EFFICIENCY STUDIES AT THE HIGHLAND PARK PUMPING STATION

Thesis for the Degree of B. S. MICHIGAN STATE COLLEGE William N. Rieger 1941

SUPPLEMENTA MATERIAL IN BACK OF BOOK

ACKNOWLEDGEMENTS

I wish to express my appreciation to Mr. Lyle
Whitsitt, Highland Park City Engineer, Mr. George
Golden, Water Works Superintendent, Mr. Irving
Dahljelm, Chemist in charge of the Filter Plant,
and the Pump House Operators for their cooperation
in carrying out the work connected with this thesis.
I also wish to thank Prof. Frank R. Theroux, of the
Michigan State College Civil Engineering Department,
for valuable guidance and assistance.

TABLE OF CONTENTS

Acknowledgements	D
Introduction	- 1
General Layout of Highland Park Water System -	- 3
Pumps in General	10
Methods of Testing Pumps	15
Test Results	19
Conclusion	35
Bibliography	

Efficiency Studies

at the

Highland Park Pumping Station

A Thesis Submitted to

The Faculty of MICHIGAN STATE COLLEGE

of

AGRICULTURE AND APPLIED SCIENCE

bу

William N. Rieger

Candidate for the Degree of

Bachelor of Science

June 1941

THESIS

It is the aim of every public water department to deliver water to the consumer at the lowest possible cost. To accomplish this aim, it is essential that the most efficient equipment obtainable be used.

Today, more and more public water departments realize that, under most conditions, motor-driven centrifugal pumps are able to furnish the necessary water more economically than any other type of pumping equipment. Some of the larger centrifugal pumps of modern design are able to attain efficiencies as high as ninety per cent.

It seems to be a rather general practice for water departments using the motor-driven centrifugals to forget all about the efficiency of the pumps, once they are installed or to assume that they are going to maintain their efficiency indefinitely.

When new pumps are installed, acceptance tests are made to determine whether or not the pumps will accomplish what the specifications called for. In many cases these are the only tests ever made on the pumps, or ever intended to be made. To illustrate this point, let me give an example of what was done at the Highland Park Pumping Station. Before giving the example, however, I want to say that I am not making a criticism of the Highland Park Water Department specifically, but am making the criticism of water departments in general, because similar things have been done at other plants.

The pumps at the above mentioned station are set on a concrete base about six inches above the floor level. The intakes for the pumps extend vertically downward below the center of the pumps. When first installed the concrete bases were not filled in solid, but there was an open space allowing access to the discharge line where it extends thro the floor. When the original tests were made, a hole was tapped in the flange which is situated just above the floor level in the intake line, but below the top level of the concrete base, to which a mercury U-tube gage could be connected for the tests. After the tests were completed the base was filled in with concrete, completely covering this flange, thus indicating that no tests in the future were contemplated.

When you buy a new automobile, the dealer tells you that you will get 25 miles per gallon of gasoline, so you try it out and find out for yourself that you do get 25 miles per gallon. Yet, do you assume from this test that after the automobile is two or more years old, it will still go 25 miles on a gallon of gasoline? The wise motorist will make an occasional check of his gasoline mileage, and when it decreases a considerable amount he concludes that something is wrong, and that he will save money by having it repaired, or by getting a new automobile. The same reasoning can, and should be, applied to pumps.

Certainly, we cannot expect pumps to maintain the initial efficiency year after year. As any other piece of equipment, they too, become worn and become less efficient.

Every water department should make a practice of making periodical tests on its pumps and when there is a considerable drop in efficiency, necessary action should be taken to correct this condition of inefficiency.

It will be my purpose to make a check on the efficiency of the pumps at the Highland Park Davison Ave.

Pump Station, and to suggest improvements where needed.

GENERAL LAYOUT OF HIGHLAND PARK WATER SYSTEM

The Highland Park water supply is taken from Lake St. Clair at a point about \(\frac{1}{4} \) mile from the shore, near Seven Mile Road and Lake Shore Drive.

A Pumping station equipped with three 8 MGD and three 10 MGD centrifugal pumps takes the water from the lake through a 30" cast iron pipe line and delivers it to the Filter Plant, located at Davison and Dequindre Avenues - a distance of fourteen miles.

In front of the filter plant the 30" lake line divides into two 30" lines, one of which leads to the open storage reservoir, and the other of which enters the pump house. (see print No. 1) The system is so arranged that the amount of water being used at the time goes into the pump house line, while the excess goes into the storage reservoir thro the other 30" line.

The water which enters the pump house is disposed of in two ways. Part of it is pumped directly from the 30" line to the Ford Motor Plant by pumps No. 7 and No. 8. The remainder goes through the filtration process and

thence into the city mains.

The water which goes thro the filter plant flows under the influence of the head furnished by the Grosse Pointe pumps. Just before leaving the pump house chlorine and alum are added - about 1.5 to 2.0 ppm of chlorine being used to give more efficient operation of the filter beds.

After the chlorine and alum are added, the water passes thro a baffled mixing chamber and then into the coagulating basin, where sedimentation takes place. From the coagulating basin the water goes into the filters. Before entering the filters powdered activated carbon is added for removing odors and tastes.

The filter plant consists of sixteen units, each having an area of 0.007853 acres, with a gravel bed of about 18 to 24 inches, and sand layer of about 30 inches. The filters are operated at a rate of 1 MGD per unit, which is equivalent to about 125 MGD per acre of filter area.

From the filters the water goes into the clear well, which has a capacity of 3 M.G., and is located directly beneath the filter plant. After final chlorination, to insure a residual of 0.2 ppm, the water is led by a 42" pipe line to the pump house whence it is pumped into the distribution system.

The pump house is equipped with nine centrifugal pumps, arranged as shown on Print No.2. Pumps No. 3, 4, 5, 6, and 9 are ordinarily used to pump the filtered water.

Pump Room Layout

Main Panel Board

Pump s

Starting Switch

All pumps are single stage, double suction pumps equipped with 440 volt, 3 phase, 60 cycle, General Electric Motors. With the exception of pump No. 9, all are the Rees Roturbo type, manufactured by the Manistee Iron Works Co., Manistee, Michigan. Pump No. 9 is a Worthington pump, manufactured by the Worthington Pump and Machinery Corporation of Harrison, New Jersey. Details of the various pumps are given in Table 1.

Two 24" feeder lines lead from the pump station to the distribution system. One of these enters the system at Davison and Oakland Avenues, and the other at Oakland and McLean.

A 250,000 gallon elevated storage tank, with a 30" riser pipe, maintaining a 125' head is connected into the system just outside the pump station. The purpose of this tank is to prevent surging and to maintain a more or less constant pressure in the distribution system.

The aforementioned open storage reservoir is of reinforced concrete construction with dimensions of
1380' x 250' x 14'-6" and a capacity of 48 M.G. It is divided into two parts, so that half of it may be cleaned
without disrupting service. As stated before, if more
water is pumped from the lake than is being used at present
the excess goes into the reservoir. If, however, an insufficient amount is being pumped from the lake, the difference can be made up from the reservoir supply. With the
reservoir full, water will flow by gravity thro the filter
plant, unless the filters are operating at a rate greater
than 8 MGD. In such a case, the water is pumped by pumps

Table 1

PUMP NO.	RATED CAPACITY MGD	RATED HEAD FT	HP	MOTOR RPM
1	5	100	100	1150
2	5	100	100	1150
3	5	120	150	1200
4	5	120	150	1200
5	5	125	150	1200
6	5	125	150	1200
7	11		60	680 -72 0
8	6		40	680 -720
9	3	135	85	1800

7 and 8, through a 54" concrete conduit leading from the reservoir. The piping is so arranged that these pumps can pump to the Ford Motor Co. and to the filter plant at the same time.

PUMPS IN GENERAL

In any water supply pumping station, two items are of primary importance, namely, quantity and variability. Pumping units must be provided to satisfy the maximum demand and the units must be of such size that the pumping rates can be varied to conform with the rates of consumption.

It is a well known fact that pumps operate most efficiently under the conditions for which they were designed. Operating pumps at rates greater or less than that for which they were designed, results in a considerable decrease in efficiency, as will be seen in the test results which will be given later. Therefore, it will be seen that maximum efficiency results if units of such size are provided that they can operate at rated capacity and supply the demand under the various conditions.

Consumption rates vary from hour to hour, from day to day, and from month to month. The reasons for these variations will not be discussed here but typical values will be given to show that such variations do exist and that they are of considerable amount. Figure 1 shows the hourly pumping rates for a typical day, while Tables 2 and 3 show the daily and monthly variations, respectively.

											-]	<u>l – </u>											
					HI.											1							
<u></u>		1					122						•	:.:			1]::			:		
											-		: : : : : :								i - i :		
1	155.5	1::::				: ::	+			1: ::			1					+			:		
		1:::::	: <u>: : :</u> ;	11111		: ::::::	:::::	1	<u>.</u>			1	::.:		· · · · · · · · · · · · · · · · · · ·	1		1	: _::	ļ::	:		
		1		334	:: • :			ļ:::;		- : : :								1: 1:			: · · .		
	 	+		: ::: †				 	11111		•		; :- :-			 .			; : :		<u> </u>		
													; : : : :	: 11:		1:::		į :-	•	!	:		
1							1			i							Ι		1				
	ļi	 +	+							ļ		 	• • • • • • • • • • • • • • • • • • • •	ļ. <u>-</u> -		• • • • •			. :				
										1000	:::::		1			1	: ::	1	1	1: .:	:		
																i			•				
		+							· · · · ·		· · · · · · · · · · · · · · · · · · ·						 .	<u> </u>				DE 11	
	H.	1: ::!				::::	;	: :=::				:	: :				: : : :	1: ::	•	111	:::::	V 4 . 7 .	
		1:::::								1::::			:			1					: : : :		
										1	-					ļ		ļ				0E.6	
1		1-1.											i				!:!!!					VC, O	
	THE STATES															1::-:		1	• • • • •				
	1	1				::-:	<u>: : : : </u>	1	12:::	1				1				1				ner	
1		1					<u> </u>					[·:·				1	: : : : .		:::::			OE Z	
	†								;			:			<u> </u>		• • • • • •		• • • •				
Ŋ	1	1::		:::i			:::::			1		.									!		
77 A 3 C 5		4.242	: : : ;		::.	· • · :				. :::::			<u> </u>	:.::	:::::				:::::	::::	:::::::::::::::::::::::::::::::::::::::	08.5	
₹.		1:::::			- 1						-						•	-					
T.	1	1::::											• • • • •					<u> </u>					
V5	FOR A						<u> </u>	12:1						:: <u>:</u> ::			: :::::	1.	: -:::-		:	OE E	
7	Φ	1	:::::::::::::::::::::::::::::::::::::::									-::::						1	::::::		: : :		
<u> </u>	₹																						<u> </u>
	::: :	1		:::::						: = : :	-:::=					1	:::::	1: :.	: : : : :			OET	X HH
<u> </u>	€ ⊀	+==					!			F			1111-			! : .	::::::	1	::::::		: : :	nooN	4
Ā	$\vec{b} \cdot \vec{b}$		1														•		:				$\hat{\Omega}$
11	1																		:			OEIII	•
4	 三直:::	####			333	-::-	#::!			:		:		1111	:		; ·	1					7 P
			1.1		:							1				1	: :::	1					
20					7										::							OE;6	TIME (F.9
ಕ	 	1::	==+				#::!		: :: : : : : : : : : : : : : : : : : :	:::-:		21.7				 	:::::	1 - 11	. ·	:	-		2 =
Ī	[EiHiii																	1					-
								::			: : : :		: : :	:::::		1		1			: :::	OE L	
		1:::::	1::1	:-::!		- ::::	1::::		: :::::	1		: :	: : - :			1111	:::		::::				
						13:17			! * : : :	:::::							: : : :						
		T																			•	OE S	
17.			:: :: :}	+				 : -	1					- :- :	ļ : .			ļ.:	:::::	1	####		
			111				<u>.</u>				:		:::::							1	1		
1							-		1 2 1							T						OE.E	
		1				-: -: -	: :::: ::	<u> </u>	-	ļ -	 		1==			-::-	H : -	ļ	- -		<u>:</u>		11.
	1	1			::::i	1.111	1::::	1::::		1222			1					1::::	1 ::	1	:		
					11 11		* * * * * * * * * * * * * * * * * * * *	1: :		1			I										
																	1					DEIT	
					80																Ø		
	Š				8								7				K				O	Wd OE II	
	<				88																0		
	\$				90		'	ן פ		571	NIC	M	na		σ	3.1					O		
	\$				60 0		0	נט			Nic	M	na	3	O	LE					0		
	ζ.				96		ď	51			Nic	M	na		O	3.1							
	Υ	3			80			9 1			Nic		na		O	3.1					0		
	S	3			100 0		J	51			NIC		na		O	3.1							
	\$	S			90			51			NIC		na		0	34							
					90				N		NIC	IV.	na		0	34							
	\$				8			ا ك	N		Nic	M	na		0						0		
	*				88				N		NIC	<i>I</i>	na		0	34							

Table 2

DAILY PUMPING RECORDS FOR THE MONTH OF JANUARY, 1939

DATE		GROSS PUMP	E PTE. HOUSE	HIGHLA PUMP		FILTE	RED	FORD)
S. 1 M. 2 W. 1 Th. 5 S. 7	2 5 4 2	5,88 7,11 7,29 7,27 7,27	7,000 7,000 2,000 8,000 1,000 4,000	5,180 5,280 7,100 7,150 7,090 7,130 6,240	,000 ,000 ,000 ,000	4,470 4,550 6,100 6,090 6,130 6,190 5,350	,000 ,000 ,000 ,000	710, 730, 1,000, 1,060, 960, 940, 890,	000 000 000 000
W. 1 Th. 1 F. 1	_	7,20 7,10 7,14 7,23 7,43	3,000 5,000 7,000 6,000 6,000 8,000 2,000	5,130 6,770 6,760 7,100 6,850 6,320 5,920	,000 ,000 ,000 ,000	4,400 6,020 6,140 6,210 5,940 5,410 5,040	,000 ,000 ,000 ,000	730, 750, 620, 890, 910, 910, 880,	000 000 000 000 000
M.] W.] Th.] F. 2	15 16 17 18 19 20	7,85 7,09 7,08 7,05 7,09	2,000 4,000 4,000 2,000 3,000 2,000 9,000	5,040 6,680 7,390 7,800 7,060 6,620 6,030	,000 ,000 ,000 ,000	4,340, 5,850, 6,470, 6,690, 6,010, 5,910, 5,280,	,000 ,000 ,000 ,000	700, 830, 920, 1,110, 1,050, 710, 750,	000 000 000 000
M. 2 T. 2 W. 2 Th. 2 F. 2	22 23 24 25 26 27	4,31 8,09 5,15 7,79 1 3,0 4	6,000 1,000 9,000 8,000 1,000 1,000 4,000	5,320 6,790 7,100 7,130 7,160 6,920 6,330	,000 ,000 ,000 ,000	4,650 5,890 6,060 6,130 6,150 5,990 5,510	,000 ,000 ,000 ,000	670, 900, 1,040, 1,000, 1,010, 930, 820,	000 000 000 000
M. 3	D M	6,98 8,70 24,99		5,180 7,660 9,000 205,530	,000 ,000	4,750 6,570 7,720 178,010 G.P.P 7,258 13,041 4,311	,000 ,000 ,000 .H.,000	730, 1,090, 1,280, 27,520, H.P.P 6,630, 9,000, 5,040,	000 000 •H• 000
			ic Cost ic Cost	per M.G	•	\$ 1,57	1.63 6.98	\$ 1,21 9	.09

GPPH •

per MG

\$ 5	.09 .80
7. 6.	.02 .13 .00
756	
6.	31 20 止0
6. 5.	48

January February March April May June July August September October	233	975 979 148 154 152 152 152 153 153 153 153 153 153 153 153 153 153
November December	236	,855 ,600

\$6.15 .03 .90 .10 .03 .48 .79 .87 .98 .79

*, * *

1...

ien.

3087

Ħij

3,2

3,52

de pro

2,,2

: a:

Since the pumping station is equipped with four 5 MGD pumps and a 3 MGD pump, we may conclude by referring to Figure 1 that the sizes of the pumping units are satisfactory with respect to variability.

Maximum pumping rates to be provided are dependent upon two things, first, the maximum ordinary consumption, and second, fire demand.

I am going to assume a maximum ordinary demand of 10,000 GPM. The fire demand for a city of 50,000 population, which is approximately the population of Highland Park, is 6,500 GPM, based on a table compiled by the National Board of Fire Underwriters. This gives a total maximum demand of 16,500 GPM. The plant is equipped with four 3,420 GPM and one 1,840 GPM pumps, having a total output of 15,520 GPM, and two 3,400 GPM pumps (1 & 2) which can also be put on the line, thus giving a maximum output of 22,320 GPM, which is certainly an ample amount to take care of any conditions which might arise.

Bulletin No. 116, National Board of Fire Underwriters, "Water Supply for Municipal Fire Fighting", Jan. 15, 1941.

METHODS OF TESTING PUMPS

The acceptance tests on pumps are usually made to a considerable degree of accuracy in order to be sure that the pumps come up to the guarranteed standards. Subsequent tests are usually run merely as a check to see whether or not there has been any considerable loss in performance.

In making pump tests three things must be measured: the head pumped against, the power input into the motor, and the amount of water pumped.

on the discharge side of the pump, the suction lift, and the frictional loss in the intake line. The discharge head is measured by means of a pressure gage placed on the discharge side of the pump. The suction head is usually determined by attaching a mercury U-tube on the intake side of the pump, in which case the frictional loss in the line is included in the U-tube reading. In this case the total head is equal to the discharge head plus the suction head measured by the U-tube and the difference in elevation of the pressure gage and the point where the U-tube is connected into the intake line.

Under certain conditions it is possible to connect one side of the U-tube to the pressure side of the pump and the other side to the intake side of the pump, in which case the total head pumped against is registered by the U-tube.

Often it is inconvenient to connect a U-tube to the intake side of the pump. In such a case, the discharge pressure is measured in the usual way and the suction head is determined by measuring from the water surface from which the water is being pumped to the center of the pump and arbitrarily adding a foot or two for frictional losses in the intake line. The frictional losses can be estimated quite accurately by taking into consideration the amount of pipe and the number of fittings through which the water flows and the velocity of the water through them. case the total head pumped against is the sum of the discharge head, the difference in elevation of the water surface and the center of the pump, and the estimated frictional loss. This latter method is the one which was used in making the present tests.

The power input into the motor is measured by one of two methods. The first method, commonly called the disc constant method, involves the use of a kilowatt-hour meter. In this method it is necessary to count the number of revolutions of the meter disc during a period of time. The horsepower is then computed from the formula,

$$H \cdot P \cdot = \frac{R \times K \times M}{\cdot 2072 \times t}$$

where, R is the number of revolutions of the disc, t is the time in seconds for this number of revolutions, K is the disc constant, and M is a multiplying factor obtained by multiplying the current transformer ratio by the potential transformer ratio. The factors K and M are usually given on the name plate of the meter but if they are not given they can be obtained from the manufacturer.

The second method of measuring power input involves the use of a kilowatt, or watt meter. In this case the rate of kilowatt consumption is given by the meter. To obtain the horsepower input it is necessary only to divide the kilowatt input by 0.746, since 1 H.P. = 0.746 KW. In equation form.

$$H.P. = KW$$

$$0.746$$

This second method is the one which was used in making our tests.

The amount of water pumped can also be measured in one of several ways. Perhaps the simplest, and the one used in our tests, is the use of Venturi meters. In important tests Venturi meters should first be checked before relying on their results.

A frequently used method of measuring the amount of water pumped involves the use of weirs. In this case the water pumped is run over a weir, and by measuring the depth over the weir and the size of the notch the flow can be calcuated by using one of the weir formulae. One of the most used is King's formula,

$$Q = 3.34 \text{ IH}^{1.47} (1.56 \frac{\text{H}^2}{\text{D}^2})$$

in which Q = flow in c.f.s. (cubic feet per second)

L = length of the weir, in feet corrected for end contractions

H = head on the weir, in feet

D = area of channel divided by L

This method of measuring the flow was used in making the acceptance tests on several of the present pumps.

Still another method of measuring the rate of pumping is to pump the water into a tank of known dimension and measuring the depth of water pumped in a specific time.

After the total head pumped against, the power input and the pump discharge have been determined the "wire to water" efficiency of the unit can be computed. "Wire to water" efficiency means the combined efficiency of the pump and the motor.

By definition, efficiency is the ratio of the work gotten out of a machine to the amount of work put into it.

Or, in our case, it would be the ratio of the horsepower output to horsepower input. In equation form,

$$E = \frac{WHP}{BHP} \times 100$$

where, E = efficiency in per cent

WHP = water horsepower = horsepower output

BHP = brake horsepower = horsepower input.

Water horsepower can be computed from the formula,

WHP =
$$\frac{GPM \times head}{3960}$$

where, GPM = gallons pumped per minute

and, head = total head pumped against expressed in feet of water.

By taking a series of readings on each pump at different rates of discharge enough data is obtained to plot the characteristic curves of the pump. This has been done in our case and the present curves have been compared with the original curves, where these curves have been available, in order to show the difference between the pump performance when the pump was installed and the present performance.

In comparing the efficiencies of old and new pumps, the difference in efficiency of the two pumps is often referred to as the improvement. This, however, is incorrect. The improvement is the difference in efficiencies divided by the efficiency of the new pump. For example, if a pump whose efficiency is 60% is replaced by one whose efficiency is 80%, the improvement, or power saving, is $\frac{.80-.60}{.80}$ or 25%.

Figure 2 gives an easy way of obtaining the power saving without doing any computing. Run a straightedge through the efficiency of the new pump in Column A and of the old pump in Column B, and read the improvement in Column C.

TEST RESULTS

Pumps No. 1 & No. 2

Tested: May 13, 1941

The present tests on these pumps were made under very unfavorable conditions. They were pumping raw water from the lake line and discharging through a six inch line with four openings which is much too small to handle the required amount of water.

The results obtained show a very low efficiency, but it must be remembered that the pumps were not opened up to full capacity.

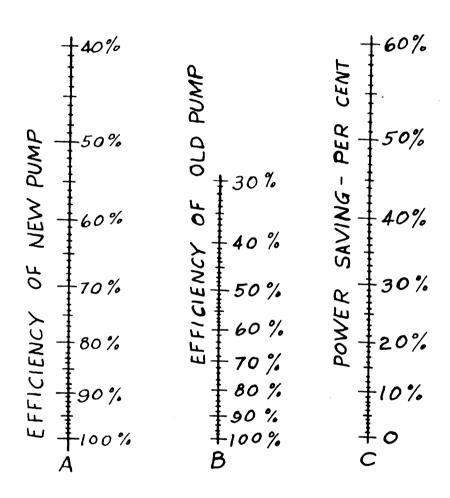
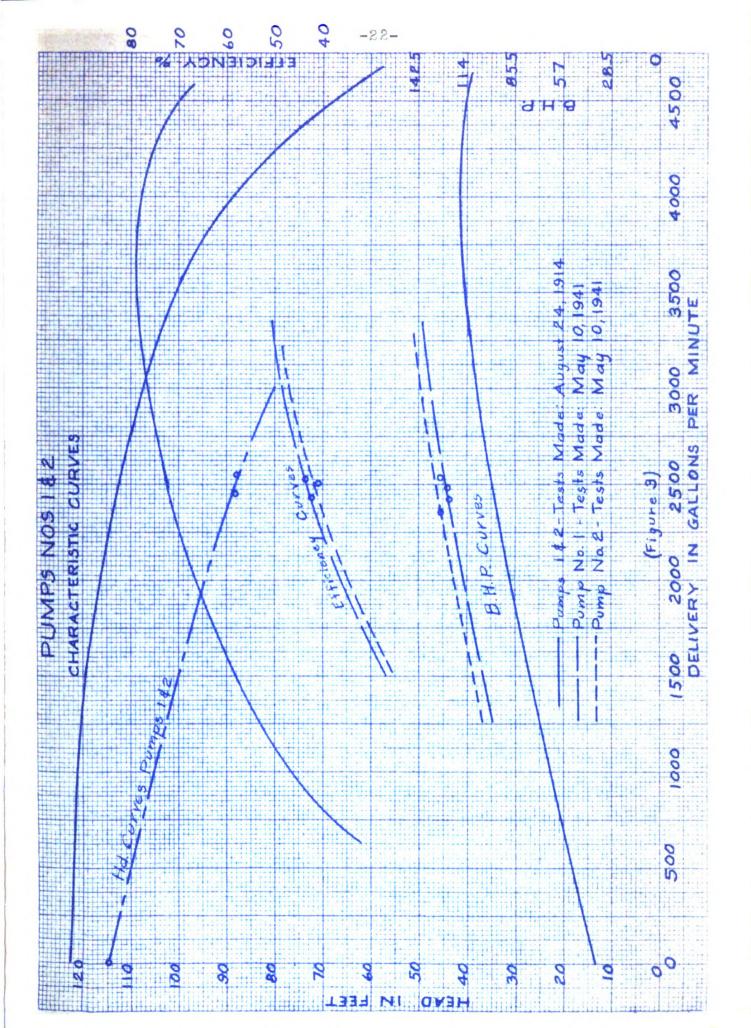



FIGURE 2

V.	1
E	4
D.E.L.	1
)
Ŭ,	3
Œ	Į
D TO	4
=	1
70 E	1
E	1

EFFICIENCY %			12.5	43.6		41.3	1,10
WHP			75	56.2		53.6	53.9
BHP			121	129		129	131.5
KW			95	26		26	86
DISCHARGE MGD GPM	н.		3.5 2430	3.64 2530	8	3.4 2360	3.6 2500
TOTAL HEAD	PUMP NO. 1	115	88	88	PUMP NO.	90	85
E HEAD Ft of		122	95	95		26	95
DISCHARGE HEAD Lbs per Ft of sq. in. water		53	다	다		द्य	07
SUCTION HEAD FT		2	2	2		~	2
TRIAL NO		Shutoff	н	N		н	7

Since these pumps are very seldom used - usually about once a year - their low efficiency is not of much consequence. However, should conditions become such that the pumps would be needed more often, I would suggest that another set of test be made under more favorable conditions, if possible. Referring to Figure 2, it can be seen that by replacing these pumps with pumps whose efficiencies would be 80% would result in a power saving of approximately 45%.

Pump No. 3 Tested: May 17, 1941

Referring to Figure 4, we see that the present curves correspond quite closely to the test curves of January 12, 1917. There is a slight drop in efficiency which is to be expected, since the pump has been in operation for over 24 years.

Let us, however, examine the savings in power cost which could be expected if a pump of modern design were installed. A modern pump of this size may be expected to give a "wire to water" efficiency of $80\%^1$. At this rate pump No. 3 has an efficiency of about 64%. If a pump of 80% efficiency were installed the savings in power cost would be 20%. Referring to the column in Table 3 which gives the electric cost per M.G., we will assume a value of \$6.00 per M.G. The saving in cost per M.G. would be 20% of \$6.00, or

Beckwith, H. E. "Simple Method for Checking Pump Efficiencies", Water Works & Sewerage, Vol. 86, p. 145.

PUMP NO. 3

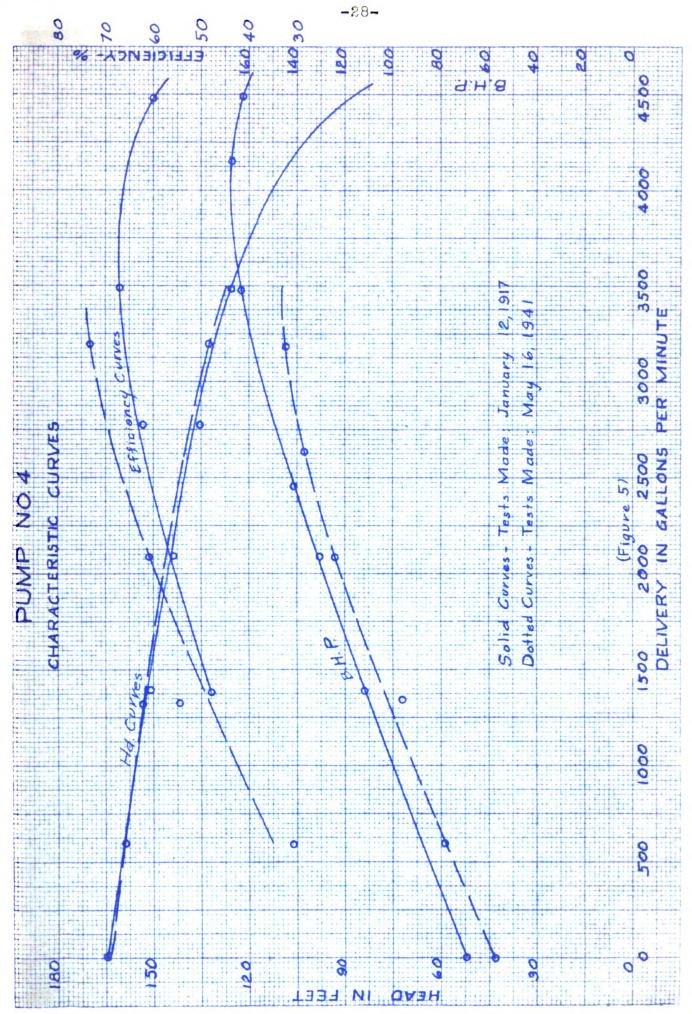
EFFICIENCY %		56	टो	51	61	63
WHP		26.3	50.1	72.1	95.2	104.9
BHP	9.69	103	120.5	1/10.7	156.8	167.3
KW	52	27	90	105	117	125
DISCHARGE MGD GPM		† 69	1388	2083	2776	3192
DISC		Н	2	ĸ	4	7.6
TOTAL HEAD	191	150	143	137	136	130
E HEAD Ft of water	143	132	125	119	118	112
DISCHARG Lbs per sq. in.	62	22	54	513	51	¥8†
SUCTION HEAD FT	18	18	18	18	18	18
TRIAL NO	Shutoff	н	8	N	4	7

LUNTO NO DURVES

\$1.20. The question now arises as to whether a saving of \$1.20 in power costs per M.G. pumped would justify the purchase of a modern pump. That is a question for the water department officials to answer. My purpose is merely to point out the possibilities.

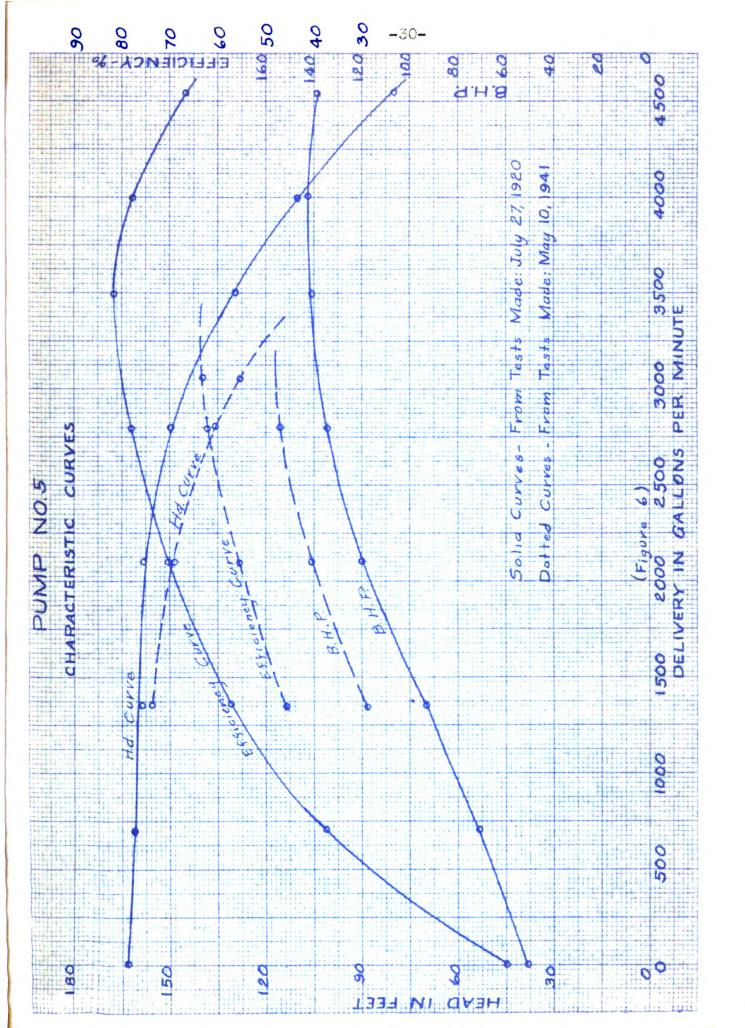
Pump No. 4 Tested: May 16, 1941

A study of the test curves shows the tendancy of the present curves to follow the slopes of the curves determined by the tests of January 12, 1917. It will be noted, however, that the present efficiency curve runs higher than the original, and the BHP curve runs lower. This indicates that there is an error in measuring the amount of water delivered. Judging from these curves, I would say that the Venturi meter (meter No. 2) through which this flow was measured was in error. It registers high - and considerably so. My recommendation is that this meter be checked and corrected immediately. An erroneous meter is little better than no meter at all.


Pump No. 5 Tested: May 10, 1941

The original tests on this pump were made on July 27, 1920, It will be noted on Figure 6 that the maximum efficiency attained by pump No. 3 was 68%. This comparison is indicative of the improvement of pump design between 1917 and 1920.

The present efficiency is comparatively low with respect to the original. My recommendation is that another test be run on this pump, and if the results are similar to


PUMP NO. 4
TEST RESULTS

EFFICIENCY %		31	55.	61.5	64.5	73.5
WHP		23.8	53.3	8.97	92.5	η•901
BHP	9.75	4.97	8.76	124.7	136.7	114.8
KW	43	57	73	93	102	108
DISCHARGE MGD GPM		290	1518	2083	2635	3192
DISC		.85	1.9	Ю.	3.8	9•4
TOTAL HEAD	164	160	153	9गृा	139	132
DISCHARGE HEAD Lbs per Ft of sq. in. water	145	171	154	127	120	113
DISCHAR Lbs per sq. in.	63	61	58	55	52	64
SUCTION HEAD FT	19	19	19	19	19	19
TRIAL NO	Shutoff	н	7	8	-	5

PUMP NO. 5

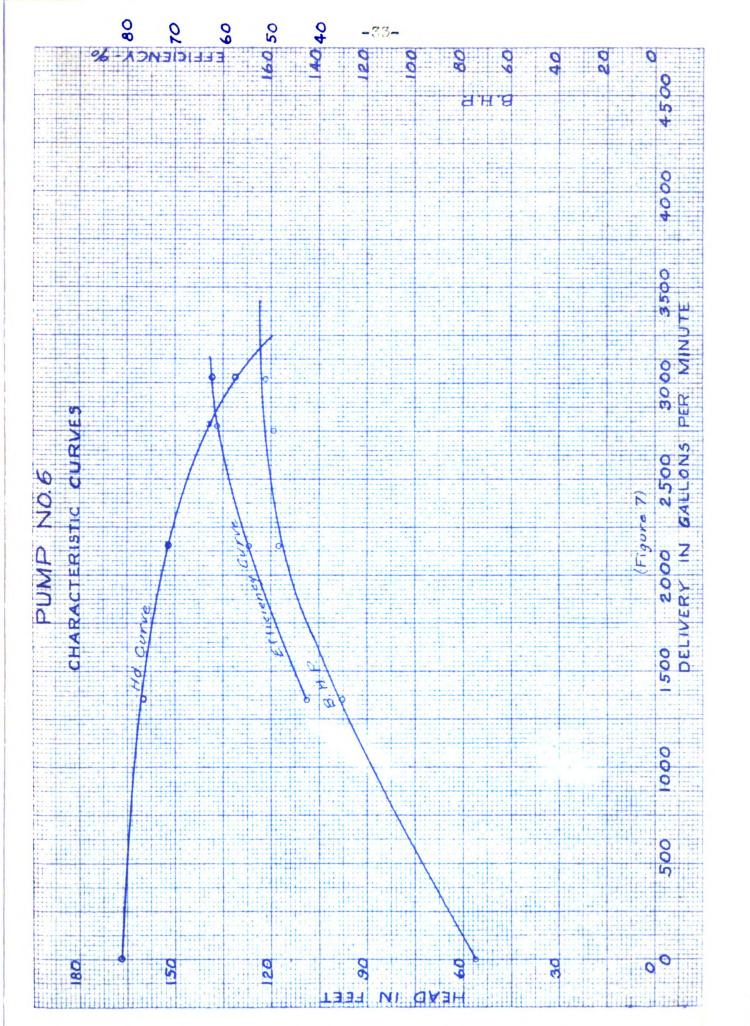
EFFICIENCY	917	55.5	62	63.5
WHP	54.8	78.5	95.8	99.5
ВНР	119.2	ניןנ	154	156.8
KW	89	105	115	117
DISCHARGE MGD GPM	1388	2083	2776	3056
DISCE	N	K	4	†• †
TOTAL HEAD	157	671	136	129
GE HEAD Ft of	137	129	911	109
DISCHARGE Lbs per sq. in.	59	99	50	<i>1</i> 4
SUCTION HEAD FT	20	20	20	50
TRIAL NO	н	8	К	7

those of the present test, then an investigation should be made as to the cause of this decrease in efficiency. There is a possibility that the impeller may be badly worn, or that the motor needs repairing. In any case, the possibility of increasing the efficiency 10% to 15% is certainly worth an investigation.

Pump No. 6 Tested: May 10, 1941

No comparison has been made between the present test results and the original tests. I was unable to get the curves for this particular pump because I could not find its serial number. If the department wishes to make the comparison, the original curve may be obtained by writing to the manufacturer, and giving the serial number of the pump, if it can be located.

Pumps No. 7 & No. 8


No tests were run on these pumps because of the difficulty which would be encountered in obtaining a constant flow.

Pump No. 9

We went through the procedure of running a test on this pump, but when it came to making the computations I discovered that I had been reading an ammeter instead of a kilowatt meter. Upon further investigation I found that these are no means for measuring the power input to this pump. If the power factor of the motor were known, the power input could be computed from the voltage and

PUMP NO. 6 TEST RESULTS

EFFICIENCY		43	54.5	19	61.5
WHP		52	82.5	1.76	100
BHP	75	130	151.4	159.4	162.2
KW	95	26	113	119	121
DISCHARGE MGD GPM		1388	2151	2776	3023
DISCF		8		†	_
Total Head	991	160	152	139	131
E HEAD Ft of	971	140	132	119	111
DISCHARGE HEAD Lbs per Ft of sq. in. water	63	60.5	57	51.5	84
SUCTION HEAD FT	20	20	20	20	20
TRIAL NO	Shutoff	н	N	М	4

amperage. However, the power factor would also vary with the load, so at best, this method would be very crude.

I have included the general efficiency curves for this particular type of pump so that if the department wishes to make a test, the results may be compared with the design efficiency.

If the department feels that it is not necessary to have a kilowatt meter installed on this pump, a meter can be borrowed from any electric company so that tests can be made.

CONCLUSION

It is my hope that the test results here given will bring about the realization that occasional check-ups on equipment are essential to economy of operation.

a year. Some one man in the department should be put in charge of this work, and it should be his duty to supervise the tests, draw up the conclusions, and make recommendations for improvements. This work would take up but several days time each year, and I am convinced that the benefits derived therefrom would more than pay for this time.

BIBLIOGRAPHY

- Babbit & Doland, "Water Supply Engineering", McGraw-Hill
 Book Co., 1939.
- Schoder & Dawson, "Hydraulics", Chapter XVIII, McGraw-Hill Book Co., 1934.
- Pickels, George W., "Drainage and Flood-Control Engineering", Chapter X, McGraw-Hill Book Co., 1925.
- Peerless Pump Division, "Catalog P-126", pp. 38-40.
- National Board of Fire Underwriters, Bulletin 116, "Water Supply For Municapal Fire Fighting", Jan. 15, 1941.
- Schaphorst, W. F., "How To Compare Pump Efficiencies",
 - Water Works & Sewerage, Jan., 1941, p. 43.
- Beckwith, H. E., "Simple Method For Checking Pump Efficiencies", Water Works & Sewerage, Vol. 86, p. 445.
- Angus, R. W., "An Improved Technique for Centrifugal-Pump Efficiency Measurements", <u>Transactions of the ASME</u>, Vol. 63, No.1, p,13.

