

# RELATION BETWEEN WIND VELOCITY AND WIND PRESSURES

THESIS FOR THE DEGREE OF B. S.
Robert M. Branch
1931

THESIS

cop.1

Wind pressure





# RELATION BETWEEN TITP VELOCITY AND WIND PRESSURES

A Thesis Submitted to

The Faculty of

MICHIBAN STATE COLLEGE

 $\mathsf{of}$ 

AGRICULTURE THE APPLIED SCIFFICE

Ву

Robert M. Pranch

Candidate for the Degree of Bachelor of Science

June 1931

THESIS

200.1

#### ACKNOSLEDGUENT

The author wishes to gratefully acknowledge the assistance which has been received from Professor C. L. Allen of the Civil Engineering department, Michigan State College, under whose general direction this study and thesis have been completed. Also to thank Tr. E. A. Finney of the Civil Engineering department, Michigan State College, for many helpful suggestions and the use of necessary apparatus.

#### MOMENCLATURE

V---Velocity of wind in M.P.H. of air hitting plate.

V<sub>1</sub>--Manometer reading.

V<sub>t</sub>--Average Velocity for entire Tunnel.

P---Pressure of wind in counds per square inch.

P1--Crass on balance.

D--- Density of Yedium.

K---Constant.

W---Tel tht of Air hitting Plate.

w--- Teight of air in pounds per square foot.

H --- Pressure head.

a--- Cross-section area of air stream.

M--- Tass of air at weight w.

g---Acceleration due to Gravity.

F---Force exerted by air on Plate.

C---Velocity coefficient for plate.

Because the modern tall building frame constitutes one of the most indeterminate structures in common use, in regard to wind stresses, it is of utmost importance to determine a proper uniform wind pressure and its distribution over the surface exposed. These facts are not generally recognized because the very tall building in which wind stresses are of major importance is of comparatively recent origin, and because the maximum forces (mind storms) for which they must be desi ned are of rare occurrence, and therefore, the structure impdequately designed for wind may serve for many years without giving any indication of weakness.

There is a present day aritation favoring the increasing of the allowable working stresses used in the design
of structural steel. This is based on the assumption that
the actual stresses which will exist in the structure can
be calculated within reasonable limits, due to the fact
that steel structures, such as tall buildings, are so indeterminate as far as stresses produced by wind are concerned, that the wing wind velocities and resulting pressures are only approximations. As the height of these
structures increases, these stresses become of major importance, and the determination of the proper uniform wind
pressure is imperative.

The wind volocities published by the United States
Weather Pureau are indicated velocities on the standard

four-cup anemometer, and the three-cup anemometer. The four-cup anemometer has an indicated velocity which is about 20 per cent high. However, the three-cup anemometer which has been used recently gives very accurate readings.

ments that are set to measure the valorities are destroyed by the storms that they are to measure, it is not known what the exact velocities the wind may attain. The following is taken from the Monthly Weather Review, January 1883:

"Summit of Mt. Mashington, M.H., Jan. 3, 1883.

The wind increased to a violent hurricane, breaking off the anerometer at the dial. At the time the instrument was broken, a velocity of 152 mi. per hour was remistered. It was impossible to replace the anexometer during the violence of the storm. In order to measure the rain fall, the observer was compelled to crawl to the rain guame, it below impossible to stand before the force of the wind. The storm continued during the 4th."

From the Bulletin of the American Meteorological Society, December, 1935, the following is taken:

"On February 22, 1886, the mean hourly velocity (at the summit of Mt. "mashington) for 34 hours was lll miles per hour, and in January, 1878, the extraordinary velocity of 188 miles per hour occurred."

During the Mismi hurricane no satisfactory records were secured due to the flot that the apparatus of the Weather Bureau was located on a low building surrounded by tall buildings. The observer estimated the velocity to have been between 110 and 120 miles per hour. An anemometer at Allisan Eospital, on "isli Pasch, only a few miles away was blown down with the maximum velocity recorded as 128 miles per hour.

Some of the high wind velocities on record are as follows:

120 M.P.H. Oct. 18, 1916, Pensacola, Fla.

130 M M M Sept. 8, 1900, Calveston, Tex. (Anerometer was blown down).

130 M M M Aug. 7, 1899, San Juan, P.R.

115 M M Oct. 18, 1216, Yobile, Ala.

105 M M Aug. 20, 1904, St. Saul, Yinn.

98 M M Dec. 23, 1212, New York

98 M M Dec. 23, 1930, Puffalo, M.Y.

Many other velocities exceeding 90 miles per hour have been recorded in different parts of the United States. These are the true velocities as the indicate velocities would appear to be 130 to 130 miles per hour. At times the extreme velocities up to 150 miles per hour might occur.

Wind pressures on large surfaces is usually less per unit area than on small surfaces. This is due to the gusty nature of the wind and also to the fact that the wind acts as a shaft or stream of hir in motion rather than as

the body as a whole moving all ports with the same velocity.

Mr. R. Flening states in "Wind Formulas and Their Experimental Basis":

up, one 3) ft. long and 15 ft. high, and 8 ft. from it a circular plate 1 sq. ft. in area. The maximum pressure registered on the small plate furing the years 1884 to 1890 was 41 lbs. per sq. ft. The large board showed at the same time a pressure of 37 lbs. per sq. ft. The readings for the large board never exceeded 80 per cent of those recorded on the small plate at the same time, and generally were 50 to 70 per cent."

The same thing was noted by Mr. Julius Baire in the St. Louis tornado of May 28, 1876. Part of the approach of the Eads Bridge was demanded during the storm, and Mr. Fairo colculated from the moment of stability, the overturning force exerted by the wind, also for a brick chirney and a grain elevator which was 115 feet high, and 200 feet long. In his conclusions he states the following:

\*It gave evidence that mind pressure existed at least equivalent to or prester than 20 lbs., 50 lbs. and 85 to 90 lbs. per sq. ft., over considerable areas. Whatever the actual distribution may have been, the effects were those of such pressures uni-

formly distributed over the areas of the respective structures. These pressures were measured by their results in exactly the same manner in which they are ordinarily assumed to act, with the consequent elimination of all uncertainties usually involved in readings of pressure guages or deductions from anemometer records, and the are to that extent positive and definite.

From this evidence it would be safe to mive some reduction to the uniform pressure as the area exposed increases. A copy of the curve in which Mr. Paire plots the colculated pressures against their respective areas is given with this discussion. (Figure II).

According to the Mentonic Theory, V varies as P, or P varies as dv2, as stated in Gir Isaac Newton's arrest masterpiece, "Philosophia Naturalis Principia "athematica", the revised edition, Pook II, Section VIII, Prop. XLVIII.

The velocities of pulses propagated in an elastic fluid are in a ration compounded of the subduplicate ratio of the elastic force directly, and the subduplicate ratio of the density inversely, supposing the elastic force of the fluid to be proportional to its condensation." Or in other words:

v varies as  $\frac{P}{D}$ , or P varies as  $dv^2$ .

Density of air is so near a constant that it may be

considered such for all practical purposes. Hence, we have the equation:

The cost difficult part of using this equation for practical calculations lies in determining the constant (K). Deriving theoretically from the Newtonic Theory, we have as follows:

For Air at 33 degrees F. and baronetric pressure of 750 mm.

W = .0807 lbs./ cu. ft.

P - Wh

 $h = \sqrt{2}$ 

P =  $\frac{\pi v^2}{2g}$  =  $\frac{.0807 \cdot v^2}{32.2}$  = .00126 $v^3$  (V is in ft./sec.) Changing (V) to miles per hour from ft. per ecc.:

P = .00277<sup>2</sup>

Thus we have as a constant, .0007. Nowever, this is purely theoretical and is based on the assumption that air is acting as a liquid.

From the "Design and Construction of Tetallic Bridges" by Burr and Falk:

W - Wt. of fir hittin target

w = Wt. in los./cu. ft.

V = "elocity in ft./3ec.

a \_ Area of Crosssection of wind stream

Then, W = WaV

M = Yass of air of wt. W

g - Acceleration due to gravity

Then  $F = Mv = \frac{wv}{g} = \frac{wav^2}{g}$ 

Let a = 1 sq. ft.

W = .0907

Replace v by V (miles per hour), we have:

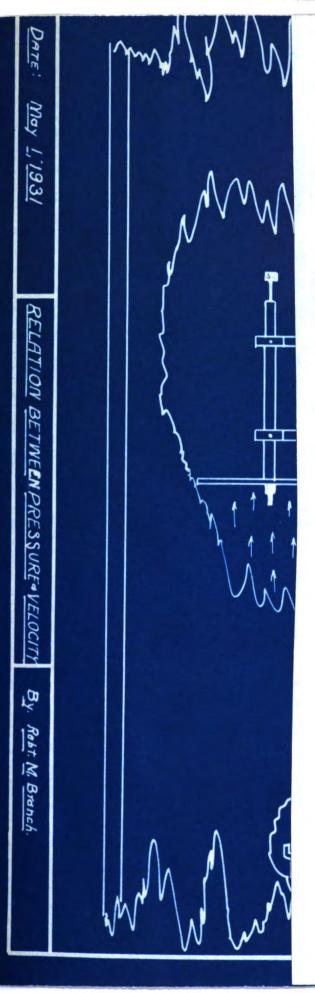
 $F = .0054 v^2$ 

This is known as Rankine's formula. This has for its constant .0054 which is exactly double that of the theoretical constant of the Newtonic Theory and it is readily seen why there is so much controversey over the correct value for this constant. The reason for this double value is that a cushion is formed in front of the plate and a suction in back of the plate. The first formula does not take this into consideration.

Smeaton has experimented a great deal on wind tests and gives as his formula  $P = 1/300 \text{ V}^2$ . This constant is very near the Newtonic constant. However, some of the most careful experiments in recent years give constants varying from .0033 to .004 with many values of from .0017 to .007. This tremendous range is due to perhaps different conditions and instruments of varying accuracy. The U.S. Westher Bureau takes into consideration the effect of barometric pressure and their formula is  $P = .004 \text{ B/30 V}^2$ , where B is the barometric reading.

Along with the stury of various formulae of previous experimenters, a very careful leboratory study was made of wind pressures and their corresponding velocities. The

author was very fortunate in having access to a wind tunnel and very accurate velocity instruments, thanks to the generosity of Mr. E. A. Finney of the Civil Engineering department of Michigan State College, who is the owner of the appearatus.


A rod was suspended from two pivots on top of the wind tunnel, by thin metal straps. In this way the rod was always in a horizontal position as shown on Plat I. Masonite plates were made of different known areas and were made so that they were interchangeable on the rod, and always in a plane perpendicular to the rod. Monce, they were in a vertical position.

The forward strap had an are extension which transferred the force to the left-hand pen of balance scales. These lever ares were so constructed that the force on the plate was transferred to the scales so that the mrams on the scales were equal to the total wind pressure on the plate. A free body diagram of the forces and moment arms are shown on Plate II.

By means of ration curves, the total force on the plate (in means) is converted to lbs./sq. inch, and the average tunnel velocity, (measured in units on the manometer) to the average velocity on the plate by multiplying by the constant (C). This in turn is changed to miles per hour by means of another ratios curve.

The manometer gives the average velocity of the entire tunnel, but the plate is suspended at the center of the tunnel and the velocity at the center is much higher than

|          | Dane:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|          | Dars - May 4, 1931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| sel soh. | 931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
|          | REW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
|          | 1700 BET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
| t .      | Area A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | # JF 6.3                                      |
|          | In So. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
|          | THE RESERVE THE PROPERTY OF THE PARTY OF THE | THE RESIDENCE OF THE PERSON NAMED IN COLUMN 1 |
|          | - Ret. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sae A                                         |
|          | \$ mach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | diameter of the second                        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F,9II.                                        |



FIGI.

Manet

the average tunnel velocity. To determine the exact relationship between the average velocity of the tunnel and the average velocity of the air striking the plate, three test rans were made over the surface of the plate, each at a different tunnel velocity. The first test was made with a tunnel velocity of 7.8 M.P.H. giving an average of 10.95 M.P.H. for the air striking the plate. Dividing the plate velocity by the average tunnel velocity gives the velocity coefficient for the plate. This coefficient derived from all tests mas found to be practically a constant, the average being (1.4003) or practically (1.4). (See Table I) Multiplying the average tunnel velocity by this coefficient gives the correct average velocity over the entire plate which also is equal to the uniform wind load on this surface.

Tests were made on a plate six inches square or one quarter of a square foot. The velocity and corresponding pressure were measured and recorded with variations between 7 m.p.h. and 23 m.p.h. This gives an average constant for the formula  $P = KV^2$ , of .003614. The average constant (K) for the first test was .00358 and for the second test, .003625. The constants for all trials were between .0032 and .004, most of them being very close to .0036.

Curves were plotted with the velocity in M.P.H. as the abscissa and the pressure in lbs./sq. ft. as the ordinate. These curves were very clearly curves of the second power, agreeing with the equation  $P = KV^2$ .

# TABULATED DATA TOR TIMESTEE THE POINT OF AVELAGE

#### WIND MEROCITY

TABLE I

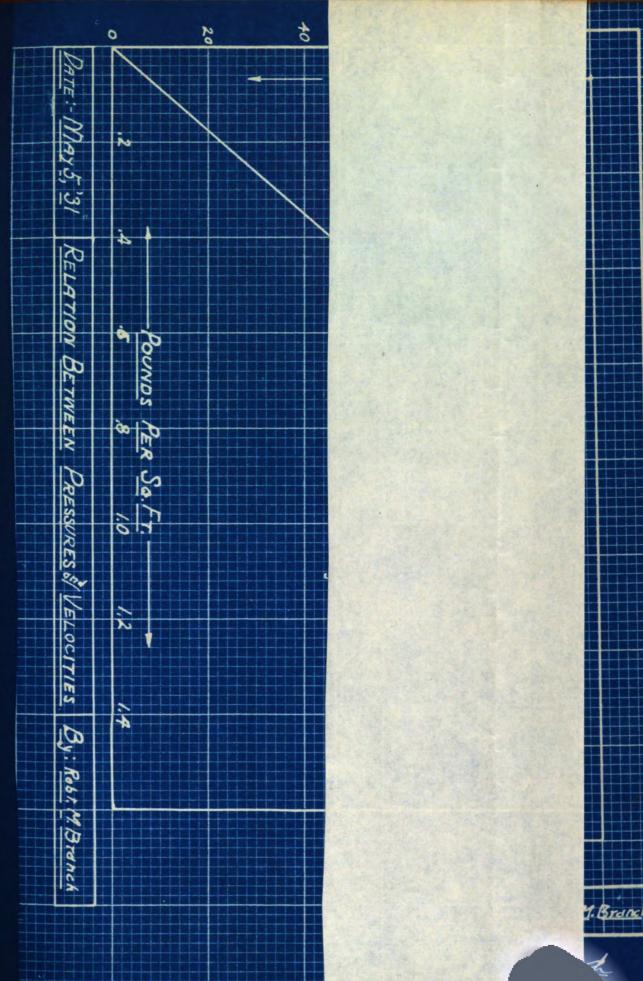
|       |                     |       | Tunnel<br>= 7.8      |              | Tunnel 10 mph. |              |                |
|-------|---------------------|-------|----------------------|--------------|----------------|--------------|----------------|
| Trial | Dist. Down Cn Plate |       | <u>ж.Р.Н</u> .       | Man.<br>Rdg. | M.P.H.         | Men.<br>Rug. | <u>м.Р.Н</u> . |
| 1.    | 0 *                 | •03   | 6.4                  | .04          | 9.0            | .045         | 9.5            |
| 2.    | 1*                  | .03   | 7.8                  | .05          | 10.0           | .06          | 11.1           |
| 3.    | 3 <b>n</b>          | .04   | 9.0                  | .06          | 11.1           | .08          | 13.8           |
| 4.    | 3"                  | .05   | 10.0                 | .08          | 13.8           | .12          | 15.7           |
| 5.    | 4 *                 | .09   | 13.6                 | .13          | 16.5           | .16          | 18.2           |
| 6.    | 5#                  | .10   | 14.2                 | .16          | 18.2           | .19          | 19.7           |
| 7.    | 6#                  | .13   | 15.7                 | .30          | 30.3           | .34          | 22.2           |
| Velo  | city T              | otals | 76.7                 |              | 97.9           |              | 109.2          |
| Divi  | ding b              | y 7:  | 10.95                |              | 13.98          |              | 15.59          |
|       | #                   | Av.   | V <sub>t</sub> 1.402 |              | 1.398          |              | 1.401          |

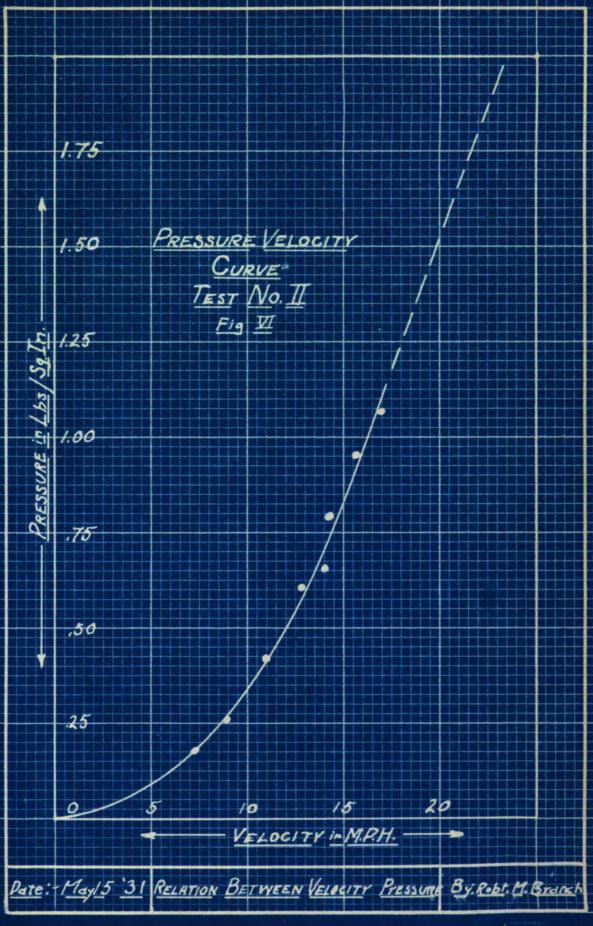
This gives a constant with an average of 1.4003, or practically C = 1.4.

tunnel velocity (v<sub>t</sub>) must be multiplied by this constant (C). The reason for this chan e in velocities is due to the friction along the sides of the tunnel and also to the fact that the tunnel is so constructed that the inertia of the air tends to throw the path of highest velocity near the bottom of the tunnel.

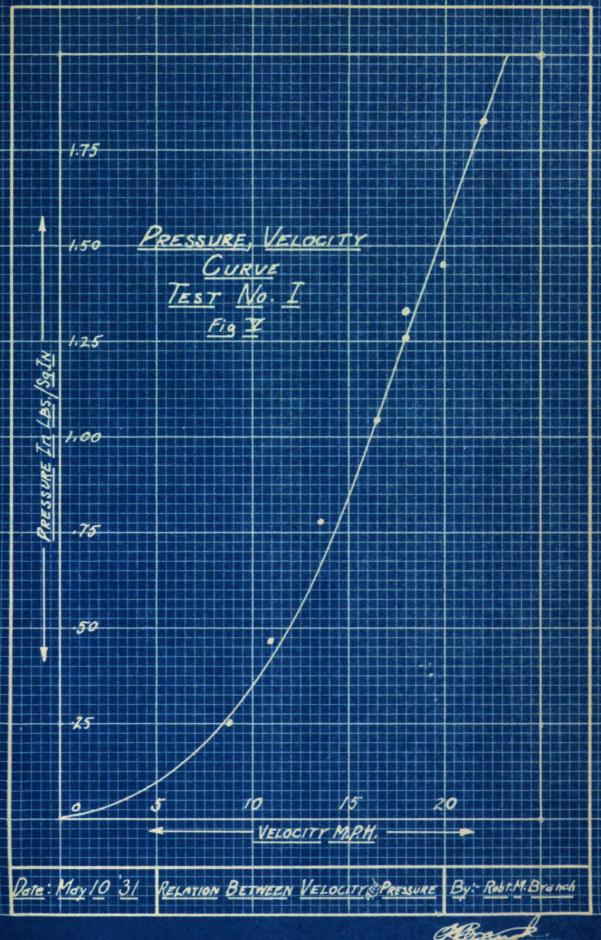
## TABULATED DATA

II FIGAT


| No.<br>Trial | Pn<br>Grans.<br>on<br>Bal. | P<br>"/sq." | Vi<br>Menon.<br>Rag. | yt.  | ν <sub>ε</sub> × σ | Ų <sup>-3</sup> | (P)                    |
|--------------|----------------------------|-------------|----------------------|------|--------------------|-----------------|------------------------|
| 1.           | 29                         | .25         | .02                  | 3.4  | 8.96               | 80.2            | .0032                  |
| 2.           | 54                         | .47         | .03                  | 7.8  | 10.93              | 119.0           | .00393                 |
| 3.           | 89                         | .79         | .05                  | 10.0 | 14.0               | 196.0           | .00398                 |
| 4.           | 91                         | .80         | .06                  | 11.1 | <b>1</b> 5.55      | 243.0           | .00333                 |
| 5.           | 136                        | 1.10        | .08                  | 13.8 | 17.93              | 331.0           | <b>.</b> 0035 <b>3</b> |
| 6.           | 133                        | 1.17        | .08                  | 12.8 | 17.93              | 331.0           | .00375                 |
| 7.           | 144                        | 1.26        | .10                  | 14.3 | 20.03              | 403.0           | .00315                 |
| 8.           | 183                        | 1.61        | .13                  | 15.7 | 23.05              | 486.0           | .00333                 |


TABULATED DATA

### TARLE III


| No.<br>Trial | P <sub>1</sub><br>Orans<br>Oa<br>Bal. | P<br>#/sg.# | Vi<br>Manon. | T.p.t | v <sub>t</sub> x c | Λ <sup>3</sup> | (Ag)<br>(B)<br>K       |
|--------------|---------------------------------------|-------------|--------------|-------|--------------------|----------------|------------------------|
| 1.           | 19                                    | .17         | .015         | 5.25  | 7.35               | 54             | .00315                 |
| 3.           | 30                                    | .365        | .03          | 6.4   | <b>គ.</b> 96       | 80.1           | .30333                 |
| 3.           | 48                                    | .43         | .03          | 7.8   | 10.93              | 110.5          | .0035                  |
| 4.           | 50                                    | .44         | .03          | 7.8   | 10.93              | 119.5          | .00338                 |
| 5.           | 70                                    | .615        | .04          | ອ.ວ   | 13.6               | 159.           | .0038 <b>5</b>         |
| 6.           | 74.2                                  | .65         | .05          | 10.0  | 14.0               | 196.           | .0033                  |
| 7.           | <b>5</b> 0                            | .79         | .05          | 10.1  | 14.12              | 200.           | .00394                 |
| 8.           | 110                                   | .965        | .06          | 11,15 | 15.6               | ડેેેુ3.        | <b>.</b> 0039 <b>2</b> |
| 9.           | 123                                   | 1.07        | .07          | 13.0  | 13.8               | 282.           | .0037                  |

BTION BETWEEN PRESSURES VELOCITY BY ROST MBHOLD 35 g. Bransl









Maran

There has been a great controvers, over the effect of the slope of an inclined surface on the side thrust of the wind load, although many experiments have been used along those lines. While the pressure on vertical surfaces is taken normal to the exposed surface and the intensity is equal to the assumed wind pressure, for non-vertical surfaces the pressure is also considered to be normal to the surface but of a much lower intensity, that is, for angles up to 60 degrees. From sixty degrees to the vertical position, the intensity is considered to be equal to the assumed wind pressure.

One of the first accurate tests and studes was made on this subject in 1903 by Tiberus Cavallo F.R.S. in his book entitled "The Plement: of Matural or Experimental Philosophy", and in the chapter "Of Air in Motion Or Of The Wind", he writes:

"The forces of a fluid medium on a plane cutting the direction of its motion with different inclinations varies successively as the squares of the sines of these inclinations."

This same law is derived by Coofford in the "Theory of Structures", in the following manner:

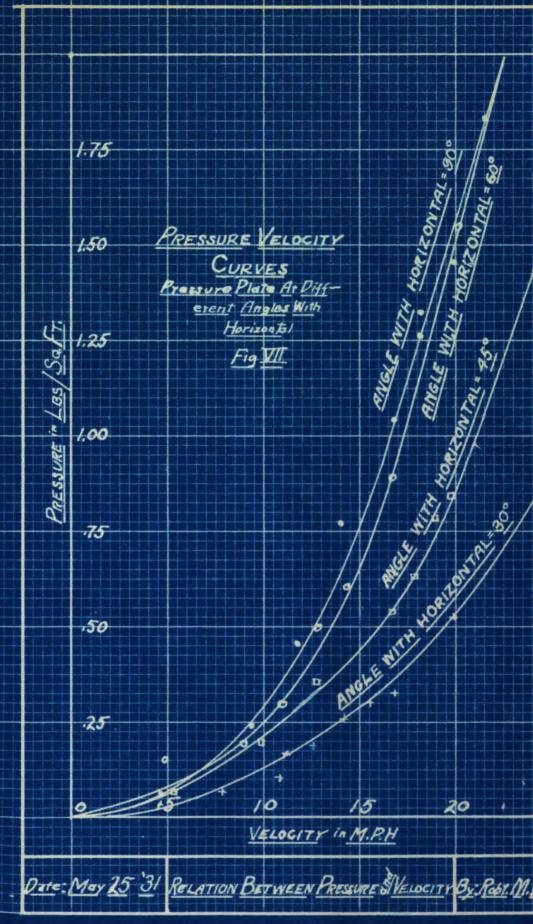
"Let the wind be assured as clowing horizontally arginst the surface (ab) or height (bc) and govern an angle (i) with the horizontal. It to a leagth be one foot, perpendicular to the class of the paper. (See Figure 9).

Let P = intensity per squ re foot of the horizontal wind force on a vectical curface.

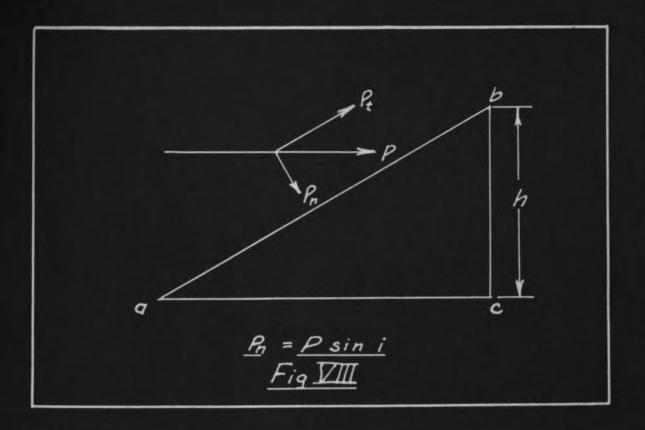
Pn= intensity per square foot of nor al wind force action on surface (ab).

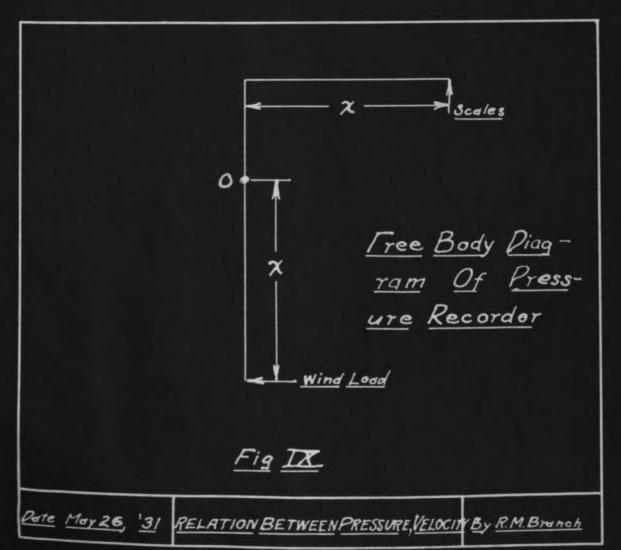
P+ = intensity per square foot of the tenrential force acting on surface (ab).

The total horizontal pressure on surface (ab) then equals Ph.


The normal compound of this prossure - Ph sin i The intrasity of the normal component - Ph sin 1

Aut en - h sin i


Movever, this formula mixed lower values than found in actual practice because it wakes as allowance for the suction that probably exists on the minimum of all e of the plate, and also the cushion on the lee and side. This also assumes that the sind bloos in on b rizoatal plane, which is not a practical condition.


Some very care, ul experimenta yere mode by Colonel Duchemin, a French Army Officer, who made his investigations in 1829. These were vericied by S.P. Lan lev in 1880. Langley varies only 3 per cant with Duchesin. The result of their studies is the formula that is considered to be the best empirical formula in use tod y:

$$P_n = \frac{P - 2 \sin i}{1 \sin^2 i}$$



Alband





a Branch

TABULATWO DATA

TABLE IV

Angle with Corizontal = 300

| Trial | Pl<br>Grans On<br>Polance | P<br>#/99." | Vinori. |       | V x C |
|-------|---------------------------|-------------|---------|-------|-------|
| 1     | 7                         | .03         | .01     | 3.5   | 4.9   |
| 2.    | 10.5                      | .09         | .03     | 7.P   | 10.83 |
| 3.    | 31.0                      | .195        | .04     | 9.0   | 13.6  |
| 4.    | 30.0                      | .965        | .05     | 10.1  | 14.14 |
| 5.    | 34.0                      | .30         | .06     | 11.15 | 15.6  |
| 3.    | 27.0                      | .226        | .07     | 12.0  | 13.8  |
| 7.    | 30 <b>.</b>               | .525        | .10     | 14.0  | 13.9  |

TABULATED DATA

TABLE V

Angle With Forizontal = 45000

| Triel | P <sub>l</sub><br>Grams On<br>Balance | P<br>∦/3q. • | Vinon.<br>Rdg. | yt <sub>H</sub> . | ν<br><u>ν, x c</u> |
|-------|---------------------------------------|--------------|----------------|-------------------|--------------------|
| 1.    | 29.5                                  | .23          | .03            | <b>7.</b> 8       | 10.93              |
| 2.    | 40.0                                  | .35          | .04            | 9.0               | 10.6               |
| 3.    | 53.5                                  | .47          | .08            | 11.15             | 15.6               |
| 4.    | 61.0                                  | .54          | .07            | 12.0              | 13.8               |
| 5.    | 73.0                                  | .64          | .08            | 12.8              | 17.9               |
| 6.    | 90.0                                  | <b>.7</b> 8  | .09            | 13.5              | 18.9               |
| 7.    | 95.0                                  | .835         | .10            | 14.2              | 19.9               |

TABULATED PATA

TABLE VI

Angle With Morizontal - 600

| Trial No. | Plance | #/sq. in. | <u>vanom.</u><br>Idg. | v.P.н. | V <sub>t</sub> x C |
|-----------|--------|-----------|-----------------------|--------|--------------------|
| 1.        | 18.0   | .13       | .01                   | 3.5    | 4,9                |
| 2.        | 83.0   | .13       | .03                   | 6.4    | 8.96               |
| 3.        | 33.0   | .29       | .03                   | 7.8    | 10.92              |
| 4.        | 58.0   | .51       | .04                   | 9.0    | 13.8               |
| 5.        | 70.0   | .32       | .05                   | 10.1   | 14.14              |
| 6.        | 100.0  | •88       | .07                   | 13.0   | 13.8               |
| 7.        | 120.0  | 1.55      | .10                   | 14.2   | 19.9               |

In conjunction with the experience on the clate in a vertical positions, tests were unde on the alete in non-vertical positions. Three tests were run at 300, 450, and 600. The velocity was varied from 4 to 31 dilease hour, and the velocity and pressure were recorded. The these values the pressure in loines per square foot of surface and corresponding velocity in miles per hour were calculated.

ity and the pressures for e ch of the different andles of the state. These curves very clearly show the decrease in the intensity due to the chance in the such rade by the surface with the horizontal. Also, they very clearly prove that the intensity for andles of sixty we mean an arrester, should be equal to the supposed mind long; the curve for sixty decreas is very little different time that for 90 degrees.

#### conciduitent

Although this study has been alle under ideal conditions the results are very rearly that which would be found in practically all practical work. The constants derived experimentally about with previous studies on this study. The constant for the formula:  $P = KV^3$  is found to be .003014, while the usual constant is taken as .004.



FIGURE 10 -- PRESSURE RECORDER

This mives a slift factor of sofety which the comineer of should always use in his computations.

There is not sufficient data on visit velocities to base definite conclusions as to the proper uniform load on the exposed surface for desim. However, the results for the last twenty-five years seem to indicate that 30 pounds per square foot is sufficient to rive the required fact coll safety for most of our senere wind storms. "r. Baier writes in his paper on the St. Louis tormado:

"Juch of the destruction in 3t. Louis was undecubtedly caused by an intensity of wind pressure that it would be neither possible nor expedient to provide against in ordinary structures, but much of it was also sup to weak construction."

In the first part of the elabteent, sentury Cavallo wrote:

"A creat cany more experiments out to instituted by scientific persons before the subject can be sufficiently elucidated."

This same thought certain vitales place to boy; although man studies have been as tell this force, desimers still have the same difficulties to contend with. These are now increase; may-fold becase of the prestor differes and his har attaces now constructed.

Mr. Tlexing in 1313 wrote:



FIGURE 11 -- WIND TUNNEL

"Tructures have long been decimed with satisfactor, results to withstead wind pressure. The
bracing at times say have been excessive, but in the
absence of better happier as an time subject, ensineers
connect redically depent from proceed practice."

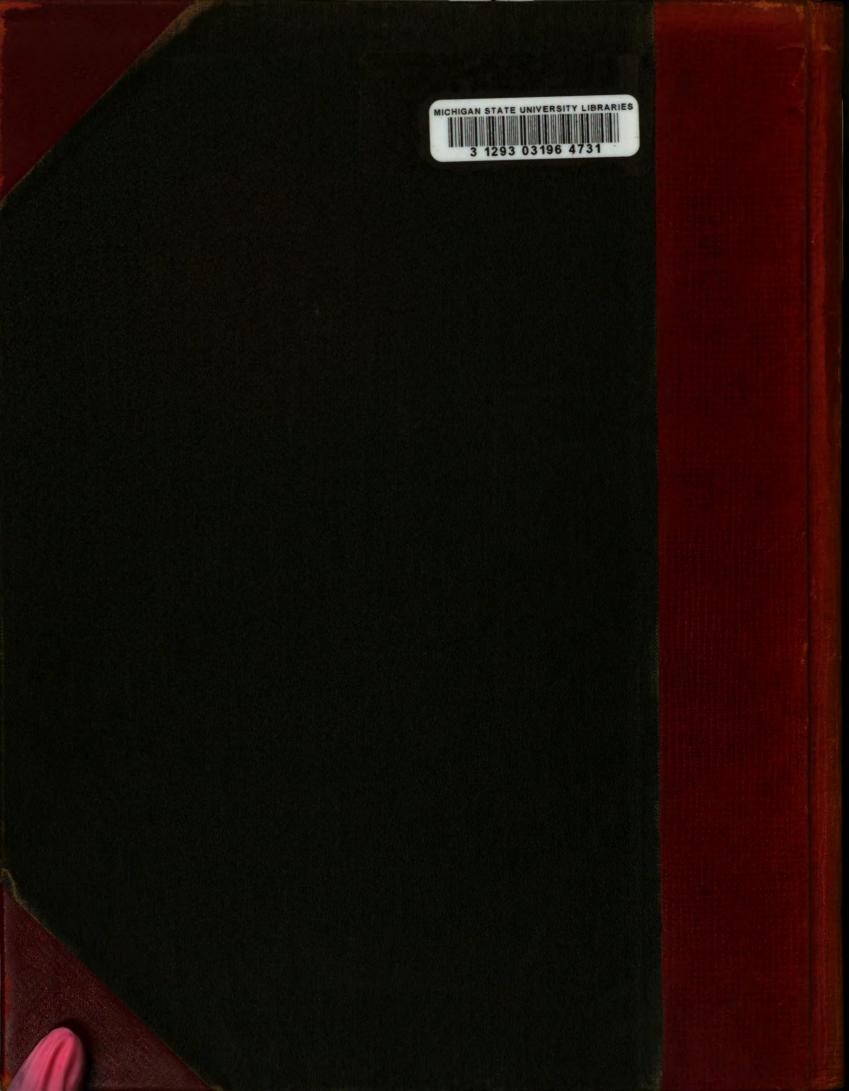
Since ir. Flexing prote this orticle, we have had several very severe disasters due to the wind. Undoubtedly many of these disasters would have been exerted if the proper uniform wind look had been used in design.

In all differ the minimum wind load should not be less than 30 points per square foot, and in the tornado zones a minimum of 35 points per square foot of surface should be used. Some of the low uniform pressures used in building design are as follows:

20%/st.ft. in Atlanta, Fouton, Evensville, Vehson, Vista, Richmond, and Techna.

25%/sq.ft. in Pittrburg and Ocha.


While all other cities flot the subborder reports on use 30 points per square foot, it is note so difficent that "ised has only 30 points for the desimination, and this city is the one that has suffered the most in the history of this country." Mr. W.T. Dawly, assistant professor of Applied Dechanics at Fansas State A rigultural College, recommends using 35 younds per square foot, in all building desim, in all cities. This is very probably high for many cities, but from the results of this study it seems that


velocities of 90miles per hour should be designed for, which from the formula harived,  $P = .003314 \text{ y}^3$ , gives a pressure of 30 pounds per square foot, and subsequently in some cities in the termination, velocities of 98.5 M.P.M. should be designed for, giving the pressure of 35 pounds per square foot.

#### BIBLIOGRAPHY

- 1. "Wind Forces" --- Engineering Mews Record, March 20, 1928
  Professor E. E. Dawley.
- 2. Framed Structures and Girders --- Tarburg.
- 3. "Wind Formulas and Experimental Basis" --- For incering News, January 23, 1915; R. Fleming.
- 4. "Tind Pressure in the St. Louis Tornado"---Trans. Am. Soc. Civil Engrs., Vol. 37, Pame 221; Julius Bair.
- 5. "Practicel Design of Wind Bracing" --- American Institute of Steel Construction, Inc.; Clyde T. Morris.

ROOM USE ONLY



