\I‘iltlhl \ I WW!“ I I ‘Ilil _____—— — — ‘1 WI! \ l 401 mum PULVERlZED SILICA AS AN ADMIXTURE IN CONCRETE AND MORTAR Thesis for ’the Degree of M. 3. MICHIGAN STATE COLLEGE Alfred H. Leigh 1940 i Hairs lvru if, I |il||la.a’ ’ [Ills-.4... PULVERIZED SILICA AS AN ADMIXTURE IN CONCRETE AND MORTAR by Alfred Earle Leigh A Thesis Submitted to the Graduate School of Michigan State College of Agriculture and Applied Science in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE Department of Civil Engineering 19h0 TH E515 PREFACE Acknowledgement is made to Professor C. L. Allen of the Department of Civil Engineering, Mr. E. A. Finney of the Michigan State Highway Department and Mr. W. C. Carlisle of the Toledo Vitrified Brick Company for help and advice offered in developing this problem. A. H. L. East Lansing, Michigan December 19h0 1 a} . -» - (”3 $21..) L) (g Pulverized Silica as an Admixture in Concrete and Mortar Introduction While history presents evidence of the use of cementing materials in structural work several thousand years ago, portland cement as now known is a comparatively new product. First accredited to Joseph ASpdin in the year 1824, portland cement was first imported into the United States about the year 1865. There- after its manufacture and use increased rapidly until at the present time, its production has become a major and essential industry. Along with the rapid increase in plant output, there has been a vast improvement in the quality of the cement itself. This has been due largely to a natural outgrowth of the competition for business among the various manufacturers, each striving to perfect his own product through individual research in his own plant. Such a policy at first led to separate specifications being set up for each of the different brands of cement. Later through group research, these were gradually eliminated until at the present time there are minimum Specifications to be met by all manufacturers, if their product is to be approved. Parallel to the growth in the cement industry has been the increase in the use of portland cement concrete in structural, - 2 _ highway and other fields. Here again, research has played an important part in the increased use of concrete, with organizations and individuals constantly endeavoring through laboratory and field experimentation, to improve the quality of the product. Originally the one requirement of good concrete was considered to be strength, and much.research was done along this line in the search to find a means of producing concrete that would have the required job strength upon proper curing. Various methods of proportioning, such as the use of minimum voids, sieve analysis and maximum density curves of the aggregates, surface areas, water cement ratio and mortar voids determinations, were developed and used in actual practice. Along with these new methods of pro- portioning, came extensive investigations into the question of proper aggregates to be used for best results. This led to the development of standard tests and better control of the aggregates used in the concrete. Today however instead of one requirement for good concrete, there are four requirements, the durability, the workability, and economy of the concrete being considered of as much importance as the strength on any given job. These new requirements have led to fUIther research.in fields that had until then been neglected or unexPlored. One such field of research that has _ 3 - been neglected until the last decade, is the use of admixtures. An admixture is usually understood to be a finely divided inert material, that is added to the concrete mix in either a dry or liquid state. In reading reports of earlier investigations, one may find records of various fine materials such as chalk, mica, sugar, magnesium, lime, soda and other substances being used in the attempt to retard frost action or improve the strength.of the concrete. The reader should remember in comparing results, that the early cements were not the same product that is available today. The same tests repeated with present day cements might give entirely different results. While in a few cases the data obtained in these investigations showed some strength advantages, the general result seemed to indicate that admixtures led to a decrease in concrete strength. As the cements improved, later tests along the same line verified this impression and the use of admixtures was limited in practice to small additions up to 5 percent by weight. There the in- vestigations stayed until the question of durability and workability of concrete was recognized as being of major im— portance. Purpose In the last decade, many organizations and individuals began again to study admixtures with the idea that although -4- the strength of the concrete might be decreased, there might be some advantages with.regard to the durability or the workability of the concrete. Recent studies tend to confirm this view for a few materials, but much more work has to be done before complete data is obtained. It was with the idea of increasing the know- ledge of the subject of admixtures, that this investigation of the use of pulverized silica dust as an addition in concrete was undertaken. Since the study was limited by time and equipment available, the data obtained should not be considered as complete. There are many lines of investigation using silica dust as an admixture, that still might be studied. If the results of this research add anything to the present information on the subject of concrete, the purpose of this thesis will have been fulfilled. Materials The materials used in this investigation were the ordinary ingredients of concrete, portland cement, sand and gravel,and in addition pulverized silica dust. A brief description or analysis of each follows. Pulverized silica dust: the dust was obtained from the Toledo Vitrified Brick Company of Toledo, Ohio, through the courtesy of Mr. W.C. Carlisle. - 5 - *Specific gravity - 2.65 - 2.67 *Unit weight - 103 #/c.f. (Comparedto 94# for cement) Fineness - Passing 50 mesh - 99% " 100 mesh - 97% u 200 u _ 82% *Chemical analysis: Silica 86.15% Alumina and Titanium Oxide 3.78% Calcium Oxide 2.98% Iron Oxide 2.20% Sodium Oxide 0.95% Magnesium Oxide 0.61% Loss on Ignition 2.92% * This data was obtained from Mr. Carlisle of the Toledo Vitrified Brick Company. Portland cement: the Peninsular brand was used and obtained from the stock of a local dealer. This cement met the physical tests as stated in the A.S.T.M. specifications. Aggregates: washed gravel and sand were obtained locally from the pits used in local work, No attempt as made to use an 'ideal aggragate, as it was desired to obtain results that would be typical of field conditions. The gravel contained a considerable quan quantity of hard absorbant sandstone common in the local pits. Two different sands were used, one in the concrete mixes and the other in the mortar mixes. Sieve analysis of the aggregate gave the following results. Gravel Sieve Total % Retained % Passing 1%" o 100 1 n 14 86 3/1." 49 51 1/2" 70 30 3/8" 83 17 1/4" 97 3 I Fineness Modulus of 7.3 Concrete Sieve Total % Retained % Passing Sand #4 3 97 #8 14 86 #16 27 73 #30 42 i 58 #50 67 33 #100 93 7 Fineness Modulus of 2.5 Mortar Sieve Total % Retained % Passing Sand #4 o 100 #3 1 99 #16 8 92 #30 29 71 #50 74 26 #100 97 3 Fineness Modulus of 2.1 - 7 - Procedure When the problem was started, it was decided to work with concrete mixes. This was later changed to mortar mixes when some difficulty was encountered in the concrete tests due to the pre- sence of what was believed to be sandstone in the coarse aggregate. It was felt that any results obtained with the mortar mixes would also hold true for the concrete provided the coarse aggregate was clean and sound. The work done on the problem was done in three groups of tests as follows. Series One:- In this group, 6" by 12" concrete cylinders were tested for compressive strength at the following ages, 3 days, 7 days, 28 days, 3 months, 6 months and 1 year. The pulverized silica dust was used in the concrete mixes as a replacement for a portion of the cement on an absolute volume basis, the percentage varying from 0% to 50% for the different mixes. The control mix, which contained no silica dust, had a water cement ratio of 0.8 or 6 gallons per sack of cement. In all the other mixes, the same quantity of water was used, the only change in the mix being a substitution of silica dust for part of the cement. This had the effect of changing the water cement ratio from 0.8 or 6 gallons per sack for the control mix to a maximum of 1.6 or 12 gallons per sack for a substitution of 50% silica dust for cement. The - 3 - .mixing of the concrete was done by hand in batches large enough to make up six cylinders. The cement, silica dust and sand were first mixed dry, the water was then added and finally the coarse aggregate added to the mortar. Three separate batches of each mix were made at different times, giving three cylinders to be tested at each age. After molding, the concrete was left in the forms for 24 to 36 hours, then removed, weighed and placed in the moist room for curing. At the time of testing, each cylinder was removed from the moist room, surfaced dried, weighed and then subjected to a compression test. All cylinders were tested in a 200,000 . pound Watson-Stillman hydraulic machine. The following table gives the pr0portions by weight of the materials used in the various mixes of this series. Mix : Cement : Silica : Sand : Coarse : water Aggregate: Control : 25.4#- : 0.0 : 64# : 94# : 13.53# 10% Sub. : 22.90# : 2.16# : 64# : 94# : 13.53# 20% Sub. : 20.35# : 4.32# 64# z 94#: : 13.53# 30% Sub. : 17.80# : 6.48# : 64# : 91.# : 13.5%! 40% Sub. : 15.25# : 8.64# : 64# : 94# : 13.53# 50% Sub. : l2.70# : 10.80# : 64# : 94# : 13.53 - 9 - Series Two:- A study of the strength tests of the first group will Show that there are large variations in the results. It was believed that the coarse aggregate was the cause of this condition to a great extent and therefore it was decided to run a second series of strength tests using sand mortar cubes 2" square. As before, the control mix had a water cement ratio of 0.8 or 6 gallons per sack of cement. The silica dust, however, was used in this case as a replacement for the cement on weight percentage basis, varying from O % to 50 %. The water was held constant for all mixes, which.resulted in the actual water cement ratio varying from 0.8 or 6 gallons per sack in the control mix, to 1.6 or 12 gallons per sack in the mix containing a 50% replacement of the cement with silica dust. A companion set of cubes was also made up in each case, using the same reduction in the cement as used in the silica mixes, but replacing the cement with a like amount of sand instead of silica dust. The cubes were made up in batches of six, one each to be tested at 3 days, 7 days, 28 days, 3 months, 6 months, and 1 year. The mortar was left in the molds for 24 to 36 hours then removed, weighed and placed in the moist room to cure. As a flow table was not available the Vicat apparatus was used in an attempt to measure relative consistency of the mortar mixes. The method - 10 - followed was that used for normal consistency of cements. At the time of test the cubes were removed from the moist room, surfaced dried with a cloth, weighed and then given a compression test. All cubes in this series were tested in a 50,000 pound Olsen machine. The following table gives the proportion of the materials used in each mix by weight. Mix Cement Silica Sand Water Control Mix 1000 gr. 0.0 2700 gr. 556 gr. 10% Silica Sub. 900 gr. 100 gr. 2700 gr. 556 gr. 10% Sand Sub. 900 gr. 0.0 2800 gr. 556 gr. 20% Silica Sub. 800 gr. 200 gr. 2700 gr. 556 gr. 20% Sand Sub. 800 gr. 0.0 2900 gr. 556 gr. 5 % Silica Sub. 700 gr. 500 gr. ‘ 2700 gr. 536 gr. 30% San Sub. 700 gr. 0.0 5000 gr. 556 gr. 40% Silica Sub. 600 gr. 400 gr. 2700 gr. 556 gr. 40% Sand Sub. 600 gr. 0.0 5100 gr. 556 gr. 50% Silica Sub. 500 gr. 500 gr. 2700 gr. 556 gr. 50% Sand Sub. 500 gr. 0.0 5200 gr. 556 gr. - 11 - Series Three:- In order to continue the study of the effect of pulverized silica dust with cement, an additional number of 2" cubes were made up. The general method followed in making the . cubes was as described for the preceding series. While the same mix proportions were used in each case, the materials were increased proportionately in each batch to allow twelve cubes to be made instead of six. As before the Vicat apparatus was used to get the relative consistency of the different mixes. The cubes in this series were tested in the following manner. (a) Compressive strength tests were made on moist room cured cubes at ages of 3 days, 7 days, 28 days, 3 months and 6 months as a check on the results of the second series. (b) Compressive strength tests were made on cubes that were cured in the moist room for three days and then left in laboratory air until tested at ages of 7 days, 28 days, 3 months and 6 months. (c) Cubes were cured for 28 days in the moist room and then tested for apparent specific gravity, percentage of absorption and approximate percentage of voids. In order to determine these values, the cubes were immersed in water following their removal from the moist room. At the end of 48 hours they were removed from the water, surface dried with a damp cloth and weighed in air. The cubes were suspended immersed in water and reweighed. The final dry weight _ 12 - was obtained after drying the cubes at 110 degrees centigrade to constant weight. Calculations for the respective values were made by use of the following equations. A Apparent specific gravity equals A - C Percentage of absortion equals B - A times 100 n. Percentage of voids equals B - A times 100 B — C where "A" equals weight in grams of oven dried cube "B" equals weight in grams of saturated surface dry cube in air "C" equals weight in grams of saturated cube immersed in water (d) These cubes were cured for 28 days in the moist room and then subjected to freezing and thawing cycles in an effort to determine relative durability. In this test the cubes on removal from the moist room were placed in water to saturate them. The cubes were removed from the water and then placed in the freezing compartment of an electric refrigerator and left to freeze for 18 hours. At the end of this period they were removed and placed again in water to thaw out for 6 hours. This process was repeated for a total of 120 cycles with the cubes being weighed at definite intervals to determine any loss due to - 13 - disintegration. At the completion of the freezing and thawing cycles the cubes were tested for compressive strength in order to determine any adverse effects on strength through this test. (6). In this test the cubes were cured in the moist room for 28 days and then subjected to the action of calcium chloride. After removal from the moist room the cubes were dried in the oven to constant weight and placed in a saturated calcium chloride solution for a period of three months. At this time as there were no visible changes, it was decided that the cubes would be sub— jected to a drying and soaking cycle. The cubes were removed from the solution and dried for a period of 6 hours at 110° c. At this time they were again immersed in calcium chloride solution for 18 hours. This was repeated for a total of 28 cycles at which time the cubes were given a compressive test. While no definite standard test was followed under sections (d) and (e), the cubes of all mixes were given identical treat- ment and the results should have a fair comparitive value. - l4 _ Results The results of all tests made during the investigation are shown in tabulated form on the following pages. Where possible to do so, graphs were constructed to aid in visualizing and comparing results. The individual compression tests of concrete cylinders made in the first series and cured in the moist room, are shown in Table I. The average values for these tests are shown in Table II, ‘while the average values expressed as a percentage of the average control mix strength at the same age, are shown in Table III. Figure l is a graph of the average values plotted at each age, with the unit compressive strength as the ordinate and percent replacement of cement as the abscissa. The individual compression tests and average values for the 2" mortar cubes made in the second and third series and cured in the moist room, are shown in Tables IV,V and VI. Figures 2 and 3 show the graphs for the average values in the same manner as in figure 1. In order to show the relation between the tests of concrete cylinders and mortar cubes with the same percentage of cement replacement, the graph of figure 4 was constructed. Since the concrete cylinders contained only silica dust for - 15 - replacement, the cubes containing a sand replacement were omitted from the graph. Individual compression tests and average values for cubes, cured 3 days in the moist room and the remainder of the time until test in laboratory air, are shown in Tables VII and VIII. CorreSponding graphs of the average values of the tests at all ages are shown in figure 5. The cubes were tested moist at the age of 3 days and in air dry condition for the remainder of the period. The individual values and average values of the apparent Specific gravity, percent absorption and approximate percentage of voids are shown in Tables I: and X. The test data from which the values were calculated is given in Table IX along with the individual results. The results obtained by subjecting mortar cubes, cured 28 days in the moist room, to freezing and thawing cycles are shown in Tables XI and XII. The graphs of figure 7 show the average compressive strength of the cubes subjected to the freezing and thawing cycles and also the average compressive strength of cubes cured in the moist room for periods of 28 days and 3 months. The approximate age of the cubes at the time of the compression test was 5 months. The results of tests of mortar cubes subjected to the action —16- of calcium chloride solution are shown in Tables XIII and XIV. Figure 8 gives the average values of the unit compressive strength of these cubes, in comparison with the unit compressive strength of similar cubes cured for 28 days, 3 months and 6 months in the moist room. -17... TABLE I Compression Tests of Concrete Cylinders Unit Stress in pounds per sq. in. at §22i2§ -_§Se_. ._ZQ&. .35554. .jama_. 2.82; .iLiua.§ilisa % 1 --- 2755 5880 4240 4800 4420 1-1 2880 5110 5800- 4800 4800 5280 None 1-2 2510 5590 4280 5720 5180 5880 8-1-1 1920 5100 5470 4800 5150 5280 8-2-1 2510 5250 4450 5550 4980 4590 10% 8-5-1 1890 2440 2850 4280- 4880 5140 I 8-1-2 1580 2990 4040 5200 4080 5800 8-2-2 1840 2850 2850 4440 4840 4200 205 8-5-2 1845 2540 2990 5140 5200 4940 8-1-5 1150 1990 5210 5980 4140 5450 S-2-5 1290 2080 5080 5540 4580 4180 50% 8-5-5 1255 2080 2400 5150 4200 5150 8-1-4 1270 1890 2550 5180 2970 8-2-4 940 1585 2470 5100 2880 5520 40% 8-5-4 812 1570 2580 5080 2950 4520 8-1-5 920 1470 1900 1900 5070 2470 8-2-5 742 1240 1785 1980 2270 2540 50% 8-5-5 828 1550 1845 2580 2990 2890 Series S—l 562 8-5 5-4 Series 1 S-1 S—2 S-5 S-4 8-5 -18.. TABLE II Compression Tests of Concrete Cylinders Average values unit stress in #/sq.in. at 5d. 7d. 28d. 5 mo. 6 mo. 1 yr. Silica 2495 5085 5920 4855 4860 5795 Nofie 1975 2950 5577 4745 4997 4957 10% 1688 2787 5287 4260 4700 4515 20% 1225 2057 2890 5557 4255 5580 50% 1007 1542 2460 5115 5065 5557 40% 765 .1547 1857 2155 2777 2567 50% TABLE III Compressive strength expressed as percentage of Control mix cylinder strength' 5d. 7d. 28d. 5mo. 6mo. 1 yr. 100 100 100 100 100 100 79 95 98 99 105 150 68 90 84 88 97 114 49 88 ' 74 74 87 95 40 50 85 85 85 94 51 44 47 45 57 88 _ . . 1 1 1 . . ,1 . 1 . 1 1 . 1 F 1 . 1 1 . _ 1 1 V I I1.- .. .IO.’ nil -. . Y'lnl . I1 n'! . I9 ..I’ II’LIII‘I‘\ ...cl\a".l..ll t-t‘l.|l|l.lllo JIOI I. ll?! J III'Olt IA‘..I. llllfd ‘47 l1 4! I ‘l \41 I! 9.1.111! Irv! till. II! . ..I‘. 0‘ 1:.II villi} -0.‘Il!‘.6.t|}0|!.-‘l'.. 1 1 .. 1.....1..a. 1.. 1. 1 1 1 1; _, ,1 1. 11 .1 1 ... 1 .r .1- ...-1...“ 1-. . -..---. .1 . .-.---. :1-- .. 4 1 - .1 - 1- 1 1 . - .17 . L -- .1-“ .... ..-. ...-.1. ..11-.L:-- ....r _ w 1 _ . 1 . 1 ~ . .. .Aflr . _ 1 W 1. . . J _ M 1 R . _ m .. . . _ . 1 1 . .. . .. i. ...1 . 1. 1 ,. _ . .1 . _ _ _, .L.l. I .10..- .Pvltf .T(-1-. o-.. -..Ollup-n .ltu.lll..ru]1v.ll IIIIT'.-. . 10.11....IL 1:01-40 ‘‘‘‘‘ all! LI. pl III‘LI . l.— _ 1L! FIE? . ..1 .1 .-.-.... .- 11.__.__‘4 521.111? . 1 f 1 .-. -- . .- .. p. ....i? -..--111 -1- ..H--1 i 1-.. - LE... -1, - 3-1 -1. T «...-.-. . .- _ I -.. 51-11-11“ -11. -..-- ......11 _ .11.. 1 11. 1.... 7. . 1. 1 or, .1r 1 ii. 4 4 . . . _ . h. s c . . . n _ _ F .u . «I. . .P.‘ 1 . .. .1 .1 1 . 1. . 1 . . -..1. - 531:1- 1 -1 --.. 9.71..-- -- . 1.... - - .1. .- -- -_..1._.--1 . 1- .1 ..1 . . a - - .. . c . .1 . . . . 1... . w w .- Fat-.111 ...» . . - -«-..r--1e..l.tf1-l- Lil-Tirlefi 1 1 1 . .. -111...“ .-..i- v F . 1. . ...-.17.!- - . 1 1 . 1 .. .1. . 1 ._ 1 1 .. . 1 . . _ . 1 1 1 1 1 V . _ 1 . . 0 . 1.11 U..I.|l!| 4 It iI ll f0 .0.: ...I II- o I ..l I . . r. 1 _ 11- . 1 .-...--..-..-1---$.T-..e. ...- 1--..-. 1,, .- . T1 . 4 1. .1 e .. d1 1 :1 . e 1 1. 11. ..‘J .T ..- .umW . 1m +1.. ... .“5 .-..my--I.f Nil-tom... “fi- . L ...-“F L. T M . .1. 1 L1“ . .h. _ . . . . . _ . “Flu. .. 0 AT. .. 1 1 1+1 1 I. .1 - . .44.... Q .rt..:;.-, onr- s, .-. v» ..... 7 -../T- I 1-91 . U. “S m m J . w LYI 3' ..g El ’0.5 I ll . I? .. 1‘1... ’If—IIILI' ...l. I i I i I'- I 7i V A Jr . .-.; I Concrete 7C1. - .' 7,‘ : ; _ e __ 1 _ .....ur. .. 1.. D. -_ ...m I ilk. .1? ...! .v -5 1.1.-.. .. .1 1 1 . 1.. .- n. .141. .- .1. 1 . 1 I- 1 .117 ill! 5 1. _ 1. -. . - - h 1 _ .,. ----.-m , 1 1 . .. e 190. I...4....t- ! If: -.-. .. fl ...- .1 . 1 . a . .. 1. . w - 1 .l .. -H . ...p .- “...-409 4. _ “V ‘ . - J“ 1 1 1 1 . . .U "11 0N1 .. - 1.. 1 .- 1-01.4! [wilo ”2.. .b 0 4w !. l d 1 1. . '. IT I? .-.m . 1 1 . . 1 1. 1 . ~ . .1. _ n i a- *1: :1. l | l1 will-+5.75%; I v lilwltltr‘II A.il.1rt|’tCll.J.lv 1 .L. E -l. -11.]!- -l 1. .1 __ 1 .1 1 A C . .1. _ -1 -..-n: . . . 1, - - .m.» ._. ...,- 1 . 1 : _ . . 1 . . . 1 1 1 . 1 .1 1 . 1 _ 1. D 1 J a ”- 1 H Mud;— ofiOT. 1. 1, .. .. 1- -. I ..... ... . o e I l» -. -. ..1- n .t . ' .1 1 .. .1 ,. 1 w 1 1. . 1 1 ¢\‘ 5" av ( . . um .. llvll- III. 7;}!!J1‘IIIOO In, It 5....1IIIIIILII O In 7| In! I Lil-r1}. .l . .. . . 1 _ 1 1 1, 1 .. 1 . . 1. . . 1. 1 . .1 1 . . 1 1 . m . 1 .1 m .1 u . WV ill 7“” If P f .7 . P J n H 4 . - 11 . 1 01 1 1. .1. 1 1o 1 .7. 1,0 4.0 1 . .l a V V! . - v.-.~. 1+. I .. I .1 . . - 1 .l .. .o .H ..v: Jr- 11m . . e, 0.. . . i H I . M. fi \l. u 1 1 1- W1 1 . 1 _ m1 1 .1 1 o . 1 _ _ 1 o _ ... .. 1 o. . 1 . 1. . . . . _ 1 . _ 1 . 1 .1 - 1 - -. 1. 5- -.. .1 -..- ...-.1 ...-43.1.11... .1: +5.- Ml-T .1- TIE-1.3.1.2 . -. x1-- ...-.1- - --.. f i ...----r---.l..-i!.1-.. 1 1. . p 1. 1 1 fl . 1 . . 1 1 u. :11f .. n 1 1 1. I. 1. u 0 .- o ...... 4 l. . . ... 1 l1 7 - - ._ .h.v-. . T. .1 ...v.h1. _ ...... -. . 4” v 0 Qt I 1 1 1 1. 1 . for: mica—um nod avg-60. ..C now-1+0 ., . 1. 1 1, 1 f a L . 1 r r .r . F > _ i . r.- - . _ . , . 1 _ 1 _ . _. 1 . 4 . 1 J . . 4. _ . . . _. . . d .. . . . . e . 1 - . - 1.- r. 1. Iii-111.1. .1. . .2 -. a: ;.. p1 - 1.... - 1 - . -.. - a -1; .1- .. 1 ,1. .1 ... . - . ..- 1 h F: 1 . . .. 1 . .m m. 1 , n 1 . 1 . 1* . q. ~ 1 . . _ . 1 1 1 . u 1 1 1 n 1 n . 8+ . H M . . 1 .0 v 1. _ T . . a . . 1*! . _ {L 4. 1. m «I . . - ,. . — - 1 __ . 1:»! 0‘1 .It v.1.-V-(5II 10‘". lite: I... O '1‘! 41"- .l V.‘ ll-tll‘d It’ll-1!“: till-ll 0000 :15 I ««««« .I- [Q 'l 'allol'llL. I.- \-O .llnAlullvvll'II... - .i.‘ lfl‘§j' _ 1 . . .. . . . . . . . 1 . .w .r..:. .. 1L.:.v . --. 11”.; ,1 3-1 -1 - .‘Jil . 1 ..- r . 1 .11...... .- 1 .1-1-} 1.11:1" - 1 . . . . . 1 1 1 . . 1. 1. _ .1 11.1 1 1 .. 1 1 1 1 _ 1 ,1. 1 1 . 1 . 1 1 _. .. 1 ...-.i...a-1.?--_...--l.-. 1 . ...- raise-IL... -.- - .- ! e ..- I 14-311--..izr..- wiii!Lb.......-Q.1trx-i1F.- .z ,1..9.Il-1l!l.civwil 11.111.13.11..- ....l -I...1r.---..li1.u-- - 11. - . . _ . I! .... 121...}..41. 1. 1 1 1 1 1 m .. .1 1 . m 1 .1 1 .1..- 1 ...----“- 11-.....- -¥ru9L...---~Ll1§.-\|L.ila+u.wi%n Series 1 19 - TABLE IV Compression Tests of 2" Square Cubes 5d. 9000 15000 7425 6090 7540 7620 10000 8000 7500 6580 5200 6510 6510 6500 6970 5425 4900 5150 7000 7000 4700 5025 225 4985 602 4000 5855 7d. 10660 9000 10810 8525 11875 12540 9820 10500 9590 9550 9915 8590 5165 6075 10590 8555 7800 8185 9000 10100 8585 8565 8440 7455 7555 5725 7900 15610 14050 10540 19820 19600 10880 17590 10515 7090 14090 18500 15575 14055 14705 14680 14950 14440 15275 11070 10650 10590 12240 11655 2050 12105 10550 7520 Load in pounds at age of 28d. 5mo. 20050 19170 21800 21175 22510 20480 19975 16965 22050 20200 21155 17900 17695 18425 16500 19790 21740 18790 17900 17875 15175 18175 18715 17145 14150 15860 16110 61110 0 21795 19080 28505 25800 22790 24175 20725 18285 20190 21000 25620 18000 15880 19580 21080 21500 18925 21500 16200 18885 19150 22645 19825 19000 14525 15200 14250 lyr. 22600 22490 29600 22910 18000 21750 20000 20285 17250 17555 17525 18160 15820 15850 17850 Silica % None . I! n 20 _ TABLE IV (con't) Compression Tests of 2" Square Cubes Series Load in pounds at age of Silica 5d. 7d. 286. 5mo. 6mo. lyr. 5 Sand 25-2 4070 6785 10690 15975 14180 20% n 2850 6855 11555 15740 15850 n -" 5640 6500 11020 15270 17000 ' 18—5 5000 6855 10720 14955 14910 15780 50% " 5175 5915 8000 15570 15510 15150 u fl 4585 6660 9565 14090 15810- 16750 " 28—5 4640 6975 11590 14500 15840 n a 5850 5400 11675 15280 16825 a n 5715 6155 10400 12970 16455 " Sand 15-5 5725 4255 8815 11215 9565 11800 50% v 2500 4680 6760 11545 11200 11050 5 n 4155 4685 7795 11120 12450 15145 . 25-5 2940 5155 8625 9400 15025 ' I 2550 4155 7540 9255 11475 n . “290 4655 7175 8785 14250 " 15-4 4000 6000 9550 12425 11465 12285 40% fl 5950 5255 9245 10050 15450 12280 u v 5590 4650 6720 11000 11955 14150 5 25.4 5575 5415 9855 11900 14650 n n 5255 4640 8555 10850 11565 " fl 5520 5275 9605 12525 15110 " Sand 15.4 2525 4415 6410 8080 9700 9440 40% a 1500 5050 4525 652 7580 7675 n v 1960 5520 4595 580 9180 9725 n - 21 - TABLE IV (con’t) Compression Tests of 2" Square Cubes Series Load in pounds at age of Silica 5d. 7d. 288. 5mo. 6mo. lyr. % ' Sand 20-4 1825 5525 5600 7280 8025 40% " 1750 2705 4850 6265 8645 ‘" fl 1685 2960 4805 7050 8690 " 15.5 5000 5000 5410 8550 9000 9650 50% " 5175 5820 6800 8900 9500 11870 " " 2625 4670 6575 7420 9955 10825 2S-5 2890 4150 6695 8400 12450 " ' 4215 6780 9275 11540 ” " 2575 4065 6775 9865 11520 " Sand 1W—5 1625 2555 5690 5550 6050 6550 50% " 1620 2270 5790 5400 5555 6800 " “ 1500 2295 5760 5045 6215 6510 " 2W-5 1595 2400 5555 5500 6125 " " 175 5540 4855 5680 " ” 1065 2265 5720 5155 5290 ' -22.. TABLE V Compression Tests of 2" Square Cubes Series Average unit stress in #/sq.in. at Silica 5d. 7d. 28d. 5mo. 6mo. lyr % lC-l 2050 2540 5166 5088 5765 6224 None 20-1 1770 2710 4192 5547 5897 ” Ave. 1910 2625 5679 5218 5851 6224 13—1 2108 2490 2890 4916 4942 5220 10% 28—1 1490 £440 5997 4936 5218 " Ave. 1799 2465 5444 4926 5080 5220 Sand lW-l 1665 1800 5618 4585 4712 4800 10% EW-l 1289 2045 5722 5020 5160 “ Ave. 1477 1925 5670 4705 4936 4800 lS—2 1558 2299 2695 246 4520 4420 20% 25—2 1270 2020 2995- 4500 5122 n Ave. 1414 2160 2844 4575 4821 4420 Sand lW—Z 1521 1765 2498 5677 5496 4125 20% 2W—2 880 1680 2754 5582 5920 n Ave. 1050 1725 2626 3650 5708 412 13-5 1214 1617 2440 5701 5686 5965 30% 23-5 1017 1542 2805 5546 4096 " Ave. 1116 1580 2625 56E4 5891 5965 Test Averages _ 25 - TABLE V (con't) Compression Tests of Q" Square Cubes Test Averages Series Average unit stress in #/sq.in. at Silica 5d. 7d. 28d. Brno. emo. lyr. % Sand lW-5 865- 1144 1948 2807 2749 2999 50% 2W—5 647 1154 1945 2285 22328 " Ave. 755 1149 1947 2546 2989 @999 13-4 945 1524 2185 2789 5070 5225 40% 28-4 829 1380 2516 3921 5444 “ Ave. 887 1502 2251 2855 3257 5225 Sand W-4 499 900 1278 1852 2205 2257 40% 2W—4 457 744 1270 1716 2115 " Ave. 468 822 1274 1774 2159 2257 lS—S 755 957 1544 2071 2369 2694 50% 28-5 656 1056 1688 3295 2940 " Ave. 695 997 1616 2185 2655 2694 Sand lW-S 580 575 937 1515 1468 1657 50% 2W—5 507 555 901 1276 1425 n Ave. 544 554 919 1296 1447 1657 “ . _. .. v4 .. . . H» t. l i- H . . . . n .. .H . .. _ . ..l:.4.:.l$n.av§. o.l.:a.lLr -..Lvlol; . w .7 . .m H. W . .: ... .. ,. .. , g .u. .h “a. u h I "II' .l1t1lt‘lLl' .h. ‘ . .w u .. . ... .t? .. .1. _ .. .. .. . .. ..rv'l'u _ _ . . .. n. . ; ..-.Io'llw‘l . , ‘ . . .. .g :1“. ..kfl ... . . .d ....M ... ...vl . . 1 . H An. . ¢ . Q ., . V . lJ-‘lT-I. . .. .. .. ..:... ...~. r9»; o..‘wo. . ... .. o. . 4...... . ... ,. . . . 141L11M. -|r ...I ......m. _...U .1115... 77.! L ...._ ... if... ... .. .. if... *4 .._ .Y'—..o 5.. ..-»: v) .. T .14.. ...: ‘ . ...... _. . .w a. . _ _.. w _. . ‘.. . . .f..fi..1 .Io I... ...: . _ . f... .. . . ... . .. . . . . . I! . ..- ... ” ... n at. .A ! .. I'LL|.O ... . . » ... . . _ . .. _ .o . .. li.-’.’l .» . .. . . . .. . J . .9 . ... . I 7.. ID]. V! 1. c 4. 1 . . . _ M... .‘ .. ... . ... . ...-.. ,. . ..:-O.) til-:9. . ,. .. _. .. A. ... .m .. . _ _ . Want. ... . .4 _ . .. .., . . . . .. Ii" ‘1 (I... _ ... .4 . .... . . . . . . . 9.)..vn‘ll 4 I . .. .. _.‘ .. -. it . ._ . _. . . . .u .. ... .i . 5....-- . .....a .. _ ~ . .. . .~ .... . A ..U ‘u.. -,l11....4¢al.llu .. . __ .. .. A... .~ .. . ... ... , w. ... .16. .... .. . _. ‘ ..: .g . ..u. 1 ..v. . 7.5%-..- .1. pl 1:... ... .. .. 0. ..:_. L: .. ... . ..p ....” .... 1.. . v. .....c}. .a- .1... .. . ".... ... ..w ...! .v... H‘ ... w. 7 . _. ....» o. V.4 ~._. ... .. . |l..f.1rlI.\. “pi... . L1,... ._ .1373. -.-... _.:.... .m. . . v 4 M -~... g o—-‘.-..——’- .~- . . 3.1... It. .1... I... .. . .. 1 . . . . .. . . . .. ... _ .4 w . . . . _ , . . ~ . .. . . , . . u _. . . _ v .. . . .. “ ... . . . . 4 . ... .. ‘.Io a. 01 .n .30. v Obv.|u~ cl] ... ..l V.» 11.. , 1.4)....?.| .. .v .0 . . . c * w . . . . . . — . .. .. . i 5 , .L 1“." -xllvtl I .10 . . E LT... ......43 A u i . o .4. . '3 v “-4.--- d A . .....IL - . _ ' O . y ‘. .' ‘ ‘ § l asp—OJ“ “...-...”. ...-..- o J U a l .... 9” , A‘4I (I :3 uni-c‘o-Ig-n -25... TABLE VII Compression Tests of 2" Square Cubes Cured 5 days in moist room and remainder of time in laboratory air. Series Load in pounds at age of *Ed. 7d. 28d. 5mo. 6mo. Silica % 20-1 6090 11650 11850 14015 11660 None " 7540 12085 5550 15455 15960 " ” 7620 12140 15870 15515 12770 " 28-1 6580 10645 10570 12015 15750 10% " 5200 10505 10775 12515 11880 " '“ 6510 11190 82 15490 15000 " 25—1 5425 8615 9640 11575 2800 10% Sand " 4900 9210 9915 11210 11875 " " " 5150 9555 10790 11950 11000 " " 2S-2 5025 9020 200 11440 10000 20% " 522 9825 8018 12000 12000 " " 4985 8925 10275 11200 10000 " 2542 4070 6570 7055 8500 8555 20% Sand " 2850 6520 7900 9590 8550 " " ” 5640 7285 7800 9000 9750 " " *’ 5 day cubes tested in moist condition, all other tests on dry cubes. Series (‘3 3 3 (I) 2W-5 23-4' fl 2V:"4 25-5 2W—5 6 _ TABLE VII (con‘t) Compression Tests of 2" Square Cubes Cured 5 days in moist room and remainder of time in laboratory air. Load in pounds at age of *E‘j . 4640 5850 5715 2940 2550 2290 5575 5255 5520 1825 1750 1685 2890 2575 1595 1065 7d. 7400 7260 6840 4955 4700 4570 6725 5590 5825 5530 2840 5510 5175 4860 4555 2550 2425 2640 28d. 8000 8200 8700 5920 6515 5090 6440 7415 5145 5815 4670 4250 6000 5515 5690 2585 2250 2890 5mo. 8755 9090 9965 7530 6755 6140 7515 8010 7550 4245 4540 5150 5890 6000 6540 2700 2610 5150 61110 0 8649 8550 8800 6075 6475 5700 6755 7000 7550 4270 5500 4750 6000 5500 ' 6540 2550 2600 2550 Silica % 50% t! I! 50% Sand 40% Sand [1 '1 I! I! 50% Sand '1 * 5 day cubes tested in moist condition, all other tests on dry cubes. ..‘7- TABLE VIII Compression Tests of 2" Square Cubes Test Averages Cured 5 days in moist room and remainder of time in laboratory air. Series Average unit stress in #/sq.in1 *Ed. 7d. 28d. 5mo. 6mo. 20—1 1770 2990 5250 5750 5200 28—1 1490 2680 2595 5170 5220 RW-l 1289 2261 2529 2898 2970 25-2 1270 2514 2457 2887 2667 2542 880 1698 1899 241 2220 2S-5 1017 1784 2075 2516 2149 25-5 647 1159 1485 1695 1520 28-4 859 1495 1584 1922 1757 2H-4 457 790 1059 1145 1025 25-5 656 1215 1417 1555 1505 2W-5 507 655 627 705 640 p Sand Sand Sand Sand * 5 day cubes tested in moist condition, all other tests on dry cubes. , D ln-avku- .... w.-w ~05 v y A l - .’ $2 9 pa— . v -.._M___._ ‘I._-_.__ p ~94 ...: Q o..- v .3 ‘3 i l t s 4 ' 's Q T7 I I Ovt-ll - - o —-__-___..._ .. __ 1‘--- -.-. -. .-....A... -_ _. .-A _. -1-.. ..- ..-- n I --. I -1. . L -J- . _A . ..- . _ . __ -28.. TABLE IX Apparent Specific Gravity, Percent Absorption and Approximate Percentage of Voids Series A B 0 Spec. % % % Silica Grams Grams Grams Grav. Absorp. Voids 2C-l 267.8 295.0 158.5 2.45 9.42 18.74 None ‘ 268.0 295.0 158.8 2.55 9.57 18.70 " ' 265.6 290.7 157.6 2.46 9.45 18.86 ' 2Su1 261.7 287.5 155.5 2.46 9.86 19.54 10% ' 267.5 295.1 158.2 2.45 9.54 18.97 “ “ 264.5. 290.1 156.7 2.46 9.75 19.55 9 2841 262.9 288.7 155.2 2.44 10.58 20.82 10% Sand ' 265.6 289.8 156.8 2.44 9.11 ‘ 18.20 ” ' ' 272.6 299.2 161.9 2.46 9.76- 19.58 “ ' 28-2 255.5 279.8 150.4 2.44 9.59 18.94 20% ' 272.4 298.4 161.1 2.45 9.54 19.12 ' ' 265.7 289.4 156.0 2.45 9.75 19.56 " 2W-2 259.4 284.2 151.6 2.41 9.56 18.72 20% Sand ' . 259.6 286.0 151.9 2.41 10.18 19.68 ' ' ' 265.5 289.5 154.4 2.42 9.87 19.27 “ ' 28-5 261.8 289.0 154.2 2.45 10.40 20.18 50% " 259.6 286.6 152.9 2.41 10.41 20.20 ' ' 261.5 288.0 154.2 2.41 10.14 19.80 ' 7 259.5 286.7 150.8 2.41 10.56 20.17 ' ' “ 254.5 281.8 148.5 2.41 10,81 20.64- ' " A - Weight of oven dried cube B - Weight of saturated surface dry cube in air 0 - Weight of saturated cube immersed in water - 29 r TABLE IX (con't) Apparent Specific Gravity, Percent Absorption and Approximate Percentage of Voids Series A B C Spec. % % % Silica Grams Grams Grams Grav. Absorp. Voids 28—4 255.7 285.4 150.1 2.42’ 10.84 20.78 40% " 259.2 287.6 151.6 2.45 10.95 20.88 ' 261.7 291.5 155.5 2.41 11.52 21.45 ' 2W64 249.4 275.5- 145.8 2.56 10.46 19.82 40% Sand ' 255.8 281.8 147.5 2.59 11.04 20.85 ' ' " 248.8 277.0 145.5 2.56 11.54 21.12 " " 23-5 261.0 289.4 152.2 2.40 10.88 20.70 50% " 252.9 281.7 146.8 2.58 11.59 21.55 “ n 257.9 287.0 150.7 2.40 11.29 21.56 " 2W45 240.8 267.2 156.9 2.52 10.89 20.10 50% Sand " 246.5 272.9 140.4 2.52 10.72 19.92 “ ” ' 247.5 276.1 142.8 2.56 11.64 21.59 a - A - Weight of oven dried cube B — Weight of saturated surface dry cube in air 0 - Weight of saturated cube immersed in water '7 -00- TABLE X Average Values of Apparent Specific Gravity, Percent Absorption and Approximate Percentage of Voids Series Specific % % % Silica Gravity Absorption Voids 2C-1 2.49 9.41 18.77 None 25—1 2.46 9.72 19.28 10% 20-1 2.45 9.82 19.47 10% Sand 28—2 2.44 9.65 19.14 20% 2W—2 2.41 9.87 19.22 20% Sand 2S—5 2.42 10.52 20.06 50% 22-5 2.40 10.27 19.69 50% Sand 28-4 2.42 11.04 21.04 40% 28-4 2.57 10.95 20.60 40% Sand 28-5 2.40 11.19 21.14 50% 2W-5 2.54 11.08 20.54 50% Sand - 51- TABLE XI Results of Freezing and Thawing Tests on 2" Square Cubes Series Initial Final Number % Silica Weight Height of grams grams Cycles 2C-l 290.5 289.5 120 None " 287.8 287.1 120 “ " 295.2 292.2 105 " 23-1 290.6 289.2 120 10% " 294.5 292.0 120 “ " 290.5 289.5 116 " 25-1 288.4 287.0 120 10% Sand " 286.2 285.1 120 " " " 298.1 297.4 116 " " 25-2 286.0 284.2 120 20% ” 295.4 291.8 120 " fl 2860 5 286.0 116 " 25-2 285.0 285.5 120 20% Sand " 295.4 291.8 120 " " " 280.8 280.5 116 " " 2S-5 287.9 287.5 120 50% ” 285.5 284.1 120 " " 285.8 285.4 111 " U) eries Results of Freezing and Thawing on 2" Square Cubes Initial Weight grams 7- - ‘12 - L TABLE XI (con't) Final Weight grams 280.5 285.9 280.9 285.8 285.1 288.5 286.5 268.1 269.2 270.0 Number of Cycles 120 120 111 120 120 108 120 120 108 120 120 108 120 120 108 Tests % Silica 50% Sand '1 '1 fl 1! 40% '1 n 40% Sand 3' I! ll 11 50% I! I1 50% Sand I! H a i Series 20-1 25-1 2741 .2s-2 2w;2 25.5 2045 2S-4 2w;4 23-5 2W45 Compression Tests of 2' Square Cubes - 55 - TABLE XII Load in Pounds #1 19460 17500 17815 16590 14225 14525 11475 11020 5850 7550 4550 #2 22940 20075 16475 16025 14065 12740 10125 9775 7200 9165 4550 Average Load 21200 18688 17145 16208 14145 15655 10800 10598 6525 8558 4550 #/SQ-1n 5500 4672 4286 4052 5556 5408 2700 2600 1651 2090 1155 Subjected to Freezing and Thawing Cycles % Silica None 10% 10% Sand 20% 20% Sand 50% 50% Sand 40% 40% Sand 50% 50% Sand - 54 - TABLE XIII Results of Calcium Chloride Tests on 2'I Square Cubes Series Weight in grams at end of cycle number % Silica 0 5 10 15 20 28 2C-1 274.2 280.0 285.2° 269.70 219.00 °°° None ' 275.5 279.2 284.5° 286.0 279.70 226.50 ' ' 276.0 281.8 287.5° 289.1 276.50 204.00 ' 2S-1 265.0 269.5 275.2 278.5 281.6 280.5° 10% a 277.0 281.4 286.7 290.0 292.0 295.0° ' ' 270.6 275.2 280.5 285.1 286.7 286.4° ' 2W-1 268.0 272.7 278.5 280.7° 285v7 285.50 10% Sand ' 271.2 275.4 280.6 282.9° 286.5 278.20 ' ' ' 276.5 ' 280.7 285.2° 287.8 200.00 °°° ' ' 28-2 296.8 274.7 279.5 282.9 285.1 285.8° 20% 8 271.4 276.2 281.0 284.0 286.4 286.5 ' ” 266.0 270.5 275.4 277.7 281.0 280.4° 20% 2W—2 266.7 271.2 275.9° 278.8 268.00 172.00 20% Sand ' 266.0 270.2 275.4 277.8° 281.1 272.00 ” ' ' 259.1 265.5 267.8 270.2° 274.0 217.80 ' ' 23-5 269.5 274.7 279.6 282.0 284.0 285.1 50% ' 267.8 272.5 277.1 279.4 282.0 281.5 ' ' 268.6 275.6 279.0 281.5 284.0 285.0 ' 28-5 261.6 266.4 271.1 274.0° 277.9 271.50 50% Sand " 262.5 267.1 271.7 274.4° 278.7 275.20 5 ' ' 258.8 262.8 267.5 269.8 274.1° 275.00 ' ‘ ° Cube showed cracking or disintegration beginning 000 Complete disintegration. c Cube showed extreme cracking or disintegration. - 55 _ TABLE XIII (con't) Results of Calcium Chloride Tests on 2" Square Cubes Series Weight in grams at end of cycle number 0 5 10 15 2O 28 2S-4 265.7 271.5 276.4 279.1 281.0 280.7 ' 265.6 268.6 274.0 275.0 278.4 278.0 ' 269.4 274.5 279.0 281.5 284.4 284.5 2W44 249.5 252.9 256.9 259.2° 262.0 259.70 ' 254.8 259.0 262.6 264.8 267.6° 265.0c ' 258.7 262.4 266.5 267.8° 271.5 270.0c 23—5 264.8 269.2 275.4 276.0 279.1 279.0 " 262.0 266.5 270.5 272.6 275.6 276.0 ' 266.0 271.0 275.0 277.2 281.0 280.8 2W-5 247.6 251.1 255.0 257.5° 259.5 256.70 ' 248.2 251.9 256.0 257.5° 260.0 257.10 ” 251.5 255.5 259.5 260.5° 265.4 262.0 %.Silica 40% 40% Sand I I II n 50% 50% Sand ° Cube showed cracking or disintegration beginning. °°° Complete disintegration. c Cube showed extreme cracking or disintegraticn. Compression Tests of 2" Square Cubes Subjected to Calcium Chloride Cycles -56.. TABLE XIV Series Cube load in Pounds 2C—1 23-1 2841 28-2 2W-2 25—5 #1 0 10850 5900 12750 15000 5000 17500 2500 11655 2000 #2 1000 20700 5850 20580 5590 19060 1680 14670 2000 14110 1640 #5 800 12790 15050 1000 16880 2650 19880 2475 17840 1700 Average % Silica Load #/ sq.in 600 150 None 14775- 5694 10%' 5917 920 10% Sand 16055 4014 20% 2150 555 20% Sand 16980 4245 50% 2457 609 50% Sand 17550 4558 40% 2525 581 40% Sand 14528 5652 V 50% 1780 445 50% Sgnd _ I 7....- :..-7.” I-‘w‘l—‘~ . . . -.-- 4.v- - I O .o 0 --< O , I I . L . 0 ‘4_- 5 -._. -- -ru._......-L . . . 7. 1 7 _ . . 1 .. r . . . a V . . _ u o ” fl . - . v v _ . r V _ . . . . . F .. L _ -. .- . I4 . I... II7 7| [4| 7 ILII I [1.77 7.710. -lfl 7' I‘JII 7 JIJI ILTII 7 v I... I 1 1|. I..ll-l.lv .IYI.‘ -I .7 IIIIII f7I-.'77|III.7II .77-.. J0 4-lll OI: VII -\ .-ITIl-WIIII 470.4 IIflI7I-7 77 L .. L . . _ _ .. V .w . ._ y N - V L . .V _. V . . . - o . a . V . a .I.. . rt...O|l LI. . - ...Iu. - 7 7 V. . \- 1 .~. ...-'70 17. T857-‘i‘ S L..- V V . . . a . .. a ..... . . . . V ... ..... . _ - H . L - 7.... -. “-7 7-.-.-- - 7L 7 77 ..--77L I 77777-771I7--V.17 ..--17-77777.“ -7 VL. V 777V. IET 777---.---..7_-. 771-74717 .-7 .- 7 - - - -- - - 7- L L . . _ V L L L . L . V . . . fl . _ . V” .. u M . . . .V m w L . n m L V n l. . V . V L .V . V . q . u w ._ L i _ VL - r - L I w. - 77. .-- 77 M 7 . ..77 . L. - ”7- V . .- .m- n.... 3.4- .7; V”. -I.--7..." .-- V . -V 7 LII-.77 777 .77 IV- H 7 I77I . 7 7L 7 7 7 L7 77 I 7 7 I . 7.. . _ . V . _ _ _ . V _ . L. . _ L Li L _ . _. . :.. 1L . . H . .L .1LVVLV-LVIVV_V V L . L p L L . . V '1 II“? III A _ m ' III-0|“ I 7m H ...I I 411...].1. ..:} ..- III-11.5%.; . luILlliIA.7-'.u *4 I. lyol.’ IT V.||. .1 1551.217 .1... Vu‘lnfl'Ii’Jl‘ I ...-var .IIL .. d . JYI"...! 71+,» .8 I7; .. . .I- .l‘ II” I." 415L..7. I 1" 0745-458»... .J.‘ ...!WQII.‘ Ir- 1...! . . L. . L L- - V — - {L V ~ .. VV 1. . .V ... V V .. . . .. .V . LV V .V _ . L L L L L _ . .. . .... .L _.VL L i- .. . L . .V . ..L. .V . . _V_ . V .. 7 . VL- 7- ...M7I7IUIIL7 7 . * . 77.... - ..V.. 7.4 .I.... - -. 7.. . ..7.. .. -..-”V777” I7._V.- .I _7 -7 77.7. -V I L. 7 77 7- VILI 7+I77.IVIL. IF” .7 7II-.7.-.7MI.I .VI.--- . -..T-IL. - .. .1 .7 77. -..-7. W. L 7..- .. _. _ -. V L V. w . V ... 1 m M - L 7* . . V. V V 4V . T. ”I 4V .. ...“ L M - ...V L L. . 1 L L VA . .. ..L L .- _ .5 . .L .V V . Vi. m V . - . . i V. a . . - .. . . . . _ . III-77V I771777+I74 I J» I 4 LI IVI .7 7 H A“- I. - . 777 [LI-I. I 7 a - . w . . L . . . . _ i _ — . n . . VL V . L . V m. V L. . . L V. L ,V . L . . L . _ V V _ . -. - _ -7 -7. 7;- 7 - L . - -. 3..-. . 1 V. . .-.-7 -7 - - _ L L .1 .. 1 . a .... _ . . . 1 _ V . _ _ L . - L _ . I r I . -.: - --C—.-u- “5.....- —-}—-.— q-..——-- 7 . 7 a I . - 1.1- 1 I nua- - ..- .- . . _ _V . H . . I 7 7.77-.. -L- 7-7- -- -..-7-- V.- L- I 7 7 . 7 -?_.«#‘.—-—.. - . I I I - I I I I 7 I I I I — .. . _ II-7 7' AII".+I.I I 1|. I III In] ur‘l. ... 1r. 0.1.14.7 ‘+‘.. III-I’mI 43m} . 7‘“ I 7 I I I 7 t . . I “I dI-dicrlesffwo. 7- ._ 7 I V . I. . . +* ‘ - -n-.f—.-—I‘ p “yup-”N ......— - . 7. | 7 L L. 1. . - L L 1.5.7.. .7- . V- 57; - L7 - . .7 77L- 7.... . . VV .7 ...7 L 7 - -- L - - - V ... -..-.7 .07. L V- . L - . a L L . L - 7- -7- V I A . . . L L .7 L L 7 IV. LI ¥II 0 MI I L. L .V V. V Le L ....M . V , V. L. _ V .V . 1.8. . V . V .V. . 7L 7 -7 7 7V7VVL MI 7.7.7”? ,0- .7- - -4 - -.7 .V - .477. V. -HI-L. - 7.7 - . . “V L. V ., 7“ F r - V V . . .. .LI‘ .5! 550.5! . . . l0: I5 I IK'I’ILI’ IL I!“ .-:. . _ 47774:- - L _ _ L . I - DUr uni-$543+ y...- E I l 6.3 7 I l I i .VgV .1 I ‘I’e I5 .0 . V ~ ... . 7. . . . . . . 7.. . .7 o "- H...- V . . m .1. . -.- . V - . L . . . . V . . r \d . . a. - . ¥ _ u . - V... .75. .8. 2 §k317 1'51‘. . .7. ..- - Ii. -..‘II .6171.) l».l¢lu; . -..I‘ .V :5. .- lI-Q f .0. . . . e . . . V . V. . - V L V. . r . . ”--_- Ill"... d hq }’ I V ‘7 II In -I. I I I i . . I . - 7 > I ‘4 ...4 I- burs-wT-O-tf-I-‘fim ICd-L . w i 7 _. .1. ----r- ... .Im II I [...-4-.....“ ~v T- i .. ;AT.—- -VV7\7777».VI7- H L. - \r..77.7L-.V7.7 V- - i “fr-...IV... -. I1777VV7m. ..--V-f-V - n7 1.. . II - ACdn - 7 - . .- _. .p- H V L ...-3.11.0.1! ... n . . . . . .. IV I 1 LI '7 1 :.V. .-' '4- 2 7 7 ......T . | I I I V I 7 . . . . I ‘ .- .———4—~——..¢—.—- p-dq- ..--‘._.__ .7 . . . 7 I t I 0 t I 4 I l t I I I v 0 . . _ . _ C . 1 V 4 Q . _ . . V . . _ L - .LL I.” 7 77.-.-.. I.I L .777 77.I.Ii ..... I IL 7- 307%] . - . 7 7* .7 I 7 I .-II :... 7.... -V.V-7 V V L L . -.L L . L _ ~ L. . . ..<. .. .wr L — .- .Ilv . . L IVIJVI IWIIII .7 L II.- I’l‘l‘OrI‘II-I . . . i . . .h L . » . . . i .x. V K. L .L . .V m V- .... _. VL ' .. . I .II III-wIIO. I I I . .r‘- .4 v. I. .- tel. 1-7. . _V L . _ fl; .V.L L-L. L ... - L 7 a . L H L .- -V.. . _ .. U . . . _ l.I. I. .. I g L .r _ \m. .L V _ r n _ . V. L H 7* . 14.11.74..- . JIII . . - IIHI . I..-" ’I ll... ‘IJIHI.. 1 V - _L. H“. L. _ . A - m.- H-hq-“fl . 7 IT.- +Illrl .7175 —v .77.... ca. It; 0 I t. I O I; II‘IIOI .f - 7‘70 7 . _ .«. L . . _ . m; L W . m . 0 .. .Hh H u . LVL L ._V .. ..- .fl “- . -1. ..-7 74L: VL-I- .- . - 7.. 7S..- V... L. . . ._ . ..H~. .H - “- m n i V- . V ...- B . . . A 1'»)..‘ '7' l‘ - v u .5 1V \.. V LV O... .. .0 a I . 7a - . . . . . ...... . . . . n 7. - 7 v. . 7. - 77 .. 7 - 7 . .. L.. V . . V . . .. L . -. . V . . - - . . u. . .. . . .. . .. . .. - ..- . . - . . . . .. . . . . . . V. . . . _ n. 7 7b . I .n V L . . V . - . . . V . V - . . L n .. . .V . .._ . u . 7. . . . V. . .. .V . .o . L ... . . . . . . i . . v . 4... 4 . \— .. . _. . V F . . . ... . . . . . . V 7 . . -. . . ...7 V . .. .7 LIIa 77-7. 71,. VI . .I 0% - I, IOIIIL .IA‘JIIIY .-.? 3751-71.97 l- A -II 97777047.- - _ . . 7.. . - . .v . \ _- . w . . .V V L. . . .. . . - V . . . . . L . . . 7 . 7 I . 7' __?V. I 7 I I n .7 "N ... . 7. I I u l I I V _l LILL l 1 D I ‘ I' 7’ 7. . . . . 1 . .7 .V .. I . 7 I V l I 4——. l - v 7 a u I ~4..-—~.o4—-¢. n -._... v t I 7--.... L._ 0 ‘r - ...,“ v-v . -._4 L . .. _ -. .- ._ . . . U V . . .. . . .. _ . L . - . - L a . ...70.I1410.Lfi70l. {I .1 0141010.”.1 A :..-J- .-. ofl‘XJd‘l I. Y’s-.57.! m1..a.IJI.(.- .11.] | I V I 7 I I V L 77+. 7 . flu-17V- 1 I I 7 w . . | .7 I Y __Y_ | _4>-.o—--Q.._..-_L._--..— I y~—-——Q—o——§- ...k—— >- —- .._-... i I r . - 1 V . - L . 4 7 . 7 .- 77.1-I. .777 r ..- 7- . . . .. . - - . _ V H V. V; V v . . . 7 7 . ,7 . .7 .L V . - . . . 7. L. I 4 V ,4 . I -7 - . .V . a 1 .1774.- 77-7 .L. LL L m w 1 H:mV. V - "WV-L.- -. ..L - V4.0“ .... -.--.7... 7.....-- - - V- L . .- .. L- V L. LVV- - 7-- .I.-VIL- . V -.-V 177-- r em .._- . L. -. - .L.7.V.7 V_ V ...V . L L " ....m ”m ... L .m . . :1“...- 'I'erdl'..llulo . i. I IdI .Iiw76IJIm1I—Il h It . l.-.l.'ul|\llflo~\| .71 v. v. .. ‘.‘I.%6V.I'I_Iti' Iv'mh'w IT‘\ .7!!! ‘- L L . VV _ .V .L. ..L _ fin; IL L-VV . L L f...- . V. 7.-7-V-L-.7-....7.r7 7L1 - - 77-. - 7- - 1:17.... -- LIV: 777 -I .- - V . 7.1- _ - L -I.-r4... L . L L .525 m 110. in 6.013255. 2030-5020 L _ . V V. _ .L I H . . .I7 .I . . PI. .. (I .I»II I mI I V 7 . . Vb II-»- . V U a L 1 V V“. V L V. 1 .V SILK. .L-. 1 ”T- ...V V.” . . .71 V 41 . V L. V L .V. . h L. #7 .7 L L. L h L t . L V~ L . ...“ ...M :..-”1.“ - 1.2. LVV L: E.- L . .1 L . . ... LV L- ; L V.“ V. .. 7 “i LV- V-J - 1 ... L7. 7 WL: 77 .._ J.- V. L. 7. -1. .1.” .M -L . I H- _ my.» 7- - 77717.77 .7 ....-- v -77. V. L 7-L7VIV. 77144777.; 77.47.71: . .7 1m . - . ..J- L.- -777..7.-..IVJ.L-I-L. -. u. ._ V 1 . . .._ g... . V L L . . L- L. _ . V. .. L .L. _ V. .._“. L . _. . . m V __ ... I I .V V .L V I. W +7 4 a. .1 IL! w I IN V wI+ ILIIIIm7777TIL.7 T 7. 1. T7 .L-IVIIVL-IIILIITIWI-LIIMILI-VI-VVVLIIIL- _. 7 . L.- . . . . . . _ . V. . . . .. . -. .n . L. H. ... . .. . 7. . . .7 . ._ 7 7 IM.‘.' I-II~77 97WI7 I17.W-..977.077IL_-77. U...! .I7W-I.7h I - M7. .-r .V V. n .N m “..:: m . V m. . 7.” M .V .. . - «Vi-”.7 .H. .fi .V .u . L ‘ 1 _ . a.“-. L II“ H ‘- . . L . .. T L L . ._ V. V i .1 ~ L a .... -V .. -..- -.77.77.- 7 7L 17,-. . W7 - 7.7 ...-77.77.. #777 .- 1. -...+....;.7.Ii-VVH .7. -7 ....... ~71..-- . LC 77V-V.iV .. ..IVNAV- - V! 74...; . ..- ... . ..L. V. L L. L 1.... " .VL. L. VLVV. HtV V L“... x...“ VVVVL ,V ,VL.VLV V.V ~ .71... ._V_. 1L, .L. ...-L. ..:... I III-III .7 I . .I. - .77 IIITII: .- I...VI -II.7IVI.II V -I.-VIII- . V .. 7. I-I LIV-VI -..-.. .II . .... .,-V.7LIV7..IV 7.7.7..I. -..-77-- 77 .77- ..IVI- VIV7r7V I. 774717 7 L L _ L. L V L _ . V a _ 1 . -..-7.77.7.1 7. f . .. ...-IL .74....7L L .. L. V L71...- Lu... .7 :.V. 7- _ . 7- -. V. . . - - . .V _ I L: - H - 7L. - . H .-.-7 7.. -7 r ..--7 _- 7.. ..--IV- .1. - 7 7- 17 ..I LLVILI LII-7.771777-LV.V-L-V-t..--.-V :tILII-LLI-VIWV74.777.77.75..- Mortar cubes at end of Calcium Chloride cycles Series "C" - Control mix, no replacement of cement with silica or sand. Series "W" - Mix using sand replacement for cement in percentage indicated. .Series "S" - Mix using silica replacement for cement in percentage indicated. --_ lv"-wwv’ A \ v ,5 .-7,‘ ._, .. x_ .\ _ x w,, r,” 7 -— xx- '\__. \—\~~-—x\./—\r--~MAF\—x~ Sand replacement ‘_,_/