A DESIGN OF A PRIMARY TANK AND AN AEREATION TANK FOR A SEWAGE TREATMENT PLANT

Thesis for the Degree of M.S. MICHIGAN STATE COLLEGE E. Ribeiro l. 1945
inmeds

This is to certify that the
thesis entitled
A Design of a Primary Tank and an Aereation
Tank for a Sewage Treatment Plant
presented by
Efrain Ribeiro-Ibanez
- has been accepted towards fulfilment
of the requirements for
M. S. degree in Civil Engineering
Chester L. Allen
Major professor
Date June 8, 1945

$$
\text { \& } \because \quad \text { \& } \quad \text { ct tat itrrt. }
$$

$$
\because \quad \text { !! !is } \quad 11 ? \text { ittarta }
$$

$$
\because I \because \Gamma+\ldots, \quad, \quad \because
$$

ris

$$
\text { L. } \underset{\sim}{\text { ! }} \text { ! ror } I .
$$

$$
r: 1
$$

$$
\because \because t, r \text { ir ricres }
$$

$$
\text { ciur: } 1
$$

THExisix


```
\therefore\because!!!: & !+.
```



```
..!口t!: ? ! ! f.
```



```
    ##n.r.verere:
```



```
                                    r = iriri.i; l.r.
```



```
    = x!
    = 1'''.'.
```



```
        1. =
    - 
```



```
        !--!i, ri : , vi, , ! !.
```

```
Non", Move:
            =,
            in.
```


$$
v=\pi-\frac{v}{i} \times \bar{a}
$$

$$
\text { elsumb let valucs, } \because r \text { ineve: }
$$

$$
v=\frac{\left.1^{\prime}, \cdots\right)}{x \cdot 1, x}
$$

$$
\mathrm{v}=\text { le. } \mathrm{i} \text {.s. . . .i. }
$$

he sliry:ry for: is:

$$
v=r .7 \% \times, x
$$

$$
v=i, \quad 7 i \quad . \quad . \quad i
$$

urttatter.
the 1: Pume:

$$
\text { inymet: } \quad \cdots=\operatorname{syim} \text { menet }
$$

$$
\begin{aligned}
& { }^{\prime} s_{s}=\frac{1}{i_{s} x+\bar{x}} \\
& { }^{+} s=\text { (u, j门 .s.i. } \\
& j=0.6 \% \\
& \text { H = thinkers: in. }
\end{aligned}
$$

```
IFY!m l.f risv,
```


$$
n=0 \quad \mathrm{x} x \mathrm{~d}
$$

in v.icte:

Went V औ h:ve:

$$
\begin{aligned}
& u=\frac{1}{2 \cdot \frac{r}{x} \cdot 1} \\
& u=e c \operatorname{lr} \cdot r \cdot d
\end{aligned}
$$

$$
\text { irit }=\text { ilor.i.if ranu is: }
$$

Irde represt is seite
the rates sivins a urrace of Ir íU.

$$
\text { TEr } \quad \text { rotrre } \therefore t_{n} \in I .
$$

resoritea is a.l: of iff sfotior of rit wole

$$
\begin{aligned}
& u=\text { uin ione }
\end{aligned}
$$

$$
\begin{aligned}
& i=0.15 \\
& d=\therefore \ln .
\end{aligned}
$$

 renstatratr.

$$
v \quad \forall \quad<-\ddots
$$

$$
l-10 ; x \quad \therefore \quad \therefore \quad 1 \because+
$$

$$
i=\frac{i \quad i}{i}
$$

, . \& ; : :

$$
\therefore=-\quad \times 1!\times 1:
$$

$$
\therefore .{ }^{1}:
$$

$$
\begin{aligned}
& \text { Orat }
\end{aligned}
$$

$\because s=\frac{\square}{\square}$
 tr. i:

$$
=\Leftrightarrow \quad!: \cdot \quad \cdot \quad .!
$$

$11=\frac{y}{-0} \quad \frac{\square}{\gamma}$

Replacing the values in the formula we get:

$$
\begin{aligned}
& v=\frac{576 \times 7.5}{5.4 \times 0.875 \times 9} \\
& u=1001 \mathrm{bs} \mathrm{0.s.1}
\end{aligned}
$$

the allowable bond is 100 lbs, so is safe.
Middle third.
For the middle third we have:

$$
\begin{aligned}
& w=62.4 \times 6.25 \\
& w=390 \mathrm{lbs} \text { per sq. ft. }
\end{aligned}
$$

Then the maximum moment for this section is:

$$
\begin{aligned}
& M=\frac{x \times 1^{2}}{10} \\
& M=\frac{390 \times \overline{15}^{2}}{10} \times 12
\end{aligned}
$$

$$
M=105,400 \text { in lbs. }
$$

Then the quantity of steel for this action is:

$$
\begin{aligned}
& A_{8}=\frac{M}{Y_{8} \times J \times d} \\
& A_{8}=\frac{105,400}{20,000 \times 875 \times 9} \\
& A_{B}=0.745 \text { sq. in. }
\end{aligned}
$$

We select for this section of the wall: round steel $\frac{3}{4}$ in spaced 8 in between centers.

Under third.

For the under third $m \in$ have:

$$
\begin{aligned}
& \nabla=62.4 \times \hat{c} \\
& \sigma=124.8 \mathrm{Ibs} .
\end{aligned}
$$

3. Design of the base slab.

We are going to design the base of the tank like an slab suoported in two sides and the principal reinforcement is going to be in the short direction.

Then the dimensions of the base slab is $60 \times 14 \mathrm{fts}$. and is going to sunnort a pressure of the sewage at a high of 8.75 ft , then we have for the unitary oresaion in the base:

$$
\begin{aligned}
& w=62.5 \times 8.75 \\
& w=546 \mathrm{lbs} \text { per sq. ft. }
\end{aligned}
$$

For the moment we are going to use $1 / 12$ because we considered the slab like fixed in both extremes, then:

$$
u=1 / 12 \times \cdots \times 1^{2}
$$

Then we have:

$$
\begin{aligned}
& m=1 / 12 \times 546 \times 14^{2} \times 12 \\
& u=\neq 107,000 \mathrm{in} .1 \mathrm{bs} .
\end{aligned}
$$

To get the minimum thickness of the slab we know:

$$
M=k \times b \times d^{2}
$$

or

$$
b x d^{2}=\frac{M}{k}
$$

from table NO 6 from the book " Design of Concrete structure" of 0^{\prime} Rourke we get for $f_{s}=20,000$ and $f_{c}=900$ a value for $k=157$, So we obtain:

$$
\begin{aligned}
b d^{2} & =\frac{107,000}{157} \\
b d^{2} & =680 \mathrm{in}^{3}
\end{aligned}
$$

If we take a value for b of 12 in we have:

$$
\begin{aligned}
& d^{2}=\frac{680}{12}=56.5 \mathrm{sq} . \mathrm{in} . \\
& d=7.5 \mathrm{in} .
\end{aligned}
$$

Then the minimun thickness for the slab is 7.5 in, if we out 1.5 in. to each side for covering the steel we get 10.5 in. of thickness, but we are going to use 12 in.for the total thickness of the base, so considering the 15 in at each side we have $12-3$ equal to 9 in. for the net thickneas.

The ateel required for the base glab ia then:

$$
\begin{aligned}
& A_{g}=\frac{M}{r_{g} \times \sqrt{J d}} \\
& A_{g}=\frac{107,000}{20,000 \times .875 \times 9} \\
& A_{g}=0.67 \mathrm{sq} \mathrm{in.}
\end{aligned}
$$

Te select for the reinforsement in the base slab, round steel of 5/8 in of diameter and spaced 5.5 in between centers. This seel is in the short direction and the temnerature steel is going to be in the other dorection.

Te check now the shear for our aection :

$$
\begin{aligned}
& v=\frac{v}{b \times \sqrt{x d}} \\
& v=\frac{546 \times 7}{12 \times .875 \times 9} \\
& v=61 \mathrm{lbs} \mathrm{p.s.1}
\end{aligned}
$$

if the allowable shear is 240 lbs p.s.1. we are safe.
Now we check the bond for the gteel:

$$
\begin{aligned}
& u=\frac{546 \times 7}{4.3 \times .875 \times 9} \\
& u=113 \text { lbs. psi. }
\end{aligned}
$$

Dimensions and orescriptions.

This tank is going to be designed for the next dimensions:
Interior length: 83 ft
Interior width: 28 ft (two divisions)
Total heigth: 14.5 ft
Sewage level: 13 ft
Maximun thickneas of walls: 16 in.
Three beams which are going to support each one a motor of 1200 lbs. olus 500 lbs , and a load of 100 lbs oer linear foot for the veovle which ia going to walk by the beams.

Allowable stress of concrete: 900 lbs psi.
Allowable stress of the steol: 20,000 lbs psi. Value of " n ": 15

Then an sketch of the tank whit it dimensions and the tentattive thickneas of the walls and beams is the following:

1. Design of the walls.

In this case all the walls of the acration tank ere of long spans and musi be desingned then like ε centilevers walls, for this reason we are going to consider the four walls of our tank like a cantilevers and design it in that way. If we assume athicknese of 1 ft 3 in for the walls, we have:
h

The maximun pressere of the water is in the bottom of the wall and is equal then to:

$$
\begin{aligned}
& p=W \times h \\
& p=62.4 \times 13 \\
& p=811.21 \mathrm{bs}
\end{aligned}
$$

Now we know the resultant of the oresoure of the water 18 going to be aoplied at the $1 / 3$ of the wall, and its value $1 s$ then:

$$
\begin{aligned}
& P=\frac{3}{3} \times \mathrm{x} \times \mathrm{h}^{2} \\
& P=\frac{1}{2} \times 811.2 \times 13 \\
& P=5,272.8 \mathrm{lbs} .
\end{aligned}
$$

The maximun moment of this force is at the bottom of the wall and is equal to:

$$
\begin{aligned}
& M=P \times \mathrm{h} / 3 \times 12 \\
& M=5272.8 \times 13 / 3 \times 12 \\
& M=274 ; 185 \mathrm{in} 1 \mathrm{bs}
\end{aligned}
$$

The minimun thickness for the wall is then:

$$
d=\frac{M}{k \times b}
$$

we have:

$$
\begin{aligned}
& M=274,185 \text { in lbs. } \\
& b=12 \text { in } \\
& k=157 \text { (From O'Rourke) }
\end{aligned}
$$

Then we have:

$$
\begin{aligned}
& d=\frac{274,185}{157 \times 12} \\
& d=12.06 \mathrm{in}
\end{aligned}
$$

Practically we can considered 12 in for the minimun thickness, and If we agmue 1.5 in for covering at each alde we have a net thicness of 12 glua 2×1.5 equal to 15 in . for the dhackness.

Now we muat check thia value for the shear:

$$
\mathrm{V}=5,272 \mathrm{lbs}
$$

then:

$$
\begin{aligned}
& v=\frac{v}{b x j x d} \\
& v=\frac{5272}{12 \times 7 / 8 \times 12} \\
& v=42.5 \text { 1bs } 281 .
\end{aligned}
$$

The allowable shear 1s:

$$
\begin{aligned}
& v=0.12 \times \mathrm{f}_{\mathrm{c}}^{\prime} \\
& v=0.12 \times 900 \\
& v=240 \mathrm{lbs} \mathrm{p81} .
\end{aligned}
$$

Then our section is safe.
This shear is in the bottom of the wall but all the other sections ere also gefe because the value of "d" varies with the value of "h"
and in this way the value for the shear is each time smallest when the value for "d" 18 smallest.

Quantity of steel.

For the steel we have:

in which:

$$
\begin{aligned}
& \text { M: } 274,185 \text { in lbs. } \\
& \mathrm{f}_{\mathrm{g}}: 20,000 \text { lbs psi. } \\
& 1: 7 / 8 \\
& d: 12 \text { in. }
\end{aligned}
$$

then:

$$
\begin{aligned}
& A_{s}=\frac{274,185}{20,000 \times .875 \times 12} \times 12 \\
& A_{8}=-1.1489 \mathrm{in} .
\end{aligned}
$$

We select round steel of $7 / 8$ in and 6 in of snace between centers With a total area of 1.20 sq in and a Derimeter of 5.5 in .

We have to check the bond for this steels

$$
\begin{aligned}
& u=\frac{V}{E_{0} x \cdot x \mathrm{~d}} \\
& u=\frac{5,273}{5.5 \times .875 \times 12} \\
& u=91.51 \mathrm{bs} 081 .
\end{aligned}
$$

The allowable bond is:

$$
\begin{aligned}
& u=0.05 \mathrm{f} \\
& u=0.05 \times 2,000=100 \mathrm{lbs} \mathrm{psi} .
\end{aligned}
$$

then in our cose ia safe.

Cut-Off Bars.

Te are going to have at the middle of the wall a moment which is going to be half of the maximun moment at the bottom, so thes ateel reauired in thet section io only the half of the steel used in the lower third of the wall, for this season at a heigth of $\frac{6}{2}$ of 13 or 6.5 ft . we cut every other bar.

Anchorage.

The ateel wil be bent down in the toe of the footing at a distance beyond the top of the footing or base slab suficient to dvelop their streneth in bond or:

$$
\begin{aligned}
& \text { diatance }=\frac{20,000}{6 \times 100} \times 7 / 8 \\
& \text { distance }=30 \mathrm{ln} .
\end{aligned}
$$

Tempersture Steel.

The outside of the wall is exposed to the full temoerature variation while the inside gomewhat insulated, but we are going to place the same quantity of steel in both sides, so we have:

$$
\begin{aligned}
& A_{\mathrm{g}}=p \times b \times d \\
& \mathrm{~A}_{\mathrm{B}}=0.00125 \times 12 . \times 12 \\
& \mathrm{~A}_{\mathrm{g}}=0.18 \mathrm{sq} \mathrm{in.}
\end{aligned}
$$

Te nlace round steel of $\frac{1}{2} \mathrm{in}$, and spaced 12 in between centers given a total area of 0.20 sq in .

Considerations.

We had designed the walls considering only the interior side of $1 t$ sumorting the oressume of the sewage, but also the exterior side is
going to supoort the oresare of the 8011 and for the ground water, so providing we are going to have the tank sometimes empty, and in that case we are going to have areversal of efforts with the extem rior side suoporting all the pressum, so we are going to put the same reinforcement in both sides of the wall.

Also the length of our four walls is very close, so we adont the same dimensions and reinforcements for all of them are going the same orovidong the eiforts which are going to support are very close and is unnecesary to reoeat the same calculus.

2. Design of the Beams.

These beams are goint to support the motors emoloyed in the aeration of the semege, this motors has a weigth of $1 ; 200$ lbs each one, algo the beams are going to be used to walk so we are ging to assume 100 lbs jer linear foot for the welgth of the people, the weight in the center of the beam 1s 1,200 lbs olus 500 more conssidering accesories and lmoact of the motor. Then for our design we have a uniform load of 100 lbs oer linear foot, and a concentrated load of $1,700 \mathrm{lbs}$ at the center of the beam. Te adopt for a oreliminary calculus the following dimensions, for our design we are going to consider each beam comosed by two Tee beams, so our tentative section and dimensions is the following:

Then the welgth of each Tee beam 1s:

$$
\begin{aligned}
& \omega=\frac{18 \times 4 \nmid 10 \times 12}{144} \times 150 \\
& \omega=199.50 \text { lbs ner linear foott }
\end{aligned}
$$

thia pa considering each linear foot of the beam, and 150 lba jer each cubic foot of reinforced concrete.

We have a uniform load of 100 lbs per linear foot, so the total uniform loed is :

$$
\begin{aligned}
& T=200 \neq 100 \\
& T=300 \mathrm{lbs} \mathrm{p.l.f.}
\end{aligned}
$$

The shear caused bv thia uniform load i a then:

$$
\begin{aligned}
& V=300 \times \frac{1}{2} \times 29 \cdot 33 \\
& V=4,400 \mathrm{lbs} .
\end{aligned}
$$

For the moment cause by this uniform load we are going to condider the beama like nartially continuos beams and for this reason we agoume a moment of $1 / 10 \mathrm{wl}$, as we hove:

$$
\begin{aligned}
& M=1 / 10 \times \times \times 1^{2} \\
& M=1 / 10 \times 300 \times 29 \cdot 3^{2} \\
& M=309,600 \mathrm{in} \cdot 1 \mathrm{bs} .
\end{aligned}
$$

Goncentrated load.

We know the concentrated load 1s:

$$
\begin{aligned}
& P=1200 \neq 500 \\
& P=1700 \mathrm{lbs}
\end{aligned}
$$

of this concentrated load, half of thic is for each of the tee beams - 0 the eoncentrated load is:

$$
P=t \times 1700=8501 \mathrm{bs}
$$

The shear due to the concentrated load 1s:

$$
\begin{aligned}
& V=\frac{t}{y} \times 850 \\
& V=4251 \mathrm{bs}
\end{aligned}
$$

For the maximun moment due to the concentrated load, if we con sidered the beam like a nartially continuns, we have to make a reduction in the moment which is $\ddagger \mathrm{Pl}$, ond thia reduction mus be

In the same pronortion lise the uniform load, so our monent is going to be:

$$
\begin{aligned}
& M=8 / 10 \times \frac{1}{2} \times P \times 1 \\
& M=8 / 10 \times \frac{1}{4} \times 850 \times 29.33 \times 12 \\
& M=59,832 \mathrm{in}-1 \mathrm{ba} .
\end{aligned}
$$

Total moment and total shear.

Masing the aume of the values we got before we have:

Total ahear: $\mathbf{V}=4,400+425=4825 \mathrm{lbs}$

Total moment: $M=309,600 \& 59,832=369,432 \mathrm{ln}-1 \mathrm{Bs}$.

With thig total moment we can check our first tentative section. Acsuming that web reinforcement is to be orovided, the allowable unit shearine atrese is :

$$
\begin{aligned}
& v=0.06 \times \mathrm{f}_{c}^{\prime} \\
& v=0.006 \times 2,500=120 \mathrm{lbs} 0.5 .1 .
\end{aligned}
$$

So we have:

$$
\begin{aligned}
& b^{\prime} d=\frac{v}{J \times 120} \\
& b^{\prime} d=\frac{4,824}{0.875 \times 120} \\
& b^{\prime} d=46 \mathrm{sq} \mathrm{in} .
\end{aligned}
$$

But we have a tentative section 06×10 or 160 sq in, this pection is to big for the value we obtained before, so we must reduce our section and check again.

For thia pur nosse we are going to adont another dimensiona and proceed to the calculus.

New Section For The Tee Beamo.-

We adopt the following dimenaitong for our new tentative section for the tee beams:

Then the weigh of the beam ia in this case:

$$
w=\frac{18 \times 4 \nmid 8 \times 10}{144} \times 150
$$

$W=158$ lbs per in ear ft.
then the total uniform load is:

$$
W=158+100=258 \text { lbs p.1.ft. }
$$

The shear for this load is then:

$$
\begin{aligned}
& v=258 \times \frac{1}{3} \times 2933 \\
& v=3,78 \emptyset \mathrm{lbs} .
\end{aligned}
$$

The maximum moment for the uniform load is considering lixe before the beams nartially continuos:

$$
\begin{aligned}
& M=1 / 10 \times W \times 1^{2} \\
& M=0.1 \times 258 \times 29.3 .3{ }^{2} \times 12 \\
& M=266,000 \mathrm{in}-1 \mathrm{bs}
\end{aligned}
$$

Concentrated Load.

The concentryted load is the aame like in the other case or: $P=850 \mathrm{lbs}$

Then the shear for the concentrated load is:

$$
V=\frac{1}{2} \times 850=425 \mathrm{Ibs}
$$

The maximun moment for the concentrated load is then:

$$
\begin{aligned}
& M=8 \% 10 \times \frac{1}{*} \times P \times 1 \\
& M=8 / 10 \times 1 \% 4 \times 850 \times 29.33 \times 12 \\
& M=59,772 \mathrm{in}-1 \mathrm{bs}
\end{aligned}
$$

Then the total moment and the total shear are:

$$
\text { Total Shear: } \begin{aligned}
V & =3780 \not 4425 \\
V & =4,205 \mathrm{lbs}
\end{aligned}
$$

Total moment: $M=266,000 \neq 59,772$

$$
M=325,772 \text { in-1bs. }
$$

So we can check our new aection with the values we got, assuming like in our first gection that web reinforcenent is to be provided the allowable unit shearing atrese is 120 lbs d.s.i., and the minimun section is then:

$$
\begin{aligned}
& v^{\prime} d=\frac{V}{j \times 120} \\
& \text { b'd }^{\prime}=\frac{4,205}{0.875 \times 120} \\
& \text { bed }=40 \mathrm{sq} \mathrm{in.}
\end{aligned}
$$

Our new tentative section is 8×14 in. or 112 ea. in, and like in
the first case we have a biggest aection than that required, but we are poing to adnt this second aection for our definite section because is imposible to reduce more our section.

Steel for the Tee Beam.

To get the steel for the beams we must compute firat in which Dortion of the beam is the neutral axis.

Firat we muot get the value of "k", we know:

$$
i s \frac{n}{n+\frac{P_{g}}{P_{c}}}
$$

in mhich:

$$
\begin{aligned}
& n=15 \\
& \mathbf{r}_{\mathrm{s}}=20,000 \text { 1bs osi. } \\
& \mathrm{f}_{\mathrm{C}}=900 \text { lba pai. }
\end{aligned}
$$

80 we have:

$$
\begin{aligned}
& k=\frac{15}{15+\frac{20,000}{900}} \\
& k=0.55
\end{aligned}
$$

The value of "ka" isthen:

$$
\begin{aligned}
& \mathrm{kd}=0.55(14-1.5) \\
& \mathrm{kd}=6.875 \mathrm{in} .
\end{aligned}
$$

Te dut 14 - 1.5 for the value of " d " conaidering 1.5 in for covering the steel, and also we are conaidering one row of bars.

The value obtained for "kd" of 6.875 in indicates that the neutral exis ia on the stem of the beam and then the Tee-bams formulas can be annly to obtain the ateel necesary for our case.

To obtain the quantity of steel reauired we muat get first the value of "2" and "g":

The value of " z " is:

$$
\begin{aligned}
& z=\frac{3 k d-2 t}{2 k d-t} \times \frac{t}{3} \\
& z=\frac{\left(\frac{3 \times 6.875-2 \times 4}{2 \times 6.875-1 \times 4}\right) \times 4}{2}
\end{aligned}
$$

$$
z=1.72
$$

To obtain the value of "g" we snow:

$$
j d=d-z
$$

then

$$
\begin{aligned}
y \times 12.5 & =12.50-1.72 \\
y & =\frac{10.78}{12.50} \\
y & =0.862
\end{aligned}
$$

Then with this value for " $\mathrm{J}^{\prime \prime}$ and the maximum moment we got before. we can get the value of the quantity of steel required:

$$
A_{g}=\frac{M}{f_{s x} j x d}
$$

And enlacing with the values we have:

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{B}}=\frac{352,772}{20,000 \times \cdot 862 \times 12.5} \\
& \mathbf{A}_{\mathbf{B}}=1.63 \mathrm{sq} \mathrm{in.}
\end{aligned}
$$

Te select round steel, 4 bars, of $\frac{1 n}{}$ of diameter given a total area of 1.76 sq in. and a nerimeter of 9.424 in .

Now we must check if all this steel can be put in one row like we as aulic before. if the separation of the vars derwent centers is 2.5 times the diameter of the bars, and if we considered for the exter' or covering of the steel 1 in at each side we have:

$$
3 \times \frac{3}{4} \times 2.5 \nmid 2 \times 1=7.6 \mathrm{in}
$$

Then we obtain a value of 7.7 in , and we have a width of 8 in a on in this case is right ant we can out all of our bars in onlv one row.

We check for the bond:

$$
\begin{aligned}
& u=\frac{V}{E_{0} \times J \times d} \\
& u=\frac{4,205}{9.424 \times .862 \times 12.5} \\
& u=43 \text { Ihs p.s.1. }
\end{aligned}
$$

The allowable bond 18:

$$
u=0.05 \times 2,000=100 \mathrm{lbs} \text { psi. }
$$

then we are safe.

Width of flange of the tee beam.

To check the width of flange of the beam we use the next formula:

$$
M_{c}=f_{c} \times\left(\frac{1-\frac{t}{d}}{2 k}\right) \times \frac{t}{d} \times b \times j \times d^{2}
$$

in which:
Mc: 352,772 in-1bs
$\mathrm{f}_{\mathrm{c}}: 900 \mathrm{lbs}$ ness.
$t: 4 \ln$
d : 12.5 in
j : 8.62
b : width of flange.
Then replacing this values in the formula we obtain:

$$
\begin{aligned}
& b=\frac{352,772}{23,895} \\
& b=10.5 \mathrm{in} .
\end{aligned}
$$

So the munimun width of flange we can use is 10.5 in but we have asaumed a value of 18 in , son our cose la affe.

Bent of bara.

The number of the bars in the beama is four, and we can bent two of them. To know the distance at which we must do it, we drew the narabola of moments of the beam, and then divided the vertical maximun distance(corresnonaing to the maximun moment), in four parts and we assume each of this narts are absorbed for aach of the bars. In this way we know we can bent two of the bars at 4.25 ft of the extreme, the others two bars are prolonqued until the end of the beama.

Stirruns.

Maxing the $\operatorname{lnveatigacion~for~atirrups~we~noticed~that~the~shear~}$ 1s very small for the section of the beams and as theoretically we do no need to nut stirmins. Rut concidering we need some sunoort for the horizontal bars and for orevention of any extra streas we are goine to nlace vertical stirruns of $\frac{1}{2}$ in and spaced one ft. all alone the beama.

Anchorege and extenaions of bers.

For end anchorage we are going to use a hook in the end of the bars, then the bars are bent in a full semicircle with a radius of four diameters, then $4 \times \frac{3}{4}=3 \mathrm{in}$, and a free end of eight diameters or $8 \times \frac{3}{4}=6 \mathrm{in}$.

The extenation of the bare in the beams in the middle sunport is nreacribed by a minimun of 12 diameters or $12 \times \frac{9}{4}=9 \mathrm{in}$, but we are eotng to give an extension of 18 in .

BIBLI OGRAFY

```
Design Of Concrete Structures, by Urquhart and o'Rourke.
Fourth Editior, mizC Graw Hill Rook rompany.
Reinforced Concrete Conatruction, bv Hool.
Nae Gramw Hill. Comnany.
Reinforced Concrete Etructureo, bv Dean Peabody.
Tohn Wiley and cone.
Reinforced Concrete Deaign Handbook.
American Concrete Inotitute.
Sewerage and Semage Disnosal, by Metealf and Eddy
!:ae Gramp and Hill Company.
American 'ivil Engineer's Hanbook, by Merriman and "iggin.
John miley and Sons.
```

Bulletina in Reinforced Concrete Desjen of the Portland Cement
Association.

Mo USE COD

79019 42

