0.5 and 0.5 when the genotype is made based on 

(NA-NB)/ (NA+NB) ratio), our new approach also considers the batch effect to further improve the 

genotype calling accuracy and genotype call rate.  

 

Figure 2.1 Plot of MA-ratio of four SNPs illustrates the SNP to SNP variability for genotype 

cluster centers using HapMap data. (AA: red; AB: green; BB: blue. For interpretation of the 

references to color in this and all other figures, the reader is referred to the electronic version of 

this dissertation).  
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2.3.2 The hierarchical model 

The allelic copy numbers (NA, NB) estimated from PICR are standardized by their variance-

covariance matrix, and the standardized allelic copy numbers ( N
A

sd

, N
B

sd

) are expected to be 

normally distributed and independent of each other. We then define the MA-ratio, a quantity 

measuring the signal ratio between the two alleles of the SNP: 

(2)

N N
A B

sd sdR
N N

A B
sd sd






                                                                         

If no factors other than the probe sequence affect the hybridization process, the MA-

ratios are expected to be 1, 0, and -1, for genotypes AA, AB, and BB respectively. This is based 

on the rationale that the expected value for N
A

sd

and N
B

sd

is 0 for the genotype BB and AA, 

respectively. In addition, the expected values of N
A

sd

 and N
B

sd

would be close to each other, 

if not the same, for a heterozygous SNP of the genotype AB. However, given the complex 

hybridization process, other factors besides probe sequence may also likely influence the 

physico-chemical process of the sequence binding.  Therefore, we construct the following 

hierarchical model to estimate the SNP-specific genotype cluster center to allow for SNP-

specific deviation from
' '( ) (1,0, 1)

AA AB BB
    μ , , . 
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2( | , , ) ~ ( , ) (3)
, , , , ,

~ ( , )

R G k m N m
i j i j k i k k i k i k

N

   

m 0 V
i

                                                     

where
,i jR is the MA-ratio for SNP i of sample j;  k=AA, AB or BB, represents the genotype; 

'(m ,m ,m )
i,AA i,AB i,BB

m
i

 represents the SNP-specific deviation from the expected value; 

,
G

i j
 is the true genotype for SNP i of sample j,  and 2

,i k
 is the variance of the MA-ratio for 

SNP i with genotype k.  

We take the HapMap [27] genotype annotation as the gold standard for the parameter 

training, as the genotype calls from the HapMap project are based on consistent results 

confirmed by various technologies. Due to the low minor allele frequencies, the availability of all 

3 types AA, AB and BB for a given SNP in the HapMap project varies largely from SNP to SNP. 

To obtain accurate parameter estimates, we follow the parameter training procedure proposed in 

the CRLMM method, and employ an empirical Bayes approach [9, 10, 32]. An inverse Gamma 

prior is assumed for the SNP-specific variation. 

12 2 (4)
, ,2

0
0, 0,

i k d k
d s

k k
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The SNP-specific shifts and variances have the following closed forms in equation (5).   

ˆ ( )
, , , ,

,

2 2ˆ ˆ( ) ( 1) (5)
, , , , ,

,

m R N
i k i j i k i k

j J
i k

R m N
i k i j i k i k i k

j J
i k



 

 


   


where 
,

J
i k

is the set of samples whose genotype for SNP i is k ; 
,

N
i k

 is the number of samples 

in the set 
,

J
i k

. 

As some genotypes for a given SNP may have very few observations because of low 

minor allele frequency, we borrow strength across SNPs as in the CRLMM [10], and compute 

the shrinkage estimates of ˆ
,

m
i k

 and 2ˆ
,i k

   

ˆ(

2 2ˆ( 1)
, , 0, 0,2 (6)

, 1
, 0,

N d s
i k i k k k

i k N d
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where V is estimated with the sample variance-covariance matrix of 

'(m ,m ,m )
i,AA i,AB i,BB

m
i

 ,  
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'(N ,N ,N )
i,AA i,AB i,BB

N
i

 and  

2 0 0
0,

20 0
0,

20 0
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s
AA

s
AB

s
BB

 
 
 
  
 
 
  

  

The hyperparameters 
0,

d
k

 and 2
0,

s
k

are estimated following the algorithm proposed by Smyth 

[32].  The SNP-specific cluster center Mi for genotyping is defined for each SNP i by equation (7)  

' '(m ,m ,m ) (1,0,-1) (7)
i,AA i,AB i,BB

 M
i

               

The parameters for the binding free energy in equation (1) remain the same as in the 

PICR, in which they were trained with a single HapMap array[18]. The SNP-specific cluster 

center Mi and variances are trained based on 180 HapMap samples, consisting of 60 CEU, 60 

YRI, and 60 CHB+JPI samples. The parameters remain the same for the testing data.  

2.3.3 SNP-specific genotype calling criteria and quality score for genotype call 

The genotype of a given SNP would be assigned k, if k minimizes | ( | ) |
, ,

G k
i j i j
   for k=AA, 

k=AB, or k=BB, where 
,i j


 
represents the deviation of 

,
R

i j
from the cluster center of a given 

genotype and is defined in equation (8) 

( | ) ( | ) (8)
, , , , ,

G k R M G k
i j i j i j i k i j
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For a given genotype call, a large deviation suggests uncertainty of the estimate, and 

hence the quality score (QS) of SNP i in sample j with assigned genotype k is given by  

|
, ,

( | )
, , var( | )

, ,

( | ) ( - | )
, , , , ,

[ ( - | , )] 0 (9)
, , , ,

,

var( | ) var([ ( - | , )]) [var( - | , )]
, , , , , , , , , ,

2
,

,

G k
i j i j

QS G k
i j i j G k

i j i j

E G k E R M G k
i j i j i j i k i j

E E R M G k M
M i j i k i j i g

i g

G k E R M G k M E R M G k M
i j i j i j i k i j i g i j i k i j i g

i k

N
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 2
,i k

k



 

where k is the assigned genotype call. Assuming no batch effect, the quality score is symmetric 

and centered about zero, and a large deviation from zero indicates poor quality of genotype calls. 

The QS criteria could be set depending on the needs of further analysis, and based on our 

training data we recommend that the SNPs with | | 3.56
,

QS
i j

  should be set aside. 

 

2.3.4 Batch effect 

Assuming no batch effect, the quality score is symmetric about zero, and a large systematic 

deviation from zero for a given SNP may indicate batch effect. The cluster center may shift due 

to the batch effect as shown in Figure 2.2, which results in low call rate or low accuracy in SNP 

genotyping. We propose a mixture normal model to update the cluster centers and further correct 

the potential batch effect.  We assume that the MA-ratios for a SNP in a given batch, as defined 
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below, follow a mixture normal distribution, and model them using a normal prior on the mean 

and an inverse gamma prior on the variance, as suggested [33].  

 

2| ~ ( , ), 1
, , , , ,

{ , , } { , , }

2
, ,2| ~ ( , )             (10)

, , , , ,

2
, ,2 ~ ( , )

, , 2 2

R batch p N M p
i j k i k b i k b k

k AA AB BB k AA AB BB

i k b
M N M

i k b i k b i k
i

i k i k
inverseGamma

i k b








 


 
 

 

 

where 
, ,

M
i k b

 and 2
, ,i k b

  are the batch-specific cluster center and variance for SNPi with 

genotype k, respectively. Specifically, we assign 3
,i k

  and 0.1
i

  for the procedure. 

The posterior mean and variance are given by equation (11)[33].  

, ,ˆ
, ,

2 2 2( ) ( ) ( )
1, , , , ,2ˆ (11)
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k i k i i k
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where n is the total number of samples; z
jk

is the conditional probability that SNP i of sample j 

belongs to genotype k; 
1

nn z
jk jk

  
and /

1, ,
nR z R n
ji k jk i j k

  
.
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With updated SNP-specific genotype cluster center, the genotyping and quality score 

calculation follow the same strategy as mentioned in section 2.3.3.  

 

Figure 2.2 Plot of MA-ratio in HapMap samples and Methylation profiling samples of one 

specific SNP. Red dots: AA genotype HapMap samples; Green dots: AB genotype HapMap 

samples; Blue dots: BB genotype HapMap samples; Black: samples in Methylation Profiling 

Study data. Black dashed line: SNP-specific cluster center for the training data; Purple dashed 

line: SNP-specific cluster center for the Methylation Profiling Study data. The shift of the cluster 
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center of the MA-ratio of each genotype between the two study data sets, which is the largest 

among the samples of BB genotype, indicates the between study batch effect. 

2.4 Data 

Data set I 

The HapMap data[27]: This data set contains 270 samples of Affymetrix Mapping 250K Nsp 

Array and Mapping 250K Sty Array. It was downloaded from ftp.ncbi.nih.gov. The annotations 

of the corresponding Mapping 500K Array Set were downloaded from Affymetrix Inc website 

http://www.affymetrix.com/support/support_result.affx. The genotype annotations of the 

HapMap Project 2009-02_phaseII+III were downloaded from ftp.ncbi.nih.gov. 

Data set II 

Wellcome Trust Case Control Study data[1]: The Wellcome Trust Case Control Study data 

sets were acquired from the Wellcome Trust Case-Control Consortium.  We use the coronary 

artery disease (CAD) and the UK Blood Service Control (NBS) from the WTCCC study.  The 

CAD study data set we obtained consists of about 1991 individuals, and the NBS has 1500 

control individuals. The two chosen data sets were genotyped on the Affymetrix GeneChip 

Human Mapping 500K Array Set by the WTCCC. 

Data set III 

Methylation profiling by Affymetrix SNP array[28]:  The data set was downloaded from 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20123. The study includes 30 

individuals, and the samples consist of DNA from blood, tumor, and normal tissues of the same 

ftp://ftp.ncbi.nih.gov/
http://www.affymetrix.com/support/support_result.affx
ftp://ftp.ncbi.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20123
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individual. The samples with and without Hpa II digestion were annotated using Affymetrix 

500K SNP arrays. 

2.5 Result 

2.5.1 SNP quality control and genotype calling accuracy 

Among the 270 HapMap samples, we randomly select 60 samples from each of CEU, YRI, 

CHB+JPI to serve as the training data, and the remaining 90 samples serve as testing data. We 

use the HapMap samples for testing because the gold-standard genotype for most of the SNPs 

allows for the assessment of the accuracy of our genotype calling method. Table 2.1 and Figure 

2.3 display the summary statistics of the genotype calling accuracy on the NSP and STY arrays. 

With 100% call rate, the genotype calling accuracies of the MA-SNP on the 90 testing samples 

of the NSP array and STY array are 99.34% (SD=0.0081) and 99.30% (SD=0.0130), 

respectively. We further filter out the SNPs with the quality score |QS|> 3.56. With an average 

call rate of 99% (SD=0.0144 for NSP array, SD=0.0114 for STY array) the genotyping 

accuracies for 90 testing samples of the NSP array and STY array are 99.61% (SD=0.0075) and 

99.74% (SD=0.0029), respectively.  In addition, we compare the MA-SNP with PICR and other 

genotype calling methods, in particular with the CRLMM method, which has been reported to 

perform better than the RLMM and BRLMM[21]. We compare the MA-SNP with the CRLMM 

under two scenarios, and to make a fair comparison between CRLMM and our single array-

based MA-SNP, under scenario one, we split the 90 testing arrays into 30 groups with 3 arrays 

per group. Under scenario two, we use all 90 testing arrays as input for CRLMM. As reported in 

Table 2.1, MA-SNP outperforms PICR and CRLMM with 3 arrays per run by 1%. With 100% 

call rate, the accuracy of MA-SNP is slightly lower than CRLMM with all 90 testing arrays. 
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However, for the SNPs that pass our quality control criteria, the accuracy of MA-SNP is similar 

to CRLMM with 90 arrays per run.  

Table 2.1. Comparison of MA-SNP with PICR and CRLMM in genotype-calling accuracy 

against the HapMap gold-standard annotation 

a: Standard deviation 

b: The absolute value of quality score is less than 3.56 

c: 100% call rate 

d: CRLMM with 3 arrays as input per run 

e: CRLMM with 90 arrays as input 
 

 

Samples 
Genotype-

calling method 
Mean SD

a
 5th 50th 95th 

90 Nsp 

arrays 

MA-SNP
b
 0.9961 0.0075 0.9938 0.9977 0.9986 

MA-SNP
c
 0.9934 0.0130 0.9904 0.9957 0.9968 

PICR 0.9856 0.0133 0.9757 0.9885 0.9937 

CRLMM
d
 0.9834 0.0052 0.9730 0.9839 0.9898 

CRLMM
e
 0.9980 0.0013 0.9961 0.9984 0.9990 

90 Sty 

arrays 

MA-SNP
b
 0.9974 0.0029 0.9921 0.9984 0.9991 

MA-SNP
c
 0.9952 0.0046 0.9869 0.9968 0.9975 

PICR 0.9902 0.0062 0.9783 0.9919 0.9955 

CRLMM
d
 0.9869 0.0060 0.9781 0.9885 0.9928 

CRLMM
e
 0.9982 0.0021 0.9955 0.9988 0.9991 
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Figure 2.3: Boxplot of  genotype-calling accuracy. PICRb: MA-SNP method with |QS|<3.56; 

PICRc: MA-SNP method with 100% call rate; PICR: PICR method; CRLMMd: CRLMM with 3 

arrays as input per run; CRLMMe: CRLMM with 90 arrays as input. 



39 
 

To assess the performance of the quality measure introduced in MA-SNP, we randomly 

select a testing array and plot the distribution of quality score, the accuracy against call rate, and 

the call rate against quality score, as shown in Figure 2.4. Table 2.2 displays summary statistics 

of the accuracy and call rate under different quality score threshold for the 90 testing arrays. We 

have observed that there is a tradeoff between call rate and accuracy. On one hand the more 

stringent quality score threshold, the higher the genotyping accuracy one can achieve. On the 

other hand, the more stringent quality score threshold, the lower the call rate one can achieve. 

Based on this testing study, we found the suggested quality control criterion |QS| > 3.56 achieves 

relatively high accuracy and low no-call rate.  

 
a: Distribution of quality score. 

 

Figure 2.4 Plots of the distribution of quality score, the accuracy against call rate and the call 

rate against quality score for a randomly selected array 
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Figure 2.4 cont’d 

 

 

 
b: The accuracy against call rate. 
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Figure 2.4 cont’d 

 

 
c: The call rate against quality score. 
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Table 2.2 Quality score threshold criteria and genotype calling accuracy of the HapMap samples 

a: Standard deviation 

 

 

Samples 
|QS| 

Threshold 

Mean Call 

Rate (SD
a
) 

Mean 

Accuracy 

(SD
a
) 

5
th

 50
th

 95
th

 

90 Nsp 

arrays 

1.64 
90.28% 

(0.0406) 

0.9975 

(0.0045) 
0.9961 0.9984 0.9990 

2.33 
96.17% 

(0.0241) 

0.9970 

(0.0055) 
0.9953 0.9982 0.9989 

2.77 
97.56% 

(0.0191) 

0.9967 

(0.0063) 
0.9947 0.9980 0.9988 

3.30 
98.38% 

(0.0159) 

0.9963 

(0.0070) 
0.9942 0.9978 0.9987 

3.56 
98.71% 

(0.0144) 

0.9961 

(0.0075) 
0.9938 0.9977 0.9986 

5.26 
99.39% 

(0.0103) 

0.9952 

(0.0093) 
0.9926 0.9972 0.9983 

7.00 
99.66% 

(0.0077) 

0.9946 

(0.0106) 
0.9919 0.9968 0.9980 

14.00 
99.88% 

(0.0043) 

0.9934 

(0.0118) 
0.9908 0.9960 0.9971 

90 Sty 

arrays 

1.64 
89.48% 

(0.0516) 

0.9984 

(0.0016) 
0.9956 0.9989 0.9992 

2.33 
95.82% 

(0.0294) 

0.9981 

(0.0020) 
0.9944 0.9987 0.9991 

2.77 
97.37% 

(0.0208) 

0.9979 

(0.0023) 
0.9935 0.9986 0.9991 

3.30 
98.31% 

(0.0142) 

0.9976 

(0.0026) 
0.9926 0.9985 0.9991 

3.56 
98.68% 

(0.0114) 

0.9974 

(0.0029) 
0.9921 0.9984 0.9991 

5.26 
99.46% 

(0.0051) 

0.9968 

(0.0037) 
0.9890 0.9981 0.9987 

7.00 
99.74% 

(0.0027) 

0.9964 

(0.0042) 
0.9885 0.9978 0.9985 

14.00 
99.92% 

(0.0010) 

0.9956 

(0.0045) 
0.9873 0.9972 0.9979 
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2.5.2 Robustness of the methods and batch effect 

We apply MA-SNP genotype calling method to the samples in the CAD and NBS data in the 

WTCCC study and samples in the methylation profiling study. We notice that our clustering 

decision rules are robust for most of the SNPs across laboratories even without batch effect 

correction (Figure 2.5). This is not surprising because the new genotype calling method and 

quality scores are constructed based on allelic target concentrations, and the batch effect is 

mostly captured by the SNP-specific background. However, based on the density distribution of 

MA-ratios, we have observed a slight shift for each data set from the HapMap training data. The 

batch effect correction procedure is carried out independently for each of the CAD, NBS, and the 

Methylation Profiling Study data sets. With quality score threshold being 3.56, the call rate with / 

without batch effect correction and concordance rates are shown in Table 2.3. The concordance 

rates are above 99.5% for all the study data sets, which suggests that our method is robust across 

labs, and can be applied to the study with relatively small sample size. In addition, we notice that 

with batch effect correction the call rates increased by approximately 2.4% with an average of 

99.2%. The distributions of quality score for 2 randomly selected arrays are shown in Figure 2.6. 

As expected the distribution of quality score without batch effect correction usually has a heavier 

tail and the call rate is lower than those with batch effect correction. This is because a small shift 

from the cluster center of the training data usually does not influence the genotype calling but 

affects the quality score. The distribution of quality score is no longer centered at zero if batch 

effect exists, which leads to a large quality score and a large portion of missing genotype call 

given a pre-specified quality threshold. With batch effect correction, the quality score is centered 

at zero and the confidence of genotype call increases, which leads to a higher call rate. For 

example, for SNP-A-1785441 shown in Figure 2.2, the call rate increases from 92.22% without 
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batch effect correction to 97.22% with batch effect correction, mainly because the BB type SNPs 

can be called with the updated cluster center.  

 
a: Genotyping clusters. 

Figure 2.5 Robustness of the MA-ratio clustering across samples in different studies with 2 

randomly selected SNPs. Black: the HapMap training data; Red: the HapMap testing data; Blue: 

200 randomly selected samples of CAD data; Green: 200 randomly selected samples of NBS 

data; Purple: methylation profiling data.  
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Figure 2.5 cont’d 

 

b: Density of MA-ratios. 
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Table 2.3 Comparison between call rate with batch effect correction and without correction 

a: Without batch effect correction, the percentage of SNPs with |QS|<3.56 

b: With batch effect correction, the percentage of SNPs with |QS|<3.56 

c: Standard deviation 

d: Coronary artery disease from Wellcome Trust Case Control Study data set 

e: UK Blood Service control from Wellcome Trust Case Control Study data set 

f: From data set III 

 

 

 

 

 

 

 

Array Platform Samples 
Call rate

a  

(SD
c
) 

Call rate
b
 

(SD
c
) 

Concordance 

rate(SD
c
) 

Affymetrix 

Mapping 250K Nsp 

Array 

CAD
d
 

98.1% 

(0.019) 

99.3% 

(0.015) 

99.7% 

(0.001) 

NBS
e
 

98.3% 

(0.012) 

99.4% 

(0.008) 

99.8% 

(0.001) 

Cancer
f
 

95.9% 

(0.032) 

99.0% 

(0.009) 

99.6% 

(0.002) 

Affymetrix 

Mapping 250K Sty 

Array 

CAD
d
 

96.6% 

(0.029) 

99.2% 

(0.016) 

99.5% 

(0.003) 

NBS
e
 

96.4% 

(0.023) 

99.3% 

(0.006) 

99.6% 

(0.003) 

Cancer
f
 

95.4%  

(0.035) 

98.9%  

(0.010) 

99.7%  

(0.002) 
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Figure 2.6 The distribution of quality score of 2 randomly selected samples with batch effect 

correction (red curve) and without batch effect correction (black curve).  

To further demonstrate the MA-SNP genotyping method, we scanned the whole genome 

of chromosome 9 with the CAD and NBS data from the Wellcome Trust Case-Control Study. All 
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the SNPs that have been identified by a single locus association analysis with p-value<10
-7 

are 

located at 9p21.3. Figure 2.7 displays the genotyping clusters for a randomly selected two of 

these seven SNPs. All SNPs (rs1333042, rs1333048, rs1333049, rs2891168, rs4977574, and 

rs6475606) except for one rs9632884 have been reported with strong association by studies 

using various technologies [34-42], which indicates that our method does not generate many 

false positive findings. 

 

 

Figure 2.7 MA-ratio clustering of the 2 SNPs on chromosome 9 that showed strong association 

with the CAD at the significance level 10
-7

. Blue: MA-ratios of CAD data; Black: MA-ratios of 

NBS data. 
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Figure 2.7 cont’d 

 

 

2.6 Discussion 

SNP genotype calling is susceptible to artifacts of the technology and experimental conditions 

that contribute to batch effects. The removal of batch effects usually requires additional 

computational effort. Our previous single array PICR method provides a universal criterion for 

genotyping SNPs. By modeling the array hybridization process, PICR removes simultaneously a 

number of artifacts, including the array unequal footing[18] and the genomic wave[29], and 

achieves consistent high accuracy across arrays and across array platforms. Although microarray 

hybridization can be largely modeled with the probe sequence structure, as evidenced by the 

PICR model[18], other factors may also affect the hybridization process, and may, if not 

properly adjusted for, lead to systematic bias of the estimated allelic copy number. Furthermore, 

the PICR neither provides a quality measure of the genotype calls, nor addresses the batch effect. 

In the current study, we adopted a normal mixture model to incorporate the SNP-specific 
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features, and developed a new SNP genotype calling method, the MA-SNP. The MA-SNP 1) 

estimates the allelic copy numbers of each SNP by the PICR model, 2) calculates the MA-ratio 

so that SNPs of different genotypes potentially cluster around different values of the MA-ratio, 

and 3) models the density of the MA-ratio using a normal mixture model allowing for SNP-

specific features. It not only largely improves the genotype calling accuracy, but also provides 

quality measure for the genotyping and assessment of the batch effect through the mixture model.  

Across-array normalization has been widely used for preprocessing the raw intensities to 

remove the artifacts that may confound the biological signals. However, such normalization 

procedure may introduce variability from unrelated individuals, which may potentially pose 

problems to downstream or subsequent analysis. Our proposed model depends on the allelic copy 

number estimated from PICR, a single array approach free of across-array normalization. 

Consequently, MA-SNP inherits the advantages of single array approach, and generates 

genotype calls fully determined by the individual’s data, which makes it possible to conduct the 

genotype call for very small sample studies, even with one sample.  

Although normal mixture model has been used previously in SNP genotype calling 

algorithm, such as in the CRLMM [9, 10], our MA-SNP method differs largely from the 

CRLMM. As discussed above, the CRLMM is a multiple array genotype calling method, while 

our MA-SNP is a single array method and thus has its unique features and properties in genotype 

calling. It provides quality measure for each SNP in a single sample, which could be used to set 

aside the problematic SNPs and improve the accuracy of downstream analysis. It also corrects 

for batch effect for multiple samples, which is highly recommended but difficult to implement 

with a general approach that fits all platforms. These features of MA-SNP make the approach 

applicable to both small sample studies and cross-laboratory large sample studies. The R-
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package is available upon request.  It can run on a laptop computer with 3GB memory and only 

takes approximately 50s to genotype each array. 

Our model can be further improved in several ways. First, we have noticed that copy 

number variations may have an effect on genotyping accuracy for heterozygous SNP while 

homozygous SNPs are not affected. This is because the MA-ratio for homozygous SNP with 

copy number variation remains the same which indicates that the genotype calling procedure 

won’t be affected. On the other hand, for heterozygous SNPs the MA-ratio increases with the 

ratio of allelic copy number if the ratio of allelic copy number is positive while MA-ratio 

decreases with the ratio of allelic copy number if the ratio of allelic copy number is negative. 

Second, the batch effect correction procedure can be extended to consider the possible effect of 

copy number variation. For example, rather than using Gaussian mixture model with 3 

components we may employ a non-parametric method, such as kernel density estimation, to 

estimate the probability density function of the MA-ratio to account for new clusters for copy 

number variations at heterozygous SNPs. Third, our current model treats the batch effect as a 

fixed effect, and a random effect model that borrows strength across batchs might be useful 

especially for the SNPs with low minor allele frequencies and small batches/samples coming 

from different labs[10]. We will further explore methods in this direction. 

In conclusion, we have presented a powerful tool to provide relatively accurate genotype 

call for a single array. It corrects for the batch effect and improves the call rate and genotyping 

accuracy. Our results provide strong evidence that modeling the underlying mechanism of array 

sequence hybridization can remove non-biological signals even without across-array 

normalization. The systematic non-biological signals can be modeled through the training data, 
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and it remains the same regardless of the sources of the samples, either from the same lab or 

from different labs.  

  



53 
 

 

 

 

 

 

 

 

 

REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

REFERENCES 

1. Wellcome Trust Case Control Consortium, Genome-wide association study of 14,000 

cases of seven common diseases and 3,000 shared controls. Nature, 2007. 447(7145): p. 

661-78. 

2. Barrett, J.C., et al., Genome-wide association defines more than 30 distinct susceptibility 

loci for Crohn's disease. Nature genetics, 2008. 40(8): p. 955-62. 

3. Adeyemo, A., et al., A genome-wide association study of hypertension and blood 

pressure in African Americans. PLoS genetics, 2009. 5(7): p. e1000564. 

4. Frayling, T.M., Genome-wide association studies provide new insights into type 2 

diabetes aetiology. Nature reviews. Genetics, 2007. 8(9): p. 657-62. 

5. Dong, S., et al., Flexible use of high-density oligonucleotide arrays for single-nucleotide 

polymorphism discovery and validation. Genome research, 2001. 11(8): p. 1418-24. 

6. Kennedy, G.C., et al., Large-scale genotyping of complex DNA. Nature biotechnology, 

2003. 21(10): p. 1233-7. 

7. Rabbee, N. and T.P. Speed, A genotype calling algorithm for affymetrix SNP arrays. 

Bioinformatics, 2006. 22(1): p. 7-12. 

8. Affymetrix, BRLMM: an improved genotype calling method for the GeneChip Human 

Mapping 500K Array Set, in Technical Report, White Paper. 2006, Affymetrix, Inc: 

Santa Clara, CA. 

9. Carvalho, B., et al., Exploration, normalization, and genotype calls of high-density 

oligonucleotide SNP array data. Biostatistics, 2007. 8(2): p. 485-99. 

10. Carvalho, B.S., T.A. Louis, and R.A. Irizarry, Quantifying uncertainty in genotype calls. 

Bioinformatics, 2010. 26(2): p. 242-9. 

11. Marchini, J., et al., A new multipoint method for genome-wide association studies by 

imputation of genotypes. Nature Genetics, 2007. 39(7): p. 906-913. 



55 
 

12. Affymetrix, Birdseed Algorithm – Affymetrix Genotyping Console Software 2.0. 2007, 

Affymetrix, Inc: Santa Clara, CA. 

13. Korn, J.M., et al., Integrated genotype calling and association analysis of SNPs, common 

copy number polymorphisms and rare CNVs. Nature genetics, 2008. 40(10): p. 1253-60. 

14. Browning, B.L. and S.R. Browning, A unified approach to genotype imputation and 

haplotype-phase inference for large data sets of trios and unrelated individuals. 

American journal of human genetics, 2009. 84(2): p. 210-23. 

15. Li, C. and W.H. Wong, Model-based analysis of oligonucleotide arrays: expression index 

computation and outlier detection. Proceedings of the National Academy of Sciences of 

the United States of America, 2001. 98(1): p. 31-6. 

16. Bolstad, B.M., et al., A comparison of normalization methods for high density 

oligonucleotide array data based on variance and bias. Bioinformatics, 2003. 19(2): p. 

185-93. 

17. Held, G.A., G. Grinstein, and Y. Tu, Modeling of DNA microarray data by using physical 

properties of hybridization. Proceedings of the National Academy of Sciences of the 

United States of America, 2003. 100(13): p. 7575-80. 

18. Wan, L., et al., Hybridization modeling of oligonucleotide SNP arrays for accurate DNA 

copy number estimation. Nucleic acids research, 2009. 37(17): p. e117. 

19. Zhang, L., M.F. Miles, and K.D. Aldape, A model of molecular interactions on short 

oligonucleotide microarrays. Nature biotechnology, 2003. 21(7): p. 818-21. 

20. Zhang, L., et al., Free energy of DNA duplex formation on short oligonucleotide 

microarrays. Nucleic acids research, 2007. 35(3): p. e18. 

21. Lin, S., et al., Validation and extension of an empirical Bayes method for SNP calling on 

Affymetrix microarrays. Genome biology, 2008. 9(4): p. R63. 

22. Miclaus, K., et al., Variability in GWAS analysis: the impact of genotype calling 

algorithm inconsistencies. The pharmacogenomics journal, 2010. 10(4): p. 324-35. 



56 
 

23. Hong, H., et al., Assessing batch effects of genotype calling algorithm BRLMM for the 

Affymetrix GeneChip Human Mapping 500 K array set using 270 HapMap samples. 

BMC bioinformatics, 2008. 9 Suppl 9: p. S17. 

24. Miclaus, K., et al., Batch effects in the BRLMM genotype calling algorithm influence 

GWAS results for the Affymetrix 500K array. The pharmacogenomics journal, 2010. 

10(4): p. 336-46. 

25. Johnson, W.E., C. Li, and A. Rabinovic, Adjusting batch effects in microarray expression 

data using empirical Bayes methods. Biostatistics, 2007. 8(1): p. 118-27. 

26. Leek, J.T., et al., Tackling the widespread and critical impact of batch effects in high-

throughput data. Nature reviews. Genetics, 2010. 11(10): p. 733-9. 

27. The International HapMap Consortium, The International HapMap Project. Nature, 2003. 

426(6968): p. 789-96. 

28. Yang, H.H., et al., Influence of genetic background and tissue types on global DNA 

methylation patterns. PloS one, 2010. 5(2): p. e9355. 

29. Wen, Y., M. Li, and W.J. Fu, Catching the genomic wave in oligonucleotide SNP arrays 

by modeling sequence binding. Bioinformatics (submitted), 2011. 

30. Diskin, S.J., et al., Adjustment of genomic waves in signal intensities from whole-genome 

SNP genotyping platforms. Nucleic acids research, 2008. 36(19): p. e126. 

31. Marioni, J.C., et al., Breaking the waves: improved detection of copy number variation 

from microarray-based comparative genomic hybridization. Genome biology, 2007. 

8(10): p. R228. 

32. Smyth, G.K., Linear models and empirical bayes methods for assessing differential 

expression in microarray experiments. Statistical applications in genetics and molecular 

biology, 2004. 3: p. Article3. 

33. Fraley, C. and A.E. Raftery, Bayesian regularization for normal mixture estimation and 

model-based clustering, in Technical Report. 2005, Department of Statistics, University 

of Washington. 



57 
 

34. Cluett, C., et al., The 9p21 myocardial infarction risk allele increases risk of peripheral 

artery disease in older people. Circulation. Cardiovascular genetics, 2009. 2(4): p. 347-

53. 

35. Ellis, K.L., et al., A common variant at chromosome 9P21.3 is associated with age of 

onset of coronary disease but not subsequent mortality. Circulation. Cardiovascular 

genetics, 2010. 3(3): p. 286-93. 

36. Lanktree, M., J. Oh, and R.A. Hegele, Genetic testing for atherosclerosis risk: 

inevitability or pipe dream? The Canadian journal of cardiology, 2008. 24(11): p. 851-4. 

37. Preuss, M., et al., Design of the Coronary ARtery DIsease Genome-Wide Replication And 

Meta-Analysis (CARDIoGRAM) Study: A Genome-wide association meta-analysis 

involving more than 22 000 cases and 60 000 controls. Circulation. Cardiovascular 

genetics, 2010. 3(5): p. 475-83. 

38. Qi, L., et al., Genetic risk score and risk of myocardial infarction in Hispanics. 

Circulation, 2011. 123(4): p. 374-80. 

39. Saleheen, D., et al., Association of the 9p21.3 locus with risk of first-ever myocardial 

infarction in Pakistanis: case-control study in South Asia and updated meta-analysis of 

Europeans. Arteriosclerosis, thrombosis, and vascular biology, 2010. 30(7): p. 1467-73. 

40. Schaefer, A.S., et al., Identification of a shared genetic susceptibility locus for coronary 

heart disease and periodontitis. PLoS genetics, 2009. 5(2): p. e1000378. 

41. Silander, K., et al., Worldwide patterns of haplotype diversity at 9p21.3, a locus 

associated with type 2 diabetes and coronary heart disease. Genome medicine, 2009. 

1(5): p. 51. 

42. Yamada, Y., S. Ichihara, and T. Nishida, Molecular genetics of myocardial infarction. 

Genomic medicine, 2008. 2(1-2): p. 7-22. 

 

 

  



58 
 

CHAPTER 3 

A NEW MULTIVARIATE MANN-WHITNEY APPROACH TO STUDY THE 

COMORBIDITY BETWEEN CORONARY HEART DISEASE AND TYPE II DIABETES 

3.1 Abstract 

Co-morbidity among complex human diseases is well documented and converging evidences 

suggest that the interplay among multiple genetic variants contributes to disease co-morbidity.  

The discovery of common genetic variants and their interactions likely shed light on etiology, as 

well as promote effective prevention and treatment for co-morbidity conditions. Despite its 

potential importance, co-morbidity of complex diseases has been under-studied and its associated 

analytic tools have been much less developed. A common practice to investigate co-morbidity is 

through a composite phenotype method (COM). However, the method does not take into account 

individuals with only one of the co-morbid conditions and thus could be subject to decreased 

power, especially when co-morbidity rate is low. Moreover, COM only identifies common 

genetic variants predisposing to co-morbidity, but not those unique to each disease outcome. To 

address these issues, we propose a multivariate Mann-Whitney (MMW) approach to unravel 

common genetic variants and interactions contributing to disease co-morbidity, as well as those 

unique to each co-morbid condition. Through simulations, we find MMW outperforms COM in a 

variety of underlying disease and correlation models between two co-morbid conditions. Finally, 

we apply our method to datasets from the Wellcome Trust Case Control Consortium to 

investigate the co-morbidity between coronary artery disease (CAD) and type II diabetes (T2D). 

The co-morbidity analysis using MMW identified 3-locus and 5-locus models for CAD and T2D 

respectively, but no loci contributing to both diseases have been found from the datasets.  

Key Words: Co-morbidity, Forward selection, High-order interaction, CAD, T2D 
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3.2 Introduction 

The concept of “co-morbidity” was first introduced in 1970s by Feinstein. It stands for the 

scenario where “a distinct clinical entity” occurred together with a specific disease under study 

[1-3]. Recently, multi-comorbidity has been introduced, referring to the scenario where multiple 

medical conditions occur in one person without an emphasis on the presence of a specific disease 

[4, 5]. Both co-morbidity and multi-comorbidity are used in the domains of clinical care, 

epidemiological studies, and health service policies [1-7]. In the rest of my dissertation, we use 

comorbidity to refer to both co-morbidity and multi-comorbidity.  

The relation between co-morbidity conditions is complex and presents in various forms.  

To describe the underlying mechanisms leading to disease co-morbidity, Neale and Kendler have 

proposed thirteen theoretical co-morbidity models [8, 9]. The simplest scenario is that the co-

morbidity conditions are independent of each other and occur together simply by chance or due 

to a third distinct disease[8]. Co-morbidity can also be the cause or consequence of one of the co-

morbid conditions with possible reciprocal causality [3, 8, 10]. Another common scenario is that 

co-morbidity conditions share the same or correlated risk factors, which makes the co-morbid 

conditions more likely occur together [8, 11, 12]. In certain circumstance, co-morbidity may also 

reflect the fact that the co-morbid conditions are alternative manifestations of a single liability[8].  

The radical breakthrough in biotechnologies has made it possible to rapidly and 

accurately genotype millions of single nucleotide polymorphism (SNP) with affordable cost. 

Benefiting from these high throughout technologies and the HapMap project[13], significant 

progress has been made in genome-wide association studies to discover novel genetic variants 

that contribute to complex human diseases[14-25]. With the increase of genetic findings, 
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cumulative evidence revealed that the same genetic variants could be associated with multiple 

related disease outcomes. For example, recent studies have provided evidence that neuronal 

nicotinic acetylcholine receptors (nAChRs) subunit genes may play an important role in the 

common pathophysiological pathway of nicotine dependence (ND) and alcohol dependence (AD) 

[26-28]. Similarly, clinical and epidemiological studies suggested a high-degree of co-morbidity 

between bipolar disorder and migraine, which could be partially explained by a shared genetic 

component [29-33]. In addition, co-morbidity between coronary heart disease and type II 

diabetes is well documented in literature[34-36], and it may reflect the fact that one of the co-

morbid conditions is the cause or consequence of the other [3, 8, 10]. It is also possible that the 

two diseases share the same or correlated risk factors, such as obesity, physical inactivity, and 

insulin resistance, making the co-morbid conditions more likely to occur simultaneously [8, 11, 

12, 37-44]. Despite these findings, the pathophysiology and etiology of disease co-morbidity 

remain largely unknown. [32]. Identification of genetic variants and environmental determinants 

common to disease co-morbidity, as well as unique to each condition, is of great importance, as 

it helps elucidate the causes of co-morbidity and promote new diagnostic and therapeutic 

strategies for both diseases.    

A common practice to study co-morbidity is through a composite phenotype (COM) 

method, in which the “cases” are defined as individuals with all co-morbid conditions while the 

“controls” are defined as individuals with none of the co-morbid conditions [12, 19, 32]. Though 

easy to implement, such method does not take into account individuals with only one of the co-

morbid conditions. As a consequence, it may lack the power to catch pathophysiological 

pathway underlying the disease due to reduction in sample size. In addition, COM is designed to 

identify common genetic variants leading to co-morbidity, but not unique genetic variants for 
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each disease outcome. To address these limitations, we propose a multivariate Mann-Whitney 

(MMW) approach for co-morbidity analysis. The proposed method utilizes the entire sample, 

and is capable of capturing shared genetic variants and their possible interactions, contributing to 

disease co-morbidity, as well as unique genetic variants for each disease outcome. In the 

following sections, we first lay out the details of the MMW approach, and then evaluate the 

performance of the proposed method with simulations. We further apply the new method to 

datasets obtained from Wellcome Trust Case Control Consortium (WTCCC), where we focus on 

the co-occurrence of coronary artery disease (CAD) and type II diabetes (T2D). In the last 

section, we summarize and discuss our findings.  

3.3 The Model 

Consider a co-morbidity study of N unrelated individuals and G genetic markers, where we are 

interested in identifying shared and unique genetic susceptibility markers contributing to co-

morbid conditions.  Without loss of generality, we illustrate the MMW method using two co-

morbid conditions. Let Y  be the response measurement and 1 2( , , , )GZ Z Z Z   be the 

measurement of G makers, where Y =0 for controls and Y =k (k=1,2) for cases with k co-morbid 

condition.  The MMW method first applies a Mann-Whitney-based forward selection algorithm 

[45] to search for genetic variants predisposing to each of the two conditions. The algorithm 

starts with a null model without any genetic markers, and then gradually selects disease-

susceptibility markers into the model, considering its interaction with other selected loci. In step 

one, it searches all G genetic markers for a marker most strongly associated with the given co-

morbid condition. In step two, it searches for the second marker that is most related to the 

condition, considering its possible interaction with the selected marker. The whole process 



62 
 

continues until it reaches a full model, and K-fold cross-validation is then used to choose the 

most parsimonious model. 

By applying Mann-Whitney-based forward selection to each of two co-morbid conditions, 

we identify two sets of disease-susceptibility markers, ( , , , )
1

1 2
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Given the multivariate likelihood ratio values, we can form a MMW statistic to assess the joint 

association of disease-susceptibility markers with the co-morbid conditions, allowing for 

interaction, 

0 0
( , ),                                                            (2)

1 1

N N
Y Y M MU LR LR

MMW i j
i j
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3.4 Results 

3.4.1 Simulation I 

In the first set of simulations, we compare the performance of MMW and COM under a variety 

of co-morbidity correlation models. We simulate two co-morbid diseases and consider 1) a 

model where  two diseases are unrelated, 2) a model where two diseases share one single 

nucleotide polymorphism (SNP), 3) a model where two diseases share a two-locus interaction, 

and 4) a model where two diseases are associated with exact the same disease susceptibility loci 

(Table 3.1). Each co-morbid disease is associated with two SNPS with interaction effect and an 

independent SNP, where we assume the two-locus interaction follow a multiplicative-interaction 

model or a threshold-interaction model [46], and the independent SNP is additive. All genetic 

variants are simulated under the Hardy-Weinberg Equilibrium (HWE) assumption with minor 

allele frequencies ranged from 0.3 to 0.4. In addition to disease-susceptibility loci, we also 

introduce 5 non-disease associated SNPs for each disease, and randomly assign their minor allele 

frequencies from a uniform distribution ranged from 0.1 to 0.5. For each underlying correlation 

model, 1000 replicates are simulated, and each comprised of 1000 control individuals and 1000 

affected individuals with at least one of the co-morbid conditions. We analyze each replicate by 

using the proposed MMW method, as well as the COM method. With COM method, Mann-

Whitney-based forward selection algorithm [45] is applied to search for genetic variants 

predisposing to both diseases among controls and individuals with both co-morbid conditions. 

Permutation test is then used to assess significance level of MMW and COM, adjusting for the 

inflated Type I error due to the use of model selection. For this purpose, the empirical null 

distribution is formed based on 1000 permutations, and the empirical p-value is then obtained by 
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comparing the observed statistic to the empirical null distribution. Type I error and power for 

each co-morbidity model are summarized in Table 3.2. 
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Table 3.1. Summary of the Simulation I settings  

 Disease models  Gene-Gene Interaction  Single Locus 

 Disease1 Disease2  OR 
b
 OR

 c
 MAF

 d
  OR 

b
 OR

 c
 MAF

 f
 MAF

 g
 

Simulation I
a
 

A+B*C D+E*F  1.45 1.45 [0.3,0.4]
 e

  1.45 1.45 0.40 0.40 

A
i
+B*C A+D*E  1.45 1.45 [0.3,0.4]  1.45 1.45 0.40 0.40 

A+B*C D+B*C  1.45 1.45 [0.3,0.4]  1.45 1.45 0.40 0.40 

A+B*C A+B*C  1.45 1.45 [0.3,0.4]  1.45 1.45 0.40 0.40 

Simulation I
h
 

A+B*C D+E*F  1.70 1.70 [0.3,0.4]  1.70 1.65 0.40 0.35 

A+B*C A+D*E  1.70 1.70 [0.3,0.4]  1.70 1.65 0.40 0.35 

A+B*C D+B*C  1.70 1.70 [0.3,0.4]  1.70 1.65 0.40 0.35 

A+B*C A+B*C  1.70 1.70 [0.3,0.4]  1.70 1.65 0.40 0.35 

a: A multiplicative-interaction model;  

b: Odds Ratio for co-morbid condition 1;  

c: Odds Ratio for co-morbid condition 2;  

d: Minor Allele Frequency 

e: Minor Allele Frequency simulated in the model ranged from 0.3 to 0.4. 

f: Minor Allele Frequency for co-morbid condition 1. 

g: Minor Allele Frequency for co-morbid condition 2. 

h: A threshold-interaction model;  

i: Bold and Italic letter represents the shared locus.  

 

  



67 
 

The results show that the type I errors from both approaches are well controlled at the 

level of 0.05. We also have observed that, the power of COM increases with the increase of 

shared genetic components. In the extreme case, when the two co-morbid conditions share the 

same genetic loci, the power of COM attains its highest value, which can be largely explained by 

the increasing number of individuals with both co-morbid conditions. Nevertheless, when two 

co-morbid conditions are independent and the simultaneous manifestation of both diseases occur 

only by chance, the power of COM is significantly reduced. Compared with COM, MMW 

attains higher or at least equivalent power under all models. The performance of MMW is also 

less affected by the relationship between co-morbid conditions, remaining almost the same 

across all models. While we expect that COM has no power under the model where two diseases 

are independent with no shared loci, the result shows that COM obtains power of 0.530 and 

0.561 under the multiplicative-interaction model and the threshold-interaction model, 

respectively. As we demonstrate in the later simulation (Simulation III), the power of COM can 

also be partially explained by loci unique to each condition (i.e., if a locus is strongly associated 

with one of the co-morbid conditions, it could have an effect on subset of individuals with two 

conditions as well). However, the drawback of COM is that it cannot distinguish the shared and 

unique disease-susceptibility loci, while MMW has the capacity to correctly infer shared or 

unique loci. 
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Table 3.2 Type I error and power comparison of MMW and COM under different correlation 

models 

Models 
 Multiplicative-interaction Threshold-interaction 

 MMW COM MMW COM 

Without shared loci 

Disease1:A+B*C  

Disease2:D+E*F 

Power 0.970 0.530 0.880 0.561 

Type I error 0.040 0.050 0.041 0.050 

Shared one locus 

Disease1:A
a
+B*C  

Disease2:A+D*E 

Power 0.930 0.650 0.931 0.570 

Type I error 0.055 0.010 0.049 0.041 

Shared two loci 

Disease1:A+B*C  

Disease2:D+B*C 

Power 0.969 0.826 0.950 0.680 

Type I error 0.049 0.050 0.058 0.060 

Shared all loci 

Disease1:A+B*C 

Disease2:A+B*C 

Power 0.989 0.929 0.989 0.809 

Type I error 0.055 0.041 0.054 0.031 

a: Bold and Italic letters represent the shared loci between two diseases 

3.4.2 Simulation II 

In this set of simulations, we vary both underlying disease models and relations between two co-

morbid conditions, and evaluate their impact on two approaches. We start with a simple model 

with a two loci of interaction effect and two independent loci, and then consider a more complex 

model involving a high-order interaction (i.e., a three-locus interaction) and a model involving 

more than one interaction (i.e., two two-locus interactions). The common disease-susceptibility 

loci contributed to both diseases are assumed to be 1) the interacting loci, 2) the interacting loci 

and one independent locus, and 3) two independent loci. Two types of interaction models, a 

multiplicative-effect interaction model and a threshold-effect model [46], are considered in the 

simulation. The details of simulation settings are summarized in Table 3.3.  

The type I errors are well controlled at the level of 0.05 for both approaches (Table 3.4). 

Similar as observed in Simulation I, the performance of COM highly depends on the number of 

shared loci (i.e. as the number of shared loci increases, the power of COM approach increases a 



69 
 

lot). Compared with COM, MMW is robust to a variety of relations between two co-morbid 

conditions, and has higher power under all kinds of underlying disease models, regardless of the 

complexity of disease models and different types of interaction models. 



70 
 

Table 3.3 Summary of the Simulation II settings  

Models OR
c
 MAF

d
 

Disease1 Disease2 Disease1 Disease Disease1 Disease2 

Two-locus interaction models 

A*B+C+D
a
 A*B+C+E

a
 1.4;1.4;1.35 1.4;1.4;1.35 0.4;0.35;0.4;0.3 0.4;0.35;0.4;0.3 

A*B+C+D
a
 A*B+E+F

a
 1.4;1.4;1.35 1.4;1.4;1.35 0.4;0.35;0.4;0.3 0.4;0.35;0.4;0.3 

A*B+C+D
a
 E*F+C+D

a
 1.4;1.4;1.35 1.4;1.4;1.35 0.4;0.35;0.4;0.3 0.4;0.35;0.4;0.3 

A*B+C+D
b
 A*B+C+E

b
 1.5;1.4;1.4 1.5;1.4;1.4 0.4;0.35;0.4;0.3 0.4;0.35;0.4;0.3 

A*B+C+D
b
 A*B+E+F

b
 1.5;1.4;1.4 1.5;1.4;1.4 0.4;0.35;0.4;0.3 0.4;0.35;0.4;0.3 

A*B+C+D
b
 E*F+C+D

b
 1.5;1.4;1.4 1.5;1.4;1.4 0.4;0.35;0.4;0.3 0.4;0.35;0.4;0.3 

Three-locus interaction models 

A*B*C+D+E
a
 A*B*C+D+F

a
 1.3;1.3;1.25 1.29;1.28;1.23 0.3;0.35;0.4;0.35;0.35 0.3;0.35;0.4;0.35;0.35 

A*B*C+D+E
a
 A*B*C+F+G

a
 1.3;1.3;1.25 1.29;1.28;1.23 0.3;0.35;0.4;0.35;0.35 0.3;0.35;0.4;0.35;0.35 

A*B*C+D+E
a
 F*G*H+D+E

a
 1.3;1.3;1.25 1.29;1.28;1.23 0.3;0.35;0.4;0.35;0.35 0.3;0.35;0.4;0.35;0.35 

A*B*C+D+E
b
 A*B*C+D+F

b
 1.38;1.3;1.3 1.4;1.3;1.3 0.3;0.35;0.4;0.35;0.35 0.3;0.35;0.4;0.35;0.35 

A*B*C+D+E
b
 A*B*C+F+G

b
 1.38;1.3;1.3 1.4;1.3;1.3 0.3;0.35;0.4;0.35;0.35 0.3;0.35;0.4;0.35;0.35 

A*B*C+D+E
b
 F*G*H+D+E

b
 1.38;1.3;1.3 1.4;1.3;1.3 0.3;0.35;0.4;0.35;0.35 0.3;0.35;0.4;0.35;0.35 

Two two-locus interaction models 

A*B+C*D+E
a
 A*B+C*D+F

a
 1.35;1.35;1.3 1.35;1.35;1.3 0.3,0.35,0.4,0.3,0.35 0.3,0.35,0.4,0.3,0.35 

A*B+C*D+E
a
 A*B+F*G +E

a
 1.35;1.35;1.3 1.35;1.35;1.3 0.3,0.35,0.4,0.3,0.35 0.3,0.35,0.4,0.3,0.35 

A*B+C*D+E
a
 F*G+H*I+E

a
 1.35;1.35;1.3 1.35;1.35;1.3 0.3,0.35,0.4,0.3,0.35 0.3,0.35,0.4,0.3,0.35 

A*B+C*D+E
b
 A*B+C*D+F

b
 1.5;1.5;1.6 1.5;1.5;1.6 0.3,0.35,0.4,0.3,0.35 0.3,0.35,0.4,0.3,0.35 

A*B+C*D+E
b
 A*B+F*G +E

b
 1.5;1.5;1.6 1.5;1.5;1.6 0.3,0.35,0.4,0.3,0.35 0.3,0.35,0.4,0.3,0.35 

A*B+C*D+E
b
 F*G+H*I+E

b
 1.5;1.5;1.6 1.5;1.5;1.6 0.3,0.35,0.4,0.3,0.35 0.3,0.35,0.4,0.3,0.35 

a: The interaction effect follows multiplicative-interaction model 

b: The interaction effect follows threshold-interaction model 
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c: Odds ratio 

d: Minor allele frequency 

 

 

Table 3.4 Type I error and power comparison of MMW and COM under different interaction models 

Models 
 Multiplicative-interaction Threshold-interaction 

 MMW COM MMW COM 

Two-locus interaction models 

Disease1:A*B+C+D 

Disease2:A*B+C+E 

Power 0.991 0.840 0.887 0.828 

Type I error 0.050 0.051 0.047 0.066 

Disease1:A*B+C+D 

Disease2:A*B+E+F 

Power 0.977 0.649 0.887 0.588 

Type I error 0.043 0.049 0.065 0.048 

Disease1:A*B+C+D 

Disease2:E*F+C+D 

Power 0.932 0.407 0.844 0.573 

Type I error 0.052 0.053 0.040 0.054 

Three-locus interaction models 

Disease1:A*B*C+D+E 

Disease2:A*B*C+D+F 

Power 0.931 0.793 0.928 0.847 

Type I error 0.053 0.045 0.050 0.066 

Disease1:A*B*C+D+E 

Disease2:A*B*C+F+G 

Power 0.900 0.729 0.901 0.820 

Type I error 0.045 0.045 0.039 0.053 

Disease1:A*B*C+D+E 

Disease2:F*G*H+D+E 

Power 0.822 0.359 0.828 0.486 

Type I error 0.053 0.040 0.041 0.069 

Two two-locus interaction models 

Disease1:A*B+C*D+E  

Disease2:A*B+C*D+F 

Power 0.998 0.876 0.975 0.964 

Type I error 0.044 0.067 0.048 0.059 

Disease1:A*B+C*D+E  

Disease2:A*B+F*G +E 

Power 0.998 0.874 0.946 0.885 

Type I error 0.054 0.048 0.050 0.060 

Disease1:A*B+C*D+E  

Disease2: F*G+H*I+E 

Power 0.908 0.427 0.898 0.713 

Type I error 0.039 0.064 0.052 0.043 
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3.4.3 Simulation III 

One of the unique features of MMW is that it can distinguish unique loci predisposing each co-

morbid condition from common loci contributing to co-morbidity. To demonstrate this feature, a 

simple disease model is simulated where each of the two co-morbid diseases is associated with a 

common two-locus interaction and a unique locus. We vary the ratio of the effect size of the two-

locus interaction to that of the independent loci, and calculate the probability of misclassifying a 

unique locus as a shared locus. Both multiplicative-interaction and threshold-interaction models 

are considered in the simulation. The details of the model settings and the results are summarized 

in Table 3.5. 

Table 3.5 Misclassification rate of unique loci to common loci by MMW and MMW 

Disease 

model 
Odds ratio 

Multiplicative-interaction Threshold-interaction 

MMW  COM MMW COM 

Disease1: 

A*B+C 

Disease2: 

A*B+D 

1.4a; 1.9b; 1.9c 0.115 0.749 0.146 0.903 

1.4a; 1.8b; 1.8c 0.106 0.679 0.151 0.835 

1.4a; 1.7b; 1.7c 0.105 0.587 0.147 0.826 

1.4a; 1.6b; 1.6c 0.089 0.500 0.116 0.808 

1.4a; 1.5b; 1.5c 0.090 0.414 0.141 0.713 

1.4a; 1.4b; 1.4c 0.079 0.319 0.160 0.659 

1.4a; 1.3b; 1.3c 0.075 0.333 0.158 0.567 

1.4a; 1.2b; 1.2c 0.083 0.256 0.149 0.494 

1.4a; 1.1b; 1.1c 0.112 0.261 0.148 0.500 

a: Odds ratio for the common risk loci; 

b: Odds ratio for the risk locus unique to disease 1. 

c: Odds ratio for the risk locus unique to disease 2. 

 

As shown in Table 3.5, as the effect size of risk loci unique to each disease increases, the 

COM approach is more likely to misclassify them as common risk loci. COM treats all the 

selected loci as common loci associated with co-morbidity, and thus does not differentiate unique 

and shared loci. When the effect size of loci is large, regardless of whether the risk loci are 
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common or unique loci, they are more likely to be selected as the common risk factors by COM. 

In contrary to COM, MMW considers only loci selected for both conditions as shared loci, and 

the remaining loci associated with one of the condition as unique loci. Thus it has the capacity of 

differentiating unique and shared loci. From Table 3.5, regardless of effect size of the unique loci, 

MMW remains a low and stable misclassification rate.  

3.4.4 Application to Coronary Heart Disease and Type II Diabetes 

Substantial evidences from both clinical and epidemiological studies suggest a considerable 

amount of comorbidity exist between cardiovascular disease and type II diabetes. For example, 

Martin et al. reported that in a German cohort, at the time of diagnosis of type II diabetes 22% of 

patients had coronary heart disease present [34]. According to the American Diabetes 

Association, an estimates of two third of diabetic people died from cardiovascular disease, and 

adults with diabetes are at least twice as likely to have heart disease or stroke than those without 

diabetes. Indeed, the American Heart Association recommends treating diabetes as one of the 

major controllable risk factors for cardiovascular disease [35, 36]. Various factors can determine 

the co-occurrences of the two diseases, ranging from genetic predisposition and lifestyle of 

individual to the general health policy on the public. According to the 13 co-morbidity models 

proposed by Neale and Kendler, co-morbidity between coronary heart disease and type II 

diabetes may due to the fact that one of the co-morbid conditions is the cause or consequence of 

the other [3, 8, 10]. It is also possible that the two diseases share the same or correlated risk 

factors, such as obesity, physical inactivity, and insulin resistance, making the co-morbid 

conditions more likely to occur simultaneously [8, 11, 12, 37-44].  Though a large proportion of 

coronary heart disease cases and type II diabetes cases can be explained by environmental factors, 

genetics factors also play an important role in predisposing to both diseases. It has been reported 
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that rs1801282, which is located in gene PPARG, is associated with both cardiovascular disease 

and type II diabetes [47-49]. G allele of SNP rs4420638, which is located 14kb away from 

ApoC1 gene and co-inherited with ApoE, increases the risk of coronary heart disease as well as 

type II diabetes [50, 51]. The chromosome 9p21 region has also been identified to be associated 

with both type II diabetes and cardiovascular disease, though different SNPs were reported to 

each disease in different studies [25, 52].  

In this research, we apply the proposed method to study the co-morbidity between CAD 

and T2D with datasets from WTCCC. The CAD study data set consists of 1991 individuals and 

T2D data set contains 1810 subjects. The controls used in this study are obtained from National 

Blood Service (NBS) and it consists of 1440 individuals. All the three chosen datasets were 

genotyped on Affymetrix GeneChip Human Mapping 500K Array Set, and called by the 

algorithm we develop in Chapter 2 of the dissertation. We filter the SNPs that were of poor 

quality and we further correct for the batch effect. In this analysis, cases are defined as individual 

with either CAD or T2D, while controls are defined as individuals who have never met the 

diagnosis criteria of both CAD and T2D. From previous literature, we collected 21 SNPs and 35 

SNPs that were available on Affymetrix GeneChip Human Mapping 500K Array Set and had 

been reported for potential association with CAD and T2D, respectively.  

We initiated the analysis by applying the MMW to WTCCC to search for potential joint 

gene-gene interactions among 56 known CAD and T2D associated SNPs and then permutation 

test is used to assess the significance of identified associations. The identified SNPs are jointly 

associated with CAD or T2D and obtain a p-value less than 0. 001. The new method identifies a 

3-locus model and 5-locus model for CAD and T2D, respectively. The summary of identified 

loci by MMW is shown in Table 3.6. It is shown that the model does not identify any SNPs that 
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are associated with both diseases. The stepwise results for joint gene action for T2D and CAD 

are shown in Table 3.7 and Table 3.8, respectively. Logistic regression analyses are conducted to 

further evaluate the effect of each locus contributing to CAD and T2D. All 3-ways and pair-wise 

interaction effects are evaluated for CAD, and there is no significant evidence to suggest 

interactions among the three selected loci. The effect estimates obtained from logistic regression 

with main effect only are shown in Table 3.9. The genotypes GG of SNPs rs2891168 and 

rs7250581 as well as genotype TT of rs688034 significantly increase the risk of coronary heart 

disease. For T2D, a logistic regression model with all possible interactions among the 5 selected 

loci is fitted and a forward stepwise model selection procedure is applied to identify the most 

parsimonious model, which is shown in Table 3.10. Controlling for high-order interaction effects, 

genotypes AT and TT of rs4506565, GG of rs1495377, and AA and AC of rs8050136 have 

significantly increased the risk of T2D. 

Table 3.6 Summary of SNPs identified in from WTCCC data sets 

SNPs Allele Risk Group Chromosome Position Gene Disease 

rs2891168 A/G {AA;AG} {GG}
a
 9   22088619 CDKN2BAS CAD 

rs7250581 A/G {AA;AG} {GG} 19   34756236 POP4 CAD 

rs688034 C/T {CC;CT} {TT} 22   25019635 SEZ6L CAD 

rs4506565 A/T {AA} {AT;TT} 10 114746031 TCF7L2 T2D 

rs9472138 C/T {CC} {CT;TT} 6   43919740 VEGFA T2D 

rs7659604 A/G {AA;AG} {GG} 4 122884964 ANXA5 T2D 

rs1495377 C/G {CC;CG} {GG} 12   69863368 TSPAN8 T2D 

rs8050136 A/C {AA;AC} {CC} 16   52373776 FTO T2D 

a: Bold letter represents the genotype groups that increase the risk of each disease. 
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Table 3.7 Stepwise result for joint association analysis for T2D  

 

Steps Selected SNPs P-values 

1 rs4506565 9.341e-09 

2 rs4506565, rs9472138  1.345e-12 

3 rs4506565, rs9472138, rs7659604 1.220e-17 

4 rs4506565, rs9472138, rs7659604, rs1495377 1.024e-23 

5 
a
 rs4506565, rs9472138, rs7659604, rs1495377, rs8050136 3.207e-31 

a: The most parsimonious model for T2D identified by the MMW approach.  

 

Table 3.8 Stepwise result for joint association analysis for CAD 

 

Steps Selected SNPs P-values 

1 rs2891168 4.256e-08  

2 rs2891168, rs7250581 1.540e-11 

3 
a
 rs2891168, rs7250581, rs688034 4.789e-16 

a: The most parsimonious model for CAD identified by the MMW approach. 

 

Table 3.9 Logistic regression result for CAD 

SNPs Effect Estimates Standard Errors P-values 

rs2891168 (GG)
a
 0.4226 0.0795 1.04e-07

****
 

rs7250581 (GG) 0.2745 0.0722 1.43e-04
****

 

rs688034 (TT) 0.4903 0.1150 2.00e-05
****

 

a: Modeled genotypes 
****

 P-value<0.001 

 

We also realize that in the case where we only know the phenotypic information of one 

disease, COM method cannot be implemented as there is no “case”. Although MMW method 

does not identify common risk factors contributing to the co-morbidity between CAD and T2D, 

it still provides an opportunity to identify risk factors that are unique to each disease.  
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Table 3.10 Logistic regression result for T2D 

SNPs Effect Estimates Standard Errors P-values 

rs4506565 (AA)
a
 -0.3345 0.1158 0.0039

***
 

rs9472138 (CC) -0.0668 0.1212 0.5817 

rs7659604 (GG) 0.1069 0.1617 0.5087 

rs1495377 (GG) 0.4193 0.1853 0.0237
**

 

rs8050136 (CC) -0.5446 0.1672 0.0010
****

 

rs4506565:rs7659604 -0.3081 0.1532 0.0444
**

 

rs4506565:rs1495377 0.2255 0.2010 0.2620 

rs4506565:rs8050136 0.0789 0.1824 0.6654 

rs9472138:rs7659604 -0.496 0.2041 0.0150
**

 

rs9472138:rs1495377 -0.504 0.2094 0.0162
**

 

rs9472138:rs8050136 0.0733 0.1940 0.7056 

rs7659604:rs1495377 -0.5881 0.2717 0.0304
**

 

rs7659604:rs8050136 0.4428 0.2442 0.0698
*
 

rs1495377:rs8050136 0.8307 0.2791 0.0029
***

 

rs4506565:rs1495377:rs8050136 -0.7194 0.3690 0.0513
*
 

rs9472138:rs7659604:rs1495377 1.095 0.3439 0.0015
***

 

rs9472138:rs7659604:rs8050136 -0.5579 0.3284 0.0893
*
 

rs7659604:rs1495377:rs8050136 -0.7501 0.3754 0.0457
**

 

a: Modeled genotypes 

*P-value<0.05 

* *P-value<0.05 

*** P-value<0.01 

**** P-value<0.001 

 

3.5 Discussion 

Co-morbidity among complex human diseases is believed to be caused by interplay among 

multiple genetic variants and environmental determinants. The identification of genetic and 

environment risk predictors contributing to co-morbidity will promote better understanding of 

disease etiology and new diagnostic and therapeutic strategies [1-3]. The findings from the 

discovery process can be enhanced by adopting novel statistical approaches, as demonstrated 

here. A multivariate joint association approach allowing for gene-gene interactions can facilitate 
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the detection of genetic variants and gene-gene interaction contributing to co-morbid conditions. 

To the best of our knowledge, the proposed method, MMW, is one of the first methods, 

developed for the identification of genetic variants contributing to co-morbid conditions, with the 

consideration of high-order interactions. Similar to other Mann-Whitney based methods [45], it 

is a non-parametric approach, which does not assume model of inheritance, and is free from the 

issues of increasing number of parameters. MMW adopts a forward selection algorithm, which 

substantially reduces the searching space of interaction combinations and allows for high-order 

interactions. These features make MMW more appealing for co-morbidity analysis of complex 

disease with the consideration of possible interactions.  

Through simulation, we have shown that MMW attains high power than COM under a 

variety of disease models, and is robust than COM under different correlation models between 

co-morbid conditions. We consider this important as our knowledge of disease co-morbidity is 

limited and the underlying correlation among co-morbid diseases could vary from case to case. 

Compared with COM, MMW allows for the identification of genetic risk variants common to co-

morbid conditions, as well as unique to each co-morbid condition, which leads to a better 

understanding of relationship among co-morbid diseases. In addition, MMW makes use of the 

entire sample, which potentially increases the power to indentify genetic variants associated with 

co-morbid conditions, especially when the co-morbidity rate is low or when few co-morbidity 

individuals are in the data. In an extreme case, where each dataset is designed to study one of the 

co-morbid conditions and the information regarding the other disease statuses is not measured, 

COM is not applicable as there is no case. However, MMW is still has the capacity to identify 

risk loci common and unique to co-morbidity conditions, as it selects risk loci for each disease 

and then builds an overall test to assess the association.  
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The co-morbidity between CAD and T2D is well documented, however, the genetic 

etiology contributing to the co-morbidity remains largely unknown. To search for the risk factors 

predisposing to both CAD and T2D, unique to each of CAD and T2D, we apply the proposed 

method to the data sets obtained from WTCCC. We have identified a 3-locus model for CAD by 

MMW, and logistic regression analysis suggests no interaction effects present among the 

selected loci. A 5-locus model for T2D has also been identified by MMW, and among the 

identified markers 3-way interaction effect and 2-way interaction effect are present. 

Unfortunately we are unable to find any loci that contribute to both diseases. There are several 

possible reasons leading to this negative finding. First the proposed method is a candidate gene 

based approach and the markers used for this comorbidity analysis are those that have been 

targeted by Affymetrix GeneChip Human Mapping 500K Array Set and reported to be 

associated with either CAD or T2D. The markers that have not been targeted by Affymetrix 

500K SNP array but potentially associated with both T2D and CAD are not included in this 

analysis, which might be one of the reasons why there is no genetic components found leading to 

comorbidity between CAD and T2D. Imputations might be needed to enlarge the marker pools. 

In addition, due to the candidate gene approach, it overlooked those markers that may be 

associated with both diseases but not have been reported. A modification of the current algorithm 

is needed to allow for whole genome wide scan. Second, environmental factors such as obesity, 

physical inactivity and family history, play an important role in both T2D and CAD. However, in 

the first stage of WTCCC study such environmental factors are not measured. As a consequence, 

in our analysis none of the environmental factors have been controlled, which may attenuate the 

genetic effects and the power of detecting loci contributing to both diseases. Third, phenotypic 

heterogeneity in both T2D and CAD may be another reason for the negative finding, as strong 
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genetic variants predisposing to specific subset of each disease in a small homogeneous 

population might be negligible in the whole population[53, 54], which leads to lack of power to 

identify genetic variants associated with both diseases. A refinement of disease definition, which 

could be based upon age onset, severity of disease and progression profile, may help to identify 

genetic variants predisposing to a subset of both diseases.  

In conclusion, we have proposed a powerful tool to reveal common genetic variants and 

interactions contributing to disease co-morbidity, as well as those unique to each co-morbid 

condition. Through simulations we have demonstrated that our method attains more power 

compared with the common practice (i.e. the composite phenotype analysis) in a variety of 

underlying disease models and correlation models between two co-morbid conditions, especially 

in the case when co-morbidity rate is low. Though we do not identify any loci contributing to 

both CAD and T2D, further analyses and studies are needed.  
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CHAPTER 4 

A TWO STAGE MODEL FOR DETECTING DIFFERENTIALLY EXPRESSED GENES 

ACCOUNTING FOR THE VARIABILITY IN THE DATA PREPROCESSING STEP  

4.1 Abstract 

Since 1990s, gene expression profiling has been widely used in biological research to study 

pathways and differentially expression genes (DEG) contributing to complex human diseases. 

Typically, the DEG detection algorithm involves both data preprocessing and DEG analysis, and 

the DEG analysis is conducted based on the summarized gene expression level estimated from 

data preprocessing. Various methods have been proposed for each of the DEG analysis and 

microarray data preprocessing, but the variability in the estimated gene expression level obtained 

from data preprocessing has been overlooked, which may lead to false positive and false 

negative findings. In this study, we develop a two-stage model based on LIMMA (referred to as 

two-stage LIMMA), while incorporating the variability in the estimated gene expression level 

obtained from a positional-dependent-nearest-neighbor (PDNN) model. We demonstrate the 

utility of our method through simulations and the analyses of the Affymetrix Latin Square Data, 

both of which show that our method outperforms LIMMA. Finally, we apply the two-stage 

LIMMA method to detect the DEGs from a cervical cancer study. Our findings replicate most of 

the original findings, and identify new genes which are potentially associated with cervical 

cancer.  

Keywords: Affymetrix, hierarchical model, hybridization, LIMMA, two-stage model.  
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4.2. Introduction 

Since the introduction of microarray technology in the mid 1990s[1], gene expression profiling 

has been used extensively in biological research to study biological pathways and identify genes 

and gene sets associated with complex human diseases [2-4].  Typically, investigators seek to 

obtain a list of differentially expressed genes (DEGs) under different treatment conditions from 

the gene expression microarray[5],and for technical reasons the analysis usually involves both 

data preprocessing and DEG analysis based on the preprocessed data.  The data preprocessing 

usually comprises of background correction, normalization and summarization[6] to remove 

noise and improve the correlation between biological effect and measured intensities. Numerous 

preprocessing algorithms have been developed during the past few years, such as MAS5.0, 

dChip[7], RMA[8], GCRMA[9], PerfectMatch[10], ZAM[11], and combined relatively well with 

the downstream analyses, such as SAM[12], iBMT[13], and LIMMA[14]. However, little 

attention has been paid to the underlying mechanisms of the hybridization process which may 

bias the expression summary, and consequently the DEG analysis can be affected leading to false 

positive and false negative findings. Extensive studies have shown that probe intensities depend 

on not only the concentration of the target genes but also the binding affinity of the probes ([15-

18]). For example, both RMA[8] and GCRMA[9] normalize data with quantile normalization 

and summarize the intensities with a robust linear model fit, while GCRMA generally performs 

better than RMA because GCRMA models the probe sequence information and corrects 

background accordingly instead of using a global background correction as RMA does. It highly 

suggests that probe-set expression level summary can be improved by modeling the mechanism 

of the array underlying hybridization process.  
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In the past few years, various approaches have been proposed to identify differentially 

expressed genes, and many of them are modification of t-statistic based methods, as the estimates 

of variance based on classical t-statistic are not accurate due to the small sample size (e.g. 3 

treatments vs. 3 controls) and modification of estimated variance is one of the key issues for the 

DEG analysis. For example, SAM [12] evaluated the significance of gene expression level based 

on empirical null distribution, in which the estimated variance is adjusted by a fudge factor. 

Regularized t-test[19] assumed an empirical relationship between the average gene expression 

level and variance, and estimated the variance with hierarchical Bayesian models. Variance 

estimation of moderated-t test proposed by Smyth [14] is based on empirical Bayesian approach, 

and the DEG hypothesis can be tested within the traditional linear models framework. Similar to 

the moderated t-test, iBMT[13] employed an empirical Bayesian approach to estimate the 

variance but it also accounts for the dependence of variance on gene expression level. In addition 

to t-statistic based method, weighted average difference[20], fold change, rank based methods[21] 

are also widely used. Most of the current methods [12-14]on DEG analysis highly depend on the 

expression summary obtained from data preprocessing method, but the variability in the 

estimated gene expression summary has been overlooked, which may lead to inefficient and 

invalid results for the DEG analysis as the association results based on estimated gene expression 

level with large variability in the data preprocessing step are lack of confidence.   

Zhang et al.[10, 18] developed a positional-dependent-nearest-neighbor (PDNN) model 

in which they decomposed the observed probe intensities into specific binding signals, non-

specific binding signals and array background. It utilizes probe sequence information and models 

the probe binding with a weighted pair-wise stack energy approximation and Langmuir-like 

adsorption model. The PDNN model mimics the mechanism of hybridization process and the 
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estimated gene-expression level is in general consistent with the biological signals, but the 

PDNN model, just as the other preprocessing algorithms, does not provide uncertainty in the 

estimated gene-expression level. The uncertainty in the estimated expression level should be 

taken into account and traditional DEG analysis algorithms need to be adapted accordingly.  

In this paper, we incorporate the uncertainty introduced in data preprocessing step into 

DEG analysis by using a two-stage model. The proposed method has the following advantages: 

It 1) estimates the gene expression level summary based solely on individual’s data; 2) provides 

a measure of the uncertainty of the preprocessing algorithm; 3) incorporates the uncertainty 

measure into the DEG analysis. The rest of the paper is organized as follows. In Section 2, we 

first give a brief introduction to the PDNN model, and then we outline our procedure to estimate 

the uncertainty of gene-expression level obtained from PDNN model. Furthermore, we propose a 

hierarchical two-stage model in which we take into account the variability of estimated gene 

expression level obtained from data preprocessing. In Section 3, the proposed method is 

compared with other methods based on simulated data and real microarray data in two studies, 

including a spike-in dataset obtained from Affymetrix Inc. and a cervical cancer data set. In the 

last section, we discuss and summarize our findings.  

4.3. Method 

4.3.1 The PDNN model 

We use PDNN[10] as our data preprocessing model, which is constructed based on the rationale 

that the measured probe intensities can be decomposed into three parts: the specific binding 

intensity, the non-specific binding and the array background intensities, as shown in equation (1).  

The specific binding intensities come from the binding between the probe and a target transcript 
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with the exact complementary sequence, whereas the non-specific binding intensities result from 

the binding between probe and transcripts with many mismatches 

*
+                                                                                   (1)

*1 exp( ) 1 exp( )

N
Nj

I b
ij ijE Eij ij

  
 

 

where I
ij

 is observed intensity for probe i and gene j, N
j

is the number of target concentration 

of gene j, *N is the total number of transcripts for the non-specific binding, b is the array 

background, and E
ij

is the binding free energy of the specific binding, and *E
ij

is the average 

binding free energy for non-specific binding.  

The E
ij

and *E
ij

are estimated by weighted sums of stacking energies, and it can be calculated 

through equation (2)  

* * *= ( , ),   = ( , )               (2)
1 1

E b b E b b
ij k k k ij k k k

    
 

 

where ( , , ..., )
1 2 3 25

b b b b  is the probe sequence; 
k

  and 
*
k

  are weighted factors depending on 

the position of the nucleotide along the probe, and ( , )
1

b b
k k




 and 
*( , )

1
b b
k k




 are pair-wise 

stacking energy for specific binding and non-specific binding, respectively.  

With the energy parameters the gene expression level can be calculated as  
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1/ (1 exp( )) /

I b N E
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iN
j

E
ij ij
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where = (1 exp( ))I E
ij ij ij
   

4.3.2  Two-Stage Model 

Data Preprocessing-First Stage Model 

As the PDNN algorithm models the underlying hybridization process, the binding free energy 

should be independent of labs and samples, and remain the same for the same array platform, 

which have been shown by Wan et al[16]. Given the parameters trained through a Monte Carlo 

simulation procedure provided by Zhang et al. [10], the target concentrations as well as overall 

non-specific binding molecular concentration can be estimated through a simple linear regression 

shown in equation (4).   

1* *( ) ( ) + , ( )                                                 (4)
exp( ) 1

I N E N E b x
mkjp mkj jp jp jp x

      
  

where I
mkjp

is the observed intensities for probe p of gene j on array k under experimental 

condition m, j=1, 2, …, n, k=1,2,…mK, m=1,2,…M; N
mkj

 is the true target concentration of 

gene j on array k under condition m; E
jp

is the binding free energy of the specific binding of 

probe p of gene j, and *E
jp

is the average binding free energy for non-specific binding of probe p 

of gene j.  



93 
 

Let 

* * * *( ) ( ( ), ( ),..., ( ))
1 2

* * * *( ) ( ( ), ( ),..., ( ))
1 2
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TE E E E
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X X X
N n

   

   

   
















 

  

where n denotes the total number of genes on the array; nj denotes the total number of probes for 

gene j; 

1

n
N n

j
j

 


denotes the total number of probes and J
N

is a N×1 matrix with all elements 

equal to 1.  

As the dimension of the design matrix X is large, we apply the AS274 algorithm[22] 

implemented in the BIGLM of R package, to estimate the gene expression level as well as the 

variance of the estimates. In general, the AS274 algorithm constructs a design matrix based on 

part of the data, and gradually adds the rest of data into the design matrix to improve the 

efficiency of the algorithm. It first diagonalizes the design matrix with Cholesky factorization, 

and then it adopts a series of planar rotation to annihilate the added row and keep the design 

matrix diagonal, which is critical to improve the efficiency of the algorithm. As X
T
X is a positive 

definite symmetric matrix, and X
T
X can be written as X

T
X=R

T
R by Cholesky factorization, 

where R is the unique upper triangular matrix. For example, let 𝑋𝑇𝑋 = 𝐴 =  
4 2 −2
2 10 2

−2 2 5
  , 
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then the Cholesky factorization for this matrix would be 

𝐴 =  
4 2 −2
2 10 2

−2 2 5
 =  

2 1 −1
0 3 1
0 0 √3

 

𝑇

 
2 1 −1
0 3 1
0 0 √3

 = 𝑅𝑇𝑅. Consider the case when one new 

line of observation is added, the upper triangular factorization can be updated by a sequence of 

planar rotation on the left to annihilate the elements of the added row. For example, consider a 

simple example when one new observation is added, we have 
𝑅
𝑥
 =  

𝑟11 𝑟12 𝑟13
0 𝑟21 𝑟22
0 0 𝑟23
𝑥1 𝑥2 𝑥3

 . We 

first apply a planar rotation to annihilate 𝑥1, 𝑥2  and 𝑥3 are changed to be 𝑥′2 and𝑥′3. The 

next rotation is to annihilate 𝑥′2, and 𝑥′3  is replaced by 𝑥′′3 . Finally, another rotation is 

conducted to annihilate𝑥′′3. In our settings, due to the large dimension of the design matrix we 

divide the design matrix into small blocks, roughly 1000 genes per block, and updated the 

estimated gene expression level ( N̂
mkj

) and the estimated variances (
2s
mkj

) of the estimates 

accordingly.  

DEG detection-Second Stage Model 

Let  ˆ ˆ ˆ( , ,..., )
1 2

T
Y N N Nmj m j m j mm j

K

 ,    ( , ,..., )1 2
T T T T

Y Y Y Yj j j Mj  and 

 2var( ) ( )
T

Y diagmjmj mkj
   . We assume that the summarized gene expression level obtained 

from data preprocessing algorithm follows a normal distribution with mean equal to the true 
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target concentrations of each sample (i.e.  ~ ( , )
T TY N Yj j

 , where TY
j

is the true target 

concentration vector for gene j and 

1

2

.

.

.

1

j

j

M j

Mj





 






 

 

We further assume 2, ~ (0, )Y X N
j j j

     , where X is a full rank matrix and 
j

 is a 

coefficient vector.  Suppose certain contrast of the coefficient is of biological interest and is 

defined by TC
j j

  . We assume that it is of interest to test whether 
j

  is equal to zero (i.e. 

0TC
j

  ). Similar to LIMMA, a linear model is fitted to the target concentration for each gene 

to obtain coefficient estimator  j , and therefore we have 

     1( ) ( ) ( ) ( ( | )) (( ) )

1 1( ) ( ) ( )

T T T T T TE E C C E C E E Y C E X X X Yj jj j jj

T T T T T T TC X X X E Y C X X X X C
j j j

   

 

   

   
  

and  

      



var( ) var( ) var( ) (var( | )) var( ( | ))

1 1 1 2( ) var( ) ( ) ( )

1 1 1 2 2( ) ( ) ( )

T T TC C C C E Y E Y Cj jj j j jj

T T T T TC X X X Y X X X X X Cj j

T T T T T TC X X X X X X X X C C UVU U C
j j
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where 1( ) ,T TU X X V X X    

The variance of estimated gene expression level (i.e. 2
mkj

 ) is estimated by 2s
mkj

, and it 

highly depends on the data preprocessing algorithm. Therefore, here we introduce a scale 

parameter  , which depends on both the chosen data preprocessing algorithm and the goals of 

biological research, to adjust for the estimated effects of data preprocessing. Through both 

simulations and Affymetrix spike-in experiment data sets,  can be set in the range of 0.10 to 

0.15 to obtain optimal DEG detection. In practice, we recommend to set  at 0.10. The 

parameters
2

j are estimated by the same procedure as LIMMA. We define the test statistic as 

ˆ

2

TC
j j

t
TC UVU U C

j

 






 


  

.The degree of freedom taken by the data preprocessing algorithm is 

large, and therefore approximately
2~ (0, )Tt N C UVU U C
j

 


  
 .  

4.4. Results 

4.4. 1 Simulations 

We conduct a series of simulations to assess the performance of our two-stage LIMMA method 

and LIMMA under different model settings. We assume that the summarized intensities for each 

gene N
mkj

 follow a Gamma distribution with an exchangeable Gamma (0.8, 15) prior on rate 

parameter and a constant shape parameters equal to 5. We assume 12 probes are used to annotate 

each gene and each raw observed probe intensity I
mkjp

is simulated from a normal distribution 
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with mean N
mkj

 and variance 2
mkj

 , where p=1,2,…12. . 2
mkj

  is set to be proportional to 2
j

 , 

with 2 2/
mkj j

  ratio ranging from 0.5 to 1.5, to account for different level of uncertainty in the 

first stage model. The parameters in the above simulations are set in the proximity of real data. 

We fix the total number of genes to be 10000, the number of samples per group to be three, and 

we vary the percentage of differentially expressed genes from 1% to 10%.  For each model and 

condition, we generate 1000 datasets and compare the false positive and false negative findings 

between the two-stage LIMMA and LIMMA.  

The results of the simulations are summarized in Table 4.1. We have observed that when 

 sets to be 0.10, compared with LIMMA two-stage model has a considerable lower false 

positive, while keeping the false negative comparable. In addition, as expected we have observed 

that as the 2 2/
mkj j

  ratio increases, the false negative rates in both two-stage LIMMA and 

LIMMA increase. However, our method still has the capacity to well control the false positive 

findings, as the false positive findings by LIMMA is more than twice of the positive findings by 

our method with 0.1  and 2 2/ 1.5
mkj j

   . 
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Table 4.1 The comparison false positive (FP) and false negative rate (FNR) between LIMMA and Two-Stage LIMMA with GG 

model (FNR, FP) 

No. 

of 

DEG 

genes 

Methods   

2 2/
mkj j

   ratios 

0.5 0.75 1 1.25 1.5 

100 

LIMMA  (0.53,     6.40) (0.55,    4.88) (0.57,    3.78) (0.58,    3.14) (0.60,    2.63) 

Two-

stage 

0.05 (0.49,   12.71) (0.50,    9.56) (0.51,    7.22) (0.52,    5.54) (0.53,    4.21) 

0.10 (0.50,     6.29) (0.52,    3.48) (0.53,    1.93) (0.55,    1.21) (0.56,    0.68) 

0.25 (0.53,     0.95) (0.56,    0.24) (0.58,    0.09) (0.60,    0.02) (0.62,    0.01) 

200 

LIMMA  (0.50,   15.34) (0.51,  12.71) (0.53,  10.39) (0.54,    8.84) (0.55,    7.68) 

Two-

stage 

0.05 (0.46,   26.81) (0.47,  20.99) (0.48,  16.52) (0.49,  13.01) (0.50,  10.26) 

0.10 (0.47,   14.98) (0.49,    9.23) (0.51,    5.69) (0.52,    3.65) (0.53,    2.23) 

0.25 (0.50,     3.18) (0.53,    1.06) (0.55,    0.35) (0.57,    0.10) (0.60,    0.04) 

500 

LIMMA  (0.44,   48.79) (0.46,  43.01) (0.47,  37.65) (0.48,  33.93) (0.49,  29.66) 

Two-

stage 

0.05 (0.42,   69.74) (0.43,  58.54) (0.44,  48.66) (0.45,  40.77) (0.46,  33.48) 

0.10 (0.43,   45.30) (0.45,  31.34) (0.46,  21.49) (0.47,  15.32) (0.49,  10.38) 

0.25 (0.46,   13.94) (0.49,    5.64) (0.51,    2.47) (0.53,    1.02) (0.55,    0.45) 

800 

LIMMA  (0.42,   86.40) (0.43,  78.14) (0.44,  69.86) (0.45,  63.67) (0.46,  58.54) 

Two-

stage 

0.05 (0.39, 114.02) (0.40,  97.43) (0.41,  83.03) (0.42,  69.99) (0.43,  60.18) 

0.10 (0.40,   79.45) (0.42,  57.75) (0.43,  41.69) (0.45,  30.40) (0.46,  22.27) 

0.25 (0.44,   28.75) (0.46,  13.47) (0.48,    6.36) (0.50,    3.02) (0.53,    1.52) 

1000 

LIMMA  (0.40, 110.85) (0.41,102.54) (0.42,  92.49) (0.43,  85.38) (0.44,  79.28) 

Two-

stage 

0.05 (0.38, 141.87) (0.39,123.47) (0.40,105.46) (0.41,  91.57) (0.42,  78.84) 

0.10 (0.39, 101.78) (0.41,  76.34) (0.42,  56.32) (0.43,  42.56) (0.44,  31.50) 

0.25 (0.42,   40.86) (0.45,  19.50) (0.47,  10.12) (0.49,    4.99) (0.51,    2.50) 
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To investigate the optimal range of  , we calculate the false positive and false negative at 

different  values. As shown in Figure 4.1, there is a trade-off between false positive and false 

negative. In general, when  is small, we tend to have more false positive and fewer false 

negative. In contrary, when  is large, the false positive rate is well controlled while we tend to 

have more false negative. In practice, we recommend to set  in the range of 0.1 to 0.15 to 

achieve an optimal performance of the proposed method.  

 

 
a. Total Number of DEG=100. 

 

Figure 4.1 False positive rate and false negative with different  values for GG models. Cyan: 

2-stage Limma with 0.3  ; Blue: 2-stage Limma with 0.2  ; Green: 2-stage Limma with

0.1   ; Red: 2-stage Limma with 0.05  ; Black: 2-stage Limma with 0.03  ; and Orange: 

Limma.  
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Figure 4.1 cont’d   

 

 

b. Total Number of DEG=200.  
 

 

c. Total Number of DEG=500.  
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Figure 4.1 cont’d   
 

 

d. Total Number of DEG=800.  

 
e. Total Number of DEG=1000.  
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4.4.2 Affymetrix spike-in experiment 

The Human Genome U133A Spike-in data set was downloaded from 

http://www.affymetrix.com/support/technical/sample_data/datasets.affx. This data set consists of 

3 replicates per experimental conditions. A total of 42 spiked-in genes at concentrations ranging 

from 0.125pM to 512pM were grouped into 14 groups. In addition to the 42 spiked-in genes, 

Sheffler et al. and Lo et al. claim that another 20 genes should be treated as spiked-in genes. In 

addition, 3 genes with probe sequence exactly matching those of spiked-in genes were also 

considered to be spiked-in genes. Same as Lo et al., a total of 65 genes are treated as spiked-in 

genes in our analyses.  

To evaluate the performance of our two-stage LIMMA method and LIMMA, all 14 

different experimental groups are compared with each other and a total of 91 (a combination of

14

2C ) comparisons were made. Each comparison consists of 3 replicates from each of the 

experimental conditions. We use PDNN model to preprocess the data for our method and 

LIMMA, and we also used RMA to preprocess the data for LIMMA. As shown in Table 4.2, 

with the same preprocessing method, our method significantly outperforms LIMMA. Even with 

the default preprocessing algorithm for LIMMA, our method performs similar if not better than 

LIMMA for all comparisons. For some of the scenarios (asterisked in Table 4.2), our method 

performs significantly better than LIMMA. For example, the maximum number of false positive 

for our method is 45, whereas the maximum number of false positive for LIMMA is 1443. 

Among the 91 comparisons, there are 9 times that LIMMA obtained more than 100 false positive 

findings.  

  

http://www.affymetrix.com/support/technical/sample_data/datasets.affx
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Table 4.2 Comparison between LIMMA and Two-Stage LIMMA with Latin Square Data 

Sample 1 Sample 2 
LIMMA with RMA LIMMA with PDNN Two-Stage LIMMA 

FNR FP FNR FP FNR FP 

1 2 0.31 0 0.31 8 0.34 3 

1 3 0.15 1 0.11 44 0.17 10 

1 4 0.08 6 0.03 110 0.08 13 

1 5 0.05 6 0.02 262 0.05 18 

1 6 0.03 0 0.00 24 0.00 14 

1 7 0.00 2 0.00 141 0.00 12 

1 8 0.00 8 0.00 375 0.00 37 

1 9 0.02 24 0.00 342 0.00 23 

1 10 0.02 14 0.00 234 0.00 26 

1 11 0.06 5 0.03 219 0.05 27 

1 12 0.05 9 0.03 152 0.06 14 

1 13 0.09 4 0.08 71 0.12 8 

1 14 0.20 7 0.20 23 0.26 9 

2 3 0.49 0 0.54 13 0.55 6 

2 4 0.09 1 0.08 15 0.08 11 

2 5 0.18 1 0.17 30 0.25 11 

2 6 0.12 0 0.17 6 0.11 9 

2 7 0.02 0 0.00 23 0.00 13 

2 8 0.00 20 0.00 92 0.00 23 

2 9 0.02 3 0.00 47 0.00 19 

2 10 0.02 6 0.00 50 0.00 22 

2 11 0.03 6 0.02 35 0.02 16 

2 12 0.05 7 0.03 25 0.03 14 

2 13 0.05 4 0.06 30 0.08 9 

2 14 0.15 7 0.14 17 0.14 9 

3 4 0.09 1 0.06 33 0.15 3 

3 5 0.29 3 0.15 109 0.40 6 

3 6 0.25 0 0.23 13 0.23 9 

3 7 0.00 2 0.00 68 0.00 11 

3 8 0.00 93 0.00 625 0.00 26 

3 9 0.00 7 0.00 142 0.00 15 

3 10 0.00 11 0.00 130 0.00 24 

3 11 0.00 18 0.00 209 0.00 23 

3 12 0.02 6 0.00 51 0.02 12 

3 13 0.00 13 0.00 122 0.03 13 

3 14 0.05 13 0.05 61 0.08 10 

4 5 0.17 11 0.06 117 0.25 3 

4 6 0.38 0 0.37 5 0.35 4 

4 7 0.18 20 0.00 1427 0.18 12 

4 8 0.00 1443* 0.00 5427 0.00 45 
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Table 4.2 (cont’d) 

Sample 1 Sample 2 
LIMMA with RMA LIMMA with PDNN Two-Stage LIMMA 

FNR FP FNR FP FNR FP 

4 9 0.00 247 0.00 1486 0.00 24 

4 10 0.02 54 0.00 1360 0.00 37 

4 11 0.00 253 0.00 6299 0.00 30 

4 12 0.00 120 0.00 828 0.00 19 

4 13 0.00 47 0.00 621 0.00 12 

4 14 0.02 22 0.02 248 0.03 12 

5 6 0.43 0 0.42 3 0.43 2 

5 7 0.08 0 0.00 354 0.06 8 

5 8 0.00 1097* 0.00 3292 0.00 26 

5 9 0.00 167 0.00 1151 0.00 23 

5 10 0.02 37 0.00 627 0.00 29 

5 11 0.00 83 0.00 2674 0.00 27 

5 12 0.00 27 0.00 578 0.00 16 

5 13 0.00 32 0.00 316 0.00 16 

5 14 0.00 21 0.00 236 0.02 16 

6 7 0.31 0 0.28 10 0.29 4 

6 8 0.11 1 0.11 8 0.09 9 

6 9 0.06 1 0.05 28 0.05 17 

6 10 0.05 4 0.03 23 0.02 16 

6 11 0.03 3 0.02 15 0.00 13 

6 12 0.02 3 0.00 20 0.00 16 

6 13 0.02 6 0.00 29 0.00 16 

6 14 0.00 5 0.00 22 0.00 20 

7 8 0.12 0 0.11 22 0.14 1 

7 9 0.06 23 0.06 342 0.11 14 

7 10 0.06 12 0.06 76 0.06 18 

7 11 0.02 5 0.02 48 0.02 13 

7 12 0.02 5 0.00 59 0.00 15 

7 13 0.02 5 0.00 111 0.00 15 

7 14 0.02 6 0.00 50 0.00 18 

8 9 0.15 1224* 0.14 2453 0.26 18 

8 10 0.14 23 0.12 146 0.14 19 

8 11 0.08 4 0.03 51 0.08 18 

8 12 0.03 23 0.00 180 0.02 27 

8 13 0.00 103 0.00 755 0.00 29 

8 14 0.00 507* 0.00 733 0.00 31 

9 10 0.32 3 0.22 20 0.34 3 

9 11 0.12 10 0.06 540 0.12 12 

9 12 0.08 9 0.06 79 0.08 17 

9 13 0.08 8 0.02 186 0.06 18 

9 14 0.02 6 0.00 66 0.02 21 
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Table 4.2 (cont’d) 

Sample 1 Sample 2 
LIMMA with RMA LIMMA with PDNN Two-Stage LIMMA 

FNR FP FNR FP FNR FP 

10 11 0.18 6 0.20 18 0.22 9 

10 12 0.11 4 0.12 54 0.14 19 

10 13 0.09 6 0.05 63 0.09 21 

10 14 0.03 8 0.00 61 0.02 25 

11 12 0.26 2 0.25 28 0.29 10 

11 13 0.17 12 0.15 90 0.17 17 

11 14 0.11 10 0.12 68 0.12 22 

12 13 0.25 4 0.23 32 0.31 7 

12 14 0.12 7 0.09 32 0.15 9 

13 14 0.22 4 0.18 18 0.26 7 

 

Mean 0.08 66.49 0.07 412.48 0.09 15.97 

 

4.4.3 Cervical Cancer Data 

The cervical cancer data was downloaded from 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9750. This data set consists of 33 

primary tumors and 24 normal cervical epithelium, and they are profiled with Affymetrix U133A 

oligo-nucleotide microarray. It has been reported that chromosome 20 plays an important role in 

the tumor pathophysiology. To further demonstrate the utility of the proposed method, we 

analyze the gene expression profiles on chromosome 20. A total of 571 probe sets are present on 

this Gene Chip, and they represent 4.6% of the genome (3% on 20q and 1.6% on 20p). With 

FDR adjusted p-value less than 0.01, a total of 106 probes and 146 probes are found to be 

differentially expressed by our Two-stage LIMMA method and LIMMA (Table 4.3 and Table 

4.4), respectively. There are 95 probes that have been identified by both our method and LIMMA. 

Among the 106 identified differentially expressed probes, 13 probes are down-regulated and the 

rest are up-regulated compared with normal samples. The details of the results are summarized in 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9750
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Table 4.3. Of the 93 over-expressed probes 22 were mapped to 20p, and the remaining is mapped 

to 20q. Consistent with the findings from Scotto et al., most of the over-expressed genes located 

on chromosome 20 belong to several functional groups. For instance, AURKA, DSN1, CDC25B, 

SYCP2, UBE2C, AURKA, TPX2, PCNA, MYBL2, KIF3B, and E2F1 are associated with cell 

cycle regulation; CSE1L, SOX12, CSE1L, ARFGAP1, RALY, SNRPB, CTNNBL1, PSMA7, 

SNRPB, SNRPB2, DDX27 and CSE1L are associated with nuclear function; RPN2, RPN2, 

B4GALT5, B4GALT5, RPN2 are associated with transferase; LAMA5 and PSMA7 are 

associated with viral replication; AHCY and C20orf20 are associated with methylation and 

chromatin remodeling, and MMP9 and WFDC2 are associated with endopeptidase activity. In 

addition to the genes identified by Scotto et al., we also find some up-regulated genes that are 

possibly associated with cervical cancer. For example, we find TNFRSF6B (fold change=2.0), 

which belongs to the tumor necrosis factor receptor superfamily and over-expression of this gene 

is present for gastrointestinal tract tumors. GMEB2 (fold change=1.4), which is a member of 

KDWK gene family, is one of the essential factors for parvovirus DNA replication. STAU1 (fold 

change=1.2) is involved in the transportation of mRNA to different organs. We also identify 

CEBPB (fold change=1.2), KCNS1 (fold change=1.3) and RGS19 (Fold change=1.2) that are 

associated with cell cycle regulation [23-28].  

Among the 13 down-regulated probes located on 9 genes, 2 of them are mapped to 20p, 

while the rest are mapped to 20q. Though currently there is no evidence to suggest these genes 

are responsible for cervical cancer, they may contribute to the etiology of the tumor. For example, 

the downstream of WISP2 (fold change=0.54) in WNT1 signaling pathway has been shown to be 

related to malignant transformation, which may also associated with cervical cancer[29]. Further 

studies are needed to investigate the effects of these genes on cervical cancer progression. 
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Table 4.3 Differentially expressed genes identified by Two-stage model. 

Probe.Set.ID Chromosomal.Location Gene.Symbol 
Fold Change 

(Tumor/Normal) 

206102_at chr20p11.21 GINS1 2.53a 

208079_s_at chr20q13.2-q13.3 AURKA 2.49a 

203936_s_at chr20q11.2-q13.1 MMP9 2.11a 

206467_x_at chr20q13.3 TNFRSF6B 2.01c 

219512_at chr20q11.23 DSN1 1.93a 

201853_s_at chr20p13 CDC25B 1.88a 

206546_at chr20q13.33 SYCP2 1.82a 

202954_at chr20q13.12 UBE2C 1.81a 

204092_s_at chr20q13.2-q13.3 AURKA 1.80a 

210052_s_at chr20q11.2 TPX2 1.80a 

202946_s_at chr20p12.2 BTBD3 1.78a 

204639_at chr20q12-q13.11 ADA 1.75a 

203892_at chr20q12-q13.2 WFDC2 1.75a 

218586_at chr20q13.33 C20orf20 1.75a 

212898_at chr20q11.23 KIAA0406 1.73a 

219888_at chr20q11.21 SPAG4 1.69a 

201202_at chr20pter-p12 PCNA 1.62a 

210042_s_at chr20q13 CTSZ 1.61 

201710_at chr20q13.1 MYBL2 1.58a 

203943_at chr20q11.21 KIF3B 1.52a 

204947_at chr20q11.2 E2F1 1.49a 

216705_s_at chr20q12-q13.11 ADA 1.46a 

201204_s_at chr20p12 RRBP1 1.45a 

206567_s_at chr20q11.22-q11.23 PHF20 1.44 

206656_s_at chr20p11.22-p11.21 C20orf3 1.43a 

211678_s_at chr20q13.13 RNF114 1.42 

216548_x_at chr20q11.22 HMGB3L1 1.41a 

201704_at chr20p11.2-p11.22 ENTPD6 1.41a 

200867_at chr20q13.13 RNF114 1.41 

200875_s_at chr20p13 NOP56 1.40 

213140_s_at chr20q13.3 SS18L1 1.40a 

210766_s_at chr20q13 CSE1L 1.39a 

222251_s_at chr20q13.33 GMEB2 1.39 

204432_at chr20p13 SOX12 1.38a 

213090_s_at chr20q13.33 TAF4 1.37 

201558_at chr20q13.31 RAE1 1.37 

207366_at chr20q12 KCNS1 1.35c 

201111_at chr20q13 CSE1L 1.34a 
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Table 4.3 (cont’d) 

    

Probe.Set.ID Chromosomal.Location Gene.Symbol 
Fold Change 

(Tumor/Normal) 

217888_s_at chr20q13.33 ARFGAP1 1.33a 

202071_at chr20q12 SDC4 1.33 

201271_s_at chr20q11.21-q11.23 RALY 1.32a 

221827_at chr20p13 RBCK1 1.32 

212430_at chr20q13.31 RBM38 1.32a 

201415_at chr20q11.2 GSS 1.31a 

213399_x_at chr20q12-q13.1 RPN2 1.31a 

200903_s_at chr20cen-q13.1 AHCY 1.31a 

206918_s_at chr20q11.22 CPNE1 1.31a 

213491_x_at chr20q12-q13.1 RPN2 1.31a 

208821_at chr20p13 SNRPB 1.31a 

218282_at chr20q11.22 EDEM2 1.31 

209049_s_at chr20q13.12 ZMYND8 1.29 

221021_s_at chr20q11.23-q12 CTNNBL1 1.29a 

212062_at chr20q13.2 ATP9A 1.28a 

221484_at chr20q13.1-q13.2 B4GALT5 1.28a 

209684_at chr20p11.22 RIN2 1.28 

221485_at chr20q13.1-q13.2 B4GALT5 1.27a 

221741_s_at chr20q13.33 YTHDF1 1.27a 

203459_s_at chr20p13-p12 VPS16 1.27 

211630_s_at chr20q11.2 GSS 1.27a 

201281_at chr20q13.33 ADRM1 1.27a 

216262_s_at chr20q11.2-q12 TGIF2 1.26 

212864_at chr20p13 CDS2 1.26a 

218708_at chr20p12-p11.2 NXT1 1.26 

210150_s_at chr20q13.2-q13.3 LAMA5 1.26b 

201032_at chr20q11.2-q12 BLCAP 1.26 

221499_s_at chr20q13.32 STX16 1.25a 

201114_x_at chr20q13.33 PSMA7 1.25a 

215852_x_at chr20q11.23 C20orf117 1.24a 

213175_s_at chr20p13 SNRPB 1.24a 

204336_s_at chr20q13.33 RGS19 1.24 

208689_s_at chr20q12-q13.1 RPN2 1.24a 

211318_s_at chr20q13.31 RAE1 1.24 

208743_s_at chr20q13.1 YWHAB 1.24c 

217286_s_at chr20q11.21-q11.23 NDRG3 1.23 

208948_s_at chr20q13.1 STAU1 1.23 

218315_s_at chr20pter-q11.23 CDK5RAP1 1.22a 

201112_s_at chr20q13 CSE1L 1.22a 
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Table 4.3 (cont’d) 

Probe.Set.ID Chromosomal.Location Gene.Symbol 
Fold Change 

(Tumor/Normal) 

213037_x_at chr20q13.1 STAU1 1.22 

202505_at chr20p12.2-p11.22 SNRPB2 1.22a 

221500_s_at chr20q13.32 STX16 1.21a 

44146_at chr20q13.33 GMEB2 1.21 

215693_x_at chr20q13.13 DDX27 1.20a 

221780_s_at chr20q13.13 DDX27 1.20a 

217792_at chr20p11 SNX5 1.20 

201206_s_at chr20p12 RRBP1 1.18a 

212501_at chr20q13.1 CEBPB 1.18c 

207320_x_at chr20q13.1 STAU1 1.17 

218159_at chr20p13 DDRGK1 1.17c 

217770_at chr20q12-q13.12 PIGT 1.16a 

209171_at chr20p ITPA 1.14c 

218559_s_at chr20q11.2-q13.1 MAFB 0.81a 

221528_s_at chr20q13 ELMO2 0.80 

220363_s_at chr20q13 ELMO2 0.70 

217154_s_at chr20q13.2-q13.3 EDN3 0.67a 

55692_at chr20q13 ELMO2 0.66 

205792_at chr20q12-q13.1 WISP2 0.54 

206482_at chr20q13.3 PTK6 0.52a 

219090_at chr20p13 SLC24A3 0.51a 

57588_at chr20p13 SLC24A3 0.48a 

206004_at chr20q11.2 TGM3 0.34a 

220022_at chr20q13.12 ZNF334 0.29 

220388_at chr20q11.22 FER1L4 0.28c 

208399_s_at chr20q13.2-q13.3 EDN3 0.05 

a: The gene has been identified by our method ,LIMMA and Scotto et al. 

b: The gene has been identified by our method and Scotto et al., but not by LIMMA. 

c: The gene has been identified by our method , but not by LIMMA. 

d: by ours and LIMMA (no footnote). 

Table 4.4 Differentially expressed genes identified by LIMMA only. 

Probe.Set.ID Chromosomal.Location Gene.Symbol 

201021_s_at chr20p12.1 DSTN 

201022_s_at chr20p12.1 DSTN 

201053_s_at chr20p13 PSMF1 

202190_at chr20q13.2 CSTF1
a
 

202924_s_at chr20q11.21 PLAGL2 

203650_at chr20q11.2 PROCR 



110 
 

Table 4.4 (cont’d)   

   

Probe.Set.ID Chromosomal.Location Gene.Symbol 

203691_at chr20q12-q13 PI3a 

204869_at chr20p11.2 PCSK2 

205243_at chr20q12-q13.1 SLC13A3
a
 

205286_at chr20q13.2 TFAP2C 

205287_s_at chr20q13.2 TFAP2C 

205296_at chr20q11.2 RBL1 

205557_at chr20q11.23-q12 BPI 

208725_at chr20pter-q12 EIF2S2 

208726_s_at chr20pter-q12 EIF2S2 

209221_s_at chr20q13.3 OSBPL2 

210702_s_at chr20q13.13 PTGIS 

210720_s_at chr20q11.22 NECAB3 

211085_s_at chr20q11.2-q13.2 STK4 

212234_at chr20q11.1 ASXL1 

212349_at chr20q11 POFUT1
a
 

212437_at chr20p13 CENPB 

213799_s_at chr20p13 PTPRA 

214498_at chr20q11.2-q12 ASIP 

215346_at chr20q12-q13.2 CD40 

215707_s_at chr20p13 PRNP 

215822_x_at chr20q13.33 MYT1 

215927_at chr20q13.13 ARFGEF2 

216505_x_at chr20p13 RPS10P5 

217024_x_at chr20p13 SIRPA 

218010_x_at chr20q13.33 PPDPF 

218081_at chr20p13 C20orf27 

218325_s_at chr20q13.33 DIDO1 

218448_at chr20q13.33 C20orf11 

218579_s_at chr20q11.22-q12 DHX35
a
 

218968_s_at chr20q13.2 ZFP64 

219536_s_at chr20q13.2 ZFP64 

220668_s_at chr20q11.2 DNMT3B 

221209_s_at chr20p12.1-p11.23 OTOR
a
 

221890_at chr20q11.21-q13.12 ZNF335 

222044_at chr20q13.12 PCIF1 

222106_at chr20pter-p12 PRND 

222259_s_at chr20q13.2-q13.3 SPO11 

32723_at chr20q13.2 CSTF1
a
 

41469_at chr20q12-q13 PI3
a
 

78047_s_at chr20q11.22 LOC729580 

a: The gene has been identified by LIMMA and Scotto et al. 



111 
 

4.5  Discussion 

Microarray gene expression profiling has been used in biological research to search for 

differentially expressed genes and pathways responsible for complex human diseases. Due to the 

noise and artifacts in the microarray data, data preprocessing has to be conducted to improve 

correlation between the biological signals and measured probe intensities. By applying the 

PDNN model to our data preprocessing step, we explicitly model the underlying mechanisms of 

array hybridization and take the probe binding affinity into account, which has been shown to be 

related to probe intensities. Although gene expression level estimated by the PDNN model could 

represent the true target concentration, the model, just as the other preprocessing algorithms, 

does not provide uncertainty measure in the estimated gene-expression level. In the current study, 

we adopt a two stage model to incorporate the uncertainty in data preprocessing into the DEG 

detection algorithm, and develop a new DEG detection model, the two-stage-LIMMA. The two-

stage-LIMMA 1) first applies the statistical algorithm AS274 to estimate the variance of the 

estimated gene expression level based on the PDNN model, 2) uses LIMMA to estimate the 

variance associated with the DEG detection algorithm, and 3) builds a new test statistic which 

considers both the variance associated with data preprocessing as well as the variance associated 

with DEG detection algorithm.  The new method not only provides the confidence measure for 

the data preprocessing algorithm, but also improves the sensitivity and specificity of the DEG 

detection algorithm, which helps to identify genes and gene combinations that contribute to 

complex human diseases. The findings extracted from microarray can be enhanced by adopting 

novel statistical approaches, as demonstrated here. Through both simulations and Affymetrix 

Latin Square data we have shown that by incorporating the uncertainty in the data preprocessing 

step our method can reduce the number of false positives significantly while keep the false 
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negative comparable to LIMMA. In addition, our method provides a powerful and flexible 

framework to trade-off between sensitivity and specificity by specifying different weight values 

to suit for various needs for biological research.  

Across-array normalization has been widely used for data preprocessing to remove noise, 

artifacts of microarray data. However, such normalization procedure may introduce correlations 

from unrelated samples, which may pose problems when the DEG detection algorithm is applied 

to the preprocessed data. Our proposed method depends on the gene expression level estimated 

from PDNN, a single array approach free of cross-array normalization. Consequently, two-stage-

LIMMA inherits the advantage of the PDNN model, and identifies differentially expressed genes 

fully determined by the individual’s sample, which is free from the issues of cross-subject 

dependence introduced by data preprocessing algorithms.  

Although the DEG detection (i.e. second stage model) of our method depends on 

LIMMA, our Two-stage-LIMMA method differs largely from the LIMMA. As discussed above, 

the LIMMA method takes the estimated gene expression level from data preprocessing step as 

the raw data and it does not take into consideration the variance of the estimated expression level 

and the possible correlation between samples introduced by the data preprocessing algorithm, 

while our new method adopts a single array based data preprocessing algorithm and explicitly 

takes the variability of the data preprocessing step into account. As shown through both 

simulations and Affymetrix Latin Square data, our method outperforms LIMMA in most 

scenarios, especially in the case when there is a large variability in the observed probe intensities. 

In addition, our method is easily adapted to meet different needs of biologists by specifying 

different values of  . For example, if the false positive is a big concern for the researchers, 

could be set at a larger value to control for the false positive. On the other hand, if the false 
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negative is of great concern in the study,  could be set at a smaller value to achieve more 

findings at the expense of increasing false positive slightly. Currently the second stage model is 

built based on LIMMA, but it could be easily adapted to adopt other moderated-t statistics based 

DEG detection algorithm by modifying the variance of the second stage model.  

In conclusion, we have presented a powerful tool for DEG detection. It uses PDNN to 

preprocess the raw probe intensities and incorporates both the variance of DEG detection 

algorithm and the variance of estimated gene expression level into the two-stage model. It 

provides flexible framework for trade-off between sensitivity and specificity to suit for different 

needs for biological research. Our results provide strong evidence that by modeling the variance 

introduced in data preprocessing step can reduce the false positive findings.  
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CHAPTER 5 

CONCLUSION AND DISCUSSION 

The radical breakthrough in biotechnologies has made it possible to simultaneously genotype 

millions of single nucleotide polymorphisms or profile thousands of genes at an affordable cost.  

Benefiting from the high throughput technologies and the completion of the HapMap project[1], 

significant progress has been made in identifying associated genetic and environmental 

determinants, which is of great importance to clinicians, researchers as well as the general public. 

However, the genetic etiologies of complex human diseases, such as coronary heart disease, type 

II diabetes and cervical cancer, remain largely unknown. Findings from studies with high-

dimensional data can be further enhanced by adopting computationally efficient and powerful 

analytic approaches. The development and application of new statistical approaches will help to 

achieve a better understanding of genetic etiology of complex human diseases, and eventually 

promote new diagnostic and therapeutic strategies. In this research, I have proposed three 

statistical methods which are designed to provide accurate genotype calls, to improve the 

understanding of pathophysiological and etiological pathways of co-morbid diseases, and to 

facilitate the identification of differentially expressed genes.  

MA-SNP — A NEW GENOTYPE CALLING METHOD. 

Microarray technologies are subject to many noise and artifacts, such as cross hybridization[2], 

batch effect [3, 4] and genomic wave[5]. Extensive studies have shown that probe intensities of 

oligonucleotide arrays depend on not only the concentration of the target sequence but also the 

binding affinity of the probes[2, 6-8]. Though the physico-chemical properties of probe binding 

between the probe sequence and target sequence can be largely modeled with the probe sequence 
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structure as demonstrated by PICR[2], the complicated hybridization process may also be 

influenced by certain unknown factors, which may, if not properly adjusted for, lead to 

systematic bias of the estimated allelic copy number. The universal genotype criterion used by 

PICR fails to take SNP-specific factors that influence the observed intensities into account, and 

therefore it may lack the capacity to provide accurate genotype calls for all SNPs targeted on the 

array. In addition, the PICR model does not provide confidence measure of the genotype calls, 

which is of great importance for downstream analysis. Without setting aside inaccurate genotype 

calls one may get insufficient or invalid association result. Recently, substantial evidences 

suggest that effect of batch size and composition also affects the genotype calling accuracy and 

lowers the genotype call rate. 

To address these issues, I have developed a new genotype calling algorithm, which is 

built based upon PICR model. Similar to PICR, the new MA-SNP model first estimates allelic 

target concentration through linear regression without pre-processing observed intensities (i.e. a 

cross-array normalization), and makes the inference of genotype calls solely using the estimated 

allelic target concentration based on each individual’s data. Instead of applying a universal 

criterion for all SNPs on the array as PICR, the new MA-SNP method adopts an empirical model 

to estimate the SNP-specific genotype calling criteria, and provides a confidence measure of the 

given genotype calls, which benefits the downstream analysis. Moreover, the proposed method 

models the density of the MA-ratios using a normal mixture model to account for the potential 

batch effect, and by explicitly correcting the potential batch effect the MA-SNP method 

improves the genotype calling accuracy and the genotype call rate. Though the proposed method 

achieves relatively high genotyping accuracy, it can be further improved by introducing a 
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random effect model to correct for the batch effect, especially for studies with small sample size. 

Further investigation is needed to explore the performance of the model.  

To further demonstrate the utility of the proposed method, I apply the proposed method 

to datasets obtained from Wellcome Trust Case Control study to investigate the genetic 

susceptibility loci for coronary heart disease on chromosome 9. The SNPs that have been 

identified by a single locus association analysis with p-value<10
-7 

are located at 9p21.3. All 

SNPs (rs1333042, rs1333048, rs1333049, rs2891168, rs4977574, and rs6475606) except for one 

rs9632884 have been reported with strong association by studies using various techniques [9-17], 

which indicates that the proposed method does not generate many false positive findings. 

THE COMORBIDITY STUDY 

With the increase in genetic findings, converging evidence has revealed that the same genetic 

susceptibility loci could be associated with multiple disease outcomes. For example, both clinical 

and epidemiological studies have reported a high-degree of co-morbidity between bipolar 

disorders and migraine, which could be partially due to the shared genetic variants [18-22]. 

Identifying genetic susceptibility loci contributing to co-morbidity, as well as those loci that are 

unique risk factors to each co-morbid condition is of great importance, as it helps elucidate the 

causes of co-morbidity and promotes new prevention/treatment to co-morbid conditions. The 

relation between co-morbid diseases varies from case to case. To the best of my knowledge, 

there are no statistical methods except for composite phenotype method that are aimed at 

studying co-morbidity. 

To investigate the co-morbidity between complex human diseases, I have proposed a 

multivariate Mann-Whitney approach for co-morbidity analysis. The proposed method utilizes 
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the entire sample, and is capable of capturing shared genetic variants and their possible 

interactions contributing to disease co-morbidity, as well as unique genetic variants for each 

disease outcome. Similar to other Mann-Whitney based methods, it is a non-parametric approach, 

which does not assume a model of inheritance, and is free of the issues of an increasing number 

of parameters. It adopts a forward selection algorithm, which substantially reduces the searching 

space of interaction combinations and allows for high-order interactions.  Through simulations, I 

have shown that the multivariate Mann-Whitney attains a higher or equivalent power to the 

composite phenotype analysis under a variety of disease models, and is more robust under 

different correlation models simulated between comorbid diseases. This feature is important, as 

the current knowledge of disease co-morbidity is limited. Though MMW method achieves higher 

power than the commonly adopted method, it still lacks the capacity of dealing with whole 

genome wide data due to the computational burden. Further studies are needed to propose a more 

computationally efficient method that can deal with millions of SNPs simultaneously.  

To investigate the co-morbidity between coronary heart disease and type II diabetes, I 

apply the proposed method to the data sets obtained from WTCCC. Three-locus and five-locus 

models have been identified for coronary heart disease and type II diabetes, respectively. 

However, no loci are identified for the comorbidity between the two diseases. There are several 

possible reasons leading to this negative finding. First, this study is a candidate gene based 

analysis, and the markers that have not been reported to be associated with either of the diseases 

are not included in this analysis. In addition, no statistical imputation has been conducted and 

any loci that are not targeted by Affymetrix GeneChip Human Mapping 500K Array Set are not 

included in this study. Second, environmental factors such as obesity, physical inactivity and 

family history, play an important role in both T2D and CAD, but they are not measured in the 
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first stage of WTCCC study. As a consequence, the power of detecting loci contributing to both 

diseases may be attenuated.   

A TWO STAGE MODEL FOR DIFFERENTIALLY EXPRESSED GENE DETECTION  

Since the introduction of microarray technology in the mid 1990s, gene expression profiling has 

been used in numerous biological researches to tease apart biological pathways and identify 

genes and joint gene actions contributing to complex human diseases [23-25]. The analysis for 

gene expression microarray usually involves both data preprocessing, which often comprises of 

background correction, normalization and summarization to improve the correlation between 

biological effect and measured intensities[26], and DEG analysis based on the preprocessed data. 

Numerous data preprocessing algorithms have been proposed, but little attention has been paid to 

the underlying array hybridization process, which has been shown to be of great importance to 

obtain accurate gene expression level summary [2, 6-8]. In addition, most of the current DEG 

detection algorithms are built based upon the gene expression summary obtained from data 

preprocessing step, however, the uncertainty in the estimated gene expression level has not been 

carefully addressed, which may lead to false positive/negative findings.  

To address these issues, I adopt a two stage model to incorporate the uncertainty in data 

preprocessing into the DEG detection algorithm, and develop a new DEG detection model, the 2-

stage-Limma. The new method first applies the statistical algorithm AS274[27]  to estimate the 

gene expression level and the corresponding variance of each gene, and then uses Limma [28] to 

estimate the variance associated with the DEG detection algorithm. Finally it builds a new test 

statistics which takes both the variability in the data preprocessing step and the variability 

associated with DEG algorithm into account. The new proposed method not only provides the 
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confidence measure for the data preprocessing step, but also improves the sensitivity and 

specificity for DEG detection. It is also easily adapted to suit different goals of biological 

research by tuning one scale parameter. Through both simulations and Affymetrix Latin Square 

data, I have shown that by incorporating the uncertainty in the data preprocessing step our 

method can significantly reduce the false positive findings while keeping the false negative 

comparable to Limma. Currently the new method can only use PDNN model as its data 

preprocessing algorithm, and further studies are needed to evaluate the performance of the new 

model with different data preprocessing algorithms, such as RMA and GCRMA.  

I further apply the proposed method to study the gene expression profiling for cervical 

cancer on chromosome 20[29]. Out of 571 targeted genes on HU133A array platforms, I have 

identified 106 probes (83 genes) that are differentially expressed when we compared the tumor 

cell with the normal tissues. Among these probes, 13 probes have decreased expression and 93 

probes have increased gene expression level. Most of the identified differentially expressed 

genes belong to several functional groups, such as cell cycle regulation, nuclear function, 

transferase, viral replication, methylation and chromatin remodeling, and endopeptidase 

activity[29]. The findings may help understand the genetic etiology of cervical cancer, and 

facilitate the biomarker identification and eventually lead to new therapeutic strategies for 

cervical cancer to improve the survival rate especially the advanced stage cases.  
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