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ABSTRACT 

MOLECULAR AND CLINICAL NETWORK ANALYSIS OF COLORECTAL CANCER 

By 

Ertugrul Dalkic 

Cancer is a large class of diseases and colorectal cancer is one of the leading types of 

cancer. Systems level analysis of complex diseases like cancer requires the analysis of 

relationships between different types of clinical data as well as molecular data. Common or 

specific network features of colorectal cancer together with the other cancer types could be 

identified by using different network approaches, such as the analysis of clinical data 

associations, molecular signaling pathways of cancers, and specific interaction networks of 

cancers. Firstly, a clinical network analysis has been performed on relationships between 

different types of cancer and the drugs. We generated two cancer networks, one of cancer types 

that share Food and Drug Administration (FDA) approved drugs, and another of cancer types 

that share clinical trials of FDA approved drugs. Breast cancer is the only cancer type with 

significant weighted degree values in both cancer networks. Lung cancer is significantly 

connected in the FDA approval based cancer network, whereas ovarian cancer and lymphoma 

are significantly connected in the clinical trial based cancer network. We defined global and 

local lethality values representing death rates relative to other cancers vs. within a cancer. 

Correlation and linear regression analyses suggests that global lethality impacts the drug 

approval and trial numbers, whereas, local lethality impacts the amount of drug sharing in trials 

and approvals. However, this effect may not apply to pancreatic, liver, and esophagus cancers as 

the sharing of drugs for these cancers is very low. We also showed a weak overlap between the 

mutation and drug target based cancer networks. Secondly, we analyzed the cancer pathways in 

the KEGG (Kyoto Encyclopedia of Genes and Genomes) database, which provides a collective 



 

 

of signaling pathway members involved in cancer progression. However, the KEGG cancer 

pathways, unlike signaling pathways, were analyzed extensively with gene expression and 

mutation data. We transformed the colorectal cancer pathway into subgroups based on their 

position and analyzed the relative expression levels of adenoma and carcinoma samples as well 

as the distribution of mutation targets. The gene expression values of the early stage pathway 

members are significantly higher than the rest of the pathway members in colorectal adenoma 

tissues. The colorectal cancer pathway shows some degree of coherence in only the carcinoma 

samples. The correlated gene pairs responsible for the coherence of the colorectal cancer 

pathway in the carcinoma samples are supported, in part, by the literature and may suggest novel 

regulatory associations. Thirdly, we compared colorectal cancer samples not only to a control 

sample set but against a wide variety of samples and conditions, in contrast to current integrative 

network approaches that identify specific genes by comparing pair-wise control (i.e. normal) to 

treated (i.e. disease) samples. We were able to identify a distinctly expressed set of genes which 

were significantly associated with colorectal cancer in the literature unlike the pair-wise 

approach. We integrated these specific genes with the PPI data to construct a colorectal cancer-

specific network. We identified a potential regulatory relationship between glucocorticoid 

receptor (GR) and ring finger protein 43 (RNF43) which may play a role in colorectal cancer. In 

HCT116 colorectal cancer cell line, knocking-down GR levels with siRNA resulted in increased 

RNF43 levels and inducing the colorectal cancer cells with dexamethasone, which is an 

activating ligand for GR, resulted in decreased RNF43 levels. On the other hand, knocking-down 

RNF43 levels with siRNA resulted in decreased GR levels. Our study suggests GR might 

regulate RNF43 negatively, whereas there might not be such a negative regulation from RNF43 

to GR.
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INTRODUCTION 

Cancer is a large class of different diseases which result from the deregulation of cell 

growth [1]. There are more than 200 cancer types, such as lung cancer, breast cancer, colorectal 

cancer, etc. [2]. Cancer is a major cause of death in the United States. The United States has the 

highest number of cancer deaths in the world [2]. Approximately 12 million Americans alive in 

2008 had a history of cancer, some of whom are currently cancer free. Around one and a half 

million Americans are expected to be diagnosed with cancer and approximately half a million 

Americans are expected to die of cancer in 2012 [1]. Cancer is the second leading cause of death 

in the United States. These statistics support the significance of cancer for clinical research and 

shows the need for developing efficient therapy for cancer. Colorectal cancer is one of the 

leading types of cancers based on the number of new cases and number of expected deaths [1]. 

However, it does not have as many clinical drug trials and FDA drug approvals as lung cancer, 

leukemia, etc. This suggests that further clinical studies for colorectal cancer are needed, which 

should also be accompanied by basic molecular research. 

Clinical treatment of cancer includes chemotherapy, radiotherapy, surgery, 

transplantation, etc. [3]. Chemotherapy is the use of drugs to slow down or prevent the growth of 

the cancer cells. The goal of chemotherapy might be to cure the cancer by destroying the tumor 

cells, control the growth of cancer by preventing the spread of the tumor cells, and slow the 

growth of the cancer, or ease the symptoms (i.e., pain) associated with the growth of the cancer. 

Classical cancer drugs include i) mitotic poisons or tubulin inhibitors such as Paclitaxel, which 

disrupt the formation of mitotic spindle and thereby progression of the cell cycle, ii) anti-

metabolites like Cytarabine, which are nucleic acid base analogues that are incorporated into the 

DNA to stop DNA synthesis, iii) topoisomerase inhibitors like Epipodophyliotoxins, which are 
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inhibitors of topoisomerase I or topoisomerase II, that prevent DNA replication, and iv) cell 

cycle phase-independent agents such as Cisplatin, Doxorubicin, etc., which alkylate the guanine 

bases to crosslink two strands of DNA, or intercalate between the neighbor bases, or locate in the 

external grooves of the DNA to disrupt the double helix topology [2]. There may be side-effects 

of chemotherapy such as nausea, diarrhea, hair loss, fatigue, secondary cancers, etc., because the 

non-cancer cells might also be damaged [4]. Managing the dosage and the delivery of the cancer 

drugs is also important aspect of the chemotherapy. There is only a small range between the 

toxicity and efficacy of most cytotoxic cancer drugs, which necessitates caution in determining 

the dosage of the chemotherapy [4]. 

Radiation therapy is the use of high energy radiation, such as X-rays, gamma rays, etc., to 

damage the DNA and thereby destroy the tumor cells [3]. There also might be side effects to 

radiotherapy as the normal cells are damaged with this therapy. Furthermore, different types of 

cancer therapies might be combined; for instance, surgery can be followed by radiotherapy and 

chemotherapy [3]. A challenge of cancer therapy is to avoid recurrence of the tumor growth [2]. 

For this reason, tumor markers are monitored to check the progression of the disease. 

As mentioned previously, cancer drugs generally target the DNA structure, function, and 

synthesis to halt or stop cell division. Such drugs are not likely to selectively kill a specific tumor 

type or even differentiate between normal and tumor cells. Especially in recent years, there has 

been progress in targeted cancer therapies, which are drugs that target molecular markers of a 

specific cancer type [3]. For example, the SRC family protein tyrosine kinases are downstream 

factors of several cell membrane receptors and relay the signal to proliferation-promoting genes.  

Dasatinib is a direct inhibitor of the SRC family tyrosine kinases and is approved for the 

treatment of leukemia. Targeted therapies are more promising, as they are more specific to the 
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tumor cells, and thus are less likely to harm other (i.e. normal) cells. The success of the cancer 

treatment is dependent on the cause of the cancer, external causes such as smoking or internal 

causes such as mutation, and the type of the cancer. For example, cancers caused by smoking can 

be prevented [3]. Also, if a certain mutation is found in a patient, if there is a targeted 

chemotherapy for that molecule, it would be more likely to be successful. For example, the 

cancer drug Vemurafenib inhibits the activated mutated form of the BRAF serine/threonine 

kinase protein in melanoma patients [3]. In recent years, combination chemotherapy for cancer 

has gained significant attention [2]. When a single protein is targeted by a drug, the cell can use a 

redundant pathway to continue proliferation. In combination chemotherapy, different drugs can 

target different molecules, avoiding the redundant pathway activity; as well as reducing toxicity 

due to the lower doses of the drugs. Another targeted therapy for cancer is vaccine therapy, in 

which the immune system of the patient is exploited to recognize and destroy the tumor cells [3]. 

Cancer vaccines contain inactivated cancer cells, tumor antigen-expressing viruses, or 

overexpressed tumor antigens along with supporting factors for the immune system such as 

interleukin-2. Cancer vaccines enhance the immune activity of the patient towards the cancer by 

helping it to recognize the tumor cells. 

Since most of the current cancer drugs target general mechanisms such as DNA 

synthesis, which do not provide specificity and also result in drug resistance, clinical trials for 

new targeted cancer drugs are of high priority [2]. For this purpose, both basic and translational 

research are important. While basic cancer research aims to find novel molecular mechanisms 

involved in the cancer, translational research aims to improve cancer therapy by capitalizing on 

the basic research findings [2]. Basic research investigates the modified genes in cell lines 

through functional studies, such as analyzing the upregulated genes with apoptosis assays. On 
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the other hand, translational research investigates the potential of clinical usage of this target 

gene, i.e., screening drugs for inhibitors of the upregulated protein product. This is followed by 

in vivo studies in transgenic mouse models and then clinical trials [2]. 

Clinical trials for novel drugs provide evidence for the efficacy, risks and optimal use of 

the drugs in patients [5]. Phase 1 clinical trials are performed on small groups of individuals to 

evaluate the pharmacodynamics, pharmacokinetics, and dose toxicity of the drug [2]. Phase 2 

clinical trials are performed to assess the safety and efficacy of the drug. Phase 3 clinical trials 

are performed on a large group with similar purposes as well as to provide comparisons with 

previously approved drugs. The US Food and Drug Administration (FDA) regulates the approval 

and labeling of the drugs by considering the safety, efficacy, and security of the cancer drugs for 

patient use [6]. Since basic molecular studies are fundamental to the cancer drug development, it 

is necessary to monitor the relationship between the basic cancer research results with the 

clinical results. If a common molecular mechanism is found for two different cancer types, this 

raises the question of whether they also share clinical drug trials or FDA drug approvals. This 

provides an idea of whether the molecular research findings are reflected in the cancer therapy 

that is developed. 

In recent years the biomedical and clinical sciences have embraced the era of systems 

level research which is quantitative, integrative, and predictive. Systems science is an 

interdisciplinary research that focuses on the principles of abstract organization rather than 

specific properties and produces models to describe the global characteristics [7]. Analyzing part 

of a system in isolation from the rest cannot provide a complete understanding of its properties 

and thus cannot readily yield predictions of its behavior. This is significant for biomedical 

research since the interactions between the genes, proteins, cells, tissues, and organs are crucial 
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for the proper function of the organism. In other words, biomedical systems cannot be 

completely understood by analyzing the properties of the molecules in isolation, but rather is 

better understood by analyzing the relationships between the molecules [7]. For example, the 

identification of feedback mechanisms is a systems level observation of a biomedical system. 

Systems medicine investigates the regulatory interactions in the clinical systems such as 

feedback and feed-forward loops between the patients, clinicians, literature knowledge and data 

from both basic and translational research [7]. The relationships between different disease types, 

drugs, and clinical trials are also important just like the relationships between different 

molecules. Analyzing the links between the diseases provides a system level observation of the 

relationships between the different diseases [8]. These studies are based on the assumption that 

two diseases that share a common molecular mechanism, like a mutation target, should have a 

common origin. This is supported by the finding that similar disease phenotypes, like different 

cancer types, cluster together when they are linked by mutation targets [9]. These network 

analyses of disease networks provided new insight into comorbidities, which are secondary 

diseases that occur concurrently with the primary disease [8]. A patient with a particular disease 

was shown to be more likely to develop a secondary disease that is a neighbor in the disease 

network [8]. Such analysis of disease networks provides a systems level approach to 

understanding disease relationships as compared with the traditional classification of human 

diseases that neglects this higher level of connectivity of diseases. For example, there might be a 

mutation in a gene which can cause a primary disease and the interacting neighbor of that 

specifically mutated gene can lead to secondary disease phenotypes, thereby linking these 

diseases to each other [8]. 
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Previously, a network level analysis was performed for all the approved drugs and 

disease therapies [10]. The global topological analysis of the drug and disease associations 

provided some emergent properties of the FDA approved drug therapies, i.e., most diseases are 

connected to each other at most through 3 connections; revealing the high compactness of the 

network as well as the presence of drug hubs that connect many disease therapies to each other 

[10]. These results can be used in future clinical trials, i.e., the hub drugs may be given priority. 

My hypothesis is that systems level analysis can improve our understanding and treatment of 

cancer, which should have many subtypes that are interconnected with each other in a complex 

way. Therefore I propose an isolated in-depth systems analysis of cancer. The network of cancer 

types is a smaller-scale network than the disease and drug network [8, 9, 10] but it provides a 

more focused analysis of the individual members and their interactions in the network. The 

presence of a common drug therapy between two different cancer types hints to a relationship 

between these drugs, therefore I analyzed the collection of these relationships at the network 

level in Chapter 1. The list of cancer drugs in this study included both the drugs that target 

general cell division mechanisms and those that pursue specific targets, as mentioned before. 

Systems medicine investigates the relationships between different types of information at 

the clinical or basic molecular level, such as the clinical decisions for different diseases vs. death 

statistics. Only by performing such systematic analyses is it possible to have a more 

comprehensive clinical therapy that is regulated by clinical and research results. Therefore, I 

analyzed the potential influences of death statistics on the FDA approved cancer drugs in 

Chapter 1 and showed the presence of only a few cancers with a significant connection in the 

FDA approval based cancer network such as breast and lung cancers. I also showed a significant 

correlation of the death statistics with the drug sharing of different cancers. Furthermore, for a 
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complete understanding of diseases such as cancer, it is vital to perform such analysis together 

with molecular biology studies. For example, different cancer types were shown to be closely 

related to each other as they share some common mutation targets like TP53 [9]. This raises the 

need for comparing the molecular target information for the various cancers with the drug target 

information in order to assess for any overlaps or differences. I addressed this issue in Chapter 1 

and showed through network analysis that there is a low overlap between the cancer networks  

based on drug target based associations versus mutation target based associations, suggesting a 

low impact of molecular biological research findings on clinical decisions for cancer. 

Even within the same cancer type, there are several sub-classes of the cancer. Thus it is 

also important to describe the differences and relationships between these sub-classes. One of the 

differentiating factors is the severity level of the cancer. For example, colorectal cancer can be 

classified into colorectal adenoma and colorectal carcinoma, where the latter is differentiated by 

the invasive properties of the tumor. The KEGG (Kyoto Encyclopedia of Genes and Genomes) 

database provides cancer pathways which gives an opportunity to analyze the signaling events in 

different sub-classes of a cancer [11]. The KEGG cancer pathways are different from other 

pathways such as signaling pathways, metabolic pathways, etc., as they are different signaling 

pathway members that are integrated into a single pathway. These cancer pathways contain 

information about the molecular mechanisms on the different stages of a specific cancer like 

colorectal cancer, pancreatic cancer, glioma, etc., and the different signaling pathways involved 

in the different stages of the specific cancer. 

The molecular events which play a major role in the different stages of colorectal cancer 

are described in databases such as KEGG; which is based on current literature information. [12, 

13, 14, 15]. For example, alteration of the Wnt pathway leads to activation of β-catenin, which in 
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turn activates its target genes and thereby leads to the progression of colorectal cancer [12, 13]. 

Because these events are described as earlier molecular mechanisms of colorectal cancer, they 

take place in the upper portions of the KEGG colorectal cancer pathway. On the other hand, 

TGF-beta pathway is another important pathway implicated in colorectal cancer. The members 

of the TGF-beta pathway are located in the lower portions of the pathway image since they play 

a role in the more advanced stages of colorectal cancer [14, 15]. The actual value of the KEGG 

cancer pathways is the combination of these different signaling pathways such that a cancer is 

described as an interconnection of different signaling modules. Module level analysis is an 

important systems level methodology that aims to find significantly altered modules in a 

phenotype of interest, shifting towards the analysis of crosstalk between modules recently [16]. 

Therefore, the analysis of the cancer pathways could provide a systems level identification of the 

relationships between the different pathway modules in colorectal cancer. 

Previously, pathways and protein complexes were studied for the collective behavior of 

their members in terms of their gene expression levels. Although integrating signaling pathways 

with genome level expression data was studied widely, it had yet to be realized with cancer 

pathways. For example, the members of the protein complexes or pathways, such as ribosome, 

proteasome, and certain metabolic and signaling pathways, have been found to have a strong 

correlation to each of the members within the pathway with respect to their gene expression 

levels or cis-element profiles, which is an indicator of similar transcriptional regulation [17, 18]. 

In another study with a similar goal, the coherence of a pathway was found to have a significant 

fraction of its members correlated with each other based on their gene expression levels, as 

compared with a random set of genes of the same size within the pathway of interest [19]. In 

order to evaluate whether a cancer pathway, which itself is composed of several other pathways, 
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could be coherent, I performed a similar analysis with the KEGG colorectal cancer pathway in 

Chapter 2 and found that the colorectal cancer pathway as a whole is coherent. 

 Since these pathway analyses depend on the current literature information, it is necessary 

to improve the current information on the molecular events involved in cancer. Network level 

analysis of protein-protein interactions (PPI) is an important tool for generating specific 

networks and adding novel regulatory information to our understanding of cancer [20, 21, 22, 

23]. Network biology and network medicine are closely related to each other [8, 24]. As network 

biology investigates the interdependencies between the genes, proteins, metabolites, etc., 

network medicine relates these dependencies with human diseases. Therefore, the relationships 

between a collection of genes is as important as the characteristics of a single gene for 

understanding the function of biological systems and diseases. PPIs are one of the common ways 

genes and their products regulate or interact with each other, in addition to other mechanisms 

such as transcriptional interactions. PPI datasets are large-scale collections of interactions 

between proteins and their topological analysis constituted some of the earliest network biology 

studies [24]. For example, yeast PPI network was found to have a specific degree distribution, 

namely scale-free, where the degree of a protein is defined as the number of connections to other 

proteins in the network. In a scale-free topology very few proteins are hubs, i.e. highly 

connected, whereas most proteins are lowly connected [24]. Nevertheless, these previous studies 

are limited to the global statistical observations of the characteristics of the network structure. 

These global analyses did not provide enough information on the role of the interactions or the 

network modules in the biological process, phenotype or disease. 

PPI datasets are a collection of protein interactions obtained from various sources and 

conditions and are not condition-specific [25]. However, certain PPIs, excluding permanent 
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protein complexes, can be condition-specific [26]. Since such condition-specific interaction 

information is not available on a large-scale to perform network level research, therefore an 

alternative approach is required to constructed specific interaction networks from the large-scale 

datasets. Only then can these specific networks be associated with a phenotype such as cancer. 

Condition-specific datasets such as microarray datasets, which contain global mRNA expression 

levels of a particular condition, was integrated with the PPIs, genetic interactions, etc. in order to 

construct condition-specific interaction networks [20, 21]. In these studies, the PPI datasets 

provide the pairs of proteins which were shown to interact physically at some condition and the 

differentially expressed genes or differentially correlated gene pairs are calculated from 

condition-specific microarray datasets. These condition-specific pairs of genes are checked to 

determine if they interact. If so, they are considered to take place in the specific network. Such 

networks constructed for cancer metastasis was shown to be represent the hallmarks of cancer 

like apoptosis, cell growth, metabolism, etc. [20]. These specific networks can be used to 

generate hypotheses about the involvement of genes and their interactions in the different 

conditions, such as the involvement of a regulatory interaction between two genes in a particular 

cancer [21]. 

A shortcoming of these previous integrative studies that use PPI is that they were based 

on differential gene expression using a pairwise comparison approach, such as tumor versus 

normal samples; metastatic versus non-metastatic samples [20, 21]. However, it was recently 

shown that the pairwise comparison approach is insufficient for detecting the most relevant 

genes of a condition of interest [27]. This limitation was addressed with a multiple comparison 

approach, in which a sample set from a condition of interest was compared not only to a single 

reference set such as normal samples but rather to a collection of samples from many different 
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conditions; including different normal samples, different cancer types, different human diseases, 

etc. The diverse condition space more readily uncovers distinctive expression patterns for a 

particular condition. For example p53, a well-known mutated target in cancer was not 

differentially expressed based on a pairwise analysis of the gene expression data but through this 

multiple comparison approach p53 was identified to be an important gene in irradiation [27]. 

Based on this, I used the multiple comparison approach to identify the top ranked, significantly 

and differentially expressed genes in colorectal cancer in Chapter 3 and constructed a network of 

these genes by integrating the gene expression with the human PPI data. I showed that the 

colorectal cancer specific network included more genes that are significantly related to 

‘Colorectal cancer’ in the literature, than the genes selected based on the pairwise differential 

expression approach. I also showed that there might be a regulatory mechanism between ring 

finger protein 43 (RNF43) and glucocorticoid receptor (GR, NR3C1) in this network which is 

confirmed experimentally. 
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CHAPTER 1 

CANCER-DRUG ASSOCIATIONS 

INTRODUCTION 

Cancer is a complex disease, with many subtypes, affecting various tissues in diverse 

ways, thus giving rise to an abundance of chemotherapies. Taken together, cancers are the 

second leading cause of death in the United States [1]. The common features of cancer include 

uncontrolled cell growth, reduction in apoptosis, and loss of cell cycle regulation, while other 

features are more tissue specific and thus differentiate them and their chemotherapies. 

In a global network level analysis of different diseases, where the vertices represented 

diseases and the edges represented connections between diseases that share common genetic 

background, most diseases were less connected, while a limited number of diseases, mostly 

cancers, were highly connected hubs [2]. Similarly, a network analysis of drugs, where the 

vertices represented drugs and the edges represented connections between drugs that share 

common protein targets, showed that drugs of similar types clustered together, and most proteins 

were targeted by a few drugs, whereas only a few proteins were targeted by many drugs [3, 4]. 

Cancers have fewer drugs that are used to treat them as compared with the other diseases, and the 

targets for the cancer drugs are at a shorter distance from the genes that are mutated in the 

cancers [3]. Quantitative analysis of the drug targets showed that proteins with at least 3 protein-

protein interactions are more likely to be targeted by drugs [5]. A recent network study 

characterized the global map of many diseases, including cancers, and their associations with 

drugs, where the vertices represented diseases and the edges represented connections between 

diseases that share common drugs [6]. This study was also concerned with the global description 

of the network, and found that only a few diseases are highly connected by drugs, while most 
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diseases are less connected; and most diseases, even those unrelated to each other, are connected 

by a few links [6]. These studies constitute the global topological analysis aspect of the emerging 

areas of network medicine [7] and network pharmacology [8]. However, these studies do not 

focus on the specific relationships between diseases and drugs, to address questions, such as, 

how might these relationships arise, or what factors may affect these relationships. 

The field of medical sciences includes both basic molecular and clinical research, the 

latter involves clinical trials. Clinical trials apply biomedical protocols to humans that aim to 

intervene or observe a disease, e.g., testing drugs on cancers (http://clinicaltrials.gov). Clinical 

trials provide preliminary evidence of the efficacy, risks and optimum usage of the drugs. Phase 

1 and 2 clinical trials are performed on small groups of individuals to evaluate their safety and 

efficiency. Phase 3 clinical trials are performed on a large group of individuals, to evaluate their 

efficiency, side effects and how they compare with approved drugs. Phase 4 clinical trials are 

performed after the drug has been approved for use, to obtain additional information. The United 

States Food and Drug Administration (FDA) regulates the approval and labeling of the drugs 

with regard to their safety, efficacy, and security to humans (http://www.fda.gov). In addition to 

the clinical drug trial and FDA approval data, death statistics, such as the estimated cases and 

estimated deaths over the years are available for the different cancer types [9]. Cancer is a large 

class of disease with various types, each with its own specific approvals, trials, death statistics, 

and molecular information, i.e., mutation targets. These diverse data provide opportunities to 

perform an integrative, systems level analysis of the cancers to reveal potential relationships 

between the various types of cancer and the drugs used to treat them and possible trends or 

factors that influence these relationships. 

http://clinicaltrials.gov/
http://www.fda.gov/
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Global network analyses have been previously applied to describe the overall topology of 

disease and drug relationships, i. e, very few diseases and drugs are highly connected, while most 

members of these networks are less connected [2, 3, 4, 6].Smaller network systems, such as in 

this study, are amendable to a more focused analysis of individual members of the network, 

whereas larger networks are not, and hence are more amendable to statistical topological 

analyses, such as degree distribution analysis [10]. We propose that a drug approved or used in 

clinical trials for treating several cancers may hint to a relationship between those cancers. 

Similarly, a mutation involved in or a drug target used in treating different cancers may suggest a 

relationship between these cancers. System level analysis of these relationships could reveal 

potential factors involved in the development of these complex relationships that are not readily 

apparent from the data itself. In contrast to the previous medical network analyses, the analysis 

of smaller networks of cancer-drug and cancer-target associations permits a more detailed 

evaluation of the specific relationships between individual cancers. Through correlation and 

linear regression analyses of the number of approvals and trials, and weighted degree values, 

with the cancer lethality values, we assessed whether the death statistics impact the formation of 

associations between the cancers and drugs. Our analyses suggest that global lethality has an 

effect on the number of FDA approved and clinical trial cancer drugs. Comparative analysis of 

the cancer networks based on the FDA approved drugs and clinical trial drugs showed that some 

cancers are significantly and highly connected in the clinical trial cancer network but not in the 

FDA cancer network, and vice versa. Correlation and linear regression analyses suggest that 

local and global lethality differentially impact the sharing of FDA approved cancer drugs and the 

sharing of clinical trial drugs. Further, a comparison of the mutation target-based with the FDA 
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drug target-based cancer networks suggests that the molecular information about a cancer does 

not strongly influence the cancer drug approvals. 

 

RESULTS AND DISCUSSION 

FDA cancer drug approvals and clinical cancer drug trials 

We collected the drugs approved through 2009 by the FDA for 23 cancer types and the 

clinical trials completed by 2009 for these same drugs (see Appendix B). We compared these 81 

drugs for the 23 cancer types, and checked which drugs had i) completed Phase 1 and 2 trials but 

were not listed under Phase 3 clinical trials and thus were not FDA approved, ii) completed 

Phase 3 clinical trial but were not FDA approved, iii) were FDA approved and in Phase 3 clinical 

trial (Table 1), and iv) were FDA approved and were not in clinical trials. There are several 

drugs for which Phase 3 clinical trial was completed but were not FDA approved (item ii). For 

example, cisplatin was approved for only testicular and bladder cancers, and has undergone and 

completed Phase 3 clinical trials for many types of cancer but has yet to be listed as approved by 

the FDA for those cancers (Table 1). The clinical trial data is incomplete (see Materials and 

Methods section for details). For example, there are some drugs which were FDA approved but 

not listed under any past clinical trials, completed or otherwise, which suggests that the analysis 

of the clinical trials will not be comprehensive. Leukemia, breast cancer, lung cancer, and 

lymphoma have the highest number of drug approvals and the highest number of clinical trials 

(Table 2). The percentage of clinical trials or FDA approvals for the different cancers were 

calculated as the number of clinical drug trials or FDA drug approvals for a specific cancer type, 

divided by the total number of clinical drug trials or FDA drug approvals for the 23 cancers 

analyzed in this study. The clinical trial and FDA approval percentages are similar for many of 
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the cancers in this study (Figure 1). There are a few notable exceptions, namely breast cancer and 

myeloma, which have much higher percentages of FDA approvals than of clinical trials. 

Global and local lethality values for cancer types 

Death and survival ratios have been predominantly used to describe the values of global 

and local significance of cancer deaths [9]. It is confusing to use these values since one uses 

death and the other uses survival numbers to describe global and local death statistics of a 

specific cancer. Therefore, we defined two different death-based statistics, a global and a local 

lethality rate by using the estimated death and new case numbers of each cancer (Table 2, see 

Appendix B). The percentage of global lethality is calculated as the ratio of estimated number of 

deaths for a cancer to the estimated number of deaths for all cancers. The percentage of local 

lethality is calculated as the ratio of estimated number of deaths to the estimated number of cases 

for a particular cancer. The global lethality provides a perspective of a particular cancer with 

respect to the other cancers, whereas, the local lethality is specific to each cancer type. A cancer 

with a high local lethality suggests that it has a high number of deaths within its own incidences, 

while its global lethality may or may not be high. For example, pancreatic cancer is a locally 

lethal but not globally lethal cancer; it has a local lethality value of 0.91 but a global lethality 

value of 0.06 (Table 2). This is because most of the pancreatic cancer patients have low survival 

rates, but comparatively there are fewer cases of pancreatic cancer. 

Effect of lethality on FDA approvals and clinical trials 

We hypothesize that there are factors, such as the lethality values of a cancer, that may 

influence the number of clinical trials and, in turn, FDA approvals. To quantitatively evaluate 

whether lethality values are related to the number of FDA drug approvals and clinical drug trials, 

Spearman correlation coefficients were calculated between the global/local lethality measures 
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and the trial/approval numbers. The correlation analyses suggest that global lethality is 

correlated, whereas local lethality is not correlated, to both the clinical trial and FDA approval 

numbers (Table 3). To further evaluate the impact of lethality values on the FDA drug approvals 

and clinical drug trials, we performed a linear regression analysis. Linear fit of the clinical trial 

numbers with global lethality suggests a slight but albeit significant relationship (r
2
 = 0.25, p = 

0.03). This suggests the higher clinical drug trial numbers could be explained, in part, by the 

higher global lethality rates. Next, we considered whether the relationships found by correlation 

and linear regression analyses are affected by lung cancer, the most globally lethal cancer, and 

pancreatic, esophagus, and liver cancers, the most locally lethal cancers (see Table 2 and the 

Materials and Methods section). We re-calculated the correlations by removing the globally or 

locally lethal cancers. No significant change in the correlations resulted upon removing lung 

cancer. However, a linear fit of the FDA approval numbers with global lethality suggests a slight 

relationship which is significant, when lung cancer is excluded (r
2
 = 0.20, p = 0.05). The 

significance of the correlation and the linear fit between local lethality with FDA approval and 

clinical trial numbers increased upon removing the most locally lethal cancers, pancreatic, liver 

and esophagus cancers (Table 3). Local lethality has a significant correlation with clinical trial 

drug numbers for the cancers other than the most locally lethal ones. This suggests the number of 

FDA approvals and clinical trials are much lower for pancreatic, liver and esophagus cancers as 

compared to other cancers despite their very high local lethality. Linear fits suggest that the 

values of the lethal cancers affect the linear relationship, therefore we estimated the values based 

on the equation with the other cancers. Based on the linear regression of the local lethality ratio 

with the FDA cancer network weighted degree values (y = 0.96x + 0.40), pancreatic, liver and 
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esophagus cancers should have been expected to have a weighted degree of around 1.2; however, 

they have a weighted degree of around 0.07-0.5.  

Although, the linear fit p-values of local lethality with FDA approval numbers and 

clinical trial numbers decreased, when pancreatic, liver and esophagus cancers are excluded, they 

are not very significant. We also analyzed whether the FDA approval numbers from previous 

years correlated with the lethality values. The correlation of global lethality with the FDA 

approval numbers has mostly been present in previous years (see Appendix B). The correlation 

and linear regression analyses suggest that global lethality has an impact on the drug trial and 

approval numbers, for the cancers in this study. 

Weighted cancer networks 

The global relationships between drugs and diseases have been analyzed topologically in 

large-scale networks of drugs and diseases [2, 3, 4, 6]. Complex relationships between the types 

of cancer and drugs constitute a smaller network structure. Unlike the larger networks, a smaller 

network system, as in this study, are amendable to a more focused analysis of individual 

members of the network rather than statistical topology-based parameters [10]. We applied this 

more focused analysis, where individual members and interactions in the networks were studied 

rather than their global structure, to elucidate the drug therapy based relationships between 

various cancers and the factors that may influence these relationships. 

The collection of cancer-drug pairs make up a bipartite network, which we transformed 

into a unipartite weighted network consisting of only cancers. To construct a weighted network 

of cancers, an edge between any two cancers was assigned, if there is at least one drug which 

was approved by FDA to treat both types of cancers. The weight of an edge was defined by the 

Jaccard index, which is the fraction of drugs which were approved for both cancers over all the 
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drugs which were approved for each of the two cancers, separately (see Materials and Methods). 

Weighted degree values were not significantly correlated with the number of FDA approvals 

(Pearson correlation coefficient of 0.34, p = 0.11), suggesting that the number of drugs approved 

for a cancer does not implicate the number of drugs shared with other cancers. We, further, 

assessed the significance of the weighted degree values by a permutation test, while keeping the 

number of drugs per cancer type constant, and found the degree of drug sharing is not significant 

for most of the cancers (Table 2), except for lung and breast cancer These two cancers have 

significant weighted degree values in the FDA cancer network. Lung cancer shares FDA drugs 

with many other cancers. Leukemia, the cancer type with the highest number of FDA approvals, 

does not have a significant weighted degree value in the FDA cancer network (Table 2). This is 

because leukemia does not share many of its FDA approved drugs with other cancers. Indeed, as 

discussed later, leukemia has many specific drugs (see section “Drugs specific to particular 

cancer types”). We also analyzed the FDA cancer network over time, by including the cancer 

drug approvals for the different years.  

Using the date at which a drug was approved by the FDA, we analyzed the cancer 

networks at earlier time points. Based on the first cancer drug, mechlorethamine, approved in 

1949, leukemia, lymphoma and lung cancer can be connected in a FDA cancer network. These 3 

cancers for a long time were the only cancers for which a drug was approved by the FDA. This 

initial network began to grow as drugs for other cancers were approved by the FDA, joining the 

network from 1986 onwards. We defined the average weight as the average of the weights of all 

the edges of a network (0 weights are not included). The average weight of the FDA cancer 

networks was calculated to capture the changes in how the drugs are shared between the different 

cancers over the years (see Appendix B). The average weight of the FDA cancer network was at 
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the lowest in 1997, suggesting that the sharing of drugs between cancer types was not very high 

in 1997 as compared to the other years. Sharing of drugs between cancer types increased 

between 1998 and 2004. We also determined the component numbers of the FDA cancer 

networks. The network consisted of a single component except between 1991-1998 when the 

network contained 2 components (see Appendix B). There have been only two cases where a 

drug led to a jumping growth as new drugs were approved for cancers. Pamidronate was 

approved for breast cancer and myeloma in 1991, making a connection between the two cancers, 

separate from the other cancers. Paclitaxel was approved for skin cancer in 1997, making a 

connection to ovarian cancer, causing another jump in the growth of the network. Some FDA 

approvals could be terminated later, however, this analysis is only concerned with the drugs 

which were not terminated by 2009 (the time of completion of the clinical trials is not available 

for the majority of the trials, therefore a time dependent study of the clinical trial-based cancer 

networks was not performed). Based on the average weight values of the networks, there is no 

major change over the years. Weighted degree values for most of the cancers also are not 

significant in the previous years’ networks. However the breast cancer weighted degree value has 

been significant since 2000 and the lung cancer degree value has become significant recently. 

Weighted degree values of lung and breast cancer have been increasing and significantly higher 

than the other cancers since 2006 (Figure 2). In recent years, FDA approved drugs for these 

cancers (the 1
st
 and 3

rd
 most globally lethal) have a high overlap with other cancers. 

A weighted clinical trial-based cancer network was also constructed (herein denoted as 

clinical trial cancer network), where two cancers were connected if there is at least one FDA 

approved drug (approved for at least a cancer) in the clinical trial data for both cancers. The 

clinical trial cancer network is almost a complete network, because of the large number of drugs 
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that were used in clinical trials for the different cancers, thereby connecting many of the cancers, 

albeit not all, to each other. The significance of the weighted degree values was evaluated by a 

permutation test, with the number of drug trials kept constant. Breast cancer, ovarian cancer, and 

lymphoma have significant weighted degree values in the clinical trial cancer network (Table 2). 

Also, the weighted degree values of lung cancer and head and neck cancer are close to being 

significant. This indicates that these cancers shares clinical trial drugs, significantly, with other 

cancers. In addition, we calculated the difference in the edge weights between the FDA and 

clinical trial cancer networks for each cancer pair, and identified that most pairs are strongly 

connected in the clinical trial but not in the FDA cancer network. For example, stomach and 

esophagus cancers are strongly connected in the clinical trial cancer network (Table 4). There are 

many drugs used in clinical trials for both types of cancers, i.e., capecitabine, cisplatin, 

doxorubicin, erlotinib, fluorouracil, irinotecan, ixabepilone, leucovorin, oxaliplatin, paclitaxel, 

and vinorelbine, and thus strongly connecting these two cancers. However, they are not 

connected in the FDA cancer network, i.e. no drug is approved by the FDA for both stomach and 

esophagus cancers; porfimer was approved for esophagus cancer while docetaxel, fluorouracil, 

imatinib, and sunitinib were approved for stomach cancer. There are a few pairs of cancers 

which are more highly connected in the FDA cancer network than in the clinical trial cancer 

network (Table 4). For example, sarcoma and endometrial cancer pair has a weight of 0.5; they 

share methotrexate which is the only drug approved for endometrial cancer and one of the two 

drugs approved for sarcoma. On the other hand, there are many drugs in the clinical trial data for 

each of these two cancers which are not shared between them, such as altretamine, capecitabine, 

etoposide, etc. Weighted networks of cancers based on FDA approvals and clinical trials show 

different characteristics. Breast cancer is the only cancer with a significant degree value in both 
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the FDA and the clinical trial cancer networks. While lung cancer is more significantly 

connected only in the FDA cancer network, ovarian cancer and lymphoma are more significantly 

connected in the clinical trial cancer network (Table 2). This suggests that ovarian cancer and 

lymphoma have a high overlap of drugs in clinical trials but not in FDA approvals. 

Effect of lethality on the cancer networks 

Given that the lethality of a cancer impacts the number of drug trials and approvals, it 

raises the question of whether it could also influence the FDA and clinical trial cancer networks 

and if there could be differences in their influence on these two networks. We analyzed the 

correlation and the linear fit between the weighted degree values of the FDA/clinical trial cancer 

networks and the global/local lethality values. The weighted degree values for the clinical trial 

cancer network are correlated with local lethality (Table 3). Linear regression between the 

weighted degree values and the lethality values shows a partial but significant relationship 

between local lethality and clinical trial network weighted degree (r
2
 = 0.26, p = 0.02). This 

suggests that sharing of drugs in clinical trials is impacted positively by local lethality values. 

The weighted degree values of the FDA cancer network are not significantly correlated 

with the global and local lethality values (Table 3). Next, we analyzed the effect of the most 

globally lethal (lung cancer) and the most locally lethal cancers (pancreatic, esophagus and liver 

cancers) on these correlations and linear fits. Weighted degree values of the FDA cancer network 

are significantly correlated with local lethality after removing pancreatic, liver, and esophagus 

cancers (Table 3, Figure 3A-3B). Linear fit analysis suggests that the weighted degree of a 

cancer in the FDA cancer network tend to be high if its local lethality value is high. However, the 

most locally lethal cancers (pancreatic, esophagus and liver cancers) are excluded from this 

effect since they have lower than expected weighted degree values, as compared to the other 
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cancers. We also analyzed if the FDA cancer networks from previous years correlated with the 

lethality values. Global lethality and local lethality do not have a significant correlation in the 

older FDA cancer networks. However, more recently (2007) the cancer network has become 

correlated with local lethality, with the exclusion of pancreatic, liver, and esophagus cancers (see 

Appendix B). 

Analysis of the weighted degree values of the cancer networks provides information on 

the level of drug sharing between cancers. We showed that local lethality has an effect on the 

clinical cancer drug trial sharing as well as FDA approved drug sharing, the latter appears to be a 

recent trend. However, the most locally lethal cancers, pancreatic, liver, and esophagus cancers, 

are biased towards having lower levels of sharing of FDA approved drug. For the most local 

lethality cancers, although sharing of drugs in clinical trials correlates positively with local 

lethality values, the sharing of the approved drugs does not correlate with local lethality values. 

Specific and originally approved drugs to particular cancer types 

Network analysis captured the overlap in cancer drug use, however, only 26 of the total 

81 cancer drugs were approved for more than one cancer type. Therefore we analyzed the 

distribution of the remaining 55 drugs which were approved specifically for only one type of 

cancer. A drug which was approved by the FDA solely for a single cancer is denoted as a 

“specific” FDA drug. We calculated the specific drug percentage for a cancer as the ratio of the 

number of specific drugs to the total number of drugs approved by the FDA. Prostate cancer, 

leukemia, breast cancer, and lymphoma have the highest specific drug percentage approved by 

the FDA (Figure 4). The most locally lethal cancers, pancreatic, liver, and esophagus cancers, 

have no specific drugs (Table 2). Globally lethal cancer, i.e., lung cancer, has a low percentage 

of FDA specific drugs (Table 2, Figure 4). The number of specific drugs in clinical trials is very 
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low, therefore it was not analyzed further (see Appendix B). We also analyzed the possible effect 

of lethality on the percentage of FDA specific drug approvals and showed that there is no 

significant effect (Table 3).  

There is also a notable difference among the non-specific (shared) drugs, such that some 

of the drugs were first approved for a cancer type and then approved for other cancer types, 

while other drugs might be approved for more than one type of cancer at the same time. We 

defined whether a drug was “originally approved” by the FDA for a specific cancer type and then 

approved for other cancers after at least a year. Colorectal cancer has the highest number of 

“originally approved” FDA drugs (Table 2). There is only one originally approved FDA drug, 

erlotinib for lung cancer (Table 2, see Appendix B). Many more drugs were approved for other 

cancers that were subsequently approved for lung cancer (11 drugs) than were “originally 

approved” for lung cancer (only one). 

Comparison of clinical and molecular target based cancer networks 

In addition to the death statistics, we asked whether molecular information impacted the 

cancer-drug associations. To compare the molecular target-based relationships to the clinical 

target-based relationships for the different cancer types, we constructed weighted molecular and 

clinical cancer networks based on mutation targets and FDA approved drug targets respectively.  

The edges between two cancers in the mutation target based network was assigned if there is at 

least one mutation target associated with both cancers and the edges between two cancers in the 

drug target based network was assigned if there is at least one drug target associated with both 

cancers. The weights of the edges were defined by the Jaccard index. To compare the mutation 

target-based and the drug target-based cancer networks, we included only the cancers that have 

both mutation and drug target data. We calculated the weighted degree values for the different 
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cancers and evaluated the significance of the weighted degrees with permutation test, keeping the 

distribution of target numbers for each cancer constant (Table 5). The weighted degree values of 

the mutation and drug-target based cancer networks are not strongly correlated (Pearson 

correlation coefficient of 0.37, p = 0.11). Lung and breast cancers have significant and high 

weighted degree values in the drug target-based network but not in the mutation target-based 

network (Table 5). On the other hand, colorectal, ovarian and brain cancers have significant 

weighted degree values in the mutation target-based network but not in the drug-target based 

network (Table 5). Leukemia is the only cancer which has significant weighted degree values in 

both networks. 

The overlap between the two networks is very low and for the overlapping edges, we 

calculated the difference in mutation and drug target weight values (Table 6). Colorectal-ovarian, 

ovarian-endometrial, and endometrial-colorectal cancer pairs have higher mutation target-based 

weights than drug target-based weight values (Table 6). These cancers are connected to each 

other in the mutation target-based network through the following mutations: PMS1, PMS2, 

MLH1, MSH2, and MSH6, which are proteins responsible for DNA mismatch repair. On the 

other hand, all three cancers share no drug targets. Since they share many mutation targets, this 

suggests that they could have similar molecular mechanisms, and thus raises the question if they 

should share drug targets. On the other hand, kidney and liver cancers, which do not share any 

mutation targets, have a high overlap of drug targets. They share drug targets such as FLT4, 

PDGFRB, BRAF, etc. There could be mutation targets common to these cancers which may not 

have been identified or is absent in the current dataset. Alternatively, they could share molecular 

mechanisms without sharing mutation targets, i.e., similar pathways may be affected in both 

cancers despite different mutated genes. 
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We also evaluated the cancers that are associated with proteins that are both mutation and 

drug targets (Table 7). Only leukemia, lung, and breast cancers have mutation targets that are 

also drug targets. For example, ERBB2, a member of EGFR family, has long been known as a 

mutation target for breast cancer [11]. Lapatinib, letrozole, and trastuzumab are drugs that target 

ERBB2 in our data and all have been used in clinical drug trials for only breast cancer and 

approved by the FDA for only breast cancer. Furthermore, ERBB1, a member of the EGFR 

family, is known as a mutation target for lung cancer [12]. There are several drugs which target 

ERBB1, such as cetuximab, erlotinib, gefitinib, lapatinib, panitumumab, and trastuzumab, 

among which, only erlotinib and gefitinib are approved only for lung cancer (see Apendix B). 

The remaining drugs have not completed Phase 3 clinical trials. Cetuximab, and trastuzumab 

have completed Phase 1 and 2 trials, whereas clinical trials using lapatinib and panitumumab for 

lung cancer have not yet completed Phase 1 and 2 trials (Table 1). Overall, very few mutations 

have been approved as targets for cancer therapy. 

Comparison of mutation and drug-target based cancer networks indicate that the overlap 

is very low. Various cancers have strong associations in one but not in the other network. For 

instance, lung and breast cancers have significant drug-target based associations but not 

mutation-target based associations. Similarly there are pairs of cancers, such as the pair of 

colorectal and endometrial cancers, with relatively high weights in the mutation-target based 

network but not in the drug-target based network. This analysis suggests that the influence of 

molecular information on the cancer-associations is not strong, and there are very few proteins 

which are both mutation-targets and drug-targets. 
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CONCLUSION 

In this study, we present a systems level view of the cancer drugs. Comparing clinical 

trial and FDA approval based cancer networks, we showed that only breast cancer is 

significantly connected in both networks. Lung cancer is significantly connected in the FDA 

cancer network, whereas ovarian cancer and lymphoma are significantly connected in the clinical 

trial cancer network. This suggests that lung cancer has a high degree of sharing of FDA 

approved drugs with the other cancers. Indeed, it has the highest number of FDA approved drugs 

which are shared with other cancers.  In contrast, ovarian cancer and lymphoma have a high 

degree of drug sharing in clinical trials but not in FDA approvals. 

We also assessed whether death statistics and molecular information are related to the 

cancer-drug associations. We showed that the cancer-drug associations are differentially 

impacted by the type of lethality. Global lethality appears to have an effect on the number of 

FDA approved drugs and clinical drug trials, but not on the FDA approval and clinical trial-

based drug sharing, as determined by the cancer network weighted degree values. On the other 

hand, local lethality has an effect on the FDA approval and clinical trial-based drug sharing, but 

not on the number of FDA approved drugs and clinical drug trials. The effect of local lethality on 

the sharing of FDA approved drugs is not present or captured by the most locally lethal cancers, 

pancreatic, liver and esophagus cancers. These cancers are biased towards having very low 

overlap of FDA approved drugs with other cancers. For example, there is only one drug 

approved for liver cancer, sorafenib, which is shared with lung cancer; however there are 13 

more FDA approved drugs for lung cancer, which are not approved for liver cancer, leading to 

the lower weight for liver cancer. Although sharing of drugs in clinical trials correlates positively 

with local lethality values, however, it does not translate to increase sharing of the approved 
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drugs for the most locally lethal cancers. There could be a number of reasons for this; the drugs 

in clinical trial are not being approved for the most locally lethal cancers or they have not been 

approved yet. For example, liver cancer and lung cancer share 13 drugs out of total 32 drugs 

used in clinical trials for these cancers. 5 of these 15 common/overlapping clinical trial drugs are 

approved for lung cancer by FDA but they are still in clinical trials for liver cancer. Therefore 

they have a higher connection weight in the clinical trial cancer network than the FDA cancer 

network. These findings support network-based analysis and their ability to reveal relevant 

information distinct from the raw data. It is not surprising that clinical decisions may be 

impacted by death statistics. However, it is interesting that different types of death statistics 

(global lethality vs. local lethality) show different results. It should be kept in mind that this 

study does not capture all aspects of the clinical drug data. For example, this analysis does not 

account for the differential efficiencies of the various drugs used in treating a particular cancer, 

which could have an impact on why some cancers have few while others may have many more 

drugs that target it. The current analysis of the clinical trials is limited to those which have 

already been approved by the FDA for at least one cancer type and therefore do not include all 

cancer drugs currently in clinical trial. 

Currently, most cancer drugs are designed to target the general mechanisms of cell 

division, which may not directly address the specific molecular mechanisms that drive the 

development of the type of cancer it aims to treat. We compared mutation and drug targets for 

various cancer types. We identified a number of differences and noted that some cancer types 

share mutation targets but not drug targets while others share drug targets but not mutation 

targets, thereby hinting at the possibility that new drug targets or mutation targets could be 

identified for these cancers. Nevertheless, there are many other factors to consider when 



32 

 

evaluating the data. Although two cancer types may not have the same mutation targets, they 

may have the same genes that are differentially expressed, which could suggest the involvement 

of similar molecular mechanisms. Given that cancer treatment includes surgery, radiotherapy in 

addition to chemotherapy (http://www.cancer.gov/cancertopics/treatment/types-of-treatment) 

thus, this study provides a systems level analysis of the trends of one aspect of clinical cancer 

research, namely from the perspective of the drugs that are FDA approved or undergoing clinical 

trials. 

In closing, we demonstrated a systems level view of the drugs that have been approved 

and how they have been shared between cancer types. Thus we envision that this study could be 

informative to medical researchers from both the basic and clinical sciences alike. The trends 

revealed in this study could be monitored in the following years for any changes and these 

analyses could be used to guide more in-depth analysis of potential targets that could be involved 

in future clinical cancer drug trials and approvals. For example, one could followed whether the 

FDA approved drug sharing continues to be significant for breast and lung cancers which 

appears to be recent trends, beginning in the 2000s, and whether the overlap between the 

molecular target based and the drug target based cancer networks increases. 

 

MATERIALS AND METHODS 

Drug-cancer pairs 

We obtained lists of cancer drugs from the National Cancer Institute Drug Information 

Summaries (http://www.cancer.gov/cancertopics/druginfo/alphalist), and the FDA Center for 

Drug Evaluation and Research (http://www.fda.gov/Drugs/default.htm). We used the indication 

information by 2009 from the drug labels from the Drugs@FDA database 

http://www.cancer.gov/cancertopics/treatment/types-of-treatment
http://www.cancer.gov/cancertopics/druginfo/alphalist
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(http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Search_Dr

ug_Name) to generate a list of drug-cancer associations that included 23 types of cancer (see 

Appendix B). We renamed some cancers, for example, Kaposi’s sarcoma is listed under skin 

cancer, glioma is listed under brain cancer, and different types of leukemia and lymphoma are 

listed more generally as leukemia and lymphoma, respectively. The time information tag of the 

FDA approved label files is also used. Drugs discontinued in the market were excluded. We 

obtained clinical trial information for all drug trials completed by 2009 from the Clinical Trials 

database (http://clinicaltrials.gov) and collected the clinical trials for the drugs and the cancer 

types that are in the list of FDA data. We differentiated between Phase ½ and Phase 3 trials since 

the Phase ½ are initial trials on small groups of patients, whereas Phase 3 trials are performed on 

large groups of patients. We excluded Phase 4 trials since they are post-approval. We did not 

include neoplasms in our analysis. Names of drugs and cancers have been organized according to 

the FDA data. In addition, we only collected the trials which were listed as drug trials. These 

limitations could lead to loss of information, such that we have FDA approval information for 

some drugs without completed clinical trial information (Table 1). We observed that these 

limitations could affect the clinical trial information prior to 2000s, namely, there could be cases 

in which there is an approval of a drug earlier than the trial dates. Therefore, we did not perform 

a time analysis of the clinical trials.  

Cancer death and survival statistics 

The cancer statistics for 2001-2008 of the estimated number of new cases and the 

estimated number of deaths for the different types of cancers were obtained from the American 

Cancer Society [9]. We defined two kinds of lethality values. Global lethality is defined as the 

ratio of deaths of a particular cancer over all cancers. Local lethality is defined as the ratio of 

http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Search_Drug_Name
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Search_Drug_Name
http://clinicaltrials.gov/
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deaths of a particular cancer over the cases of that particular cancer. For breast, ovarian, cervical 

cancers only the female population values were considered. Likewise, for prostate and testicular 

cancers only the male population values were used. For the other cancer types, both the male and 

female population values were included. Lung cancer has the highest global lethality value, 

whereas pancreatic cancer has the highest local lethality value. To determine which other cancers 

are similar to lung and pancreatic cancers with respect to their global and local lethality values, 

we performed hierarchical clustering, based on Euclidean distance of lethality values with single 

linkage. Lung cancer clustered by itself, and pancreatic, liver and esophagus cancers clustered 

together (see Appendix B). Therefore only lung cancer is considered globally lethal cancer, 

whereas pancreatic, liver and esophagus cancers are considered locally lethal cancers.  

Network construction 

We constructed weighted clinical networks of cancer types, FDA cancer network and 

clinical trial cancer network, from the drug-cancer pairs. In the clinical cancer networks an edge 

was defined between two cancer types when there is at least one drug which was approved or 

used in clinical trials for both types of cancer. The weight of the edge was defined by the Jaccard 

index, which is the fraction of common drugs for both cancer types over all the drugs for each of 

the cancer types. For example, there is only one drug which was approved for both pancreatic 

and stomach cancers, fluorouracil, whereas there are 2 more drugs, erlotinib and gemcitabine, 

which were approved for pancreatic cancer but not for stomach cancer, and there are 3 more 

drugs, docetaxel, imatinib, and sunitinib, which were approved for stomach cancer but not for 

pancreatic cancer (see Appendix B). Therefore the weight of the edge between these two cancers 

is 1/(1+2+3)=0.17 (Table S3). The resulting FDA drug approval-based cancer network (herein 

denoted as FDA cancer network) contains 23 types of cancer (vertices or nodes) with 70 
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interactions (edges). We defined the weighted degree value for a cancer as the sum of the 

weights of the edges for that cancer. For example, pancreatic cancer shares drugs with stomach, 

lung, colorectal and breast cancers, therefore its weighted degree is the sum of the weights of the 

edges with these cancers, which is 0.17+0.13+0.1+0.1=0.5 (Table 1). This parameter provides an 

account of the allocation of drugs for a particular cancer and its neighbors in the network. If 

more drugs, which are approved for other cancers, are approved for pancreatic cancer (regardless 

of whether the drug is shared with stomach, lung, colorectal and breast cancers or other cancers) 

in the future, its weighted degree value will increase. Its weighted degree value will decrease if 

more drugs are approved for stomach, lung, colorectal and breast cancers but not for pancreatic 

cancer. 

Similarly, we also constructed molecular target and clinical target-based cancer networks, 

using mutation target data from the Cancer Gene Census database 

(http://www.sanger.ac.uk/genetics/CGP/Census/) [13] and FDA approved drug target data from 

the DrugBank database (http://www.drugbank.ca) (Dataset S4), respectively. Mutation target 

data from the Cancer Gene Census database used was updated in January 2009 and includes 

mutation targets which have been implicated in the cancer. This database was chosen because it 

is based on literature curation and thus captures information on the molecular mechanisms that 

clinical researchers should have information on. Cytoscape version 2.4 was used to visualize the 

networks [14]. 

Statistical analysis 

The significance of the weighted degree values in the cancer networks was analyzed by 

permutation tests. The distribution of the number of drugs or drug and mutation targets was kept 

constant while the cancer-drug or cancer-target associations were randomized, respectively. The 

http://www.sanger.ac.uk/genetics/CGP/Census/
http://www.drugbank.ca/
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p-value for the weighted degree of a cancer type is calculated as the fraction of the randomly 

generated networks with a weighted degree value for a particular cancer which is equal to or 

greater than the actual weighted degree value of that particular cancer (Table 2 and 5). 

Conventional cutoff of 0.05 was used as a significance threshold. No multiple test correction has 

been applied to the p-values. Therefore, given the number of statistical tests performed, some of 

the associations reported, particularly borderline significant, could be spurious. In the FDA 

cancer network, Wilcoxon test is used to determine if the weighted degree values of breast and 

lung cancer are higher than the rest of the cancers in the network. 

Shapiro-Wilk test suggests that some of the datasets used in this study are not normally 

distributed. If p-values obtained from this test are lower than 0.05, the null hypothesis that data 

are normally distributed is rejected. p-values for the 23 cancers and the cancers minus head and 

neck cancer, mesothelioma and sarcoma are, respectively, 4.775e-05 and 0.0003658 for FDA 

approval numbers, 0.002419 and 0.02321 for specific FDA drug percentage values, 0.001606 

and 0.003714 for clinical trial numbers, 0.1582 and 0.3365 for FDA cancer network weighted 

degree values, 0.07316 and 0.0341 for clinical trial cancer network weighted degree values. p-

value is 1.075e-06 for the global lethality values, and 0.07739 for the local lethality values. 

Therefore, we used Spearman correlation coefficient values for the analysis of the relationships 

between lethality values and the clinical trial and approval numbers, and the network weight 

values (Table 3). The significance of the correlations was determined by a permutation based 

algorithm [15]. 
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APPENDIX A 

Table 1 Clinical trial and FDA approvals of drugs for different cancer types 

Cancer type Phase 3 trial only Phase 1, 2 only Phase 3 and FDA FDA only 

bladder cancer doxorubicin, 

gemcitabine, paclitaxel 

carboplatin, ifosfamide, bortezomib, 

trastuzumab, ixabepilone 

cisplatin - 

brain cancer procarbazine, cisplatin, 

ifosfamide, carboplatin, 

thalidomide, etoposide 

cladribine, irinotecan, bortezomib, 

gefitinib, lenalidomide, busulfan, 

erlotinib, oxaliplatin, imatinib, 

temsirolimus, ixabepilone, topotecan, 

methotrexate, lapatinib, capecitabine, 

sorafenib 

carmustine, 

temozolomide, 

cyclophosphamide 

- 

breast cancer carboplatin, carmustine, 

cisplatin, doxorubicin, 

zoledronate, vinorelbine 

decitabine, busulfan, etoposide, 

fludarabine, leucovorin, 

temozolomide, gefitinib, oxaliplatin, 

pemetrexed, dasatinib, irinotecan, 

bortezomib, erlotinib, imatinib, 

vorinostat, alemtuzumab 

anastrozole, 

capecitabine, 

docetaxel, 

fulvestrant, 

gemcitabine, 

lapatinib, paclitaxel, 

trastuzumab, 

cyclophosphamide 

epirubicin, 

pamidronate, 

toremifene, 

fluorouracil 
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Table 1 (cont’d) 

cervical 

cancer 

cisplatin gemcitabine, capecitabine, paclitaxel, 

fluorouracil, oxaliplatin, arsenic 

trioxide, erlotinib, docetaxel, gefitinib 

topotecan - 

colorectal 

cancer 

cisplatin, doxorubicin gefitinib, erlotinib, gemcitabine, 

trastuzumab, carmustine, ixabepilone, 

imatinib 

bevacizumab, 

capecitabine, 

cetuximab, 

irinotecan, 

oxaliplatin, 

fluorouracil, 

leucovorin 

panitumumab 

endometrial 

cancer 

cisplatin, doxorubicin, 

paclitaxel 

capecitabine, topotecan, pemetrexed, 

oxaliplatin, raloxifene, thalidomide 

- methotrexate 

esophagus 

cancer 

cisplatin, fluorouracil oxaliplatin, capecitabine, carboplatin, 

paclitaxel, irinotecan, topotecan, 

decitabine, vinorelbine, doxorubicin, 

docetaxel, erlotinib, arsenic trioxide, 

leucovorin, ixabepilone 

- porfimer 

eye cancer - busulfan, carboplatin, topotecan - cyclophosphamide 
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Table 1 (cont’d) 

head and neck 

cancer 

cisplatin, fluorouracil, 

paclitaxel 

irinotecan, oxaliplatin, bevacizumab, 

erlotinib, azacitidine, capecitabine, 

carboplatin, temozolomide, 

ixabepilone, doxorubicin, topotecan, 

carmustine, cyclophosphamide, 

etoposide, porfimer, thalidomide, 

gefitinib, bortezomib, sorafenib, 

gemcitabine 

cetuximab, docetaxel - 

kidney cancer carboplatin,cyclophosph

amide,doxorubicin, 

etoposide 

paclitaxel, irinotecan, oxaliplatin, 

temozolomide, busulfan, fludarabine, 

bevacizumab, cetuximab, erlotinib, 

fluorouracil, pentostatin, topotecan, 

arsenic trioxide, gefitinib, 

methotrexate, capecitabine, 

gemcitabine, lenalidomide, imatinib, 

denileukin diftitox, thalidomide 

- sunitinib 

leukemia cytarabine, etoposide, 

leucovorin, doxorubicin, 

ifosfamide 

topotecan, bexarotene, carboplatin, 

bortezomib, temozolomide, rituximab, 

bevacizumab, sorafenib, thalidomide, 

denileukin diftitox, docetaxel, 

ixabepilone, temsirolimus 

alemtuzumab, 

busulfan, 

daunorubicin, 

fludarabine, 

idarubicin, imatinib, 

mitoxantrone, 

methotrexate, 

cyclophosphamide 

mechlorethamine, 

nilotinib, 

teniposide, 

bendamustine 
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Table 1 (cont’d) 

liver cancer cisplatin, fluorouracil, 

doxorubicin 

irinotecan, oxaliplatin, temozolomide, 

erlotinib, gemcitabine, pemetrexed, 

capecitabine, carboplatin, topotecan, 

thalidomide, docetaxel, epirubicin 

- - 

lung cancer cisplatin,carboplatin sunitinib, busulfan, 

cyclophosphamide, fludarabine, 

cetuximab, decitabine, imatinib, 

irinotecan, doxorubicin, bortezomib, 

ifosfamide, sorafenib, fluorouracil, 

azacitidine, trastuzumab, 

temozolomide, thalidomide, 

temsirolimus 

docetaxel, erlotinib, 

etoposide, gefitinib, 

gemcitabine, 

paclitaxel, 

pemetrexed 

mechlorethamine, 

nofetumomab, 

porfimer, 

methotrexate 

lymphoma etoposide, doxorubicin, 

ifosfamide, leucovorin, 

cisplatin, idarubicin, 

mitoxantrone, 

daunorubicin 

topotecan, paclitaxel, irinotecan, 

oxaliplatin, busulfan, imatinib, 

temozolomide, fludarabine, cladribine, 

decitabine, alemtuzumab, arsenic 

trioxide, altretamine, gemcitabine, 

carboplatin, azacitidine, pentostatin, 

thalidomide, ixabepilone, 

temsirolimus, tretinoin, bevacizumab, 

sorafenib 

carmustine, 

cytarabine, rituximab, 

methotrexate, 

cyclophosphamide 

bexarotene, 

methoxsalen, 

procarbazine, 

vorinostat, 

bendamustine 

mesothelioma cisplatin decitabine, doxorubicin, gemcitabine, 

epirubicin, gefitinib, bevacizumab 

pemetrexed - 
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Table 1 (cont’d) 

myeloma - arsenic trioxide, fludarabine, 

etoposide, cisplatin, clofarabine 

bortezomib, 

thalidomide, 

cyclophosphamide 

carmustine, 

doxorubicin, 

lenalidomide, 

zoledronate 

ovarian cancer epirubicin, mitoxantrone vinorelbine, temozolomide, docetaxel, 

ixabepilone, cisplatin, capecitabine, 

etoposide, ifosfamide, gemcitabine, 

bortezomib, lapatinib, erlotinib, 

imatinib, gefitinib, anastrozole, 

letrozole, pemetrexed, oxaliplatin, 

alemtuzumab, leucovorin, 

methotrexate, irinotecan, sorafenib, 

toremifene, bevacizumab, cetuximab, 

vorinostat 

carboplatin, 

paclitaxel, 

cyclophosphamide 

altretamine 

pancreatic 

cancer 

oxaliplatin lapatinib, irinotecan, bevacizumab, 

cetuximab, cisplatin, pemetrexed, 

imatinib, trastuzumab, capecitabine, 

leucovorin, paclitaxel, docetaxel, 

ixabepilone, bortezomib, arsenic 

trioxide, temsirolimus, 

cyclophosphamide 

erlotinib, 

gemcitabine, 

fluorouracil 

- 

prostate 

cancer 

mitoxantrone, 

zoledronate, toremifene 

doxorubicin, paclitaxel, carboplatin, 

epirubicin, temsirolimus, ixabepilone, 

pemetrexed, oxaliplatin, sunitinib, 

azacitidine, imatinib, trastuzumab, 

arsenic trioxide, bevacizumab, 

thalidomide, lapatinib 

leuprolide, degarelix - 
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Table 1 (cont’d) 

sarcoma cisplatin, doxorubicin, 

etoposide, ifosfamide, 

daunorubicin, 

cyclophosphamide, 

topotecan 

irinotecan, oxaliplatin, temozolomide, 

busulfan, erlotinib, carboplatin, 

altretamine, leucovorin, paclitaxel, 

thalidomide, gemcitabine, 

trastuzumab, ixabepilone, 

bevacizumab, cytarabine 

methotrexate - 

skin cancer cisplatin lenalidomide, decitabine, irinotecan, 

oxaliplatin, busulfan, 

cyclophosphamide, etoposide, 

fludarabine, docetaxel, leucovorin, 

sorafenib, temozolomide, thalidomide, 

denileukin diftitox, tretinoin, 

carmustine, temsirolimus, bortezomib, 

ixabepilone 

- daunorubicin, 

doxorubicin, 

imiquimod 

stomach 

cancer 

- irinotecan, cisplatin, gemcitabine, 

vinorelbine, doxorubicin, paclitaxel, 

leucovorin, oxaliplatin, ixabepilone, 

erlotinib, capecitabine 

- imatinib, sunitinib 

testicular 

cancer 

carboplatin, 

cyclophosphamide, 

paclitaxel 

busulfan, fludarabine, temozolomide, 

topotecan, ixabepilone, alemtuzumab, 

arsenic trioxide, imatinib 

etoposide, 

ifosfamide, cisplatin 

- 
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Table 2 FDA approval numbers, clinical trial numbers, weighted degree values (w.d.), weighted degree p-values (w.d.p.) and death 

statistics (global and local lethality ratio) of cancers in this study 
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lung cancer 14 3 21.4 1 121 1.32 0.029 7.58 0.066 0.286 0.753 

colorectal 

cancer 

8 4 50.0 3 61 0.46 0.840 6.15 0.899 0.088 0.336 

breast cancer 19 10 52.6 2 97 1.17 0.003 6.81 0.037 0.072 0.222 

pancreatic 

cancer 

3 0 0.0 1 35 0.5 0.898 6.96 0.576 0.061 0.910 

prostate 

cancer 

4 3 75.0 0 48 0.41 0.937 4.32 0.998 0.051 0.154 

leukemia 23 16 69.6 0 170 0.65 0.157 5.16 0.656 0.038 0.490 

lymphoma 16 9 56.3 0 121 0.83 0.195 6.41 0.013 0.036 0.276 

liver cancer 1 0 0.0 0 19 0.33 0.899 6.57 0.714 0.033 0.862 

endometrial 

cancer 

1 0 0.0 0 10 1.06 0.653 4.43 0.996 0.028 0.186 

ovarian cancer 6 2 33.3 2 71 1.16 0.488 7.42 0.018 0.027 0.717 

esophagus 

cancer 

1 0 0.0 1 26 0.07 0.970 6.8 0.605 0.025 0.867 

bladder cancer 2 1 50.0 0 10 0.25 0.967 4.34 0.997 0.025 0.205 

brain cancer 3 1 33.3 1 62 0.89 0.748 6.57 0.606 0.023 0.599 

kidney cancer 3 1 33.3 1 30 0.5 0.899 7.22 0.221 0.023 0.239 

skin cancer 4 1 25.0 2 31 0.48 0.885 5.84 0.924 0.020 0.165 

myeloma 8 3 37.5 1 13 0.86 0.563 2.81 1.000 0.019 0.537 
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Table 2 (cont’d) 

stomach 

cancer 

4 0 0.0 1 19 1.13 0.609 6.32 0.759 0.019 0.506 

cervical 

cancer 

1 0 0.0 0 20 0.24 0.939 5.48 0.932 0.007 0.350 

testicular 

cancer 

3 1 33.3 2 11 0.31 0.966 5.31 0.984 0.001 0.047 

eye cancer 1 0 0.0 0 2 0.78 0.691 1.58 1.000 0.000 0.100 

head and neck 

cancer 

3 0 0.0 0 45 1.35 0.558 8.03 0.056 - - 

mesothelioma 1 0 0.0 0 40 0.07 0.984 3.23 1.000 - - 

sarcoma 2 0 0.0 1 7 1.21 0.636 7.39 0.259 - - 
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Table 3 Correlation values of weighted degree, approval number values and of FDA specific 

drug percentage with global and local lethality values 

 

Global lethality Local lethality 

 

All cancer 

types 

All cancer 

types except 

globally 

lethal 

cancers (lung 

cancer) 

All cancer 

types 

All cancer 

types except 

locally lethal 

cancers 

(pancreatic, 

esophagus 

and liver 

cancers)  

FDA approval 

number 

0.50 0.44 0.05 0.42 Spearman 

statistic 

0.03 0.06 0.85 0.09 Spearman p-value 

Clinical trial 

number 

0.67 0.63 0.34 0.53 Spearman 

statistic 

0.00 0.00 0.15 0.03 Spearman p-value 

FDA cancer 

network 

weighted degree 

0.25 0.12 0.14 0.53 Spearman 

statistic 

0.29 0.62 0.57 0.03 Spearman p-value 

Clinical trial 

cancer network 

weighted degree 

0.42 0.33 0.61 0.55 Spearman 

statistic 

0.06 0.17 0.00 0.03 Spearman p-value 

FDA specific 

drug 

percentage 

0.35 0.44 -0.32 -0.05 Spearman 

statistic 

0.13 0.06 0.17 0.85 Spearman p-value 
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Table 4 Cancer pairs with a weight difference of at least 0.5 or lower than 0 

Cancer type 1 Cancer type 2 Clinical 

trial 

cancer 

network 

weight 

FDA 

cancer 

network 

weight 

Difference 

stomach cancer esophagus cancer 0.71 0.00 0.71 

head and neck 

cancer 

kidney cancer 0.56 0.00 0.56 

kidney cancer lung cancer 0.54 0.00 0.54 

ovarian cancer head and neck 

cancer 

0.54 0.00 0.54 

leukemia lymphoma 0.68 0.15 0.53 

ovarian cancer breast cancer 0.61 0.09 0.53 

cervical cancer esophagus cancer 0.50 0.00 0.50 

head and neck 

cancer 

brain cancer 0.50 0.00 0.50 

head and neck 

cancer 

liver cancer 0.50 0.00 0.50 

stomach cancer cervical cancer 0.50 0.00 0.50 

brain cancer myeloma 0.17 0.22 -0.05 

ovarian cancer myeloma 0.10 0.17 -0.06 

head and neck 

cancer 

endometrial 

cancer 

0.25 0.33 -0.08 

ovarian cancer eye cancer 0.06 0.17 -0.11 

eye cancer myeloma 0.00 0.13 -0.13 

brain cancer eye cancer 0.12 0.33 -0.21 

sarcoma endometrial 

cancer 

0.22 0.50 -0.28 
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Table 5. Weighted degree values of drug target and mutation target based networks 

  Drug 

target 

based 

network 

weighted 

degree 

value 

Drug 

target 

based 

network 

weighted 

degree 

p-value 

Mutation 

target 

based 

network 

weighted 

degree 

value 

Mutation 

target 

based 

network 

weighted 

degree p-

value 

leukemia 2.28 0.000 0.25 0.003 

lung cancer 3.35 0.000 1.12 0.210 

breast cancer 3.29 0.001 1.08 0.160 

colorectal cancer 2.75 0.290 1.57 0.000 

ovarian cancer 2.53 0.634 1.43 0.011 

brain cancer 1.66 0.674 0.9 0.016 

sarcoma 1.76 0.961 0.42 0.509 

pancreatic cancer 0.62 1.000 0.82 0.706 

endometrial 

cancer 

0.66 0.996 0.78 0.732 

eye cancer 1.79 0.309 0.17 0.880 

stomach cancer 2.12 0.774 0.53 0.909 

lymphoma 2.17 0.287 0.19 0.952 

testicular cancer 1.83 0.817 0.33 0.980 

skin cancer 2.22 0.808 0.35 0.981 

bladder cancer 2.32 0.330 0.14 0.998 

head and neck 

cancer 

2.75 0.275 0.06 1.000 

kidney cancer 1.38 0.996 0.13 1.000 

liver cancer 1 0.999 0.26 1.000 

myeloma 1.24 0.999 0.16 1.000 

prostate cancer 0.88 1.000 0.19 1.000 
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Table 6 Mutation target- and drug target-based weight values of cancer pairs which have a 

positive difference between the drug and mutation target-based values 

Cancer type 1 Cancer type 2 Difference 

of mutation 

target from 

drug target 

based 

weight 

colorectal cancer endometrial 

cancer 

0.26 

colorectal cancer ovarian cancer 0.24 

endometrial 

cancer 

ovarian cancer 0.15 

brain cancer colorectal cancer 0.14 

ovarian cancer pancreatic cancer 0.14 

colorectal cancer liver cancer 0.1 

brain cancer sarcoma 0.09 

brain cancer endometrial 

cancer 

0.08 

breast cancer stomach cancer 0.08 

endometrial 

cancer 

stomach cancer 0.08 

liver cancer pancreatic cancer 0.08 

pancreatic cancer testicular cancer 0.08 

brain cancer lung cancer 0.07 

colorectal cancer pancreatic cancer 0.06 

head and neck 

cancer 

kidney cancer 0.06 

liver cancer ovarian cancer 0.06 

brain cancer prostate cancer 0.05 

endometrial 

cancer 

prostate cancer 0.05 

eye cancer lung cancer 0.05 

lung cancer stomach cancer 0.05 

brain cancer breast cancer 0.03 

brain cancer liver cancer 0.03 

brain cancer pancreatic cancer 0.03 

brain cancer stomach cancer 0.03 

breast cancer eye cancer 0.03 

breast cancer kidney cancer 0.03 

colorectal cancer sarcoma 0.03 

pancreatic cancer skin cancer 0.03 

bladder cancer sarcoma 0.02 

brain cancer kidney cancer 0.02 

breast cancer sarcoma 0.02 

eye cancer sarcoma 0.02 

prostate cancer sarcoma 0.01 
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Table 7 Cancers with at least one common mutation and drug target 

Cancer 

type 

Common mutation 

and drug target name 

and Entrez Gene ID 

lung 

cancer 

ERBB1(1956) 

breast 

cancer 

ERBB2(2064) 

leukemia FCGR2B(2213), 

ABL1(25), 

PDGFRB(5159), 

KIT(3815), ABL2(27), 

LCK(3932), 

BCL2(596) 
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Figure 1 Cancer drug approval and clinical trial percentages. FDA cancer drug approval and clinical drug trial percentages for 23 cancers 
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Figure 2 Weighted degree values breast and lung cancers in the previous years. Weighted 

degree values of breast cancer, lung cancer, and the remaining cancers in the FDA cancer 

networks from 2000 to 2008. Average and the standard deviation of the weighted degree 

values are shown. Wilcoxon test was performed for greater values of lung and breast cancer 

than the other cancers. The networks with p-values lower than 0.05 are indicated by asterisk 

(*). 
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Figure 3 FDA cancer network weighted degree vs. local lethality ratio. FDA cancer network 

weighted degree values are plotted against local lethality ratio for (A) 23 cancers (r
2
 = 0.01, p 

= 0.78), (B) the cancers except pancreatic, liver and esophagus cancers (r
2
 = 0.35, p = 0.01). 

Lung cancer is shown as an open triangle and pancreatic, liver, esophagus cancers are shown 

as open circles. 
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Figure 4 FDA specific drug percentages. FDA and clinical trial specific drug percentages for 

the cancers except cervical, endometrial, esophagus, liver, pancreatic, eye, sarcoma, 

mesothelioma, and stomach cancers, which do not have specific drugs 
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APPENDIX B 

Table 8 Drug and cancer-type association with a year tag, based on FDA labels 

Drug name Other names of the drug Cancer type Label date 

Alemtuzumab Campath leukemia 2001 

Altretamine Hexalen ovarian cancer 1990 

Anastrozole Arimidex breast cancer 1995 

Arsenic trioxide Trisenox leukemia 2000 

Azacitidine Vidaza leukemia 2004 

Bendamustine Treanda, Bendamustine 

hydrochloride 

leukemia 2008 

Bendamustine Treanda, Bendamustine 

hydrochloride 

lymphoma 2008 

Bevacizumab Avastin colorectal cancer 2004 

Bevacizumab Avastin lung cancer 2006 

Bevacizumab Avastin breast cancer 2008 

Bexarotene Targretin lymphoma 1999 

Bortezomib Velcade myeloma 2003 

Bortezomib Velcade lymphoma 2006 

Busulfan Myleran, Busulfex leukemia 1954 

Capecitabine Xeloda breast cancer 1998 

Capecitabine Xeloda colorectal cancer 2001 

Carboplatin Paraplatin ovarian cancer 2003 

Carmustine Gliadel, Bicnu brain cancer 1996 

Carmustine Gliadel, Bicnu lymphoma 1997 

Carmustine Gliadel, Bicnu myeloma 1997 

Cetuximab Erbitux colorectal cancer 2004 

Cetuximab Erbitux head and neck 

cancer 

2006 

Cisplatin Platinol, Platinol-AQ, Cisplatin testicular cancer 1978 

Cisplatin Platinol, Platinol-AQ, Cisplatin bladder cancer 1993 

Cladribine Leustatin leukemia 1993 

Clofarabine Clolar leukemia 2004 

Cyclophosphamide Lyophilized cytoxan brain cancer 2000 

Cyclophosphamide Lyophilized cytoxan breast cancer 2000 

Cyclophosphamide Lyophilized cytoxan eye cancer 2000 

Cyclophosphamide Lyophilized cytoxan leukemia 2000 

Cyclophosphamide Lyophilized cytoxan lymphoma 2000 

Cyclophosphamide Lyophilized cytoxan myeloma 2000 

Cyclophosphamide Lyophilized cytoxan ovarian cancer 2000 

Cytarabine DepoCyt, Cytosar-U lymphoma 1999 

Dasatinib Sprycel leukemia 2006 

Daunorubicin Daunorubicin citrate, 

DaunoXome, Daunorubicin 

hydrochloride, Cerubidine 

skin cancer 1996 
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Table 8 (cont’d) 

Daunorubicin Daunorubicin citrate, 

DaunoXome, Daunorubicin 

hydrochloride, Cerubidine 

leukemia 1998 

Decitabine Dacogen leukemia 2006 

Degarelix  prostate cancer 2008 

Denileukin diftitox Ontak lymphoma 1999 

Docetaxel Taxotere breast cancer 1996 

Docetaxel Taxotere lung cancer 1999 

Docetaxel Taxotere prostate cancer 2004 

Docetaxel Taxotere head and neck 

cancer 

2006 

Docetaxel Taxotere stomach cancer 2006 

Doxorubicin Doxil, Doxorubicin 

hydrochloride 

skin cancer 1995 

Doxorubicin Doxil, Doxorubicin 

hydrochloride 

ovarian cancer 1999 

Doxorubicin Doxil, Doxorubicin 

hydrochloride 

myeloma 2007 

Epirubicin Ellence, Epirubicin 

hydrochloride 

breast cancer 1999 

Erlotinib Tarceva, Erlotinib 

hydrochloride 

lung cancer 2004 

Erlotinib Tarceva, Erlotinib 

hydrochloride 

pancreatic cancer 2005 

Estramustine Emcyt, Estramustine phosphate 

sodium 

prostate cancer 1981 

Etoposide Etopophos, Etoposide 

phosphate, Vepesid 

testicular cancer 1983 

Etoposide Etopophos, Etoposide 

phosphate, Vepesid 

lung cancer 1986 

Exemestane Aromasin breast cancer 1999 

Fludarabine Fludara, Fludarabine phosphate leukemia 1991 

Fluorouracil Fluoroplex colorectal cancer 1962 

Fluorouracil Fluoroplex breast cancer 1998 

Fluorouracil Fluoroplex pancreatic cancer 1998 

Fluorouracil Fluoroplex stomach cancer 1998 

Fulvestrant Faslodex breast cancer 2002 

Gefitinib Iressa lung cancer 2003 

Gemcitabine Gemzar, Gemcitabine 

hydrochloride 

pancreatic cancer 1996 

Gemcitabine Gemzar, Gemcitabine 

hydrochloride 

lung cancer 1998 

Gemcitabine Gemzar, Gemcitabine 

hydrochloride 

breast cancer 2004 

Gemtuzumab Mylotarg, Gemtuzumab 

ozogamicin 

leukemia 2000 
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Table 8 (cont’d) 

Ibritumomab 

tiuxetan 

Zevalin lymphoma 2002 

Idarubicin Idamycin PFS, Idarubicin 

hydrochloride, Idarubicin 

hydrochloride PFS,  

leukemia 1997 

Ifosfamide Ifex, Ifex/Mesnex kit, 

Ifex/Mesna kit, Mesna 

testicular cancer 1988 

Imatinib Gleevec, Imatinib mesylate leukemia 2003 

Imatinib Gleevec, Imatinib mesylate stomach cancer 2003 

Imatinib Gleevec, Imatinib mesylate sarcoma 2006 

Imiquimod Aldara skin cancer 2004 

Irinotecan Camptosar, Irinotecan 

hydrochloride 

colorectal cancer 1996 

Ixabepilone Ixempra, Ixempra kit breast cancer 2007 

Lapatinib Tykerb, Lapatinib ditosylate breast cancer 2007 

Lenalidomide Revlimid myeloma 2006 

Letrozole Femara breast cancer 1997 

Leucovorin Leucovorin Calcium colorectal cancer 1952 

Leuprolide Eligard, Leuprolide acetate, 

Lupron, Lupron depot, Lupron 

depot-3, Lupron depot-4, 

Lupron depot-ped, Viadur 

prostate cancer 1998 

Mechlorethamine Mustargen, Mechlorethamine 

hydrochloride 

leukemia 1949 

Mechlorethamine Mustargen, Mechlorethamine 

hydrochloride 

lung cancer 1949 

Mechlorethamine Mustargen, Mechlorethamine 

hydrochloride 

lymphoma 1949 

Methotrexate Methotrexate LPF, 

Methotrexate sodium, Trexall 

sarcoma 1988 

Methotrexate Methotrexate LPF, 

Methotrexate sodium, Trexall 

breast cancer 2003 

Methotrexate Methotrexate LPF, 

Methotrexate sodium, Trexall 

endometrial cancer 2003 

Methotrexate Methotrexate LPF, 

Methotrexate sodium, Trexall 

head and neck 

cancer 

2003 

Methotrexate Methotrexate LPF, 

Methotrexate sodium, Trexall 

leukemia 2003 

Methotrexate Methotrexate LPF, 

Methotrexate sodium, Trexall 

lung cancer 2003 

Methotrexate Methotrexate LPF, 

Methotrexate sodium, Trexall 

lymphoma 2003 

Methoxsalen Uvadex lymphoma 1999 

Mitoxantrone Novantrone, Mitoxantrone 

hydrochloride 

leukemia 1987 

Nelarabine Arranon leukemia 2005 

Nelarabine Arranon lymphoma 2005 
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Table 8 (cont’d) 

Nilotinib Tasigna, Nilotinib 

hydrochloride monohydrate 

leukemia 2007 

Nofetumomab Verluma lung cancer 1996 

Oxaliplatin Eloxatin colorectal cancer 2005 

Paclitaxel Abraxane, Taxol ovarian cancer 1992 

Paclitaxel Abraxane, Taxol skin cancer 1997 

Paclitaxel Abraxane, Taxol breast cancer 1998 

Paclitaxel Abraxane, Taxol lung cancer 1998 

Pamidronate Aredia, Pamidronate disodium breast cancer 1991 

Pamidronate Aredia, Pamidronate disodium myeloma 1991 

Panitumumab Vectibix colorectal cancer 2006 

Pemetrexed Alimta, Pemetrexed disodium lung cancer 2004 

Pemetrexed Alimta, Pemetrexed disodium mesothelioma 2004 

Pentostatin Nipent leukemia 1991 

Porfimer Photofrin, Porfimer sodium esophagus cancer 1995 

Porfimer Photofrin, Porfimer sodium lung cancer 1998 

Procarbazine Matulane, Procarbazine 

hydrochloride 

lymphoma 1969 

Raloxifene Evista, Raloxifene 

hydrochloride 

breast cancer 2007 

Rituximab Rituxan lymphoma 1997 

Sorafenib Nexavar, Sorafenib tosylate kidney cancer 2005 

Sorafenib Nexavar, Sorafenib tosylate liver cancer 2007 

Sunitinib Nexavar, Sorafenib tosylate stomach cancer 2006 

Sunitinib Nexavar, Sorafenib tosylate kidney cancer 2007 

Temozolomide Sutent, Sunitinib malate brain cancer 1999 

Temsirolimus Torisel kidney cancer 2007 

Teniposide Temodar leukemia 1992 

Thalidomide Thalomid myeloma 2006 

Topotecan Hycamtin, Topotecan 

hydrochloride 

ovarian cancer 1996 

Topotecan Hycamtin, Topotecan 

hydrochloride 

lung cancer 1998 

Topotecan Hycamtin, Topotecan 

hydrochloride 

cervical cancer 2006 

Toremifene Fareston, Toremifene citrate breast cancer 1997 

Tositumomab Bexxar, Tositumomab and 

iodine I 131 tositumomab 

lymphoma 2003 

Trastuzumab Herceptin breast cancer 1998 

Tretinoin Vesanoid leukemia 2004 

Valrubicin Valstar bladder cancer 1998 

Vinorelbine Navelbine, Vinorelbine tartrate lung cancer 1994 

Vorinostat Zolinza lymphoma 2006 

Zoledronate Zometa, Zoledronic acid myeloma 2002 
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Table 9 Targets of FDA approved cancer drugs 

Drug Target 

Alemtuzumab CD52(1043), FCGR1A(2209), FCGR3B(2215), C1R(715), 

C1QA(712), C1QB(713), C1QC(714), FCGR3A(2214), 

FCGR2A(2212), FCGR2B(2213), FCGR2C(9103) 

Altretamine DNA 

Anastrozole CYP19A1(1588) 

Arsenic trioxide ATP2C1(27032), AKT1(207), IL6(3569), MAPK1(5594), 

ERGIC2(51290), CCND1(595), ABCB1(5243), JUN(3725), 

MAPK3(5595), IKBKB(3551) 

Azacitidine DNA, DNMT1(1786) 

Bevacizumab VEGF(7422), FCGR1A(2209), FCGR3B(2215), C1R(715), 

C1QA(712), C1QB(713), C1QC(714), FCGR3A(2214), 

FCGR2A(2212), FCGR2B(2213), FCGR2C(9103) 

Bexarotene RXRB(6257) 

Bortezomib PSMD1(5707), PSMD2(5708), PSMB1(5689), PSMB5(5693), 

PSMB2(5690) 

Busulfan DNA 

Capecitabine TYMS(7298), DPYD(1806) 

Carboplatin DNA, ALB(213) 

Carmustine DNA, GSR(2936) 

Cetuximab FCGR1A(2209), EGFR(1956), FCGR3B(2215), C1S(716), 

C1R(715), C1QA(712), C1QB(713), C1QC(714), 

FCGR3A(2214), FCGR2A(2212), FCGR2B(2213), 

FCGR2C(9103) 

Cisplatin DNA 

Cladribine NP(4860), DNA, ADA(100) 

Clofarabine RRM1(6240), POLA1(5422) 

Cyclophosphamide DNA 

Cytarabine POLB(5423), ALB(213) 

Dasatinib ABL1(25), PDGFRB(5159), KIT(3815), ABL2(27), SRC(6714), 

FYN(2534), YES1(7525), EPHA2(1969), LCK(3932), 

STAT5B(6777) 

Daunorubicin ABCC1(4363), DNA, ABCB1(5243) 

Decitabine DNA, DNMT1(1786)  

Degarelix - 

Denileukin diftitox IL2RB(3560), IL2RA(3559), IL2RG(3561) 

Docetaxel TUBB1(81027), BCL2(596) 

Doxorubicin TOP2A(7153), DNA 

Epirubicin CHD1(1105), TOP2A(7153) 

Erlotinib EGFR(1956) 

Estramustine ESR1(2099), ESR2(2100), ABCB1(5243), MAP2(4133), 

MAP1A(4130) 

Etoposide TOP2A(7153), MAP2K7(5609) 

Exemestane CYP19A1(1588) 

Fludarabine BCL2(596), RRM1(6240), POLA1(5422), STAT1(6772), 

ADA(100) 
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Table 9 (cont’d) 

Fluorouracil TYMS(7298), DPYD(1806) 

Fulvestrant ESR1(2099) 

Gefitinib EGFR(1956) 

Gemcitabine TYMS(7298), RRM1(6240), CMPK1(51727) 

Gemtuzumab CD33(945), FCGR1A(2209), FCGR3B(2215), C1S(716), 

C1R(715), C1QA(712), C1QB(713), C1QC(714), 

FCGR3A(2214), FCGR2A(2212), FCGR2B(2213), 

FCGR2C(9103) 

Ibritumomab 

tiuxetan 

MS4A1(931), FCGR1A(2209), FCGR3B(2215), C1S(716), 

C1R(715), C1QA(712), C1QB(713), C1QC(714), 

FCGR3A(2214), FCGR2A(2212), FCGR2B(2213), 

FCGR2C(9103) 

Idarubicin TOP2A(7153) 

Ifosfamide DNMT1(1786)  

Imatinib ABL1(25), PDGFRB(5159), KIT(3815), PDGFRA(5156), 

CSF1R(1436), ABCB1(5243), NTRK1(4914), ABCG2(9429), 

RET(5979), DDR1(780) 

Imiquimod TLR7(51284) 

Irinotecan TOP1MT(116447), TOP1(7150) 

Ixabepilone - 

Lapatinib ERBB2(2064), EGFR(1956) 

Lenalidomide PTGS2(5743) 

Letrozole ESR1(2099), ERBB2(2064), CYP19A1(1588) 

Leucovorin TYMS(7298) 

Leuprolide GNRHR(2798) 

Mechlorethamine DNA 

Methotrexate DHFR(1719), ALB(213) 

Methoxsalen DNA, CYP2A6(1548) 

Mitoxantrone TOP2A(7153), ABCG2(9429) 

Nelarabine DNA 

Nilotinib - 

Nofetumomab - 

Oxaliplatin DNA 

Paclitaxel TUBB1(81027), BCL2(596) 

Pamidronate FDPS(2224) 

Panitumumab EGFR(1956) 

Pemetrexed TYMS(7298), DHFR(1719), GART(2618) 

Pentostatin ADA(100) 

Porfimer LDLR(3949), FCGR1A(2209) 

Procarbazine DNA 

Raloxifene ESR1(2099), ESR2(2100) 

Rituximab MS4A1(931), FCGR1A(2209), FCGR3B(2215), C1S(716), 

C1R(715), C1QA(712), C1QB(713), C1QC(714), 

FCGR3A(2214), FCGR2A(2212), FCGR2B(2213), 

FCGR2C(9103) 
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Table 9 (cont’d) 

Sorafenib FLT4(2324), RAF1(5894), FLT3(2322), PDGFRB(5159), 

KDR(3791), KIT(3815), BRAF(673) 

Sunitinib FLT4(2324), FLT1(2321), FLT3(2322), PDGFRB(5159), 

KDR(3791), KIT(3815), PDGFRA(5156), CSF1R(1436), 

RET(5979),  

Temozolomide DNA 

Temsirolimus FRAP1(2475) 

Teniposide TOP2A(7153) 

Thalidomide PTGS2(5743), TNF(7124), NFKB1(4790)  

Topotecan TOP1MT(116447), TOP1(7150), ABCG2(9429) 

Toremifene ESR1(2099) 

Tositumomab MS4A1(931), FCGR1A(2209), FCGR3B(2215), C1R(715), 

C1QA(712), C1QB(713), C1QC(714), FCGR3A(2214), 

FCGR2A(2212), FCGR2B(2213), FCGR2C(9103) 

Trastuzumab ERBB2(2064), EGFR(1956), FCGR1A(2209), FCGR3B(2215), 

C1S(716), C1R(715), C1QA(712), C1QB(713), C1QC(714), 

FCGR3A(2214), FCGR2A(2212), FCGR2B(2213), 

FCGR2C(9103) 

Tretinoin NR0B1(190), RXRB(6257), RARG(5916), ALDH1A2(8854), 

ALDH1A1(216), RARRES1(5918), GPRC5A(9052), 

RXRG(6258) 

Valrubicin TOP2A(7153) 

Vinorelbine TUBB(203068) 

Vorinostat HDAC8(55869), HDAC1(3065), HDAC2(3066), HDAC3(8841), 

HDAC6(10013) 

Zoledronate FDPS(2224) 
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Table 10 Mutation targets of different cancer types 

Cancer 

type 

Mutation targets 

Bladder 

cancer 

FGFR3(2261), HRAS(3265) 

Brain 

cancer 

ALK(238), APC(324), ATM(472), BRAF(673), COPEB(1316), 

EGFR(1956), GOPC(57120), HRAS(3265), IDH1(3417), 

KIAA1549(57670), MDM2(4193), MLH1(4292), MN1(4330), 

MYCN(4613), NBS1(4683), NBS1(4683), NF1(4763), NF2(4771), 

PALB2(79728), PHOX2B(8929), PIK3CA(5290), PIK3R1(5295), 

PMS2(5395), PTCH(5727), PTEN(5728), ROS1(6098), SDHB(6390), 

SDHC(6391), SDHD(6392), SUFU(51684), TP53(7157), WRN(7486) 

Breast 

cancer 

AKT1(207), BRCA1(672), BRCA2(675), BRIP1(83990), CCND1(595), 

CDH1(999), CHEK2(11200), EP300(2033), ERBB2(2064), ETV6(2120), 

MAP2K4(6416), NTRK3(4916), PALB2(79728), PIK3CA(5290), 

RB1(5925), TP53(7157) 

colorectal 

cancer 

AKT1(207), APC(324), BRAF(673), CTNNB1(1499), EP300(2033), 

FBXW7(55294), KRAS(3845), MADH4(4089), MAP2K4(6416), 

MDM2(4193), MLH1(4292), MSH2(4436), MSH6(2956), 

MUTYH(4595), PIK3CA(5290), PIK3R1(5295), PMS1(5378), 

PMS2(5395), TP53(7157) 

endometrial 

cancer 

FBXW7(55294), FGFR2(2263), JAZF1(221895), MLH1(4292), 

MSH2(4436), MSH6(2956), PMS1(5378), PMS2(5395), PTEN(5728), 

SUZ12(23512) 

eye cancer RB1(5925) 

head and 

neck cancer 

MET(4233) 

kidney 

cancer 

BHD(201163), FH(2271), GPC3(2719), MET(4233), NONO(4841), 

PALB2(79728), PRCC(5546), PRO1073(29005), SFPQ(6421), 

TFE3(7030), TFEB(7942), TSC1(7248), TSC2(7249), VHL(7428), 

WT1(7490), WTX(139285) 

leukemia ABL1(25), ABL2(27), AF15Q14(57082), AF1Q(10962), AF3p21(51517), 

AF5q31(27125), ARHGEF12(23365), ARNT(405), ATM(472), 

BCL11A(53335), BCL11B(64919), BCL2(596), BCL3(602), BCL5(603), 

BCL6(604), BCL9(607), BCR(613), BLM(641), BRCA2(675), 

BRIP1(83990), BTG1(694), CBFA2T1(862), CBFA2T3(863), 

CBFB(865), CBL (867), CCND1(595), CCND1(595), CCND2(894), 

CDK6(1021), CDX2(1045), CEBPA(1050), CHIC2(26511), 

CREBBP(1387), D10S170(8030), DDX10(1662), DEK(7913), 

ELF4(2000), ELL(8178), ELN(2006), EP300(2033), EPS15(2060), ERG 

(2078), ETV6(2120), EVI1(2122), EWSR1(2130), FACL6(23305), 

FANCA(2175), FANCC(2176), FANCD2(2177), FANCE(2178), 

FANCF(2188), FANCG(2189), FBXW7(55294), FCGR2B(2213), 

FLT3(2322), FNBP1(23048), FOXO3A(2309), FOXP1(27086), 

FSTL3(10272), FUS(2521), GAS7(8522), GATA1(2623), GATA2(2624), 

GMPS(8833), GPHN(10243), GRAF(23092), HEAB(10978), HLF(3131), 

HLXB9(3110), HOXA11(3207), HOXA13(3209), HOXA9(3205), 

HOXC11(3227), HOXC13(3229), HOXD11(3237), HOXD13(3239) 
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Table 10 (cont’d) 

leukemia IGH@(3492), IKZF1(10320), JAK2(3717), JAK3(3718), KIT(3815), 

KRAS(3845), LAF4(3899), LASP1(3927), LCK(3932), LCX(80312), 

LMO1(4004), LMO2(4005), LPP(4026), LYL1(4066), MDS1(4197), 

MKL1(57591), MLF1(4291), MLL(4297), MLLT1(4298), 

MLLT10(8028), MLLT2(4299), MLLT3(4300), MLLT4(4301), 

MLLT6(4302), MLLT7(4303), MN1(4330), MSF(10801), 

MSI2(124540), MTCP1(4515), MYC(4609), MYH11(4629), 

MYST4(23522), NCOA2(10499), NOTCH1(4851), NPM1(4869), 

NRAS(4893), NSD1(64324), NUMA1(4926), NUP214(8021), 

NUP98(4928), OLIG2(10215), PALB2(79728), PAX5(5079), 

PBX1(5087), PCM1(5108), PDGFRB(5159), PER1(5187), 

PICALM(8301), PML(5371), PMX1(5396), PNUTL1(5413), 

PRDM16(63976), PSIP2(11168), PTPN11(5781), RANBP17(64901), 

RAP1GDS1(5910), RARA(5914), RBM15(64783), RPL22(6146), 

RPN1(6184), RUNX1(861), RUNXBP2(7994), SBDS(51119), 

SEPT6(23157), SET(6418), SH3GL1(6455), SIL(6491), 

SSH3BP1(10006), STL(7955), TAF15(8148), TAL1(6886), TAL2(6887), 

TCF3(6929), TCL1A(8115), TCL6(27004), TFPT(29844), TIF1(8805), 

TLX1(3195), TLX3(30012), TOP1(7150), TRA@(6955), TRB@(6957), 

TRD@(6964), TRIP11(9321), TTL(150465), WHSC1L1(54904), 

ZNF145(7704), ZNF384(171017), ZNF521(25925), ZNFN1A1(10320) 

liver cancer APC(324), CTNNB1(1499), IL6ST(3572), TCF1(6927) 

lung cancer AKT1(207), ALK(238), BRAF(673), EGFR(1956), EML4(27436), 

ERBB2(2064), FGFR2(2263), KRAS(3845), MYCL1(4610), RB1(5925), 

STK11(6794), TP53(7157) 

lymphoma ALK(238), ALO17(57714), ARHH(399), ATIC(471), ATM(472), 

BCL10(8915), BCL2(596), BCL6(604), BCL7A(605), BIRC3(330), 

BLM(641), CARD11(84433), CARS(833), CCND2(894), CEP1(11064), 

CLTC(1213), CLTCL1(8218), DDX6(1656), EIF4A2(1974), 

ETV6(2120), FGFR1(2260), FGFR1OP(11116), FGFR3(2261), 

FVT1(2531), HIST1H4I(8294), HSPCA(3320), HSPCB(3326), 

IGH@(3492), IGK@(50802), IGL@(3535), IL2(3558), IL21R(50615), 

IRTA1(83417), ITK(3702), LCP1(3936), MALT1(10892), 

MHC2TA(4261), MSN(4478), MUC1(4582), MYC(4609), MYH9(4627), 

NACA(4666), NBS1(4683), NFKB2(4791), NPM1(4869), 

PAFAH1B2(5049), PAX5(5079), PCSK7(9159), PIM1(5292), 

POU2AF1(5450), REL(5966), SFRS3(6428), SOCS1(8651  ), 

SYK(6850), TFG(10342), TFRC(7037), TNFRSF17(608), 

TNFRSF6(355), TPM3(7170), TPM4(7171), WAS(7454), 

ZNF198(7750), ZNFN1A1(10320) 

myeloma CCND3(896), FGFR3(2261), HCMOGT1(92521), HIP1(3092), 

IGH@(3492), IRF4(3662), MAF(4094), MAFB(9935), NRAS(4893), 

PDGFRB(5159), PER1(5187), PTPN11(5781), RAB5EP(9135), 

WHSC1(7468) 

ovarian 

cancer 

AKT1(207), AKT2(208), BRAF(673), BRCA1(672), BRCA2(675), 

CTNNB1(1499), ERBB2(2064), MLH1(4292), MSH2(4436), 

MSH6(2956), PIK3R1(5295), PMS1(5378), PMS2(5395), STK11(6794) 
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Table 10 (cont’d) 

pancreatic 

cancer 

AKT2(208), APC(324), BRCA2(675), CDKN2A(1029), EP300(2033), 

KRAS(3845), MADH4(4089), MAP2K4(6416), MEN1(4221), 

STK11(6794) 

prostate 

cancer 

C15orf21(283651), COPEB(1316), ERG (2078), ETV1(2115), 

ETV4(2118), ETV5(2119), HNRNPA2B1(3181), PTEN(5728), 

SLC45A3(85414), TMPRSS2(7113) 

sarcoma ASPSCR1(79058), BUB1B(701), CHN1(1123), CIC(23152), 

COL1A1(1277), CREB1(1385), CREB3L2(64764), DDIT3(1649), 

DUX4(22947), ERG (2078), ETV1(2115), ETV4(2118), ETV6(2120), 

EWSR1(2130), EXT1(2131), EXT2(2132), FEV(54738), FLI1(2313), 

FOXO1A(2308), FUS(2521), FUS(2521), HRAS(3265), MDM2(4193), 

NBS1(4683), NCOA1(8648), NR4A3(8013), NTRK3(4916), 

PAX3(5077), PAX7(5081), PDGFB(5155), POU5F1(5460), RB1(5925), 

RECQL4(9401), SS18(6760), SS18L1(26039), SSX1 (6756), 

SSX2(6757), SSX4(6759), TAF15(8148), TCF12(6938), TFE3(7030), 

TP53(7157), WRN(7486), ZNF278(23598) 

skin cancer ATF1(466), BLM(641), BRAF(673), CDK4(1019), CDKN2A(1029), 

DDB2(1643), ERCC2(2068), ERCC3(2071), ERCC4(2072), 

ERCC5(2073), GNAQ(2776), KIT(3815), MITF(4286), NRAS(4893), 

PTCH(5727), RECQL4(9401), SMO(6608), TNFRSF6(355), XPA(7507), 

XPC(7508) 

stomach 

cancer 

CDH1(999), ERBB2(2064), FGFR2(2263), PIK3CA(5290) 

testicular 

cancer 

KIT(3815), STK11(6794), TNFRSF6(355) 

thyroid 

cancer 

AKAP9(10142  ), BRAF(673), D10S170(8030), ELKS(23085), 

GOLGA5(9950), HMGA1(3159), HRPT2(3279), KRAS(3845), 

KTN1(3895), MEN1(4221), NCOA4(8031), NRAS(4893), 

NTRK1(4914), PAX8(7849), PCM1(5108), PPARG(5468), 

PRKAR1A(5573), RET(5979), TFG(10342), TPM3(7170), TPR(7175), 

TRIM33(51592), TSHR(7253), ZNF331(55422) 
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Table 11 Global lethality ratio values for different cancers from 2001 to 2007 

Cancer 

type 

2001 

Global 

lethality 

ratio 

2002 

Global 

lethality 

ratio 

2003 

Global 

lethality 

ratio 

2004 

Global 

lethality 

ratio 

2005 

Global 

lethality 

ratio 

2006 

Global 

lethality 

ratio 

2007 

Global 

lethality 

ratio 

lung cancer 0.284 0.280 0.283 0.285 0.287 0.288 0.287 

colorectal 

cancer 

0.103 0.102 0.103 0.101 0.099 0.098 0.093 

breast 

cancer 

0.150 0.148 0.147 0.147 0.147 0.150 0.150 

pancreatic 

cancer 

0.052 0.054 0.054 0.056 0.056 0.057 0.060 

prostate 

cancer 

0.110 0.106 0.101 0.103 0.103 0.094 0.093 

leukemia 0.039 0.039 0.039 0.041 0.040 0.039 0.039 

lymphoma 0.050 0.047 0.044 0.037 0.036 0.036 0.035 

liver cancer 0.026 0.026 0.026 0.025 0.027 0.029 0.030 

endometrial 

cancer 

0.025 0.025 0.025 0.026 0.027 0.027 0.027 

ovarian 

cancer 

0.052 0.052 0.053 0.059 0.059 0.056 0.057 

esophagus 

cancer 

0.023 0.023 0.023 0.024 0.024 0.024 0.025 

bladder 

cancer 

0.022 0.023 0.023 0.023 0.023 0.023 0.025 

brain 

cancer 

0.024 0.024 0.024 0.023 0.022 0.023 0.023 

kidney 

cancer 

0.022 0.021 0.021 0.022 0.022 0.023 0.023 

skin cancer 0.018 0.017 0.018 0.018 0.019 0.019 0.019 

stomach 

cancer 

0.023 0.022 0.022 0.021 0.020 0.020 0.020 

myeloma 0.020 0.020 0.020 0.020 0.020 0.020 0.019 

cervical 

cancer 

0.017 0.015 0.015 0.014 0.014 0.014 0.014 

testicular 

cancer 

0.001 0.001 0.001 0.001 0.001 0.001 0.001 

eye cancer 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 12 Local lethality ratio values for different cancers from 2001 to 2007 

Cancer type 2001 

Local 

lethality 

ratio 

2002 

Local 

lethality 

ratio 

2003 

Local 

lethality 

ratio 

2004 

Local 

lethality 

ratio 

2005 

Local 

lethality 

ratio 

2006 

Local 

lethality 

ratio 

2007 

Local 

lethality 

ratio 

lung cancer 0.929 0.914 0.914 0.923 0.947 0.931 0.752 

colorectal 

cancer 

0.360 0.328 0.680 0.267 0.268 0.259 0.232 

breast cancer 0.209 0.195 0.188 0.186 0.191 0.192 0.227 

pancreatic 

cancer 

0.990 0.980 0.977 0.981 0.988 0.958 0.898 

prostate 

cancer 

0.159 0.160 0.131 0.130 0.131 0.117 0.124 

leukemia 0.682 0.704 0.716 0.697 0.648 0.635 0.492 

lymphoma 0.434 0.424 0.405 0.333 0.323 0.305 0.276 

liver cancer 0.870 0.849 0.832 0.754 0.879 0.875 0.876 

endometrial 

cancer 

0.172 0.168 0.170 0.176 0.179 0.178 0.189 

ovarian 

cancer 

0.594 0.597 0.563 0.629 0.729 0.759 0.681 

esophagus 

cancer 

0.947 0.962 0.935 0.933 0.935 0.946 0.896 

bladder 

cancer 

0.228 0.223 0.218 0.211 0.208 0.213 0.205 

brain cancer 0.762 0.771 0.716 0.690 0.690 0.681 0.621 

kidney cancer 0.393 0.365 0.373 0.349 0.350 0.330 0.252 

skin cancer 0.174 0.165 0.167 0.173 0.160 0.156 0.167 

stomach 

cancer 

0.590 0.574 0.540 0.519 0.528 0.513 0.527 

myeloma 0.778 0.740 0.747 0.725 0.707 0.683 0.542 

cervical 

cancer 

0.341 0.315 0.336 0.371 0.358 0.381 0.329 

testicular 

cancer 

0.056 0.053 0.053 0.040 0.049 0.045 0.048 

eye cancer 0.095 0.091 0.091 0.086 0.108 0.097 0.094 
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Table 13 Correlation values of weighted degree, approval number values with global 

lethality values for 2001-2007 

 FDA approval 

number 

FDA cancer network 

weighted degree 

 

 All 

cancers 

All 

cancers 

except 

lung 

cancer 

All 

cancers 

All 

cancers 

except 

lung 

cancer 

 

2001 0.507883 0.440047 -0.01325 -0.01431 Spearman statistic 

0.044594 0.100702 0.961142 0.959628 Spearman p-value 

2002 0.493703 0.434419 0.010302 -0.00179 Spearman statistic 

0.05195 0.105646 0.969796 0.994956 Spearman p-value 

2003 0.453218 0.384073 0.295524 0.207506 Spearman statistic 

0.067694 0.141915 0.249477 0.440621 Spearman p-value 

2004 0.529063 0.454699 0.256285 0.133922 Spearman statistic 

0.028981 0.076807 0.320752 0.620973 Spearman p-value 

2005 0.549142 0.489158 0.273761 0.159509 Spearman statistic 

0.018258 0.046291 0.271658 0.540859 Spearman p-value 

2006 0.525673 0.4698 0.414946 0.313503 Spearman statistic 

0.020802 0.049159 0.077301 0.205218 Spearman p-value 

2007 0.479393 0.415906 0.301958 0.185413 Spearman statistic 

0.032453 0.076549 0.195699 0.447281 Spearman p-value 
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Table 14 Correlation values of weighted degree, approval number values with local lethality 

values for 2001-2007 

 FDA approval 

number 

FDA cancer network 

weighted degree 

 

 All 

cancers 

All 

cancers 

except 

pancreatic, 

liver and 

esophagus 

cancers 

All 

cancers 

All 

cancers 

except 

pancreatic, 

liver and 

esophagus 

cancers 

 

2001 0.062646 0.40361 0.267647 0.481319 Spearman statistic 

0.817717 0.152398 0.312408 0.082451 Spearman p-value 

2002 0.078756 0.425737 0.270588 0.485714 Spearman statistic 

0.771877 0.129076 0.306974 0.079402 Spearman p-value 

2003 0.203359 0.553168 0.144697 0.37891 Spearman statistic 

0.433722 0.03244 0.57952 0.163683 Spearman p-value 

2004 0.164304 0.522921 0.137255 0.407143 Spearman statistic 

0.528597 0.045488 0.595315 0.131493 Spearman p-value 

2005 0.197299 0.39853 0.168215 0.358824 Spearman statistic 

0.432609 0.126272 0.500542 0.170818 Spearman p-value 

2006 0.174395 0.389871 0.124561 0.330882 Spearman statistic 

0.475188 0.121863 0.607889 0.192679 Spearman p-value 

2007 0.072584 0.449279 0.171429 0.573529 Spearman statistic 

0.761048 0.070419 0.466237 0.017639 Spearman p-value 
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Table 15 Weighted degree values for FDA cancer network from 2000 to 2007 

 2000 2001 2002 2003 2004 2005 2006 2007 

breast 

cancer 

0.944 1.013 0.936 1.192 1.269 1.250 1.327 1.139 

lung cancer 0.774 0.771 0.763 1.049 1.092 1.158 1.315 1.296 

leukemia 0.559 0.525 0.514 0.832 0.706 0.711 0.681 0.649 

lymphoma 0.802 0.797 0.716 0.983 0.957 0.934 0.858 0.839 

ovarian 

cancer 

1.258 1.255 1.223 1.031 0.967 0.962 1.097 1.164 

head and 

neck cancer 

NA NA NA 2.312 2.282 2.273 1.411 1.389 

myeloma 1.401 1.397 1.138 0.937 0.923 0.913 0.771 0.873 

stomach 

cancer 

0.917 0.833 0.827 0.663 0.591 0.488 1.009 1.156 

sarcoma 0.000 0.000 0.000 2.312 2.282 2.273 1.237 1.223 

endometrial 

cancer 

NA NA NA 2.312 2.282 2.273 1.086 1.072 

eye cancer 1.144 1.138 1.037 0.921 0.906 0.896 0.824 0.793 

brain cancer 1.319 1.314 1.191 1.067 1.054 1.041 0.936 0.897 

colorectal 

cancer 

0.655 0.593 0.583 0.525 0.391 0.336 0.434 0.422 

skin cancer 0.567 0.562 0.558 0.484 0.416 0.414 0.406 0.487 

pancreatic 

cancer 

0.927 0.877 0.871 0.683 0.681 0.629 0.525 0.505 

kidney 

cancer 

NA NA NA NA NA 0.000 0.000 0.500 

liver cancer NA NA NA NA NA NA NA 0.333 

prostate 

cancer 

0.000 0.000 0.000 0.000 0.125 0.125 0.488 0.479 

cervical 

cancer 

NA NA NA NA NA NA 0.238 0.238 

testicular 

cancer 

0.341 0.341 0.341 0.327 0.317 0.317 0.313 0.313 

bladder 

cancer 

0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 

esophagus 

cancer 

0.111 0.111 0.111 0.091 0.077 0.077 0.071 0.071 

mesotheliom

a 

NA NA NA NA 0.077 0.077 0.071 0.071 
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Table 16 Weighted degree p-values for FDA cancer network from 2000 to 2007 

 2000 2001 2002 2003 2004 2005 2006 2007 

breast cancer 0.063 0.035 0.027 0.028 0.007 0.012 0.007 0.009 

lung cancer 0.327 0.289 0.343 0.164 0.088 0.073 0.022 0.024 

leukemia 0.383 0.391 0.401 0.169 0.181 0.151 0.166 0.155 

lymphoma 0.299 0.298 0.292 0.188 0.176 0.161 0.203 0.212 

ovarian 

cancer 

0.315 0.291 0.286 0.515 0.535 0.528 0.509 0.466 

head and 

neck cancer 

NA NA NA 0.369 0.388 0.401 0.544 0.522 

myeloma 0.379 0.415 0.426 0.627 0.615 0.641 0.664 0.563 

stomach 

cancer 

0.618 0.596 0.617 0.817 0.832 0.843 0.694 0.582 

sarcoma 1.000 1.000 1.000 0.367 0.386 0.374 0.612 0.623 

endometrial 

cancer 

NA NA NA 0.380 0.387 0.379 0.632 0.617 

eye cancer 0.520 0.506 0.541 0.723 0.723 0.690 0.714 0.724 

brain cancer 0.434 0.431 0.450 0.672 0.650 0.653 0.747 0.741 

colorectal 

cancer 

0.706 0.732 0.711 0.838 0.897 0.878 0.856 0.868 

skin cancer 0.741 0.787 0.775 0.858 0.890 0.885 0.925 0.894 

pancreatic 

cancer 

0.596 0.627 0.619 0.797 0.786 0.814 0.885 0.881 

kidney cancer NA NA NA NA NA 1.000 1.000 0.891 

liver cancer NA NA NA NA NA NA NA 0.907 

prostate 

cancer 

1.000 1.000 1.000 1.000 0.966 0.983 0.880 0.898 

cervical 

cancer 

NA NA NA NA NA NA 0.931 0.931 

testicular 

cancer 

0.862 0.862 0.858 0.919 0.929 0.931 0.942 0.945 

bladder 

cancer 

0.915 0.913 0.896 0.939 0.946 0.942 0.949 0.962 

esophagus 

cancer 

0.940 0.944 0.928 0.956 0.987 0.980 0.979 0.985 

mesothelioma NA NA NA NA 0.966 0.973 0.979 0.984 
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Table 17 Clinical trial numbers along with distinct drug number and specific drug number 

for clinical trials 

Cancer type Clinical 

drug 

trial 

number 

Clinical 

trials 

distinct 

drug 

number 

Clinical 

trials 

specific 

drug 

number 

leukemia 170 37 2 

lymphoma 121 42 3 

lung cancer 121 30 0 

breast cancer 97 37 2 

ovarian cancer 71 34 0 

brain cancer 62 25 1 

colorectal cancer 61 16 0 

prostate cancer 48 23 3 

head and neck cancer 45 26 1 

mesothelioma 40 8 0 

pancreatic cancer 35 21 0 

skin cancer 31 21 0 

kidney cancer 30 27 0 

esophagus cancer 26 16 0 

cervical cancer 20 11 0 

liver cancer 19 16 0 

stomach cancer 19 13 0 

myeloma 13 9 1 

testicular cancer 11 14 0 

bladder cancer 10 10 1 

endometrial cancer 10 9 0 

sarcoma 7 24 0 

eye cancer 2 3 0 
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Figure 5 Time dependent characteristics of the FDA approvals and FDA cancer network (A) 

Number of cancers in the network from 1980-2008, (B) Number of FDA approvals  from 

1980-2008, (C) Average weight of the network from 1980-2008, (D) Number of components 

of the network from 1980-2008. 
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Figure 5 (cont’d) 

C 

 

D 

 

 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

A
v

e
ra

g
e

 w
e

ig
h

t

0

1

2

3

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

N
u

m
b

e
r 

o
f 

c
o

m
p

o
n

e
n

ts



74 

 

Figure 6 Cluster dendogram of cancer types based on global and local lethality values 

7
4
 



75 

 

 

 

 

 

 

 

 

 

 

 BIBLIOGRAPHY 

 

  



76 

 

BIBLIOGRAPHY 

 

 

 

 

1. Miniño AM, Heron MP, Murphy SL, Kochanek KD; Centers for Disease Control and 

Prevention National Center for Health Statistics National Vital Statistics System. Deaths: 

final data for 2004. Natl Vital Stat Rep. 2007, 55:1-119 

 

2. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, et al. The human disease network. Proc 

Natl Acad Sci U S A. 2007, 104: 8685-8690 

 

3. Yildirim MA, Goh KI., Cusick ME, Barabasi AL, Vidal M. Drug-target network. Nat 

Biotechnol. 2007, 25: 1119-1126 

 

4. Ma'ayan A, Jenkins SL, Goldfarb J, Iyengar R. Network analysis of FDA approved drugs 

and their targets. Mt Sinai J Med. 2007, 74: 27-32 

  

5. Sakharkar MK, Li P, Zhong Z, Sakharkar KR. Quantitative analysis on the characteristics 

of targets with FDA approved drugs. Int J Biol Sci. 2008, 4:15-22 

 

6. Nacher JC, Schwartz JM. A global view of drug-therapy interactions. BMC Pharmacol. 

2008, 8:5 

 

7. Barabasi AL. Network Medicine — From Obesity to the "Diseasome". N Engl J Med. 

2007, 357: 404-407 

 

8. Hopkins, AL. Network pharmacology. Nat Biotechnol. 2007, 25: 1110-1111 

 

9. American Cancer Society. Cancer Facts & Figures. Atlanta: American Cancer Society 

2001-2008 

 

10. Newman MEJ. The structure and function of complex networks. SIAM Review. 2003, 

45: 167-256 

 

11. Yokota J, Yamamoto T, Toyoshima K, Terada M, Sugimura T, et al. Amplification of c-

erbB-2 oncogene in human adenocarcinomas in vivo. Lancet. 1986, 1:765-767 

 

12. Testa JR, Siegfried JM. Chromosome abnormalities in human non-small cell lung cancer. 

Cancer Res. 1992, 52:2702-2706 

 

13. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, et al. A census of human cancer 

genes. Nat Rev Cancer. 2004, 4:177-183 

 



77 

 

14. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. Cytoscape: a software 

environment for integrated models of biomolecular interaction networks. Genome Res. 

2003, 13: 2498-2504 

 

15. Best DJ, Roberts DE. Algorithm AS 89: The Upper Tail Probabilities of Spearman's rho. 

Applied Statistics 1975, 24: 377–379 

 

  



78 

 

CHAPTER 2 

INTEGRATIVE ANALYSIS OF CANCER PATHWAYS 

INTRODUCTION 

Cancer is a complex disease, with many subtypes, affecting various tissues, and 

according to the severity of the abnormality, giving rise to different stages and classifications, 

such as carcinoma, sarcoma, primary, etc. Physiological and genetic studies identified different 

stages in the progression of the various types of cancers. For instance, colorectal tumorigenesis 

begins with normal epithelium which proceeds through stages of hyperproliferative epithelium, 

early adenoma, intermediate adenoma, late adenoma, carcinoma, and metastasis [1]. Genetic 

alterations, such as mutations or deletions of genes, accumulate as the cancer progresses to the 

next, more severe and proliferative stage. The accumulation of changes (e.g., mutations, 

deletions, etc.) is a key factor in tumor progression. For example, a more severe stage will have a 

higher probability than a less severe stage of having more mutations [1]. On the other hand, the 

specific number and the identity of the genetic alterations, such as point mutations, 

amplifications, or deletions in a stage, are not determining factors, but rather are general features 

that characterize the severity of a stage, and varies from one cancer to another [1]. 

Omics technologies, such as cDNA and oligonucleotide arrays, and comparative genome 

hybridization, have dominated tumor characterization [2]. Genome level analysis have been 

applied successfully to differentiate between the different stages of cancer, and revealed 

differentially expressed genes and genomic alterations that play important roles in the 

development of cancer [2]. More recently, gene set and pathway centric analysis of cancer 

progression have gained popularity. These analyses confirmed results currently known about the 

role of cell cycle in cancer development, as well as produced novel findings, i.e. the involvement 
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of the ERBB4 gene in primary prostate cancer [3]. Approaches that integrate gene expression 

and pathway analysis of colorectal cancer have proved useful in finding potential prognostic and 

diagnostic markers, as well as therapeutic targets [2]. 

Biological pathways consist of molecular interactions or other biochemical events among 

a group of proteins, genes, and other chemicals. They are used to characterize metabolism, signal 

transduction, specific cellular processes, diseases, or drug mechanisms. The Kyoto Encyclopedia 

of Genes and Genomes (KEGG) database contains pathway information on the progression of 

different types of cancer, as combinations of signaling pathways 

(http://www.genome.ad.jp/kegg/pathway.html#disease) [4, 5, 6]. Signaling pathways capture the 

molecular interactions and reactions that take signals from the outside to the nucleus of the cell, 

where transcriptional regulation occurs. Signaling pathways, e.g. the MAPK, Wnt, TGF-beta 

signaling, are well studied in the context of cell proliferation [7]. Cancer is the only human 

disease for which pathway information of the disease progression is available, i.e., at different 

stages of the cancer, from normal tissue to the advanced tumor phase in KEGG [4, 5, 6]. KEGG 

cancer pathways are different in that they contain members of different signaling pathway 

members within a single pathway. This is because they contain information on various stages of 

the cancer and the various stages involve different signaling pathways. The pathway information 

contained in KEGG, i.e., the genes in each stage of the disease progression that are genetically 

altered in the colorectal cancer pathway, is derived from the literature [8, 9]. In the KEGG 

colorectal cancer pathway, the Wnt pathway members are at the upper positions of the image, 

corresponding to normal or initial stages of the cancer progression, which is supported by the 

literature [8, 9, 10]. Constant activation of Wnt signaling targets occurs in adenomatosis 

polyposis coli (APC) or beta-catenin mutations, as well as upon phosphorylation by glycogen 

http://www.genome.ad.jp/kegg/pathway.html#disease
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synthase kinase-3-beta. These events lead to early dysplastic lesions, which is an early event in 

colorectal cancer [10]. Similar support exists in the literature to suggest that genes, i.e., DCC and 

KRAS, should be below the Wnt pathway members since their alterations occur later in the 

disease progression. Furthermore, DCC is located below KRAS in the KEGG pathway because 

DCC alterations are believed to occur later than KRAS alterations in the development of 

colorectal cancer [11]. Finally, TGF-beta pathway members are located in the lower portions of 

the pathway image because the literature suggests that their alterations occur during more 

advanced stages of the cancer [12]. The significance of the KEGG cancer pathways is the 

integration of the cancer stages with signaling pathways. Although the integration of signaling 

pathways with genome level expression data has been widely performed, it has yet to be realized 

with cancer pathways. 

Using pathway information to understand genome level expression data has been 

extensively applied [13, 14, 15]. The approach integrates a priori knowledge of a gene's 

functional role with expression data to detect for concerted expression changes in a set of genes 

responsible for producing a phenotype [13]. Pathway-centric analysis of tumor microarray data 

has been successfully applied to identify signaling pathway members [16]. IL-1 and ER-induced 

pathways were found to be significantly coexpressed in breast cancer data. In addition to 

analyzing the entire dataset, analysis of individual samples or a subset of the data identified 

significant pathway activities that were relevant to the biological context of the tissue or organ. 

For example, pathway analysis uncovered the expected association of estrogen-induced 

pathways within a group of clinical breast cancer data [16], and signaling and metabolic 

pathways involved in the development of type 2 diabetes [17]. On the other hand, gene 

expression level analysis within pathways is an area that mostly has been ignored. Some studies 
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have analyzed the relationship among the members of protein complexes or pathways in terms of 

their gene expression levels [18, 19, 20, 21]. Protein complexes, such as ribosome and 

proteasome, show significant correlation in their gene expression levels [18]. In addition, the cis-

element profiles are highly similar for members within a signaling pathway, such as the KEGG 

apoptosis pathway, and functionally related interacting proteins (i.e., protein complexes). This 

suggests that a strong relationship in the gene expression levels between members of these 

pathways should exist [19]. Coherence is a measure of the level of correlation among a group of 

genes. A coherent group of genes may share similar regulation of their gene expression levels. 

Indeed, genes in the same pathway with similar functions have been shown to be coherent as 

compared to a random group of genes from the genome [20]. 

Previous studies that integrate gene expression data with pathway information have not 

incorporated the dimensionality of the pathways. Most studies have focused on the members of 

the pathways. Thus far, there has been one study of pathways that incorporated the position in 

the pathways in the analysis of the genome level data. They developed a statistical impact 

analysis that used the pathway position to calculate the significance of the pathway [21]. With 

this approach they identified the Focal Adhesion Pathway as a significant pathway for lung 

cancer, which was not found using classical approaches, such as gene set enrichment and gene 

ontology analyses, thereby enhancing the information content extracted from analyzing genome 

level data. Impact analysis considers expression alteration in receptors, such as integrin, receptor 

tyrosine kinase (RTK), and the receptor ligand vascular endothelial growth factor (VEGF), as 

important parameters in the analysis, since they affect the downstream molecules in the pathway. 

The Focal Adhesion Pathway, on the other hand, was not found to be significant using classical 

approaches because the other genes in the pathway were not significantly altered. Classical 
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approaches analyze pathways as a whole without special emphasis on receptor molecules or 

other position(s) in a pathway. 

In this study, we capitalized upon the progressive nature of the cancer disease captured in 

the biological knowledge represented in the KEGG cancer pathways. We analyzed the gene 

expression levels, coherence, and mutation target data of the pathway members to determine if 

there is a significant relationship or correlation within any group of pathway members from the 

rest of the pathways. Analyzing the KEGG colorectal cancer pathway with microarray data 

identified that different parts of the pathways were up-regulated or coherent at the mRNA level, 

at the different stages of cancer progression, i.e., adenoma vs. carcinoma. Since the KEGG 

cancer pathways integrate different signaling pathways of the various cancer stages, unlike 

classical signaling pathways, we analyzed the coherence of the colorectal cancer pathway, and 

found the carcinoma expression data was more coherent than the normal or adenoma data. In 

addition, mutation targets were found to be localized primarily in the nucleus of the cell and 

concentrated at the later stages of the cancer. 

 

MATERIALS AND METHODS 

Pathway data 

We used KEGG as our source of pathway information [4, 5, 6]. We focused on the 

cancer, apoptosis, oxidative phosphorylation and proteasome pathways. We collected a list of 

human genes for these pathways. For each protein/gene in the pathways we used all the different 

homologues provided by KEGG database. 
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X/Y scale 

The X scale represented the direction from receptor to nucleus. The Y scale (analyzed 

only for the colorectal cancer pathway) represented the direction from normal tissue to advanced 

tumor or metastasis. We ignored the sub-pathway distinction (such as Chromosome Unstable 

Pathway and Microsatellite Unstable Pathway in colorectal cancer pathway). We generated 3 X-

dependent and 4 Y-dependent groups in the KEGG colorectal cancer pathway, and 2 X-

dependent groups in the KEGG apoptosis pathway. For X, receptor ligands and receptors are 

designated by a value of 1. If there is a nuclear distinction in the pathway; molecules in the 

cytosol are designated by a value of 2, and molecules in the nucleus are designated by a value of 

3, otherwise molecules in the cytoplasm are designated by a value of 2. For Y (analyzed only for 

the KEGG colorectal cancer pathway), the first stage of the pathway, which signified the first 

initial molecular events (in the colorectal cancer pathway, the first stage is represented by the 

transition from normal epithelium to early adenoma) is designated by a value of 1 and the next 

stages in the cancer progression are designated by values of 2, 3, 4 (the last stage). The last stage 

is defined by the latest events in the progression of the disease in the KEGG pathway. For 

example, in the colorectal cancer pathway, the last stage is represented by the transition from late 

adenoma to carcinoma. The biomolecules involved in the transition to the different stages 

provided by KEGG are supported by the literature, as discussed in the Introduction above. The 

KEGG information was used as is, unless the stage is an insignificant one. For example, 

dysplastic aberrant crypt foci stage was ignored in our analysis of the colorectal cancer pathway, 

because this stage covered a very small part of the pathway and it was unclear which molecules 

were associated with this stage. In the colorectal cancer pathway, normal epithelium to early 

adenoma is designated by a Y value of 1 and includes proteins such as, Frizzled, glycogen 
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synthase kinase-3-beta (GSK-3β), adenomatosis polyposis coli (APC), T cell factor/lymphoid 

enhancer factor (TCFLEF), Survivin, etc. Early adenoma to intermediate adenoma is designated 

by a Y value of 2 and includes proteins such as, RTK, K-Ras, protein kinase B (PKB), 

extracellular signal regulated protein kinase (ERK), C-Fos, etc. Intermediate adenoma to late 

adenoma is designated by a Y value of 3 and includes proteins such as, deleted in colon cancer 

(DCC), caspase 3 (CASP3), human mutL homolog 1 (hMLH1), etc. Late adenoma to carcinoma 

is designated by a Y value of 4 and includes proteins such as cytochrome c (Cytc), p53, etc. 

Since our analysis focused on the potential of the genes in contributing to the progression of 

cancer, we used the larger value of Y for a gene if there were more than one value associated 

with the gene. For consistency, the same approach was taken for the X value, i.e., the larger of 

the two values was used. For example, if a protein is present in more than one location, the larger 

value is assigned, for instance, CyclinD1 is present in two Y locations, 1 and 2, but was assigned 

a Y value of 2, and transforming growth factor beta receptor 2 (TGFBR2) is located in two X 

locations, 1 and 3, but was assigned a X value of 3.  

Expression data 

Normalized microarray data (GSE4183 and GSE8671) were downloaded from the NCBI 

GEO database (http://www.ncbi.nlm.nih.gov/geo/) GSE4183 includes normal colon tissue, colon 

adenoma and colon carcinoma gene expression datasets for several biopsy samples obtained 

from individuals. The GSE8671 dataset includes the whole genome mRNA expression level for 

32 colorectal adenomas paired with the normal mucosa from the same individuals. In these large-

scale datasets, we focused on the expression values of the pathway members, as oppose to 

analyzing all the genes. Both datasets contained expression values for all the gene members in 

the colorectal cancer pathway. If there were more than one value for a gene in a sample (same 

http://www.ncbi.nlm.nih.gov/geo/)
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column), the mean values were used. We combined the normal and the adenoma samples from 

both datasets, to obtain a set of expression values for normal, adenoma and carcinoma samples. 

We calculated expression ratio for adenoma (or carcinoma) by dividing the average value of 

adenoma (or carcinoma) samples to the average value of normal samples. For adenoma, the ratio 

was calculated by dividing the average of the combined adenoma values to the average of the 

combined normal values. Since carcinoma data is present only in GSE4183, the average of the 

carcinoma values in GSE4183 were divided by the average of the normal values in GSE4183. 

For the calculation of carcinoma/adenoma ratio, the carcinoma ratio was divided by the adenoma 

ratio for each gene. 

Drug and mutation targets 

We collected drug information from the National Cancer Institute web page 

(http://www.cancer.gov/cancertopics/druginfo/alphalist). We limited the drug list to ones which 

targeted a cellular signaling protein. Drugs that targeted molecules with a general role in the cell 

were excluded; for example, Bortezomib, a drug approved for leukemia, was excluded because it 

targeted the proteasome. We collected mutation target information from two sources. The first 

source was the Cancer Gene Census of the Cancer Genome project [22] 

(http://www.sanger.ac.uk/genetics/CGP/Census/). We used only the cancer types provided by 

this dataset. For some mutation targets, such as p53, “others” was mentioned in addition to the 

cancer type listed, therefore we were not able to include the cancer types referred to as “others” 

in the analysis. The second source was a list of genetically altered genes provided by KEGG for 

each pathway. We combined these two sources of data to obtain a list of mutation targets for 

each cancer pathway. The list from the two sources did not overlap, for example, BRAF was 

identified as a mutation target only in the Cancer Gene Census dataset, while TGFBR2 was 

http://www.cancer.gov/cancertopics/druginfo/alphalist)
http://www.sanger.ac.uk/genetics/CGP/Census/
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identified as a mutation target only in the KEGG dataset. For mutation targets we calculated the 

frequency as the number of mutation targets in a group divided by the total number of genes in 

the group. 

Statistical Analysis 

Analysis of groups of genes or members of a pathway was performed for their coherence 

in the normal, adenoma, and carcinoma tissues. We calculated the Pearson’s correlation 

coefficient for the expression values of every pair of genes in both datasets. We selected the 

same number of random genes from the entire microarray dataset, whether the genes belonged in 

the pathway or not, and performed the same calculation for this random group. For the range 

between 0-1, at increments of 0.01, we calculated the fraction of pairs with a correlation 

coefficient for both the real groups (pathways, subgroups inside pathways) and the random 

groups. For each gene, we performed the randomizations 1000 times for the pathways and 100 

times for the subgroups within the pathways, and calculated the fraction of random pairs with a 

correlation coefficient threshold of 0.5. In addition to the colorectal cancer pathway, we analyzed 

the apoptosis pathway because it was previously shown to be coherent in colorectal cancer [20]. 

We also analyzed the oxidative phosphorylation and proteasome pathways which were shown to 

be coherent both in normal and cancer tissues [20]. The oxidative phosphorylation pathway has 

more genes than the colorectal cancer and apoptosis pathways, while the proteasome has fewer 

genes. Therefore any size effect of the pathway should be accounted for. For each X/Y 

dependent subgroup, randomizations of the same size were performed and whether the 

subgroups differed significantly from random was determined at a correlation coefficient 

threshold of 0.5. For the analysis of expression ratios, we performed t-test on groups of 2 (i.e., 

comparing gene expression profiles of pathway members in group Y=1 to members in the rest of 
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the pathway, namely Y=2, 3, 4). For more than two groups (i.e., comparing gene expression 

profiles of pathway members in groups X=1, X=2, and X=3), we used ANOVA. 
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RESULTS AND DISCUSSION 

Colorectal cancer pathway subgroups 

We analyzed the tumor expression levels of the members of the KEGG colorectal cancer 

pathway. We investigated whether the pathway members are differentially expressed with 

respect to their X (cellular location), and Y (stage of the tumor) values in the KEGG pathway, 

see Materials and Methods for details. The colorectal cancer pathway in KEGG provides some of 

the molecular events that underlie the progression of cancer, from normal to carcinoma. We 

assessed whether a relationship existed between the progression of colorectal cancer and the 

gene expression levels of the members of the colorectal cancer pathway. The normal and the 

adenoma samples from both datasets (GSE4183, GSE8671) were combined and the carcinoma 

dataset came from GSE4183. 

Analyzing the genes that were highly differentiated among the pathway members in the 

carcinoma and adenoma datasets, we found AXIN2 and FZD3 genes were the most down-

regulated in the carcinoma and the most upregulated in the adenoma samples. These genes had 

the lowest carcinoma to adenoma expression ratio, whereas PDGFRB and FZD2 were the most 

upregulated genes in the carcinoma samples and thus had the highest carcinoma to adenoma 

expression ratio (Figure 7). The average expression level of all the genes in the pathway did not 

change significantly for the adenoma and carcinoma samples (or stages), which centered around 

a ratio of 1. Analyzing the members at particular locations of the pathway suggested that 

different genes are differentially expressed and thus possibly differentially regulated, depending 

on the stage of the cancer tissues from which the expression data were obtained (Figure 7). This 

demonstrated one of the findings that could be obtained with this integrative approach and would 

have been lost by analyzing all the pathway members. Analysis of all the pathway members as a 
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whole, suggested no difference between the stages (i.e., ratio = 1) and did not identify a potential 

for any genes to be differentially regulated. FZD2 and FZD3 are different homologues of 

Frizzled, which is the receptor for Wnt signaling molecules and is known to be important in early 

development of colorectal cancer [8]. AXIN2 (Axin) is also a member of Wnt signaling and has 

been shown to be a mutation target in the development of colorectal adenoma [8]. Our analysis 

suggests that Wnt signaling members, such as different homologues of Frizzled receptor (FZD2, 

FZD3), may play a role in early (adenoma) and late (carcinoma) events of colorectal cancer 

progression. Wnt signaling is known to be activated during the earlier stages of colorectal cancer 

progression and is suggested to be involved in also the later stages of the progression [10]. 

Platelet-derived growth factor receptor beta (PDGFRB) is known to play a role in advanced and 

metastatic stages of colorectal cancer development [23]. It is noteworthy that most genes that 

showed differential expression in adenoma and carcinoma samples were receptors, i.e. Frizzled 

and PDGFRB. In support of this integrative pathway analysis, a previous study [21] also found 

that pathway information, i.e. whether it is a receptor, was important in identifying 

physiologically relevant functional groups. Currently, the drugs, Erbitux and Vectibix, used to 

treat colorectal cancer, target a receptor, EGFR (RTK). The location of the gene in the colorectal 

cancer pathway corresponds to the early cancer stage and the receptor region. The analysis 

appears to suggest that receptors could be important regulatory regions in colorectal cancer 

development, and as such, other receptors, i.e. FZD2, FZD3 and PDGFRB, could be possible 

candidates for drug development. However, more data is needed to confirm this relationship. 

Next, we analyzed the possibility of dimensional (X and Y) distinction of the overall 

pathway, in other words, whether a group of pathway members defined by a stage (Y) or a 

cellular location (X) showed a significant difference in terms of expression levels, and the 
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presence of mutation and drug targets, as compared to the other members of the pathway. We set 

the X values to vary from 1 to 3, corresponding to the following locations: receptor/ligand 

(denoted as 1), cytosol (denoted as 2), and nucleus (denoted as 3). We examined the significance 

of grouping the expression profiles of the pathway members according to their X values. There 

was a significant grouping of both the adenoma and carcinoma expression profiles of the 

pathway members across the X groups (Table 18). In the adenoma and the carcinoma datasets, 

cytosolic members of the colorectal cancer pathway (X=2) had significantly lower gene 

expression values (Figure 8A, 8B, Table 19), on the other hand, nuclear members of the 

colorectal cancer pathway (X=3) had significantly higher gene expression values relative to other 

X groups (Figure 8C, 8D, Table 19). 

Similar analysis was performed for the Y values, where the Y values ranged from 1 to 4, 

to correspond to the different stages, from normal tissue to early adenoma (denoted as 1), early to 

intermediate adenoma (denoted as 2), intermediate to advanced adenoma (denoted as 3), and 

advanced adenoma to carcinoma (denoted as 4). There was a significant difference across the Y 

groups for the adenoma but not the carcinoma datasets (Table 18), which may be attributed to a 

significant difference in the expression values of the pathway members with Y values of 1 as 

compared to the other pathway members (Y values of 2-4) in adenoma (Figure 8E, Table 19). In 

the adenoma tissue samples, the gene expression values of the pathway members, which play a 

role in the normal epithelium to early adenoma stage (Y=1) were expressed significantly higher 

than the other pathway members. The key genes that contribute to these results were BIRC5 

(Survivin), FZD3, and AXIN2 (Axin), which are highly expressed and are located at Y=1, and 

PIK3CG, and PDGFRA, which are lowly expressed in the colorectal adenoma samples and 

located at Y=2. This result is in line with our previous observation that a group of genes in a 
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particular pathway could be differentially expressed from the other members in the pathway 

depending on the stage of the cancer. In addition to the adenoma tissue samples, we analyzed the 

expression values of the colorectal pathway members in the carcinoma tissue samples for 

possible distinctive patterns but found no significant grouping of the carcinoma expression with 

respect to Y (Figure 8F, Table 18, 19). If we consider that the colorectal cancer pathway includes 

the stages from normal epithelium to carcinoma, with several adenoma stages but only a single 

stage of carcinoma development, and also only one set of gene expression data from carcinoma 

tissues, there is likely insufficient information to distinguish the molecular events in the 

carcinoma pathway. 

Coherence of the colorectal cancer pathway 

The KEGG cancer pathways represent a collective behavior of a group of proteins that 

underlies the disease, and as such, are built from proteins that belong to multiple signaling 

pathways. A coherence indicator has been defined as the ratio of the number of correlated gene 

pairs to the total number of gene pairs in a pathway, which is deemed significant based upon a 

statistical measure [20]. Using this indicator, the gene expression levels of the signaling and 

metabolic pathway members were shown to be coherent, suggesting that coherence may be an 

important measure of functionally related genes [20]. Cancer pathways, due to their very nature 

of involving multiple signaling groups, may not be expected to show the same level of 

coherence. Therefore, we examined whether the gene expression levels of the KEGG colorectal 

cancer pathway members were coherent, as compared to apoptosis, oxidative phosphorylation 

and proteasome pathway members, the latter were previously shown to be coherent [20]. The 

degree of coherence is determined by plotting the correlation in gene expression of the pathway 

members. We analyzed normal colorectal, adenoma and carcinoma samples. In normal colorectal 
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tissue expression data, the oxidative phosphorylation and proteasome pathways show a distinct 

positive correlation among their pathway members, the apoptosis pathway show a slightly 

negative correlation, whereas the correlation distribution of the colorectal cancer members are 

closer to the random distributions and hence uncorrelated (Figure 9A). In addition to the 

correlation distribution of the expression levels, we analyzed the cumulative distributions of the 

absolute values of the correlation coefficients. Similar results for the cumulative and non-

cumulative correlation distributions are observed for normal colorectal tissue, i.e. the pathway is 

uncorrelated (Figure 9A, 9B). Oxidative phosphorylation and proteasome pathways are coherent 

in all 3 groups (normal, adenoma, and carcinoma tissues), while the colorectal cancer pathway is 

coherent only in the carcinoma samples (Figure 9B-9D). We compared whether the colorectal 

cancer and apoptosis pathways differed significantly from random at a correlation coefficient of 

0.5 (Table 20). The colorectal cancer pathway appears to be coherent for colorectal carcinoma 

but not for the normal and adenoma datasets. This suggests that a cancer pathway may be 

coordinately regulated to achieve a biological function or phenotype, which, in this case, is the 

progression of the colorectal tissue to the tumor stage. The apoptosis pathway appears to be 

coherent in normal colorectal sample but not in the colorectal adenoma or carcinoma data (Table 

20). This is in contrast to a previous report which used different gene expression data and found 

the data was coherent in the colorectal tumor but not in the normal samples [20]. In addition to 

the entire pathway, we studied the possibility of coherence of dimensional groupings in 

colorectal cancer and apoptosis pathways. Our analysis suggests that members within the 

pathways could be coherent, for example X=2 in the colorectal cancer pathway could be 

coherent in normal and adenoma samples even though the entire pathway may not be coherent 

(Table 20, 21). However, more data is required to confirm these analyses. 
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In order to determine which proteins contribute to the coherence of the colorectal cancer 

pathway in the carcinoma stage, we obtained pairs of genes with an absolute correlation 

coefficient of at least 0.5. There were 683 correlated gene pairs in the carcinoma samples, most 

of which were specific to carcinoma (Figure 10A). On the other hand, the normal and adenoma 

samples had fewer correlated gene pairs and shared more than half of them with each other. The 

pairs of correlated genes specific to normal and adenoma tissues included mostly genes in the 

early stage members of the pathway, such as AKT homologues (Gene ID of 207 and 208), DVL 

homologues (Gene ID of 1856 and 1857), and FZD homologues (Gene ID of 8321, 8322, 8323, 

8324). On the other hand, pairs of correlated genes specific to carcinoma included mostly pairs 

of genes from different parts of the pathway, such as TGFBR2 homologue (Gene ID of 91) from 

late stage of the pathway, APC (Gene ID of 324) from early stage of the pathway, KRAS (Gene 

ID of 3485) and MET (Gene ID of 4233) from mid stage of the pathway. Next, we analyzed an 

absolute correlation coefficient of at least 0.8, suggesting these gene pairs are highly correlated, 

which are provided in Table 22 (0 indicates absolute correlation below 0.8 and 1 indicates 

absolute correlation of at least 0.8). We identified 10 gene pairs which were highly correlated in 

both the normal and adenoma but not in carcinoma samples (Figure 10B, Table 22). These pairs, 

unlike the carcinoma specific gene pairs, suggest coordination within the members of the Wnt 

signaling pathway, such as FZD, DVL and AXIN. In addition, these members are highly 

correlated with RAC, which is downstream of RAS oncogene (in the adenoma stage of the 

colorectal cancer pathway). The coordination between the members of the Wnt signaling 

pathway and RAC is supported by protein level interactions [10]. On the other hand, there were 

38 gene pairs in the carcinoma samples, none of which were correlated in the normal or adenoma 

samples (Figure 10B, Table 22). These strongly correlated gene pairs may suggest direct or 
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indirect protein-protein or transcriptional interactions specific to the carcinoma stage of the 

colorectal cancer pathway. For example, the list included the gene pair TGFBR1 and TGFBR2, 

whose protein products are known to interact directly and play a role in advanced stages of 

colorectal cancer [12]. The presence of a strong correlation between these two genes suggests 

that the interaction of these two receptors may be relevant only in the carcinoma stage, for the 

samples we analyzed in this study. Another significantly correlated pair was MYC and MSH2 

(Table 22). MYC is a transcriptional regulator of MSH2 [24]. Therefore, MYC driven regulation 

of MSH2 may be important in carcinoma but not in the normal or adenoma samples. In addition, 

BIRC5 was identified to be highly correlated with various other genes, such as ACVR1B and 

EGFR, suggesting that BIRC5 may also affect the regulation of ACVR1B and EGFR. While 

some of the strongly correlated gene pairs of the colorectal cancer pathway are supported by the 

literature, our analysis suggests there are others that may be correlated but currently are not 

supported by the literature. These results could suggest potentially novel direct or indirect 

interactions, or common regulations by upstream molecules. Since the analysis identified the 

colorectal cancer pathway to be significantly coherent only in the carcinoma samples, further 

experimental investigation of these correlations is needed to confirm these novel regulatory 

mechanisms for colorectal carcinoma. 

Mutation target analysis 

In addition to gene expression, the distribution of mutation targets of the colorectal 

cancer pathway members was compared with respect to their X and Y values. The pathway 

members with high X values had higher frequencies of mutation targets. The nuclear members 

(X=3) had the highest number of mutation targets, followed by the cytosolic members (X=2) and 

the receptor/ligand members (X=1) (Table 23). Most of the mutation targets were concentrated at 



95 

 

the later two stages of the pathway (Y=3, Y=4); covering the progression from intermediate 

adenoma to carcinoma, with the highest number of mutation targets found in the last stage, from 

late adenoma to carcinoma. In other words, colorectal cancer mutation targets were represented 

more in the late tumor stages of the KEGG pathway. This result is supported by the current view 

that mutations accumulate and increase as the tumor grows and cancer progresses [8]. Lastly, we 

analyzed whether the mutation targets were differentially expressed in the adenoma or carcinoma 

tissues as compared to the other pathway members, and found there was no statistically 

significant difference between the mutation targets and the other pathway members. This may be 

because that the expression and mutation data are sparse. Note that our list of mutations targets is 

a collection of several genes which were reported to be mutated in at least a single sample. 

Therefore only some of these mutation targets may actually be mutated in the samples from 

which the expression data were collected. Furthermore, we do not know whether these mutations 

are the cause or the effect of the gene expression level changes. Currently, not enough mutation 

and gene expression data are available to perform an extensive mutation analysis with respect to 

the X and Y groups. 

Mutations alter important residues or domains of proteins that could lead to alteration in 

the binding properties of proteins to other proteins or regulatory DNA sequences, thus the levels 

of other genes and proteins may change. Previous reports have suggested an association between 

mutation events and changes in the gene expression levels [25, 26]. There is no evidence to 

suggest a correlation between the mutation of a gene and its own mRNA expression levels, 

however, a mutation in the TP53 gene has been shown to be correlated with its protein 

expression level in cancer [27]. This current study also did not find a strong relationship between 

a mutation target and its gene expression level for the colorectal cancer pathway members. 
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CONCLUSION 

In this study, we analyzed expression and mutation data of the KEGG colorectal cancer 

pathway members. Previous studies focused predominantly on analyzing gene expression data 

for an entire signaling pathway and assessing whether the entire pathway is differentially 

expressed in a microarray dataset. Here we demonstrate an integrative analysis that investigates 

the distribution of expression values of the pathway members. Our analysis incorporated the 

location of the pathway members and found the expression values and the number of mutation 

targets varied depending on the cellular location (X) and stage of the cancer (Y) (Figure 9, 

Tables 19, 20). Previous studies found signaling and metabolic pathways to be coherent, and we 

show that the colorectal cancer pathway is coherent as well, depending on the stage at which the 

expression data was obtained. The members of the KEGG colorectal cancer pathway showed 

some degree of correlation in the expression profile of the carcinoma data (GSE4183). 

 

This analysis has the potential to help uncover the roles of the different genes in the pathways in 

the progression of colorectal cancer. We were able to analyze only the colorectal cancer pathway 

in this study. However, we anticipate that as more information on cancer pathways and 

expression data for the various cancer stages becomes available, this approach to pathway 

analysis could be more widely applicable and may help contribute to our understanding of the 

similarities and differences in the progression of cancer in the different tissues. Similarly, this 

integrative analysis could be applied to analyze the progression of other diseases or biological 

processes. 
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APPENDIX 

Table 18 ANOVA p values  

Group Sample set P value 

X=1, 2, 3 Adenoma 0.0005 

X=1, 2, 3 Carcinoma 0.0058 

Y=1, 2, 3, 4 Adenoma 0.0265 

Y=1, 2, 3, 4 Carcinoma 0.6136 

 

Table 19 Pairwise t-test p values  

Group 1 Group 2 Adenoma 

p value 

Carcinoma 

p value 

X=1 X=2, 3 0.9470 0.2051 

X=2 X= 1, 3 0.0038 0.0023 

X=3 X=1, 2 0.0002 0.0149 

Y=1 Y=2, 3, 4 0.0049 0.8826 

Y=2 Y=1, 3, 4 0.1654 0.3116 

Y=3 Y=1, 2, 4 0.0882 0.3050 

Y=4 Y=1, 2, 3 0.7675 0.5209 

 

Table 20 Apoptosis and colorectal cancer pathway coherence at correlation coefficient of 0.5  

Sample set Apoptosis 

pathway 

Colorectal 

cancer 

pathway 

Normal 0.021 0.255 

Adenoma 0.182 0.244 

Carcinoma 0.119 0.002 
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Table 21 X/Y group coherence at correlation coefficient of 0.5 

Pathway Groups Normal Adenoma Carcinoma 

Colorectal 

cancer 

pathway 

X=1 0.79 0.42 0.35 

X=2 0.02 0.02 0.95 

X=3 0.91 0.72 0.21 

Y=1 0.84 0.94 0.19 

Y=2 0.21 0.07 0.92 

Y=3 0.34 0.07 0.18 

Y=4 1.00 1.00 1.00 

Apoptosis 

pathway 

X=1 0.91 0.61 0.17 

X=2 0.00 0.07 0.84 

 

  



100 

 

Table 22 Correlated pairs (with absolute correlation coefficient level of 0.8 as the threshold) in 

the colorectal cancer pathway for normal, adenoma and carcinoma samples 

Gene 

ID 1 

Gene 

Name 1 

Gene 

ID 2 

Gene 

Name 2 

Normal Adenoma Carcinoma 

91 ACVR1B 1956 EGFR 0 0 1 

208 AKT2 4087 SMAD2 0 0 1 

324 APC 5602 MAPK10 0 0 1 

332 BIRC5 91 ACVR1B 0 0 1 

332 BIRC5 324 APC 0 0 1 

332 BIRC5 1956 EGFR 0 0 1 

332 BIRC5 2956 MSH6 0 0 1 

332 BIRC5 4436 MSH2 0 0 1 

332 BIRC5 5602 MAPK10 0 0 1 

332 BIRC5 6932 TCF7 0 0 1 

332 BIRC5 8313 AXIN2 0 0 1 

842 CASP9 6934 TCF7L2 0 0 1 

2353 FOS 7046 TGFBR1 0 0 1 

2956 MSH6 1630 DCC 0 0 1 

2956 MSH6 8313 AXIN2 0 0 1 

3845 KRAS 1630 DCC 0 0 1 

3845 KRAS 2956 MSH6 0 0 1 

3845 KRAS 6934 TCF7L2 0 0 1 

4233 MET 5604 MAP2K1 0 0 1 

4609 MYC 332 BIRC5 0 0 1 

4609 MYC 4436 MSH2 0 0 1 

4609 MYC 6932 TCF7 0 0 1 

5880 RAC2 5293 PIK3CD 0 0 1 

6654 SOS1 4436 MSH2 0 0 1 

6654 SOS1 8322 FZD4 0 0 1 

6655 SOS2 324 APC 0 0 1 

7040 TGFB1 5159 PDGFRB 0 0 1 

7043 TGFB3 23533 PIK3R5 0 0 1 

7976 FZD3 5881 RAC3 0 0 1 

8313 AXIN2 6932 TCF7 0 0 1 

8322 FZD4 4436 MSH2 0 0 1 

8326 FZD9 4087 SMAD2 0 0 1 

83439 TCF7L1 332 BIRC5 0 0 1 

83439 TCF7L1 4436 MSH2 0 0 1 

83439 TCF7L1 5602 MAPK10 0 0 1 

130399 ACVR1C 91 ACVR1B 0 0 1 

130399 ACVR1C 1956 EGFR 0 0 1 

130399 ACVR1C 5295 PIK3R1 0 0 1 

1857 DVL3 5159 PDGFRB 0 1 0 

1857 DVL3 10000 AKT3 0 1 0 
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Table 22 (cont’d) 

5296 PIK3R2 23533 PIK3R5 0 1 0 

5879 RAC1 1857 DVL3 0 1 0 

5879 RAC1 5881 RAC3 0 1 0 

5879 RAC1 8321 FZD1 0 1 0 

5879 RAC1 8324 FZD7 0 1 0 

5881 RAC3 23533 PIK3R5 0 1 0 

7040 TGFB1 1630 DCC 0 1 0 

8313 AXIN2 5159 PDGFRB 0 1 0 

8323 FZD6 10000 AKT3 0 1 0 

207 AKT1 1857 DVL3 1 0 0 

207 AKT1 5881 RAC3 1 0 0 

208 AKT2 207 AKT1 1 0 0 

208 AKT2 1857 DVL4 1 0 0 

208 AKT2 5291 PIK3CB 1 0 0 

208 AKT2 5881 RAC3 1 0 0 

1857 DVL3 5291 PIK3CB 1 0 0 

1857 DVL3 8321 FZD1 1 0 0 

7157 TP53 8323 FZD6 1 0 0 

7157 TP53 8324 FZD7 1 0 0 

8313 AXIN2 207 AKT1 1 0 0 

8313 AXIN2 208 AKT2 1 0 0 

8313 AXIN2 7157 TP53 1 0 0 

8313 AXIN2 8321 FZD1 1 0 0 

8313 AXIN2 8323 FZD6 1 0 0 

8313 AXIN2 8324 FZD7 1 0 0 

1857 DVL3 5881 RAC3 1 1 0 

1857 DVL3 8323 FZD6 1 1 0 

7157 TP53 5881 RAC3 1 1 0 

8313 AXIN2 1857 DVL5 1 1 0 

8313 AXIN2 5881 RAC3 1 1 0 

8321 FZD1 5881 RAC3 1 1 0 

8321 FZD1 8324 FZD7 1 1 0 

8323 FZD6 5881 RAC3 1 1 0 

8323 FZD6 8324 FZD7 1 1 0 

8324 FZD7 5881 RAC3 1 1 0 
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Table 23 Mutation frequency values of X/Y groups 

Group Average 

mutation 

frequency 

X=1 0.0455 

X=2 0.1702 

X=3 0.3333 

Y=1 0.0833 

Y=2 0.0789 

Y=3 0.3333 

Y=4 0.5714 
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Figure 7 The ratio of carcinoma expression ratio to the adenoma expression ratio given for the 

maximum and minimum two genes and the average 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

PDGFRB FZD2 Average AXIN2 FZD3

C
a
rc

in
o

m
a
/A

d
e
n

o
m

 e
x
p

re
s
s
io

n
 r

a
ti

o



104 

 

Figure 8 X/Y-dependent analysis of colorectal cancer pathway gene expression levels (A) 

Comparison of expression ratio values of X = 2 to other X groups in adenoma. (B) Comparison 

of expression ratio values of X = 2 to other X groups in carcinoma. (C) Comparison of 

expression ratio values of X = 3 to other X groups in adenoma. (D) Comparison of expression 

ratio values of X = 3 to other X groups in carcinoma. (E) Comparison of expression ratio values 

of Y = 1 to other Y groups in adenoma. (F) Comparison of expression ratio values of Y = 1 to 

other Y groups in carcinoma. 
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Figure 8 (cont’d) 

B 
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Figure 8 (cont’d) 

C 
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Figure 8 (cont’d) 

D 
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Figure 8 (cont’d) 

E 
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Figure 8 (cont’d) 

F 
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Figure 9 Pathway correlation and cumulative fraction distributions (A) Pearson’s correlation 

coefficient distributions among members of apoptosis, colorectal cancer, oxidative 

phosphorylation, and proteasome pathways shown together with 10 random selections of size 84 

for normal colorectal tissue. (B–D) Cumulative absolute value fractions of correlation coefficient 

distributions among members of apoptosis, colorectal cancer, oxidative phosphorylation, and 

proteasome pathways shown together with 10 random selections of size 84 for (B) normal 

colorectal tissue, (C) colorectal adenoma, and (D) colorectal carcinoma. 

 

A 
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Figure 9 (cont’d) 

B 
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Figure 9 (cont’d) 

C 
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Figure 9 (cont’d) 

D 
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Figure 10 Vend diagrams of correlated pairs of genes in colorectal normal, adenoma and 

carcinoma samples (A) Correlated pairs with at least 0.5 absolute correlation coefficient. (B) 

Correlated pairs with at least 0.8 absolute correlation coefficient. 
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Figure 10 (cont’d) 
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CHAPTER 3 

SPECIFIC INTERACTION NETWORK ANALYSIS FOR COLORECTAL CANCER 

INTRODUCTION 

Previous studies used gene expression levels to derive condition specific networks from 

large scale protein-protein interaction (PPI) datasets [1-4]. The limitations of having static PPI 

datasets were somewhat mitigated with the integration of sample-specific gene expression level 

changes so that condition specific/dynamic, and possibly novel regulatory interactions can be 

obtained. Differential gene expression analysis was used for groups of genes in a close 

neighborhood in the human PPI network to derive modules which were shown to increase the 

classification accuracy of cancer [1, 3]. Biologically relevant and significant condition specific 

molecular mechanisms have been revealed in such studies. Integrative analyses of PPI data have 

mostly been based on modular analysis in which the human PPI network is assumed to have a 

modular structure and the condition specific modules were retrieved by estimating the activity of 

the modules from the gene expression alterations of the interacting pairs. With this approach, 

modules representing deregulated events, such as cell cycle, apoptosis, etc. were revealed [1, 3, 

4]. 

Integrative analyses of PPI data use microarray datasets to provide the condition specific 

network information. PPI datasets provide the pairs of proteins that are likely to interact 

physically. Differentially expressed genes obtained from microarray datasets in an experimental 

or disease condition can provide additional support for the interaction between the genes at the 

protein level. These pairs of genes are specific to the conditions in the microarray dataset unlike 

the PPI dataset pairs. Therefore the specific gene pairs could play a role under one condition 
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specifically. Indeed, with the integration of condition specific information, the PPI networks 

become more suitable for predicting novel regulatory interactions and providing novel 

hypotheses for the experimental condition under investigation. Previous integrative studies using 

PPI data were limited to comparisons of gene expression levels between two conditions such as 

comparing tumor to normal samples, long survival to poor survival samples, or metastatic to 

non-metastatic samples [1, 3, 4]. However, the analysis of a multi-conditional large-scale gene 

expression dataset also provides useful information, such as identifying genes with switch-like 

behavior that were not easily uncovered with the analysis of a pair-wise dataset [5]. Analyzing 

the expression levels of a gene in a diverse condition space provides a better understanding of the 

specificity of the expression level for a particular condition. For example p53, a well-known 

gene mutated commonly in many cancer types, does not appear to have a very significant 

differential gene expression in a small dataset that compares only two conditions, but was 

identified in the large dataset comprising of multiple conditions [5]. 

Colorectal cancer is one of the leading cancer types based on the number of new cases 

and number of expected deaths [6]. Colorectal cancer shares many mutation targets with other 

cancers such as endometrial cancer and ovarian cancer, but very few drug targets with other 

cancer types [7]. The insufficient number of drug therapies suggests that further studies are 

necessary for colorectal cancer to find novel targets. Although certain molecular mechanisms 

such as the involvement of TGF-beta pathway in colorectal cancer is known [8]; there is a need 

for more and specific molecular mechanisms to be elucidated for colorectal cancer. 

RNF43 is an E3 ubiquitin ligase that resides in the ER and nuclear membranes, however 

no ubiquitination target for RNF43 has been identified and thus far only auto-ubiquitination 

activity has been shown [9, 10]. RNF43 was found to be upregulated in colorectal cancer and is 
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also a tumor associated antigen marker for colorectal cancer [11]. There are peptide vaccine 

clinical trials of RNF43 for colorectal cancer [12, 13]. GR is a nuclear receptor for 

glucocorticoid hormones, primarily involved in maintaining homeostasis in response to stress. 

However, it has diverse roles in various cell types and under different conditions. For example 

GR can induce the killing of lymphocytes, and promote proliferation of endometrial and liver 

cells, etc. [14]. Upon binding of glucocorticoids, GR is phosphorylated (activated) and 

transported into the nucleus where it can 1) directly bind to the promoters of its targets genes, or 

2) modulate the activity of other transcription factors [14]. GR expression levels and function 

vary among different colorectal cancer patient samples and different cell lines. GR was found to 

be epigenetically downregulated by promoter hypermethylation or absent at the protein level in 

some patient tissue derived colorectal cancer samples as well as in certain cell lines [15-19]. 

Some studies have suggested an apoptotic role for glucocorticoids, and have associated it, in 

part, to GR activity. In those cases, GR enhanced the activity of drugs like genistein. GR 

expression has been shown to correlate with pRB and p16 tumor suppressor protein expression 

levels [18, 20]. 

In our study, we used a multi-condition dataset to define the top ranked significantly 

differentially expressed genes in colorectal cancer, which were found significantly associated 

with colorectal cancer in the literature. We constructed a network of these genes using the human 

protein-protein interaction data. Our analysis was not restricted to a modular structure, thus any 

gene could be linked to any other gene; thereby increasing the number of potential gene pairs. 

The ring finger protein 43 (RNF43), which is upregulated in colorectal cancer, is linked to the 

glucocorticoid receptor (GR, NR3C1), which is downregulated. In the HCT116 colorectal cancer 
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cell line, modulation of GR and RNF43 levels by siRNA and glucocorticoid treatment supported 

the link between these two proteins. 

 

RESULTS AND DISCUSSION 

Colorectal cancer specific genes 

Unlike previous studies that defined specific genes based on the gene expression level 

changes by comparing tumor to normal samples, long survival to poor survival samples, or 

metastatic to non-metastatic samples, etc. [1, 3, 4], we defined the specific genes by differential 

expression of genes in colorectal cancer samples compared to a large set of samples from diverse 

conditions, including normal samples from various tissues, different cancer samples, cell lines, as 

well as other disease samples, etc. In other words, in prior approaches the comparison is made 

between condition A and an “other” condition (i.e. condition B). In contrast, we compare a 

condition against many conditions (i.e. condition A against conditions B,C,D, where B,C,D all 

fall under the “other condition”) to identify more specific targets. 

We calculated the separation of the expression values by D value, which is a normalized 

absolute difference of the mean values between two populations [5]. We compared the lists of 

differentially expressed gene based on a comparison of the colon cancer samples with the normal 

samples vs. all samples minus the colorectal cancer samples, for their enrichment of colorectal 

cancer related publications in the literature. We searched NCBI Pubmed database for the Official 

Full Name together with ‘Colorectal cancer’ or ‘Colon cancer’ and counted the number of genes 

with at least one publication. We also performed the same calculation for a random set of genes 

with the same number of gene expression profiles. Comparison to all the samples always yielded 
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more genes and more significant genes that are related to colorectal cancer than the comparison 

to only normal samples (Figure 11). The greater fluctuation in the fraction of relevant genes for 

the multiple comparison approach is because of the smaller size of the list. 

As D has to be at least 2 for two distinct populations, we used it as a threshold to obtain a 

list of colorectal cancer specific genes which has distinct expression profiles in colorectal cancer 

samples compared to a large spectrum of samples and which were significantly associated with 

colorectal cancer in the literature. In this way, we collected a list of specific genes for colorectal 

cancer which have significantly distinct expression profile from the other samples of various 

conditions. 

Colorectal cancer specific network 

We aimed to find the most significant regulatory interactions or associations between 

different genes in colorectal cancer such that these genes are distinctly expressed in colorectal 

cancer samples as compared to not only non-cancer colorectal samples but also all other cancer 

and disease samples of various types and conditions. Therefore our objective was to obtain novel 

molecular mechanisms specific to colorectal cancer, which is not readily revealed with previous 

two-condition or pair-wise comparisons. We used colorectal cancer specific genes to construct a 

colorectal cancer specific network so that we could generate hypotheses on potentially novel 

molecular mechanisms of colorectal cancer. We used the direct and indirect PPI neighborhood to 

construct a colorectal cancer specific network (Figure 12). We defined the resulting network as 

the colorectal cancer specific network (Figure 12). The colorectal cancer specific network 

includes genes that are well associated with colorectal cancer in the literature. In this network, 

only NR3C1 has a D value greater than 2, when the pairwise approach is used. This shows that 
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this network would not be obtained by a pairwise differential expression approach. The network 

also provides potential regulatory mechanisms for colorectal cancer. For example, a previously 

identified interaction between the HOXB7 protein and MAPK pathway [21], was identified in 

the network.  

Moreover, we aimed to confirm the distinct expression levels of the members of the 

colorectal cancer specific network in an independent expression dataset. We used a patient 

derived paired normal and adjacent tissue sample set to calculate the D values. In the colorectal 

cancer specific network, only NR3C1 (GR) and RNF43 have D values greater than 2 in this 

independent dataset. 

GR-RNF43 regulation in colorectal cancer 

NR3C1 (glucocorticoid receptor, GR) is the only gene in the colorectal cancer specific 

network that also had a high D value when the colorectal cancer samples were compared 

pairwise to normal samples. While NR3C1 was downregulated, one of its neighbors in the 

network, RNF43 was upregulated. 

To validate a possible regulatory mechanism between these two proteins, we knocked 

down GR and RNF43 levels by specific siRNAs in HCT116 colorectal cancer cell lines. While 

knock-down of GR increased RNF43 mRNA levels, knock-down of RNF43 levels did not 

change the GR mRNA levels (Figure 13). This result suggests a possible transcriptional 

regulation of RNF43 by GR, therefore we induced GR with dexamethasone and measured the 

RNF43 mRNA levels. The induction of GR by dexamethasone led to decreased RNF43 mRNA 

levels that is abolished when GR is simultaneously silenced by siRNA treatment (Figure 13), 

suggesting that the effect of dexamethasone is specific to GR. This result suggests that GR is 
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transcriptional repressor of the RNF43 gene. Furthermore, GR has a binding site at 138 kb 

upstream of RNF43 transcription start site in lung carcinoma cells (FDR=5.9%) [22]. The 

position of this binding site is consistent with the results of other genes that are negatively 

regulated by GR, where GR binding is at distant sites (with a median of 146kb in contrast to the 

median of 11kb for positively regulated genes) from the transcription start site on the promoter 

of these genes. When GR was silenced, RNF43 protein levels were also upregulated (Figure 14). 

RNF43 protein levels were also downregulated in response to dexamethasone treatment in 

HCT116 colorectal cancer cells (Figure 14). These results confirm the negative regulation of 

RNF43 by GR. On the other hand, GR protein levels, unlike the mRNA levels, were 

downregulated in response to RNF43 silencing (Figure 14). Therefore there could be a positive 

regulation of GR by RNF43, which might be mediated by the ubiquitin ligase activity of RNF43 

towards a negative regulator of GR.  

CONCLUSION 

In contrast to current approaches that identify targets by comparing pair-wise control (i.e. 

normal) to treated (i.e. disease) or across samples, we compared colorectal cancer samples not 

only to a control sample set but against a wide variety of samples and conditions. We were able 

to identify more specific genes for colorectal cancer which are significantly associated with 

colorectal cancer in the literature. We constructed a colorectal cancer-specific network based on 

the expression levels of the neighboring genes obtained from the human protein-protein 

interaction network. We identified a potential negative relationship between glucocorticoid 

receptor (GR) and ring finger protein 43 (RNF43) which may play a role in colorectal cancer. In 

HCT116 colorectal cancer cell line, knocking-down GRα levels with siRNA resulted in 

increased RNF43 levels and inducing the colorectal cancer cells with dexamethasone, which is 
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an activating ligand for GR, resulted in decreased RNF43 levels. On the other hand, knocking-

down RNF43 levels with siRNA resulted in decreased GRα levels. Our study suggests GR 

negatively regulates RNF43 whereas there is no such a negative regulation from RNF43 to GR, 

indeed there could be a positive regulation. 

 

MATERIALS AND METHODS 

Transcriptome and Interactome data 

We collected the expression data from an integrated multi-condition human microarray 

dataset (E-TABM-185) [23] from the ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) and 

integrated GSE24514 [24] from NCBI GEO database (http://www.ncbi.nlm.nih.gov/geo/) as 

there were not many colorectal tissue samples. After combining the raw data, we re-normalized 

the dataset by GCRMA [25]. We also used another expression data of a set of colorectal cancer 

patient-derived paired normal and tumor samples (GSE18105; GSM452629- GSM452662) [26] 

from NCBI GEO database. We used the human protein-protein interaction data from I2D 

database (Version 1.9) (http://ophid.utoronto.ca/ophidv2.201/), which includes experimentally 

confirmed as well as computationally predicted interactions [27, 28]. 

Determining the colorectal cancer specific gene list 

We used the separation value (D value) to quantify the distinction of the expression 

values between sample sets similar to [5]. We calculated the D value between the colorectal 

cancer samples and the non-cancer colorectal samples as well as all the samples except the 

colorectal cancer samples. We tested the significance of the D values by permutation test. We 

also calculated Mann-Whitney test p-values. We used each affymetrix ID individually when 

http://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/geo/
http://ophid.utoronto.ca/ophidv2.201/
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calculating the D values and Mann-Whitney test p-values, which corresponded to different gene 

expression profiles. We used the Entrez Gene IDs matching to the affymetrix IDs to access the 

Official Full Name of the gene. In order to obtain the colorectal cancer associated genes, we used 

this full name to search Pubmed (http://www.ncbi.nlm.nih.gov/pubmed/) for this gene together 

with ‘Colorectal cancer’ or ‘Colon cancer’ using Bipython [29]. We collected the fraction of the 

number of genes (each distinct Gene ID) that was found to have at least one publication when 

searched together with ‘Colorectal cancer’ or ‘Colon cancer’ in Pubmed and divided by the 

number of genes (the number of distinct Gene ID s). We also obtained a random set of genes 

with the same number of distinct gene expression profiles (affymetrix IDs) and performed the 

same calculation for the random gene lists to obtain a random distribution for the colorectal 

cancer associated genes. 

We used indirect interaction neighbors to construct the network, since it has been shown 

that they have significant functional similarity [30]. We integrated the colorectal cancer specific 

genes, which have a D value of at least two when colorectal cancer samples were compared to a 

multiple condition set of samples, with the first and second degree neighborhood in the parent 

network which is the human protein-protein interaction network from I2D database. 

Cell culture 

HCT116 colorectal carcinoma cell line (ATCC, Manassas, VA, USA) was cultured in 

McCoy’s media (ATCC, Manassas, VA, USA) with 10% fetal bovine serum and 1% 

penicillin/streptomycin and maintained at 37
o
C and 5% CO2. 

  

http://www.ncbi.nlm.nih.gov/pubmed/
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Quantitative real-time polymerase chain reaction 

mRNA from HCT116 cells were isolated with the RNA isolation kit (Qiagen, Valencia, 

GA, USA). cDNA synthesis from mRNA was done with the cDNA synthesis kit (Bio-Rad, 

Hercules, CA, USA). For specific mRNA quantification by PCR, based on SYBR Green 

detection (Bio-Rad, Hercules, CA, USA) the following primers (Operon, Huntsville, AL, USA) 

were used; GR-alpha forward (5’-TCAGTTCCTAAGGACGGTCTG-3’), GR-alpha reverse (5’-

CCACTTCATGCATAGAATCCAA-3’), RNF43 forward (5’- 

CAAATTCACAGCCAGTGTGG-3’), RNF43 reverse (5’- GCTCCTCGAGTTCCTCCTCT-3’). 

The PCR cycle threshold values were based on the MyIQ software. 

Western Blot 

HCT116 cells were washed twice with cold PBS and lysed in RIPA lysis buffer with 

protease inhibitor. The cell lysate was centrifuged at 8000 rcf for 10 min, and the supernatant 

was collected. Total protein levels were quantified by BCA assay kit from Pierce Inc. (Rockford, 

IL, USA). A total of 20-40 g of total protein was resolved by SDS-PAGE and transferred to 

nitrocellulose membranes, and probed with primary antibodies with RNF43 antibody (ab84125 

from Abcam), GRα (ab3580 from Abcam), and anti-beta-actin (Sigma-Aldrich). Biotinylated 

protein ladders (Cell Signaling, Beverly, MA, USA) were used together with the samples anti-

biotin antibody was used to detect the protein ladders on the western blots. Primary antibody 

incubation was done at 4 °C for overnight, secondary anti-rabbit and anti-mouse antibody (Pierce 

Biotechnology Inc) incubation was done for 1 hour at room temperature. Antibody detection was 

performed using the enhanced chemiluminescence kit from Pierce Biotechnology and imaged on 

the Molecular Imager ChemiDoc XRS System from Bio-Rad. 
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Dexamethasone and siRNA treatment 

Dexamethasone (Sigma-Aldrich, St.Louis, MO, USA) was dissolved in ethanol and used 

as 250nM in HCT116 cell culture. Validated siRNA s for GR-alpha and RNF43 (Applied 

Biosystems, Carlsbas, CA, USA) and a scrambled negative control siRNA was transfected by 

reverse-transfection using Lipofactemine RNAiMAX (Invitrogen, Grand Island, NY, USA) for 

48-72 hours. 
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APPENDIX 

Figure 11 Literature comparison of differentially expressed genes in colorectal cancer samples 

with respect to only non-cancer colorectal samples (pairwise) vs. all other samples (multiple) (A) 

Fraction of genes that are relevant to colorectal cancer in Pubmed database when different D 

value cut-offs around 2 are chosen. (B) Significance of the genes that are relevant to colorectal 

cancer in Pubmed database when different D value cut-offs around 2 are chosen, based on 

permutation test. For interpretation of the references to color in this and all other figures, the 

reader is referred to the electronic version of this dissertation. 

A 
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Figure 11 (cont’d) 

B 
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Figure 12 Construction of the colorectal cancer specific network (A) Network construction 

method based on both direct and indirect protein-protein interactions, which are integrated with 

differentially expressed genes with D>2. (B) Colorectal cancer specific network 
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Figure 12 (cont’d) 

B 



136 

 

Figure 13 Modulation of mRNA levels of RNF43 and GRα (A) All values were first normalized 

to the beta-actin levels. Specific siRNA treatment of RNF43 and GR was done in HCT116 

colorectal cancer cell lines and normalized to the scrambled control siRNA treatment (B) 

HCT116 cells treated with 250nM dexamethasone, dissolved in EtOH, were compared with 

control cells treated with EtOH (less than 0.1%) treated cells. All values were first normalized to 

the beta-actin levels. Dexamethasone and GR siRNA treated HCT116 cells were normalized 

with EtOH and negative control siRNA treated cells. Real-time PCR results of primers specific 

for RNF43 and GRα are normalized with the results from β-actin primers. Fold change values 

are based on 9 values representing the comparison of all of the 3 treatment replicates to 3 control 

replicates. * indicates p ≤0.06 based on the comparison of expression values of the treatment 

replicates to control replicates. 

A 
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Figure 13 (cont’d) 

B  
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 Figure 14 Modulation of protein levels of RNF43 and GRα (A) 250nM dexamethasone, 

dissolved in EtOH, treated HCT116 cells were compared with EtOH (less than 0.1%) treated 

cells. Dexamethasone and GR siRNA treated HCT116 cells were compared with EtOH and 

negative control siRNA treated cells. Western blot with RNF43 antibody (ab84125 from Abcam) 

(B) Specific siRNA treatment of RNF43 and GR was done in HCT116 colorectal cancer cell 

lines and compared to the negative control siRNA treatment. (C) Quantitated value for the 

RNF43 and GR western blot images in siRNA experiments by ImageJ (D) Quantitated value for 

the RNF43 and GR western blot images in Dexamethasone experiments by ImageJ. siRNA 

treatments are normalized with negative control siRNA treatment and dexamethasone treatments 

are normalized with EtOH treatments. 
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Figure 14 (cont’d) 
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Figure 14 (cont’d) 
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CONCLUSION 

Systems level analysis of biomedical relationships, systems medicine or systems biology, 

not only interactions between genes, proteins, metabolites but also diseases, drugs, drug targets, 

and mutation targets, is necessary for understanding the global characteristics of diseases such as 

cancer  [1, 2, 3]. For example, the structure of the PPI networks is a specific structure which 

contains only a few hub proteins that connect a lot of proteins to each other; therefore, a random 

dysfunction of a member in the network is very unlikely to hit one of these very few hub 

proteins, thus making the network robust against random problems. This finding can be used in a 

perturbation analysis; for instance, proteins with different number of interactions could be 

targeted separately to examine the differences, i.e., hub proteins could be more important for the 

survival of the organism, or cancer mutation targets are more connected from the rest of the 

proteins in a human PPI network [4, 5]. Therefore, systems medicine and systems biology 

approaches are useful for obtaining important characteristics of the organization of the 

biomedical system which could be exploited for advancing our understanding of cancer and its 

therapy. As cancer is a major cause of death in USA and colorectal cancer is one of the leading 

types of cancer, we aimed to identify common or distinct network features of colorectal cancer 

together with the other cancer types such as the analysis of clinical data associations, molecular 

signaling pathways of cancers, and specific interaction networks. 

Previously, global network analysis was done on disease-gene, drug-target, disease-drug 

associations, however, driving factors of the networks or topological properties of the networks 

was not done extensively. For example, some disease phenotypes were shown to be highly 

connected in a disease network study, but, whether the high connectivity is related to the high 

number of cases or deaths for those diseases was not investigated [6]. 
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Firstly, we collected the cancer-drug associations to generate cancer networks and 

analyzed the correlation of the network properties with cancer death statistics as a likely factor 

affecting cancer drugs. The cancers with the highest number of FDA approvals and clinical trials 

are leukemia, lung cancer, lymphoma and breast cancer; however, only breast and lung cancers 

have high and significant weighted degree values in the FDA cancer network, which is based on 

the cancer-drug associations. Leukemia and lymphoma have high number of drug approvals and 

trials but they don’t share most of these drugs with other cancers unlike breast and lung cancers. 

This implies that the drug therapy for leukemia and lymphoma are more specialized for their 

own cases. Furthermore, cancer drug approvals and clinical drug trials are correlated to each 

other; a cancer type with a high number of drug approvals is more likely to have a high number 

of clinical drug trials. However, FDA cancer network, based on the sharing of drugs in FDA 

approvals, is very different from the clinical trial cancer network, based on the allocation of 

drugs in clinical trials. Moreover, lung cancer, which is significantly connected in the FDA 

cancer network, is not significantly connected in the clinical trial cancer network, whereas, 

lymphoma and ovarian cancer, which are not significantly connected in the FDA cancer network, 

are significantly connected in the clinical trial cancer network. As a result, there is a significant 

difference between the FDA approval based drug sharing and the clinical trial based drug 

sharing. This raises questions regarding the cancer drugs that need to be addressed, such as, if 

there is a bias in favor of lung cancer in FDA drug approvals since it shares many drugs in FDA 

approvals but not in clinical trials, also what the reason could be for less drug sharing for ovarian 

and lymphoma in FDA approvals in contrast to clinical trials. 

In order to understand some of these differences, we compared the edge weights for the 

FDA and clinical trial cancer networks for each cancer pair and found out that most pairs are 
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strongly connected in the clinical trial but not in the FDA cancer network. As a specific example, 

stomach and esophagus cancers share many clinical drug trials such as capecitabine, cisplatin, 

doxorubicin, etc. but not any FDA drug approvals. There could be various reasons for this; i.e., 

the clinical trials for these cancers may not be successful. Our data includes any kind of clinical 

drug trial which is completed. It should be investigated further if the FDA approved drugs of 

these two cancer types could be used for each other. This analysis provides guidance for future 

FDA approvals and clinical decision making. When a decision is going to be made for a certain 

drug to be approved for a certain cancer type, the neighborhood of that cancer type in the clinical 

trial cancer network could be searched for the FDA approved drugs of the neighbor cancer types. 

For example, the approved drugs of stomach cancer; docetaxel, fluorouracil, imatinib, and 

sunitinib, could be given priority for future drug approvals for esophagus cancer. 

Unquestionably, there will be other factors such as the suitability of the deliverance of these 

drugs for esophagus cancer, but this information could be used as an additional factor in clinical 

decision making.  

We also constructed FDA cancer networks for different years and observed that while 

breast cancer is significant since earlier years, lung cancer is significantly connected only in later 

years. In addition, these two cancers are significantly more connected than the rest of the 

network only recently. This shows that clinical decisions for cancer drugs in different years can 

change the structure of this network. There are more cancer drug approvals for lung cancer in 

later years. This observation shows a bias in favor of lung cancer that needs to be monitored in 

the following years. 

We tested the correlation of cancer death statistics, global and local lethality values, with 

the network degree values and compared them with the FDA approval or clinical trial numbers. 
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This showed us that while there is a significant correlation between the FDA cancer network 

degree values and the local lethality values, there is not a significant correlation between the 

FDA approval numbers and the local lethality values. On the other hand, while the FDA 

approval numbers are significantly correlated with the global lethality values, the FDA cancer 

network degree values are not correlated. This implies that global lethality of cancer could affect 

the number of FDA approved drugs, but not the FDA approved drug sharing. On the other hand, 

local lethality might influence the FDA approval drug sharing, but not the number of FDA 

approved drugs. There could be similar effect for the clinical trial drugs also. 

Interestingly, we also observed exceptions for certain groups of cancer types; the reasons 

for which should be investigated further. For example, the potential effect of local lethality on 

the sharing of FDA approved drugs is not present for the most locally lethal cancers, pancreatic, 

liver and esophagus cancers. These cancers have very low overlap of FDA approved drugs with 

other cancers. While liver and lung cancers have only one common FDA approved drug, they 

have 13 common drugs out of total 32 drugs used in clinical trials for both. 5 of these clinical 

trial drugs are approved for lung cancer by FDA, but they are still in clinical trials for liver 

cancer. In the future, these drugs might be expected to be given priority for liver cancer. 

We also showed the unlikeness of the drug target based relationships of cancer types with 

the mutation target based relationships. While lung and breast cancers are significantly 

connected with respect to drug targets, they are not significantly connected based on mutation 

targets. This might indicate that their relatedness to the other cancer is not very high based on 

molecular mechanisms but they are highly related to other cancers in drug approvals. On the 

other hand, colorectal, ovarian and brain cancers could be highly related to the other cancers in 

drug approvals but not in molecular mechanisms based on their drug target based and mutation 
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target based degree values. These results might guide the future drug trials and approvals of 

colorectal, ovarian, and brain cancers to look for overlaps between these 3 cancer types and other 

cancer types. This is based on the assumption that the mutation target information is complete 

and represents the molecular events underlying cancer. It should be noted that there could be 

other mutation events, as well as other molecular alterations such as the transcriptional regulation 

of genes, protein modifications, etc. On the other side, we only analyzed the clinical drugs for 

cancer types, which is also not complete as there are many other drugs in clinical trials which are 

not in our list. In addition, there can be other drugs used in patients than the list of FDA approval 

drugs. In this study, we only analyzed the drug therapy aspect of cancer therapy excluding 

radiotherapy, surgery, etc. There may be some cancer types, for which chemotherapy might not 

be as important as other cancer types which can impact some of our conclusions.    

In our next study, we showed that cancer pathways which consist of various signaling 

pathways can be analyzed in combination with gene expression levels to investigate the 

coherence of the pathway. Coherence of a pathway is defined as having close expression levels 

among the members of a pathway [7]. While previous research has focused on mostly metabolic, 

cellular, signaling pathways for coherence, the analysis of cancer pathways was ignored. We 

showed that the KEGG colorectal cancer pathway is coherent in only the carcinoma stage but not 

the normal or adenoma stages. This implies the collective regulation of the colorectal cancer 

pathway genes in carcinoma. These genes belong to several different signaling pathways such as 

Wnt signaling and TGF-beta pathways, which are well-known to be involved in colorectal cancer 

[8, 9]. Therefore our study implies enhanced communication between these pathways in later 

stages. Networks of pathways or modules can be analyzed to have global descriptions underlying 

biological processes and diseases like cancer [10, 11, 12]. For example, analysis of a pathway 
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crosstalk network for gene expression changes in colorectal cancer metastasis revealed a module 

of cell cycle related pathways and a modules cell migration related pathways [11]. Therefore, the 

potential interaction between Wnt signaling, MAPK, TGF-beta pathways should be investigated 

further. They can either have common regulators or they could co-regulate each other. We found 

more support for the latter case. A positive crosstalk between Wnt signaling and MAPK 

pathways was shown to be involved in colorectal cancer recently [13]. There is also evidence for 

crosstalk between Wnt signaling and TGF-beta pathways, mediated by Smad or Dishevelled 

proteins [14, 15]. In the future, the crosstalk between these pathways specifically only in 

colorectal carcinoma but in colorectal adenoma should be confirmed. For example, the 

association between Smad and Dishevelled was shown to be induced by Wnt signaling and this 

association prevented ubiquitination and deregulation of Smad [15]. First of all, it is necessary to 

show this association in colorectal carcinoma cells and test for its absence in colorectal adenoma 

samples. Then the reasons for the absence in colorectal adenoma samples can be analyzed 

further. Elucidation of such mechanisms is critical for understanding the progression of the 

invasive carcinoma phenotype from the adenoma phenotype. 

We observed that Wnt signaling pathway members are upregulated compared to the other 

members of the KEGG colorectal cancer pathway. This may be one explanation for the loss of 

coherence in adenoma. Wnt pathway was known to be involved in the early progression of 

colorectal cancer [8]. Thus, our study suggests that the regulation of pathways in cancer can be 

captured at the gene expression level. 

We showed that there are a lot more pairs of genes in the colorectal cancer pathway that 

have correlated gene expression levels in carcinoma samples compared to normal or adenoma 

samples. As a result of this, we observed a significant coherence of the pathway in only 
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carcinoma stage. In normal and adenoma samples, most pairs of correlated genes are from Wnt 

signaling pathway; such as pairs of Dishevelled and Frizzled genes. In contrast, carcinoma 

samples have correlated pairs of genes from different pathways corresponding to the different 

sections of the colorectal cancer pathway, such as Tgfbr2 from TGF-beta pathway with Apc 

from Wnt signaling pathway, Kras with Met, etc. These pairs of genes might have direct or 

indirect protein-protein interactions or they might regulate each other at the transcriptional level 

directly or indirectly. They can also be regulated by some common factors. For example, Myc 

and Msh2 genes are correlated only in the carcinoma samples. This might be because Myc is a 

positive transcriptional regulator of Msh2 or they have an indirect protein-protein interaction 

between themselves mediated by Max [16, 17]. Therefore, it is necessary to confirm the 

transcriptional regulation of Msh2 by Myc or the Max-mediated interaction between them in 

colorectal carcinoma samples. Then, these can also be checked in colorectal adenoma samples so 

that any differential regulation between these two proteins can be tested. This kind of further 

studies might support our observation for more integrative behavior of the colorectal cancer 

pathway in carcinoma stage. Then, the correlated pairs, specific for carcinoma stage, might be 

important candidates for perturbation analysis to check for their effect on the cancer progression. 

Lastly, we analyzed specific networks for colorectal cancer in order to identify novel 

mechanisms involved in colorectal cancer. We used a novel approach to define the differentially 

expressed genes in colorectal cancer. We compared the expression levels in colorectal cancer 

samples to a large set of samples from various sources, conditions, etc. (multiple comparison 

approach) rather than the classical way to compare the cancer samples to normal samples 

(pairwise approach). The top ranked genes with a highly separated expression patterns obtained 

by using the multiple comparison approach are more significantly associated with colorectal 
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cancer in the literature. This observation is based on counting the genes which gives at least one 

paper in the NCBI Pubmed database when their official names are searched together with 

‘Colorectal cancer’ or ‘Colon cancer’.  This analysis might miss some genes which have articles 

associated with colorectal cancer. Also the number of papers for a gene is omitted. A gene with 

many articles associated with colorectal cancer might be more related to colorectal cancer than a 

gene with only one article. Overall, our analysis suggests that multiple comparison approach to 

obtain the differentially expressed genes gives more relevant lists of genes to colorectal cancer. 

This should also be tested for other cancers, diseases, etc. 

Interestingly, there is only one gene common to the specific genes obtained by pairwise 

and multiple comparison approaches. This shows that the multiple comparison approach gives us 

also a very different set of genes. Our study does not imply that the pairwise comparison 

approach should be completely abandoned and the multiple comparison approach should be used 

alone. Instead, the two approaches should be combined as they capture genes with different 

expression patterns.  

The colorectal cancer specific network is constructed by mapping the specific genes 

obtained by the multiple comparison approach to the direct and indirect neighborhoods in the 

human protein-protein interaction network. It can be used for generating hypotheses for novel 

molecular mechanisms for colorectal cancer. One such example, that is between HOXB7 and 

MAPK13, is confirmed in the literature. Protein level expression of HOXB7 was upregulated in 

advanced, metastatic, highly proliferative stages of colorectal cancer patient samples and the 

induction of HOXB7 expression in colorectal cancer cells induce MAPK pathway [18]. The 

other interactions in this network can be tested in the future experimentally to check for their 

involvement in colorectal cancer. We focused on glucocorticoid receptor (GR, NR3C1) and ring 
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finger 43 (RNF43) proteins in this network as they shows a high and significant separation of 

expression levels for colorectal cancer in an independent paired dataset. GR is downregulated 

while RNF43 is upregulated, which is also confirmed in most colorectal cancer cell lines 

including HCT116. 

We knocked down GR levels in HCT116 cell line by specific siRNA and showed that 

both mRNA and protein levels of RNF43 increase in response to GR downregulation. We also 

treated HCT116 cell line with Dexamethasone, which is a glucocorticoid ligand for GR, in order 

to activate GR function. We observed a decline in RNF43 levels in response to Dexamethasone, 

but it is less significant than the change of RNF43 levels in response to GR knock-down. 

However, when we induced the HCT116 cells with both Dexamethasone and GR siRNA the 

decrease in RNF43 is abolished. Therefore the negative effect of Dexamethasone on RNF43 

might be significant. However, the most significant observation for the decline of RNF43 is 

when the GR is silenced without Dexamethasone treatment. GR has some isoforms which do not 

need glucocorticoid ligands to get activated and are always active in the nucleus [19]. These 

isoforms might be responsible for the effect we observed without Dexamethasone treatment. As 

a result, GR might be a negative regulatory factor for RNF43 transcription. This is partly 

supported by a study in lung cancer, showing that GR regulates genes from distant sites [20]. GR 

has binding sites further away from the transcription start site (TSS), for the genes that it 

regulates negatively. Genes activated by GR are around 11 kb of TSS, whereas genes repressed 

by GR are around 146 kb of TSS. They showed that GR has a binding site at 138 kb upstream of 

RNF43 transcription start site in lung carcinoma cells [20]. This indicates that GR could be a 

negative regulator of RNF43 in lung cancer. It should be tested in the future, whether GR could 
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bind to the distant promoter site of RNF43 and negatively regulate the transcription of RNF43 in 

colorectal cancer. 

Recently, β-catenin was found to be a positive regulator of RNF43 transcription, by direct 

binding to its promoter together with TCF4 in HCT116 colorectal cancer cell line [21]. RNF43 is 

induced by Wnt signaling pathway in colorectal cancer [22]. Wnt pathway is well-known to 

induce the progression of colorectal cancer [8]. RNF43 is also upregulated in colorectal cancer 

and knock-down of RNF43 suppresses the growth of colorectal cancer [23]. Therefore, it is 

possible that Wnt signaling pathway, as an early event in colorectal cancer, induces RNF43, 

which may in turn downregulate proteins like p53, or other unknown targets [24]. On the other 

hand, GR downregulates Wnt signaling pathway by direct inactivation of β-catenin [25]. By 

downregulating Wnt signaling pathway GR represses the targets of the pathway such as Cyclin 

D1, therefore it is likely that GR could also downregulate RNF43, another target of Wnt 

pathway, through inactivation of β-catenin. It is necessary to show the inhibition of β-catenin by 

GR in colorectal cancer. Then the downregulation of RNF43 by GR could be explained by the 

inactivation of β-catenin in colorectal cancer. 

When we knocked-down RNF43 by siRNA, GR mRNA levels didn’t change whereas 

there was a decline in protein levels, yet not statistically significant. This might show a positive 

feedback from RNF43 to GR, yet it needs to be supported by further experiments. For example, 

there might be a negative regulator of GR, which in turn might be a ubiquitination target of 

RNF43. However, the analysis of RNF43 function in HCT116 cell line is questionable, as a 

recent study showed that RNF43 is mutated in this cell line [26]. Interestingly RNF43 was shown 

to inhibit Wnt signaling pathway and this was shown to be mediated by the ubiquitination of 

Frizzled receptor. This observation is abolished in HCT116 colorectal cancer cell line as RNF43 
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is mutated, thus it cannot ubiquitinate Frizzled receptor. Therefore, it is necessary to analyze the 

possible effect of RNF43 on GR in a different colorectal cancer cell line. 

Overall, we were able to show a potential mechanism between GR and RNF43 in 

colorectal cancer as the downregulation of GR could be involved in the upregulation of RNF43. 

This observation has important clinical implications, as there are successful vaccine therapy 

studies using RNF43 derived antigens in colorectal cancer patients [27]. The potential use of 

glucocorticoids in colorectal cancer patients together with the RNF43 antigens needs to be 

investigated. 
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