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ABSTRACT
MODELS OF AXONAL ELONGATION AND TRANSPORT
By
Matthew R. O’Toole

The topic of axonal elongation has been studied for just over one-hundred years. It is
only recently, however, that the problem has received the attention of mathematical
modelers. Most of these models assume that elongation of an axon occurs when
cytoskeletal materials are delivered to the distal tip (or growth cone) of the axon,
where they are incorporated into the end of the existing framework. Several pieces of
evidence, however, have been suggestive of another mode of elongation.

Axons are viscoelastic structures; inside the outer membrane is a network of mi-
crotubules, neurofilaments, motor proteins, organelles, and various other cytoplasmic
materials. Axial forces are exerted on the axon from the distal end of the the neuron.
In pre-synaptic neurons these forces are generated by the interactions of the protein
actin with the substrate (or path) on which the axon is elongating. In post-synaptic
neurons, the forces of bodily growth exert tension on nerves, and nerves elongate as
the body grows larger. These axial forces cause deformation of the viscoelastic axons,
which leads to neuronal lengthening and displacement of the existing cytoskeleton.
This thesis is the first effort to describe the axons response to applied tension and
the effect that these forces have on slow axonal transport.

In the first chapter, a biophysical model of axonal elongation is derived. The
axon is treated as a viscoelastic fluid under tension, and a system of equations are
developed to describe how the forces cause distension of the cytoskeleton. The effects
of force dissipation due to interactions with the substrate are incorporated into the
velocity equation.

Axonal demands for new material are the topic of the second chapter. As an axon

elongates, it must supply the new section of axon with materials, replace material



which becomes dysfunctional, and uniformly add new material to cause any increases
in axonal caliber. This chapter lays the groundwork for the study of stretching’s role
in slow axonal transport.

Chapter three examines under what circumstances stretching makes a significant
contribution to slow axonal transport. Until now, the phenomenon has been over-
looked, but the modeling in this chapter shows that, under certain conditions, stretch-
ing can supply nearly half the flux necessary to sustain a healthy axon.

In the fourth chapter we view the problem of slow axonal transport as a boundary
value partial differential equation. The problem, in its entirety, includes carrier-
mediated transport, stretch-induced transport, diffusion, and protein degradation. As
a first step to analyzing this PDE and what it can tell us about each transport process,
a perturbation problem is studied when diffusion is the sole method of transport, and
an analytical solution is found.

The final chapter summarizes the dissertation and discusses the role of this work

in the field of nerve repair.
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Chapter 1

A Biophysical Model of Axonal

Elongation

1.1 Introduction

Axonal elongation has been thought to occur through tip growth where new material
is added at the growth cone and the axonal framework is stationary [26, 13, 41].
While past studies suggest axonal branch points and marks made along the axon
remain stationary as the axon elongates [9, 10, 56, 68, 24], recent work suggests that
in some cases there is a gradient of bulk transport of docked materials, with little or
no transport seen in the proximal axon and increasing anterograde transport in the
distal axon [64]. This low velocity transport (LVT) has been observed in the absence of
growth-cone advance, which suggests that there is more to this than simple stretching
of the axon. In addition, whether axons lengthen through tip growth or stretching
in Xenopus neurons depends on whether they are grown on highly adhesive (Con
A) or permissive substrates (laminin) [23]. These past studies raise the questions of
what role growth cone generated tension plays in elongation, and whether the mode

of axonal elongation depends on the physical properties (adhesion to the substrate,
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viscosity) of the axon.

Mechanical tension has long been known as an effective stimulus to axonal elonga-
tion / growth. Tension has been experimentally applied to lengthen existing neurites
[11, 51], and axons that are detached from their substrate not only stop elongating,
but experience retraction [99]. Mass addition to the neurite is another important
aspect of axonal elongation which appears to be linked to tension. In one instance,
elongation rates of 8 mm/day were achieved via mechanically applied tension [74].
These neurons tended to increase in diameter [74] and were functionally normal [73].
In another experiment, leg-lengthening procedures in adult rats caused doubling of
the internodal distances with no axonal thinning [1]. These results indicate that the
rate of mass addition to the axon increases in response to tension-induced lengthen-
ing. Further, the inability of microtubule polymerizing drugs, such as taxol, to in-
duce elongation [54] brings into question whether mass addition independently drives
elongation. Mass addition is certainly an essential component of healthy axonal elon-
gation, but the evidence suggests that tension at the growth cone is the direct factor
that controls the rate of lengthening. Thus, we place tension as the independent

variable which determines the rate of axonal lengthening.

En bloc movement of the axonal cytoskeleton long went unnoticed as experimental
observations focused on proximal regions of axons. Only when measurements were
made in the distal axon was this phenomenon discovered. Photobleaching [23, 70],
photoactivation [69, 77], and the tracking of docked mitochondria [64] have revealed
that the cytoskeleton does move in an anterograde manner, but this behavior dimin-
ishes with distance from the growth cone. That growth cones generate pulling forces
and neurons grown in culture adhere to their substrates gives a possible insight to
this observation. Any deformation of the axon as a result of growth cone generated
tension will be most prominent in the distal region, but as that force is dissipated

through adhesions the effects will diminish. As the above experiments have shown,
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tension at the growth cone not only leads to lengthening, but may deform the distal

region of the axon resulting in en bloc movement of the cytoskeleton.

Deformations of materials can be elastic, where materials stretch like springs, or
viscous, where materials flow as fluids [38]. Here, axonal stretching refers to both
elastic and viscous deformation. Whether axons behave mechanically as solids or
fluids depends importantly on the time scale of the observations. Rapid deformations
over the course of seconds to minutes lead to spring-like behaviors. When axons are
pulled slowly enough over the course of hours to days they can elongate viscously
many millimeters without breaking or thinning [74, 73, 25]. The observation that
lengthening occurs without a great degree of thinning suggests that mass addition
to the axon is occurring. It is possible that when axons are stretched slowly mass
addition can accommodate lengthening and lead to a physiological behavior that is
primarily viscous.

Axonal elongation in response to force application at the growth cone (towing) has
been described to occur in three stages [25]. After an initial elastic stretch, there is a
period of delayed stretching, followed by elongation at a constant rate. This behavior
has been modeled by Dennerll et al., [25] using a three-element model where the axon
behaved as a spring, a Voigt element, and a dashpot in series (Fig. 1.1 A). The
combination is also known as a Burgers element [81]. This model well describes the
effects of tensile stress on the elongation of axons, but does not address deformation

of the distal axon or the effects of adhesions along the axon.

Aeschlimann was the first to extend a general type of model to segments along
the axon [2, 3]. In the Aeschlimann model, the axon is treated as a series of springs
that elastically stretch with a growth dashpot at the end of the axon where new
mass is added. This accounted for the spring-like behaviors axons exhibit over short
time spans and the fluid-like behaviors associated with axonal lengthening. A further

insight was the incorporation of viscous drag that was interpreted as being due to
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Figure 1.1: Modeling a Towed Neurite as a Series of Dashpots — (A) We consider
the axon as a series of Burgers elements. Each element consists of a two elastic
elements and a free dashpot (with constant G) which simulates towed growth. (B)
Diagram of a neurite during towing. The distal region of the neurite is free of the
substrate while numerous adhesions in the proximal region cause the neurite to remain
firmly fixed. (C) Under constant tension (Fj) the behavior of a Burgers element
is dominated by its free dashpot. We treat a neurite under constant tension as a
series of dashpots. Attachments to the substrate are represented as friction dashpots
(constant n). Tension is constant in the distal region but is dissipated by adhesions
in the proximal region.



interactions between the axonal shaft and substrate. While the Aeschlimann model
is sophisticated in its integration of both the tip growth model and the biophysical
properties of the axon, the following experimental data suggest to us that the axon is
more accurately modeled as a series of dashpots that acts like a viscoelastic fluid. (A)
Though rapid deformations over the course of seconds to minutes lead to spring-like
behaviors, when axons are pulled slowly enough over the course of hours to days they
can elongate viscously many millimeters without breaking or thinning (74, 73, 25].
(B) Growth cones sometimes pause while the axon remains under tension. If axons
behaved as viscoelastic solids, material along the axon would stop moving during a
pause. In contrast, a viscoelastic fluid model predicts continued movement of the
axonal framework towards the site of tension generation. Experimentally, it is seen
that bulk movement of material occurs during growth cone pauses [64]. Thus, we
suggest that the simplest model for the mechanical behavior of the axon is that of a

viscoelastic fluid.

Here we extend the Dennerll model to the entire axon; that is we view each segment
of axon as consisting of a Burgers element. This allows us to study how tensile forces
cause axonal stretching at each point along the length of the neurite in addition
to elongation. With the inclusion of the effects of extracellular adhesions along the
length, we derive a model that captures both the effects of tension generation at the
growth cone and dissipation along the length due to adhesions to the extracellular
matrix substrates [23]. We report that whether axons grow by stretching or tip growth
can be explained by varying the parameters in a single model that includes forces,

axonal mechanical behavior, and frictional interactions with the substrate.
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1.2 Materials and Methods

1.2.1 Cell Culture

Chick sensory neurons were isolated as described by Sinclair et al. [85] from lumn-
bosacral dorsal root ganglia of 11-to 12-day-old chicken embryos. Cells were grown
at 37 °C in L-15 medium (Sigma Chemical, St. Louis, MO) supplemented with 0.6%
glucose, 300 mg/liter glutamine, 100 U/ml penicillin, 136 xM/ml streptomycin sul-
fate, 10% fetal calf serum, 50 ng/ml 7S nerve growth factor (Harlan Bioproducts,
- Indianapolis, IN) and N9 growth supplement. The culture surface was first treated
with 0.01% polyornithine and rinsed. The surfaces were then treated with 20 ng/ml

laminin.

1.2.2 Towing Experiments

Mitochondria were labeled with 0.1 uM Mif,otracker Red CMX-Ros (Molecular Probes,
Eugene, OR) in L-15 medium for 2 min. and then allowed to recover for several hours
in fresh media [64]. Cultured cells were maintained at 38 °C on the stage in a ringcu-
bator [37]. A reference needle and a calibrated needle (calibration constant k as in
[99, 25, 98, 97]) were held in a double-needle holder in a Narishige hydraulic micro-
manipulator. The needles were brought into the culture dish’s microscopic viewing
field of a Leica DM IRB inverted microscope and observed with a N Plan L 40x /0.55
corr Ph2 with an adjustable collar infinity / 0—2 / c objective. Cells were illumi-
nated with a 100-W Xenon lamp attenuated 98% with neutral density filters through
a Texas Red cube D560/40x, 590DCLP, D630/60m (Chroma, Rockingham, VT) for
visualization of MitoTracker Red CMX-Ros.

The calibrated towing needle was previously coated in polylysine (1 mg/ml) and
concanavalin A (1 mg/ml). Both needles were brought to the neurite’s growth cone

and the growth cone was manipulated onto the calibrated towing needle. The ma-
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nipulator was used to move the needle and exert axial tension on the growth cone
[25]. Each tow consisted of two phases and within each phase the force was held
constant. The resting distance r between the two needles was noted prior to cell
attachment. Force measurements were acquired during phase imaging throughout
the experiment by measuring the distance, d, between the reference needle and the
calibrated needle under experimental tension. The screen-image calibration factor,
a, was determined by use of images of a stage micrometer. The applied force at the
growth cone (in pdynes) was calculated as Fy, = ak (d — r) [25]. Fluorescent images
were taken at 2 min. intervals by an automated script of the Openlab program (Im-
provision, Waltham, MA) using a Hamamatsu Orca-ER digital camera CCD, model
CA742-95. These images were then converted into TIFFs and analyzed using ImageJ
(NIH). Images were rotated using an ImageJ plug-in and the StackReg macro was
used to align each sequence of images. The images were then cropped, resliced, and
z-projected to produce a kymograph. Kymographs were enlarged 2x and brightness

and contrast were manipulated to enhance visualization of mitochondria.

1.2.3 Derivation of Model

As axons are thought to be viscoelastic structures, we hypothesize that forces gener-
ated at the growth cone can stretch the axon and give rise to LVT. Whether this LVT
occurs will depend on the relationship between the magnitude of the force generated
at the growth cone and the viscoelastic properties of the axon. Even though axons
can behave like fluids, if they are exceptionally stiff or if the forces generated at the
growth cone are too weak, axonal stretching may not occur and elongation will occur
through tip growth.

We consider an axon that experiences a constant force averaged over hours at the
growth cone (this tension may be internally or externally generated). For the purpose

of a continuous model, we treat the axon as a series of infinitesimally small Burgers
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elements. If tension is applied for a significant amount of time (> 10 minutes) the
axon exhibits constant growth rate [25]. Under these conditions the elastic elements
of the cell are at steady state and elongation behaves as force acting on a free dash-
pot (a dashpot obeys the relationship force = constant x velocity). To analyze bulk
transport along the length we simplify the model and treat the axon, in this state, as
a series of dashpots (Fig. 1.1 C). A series of dashpots under constant tension, with-
out dissipation at each element, has a linear velocity profile which, when additional

dashpots are added in series (through elongation), leads to exponential elongation.

As axons stretch, so must the axonal framework. Using the reported value of the
Young’s modulus of a microtubule of 100MPa [47], a force of 100 udynes applied to
an individual microtubule will cause ~ 2% strain. Since a growth cone generated
force of this magnitude is spread over the cross-sectional area of the axon, the strain
on axonal microtubules will be much less. As the stretching of individual polymers is
extremely small, significant stretching of the axon most likely occurs by the sliding of
cross-linked polymers. The two factors playing the largest role in the velocity profile
of an axon under tension are the axon’s axial viscosity, g, and the constant of friction,
7, that quantifies the interactions between the axon and the substrate. Both of these
parameters characterize resistance to flow and have dimensions of viscosity. The
axial viscosity is the amount of force needed to distend a unit amount of axon at unit
velocity and is determined by the cell’s physiological properties. Though the axoplasm
is highly heterogeneous, it is the composition of the cytoskeleton that will dictate the
axon’s response to axial forces. If there are a large number of microtubules, or a high
level of cross-linkage between them, then the axon will be resistant to stretching and
g will be large [38]. Axonal diameter will also affect an axon’s ability to be stretched.
Intercalated mass addition (axonal thickening) has the effect of adding dashpots, in
parallel, to the system (or, equivalently, increasing the dashpot constant). Applied

forces are spread over a wider area and effective tension along the length decreases.

8



We define the growth dashpot parameter G to quantify an axon’s response to distally
applied forces. This parameter is the product of g and the cross sectional area of the
axon A. If an axon alters its diameter (either thinning due to stretching or thickening
by mass addition along the length) but maintains its physiological properties, then
G is affected while g is unchanged. Physiological changes alter g and thus G. The
coefficient of friction, 7, is characterized by the strength and the number of adhesions
between axon and substrate. These adhesions have been shown to have major effects
on both LVT and growth cone advance [23]. 7 is assumed to be zero where the axon

is unattached to the substrate, and increases as adhesions form and strengthen.

Towed axons were observed to be unattached distally and firmly attached to the
substrate in the proximal regions (Fig. 1.1 B). The behavior of the axon in the
unattached region can be well described by the three-element model. Our model
aims to incorporate the dissipation of forces and describe the velocity profile of docked
materials when adhesions are present. We assume that: 1) there is uniform dissipation
along the length characterized by the constant n; and 2) during elongation due to
towing, the growth dashpot constant G remains fixed on average over a period of
days so that constant applied force implies constant tension. Note that our condition
on G is not inconsistent with an axon that changes its diameter; physiological changes
can be assumed to balance changes in cell morphology. The phenomenon of strain
hardening due to deformation has indeed been observed in various cell types [38]. If
axons do not exhibit thinning, then we assume that mass addition along the length
of the axon, or intercalated mass addition, is responsible for restoring the diameter
of axons which grow by stretching. These assumptions allow for a simple and useful
analytic description of the effects of cellular composition and external adhesions on

axonal elongation and transport.



1.2.4 Governing Equations

The force and velocity profiles of the axons, f and v, are functions of the distance
from the cell body x and the length of the axon L(t). A force Fy applied at the
growth cone causes distension at each point along the length. The change in velocity
from one point of reference to the next (from x;_; to r;) is given by the rate at
which the dashpot between them is elongating:

flzi L(t)]

Agv=v[z; L(t)] —v[z;_1, L(D)] = G/Az

(1.1)

so that the actual velocity of the point of reference x; is found by summing these

elongation rates between r( and z;:

J .’1,'7,L(t :
v[z;, L(t)] = Z oA = g [ t)]A:r (1.2)

Force is dissipated at a rate proportional to the velocity of elongation:

Axf = f [xi,L(t)] - f [xi_l,L(t)] = (T)A.’L) v [:BZ',L(t)] . (1.3)

Given a constant force generated at the growth cone FJ the force at any reference

point x; is given by

N
flz; L)) =Fp—n Z vz L(t)] Az
=l (1.4)
N J
= Ff —% > (Z [z L ()] Az) Az
j=i+1 \k=1



To extend to the continuous case we let Az — 0 so that

fle,L(t)] = Alun f [z L(¢)] / / flz, L(t)] d=dy. (1.5)

The integral equation (1.5) is equivalent to the differential equation and boundary

conditions
fezla, L) — &S [z, L(1) =

: (1.6)
FIL(), L)) = F, fx[0,L(t)] =0

Note that Eq. (1.6) is in terms of the unknown L(¢). The rate of elongation
dL/dt is assumed to be the velocity of material at the growth cone v [L(t), L(t)].

Differentiating Eq. (1.5) with respect to x we find

z
fele. L) = 3 [ 1l L) ds = mola LD
Now we can express the change in length of the axon in terms of the force by

dL — v [L(t), L(t)) = & 12 [L(), L(1)]
L(0)= Ly

(1.7)

1.2.5 Force, Velocity, and Length

Equation (1.6) is solved first and the solution for f is then inserted into Eq. (1.7).

iy = TR V] (1)
cosh [L(t)\/a

140 =€ st s (7] 09
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where 3 = sinh [LO ga . Velocity is determined from the force as before (v = fz/n):

vz, L(t)] = Fpsinh [x\/gq . (1.10)
v/nG cosh [L(t)\/g]

1.2.6 Data Analysis

We tested the predictions of this model by examining the movement of axoplasm
in response to tension as described in Materials and Methods. To fully analyze bulk
transport of docked materials, the fluorescent images of each trial were converted into
kymographs [64]. These useful images were created for each experiment, giving the
total profile of movements within each axon over the course of the tow (Fig. 1.2).
Tracing individual mitochondria, average velocities of docked material were calculated
over 30-minute intervals (Fig. 1.3). For each tow there was an observed region where
the axon was free of the substrate (distal) and a region where the axon was firmly
attached (proximal). The distal regién, being free of dissipative forces of substrate
interaction, was analyzed to extract values of G for the axon. Lines were fitted to
this data to calculate the rate of change of the velocity of the mitochondria (Fig. 1.4
A). Using force measurements from the calibrated needles, a value of G was found by
dividing the average force over this interval by the slope of the fitted line.

Once values of G were determined (one value of G per 30 min.) the Origin software
package (OriginLab Corporation, Northampton, MA) was used with Eq. (1.10) to
fit the best value of 7 to the data (Fig. 1.4 B). For this calculation the velocities of
mitochondria proximal to the point of adhesion were used. Empirical values of F7 ,
L, and G were fixed and a Levenberg-Marquardt algorithm was implemented in the
Origin package to find the optimal value of 7.

The relationship G = gA was used to calculate the intrinsic axial viscosity for

each axon. Phase images of each trial were analyzed using ImageJ to determine the
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Figure 1.2: Application of Force at the Growth Cone Leads to Anterograde Translo-
cation of Docked Mitochondria — (A) Axonal morphology at the light level before a
tow. The growth cone is towards the right hand side. (B) Mitochondrial distribution
before the tow. (') Axonal morphology at the light level after the tow. The arrow
points to the end of the needle at the growth cone. (D) Mitochondrial distribution
after the tow. (E) Kymograph illustrating mitochondrial movement during a tow.
(F') The graph shows that the velocity of docked mitochondria increases non-linearly
along the axon.
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Figure 1.3: Illustration of how Velocity Data were Acquired — Docked mitochondria
are observed to translocate anterogradely during a tow. Velocities (in microns per
hour) of the mitochondria were calculated as the slope of each traced line. Mitochon-
dria near the growth cone move forward at high velocities while mitochondria near
the cell body move slowly.
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Figure 1.4: Determination of Axonal Viscosity (G) and Adhesiveness () — During
towing, the distal axon was lifted free from attachments to the substrate. (A) Ve-
locities were measured (one measurement per mito. per 30 min.) for mitochondria
distal to the terminal point of adhesion between axon and substrate (for this axon,
at 150 pm). The slope m of the line of best fit and the force Fj are related to G
by G = Fy /m. (B) Velocity profile of mitochondria proximal to the terminal point
of adhesion (at 80 um for this trial). Force dissipation leads to a non-linear velocity
profile. The data was fitted to Eq. (1.10) with an optimal value of n found using the
Origin software package.
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Figure 1.5: Illustration of the Measurement of Axonal Diameter — For each phase
image (A, D), the diameters of the axons were measured using ImageJ (one measure-
ment per 25 um). A line orthogonal to the axon was drawn (B, E) and a plot profile
gives the pixel intensity at each point along the line (C, F). Arrowheads in (C, F)
denote the two steepest points on the relevant portion of the curve. Visible differences
in axonal diameter (A4, D) are reflected in (C, F).

axonal diameter at various times (Fig. 1.5). For each phase image, the diameter
was measured at 25 um intervals until the growth cone was reached. A line tool was
traced orthogonally across the neurite and a plot profile graphed the pixel intensity
of the image at each point on the line. It was determined that the best measure of

the diameter was the distance between the two steepest points on the intensity curve.

1.2.7 Numerical Simulation

To address the issue of thinning along the length of the axon, we ran a MATLAB
(The MathWorks, Inc., Natick, Massachusetts) simulation of an axon growing by
stretching where zero mass addition was assumed and axonal diameter was allowed
to vary. The details of the simulation are as follows. The axon is divided into a fixed

number of compartments whose length and cross-sectional area are allowed to vary.
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At each time step the force is calculated at the distal end of each compartment. This
force causes deformation of each compartment and thus lengthening. New values
for compartment length, area, and growth dashpot parameter G are then calculated
for the next time step. Though 7 is constant, we account for the adhesive effect of
increased compartment length. Using parameter values for g and 7 determined as
above, axons were allowed to grow until the cross-sectional area at any point along
the length decreased below 0.05 umz (or, equivalently, until the diameter at any point
decreased below 0.25 ym). This basic simulation does not take into account protein
degradation or axonal transport of existing materials which may occur to maintain a

uniform diameter.

1.3 Results

1.3.1 Consistency

We verify that the model equations are consistent with the physical nature of the
problem. Letting the parameters vary we examine the effects on Eq. (1.10). It is
important to remember, here, that n characterizes adhesions along the length of the
axon and not at the growth cone. As adhesions at the growth cone are necessary for
tension generation, our model would predict that those adhesions increase rates of

elongation.

The removal of adhesive connections along the length corresponds to 7 going to
zero. In this case forces generated at the growth cone are not dissipated through the

substrate and we should expect a linear velocity profile, as that is the behavior of a
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series of dashpots under tension. We show that this is indeed the case:
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In the presence of strong adhesions, forces are dissipated quickly and transport is

hindered. Large values of n describe this phenomenon. For a fixed force, if 7 is too
large then the effective tension along the length of the axon is too low to facilitate

transport. As the strength of the adhesions increases, n — 00 and v — 0 Vz:
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since v is assumed to be non-negative and 0 < tanh(y) < 1 for y > 0.
If G is relatively large then the axon will be resistant to stretching at normal

forces. This will occur when an axon has a large diameter or if there is a great deal
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of microtubule cross-linkage. A direct calculation shows v — 0 Vr as G — oo.

Lastly we consider the case when G — 0. If G is very small at a point = then
either the diameter of the axon is close to zero at that point (A = 0) or there is
little cellular structure at z holding the axon together (¢ ~ 0). In either case, the
applied tension causes rapid deformation at x but forces are quickly absorbed into the
substrate and are not proximally propagated. The tension gradient causes a sharp
jump in the velocity of materials at £ making the axon prone to ‘rupturing’. Equation

1.10 demonstrates this behavior, as is now shown. First, for £ = L(t), we see that

Gl—i)rr(x)_*_v[L(t),L(t);G] = 7Gl—l>n(l) —tanh[ t)ﬂ oc. (1.13)

Now, for z € [0, L(t)), we make the substitution H = ‘/% and take the limit as
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since £ — L(t) < 0.
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1.3.2 Parameter Values

Average values for G, g, and n were found via methods described in Materials and
Methods. The average value of G was found to be G = 3.9 x 107 + 3.0 x 107
g-um-h_1 (mean + SD, n = 31). The intrinsic value g for each axon at each thirty
minute period was found by dividing G by the average cross-sectional area of the
axon distal to the initial point of adhesion. We found this value to have an average
of =13 x 107 £8.5 x 108 gum=1.h~! (mean + SD, n = 31) which is equivalent
to 3.6 x 106 + 2.4 x 106 Pas (1 Pas =36 g-um"'l-h_l). The average 7 value was
=296 x 103 £ 7.5 x 103 Pas (mean £+ SD, n = 28). In three cases there were an
insufficient number of mitochondria proximal to the initial point of adhesion to be

able to fit a significant value of 7.

1.3.3 Model Predictions

As a test of the model, we plotted Eq. (1.10) with the calculated average parameters
and a force of 200 udynes against data from neurons growing naturally on laminin
/ polyornithine substrates. Using velocity measurements from thirteen arbors of
six growing axons (N = 563), we observed significant LVT of the distal axon and
found a strong correlation between our model and the actual level of stretching (Fig.
1.6 A). An interesting observation in this process was that the majority of docked
mitochondria in the proximal regions, where growth cone generated forces have little

effect, moved in the retrograde direction.
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Figure 1.6: Whether Axonal Stretching Occurs Along the Length or Only at the Tip
Depends on the Values of G and 1 — (A) Comparison of the base model with data
from axons growing naturally on laminin / polyornithine substrates. Velocities of
docked mitochondria from arbors of six different neurons were recorded (N = 563).
Average velocities were then calculated at the growth cone and for each 25 pm segment
proximal. Comparison of the average velocities with the base model yielded an R
value of 0.81. (B) and (C): Model sensitivity to parameters. (B) For large values
of n (strong adhesions), forces are dissipated quickly and very little bulk transport
is observed. When adhesions are absent (7 = 0) the force is not dissipated and the
velocity profile is linear (like a series of dashpots). L = 200 pm, Fy, = 200 pdynes,
G = G . (C) Large G values cause low effective friction (n/G) and result in low
velocity at the growth cone with little force dissipation along the length. Small G
values lead to high velocities near the source of tension. Because effective friction
is high, forces are quickly dissipated and velocity of materials goes to zero a short
distance away from the growth cone. This behavior leads to rapid elongation, but
possible rupturing of the axon. L = 200 um, Fj, = 200 udynes, n = 7.
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Having analyzed the behavior of the velocity profile for extreme values of G and 7,
we focus on how the velocity profile changes with the parameters. Plots of Eq. (1.10)
for varying magnitudes of n and G are displayed in Fig. 1.6 (B, C). As the effect
of the neurite / substrate interactions (1) increases, less of the neurite experiences
bulk transport, with the most transport occurring near the growth cone. If adhesive
forces are not present, then transport behaves as a system of dashpots, with velocity
of docked material increasing linearly. Variations in the growth dashpot parameter,
G, cause different types of changes. If G is relatively large, i;he neurite is too stiff
and realistic forces are insufficient to produce significant bulk transport or elongation
(Fig. 1.6 C, dashed line). As the neurite becomes more fluid (G decreases) both bulk
transport and elongation are observed. Notice that, in the presence of adhesions,
transport is still minimal in the proximal axon. Decreasing G further, transport occurs
only in the distal axon with a steep gradient (Fig. 1.6 C, solid line). An extremely
small value of G represents an axon that is too fluid to withstand tension. This
neurite will see a sharp change from zero velocity of materials in the majority of the
axon to extreme stretching near the growth cone. The neurite offers little resistance
to tension but the tension dissipates immediately, possibly leading to rupture at the
point where the tension is applied. An observed axonal rupture is explained by this

model as G being locally too small to handle the forces in that region.

In the towed growth experiments, where the velocity of axonal elongation exceeds
the normal rate of elongation, axons thinned. In contrast, in the naturally growing
axons dramatic thinning was not observed. This suggests that there is some rate
of mass addition that occurs along the length of the axon which normally prevents
axonal thinning, but that when the normal growth rate is exceeded there is initially
a thinning of the axon. Our simulation of a growing axon without mass addition is
consistent with this observation (Fig. 1.7). The force generated at the growth cone

(200 pudynes) causes lengthening of the axon and thinning. Force dissipation due to
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adhesions restricts thinning to the distal region and, in a short amount of time, the
diameter becomes extremely small at the growth cone. Comparison of our simulation
and the profiles of naturally growing axons implies that mass addition counteracts
stretch-induced thinning.

The model predicts that for a given set of parameters (F, G, and > 0) a growing
axon achieves a maximum velocity of axonal elongation (Fig. 1.8). Further, it shows
that there is a characteristic velocity profile that advances with the growth cone and
is non-zero for some fixed length L. For very short axons, forces generated at the
growth cone are not fully dispersed along the length and the velocity profile is nearly
linear. As the axon elongates, the actual velocity of the materials near the growth
cone increases to its maximum value vmax = F/ (Gn)l/ 2 and the velocity profile
attains its exponential shape. Once the axon is lohg enough (L > L) so that force
dissipation causes the velocity to reach zero prior to the growth cone, the velocity

curve behaves, over time, as if it were shifting to the right.

1.4 Discussion

How axons elongate has been a central debate in neurobiology for decades. Tip
growth is generally accepted as the method [26, 36], but stretching is observed along
the axons of Xenopus neurons and in the distal axon of chicken sensory neurons
(64, 69, 77]. It is well agreed that growth cones generate tension [50] and cells are
viscoelastic materials [38] that adhere to substrates [23], thus it seems reasonable
that axons stretch in response to forces. To test this we use direct observation of
the movements of docked mitochondria and physical manipulation of the neurons via
axonal towing to test whether axons stretch in response to force application at the
growth cone and to determine the normal parameters for the viscosity of the axon

and the level of adhesion to the substrate. We then mathematically model the axon
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Figure 1.7: Without Mass Addition, Axons Thin when Stretched — To examine
the necessity of intercalated mass addition, an Euler’s implementation was employed
where cross-sectional area was allowed to vary while the axon lengthened. The growth
dashpot parameter G and the constant of friction 7 were initially set at physiological
levels (g =g, A= pm2, n = 7). During lengthening, G varied with the cross-
sectional area while 7 was held constant. Here we simulated an axon that was initially
200 pm long, with a uniform axonal diameter of 2 um, and a constant force of 200
udynes applied at the growth cone. The simulations ran until the cross-sectional area
became smaller than 0.05 pn12 at any point. (A) The profile of the cross-sectional
area over the first 1.5 hours of growth demonstrates that the force gradient due to
cell-substrate adhesions leads to non-uniform thinning in the distal region. (B) A
scale representation of the axon over the first 1.5 hours of growth strongly suggests
that intercalated mass addition occurs to prevent thinning.
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Figure 1.8: Nascent Axons Elongate Slowly — A simulation of an initially short
axon (Lg = 10 pm) under tension shows the velocity profile of an elongating axon.
Transport is present along the length when the axon is short and the elongation rate
is low. As the axon grows, the velocity of elongation increases until the length of
the region where transport is observed reaches a maximum (here, roughly 100 pm).
The velocity profile then translocates with an increasing lagging zone in the proximal
axon where no transport is observed. Fy = 200 udynes, G = G, n=1.

as a viscoelastic fluid, based on the work of Dennerll et al., which suggests that tip
growth occurs when the forces generated at the growth cone are weak, the adhesions

along the axon are strong, or the viscosity of the axon is high.

While it is well accepted that force application at the growth cone leads to axonal
elongation [11, 99], whether it leads to stretching of the axon has not been addressed.
Anterograde LVT of the distal cytoskeleton, as previously documented [64, 23, 70,
69, 77], was present in our control experiments (Fig. 1.6 A). To test the effects of
external force application, we monitored the movement of docked mitochondria along
the axon while towing. We observed that mitochondria along the axon translocated
anterogradely (Fig. 1.2 E) and with a velocity profile that was strongly non-linear
(Fig. 1.2 F). The velocity of movement of the docked mitochondria was directly linked
to the rate of towing. When axons were towed at a rate of 50 ym h~! the velocity of

mitochondrial movement next to the growth cone was ~ 40 ym h1 (Fig. 1.2 F) and
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when towing occurred at 100 gm h~! the velocity of movement next to the growth
cone was =~ 90 ym L Together these data provide the first direct evidence that

the external application of forces to the growth cone leads to stretching of the axon.

The key test for our model was to examine the velocity profile in regions of the
axon that were unattached (Fig. 1.4 A) and attached to the substrate (Fig. 1.4 B).
If our model is correct then the velocity profile would be linear in the unattached
regions and would be non-linear in the attached regions. We found the data support
a model where adhesions along the axon dissipate forces exerted at the growth cone.
By estimating the cross-sectional area of the axon (Fig. 1.5), we calculated the
true viscosity (g) to be 3.6 x 108 + 2.4 x 106 Pas on average. This measurement
is comparable with observations made in fibroblasts which suggest the cytoplasmic
viscosity is between 102 and 106 Pa:s [94]. The elevated value reported here is not
surprising given that axial viscosity of a neurite is a function of deformation-resistant
features such as cross-linked cytoskeletal elements within the axon [38, 39, 83]. An
important control was to compare the velocity profile of docked mitochondria along
the axon during normal axonal elongation with the velocity profile prediction based
on our direct estimates of G, 7, and the magnitude of force at the growth cone. That
our model fits well with the data (Fig. 1.6 A) illustrates its relevance and predictive

power.

The strengths of cellular adhesions have previously been measured by means of
centrifugation [58] and fluid flow [53] or by the amount of force required to pry a cell
from the substrate [98]. While those techniques are useful for determining relative
adhesiveness, the results are difficult to apply to other systems because they are
in indirect units (e.g. fraction of adherent cells after centrifugation and duration of
blasting through a pipette required to detach a cell) or are a complex function of
the applied force, viscoelastic properties of the cell, and adhesion. Our description is

unique in that it is the first direct estimation of the level of adhesion of an axon to a
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substrate. Based on our estimation of the level of cellular adhesion to the substrate
(17 = 0.6 x 103 £ 7.5 x 103Pa.- s), we can predict the traction force an axon exerts on
the substrate vs. distance from the growth cone. For example, given an endogenous
force of 2 nN in chicken DRG growth cones and an apparent axonal viscosity of
1.1x 107 Pa-s, we predict that a 1 micron region of axon 10 microns from the growth
will exert 26 pN of traction force. In situations where axons are elongating by tip
growth, we predict that traction force due to adhesions will drop off very rapidly away
from the growth cone and will be zero along the axon. In contrast, traction forces
will decline gradually towards the cell body in cases where axons are elongating
by stretching (i.e., in DRG neurons grown on laminin / polyornithine). Further
experiments monitoring axonal elongation using plastic pads mounted on cantilevers
[34] or micropatterned elastomer substrates [19] will allow our model and predictions

to be directly tested.

A key finding of Chang et al. [23] was that the substrate on which a neuron was
grown determined if the axons grew by stretching or tip growth. Furthermore, axons
that stretched grew more quickly than axons that were attached to the substrate. Our
model behaves in a similar fashion (Fig. 1.6 (B, C)). A possible insight to the problem
of axonal elongation our model suggests is that axons typically extend by stretching
of the distal axon, but when the adhesions along the axon are strong, stretching only
occurs at the tip. While tip growth and axonal stretching appear to be qualitatively
different, our model suggests tip growth may just be a special case where stretching

is restricted to the growth cone.

The tip growth model predicts that axonal elongation occurs by the addition
of new mass at the growth cone. Depending on the school of thought, this occurs
either through microtubule polymerization at the growth cone 26, 36] or the addition
of new microtubules by Stop-and-Go Transport [12]. In both cases, increasing the

amount of microtubule polymer has the predicted effect of increasing the rate of axonal
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elongation. Our model predicts, for values of G and 7 which are reasonably greater
than zero, that the elongation rate of an axon attached to the substrate is proportional
to Fp, (Gn)l/ 2, Thus an increase in G due to polymerization leads to a decline in the
velocity of elongation. In other words, the rate of axonal elongation is sensitive to the
viscosity of the axon: the higher the viscosity, the slower the rate of axonal elongation.
This suggests an explanation to the counter-intuitive observation that an increase in
microtubule polymerization through the application of the drug taxol slows the rate
of axonal elongation [54, 6]. Our model predicts that an increase in microtubule mass
along the length will slow the rate of axonal elongation by increasing the viscosity of
the axon (Fig. 1.6 C). In the case of taxol application, it suggests the axons elongate
more slowly because tubulin is converted to microtubules along the length and the

viscosity (G) of the axon increases.

Related is the question of why axons are thin during elongation and then increase
in diameter after synapse formation [84]. Our model suggests the apparent viscosity
(G) of the axon is a function of axonal diameter, thus thin axons will gfow more
quickly given a level of tension at the growth cone. The relationship between axonal
diameter and rate of growth may also explain why thin neurites of Aplysia neurons
(2—6 pm in diameter), but not the main axonal trunk (20 — 50 um) advance in tissue
culture [57]. How axonal elongation varies with axonal viscosity and diameter has
not been systematically addressed experimentally and will be an interesting avenue

for future research.

The observation that rapidly advancing growth cones are small and growth cones
that pause enlarge [35] further suggests that mass addition does not control the
rate of axonal lengthening. In the context of our model, for a given rate of mass
addition there exists a critical level of stretching that would result in no change in
diameter. The aforementioned observations could be interpreted such that rapidly

advancing growth cones are small because they undergo a super-critical degree of
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stretching, and paused and slowly advancing growth cones enlarge because the level
of stretching is sub-critical. In this context, our assumption that G is constant during
elongation is equivalent to saying that the rate of mass addition increases with the
rate of lengthening.

Where mass addition occurs during axonal elongation is a long-standing problem
[9]. A simulation of an axon growing by stretching revealed that, without mass
addition, thinning of the distal region to a very small diameter (< 250nm) occurs
in a matter of hours (Fig. 1.7). Because axons grown naturally on laminin are not
observed to significantly thin, this suggests that mass addition is occurring along the

distal axon.

Any model of axonal elongation must account for the observation that axons
tend to lengthen at some average rate that does not seem to significantly vary with
the length of the axon [29]. The inclusion of adhesions along the axon in our model
produces this behavior, preventing unbounded elongation rates (Fig. 1.8). Presuming
that growth cones generate similar amounts of force'in short and long axons, the region
of axonal stretching and force dissipation is similar regardless of the length of the axon
and advances with the growth cone. This creates a region of axonal stretching in the

distal axon, yet a stationary cytoskeletal framework in the proximal axon.

There are several potential shortcomings of our model. The first is that we place
mass addition as a dependent variable instead of an independent variable that con-
trols the rate of axonal lengthening. While we based this on our interpretation of
the available experimental data as outlined in the introduction, further studies are
required to definitively demonstrate the site of mass addition along the axon. The
second limitation is that our model is one dimensional and does not address the two
or three dimensional problem of axonal guidance. We think this is an exciting ques-
tion [3], but deeper knowledge with regards to the interactions between the axonal

shaft and substrate will be required, in particular to determine whether adhesions are
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discrete or continuous. The third potential limitation is we treat the axon as a stiff
viscoelastic fluid and ignore elastic behaviors. We agree that an understanding of
those processes is important especially in the context of the problem of axonal guid-
ance in short time scales up to several hours. The final limitation is that we do not
consider the dynamic aspects of axonal elongation. For example, it is well accepted
that sensory neurons do not thin over extended periods of time during elongation on
glass coverslips coated with laminin {10], in vivo during lengthening forced by bone
elongation [1], or in vitro during towed growth at rates as high as 8 mm/day [74].
Thus in our model we hold axonal diameter, G, and 1 to be constant for the steady
state solution. Yet as is seen in Fig. 1.5 (A, D), which is a representative example,
axonal diameter appears to decrease during lengthening caused by towing. We be-
lieve this thinning might occur because the rate of mass addition does not rapidly
adjust to changes in the rate of axonal lengthening [74]. These results suggest that
future models which incorporate dynamic aspects (such as changes in the velocity
of elongation) may also need to include changes in axonal diameter, g, and in mass

addition as functions of the rate of axonal lengthening.

1.5 Conclusion

As axons are viscoelastic, forces may play a role in elongation and bulk transport
of materials. We have proposed a model which suggests that the extent of neuronal
lengthening is dictated by tension, the physical viscoelastic properties of the axon,
and the axon’s surrounding environment. The model suggests that tip growth may
be a special case where axonal stretching is restricted to the growth cone because the
level of adhesions along the axon are very high, the viscosity or thickness of the axon

is large, or force generation in the growth cone is weak.
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Chapter 2

Modeling Mitochondrial Dynamics
During In Vivo Axonal Elongation

2.1 Introduction

Protein synthesis and axonal transport are vital components in the healthy growth of
neurons. Newly synthesized cellular materials are necessary for, among other things,
elongation and upkeep of the axonal shaft. For a given cell, protein synthesis in this
process could either be constant or variable and either predetermined by a genetic
developmental program or regulated through external inputs. How neurons control
cellular production during the growth of axons shapes the way one approaches current
problems such as nerve repair. Other factors which may play a role in the process
are microtubule polymerization rates, tension, and axonal transport. The ability to
understand the interactions of these qualities (i.e. to develop accurate models) is
crucial in the development of techniques for repairing damaged nerves.

In pre-synaptic neurons, axonal elongation is the result of a complex interplay
between force generation at growth cone that pulls the axon forward (50, 64, 72,

pushing forces due to microtubule and actin polymerization and depolymerization
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(8, 15, 55], and the effects of cytoskeletal dynamics and motor protein activity along
the axonal shaft [4, 67). Because inhibiting either protein synthesis or microtubule
polymerization blocks axonal elongation [6, 30], while disruption of the contractile
actin cytoskeleton can in some cases accelerate axonal elongation [8, 49, 55], most
models of axonal elongation have focused on the role of protein production by the
cell body, the transport of material to the growth cone, and microtubule addition at
the growth cone as the key determinates of the rate of axonal elongation. A popular
assumption in elongation models is that the flux of new materials into the axon from
the cell body is an independent variable that presumably could vary over time, but
is not a direct function of axonal length or rate of elongation 36, 46, 62, 91]. These
models assume that the level of production at a given time point is set at some

predetermined level and drives axonal lengthening.

In this chapter we focus on post-synaptic neurons where axons lengthen based
on the growth of the organism as a whole [11, 93, 78]. Thus, adult neurons have
no control over the rate of axonal elongation or the nerve’s final length. As neu-
rons constantly generate tension that minimizes axonal length both before and after
synapse formation [90], it follows that increases in the length of the axon are the
result of forces generated by an increase in body size. Consistent with the view that
neurons respond to forced lengthening by increasing the production of new material
are studies that have shown that axons are able to maintain viability and increase
their caliber when artificially stretched to remarkable lengths [1, 74, 73]. For these
reasons it would be useful to have a model where influx is allowed to vary over the
course of elongation. Thus in this paper we assign mass production as a variable that
is dependent on the length of the nerve and aim to model the manner in which flux
of new materials into the axons is modified to accommodate changes in nerve length

and density.

While most studies have focused on the production and transport of cytoskeletal
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material in the axon, we focus on mitochondria for several reasons. The first is that
they play a central role in the progression of Parkinson’s disease [59]. Future work on
this topic requires a rigorous characterization of normal mitochondrial behavior. The
second is that the transport of mitochondria seems to be a function of the mitochon-
drial life cycle in the cell (Fig. 2.1). Thus further characterization of their transport
is of broad interest to the basic cell biology of neurons [22, 32, 63]. Third, the trans-
port and distribution of mitochondria, as compared to microtubules, is far easier to
study because it is possible to resolve individual organelles along the nerve. Fourth,
as mitochondria are 'housekeeping’ organelles required for normal cellular function,
and are uniformly distributed along the axon [63], they make an excellent proxy for
studying the general production, transport, and distribution of material along the

axon.

Biogenesis

Depolarization /
Damage

Figure 2.1: Life Cycle of Mitochondria — We hypothesize that new mitochondria are
made in the cell body and have a high potential. These mitochondria are transported
along the axon and then dock in regions with unmet metabolic demand. Following
damage to the mitochondria, they lose potential. This induces signals to undock and
return to the cell body, where mitochondrial degradation and repair occurs.

In addition to the production of new material to support structural changes, there
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is a constant demand for new materials to replace those lost in the normal functioning
of the cell. Many models do not factor in degradation along the length, often because
the main focus of those studies is transport [14, 86]. For modeling over long time
periods on the scale of the half-life of a material, degradation will affect both demand
on the soma and the transport (flux) profile, and must be considered. In regard to
the degradation of mitochondria, there has been no recent study of mitochondrial
half-life, so we provide our own analysis for this parameter of our model. What
mitochondrial half-life in the axon reflects has yet to be clearly defined. Based on
our prior work, which demonstrated a correlation between mitochondrial potential
and the direction of transport in the axon [63], one possibility is that mitochondrial
half-life in the axon reflects the rate of mitochondrial degradation. Nonetheless,
mitochondria with a high potential also undergo retrograde transport and it is possible
that mitochondria are repaired instead of degraded in the cell body. It is likely that
this variable will be a complex function of the rate of mitochondrial depolarization,
degradation, repair, or some other function that has yet to be discovered. For the
purpose of our discussion, the major point is that mitochondria do not stay in the
axon indefinitely, but are removed over time at a rate that has a significant impact

on mitochondrial distribution.

Direct measurements of axonal materials will be able to confirm/dispute the as-
sumptions and predictions of previous models and aid in the development of a model
of our own. In an effort to accomplish this, we have directly measured mitochondria
and their movements during the development of the medial nerve in 1st, 2nd, and
3rd instar Drosophila larvae. Specifically, we have tracked increases in both nerve
length and mitochondrial density during the 96 hour developmental period. Using
data from this system and a newly developed mathematical model, we answer the fol-
lowing questions about axonal elongation in Drosophila: 1) Does nerve diameter vary

spatially, and does it increase during the lengthening of mature neurons? 2) What
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is the half-life of a mitochondrion in medial segmental nerves? 3) What profile of
protein synthesis is necessary to sustain the observed behavior of these neurons? Our
results iﬁ]ply that the neuron responds to lengthening and its absolute length such
that uniform density of material is homeostatically maintained by active regulation

of the production of cellular materials during maturation.

2.2 Materials and Methods

2.2.1 Drosophila Stocks and Culture

Standard cornmeal fly media was used and all stocks maintained at 25°C. The UAS-
mtGFP line was a gift from Dr. William Saxton, University of California, Santa

Cruz.

2.2.2 Image Acquisition and Analysis of Axonal Transport

15t, ond 3™ instar Drosophila larvae were selected and anaesthetized

Crawling , and
in halocarbon oil 700 (Sigma) with 10-25% chloroform, titrated to levels just sufficient
to inhibit significant muscular contraction. The larvae were then mounted between a
slide and coverslip and were imaged for no more than 15 min at ~ 25°C. With the
exception of Figure 2.5, all images were acquired on a swept field confocal microscope
with NIS software using a Nikon TE2000-E inverted microscope and a PlanApo 60X
oil objective, NA 1.4. The aperture and exposure were set at 70-slit and 100 ms,
respectively, and images were captured at 2 s intervals for total time of 7 min for a
time-lapse series. NIS files were opened in ImageJ, and frames were aligned using
StackReg plugin with rigid body settings. The two medial nerves at the base of

the ventral nerve cord were selected for each analysis, cropped and rotated, using

TJ Rotate with cubic-B-spline interpolation, so that the nerves were always oriented
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horizontally with the cell body on one side and the synapse on the other. These images
were re-sliced and z-projected using the sum-slices option to generate kymographs.
The kymographs were opened in Adobe Photoshop, image color depth was converted
from 16 bits / pixel to 8 bits / pixel and color inverted to facilitate better visibility
of transport events.

For Figure 2.5 the image was acquired with a spinning-disk confocal fluorescent
microscope controlled by MetaMorph software (Universal Imaging) with a 20x air
or 60x oil objective (Nikon) and a cooled CCD camera (model ER; Hamamatsu).
Confocal stacks were acquired, opened in ImageJ (National Institutes of Health), 2-
projected, and then assembled into a montage in Photoshop. Timelapse series were

acquired at 2 s intervals and processed as described above.

2.2.3 Nerve Length and Mitochondrial Density

The length of each nerve was calculated as the measured distance from the ventral
nerve cord to where tile nerve bifurcates close to the region of synapse formation. To
determine the densities of mitochondria along the length of nerves, 3D reconstruc-
tions of nerves where mtGFP was expressed were analyzed and mitochondria were
counted (Fig. 2.2). Mitochondria were grouped in 100 um bins and the densities
were plotted for each instar (Fig. 2.3). Average mitochondrial density was calculated
for each instar (Fig. 2.4B) to estimate the manner in which density changes during

development.
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retrograde transport docked mito.

20 um

Figure 2.2: Estimation of mitochondrial size using fluorescence levels — To determine
the half-life of mitochondria in Drosophila larvae, we first estimated the average size
of docked and transported mitochondria. Using movies of transport we measured the
total intensity of a mitochondrion using an ovular tool and the measure command
in ImageJ (background intensities were subtracted from this measurement). Arrows
point to the same mitochondria at different times.
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Figure 2.3: Mitochondrial Density Profiles for 15, 274, and 3'd Instar Larvae —
Density measurements were binned into 100 um segments for 15t (A), 2°d (B), and

ard (C) instar Drosophila larvae. The averages for each bin are plotted where the
error bars represent the standard deviation. Average density is seen to increase during
development, with insignificant variation from bin to bin.
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Figure 2.4: Nerve Length and Mitochondrial Density Increase Over Time — Both
nerve length and mitochondrial density are observed to increase as Drosophila lar-
vae mature. Arrowheads in A, B denote the approximate time, in development, of
synapse formation when the mode of growth switches from neurite growth to towed
axonal growth. (A) The average lengths of neurons of each instar are plotted at
the approximate midpoint time of each instar. Average lengths were found to be
468 + 124 pm (average + s.d., n = 12) for the 15t instar, 631 + 262 um (average
+ s.d., n = 11) for the ond instar, and 963 + 163 um (average + s.d., n = 11) for
the 3™ instar. The growth rate constant v is estimated to be 9.24 yum h—1. (B)
Mitochondrial density data is similarly plotted and the average values were found
to be 0.34 + 0.06 mitochondria ym™1 (average + s.d., n = 12) for the 15t instar,
0.37 £ 0.05 mitochondria pm—l (average + s.d., n = 11) for the ond instar, and
0.58 £+ 0.08 mitochondria um"l (average + s.d., n = 11) for the 3 ingtar. The
constant of density increase a is estimated to be 4.49 x 10~3 mito. um—! h—1. (©
Mitochondrial density plotted versus nerve length (n = 34). A linear trend is clear,
though whether these two factors change independently with time is not clear.
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2.2.4 Measurement of Flux and Mitochondrial Half-Life

Multi-kymographs of each trial were generated to analyze retrograde flux of mitochon-
dria in the nerve (Fig. 2.5). Each row of the multi-kymograph represents one z-slice
(height level) of the nerve. Arbitrary lines were traced down the multi-kymograph
and mitochondria moving right to left that crossed these lines were totaled. This total
was divided by the number of horizontal rows used to give the number of retrograde
moving mitochondria, and this was divided by the length of the observation to give a
value for retrograde flux. Anterograde flux of mitochondria was also measured, but
the utility of those measurements are beyond the scope of this thesis and are not

reported here.
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Figure 2.5: Robust Fast Mitochondrial Transport in Drosophila Neurons — mtGFP
was expressed in motor neurons and a single optical plane was captured once every
two seconds using a spinning disk confocal. (A) A wide view where the neuronal cell
bodies in the ventral nerve cord (left side) and the two A8 segmental nerve branches
are shown. (B) Examples of the fast transport of individual mitochondria are shown
in frames of the movie (times of each frame are zero, 16, and 32 seconds). (C) The
multi-kymograph with hand drawn traces over the positions of fast transported mi-
tochondria to illustrate the high level of detail that can be resolved. Retrograde flux
was used to quantify degradation while anterograde transported mitochondria repre-
sent a combination of slow transport and translation of the nerve due to elongation.
Each of the six panels spans a 200 s interval. (D) Summations of the traces of antero-
grade and retrograde multi-kymographs, excluding slow mitochondrial movements.
All scale bars represent a length of 5 ym.
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When measuring half-life we assumed degradation to be proportional to the total
amount of mitochondria; dMy/dt = § = — M /7, where § represents the retrograde
flux of mitochondria (treated as negative), M represents the total amount of mito-
chondria, and 7 is the characteristic time constant. In vivo movies of mitochondrial
transport were analyzed to derive values for g and M, from which a value of 7 and
thus half-life were found. As docked mitochondria were noticeably larger than mi-
tochondria undergoing transport, we used total intensity of all mitochondria as our

measure of Mr:

Mt = (number of docked mito.) x (avg. intensity of docked mito.)

+ (number of transported mito.) x (avg. intensity of transported mito.)

The average intensities of docked and transported mitochondria were found by aver-
aging the intensities of a sample of mitochondria from the images. To eliminate bias,
the first ten mitochondria to the right of the spatial midpoint of the trial were used.
In the case of anterograde and rettograde moving mitochondria, if less than ten were
found then all were used. In measuring the intensity, an ovular tool was implemented
in ImageJ to surround each mitochondrion. Using the Measure command, the mean
intensity of the region was found. A region of equal area, but with no fluorescence,
was then measured in a similar way to estimate the average background intensity.
Actual intensity of the mitochondrion was calculated by multiplying the area of the
region by the difference of these two intensities. The flux term g was also multiplied

by the average intensity of retrograde moving mitochondria:

g = —(avg. intensity of retrograde mito.)

x (retrograde flux of mito.)

The units of Mp are intensity, and the units of g are intensity h~1. In this way we

were able to estimate the relative amount of mitochondria moving toward the cell body
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(i.e. the mitochondria that was degraded). The value of 7 was then easily determined

and mitochondrial half-life for each trial was calculated as T} [2=TX In (2).

2.3 Results

2.3.1 Axonal Length and Mitochondrial Density Increase with
Time

Analysis of the medial segmental nerves in 15t, 20d_ and 3'd instar larvae during
normal development revealed that axons lengthen in a linear fashion (Fig. 2.4A).
Average values for nerve lengths were 468+124um (mean + SD, n = 12) for 15t instar
larvae, 631 + 262um (mean + SD, n = 11) for ond jnetar larvae, and 963 + 163um
(mean + SD, n = 11) for 3t instar larvae. The associated growth constant was
calculated to be v = 9.24um h—1. Average mitochondrial densities were 0.34 £ 0.06
mitochbndria pm~1 (mean + SD, n = 12) for the 15t instar, 0.37+0.05 mitochondria
um_l (mean + SD, n = 11) for the ond instar, and 0.58 £ 0.08 mitochondria pm'l
(mean % SD, n = 11) for the 3™ ingtar. The constant of density increase a was hence
found to be 4.49 x 10~3 mitochondria pm_l h—1 (Fig. 2.4B). The distribution of

mitochondria in each instar was not significantly different from uniform (Fig. 2.3).

2.3.2 Mitochondrial Half-Life in the Nerve

The half-life of mitochondria in 3'4 instar larvae nerves was estimated using mea-
surements of total mitochondrial intensity and retrograde flux, the method which is
explained in Materials and Methods. Using measurements from six different nerves
we found the average half-life to be Tl /2= 35.2 + 17.6 hours (mean + SD, n = 7).

This value was derived from a measured time constant 7 = 50.8 + 25.4 hours.
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2.3.3 Derivation of Model

We use the results obtained by imaging to derive a model for the system which
predicts the rate of protein synthesis required to satisfy the needs of an elongating
axon. When studying the change in the amount of a substance in a bounded region

V', a basic conservation law must be satisfied:

d

p VP(x,t) dV=/Vg(:1:,t) dV—/gVJ-dS (2.1)

where P(z,t) represents the concentration of the substance in V. This equation states
that the rate of change of total substance in a region V is equal to the difference of
the local synthesis of the substance and the rate of flux of materials out of the region,
where g gives the local production / degradation of the substance and J is the flux

of materials. Using the Divergence Theorem,

/V'(v F)dV = /av F-dS (2.2)

the relationship can be rewritten as

/v [%P - (m,t)+V-J] dv =0. (2.3)

Since the relationship holds on an arbitrary bounded region V', we may simply write

=9g-V.J. (2.4)

We consider the two factors, g and J that contribute to changes in the mitochon-
drial density P. Local synthesis of mitochondria, with regard to the assembly of
nuclear encoded proteins, is assumed to be negligible. The function g then solely de-

scribes the removal of healthy mitochondria from the axon. Whether this varies over
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time is unknown and will be important to investigate more thoroughly in the future,
but for this study we assume that mitochondria are cleared at a constant uniform
rate, and thus the rate of mitochondrial loss is proportional to the concentration. In
the absence of other factors, the differential equation for exponential decay is

dP

— = —kP
dt

where k > 0. The solution of this equation would be

P(t) = Pye™ ¥t

and the relationship between the half-life of the protein, 4] /2 and the constant k is
. 1 . .
k=1n2/Ty /2 Letting k = ~ gives the relationship T /2= In2 x 7, and we define

the degradation function g in terms of 7 in this way:

Flux of mitochondria due to active transport and low velocity transport (LVT) [64]
will also cause changes in the concentration along the length of the axon, but diffusion
is omitted since mitochondria are docked tightly to microtubules [44], actin filaments
[21], and neurofilaments [92]. Therefore, the term J strictly describes the combination
of active transport and LVT. Now if we assume that mitochondrial concentration is

radially uniform we may write the equation in one dimension:

9P _[P 8J}.

We make two assumptions for our model which are based on our experimental obser-

vations. The first observation is that nerves tend to lengthen at near constant rates
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(Fig. 2.4A), though this rate may vary given the placement of the neuron. The length
of the neuron may then be written as a linear equation in ¢, L (t) = Lg+~t, where 7 is
the elongation rate. The second observation is that mitochondrial density appears to
scale with time since innervations (Fig. 2.4B). There was an observed trend between
nerve length and mitochondrial density (Fig. 2.4C), but this relationship does not
hold when considering neurons with differing mature lengths (e.g. different segmen-
tal nerves). Analysis also revealed that the distribution of mitochondria is effectively
uniform 0P/dx = 0. We can thus write the mitochondrial density in terms of ¢ by
P (t) = Py +at. Using this last equation we can substitute P/t = a into our main
PDE. Then we may solve Eq. (2.6) for 8J/0z as

oJ Py+at
_—= - 9
Ep [ - + a] . (2.7)

Since the majority of protein synthesis of nuclear encoded proteins is believed to
occur in the cell body [18], in order to maintain a uniformly increasing mitochondrial
density, new protein required to support this growth must flow into the axon at x = 0.
There are three changes in the concentration along the length of the axon that will
create a demand for mitochondria. Those needs are (A) replacement of mitochondria
that are cleared from the axon, (B) new mitochondria required due to lengthening
of the axon, and (C) new mitochondria required to cause an increase in mitochon-
drial density. Thus new material must enter the axon at z = 0 to satisfy these three
mitochondrial needs. The latter two changes correspond to changes in cell volume
while the former deals with depletion of axonal mitochondrial. The flux requirement,
respectively, for each condition is (A) the rate of concentration decrease times length:
P(t)L(t) /T = (Py+ at) (Lg +t) /7, (B) the rate of lengthening times the mito-

chondrial density: vP (t) = v (Py + at), and (C) the rate of increase in density times
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length: aL (t) = a(Lg +~t). Thus we choose our boundary condition to be

J(0,1) = (P + at)T(Lo +71)

+7(Py+at)+a(Lg+t). (2.8)

2.3.4 Flux Profile

Solving Eq. (2.7) with the boundary condition (2.8) gives an equation for the flux

profile of mitochondria along the length of the axon:

J(z,t) =—

+7(Pp+at)+a(lg+t).
(2.9)

Py + at Py +at) (Lg +t
[-%a—+a}x+(0+a)(0+7)
-

The same flux profile can be derived using the less direct boundary condition where

only the flux at the growth cone is considered:
J(L(t),t) =~ (Py+at) (2.10)

Equation (2.9) reveals two things; the flux of materials along the axon decreases lin-
early (Fig. 2.6A), and the rate of influx of materials must increase in a quadratic
fashion over time in order to sustain constant increases in axonal length and mito-
chondrial density (Fig. 2.6B). The flux equation can be written as a quadratic in
terms of ¢ as

J(z,t) = At + B(z) + C (z), (2.11)

where A = a7y/7 and this value, using our estimates, is equal to 8.17x 10~ 4mitochondria
h—3.

The model can be applied to axons not only when it is changing in both length and
diameter, but also when only one of the two is changing or when neither is changing.
Our analysis of length and density in Drosophila show that both increase over the

three instars. However, as towed growth continues through maturation the diameters
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Figure 2.6: Flux Predictions Along the Length and at the Cell Body - (A) Flux of
mitochondria is linearly decreasing with distance from the cell body. Shown are the
flux profiles at times ¢t = 0, 24, 48, 72, 96, and 120 hours. As the nerve elongates and
increases its caliber, both production and flux along the length of the axons increase.
Ly = 237um, Py = 0.229 mitochondria um™!, @ = @, 7 = 4, 7 = 7. (B) The
flux of new mitochondria into the axon is plotted as a function of time. Production
must increase quadratically in order to support the observed increases in length and
density. Values used are the same as in (A) except for 7 which is varied. Increasing
7 diminishes the quadratic effect on the increase in production.
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of these nerves may remain constant. During this phase of growth the parameter o
will be zero, reducing the flux equation to being linear in ¢. Similarly, short neurons
will reach their mature length quickly and continue to increase their diameter, also
giving a linear influx profile (in ¢). When the axon has reached its mature length and
diameter, then influx must be constant to keep the axon supplied with functioning
mitochondria. Between synapse formation and the end of the neuron’s life the axon

will be in one of these states.

2.4 Discussion

In this study we explore several aspects of axonal elongation in Drosophila and derive
a mathematical model which predicts the rate of mitochondrial addition to the axon.
Length and diameter are shown to increase in a linear fashion in medial segmental
Drosqphila neurons, and a value for mitochondrial half-life is derived. A basis for our
model is the mitochondrial life cycle hypothesis (Fig. 2.1). The model incorporates
mitochondrial clearance from the axon and active transport, but excludes diffusion
since mitochondria are either attached to microtubule motors or stably docked to the
cytoskeleton [21, 44, 92]. Flux of mitochondria decreases linearly with distance from
the cell body. Based on the constant rate of lengthening and diameter increase, and
on mitochondrial degradation, influx of new mitochondria to the axon was found to
necessarily increase in a quadratic fashion.

Analysis of mitochondria in 15¢, 2nd’ and 34 instar larvae revealed no significant
concentration gradient along the nerve (Fig. 2.3). This suggests the neuron has an
efficient mechanism for organization of mitochondria. Kymographs have revealed that
mitochondria are able to dock in regions of low density [63], and docked mitochondria
have been observed to undergo short bouts of transport and then re-dock; a sort of

mitochondrial redistribution [13, 21]. The ability of mitochondria to reorganize is
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crucial in maintaining a uniform density given the factors that lead to gradients in
distribution. Namely, axons are viscoelastic structures which can be deformed either
by growth cone induced stretching [50] or towed growth of pre-synaptic [25] or mature
neurons [1, 74], and mitochondria eventually become depolarized and are transported

back to the cell body [63].

The analysis did reveal, however, that mitochondrial density increases throughout
larval development (Fig. 2.4B). When coupled with the lengthening of the nerve, the
demand for mitochondria increases in a quadratic fashion (2.11). Using our estimates
for a, v, and 7, and extrapolated values for the initial length and density of the nerve
(Fig. 2.4A, B), we found that the quadratic coefficient has a value of 8.17 x 10—4
mitochondria h~3 while the linear coefficient is 0.146 mitochondria h~2 when z = 0.
The quadratic effect at the cell body is most noticeable when the flux profile is
viewed over the course of days (Fig. 2.6A). Should either rate of increase (a or )
go to zero, the flux would be increasing in a purely linear fashion. At steady-state
length and density (L = Log, P = Poo) the flux profile is constant over time. It is
also possible that 7 increases during development. This would lower the demand for

new mitochondria and thus should be investigated.

While analysis of mitochondrial density revealed a uniform distribution along
the length of the nerve (Fig. 2.3), the model suggests that the profile of moving
mitochondria is linearly decreasing along the length (2.9). In order for this to be the
case, the profile of docked mitochondria must necessarily be linearly increasing along
the length. Since healthy mitochondria, either motile or stationary, are capable of
producing ATP, this is consistent with a uniform demand for energy along the length
of the axonal shaft, (excluding the region directly proximal to the synapse, where
mitochondrial concentration has been observed to be higher) [20]. Mitochondria in
the cell body may also contribute ATP to the most proximal region of the axon,

which would further reduce the need for docking there. However, if the overall ratio
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of docked mitochondria to transported mitochondria is high, then a gradient in docked

mitochondria would not be observed.

There has been clear evidence that cell bodies are able to respond to changes in
length by increasing cellular production. In one such case Pfister et al. showed that
extreme towing of mature neurons resulted in longer healthy neurons of increased
caliber [74, 73]. Here the change in length was mechanically driven and the cellular
density increased as a result. If towing occurred too rapidly, however, the axons
ruptured. Hence the cell body’s ability to adapt to rapid changes in length is limited.
The data in those studies give insight as to how quickly axons may be towed, but to
our knowledge no theoretical analysis of the problem yet exists. For the purposes of
neuronal repair it would be necessary to understand how an axon is viscoelastically
deformed by axial tension (i.e. the increase in protein demand in response to towing)

[72] and also to know the production limitations of the cell body.

Our model is broad in the sense that it studies the behavior of the mitochondrial
population as a whole. The main idea is that the cell is working to achieve an
optimal density which is uniform along the length but increases with time (Figs. 2.3,
2.4B). Tension on the cell from various sources can lead to local differences in density.
How a uniform density is re-established is not specifically addressed. One possible
explanation is that new mitochondria travel the entire distance from the cell body to
sites of need. Another possibility is that, as new mitochondria are being produced,
docked mitochondria are redistributed through fast axonal transport [12]. In terms
of maintaining uniformity, redistribution through fast axonal transport would be able
to achieve this in less time.

An interesting point is that the longer segmental nerves were not observed to be
thinner than the shorter ones. This suggests that the level of mitochondrial biogenesis
/ protein synthesis in the neurons differs, and that two neurons of the same age are

able to regulate protein synthesis based on their lengths. If protein synthesis were

54



independent of nerve length, then one would expect shorter nerves to have larger
caliber. Little is known about whether neurons can sense how long they are, but
this piece of evidence makes a strong case for some sort of signaling pathway for
length recognition. While the length of the nerve is determined by the size of the
animal, the caliber is controlled by the production of material, making this a vital
regulatory process. Another example of selective diameter regulation is seen in the
variance of cat retinal axons. Here, a correlation was found between the eccentricity
of intraretinal X-cells and their axonal diameters, and also between soma size and
axonal diameter [89]. The entire system, which has the difficult task of processing
visual cues, was found to be highly complex, with intraretinal and extraretinal axon
sizes varying to produce uniform mean total conduction times [88]. The regulation
of action potentials is known to be dependent on axonal and dendritic diameters
(42, 76], thus this may be the motivation for a carefully managed axonal diameter.
Given these examples we propose that the neuron is able to detect its own length
and mitochondrial density and, in turn, modulate production and reorganize cellular

materials to achieve and maintain a preferred caliber.

Current therapies for treating nerve damage typically involve the application of
drugs or growth factors, the splicing of severed nerve endings together such that
the distal degenerating nerve provides a track for the regeneration of axons coming
from the proximal stump, and / or the insertion of conduits to provide tracks [75].
Our model raises questions pertinent to the treatment of peripheral nerve injury. It
suggests that the production of materials is a response to increased axonal length.
Traditionally, reconnection of served nerves is performed without tension at the site
of repair. However, studies in primates have shown that direct repair under modest
tension yields better results relative to a tension-free repair, but this remains con-
troversial [79]. Could force application at the stump of a severed nerve, that causes

axonal lengthening, be used in combination with current therapies to facilitate regen-
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eration?

Developing rational treatments for chronic neurodegenerative disorders, such as
Alzheimer’s and Parkinson’s diseases, is hindered by the weak understanding of the
chain of events linking the primary insult and the ultimate manifestation of the dis-
ease. A deeper knowledge of the mitochondrial life cycle (Fig. 2.1) will provide a
foundation for the study of these maladies, not unlike the way Harvey's discovery of
blood circulation [96] laid the groundwork for the treatment of heart disease. The
predictions made by our model add to the overall understanding of mitochondrial
dynamics, and further studies of mitochondria in the axon will be essential to the
goal of curing neurodegenerative diseases.

While lengthening in post-synaptic neurons is governed by the rate of bodily
growth, it is yet unclear how tension changes during this process. On the surface,
stretching of the axons would seemingly increase tension. However, the addition of
new material to the axons will counteract the stress that is caused by stretching. Fur-
ther, it is unclear whether mass addition occurs in preparation for or in response to
lengthening-induced tension. How these two processes interact, which we cannot elu-
cidate from this study, is highly significant in understanding mitochondrial biogenesis

and transport and demands further examination.

2.4.1 Model Comparisons

While production of cellular materials is shown to necessarily increase with time, the
profile of flux at any fixed time is decreasing with distance from the cell body (Fig
2.6). The result is in qualitative agreement with studies that observed a decline in
transported mitochondria in growing axons [62, 66]. This flux gradient is present in
models of transport which consider protein degradation [60] and is absent in models
which do not [33]. Smith and Simmons reported a steady flux in their unidirectional

transport model and a linearly declining flux in their bidirectional transport model
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[86]. Our flux results are in agreement with their bidirectional model when a max-
imal efficiency of cargo loading onto microtubules is assumed. The declining profile
can be explained in that any new mitochondrion, regardless of destination, must be
transported through the most proximal region of the axon but fewer and fewer are
transported to increasingly distal regions. Mitochondria are believed to dock in re-
gions where ATP levels are low [44, 63], which means that transported materials can
leave the transported phase at any point .along the axon. This differs from other
models, where all transported materials must be delivered to the growth cone (a one
sink model versus a multi-sink model). Hence different models should be used for

transport of different intracellular cargos (e.g. mitochondria vs. synaptic vesicles).

A significant difference between our model and previous models [60, 62, 91] is that
we consider axonal length to be independent and treat protein synthesis as a depen-
dent variable. At the foundation of this choice is the debate over what drives axonal
elongation. While some have presented arguments for production-driven elongation,
it may be the other way around where production respénds to changes in axonal
length. We have concentrated here on mature neurons, yet the idea applies to pre-
synaptic axons as well. Tension has been shown to cause lengthening in both types
of neuron, and in those cases the cell bodies have responded by increasing production
to restore the axon or nerve to a viable diameter [1, 25, 50, 74]. For these reasons
we hold changes in length as independent and study how production must change to
sustain the axon and avoid rupture. Put another way, production does not increase
to cause changes in length, but to support them. It is likely that there is an upper

bound on material production by the cell body, but such a bound is yet unknown.

Redistribution of cellular materials likely plays a large role in maintaining the
observed uniform cellular density. Brown et al. derived a stochastic model to address
stop-and-go transport of neurofilaments [14]. In this study, transition probabilities of

neurofilaments changing between the various states of transport (paused or moving
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at various velocities) were experimentally determined. To maintain a uniform con-
centration of cellular materials, stop-and-go transport would need to preferentially
occur in regions with a local concentration gradient. A possible way to apply this
stochastic model to one that favors a uniform mitochondrial distribution would be to

use transition probabilities which are functions of 9P/dr.

2.5 Conclusion

In this section we have developed a model for elongation that suggests that the
flux of mitochondria in the axon decreases linearly along the length of the axon and
increases quadratically with time. The model is based on the observations that axonal
length and mitochondrial density tend to increase at a linear rate during development.
Using an analysis of retrograde flux of mitochondria we derived an updated estimate
for mitochondrial half-life in Drosophila. Our model suggests that mitochondrial
production is modulated by the cell body based on axonal length, axonal diameter,
and mitochondrial half-life. If neurons are able to detect their lengths, as we suggest,
then uncovering the means by which they do this opens many exciting avenues for
future work. To test these predictions we plan to measure anterograde and retrograde
mitochondrial flux during each of the three instars of development. In this process we
may also assess whether mitochondrial half-life is constant through development or
whether it varies, and also test the expected linear decrease in flux along the length

of the nerve.
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Chapter 3

The Role of Stretching in Slow

Axonal Transport

3.1 Introduction

Slow a.);'ona.l transport and axonal elongation occur at approximately the same velocity
and many have suspected that these two processes are closely related. Intuitively,
axonal elongation cannot occur at a rate that exceeds the transport of the materials
that make up the axon. While some axonal proteins are moved by fast transport at

1, many cytoskeletal proteins are transported

average velocities of up to 400 mm day ~
in slow components a and b at velocities in a range of 0.1 to 10 mm da.y—l [5, 61,
80, 95, 13, 40]. A series of recent papers have demonstrated that axonal stretching
is linked to axonal elongation [74, 1, 87, 52, 82]. A particularly exciting result is
that when forces are applied to axons they can elongate at a rate of 8 mm day_1
for sustained periods of time without thinning [74, 73]. Together these results would

imply that slow axonal transport is increased during rapid stretch-induced growth.
The demand for slow axonal transport and the location of mass addition to the

axon depend on the mode of elongation (Fig. 3.1) which, in turn, depends on the
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physical properties of the system. In this paper we analyze the role of stretching in the
slow transport of intracellular materials. We do this in the contexts of growth cone
mediated axonal elongation, towed growth after synapse formation, and conditions
of extreme stretch growth. Building upon our previous work, we develop a model
that determines how much of the necessary flux of materials can be accounted for
by stretcﬁing. Finally we suggest how stretching may be incorporated into models of

slow axonal transport.

3.2 Results

3.2.1 Flux Equations

The flux profile J (z,t) that is necessary to support a constant velocity of axonal

elongation was determined in the previous chapter as Eq. 2.9:
P(t P(t)L(t
J(z,t) = — [—¥+a]x+¥+7P(t)+aL(t). (3.1)

where P is the density of materials in the axon, L is the length of the axon, a is the
rate of change of the density of materials, v is the rate of lengthening, and 7 is the
characteristic time constant of decay (defined by half-life = 7 x In2) [71]. Based on
work in the preceding chapter, we assume that the density is uniform with respect to
distance along the axon. Length and density increases in elongating axons have also
shown a linear trend, which give equations L (t) = Ly + vt and P (t) = Py + at.
The viscoelastic response of an axon to pulling forces is dependent on the axon’s
axial viscosity and the level of adhesions that exist between the axon and a possible
substrate [72]. We consider two cases: one where there are no adhesions and one
where there are adhesions uniformly distributed along the length of the axon. In the

case where the axon is unattached, the velocity of materials will decrease linearly
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Figure 3.1: Opposing Models of Mass Addition — As an axon elongates, new mass is
added to the existing framework. (A) Diagram of an axon before a bout of elongation.
Vertical line across all panels denotes the position of the distal tip before the bout.
(B) Diagram of an axon after elongation by the tip-growth model. The shaded area
denotes the location of the addition of new mass. (C) Diagram of an axon after
elongation by stretch-and-intercalation in the presence of adhesions. Unshaded area
distal to the vertical line exhibits the portion of the existing framework which has
been pulled into the “new” segment of the axon by stretching. (D) Diagram of an
axon after stretching in the absence of adhesions. New mass is added uniformly along
the axon.
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from the source of tension (Fig. 3.2) so that the flux Jij (,t) in this regime may be

approximated by

Jy (z,t) = 'yL—a(jtjP(t) . (3.2)

If adhesions are present, then the decrease in velocity of materials is non-linear in
z and is dependent on the viscosity of the axon G and the strength of the adhesions

7. In this case the flux of materials can be approximated by

Fyp  sinh (zv/1G)
VG cosh (L (t) \/n/G)

Jpd (@) = (t) (33)
where F(j is the magnitude of the generated axial force (Fig. 3.3). Here we will
assume that the axon is long enough so that the flux at the growth cone Jp 4 (z.1) =
[FO /v/nG)] P (t) where the velocity of elongation F{y/+/7G is constant. We thus equate

this value to 7. Specifics of this assumption will be handled below.
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Figure 3.2: Flux Profiles in the Absence of Adhesions — Transport profiles are shown
at three different time points during elongation. Dimensionless values characterizing
axonal elongation A = 1.98 and change in protein density C = 1.00 were calculated
from parameters given in Table 3.1. With an initial length of Ly = 237um and an
elongation rate of y = 9.24 uym h"l, profiles are shown (A) after zero days, (B) after
one day, and (C) after five days. The solid lines denote the total necessary flux profile
(Eq. 2.9) as determined in [71]). The point where the Stretch Transport (Eq. 3.2) and
Other Transport lines intersect is z; /2 /L. Because proteins are degraded along the

length and protein density simultaneously increases, the requirement of other modes
of transport increases over time. Thus, the fraction of transport due to stretching
decreases, as seen by the rightward shift in the point where the modes of transport
intersect z, /2 /L.
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Figure 3.3: Flux Profiles in the Presence of Adhesions — Transport profiles are
shown at three different time points in an elongation process. Dimensionless values
characterizing elongation A = 1.98, axonal viscoelastic properties B = 7.06, and
changes in protein density C' = 1.00 were calculated from parameters given in Table
3.1. With an initial length of Ly = 237um and an elongation rate of v = 9.24um
h—1, profiles are shown (A) after zero days, (B) after one day, and (C) after five
days. The solid lines denote the total necessary flux profile (Eq. 5) as determined
in [71). The point where the Stretch Transport (Eq. 7) and Other Transport lines
intersect is £y /2 /L. The presence of adhesions along the length decreases the effect

of stretching. Thus the position where the modes of transport intersect z, /2 /L is
close to the normalized length of 1.
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3.2.2 Non-Dimensionalization
As the magnitudes of variables and parameters will vary based on the system to be

studied, it is necessary to redefine them in dimensionless form. We start with the

following choices for the variables:

(3.4)

L and P represent the initial values of the axon length and protein density, respec-
tively. As we will study the case of minimal protein decay (7 large) we avoid using

t = t/7. The non-dimensional flux equations may then be written as

J (&0 =-|P+C|z+PL+AP+CL, (3.5)
Jy (&9) = A%P, (3.6)
and
Jpa (&) = ap 25D p (3.7)
cosh (BL)

where the four dimensionless parameters A, B,C and D are defined as

a=L B = Lyy/n/C

0 (3.8)
c=2 D= _FL
P NG

Expressions for the scaled length and density are L (f) = 1+t and P (f) = 14+(C/A)1,
respectively. Our assumption that the velocity of stretch elongation is constant will
be safe if tanh (Bf,) which requires that BL > 2.7. If this is the case then + can be

equated with the velocity of stretch-elongation and we may set D = 1. At this point
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we drop the tildes while keeping in mind that we are dealing with the dimensionless

variables.

3.2.2.1 Alternate Scaling Choices

Our choice of scaling above leaves something to be desired if one wishes to study the
effect the time-constant 7 has on the system. This is because both parameters A and
C contain 7. The parameters a and -, however, are present in only one of those two
parameters. If we are interested in studying the effects of 7 we can change the scaling

factor on the flux variable:

~ ~ P
F=— f=L¢ P=—
Lo Ly Py
(3.9)
- L = 1
== J=—
Ly aLg
This gives scaled flux equations (dropping the tildes)
J(z,t)=—[HP+1)z+ HPL+ EP+ L (3.10)
T .
sinh (Bz)
where the new dimensionless parameters are defined by
P P
E=210 H=-0 (3.13)

aLg ot

The advantage of this choice is that the variables 7 and 7 are isolated in separate
parameters. The downside is that the rate of protein increase a is present in both

parameters (regardless of our choice of scaling, we cannot avoid one of «, v, or 7
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existing in both dimensionless parameters). Further, E and H vary inversely with o
and 7, which could cause some problems if either of these are small. While the case of
T very small (very short protein half-life) is not generally relevant, a value of a equal

to zero represents a constant protein density, which is a fairly common situation.

Another choice is to let J = J/ (vPy)- This lead to a set of flux equations

J(z,t)=—[UP+V]z+UPL+P+VL (3.14)
T
Jy (z,t) = ZP (3.15)
_ . sinh (Br)
Jad (z,t) = Dcosh (BL) (3.16)
where
L L

v=20 v =220 (3.17)

T YRy

This choice of scaling parameters isolates a and 7. It also simplifies the stretch-flux
equations by eliminating a parameter from each (at the éxpense of the total flux
equation being slightly more complex). Again, however, the parameters are inversely
proportional to v and 7, which may be undesirable. Depending on the situation, one of
these alternate scaling choices may be preferable. Because of the inverse relationships
that exist in the alternate scaling choices, our original choice for scaling seems to be

the least difficult to interpret.

3.2.3 Region of Stretch-Dominance and Anterograde Mo-
mentum
The total flux profile is decreasing and the stretch-flux profiles are increasing so that

for each value of ¢ there will be a unique point z; /2 (t) where the stretch-induced

flux will equal half of the total flux. Between that point and the terminal end of the
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axon, stretching will account for more than half of anterograde flux of material (Figs.
3.2, 3.3).
In the case of no adhesions, we solve the equation Jyj (z,t) = J (z,t) /2 for x and

divide by L to obtain
Ti/2  PL+AP+CL
L ~ PL+2AP+CL’

(3.18)

which is easily seen to be between zero and one. The evolution of this point of equality
is shown in Fig. 3.4A for the cases of measured axonal conditions (A,C = O (1)), the
case of constant protein density (C = 0), the case of undetectable protein degradation
(A,C >> 1), and the case of both constant protein density and undetectable protein
degradation (C = 0 and A >> 1). In general, increasing C pushes z, /2 /L toward 1
whereas increasing A pushes z, /2 /L toward 1/2.

Another measure of the effect of stretching is how much it contributes to the total
anterograde momentum of the system. Momentum, p (t), is calculated as the integral

of flux over the length of the axon and is a measure of total transport in the axon.

L
p(t) = /0 @ J(x,t) dz = g (PL+2AP+CL). (3.19)
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Figure 3.4: The Contribution of Stretching Changes During Elongation — As an axon
elongates, the fraction of the axon where stretching is the dominant form of transport
decreases. (A) The lines show z, /2 /L as a function of increasing axonal length. In
the absence of adhesions, a constant axonal diameter, and extremely high protein
half-life (A >> 1, C = 0), the only source of protein demand is axonal elongation.
Thus /2 /L remains fixed at 0.5. When the effect of increasing protein density
(A,C >> 1) is added, z, /2 /L increases slowly to a limiting value of 2/3. Under

conditions of constant axonal diameter and a physiological protein half-life (C = 0)
the contribution due to stretching decreases as the axon elongates. When caliber
increases and proteins degrade (A = 1.98 and C = 1.00) this effect is elevated. (B) -
Comparison of the evolution of z; /2 /L in the presence of (solid line) and absence

of (dotted-dashed line) adhesions. A = 1.98, C = 1.00 in both cases and B = 7.06
when adhesions are present. (C) In the presence of adhesions (B = 7.06), z, /2 /L is

lowered only slightly for extreme values of A, C.
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The momentum due to stretching is calculated similarly (here in the absence of
adhesions):

L
py(t) = /(; (t) Jy (z.t) dr = %APL. (3.20)

The fraction of anterograde momentum that is accounted for by stretching is
py (t) /p(t). Note that both of these may be calculated using simple geometric for-
mulae. In the case of no adhesions, the contribution of stretching to total anterograde
momentum and the point where stretching accounts for half of total flux are related
by

py(t) AP T1/2

p@t)  PL+2AP+CL 'L (3.21)

When adhesions are present along the length of the axon, we find /2/ L by
solving the equation Jpq4 (z,t) = J(z,t) /2, which is transcendental. Multiplying
this equation by two and setting D = 1 gives

sinh (Bz)

2Acosh (BL)

P=—-[P+Clz+PL+ AP+ CL. (3.22)

For the case of constant protein density and undetectable protein degradation

(C =0 and A >> 1) the asymptotic solution is

iy _ e [P

L BL

+0 (A_l) (3.23)
and the first term is a good approximation.

An asymptotic solution up to O (62) can be found in a straight-forward manner.

Let C =0and ¢ = 71f Then Equation 3.22 becomes

sinh(Bz)
_— = — .24
cosh(BL) ex+eL+1 (3.24)
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2

If we let r = () + ery +€“T9 + ... then

m sinh (B.‘B() +eBryj+0 (62)) -

—€ (.’L‘O +er] + 52:c2 +0 (63)) +eL+1 (3.25)

Separating this equation into its eO, el, 62,... components depends on accurately

expanding the sinh term. We apply the Taylor expansion:

/ €2 " 3
fx+e)=f(z)+ef (:c)+7f (1‘)+O(e )

to get

sinh (B.”L‘O +e€ (Ba:l +e€eBry 4+ 0O (ez))) =
sinh (Bxg) + € (Bxl +eBzg + 0 (62)) cosh (Bzg)
2

€2 (B:z:l +eBxry + O (62))

+ 2

sinh (Bzg) + O () @20

Now that we have the expansion (3.26) we solve Eq. (3.25) for the first three

orders.
g L
The O(1) terms give the equation sinh (Bz() = Egﬁ—h—éi—) so that
1 cosh (BL)
70 =3 asinh ( 5 ) (3.27)

The €! terms yield the equation Bcosh (Brg)ry = —zg + L which

2
cosh (BL)
easily solves for zy:

cosh (BL)
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Using the relationship cosh (asinh z) = v/ 72 + 1 we can write the solution for z] as

cosh (BL) (L — J asinh (99253—[“)»

23\/(008}1 BL))2 " (3.29)
cosh (BL) (BL — asinh (_é_COSh BL)))

B2 \/cosh2 (BL)+ 4

x1=

2

Equating €“ terms on each side of Eq. (3.25) gives

Bz cosh (Bzg) +

B2
( ’;1) sinh (Bzg) = -2 (3.30)

which can be solved:
-2z - (B.rl)2 sinh (Bzxg)

2= 2B cosh (Bz) (3:31)

A reasonably clean expression for 29 can be written without z( (but still containing

z1) by making the proper substitution:

-4z — (B.’l,'l)2 cosh (BL)
2By/cosh? (BL) +4

T9 = (3.32)
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We thus have the asymptotic solution to Eq. (3.24) up to order e2.

o 1 asinh (cosh (BL))

B 2
cosh (BL) (BL — asinh (@éﬂl))
+e€
B2y /cosh? (BL) + 4 (3.33)

9 —4r) — (B.’cl)2 cosh (BL)
2B4/cosh? (BL) + 4

+0 (53)

+€

In the general case the solution may be well-approximated using Newton's Method.
Fig. 3.4B compares the evolution of z; /2 /L in the presence (solid line) and absence
(dotted-dashed line) of adhesions. Figure 3.4C shows that, in the presence of adhe-
sions, the region of stretch-dominance is much less sensitive to the parameters A and

C.

Figure 3.5 shows the dependence of z; /2 /L on the parameters and A, B, and ,C
when ¢ = 0. The dotted line in each panel represents the value of z; /2 /L for
A =198, B = 7.06, and C = 1.00, which are derived using data from previous
experiments (see Table 3.1). In each panel, one parameter is allowed to vary while
the other two are held fixed at the values listed above. Values for B are restricted
to those greater than 2.7, as is required for the use of this model. The sensitivity of

z1/2 /L with respect to each parameter is estimated as the derivative of each of these
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curves at (A4, B,C) = (1.98,7.06,1.00). Those estimates are

d ($1/2) -3
Z(=£2)] 0 =-501x10 (3.34a)
JA\ L (A4,B,C

T
2 (—%) . =112x1072 (3.34b)
0B L (A,B,C'
0 (‘rl/2) -3
Z(=L2) 0 =497x10 (3.34c)
oC L (A,B,C)

which shows that z; /2 /L is about twice as sensitive to B than to the other two
parameters at this set of parameter values. Observing Figure 3.5 we see that the

greatest reduction in z; /2 /L can be achieved by decreasing B.
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Figure 3.5: Sensitivity of the Stretch-Dominated Region in the Presence of Adhesions
— The location of z; /2 /L is plotted for varying values of the dimensionless parameters

when £ = 0. Dotted line in each panel represents the value of z; /2 /L = 0.913 for

parameter values A = 1.98, B = 7.06, and C = 1.00. In the presence of adhesions,
varying A or C does little to decrease z; /2 /L (panels A and C). Smaller values of B.

however, significantly decrease z; /2 /L (panel B).
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Parameter Value System

a 4.49 x 10~3 mito um_l h—1 Drosophila Larvae
v 9.24 ym h—1 Drosophila Larvae
T 50.8 h Drosophila Larvae
Ly 237 pm Drosophila Larvae
Py .229 mito um"l Drosophila Larvae
G 3.9 x 107 g pm h1 Embryonic Chick
n 3.5 x 104 g um—l h—1 Embryonic Chick

Table 3.1: Parameters used to calculate our baseline values of the non-dimensional
parameters A = 1.98, B = 7.06, and C = 1.00.

Anterograde momentum is calculated in the same way as above:

—sech (BL)

L(t)
PAd () = /0 Jpd (¢.t) dz = AP ! B (3.35)

The fraction of anterograde momentum that is accounted for by stretching in the

presence of adhesions is pp 4 (t) /p (t) and can be expressed as

PAd(t) 2AP 1 — sech (BL)
p(t)  PL+2AP+CL BL '

(3.36)

Figure 3.7 shows the sensitivity of this ratio to the parameters A, B, and C when
t = 0. As with the region of stretch dominance, the greatest increase in stretching's
contribution to anterograde momentum can be achieved by decreasing B. Unlike

1/2 /L, however, the contribution of stretching to anterograde momentum is about
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equally sensitive to each parameter at (A4, B,C) = (1.98,7.06,1.00):

9 (”A—d)| . =159x1072 (3.37a)
94\ p /I(A.B,C)
(p Ad)l = _131x10"2 (3.37b)
(4,B.0)
(p‘\d)l = -158x1072 (3.37¢)
(A.B.C)

These partial derivatives may be found directly from Eq. 3.36. Note that this equation
has a local maximum with respect to B, but this is an artifact since it occurs in the

region 0 < B < 2.7 for all t > 0.

Claim 1. With respect to the parameter B, Eq. 3.36 possesses a unique local mazi-

mum on the interval 0 < B < 2.7.

Proof. We begin by rewriting Eq. 3.36:

PAg (1) 1 —sech (BL)

OB ¥ (A,C) B (3.38)
where
2AP .
v(AC) = priaptcrL (3.39)
so that
8 (pf;;((it()t)) — ¥ (A.C) (BL)sech (BL) tanh;2BLL) — [1 — sech (BL)]' (3.40)

Now, since ¥ is defined and non-zero for all ¢ > 0, we have that this partial derivative

is zero if and only if

BLsinh (BL) — cosh? (BL) + cosh (BL) = 0. (3.41)
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The plot of the LHS of Eq. 3.41 (Figure 3.6) shows that there is one positive zero
(which we call z) and that this will be a relative maximum of Eq. 3.36 with respect to

B. A numerical estimate for this zero is 2 =~ 1.506. When t = 0 we have that L = 1

0.5

LHS

Figure 3.6: Graph of the left-hand side of Equation 3.41.

so that the solution of Eq. 3.41 (i.e. the maximum of Eq. 3.36) occurs at B = =.
Since L increases with ¢, it follows that the value of B which maximizes pp 4 (t) /p (1)
decreases. That is,

2 ~

O
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Figure 3.7: Sensitivity of the Relative Contribution of Stretching to Momentum in the
Presence of Adhesions — The value of the contribution of transport due to stretching,
PAq (t) /p(t), is plotted for varying values of the dimensionless parameters when ¢t =
0. Dotted line in each panel represents the value py 4 (t) /p (t) = .094 for parameter
values A = 1.98, B = 7.06,.and C = 1.00. In the presence of adhesions, increasing A
can cause a moderate increase in pp 4 (t) /p(t), but decreasing C does little (panels
A and C). As is the case with z /2 /L, decreasing B leads to the greatest increase in

PAq (t) /p(t) (panel B).
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3.3 Discussion

This work is the first to incorporate the effects of axonal stretching in a model of -
slow axonal transport. Here we consider both the case where stretching is caused
by forces generated at the distal end of the axon {74, 72, 25], and by bodily growth.
A fundamental issue that we address is under what conditions stretching makes a
significant contribution to slow axonal transport. When studying the growth cone
/ synaptic region, shorter neurons, or when considering towed growth with limited
adhesions, stretching makes a significant contribution to the transport process and
lessens the demand for carrier-mediated transport to supply the distal axon with

materials.

We have chosen two means by which to consider the effects of stretching. The
first is to compare stretching’s contribution to the flux of materials at different points
along the axori. When this contribution is greater than half of total flux, we say that
stretching is the dominant form of transport at that point. As the total flux profile
is decreasing and the stretch-flux profile is increasing, there will be a unique point
along the axon, z; /2 (t), where stretching will account for half of anterograde flux.
Between this point and the distal end, stretching is the dominant form of transport.
The fraction of the axon where stretching is the dominant form of transport, then, is
1-z /2 /L. The second way in which we view stretching’s contribution to transport
is anterograde momentum, which is the integral of anterograde flux over the length
of the axon. Whereas flux is a measure of transport at a single point, anterograde
momentum is a measure of total anterograde transport in the axon. The fraction
of total anterograde transport that occurs by stretching is given by the ratio pyj (t)

when adhesions are absent and py 4 () when adhesions are present.

This model introduces three main parameters which play a role in the contribution

of axonal stretching. These are the elongation parameter A = v7/L(), the density
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parameter C = at/P, and the viscosity-adhesion parameter B = Ly/7/G. In
the case of no adhesions, only the parameters A and C are present in Eq. 3.5 and
3.6 and their values dictate both the size of the stretch-dominated region and the
fraction of anterograde momentum due to stretching. Contributing to each of these
dimensionless quantities is the degradation time-constant 7, so that a change in the
half-life of the protein would change both A and C. A change in A or C alone would
be interpreted as a change in v or a, respectively. Figure 3.4A shows that a slower
rate of protein density increase a (decreased C) and/or an increase in protein half-life
7 (increased A and C) elevate the relative contribution of stretch-induced transport.
Both of these changes result in a decrease in the overall demand for new protein while
leaving the demand at the distal tip and the actual flux contribution of stretching
unchanged (see Eq. 2.9 and 3.2). This part of the model best describes the cases
of nerve elongation due to bodily growth and instances where axons are towed while

unattached to a substrate.

One such example of this type of elongation is the extreme stretch-grown axons
engineered by Pfister, et al. In these experiments, innervated rat axons were elongated
to a length of 5 cm over the course of 14 days. During the first two days the rate of
elongation was increased from 1 to 4 mm day"l, and for the final twelve days the
rate of elongation was held at 4 mm day_1 [74]. Using their data for microtubule
density and axonal caliber before and after the elongation process, and the estimation
that about 30% of tubulin in axons exists in soluble form [65], we can estimate the
contribution that stretching makes to slow transport in these experiments. The valucs

used to determine the parameters A and C are given in Table 3.2.

Figure 3.8 shows the contribution of stretching to overall transport in extreme
stretch-grown axons. Under conditions of extreme stretch-growth, we observe that
stretching accounts for 49.1% of anterograde momentum at the beginning of the third

day of stretch-growth (¢t = 0, the beginning of the 4 mm day_1 elongation rate). At
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Data for Pfister et al. Comparison

Parameter Value Source
Length of Tubulin

Dimer .008 pum [27]
Dimers / pm of micro- . derived
tubule 13/.008 = 1625 erive
Tubulin in Soluble

Form ~ 30% [65]
MT Density (0 days) 153 MT pm™—2 [74]
Axonal Caliber (0 9

days) .43 pm [74]
Approximate MT -1 .
Density (0 days) 66 MT pm derived
Approximate Linear

Tubulin Density (0 153214 dimers um_l derived
days)

v 4 mm day~ ! [74]
T 73.6 days [62]
Microtubule Density )

(14 days) 158 MT pm [74]
Axonal Caliber (14 9

days) .58 pum [74]
Approximate Micro-

tubule Density (14 92 MT um_l derived
days)

Approximate Linear

Tubulin Density (14 213571 dimers um_l derived
days)

a 4311 dimers p,m_l day_1 derived
Py (2 days) 161836 dimers um_l derived
Lg (2 days) 3.5 mm [74]
A 84.1 derived
C 1.96 derived

87

Table 3.2: Parameters Used for Applying this Model to the Data of Pfister, et al.




the end of the twelve-day span (t = 13.7) at this elongation rate, the percentage of
anterograde momentum which is accounted for by stretching has only dropped to
41.1%. This is due to the fact that the elongation parameter is much greater than
the density parameter (A4 = 84.1,C = 1.96). The studies of Pfister et al. showed that
axons are able to grow at remarkable rates. Our model suggests that, when axons
elongate at high rates in this manner, stretching makes a significant contribution to

the transport of axonal materials.
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Figure 3.8: The Contribution of Stretching to Slow Axonal Transport in Rapid
Stretch-Grown Axons — We applied our model to the study of Pfister et al. [74] to
see how much stretching contributed to anterograde transport in cases of extreme
stretch-growth. In the study, axons were elongated at a rate of 4 mm day_1 for
twelve days. These axons were free of adhesions along the length, so Eq. 5 and 6
were applied. Parameter values A = 84.1 andC = 1.96 were derived using values
found in Table 3.2. (A) Flux profiles of anterograde transport at the beginning of
the 12-day elongation period. Since A is much greater than C, the slope of the total
flux profile is shallow and stretching is the dominant form of transport in most of the

distal axon (1‘1 /2 /L= .509). (B) After twelve days, stretching is still the dominant

form of transport in the distal 41% of the axon (.7:1 /2 /L= .589). (C) The relative
contribution of stretching to anterograde momentum is given by the ratio py; () /p (t).

Over the course of 12 days of elongation at 4 mm day_1 this ratio declines from .491
to .411, showing that stretching accounts for a significant amount of anterograde
transport (> 40%) when axons are elongated by extreme stretch-growth.

89



-

normalized flux
o =]
3 o
1 L}

o
N
(3.}
1

normalized flux
o o
W\ ~
o [$,]
1

o
N
o

1 1
0.25 0.50 0.756 1

normalized length

—— Total transport
--= Stretch transport
....... other transport

0.75F

025

0.25 0.50 0.75 1
normalized length

Figure 3.8:

90



The parameter B enters in Eq. 3.3 when adhesions are present, and its effect on
the point z; /2 /L is much more pronounced than that of A or C. When B = 7.06,
stretching is dominant in the distal 10% of the axon (Figs. 3.3, 3.4B) and there is
almost no effect on the time evolution of z; /2 /L when A and/or C take extreme values
(Fig. 3.4C). Altering the value of B while keeping the other parameters constant
amounts to modifying the ratio /G, where 1 describes the strength of focal adhesions
and G describes the viscosity of the axon. Axial forces are quickly dissipated by strong
focal adhesions, so when this ratio is large there will be limited stretching of the axon.
High axonal viscosity will lower force dissipation and a larger portion of the distal
axon will experience stretching (assuming the same velocity of elongation). This
part of the model best describes when axons are engaged in growth-cone mediated

elongation along sticky substrates.

Figure 3.5 shows the system'’s sensitivity to the three parameters when adhesions
are present and P = L =1 (i.e. when ¢t = 0). From previous work, we use baseline
dimensionless parameter values A = 1.98, B = 7.06, and C = 1.00 (Table 3.1).
Then, keeping two of these values fixed, we allow the third parameter to vary to
study its effect on /2 /L. This value decreases with A and increases with B and
C. To increase the size of the region where flux is dominated by stretching, z, /2/ L
must be lowered. Figure 3.5 shows that, in the presence of adhesions, increasing
A or decreasing C only produce mild reductions in z; /2 /L. In contrast, reducing
B can lead to as much as a doubling of the size of the stretch-dominated region.
Anterograde momentum due to flux exhibits a similar dependence on A, B, and C,
with a decrease in B effecting the largest possible increase in pp 4 (t) / (t) (Fig. 3.7).
In general, decreasing adhesions along the length of the axon is the most effective

method of increasing the contribution of stretching during elongation.

The location of addition of new material to an elongating axon and the need

for active transport depend primarily on the mode by which the axon elongates. If
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the framework of the existing axon is stationary, then all new material is added at
the distal end (Fig. 3.1B). If axial tension is deforming the axon, then much of
the material in the “new” segment of the axon has been transported there through
stretching. Further, the existing length of the axon thins as a part of the stretching
process and new material must be deposited there to reestablish a uniform diameter
(Fig 3.1, C and D). Intercalated mass addition has been shown to occur in several
systems, including rats [17], chicks [64], and Drosophila larvae [71]. With stretch-
and-intercalation, the need for long bouts of active transport flux decreases, as much
of the new material from the cell body is deposited along the length of the axon prior

to the distal tip.

In terms of the PDEs that govern the motion of particles, stretching would add a
spatially-dependent advection component to the equations of motion. For instance,
if ¢ (z,t) represents the concentration of a protein in an axon, then the PDE which

governs the concentration could be expressed as

z '\ Oc

if there are no adhesions, or

2 Fysinh {z+/7/G
a—c=D(—9—c-— a+ 0 ( ) éc-+g(.1r,t) (3.44)

ot 02 VG cosh (L (t) \/n/G) Oz

when adhesions are present. When modeling the motion of intracellular particles, the
populations are often divided between those that are free to diffuse in the cytoplasm
and those that are bound by motors to microtubules [86, 33, 48]. It is unknown how
axonal stretching affects different parts of the axon (such as the outer membrane,
the cytoplasm, and the cytoskeleton). A question of interest that may need to be

answered is whether different populations of particles (e.g. on- and off-track particles)
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are equally affected by stretching.

One important aspect of stretch-induced elongation that we have not addressed
here is short-term axonal thinning. In their extreme stretch-growth experiments,
Pfister et al. demonstrated that stretching axons at too high a strain rate leads to
rupture. However, when these tracts were properly conditioned, they were able to
sustain elongation rates of up to 8 mm day_l [74]. Although our current model would
suggest that, in the absence of adhesions, increasing the elongation parameter A as
much as possible would increase both the rate of elongation and the contribution
of stretching to anterograde transport, there is certainly a limit as to how much
stretching an axon or a nerve can support. A theoretical analysis of this limitation is

required for optimal rates of axon / nerve regeneration to be determined.

It has long been thought that the rate of axonal regeneration is linked to the speed
of slow axonal transport. When an axon elongates by axially oriented forces, much
of the necessary transport in the axon occurs by stretching, reducing the demand
for microtubule motor mediated transport. A way to increase regeneration ratés in
the presence of adhesions may be to condition the nerves to be more susceptible to
stretching [43, 45). In this way, transport due to stretching would increase slow axonal
transport and allow faster rates of regeneration. We have shown that the stretch-
dominated region and anterograde momentum of an axon/nerve are sensitive to the
ratio of adhesions to axonal viscosity, and that stretching’s influence can be increased
by controlling this ratio. It may be possible to achieve this increase by modulating the
expressions of cell-adhesion molecules (to decrease 1) and/or cytoskeletal components
(to increase G).

If one were to discover a drug that drastically increased both the rates of axonal
elongation and slow axonal transport, it would be a major advance in the field of
nerve regeneration. Stretching, a purely physical mechanism, possesses the ability to

simultaneously accomplish both tasks. With advances in technology, axonal winches
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(cables embedded in the body to stretch damaged nerves) and miniature robots that
tow nerves will be possible. A combination of physical and cellular approaches (e.g.
growth factors, gene therapy, neuronal stem cells) has the promise to yield phenom-

enal rates of exquisitely controlled nerve regeneration.
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Chapter 4

Some Results on the Profile of

Transported Material in Axons

4.1 Introduction

Of the mathematical models that have been done on the transport of materials in
elongating axons [60, 86, 91, 62, 48], none have considered axonal stretching to play
a significant role in slow axonal transport. Given that we have shown that stretching
can account for up to 49% of slow axonal transport in certain situations, a future aim
is to incorporate stretching into a slow axonal transport model. Some other goals of
this study would be to determine the most relevant modes of transport and to extract
the profile of active transport given what we know about the diffusion constant of
the material and the transport due to low velocity transport (LVT). For instance,
answers to questions such as the following could be pursued: Under what conditions
do stretching and / or diffusion play a significant role in slow axonal transport? How
does stretching reduce the need for carrier-mediated transport? How quickly can
an axon restore itself after a sudden deformation? How is this ability altered when

certain transport mechanisms are disabled or enhanced?
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As a beginning to finding and answer to these questions, the case of transport
by diffusion in a slowly elongating axon is explored. The role of diffusion is highest
when there are concentration gradients along the length of the axon, and the biggest
contribution to the maintenance of the axon is likely to be the reestablishment of a
uniform concentration along the length.

We begin with the general advection-diffusion equation. Let ¢(z,t) be the concen-
tration profile of a material within the axon. The material is transported at an average
velocity given by a and a stretch-induced mechanism given by v(z,t), has diffusion
constant D, and decays with characteristic time constant 7 satisfying In(2)7 = ¢, /2
If the initial concentration in the axon is constant, there is an influx J(¢) of material
at the cell body, and material does not flow out at the growth cone, then the system

may be modeled as follows:

é¢(z,t) + (a + v(z, 1)) ¢z (7, t) = Déga(z,t) — Lo
é(z,0) = ¢g (4.1)
¢z(0,t) = ~i((f—) oz (L(t),t) =0

4.2 Fixing the Boundary

We see that this PDE is of the moving boundary type. Namely, the right endpoint of
the system, L(t), increases with ¢ during outgrowth. To fix the boundary, we make

the following substitutions. First we add tildes to denote the original variable.

8(z,0) = ¢y (4.2)

s00=-20  Gdm.n=o0

Now we introduce the non-dimensional variable x, which will fix the right boundary

at 1. We also introduce scaling factors ¢, ¢, and L:
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T t o L to -
—_ t=— ¢=— L =— v = —70 4.3
L(t) t %0 Ly Ly (&3

where to is a time scale that will be determined later. In order to transform the

equations we need to apply the chain rule to the derivatives.

3_63_3_&% Béaxdt_d)o .zt

o otdi tosatdi to |t LIp" (44)
06 040z 090t 99 1 g oz i
0 ozoz otor Nz LgL(t) +0= Lo L(t) (45)
&=_§_(%>=i(¢_0_¢x)=@ Srz (4.6)

0x2 0z \oz) O0x\LoL(t)) LE(L())? '

From previous work, we have the following definitions of L(¢) and J(t):
_ f,(t) _ Lo+tpt 7t .
L(t) = I, - Iy =1+ LOt (4.7)
Lo + ~tgt

J(t) = ép [—O—T—’Q— + 7] (4.8)

These equations allow us to write the PDE in terms of non-dimensional variables:

6 = grpaoues + [Af -~ (C+v)] gz~ 6

é(z,0) = 1 (4.9)
¢z(0,t) =T [L + AL ¢z(1,t) =0

where ¢y = 7 and the non-dimensional parameters are given as

)

2 A= T ar

r=— = = —
Td Q2 L(z) Ly Ly

(4.10)
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The parameters may be interpreted as follows: A is the elongation rate parameter, ¢
is the velocity of active transport parameter, and I"/Q2 = D/d = ¢ is the diffusion

parameter.

4.3 ’I‘fansport By Diffusion Only

We consider a simplified form of the system where the stretching and active transport
components of transport are comparatively small. That is, max{a, Z}ITB << 1. This
corresponds to cases where carrier-mediated transport has been crippled, either by
addition of a drug or because of a neurological disorder, and where stretching terms
can be neglected (zero-to-minimal elongation or elongation in a highly adhesive en-

vironment). Omitting these terms, the system reduces to

¢t = 512-517@1::6 + A%Gf):p -0
o(z,0) =1
62(0,8) =T [L+A] L 6z(1,¢) = 0

(4.11)

4.3.1 A=0

The case when A = 0 has special significance in that it represents the case when
elongation has stopped (i.e. the adult phase after towed growth). The removal of this
term significantly simplifies equation (4.11), giving

¢ = grdaz =9

é(z,0) =1 (4.12)

6z(0,¢) =-T $z(1,t) =0

where A=0, L =1.

The transformed system has a constant influx at the cell body which, when coupled
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with the constant decay along the length, will give a steady-state solution. We will
then find the transient part of the solution by subtracting the steady-state from the
PDE; i.e.

o(z.t) = 6% (x) + ¢ (z.1).

Letting ¢t — oo we set ¢y = 0 and get the ODE

0% — Q26 =0

. (4.13)
¢2°(0) = -T o7 (1)=0
The solution of this system is
00 r .
o (x) = ) [coth @ cosh (Qz) — sinh (Qz)] . (4.14)

We find the transient solution ¢T(z, t) by substituting ¢(z, t) = ¢>T(a:, t) +o>(x)

into (4.12), which gives the transformed system:

of (z,1) = 5124% .
6T (z,0) = 1 - ¢°°(x) (4.15)
61(0.t) =T - 63°(0) =0 6Z(1,t)=0-06(1) =0

where we have used that ¢°°(z) solves (4.13). We find a solution to this homogeneous

equation using separation of variables. Let
T _
o (z,t) = X(2)T(¢). (4.16)

Inserting this into (4.15) gives the relationship

T'(t) _ Q2X"(@) - X(x) _

o X@ - (4.17)
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where ) is positive so that the solution decays as ¢ — oc. Further, we must have
that A > 1 so that X (z) will be constant (if A = 1) or in terms of sine and cosine
(as opposed to sinh and cosh) and will thus able to satisfy the no-flux boundary

conditions. Solving each of these ODEs gives
T(t) = Ae~ M (4.18)

X(z) =cysin (Q\/X—_lx) + c9 cos (Q\/z\_—Tr) (4.19)

Applying the boundary condition at z = 0 on (4.19) gives that ¢; = 0. Thus, for our

solution to exist, we must have that

An = (%)2 +1 (4.20)

where n € Z. Given that these eigenvalues are the same for +n, we only need to
consider values of n greater than or equal to zero. Inserting this expression for A\p

gives an infinite number of eigenfunctions of the form
Xn(z) = cp cos(nrx). (4.21)
Thus the solution of (4.15) is a linear combination of the form

00
Q)T(x,t) = z Ane_’\”tcos (nmz). (4.22)
n=0

We use the initial condition to solve for the constants Ay. Letting t = 0 we have

1 -¢F(x) = Z An cos(nwz). (4.23)
n=0
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We take advantage of the fact that, for m,n € Z,

1 0 (m#n)
/0 cos(mmzx) cos(nrz)dr = (4.24)

5 (m=n)

to solve for each constant. Integrating (4.23) with respect to the weight function

cos(mmz) gives

Jg1-¢®()dz =1-1/Q? m=0
Am =
2f01 cos(mnz) — ¢°°(x) cos(mnz)dr = W%E_QZ m=12,...
(4.25)
Thus we have the complete solution to the v = 0 system:
o(z.t) = ¢ (z,t) + 6™ (@). (4.26)

432 A=c¢

We next turn to the case where growth rates are of order ¢ << 1. The perturbed

system is of the form

ot = (1%) o + @m%:x -
o(z,0) =1 .20
62(0,8) = —T [1+e(2t+1)+62 (t2+t)] 6z(1,t) =0

We write the solution to the perturbed system as

o(z,t) = ¢0(x,) + ot (2, 1) + €202(z. 1) + ... (4.28)
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Rewriting the PDE in (4.27) gives the following:

(1 + %t + e2t2) (¢? + e} + .. ) = (e:r + e2xt) (¢2 +eol + .. )
+ —55 (¢2$ +eopr+ ) (4.29)

- (1 + 2¢t + e2t2) (@O +6¢1 +.. )

Breaking this down into equations of common powers of € gives

¢? = algc')g.r — 0
& ¢0z,00=1 (4.30)

02(0,t) = -  ¢2(1,¢) =0

of — 5124":%::: + ol =26 -2t (" + ¢f)
el: ¢l(z,00=0 (4.31)

6L(0,t) = —T(2+1) oLLt)=0

The €0 system (4.30) is identical to the A = 0 system (4.12). Therefore, the

0

solution of the €V case is the same as before:

00
¢0(x,t) = g [coth (@) cosh (Qx) — sinh (Qx)] + Z Ane_’\nt cos (nwx). (4.32)
n=0

Finding a solution to the PDE (4.31) requires that we transform the system before
we attempt to solve. The semi-infinite time domain and zero initial condition make
this system a candidate for solving via the Laplace Transform. Define the transform
of cbl(x, t) as

1 X —st,1
E{d) (z,t)} =/0 e Slo' (z,t) dt = v (x,5).
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Then, applying the derivative rule for Laplace Transforms we have
L {¢tl} = sz, s) — ¢)1 (z,0) = sy(x. s).

The left hand side of the PDE in (4.31) becomes

L{LHS}: sy — 512—@‘,';5;5 +v=(1+s)y— éwxx. (4.33)
We expand the right-hand side of the PDE by substituting in the ¢V solution:
cosh(Qx) [—2t coth(Q)—g] — I'z cosh(Qx)
RHS: + th sinh(Qz) + I' coth(Q)z sinh(Q<) (4.34)

00
+ Z An2t(Ap —1) e~ Ant cos(nwx) — An(nw)e—’\"t:rsin(nﬂx)
n=0

Each of these terms has a straight-forward Laplace Transform, with a shift theorem

applied to the terms in the series:
Shift:  If £ {f(t)} = F(s), then L {e_at f(t)} = F(s +a).

The Laplace Transform of the right-hand side, then, is

cosh(Qr) [:”g?g—f;(—Q)] - :ccosh(Qa:)g
L{RHS}: + siuh(Qa:)Q2—£2 + xsinh(Qx)Fc%h(Q) (4.35)

Anp(nm)

cos(nmx) — P
n

N i 2An (M — 1)

Tsin(nrz
(s +An)? )

n=0

Particular Solution

The solution of this equation in the Laplace domain requires a homogeneous and
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a particular solution. As the particular solution will have an effect on the bound-
ary conditions, we find this first and then solve the homogeneous equation with the

modified boundary conditions.

Given the form of (4.35), we guess that the particular solution ¥p(r, s) will have

the form

wp(e.5) = (1 (5) + 29(s)) cosh (Qz) + (3(s) + 24(s)) sinh (Qc)

00 (4.36)
+ ) (Va(s) + aWn(s)) cos(nrz) + (Yn(s) + 22Zn(s)) sin(n7z)

n=0

Substituting this equation into (4.33), (1 + s)¥’ — le"?;"x:m and equating with (4.35)

gives a system of eight equations:

P4l = 5¢1(9) = ;?—jg coth(Q) (4.37a)
—sp9(s) = —TF (4.37b)
572 —seale) = o (4:370)
—spy(s) = PC%F(Q) (4.37d)
—(s+An)Wn(s)=0 (4.37¢)
—u«'n(.s)%%" — (54 ) Y(s) = 0 (4.370)
—(8+ An) Zn(s) = —TAZ% (4.37g)

2mn , 2An (An —1)
-Q—zzn(s) —(s+ ) Vn(s) = —(_Zﬁ-z\n—n)Q (4.37h)

which, since we have s,A\p, > 0 and A\p, — 1 = (mr)2 /Q2, yields only three non-zero
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functions: 9(s). w4(s). and Zp(s). The particular solution, then, is given as

0

-r r
vp(x, 8) = —5-x cosh (Qx) + — coth(Q)z sinh (Qz) —

in(n_/’r)Tr sin (n7z) .

(4.38)

Homogeneous Solution

With the particular solution in hand, we determine the homogeneous problem to
be solved by adding the particular solution’s contribution to the boundary conditions.

Since

, -T rQ S (~1)" Ap(nm)?
Upr(0,8) = — Ypr (L, S 4.39)
Pz (0:5) 52 pr(ls) = 2 sinh(Q) ;::0 (s+ /\n)2 (
the homogeneous problem to be solved is as follows:
R 1 . -
1+ s)vp — 671”’19:1: =0
u*h 0.9) =¥2(0,8) ~vpe(0,9) = =L -5 - (-L)==F - @)
1) A (n1r)
1.s) =vyz(L,s) — ¥pg (1 o0 ( 1
( .8) =vr(l,8) — ¥pg(l,8) = —Qﬁ}j(— Pt (5t )2
The equation is solved as
Up(z,s) = c1(s)e@VIFST 4 cy(5)eQVIFsz (4.41)
where the functions of s are
r 1 1
= cols) — (4= 4.42
1) = o)~ 5= (3 +5) (1.42
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co(s) =

1 r (i+l) | TemQVl+s
1—e—2QVI+s [QVI+s\s2 s/ 521+ ssinh(Q)
—QVIts X (-1)nAn(mr)2]

+
QVIts = (s+Mn)?

Note that the term factored out of equation (4.43) can be expressed as an infinite

series:

00
1 — Z e~ 2QkV1+s
1-e2QV1+s k=0

Further, the problem that we may end up with an non-invertible function of s is
avoided since the term that is subtracted in (4.42) is exactly what is needed to cancel

the order 1 term in co(s). Thus, every exponent will be negative and all terms in the

homogeneous solution will be invertible. The homogeneous solution is thus composed
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of eight parts which can each be inverted:

e—QV1+s(—z+1+2k)
W (7, 8) = smh(Q 5 E its
1)n(mr Ap X e~ QVI+s(—z+1+2k)
20( (s+z\n)2 1.20 Vi+s
e—QV1+s(—z+2+2k)
o ‘2 TS
r & e—Q\/l_-l-—s(—x+2+2k)
ey Z Vits
e—QV1+s(z+2k)
2 Z Vits
—Q\/T+_(x+2k
Qs Z Vits
e—QVI+s(z+1+2k)
smh(Q)s2 Z Vits
1) (mr 24, X ~QVIts(z+1+2k)
Z vEr

(4.44)

We label the eight parts of this equation 3;(z,s), i = 1,2,..,8. Due to the quickly
decaying nature of the series in (4.44) the inversions can be computed term-by-term.
Each inversion is similar; the only differences being the constants (with respect to s)
in the exponents and the factor of 1/s, 1/ s2, or 1 /(s+ )‘n)2 in front of the infinite

sum. The inversions, then, may be found using the following formulae [28, 16]:

P {e‘“ﬁ}z 1 —a?/(41)

Vs vt
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c1 {;12-} =t
LHF(s+0)} = e (1)
~HF($)G(s)} = f(t) % gt) = / F(t - v)g(e)dv
0

In short, we use the first inversion formula with the shift theorem (¢ = 1), and then
apply convolution to complete the inversion process. The full process is shown for

31 (x. s) (the other seven inversions are similar).

by(z.t) = L71 {3y (z.5)}

X ] e~ QVIts(—z+1+2k)
=L smh(Q) Z 2 V1i+s
r ® [t —[Q(=z+1+2k)?
= Sinh(Q) Ig)t * (ﬁe * (4.45)

—[Q( :c+1+2k)]2

smh(Q) Z / - v) —e v dv

2
_or 0 /i 0 —[Q(—$+21+2k)] 2

- — 4 d

\/’isinh(Q)kE:O/o (t=v)e v u

The substitution u = /v was made in the integral to eliminate the singularity 1/\/v
when v = 0. A singularity still remains in the exponent when u = 0, but the integrand

converges to zero as u — 0, guaranteeing the convergence of each integral. Further,

—(Qk)
the series in k& will converge Vi > 0 since each integral is bounded by 13/2¢ .
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The other seven inversions are:

p 2
bQ(I,t) '—'W—; Z (—l)nA.n_(Tl‘/T)
n=0

— Q(—.’c+1+21\:)]2 “An (t—uz) 2

00 [
kgo/o\/z(t —u?)e 4u?

du

2
of X Vi ) —[Q(—fr+22+2k)L_u2
by(x.t) = ovr kX:%/O (t —u ) e 4u du
—[Q r+2+2k)]2 2
du

—[Q(:r+2k)]2 2
4u d

by(z,t) = u
P ] G 3)
bg(z.t) = Q2\57_r- Z /(; e du - du
k=0
2
Lor X Vi X —[Q(:v+12+2k)] —u2
bY(T,t)z—\/?S—ll]l-l_(—ijzﬂ)/O (t—u )6 4u du

2 OO )
bg(z,t) =ov= Z( 1) Ap(nx)
n=0

—[Qr+1+2K))% My (t—u2)—u2

= [Vt —u?)e 4u?
> [, (=)

du

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

The sum of these eight functions gives the inversion of the homogeneous solution. If
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we let p(z,t) = £ {¥p(z.s)}. then we get
00
p(z.t) = —T'tz (cosh(Qr) — coth(Q) sinh(Qz)) — Z An(mr)te_)‘"ta: sin(nzz)
k=0
The solution of the system (4.31), then, is
1 8
o' (z,t) =D bi(x.t) +p(a,t). (4.54)
1=1

Future work will include the inclusion of other processes (active transport, stretch-
ing). Given the complexity of the equations, numerical schemes will need to be em-

ployed to study the system.
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Chapter 5

Conclusions

While there have been tremendous advances in the field of nerve repair, many chal-
lenges to efficient regeneration remain. A fundamental matter to this aim is a thor-
ough understanding of the way in which axons elongate: whether that elongation
happens naturally or is artificially induced. The current model of how this occurs,
the tipgoﬁh model, posits that the existing axon is stationary during elongation,
with all new mass addition occurring at the distal end of the axon [26]. If this is
indeed the case, then the goal for therapies should be to increase both the production
of cytoskeletal materials and the transport of those materials to the growth cone. A
major pillar of the tip-growth model is that axonal lengthening happens as a result
of the activities of the production and transport mechanisms. If lengthening occurs,
however, through a combination of axially oriented forces and deformation (stretch-
ing) of the axonal framework, very different strategies for accelerating elongation

should be pursued.

The problem of axonal elongation is approached from a purely physical stand-
point; while the molecular foundations of the physical processes are understood and
appreciated, they are not directly modeled in this work. The goal of this work is to

join others (74, 1, 7, 50] in moving the trend away from tip-growth-based methods
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and toward physical approaches based on forces and stretching. The point to be made
then, is that tip-growth has inadequacies and that axonal stretching can explain phe-
nomena on top of what the tip-growth model can account for. The problems of how
forces are generated and how they may be increased, the ways in which the composi-
tion of the cytoskeleton and axoplasm affect axonal viscosity, and the modulation of
cell adhesiveness (just to name a few) are each, in themselves, expansive enough to
fill an entire dissertation. As the ideas of force and stretching being major players in
elongation continues to gain traction. molecular-based approaches to these topics are

sure to receive more attention.

In Chapter 1, a biophysical model of axonal elongation is introduced and devel-
oped. Rather than focusing solely on the rate of elongation, the profile of deformation
along entire axons was studied to determine the axon’s viscoelastic response to ten-
sion. In the presence of adhesions, the maximum velocity was shown to be a function
of the axial force, the viscosity of the axon, and the strength of the adhesions. The
model predicts a constant rate of elongation given a constant force and predicts that
deformation of the framework will occur in the distal regions of the axon. Further,
this deformation is dependent on the ratio of axonal viscosity to substrate adhesions.
The results of this work have been recognized as a part of the renaissance of the role

of physical forces in the problem of elongation and regeneration [31].

Chapter 2 deals primarily with the demands on neuronal cell bodies to supply
their axons with enough protein for healthy elongation and upkeep. Instead of pro-
tein production and transport being the driving forces of elongation, these factors are
assumed to be dependent on the rate of axonal lengthening and radial growth. Ex-
periments done on Drosophila larvae revealed that mitochondrial density was uniform
and both mitochondrial density and axonal length increased linearly during instar de-
velopment. Flux measurements led to an estimate that the half-life of mitochondria

in Drosophila nerves is approximately 35 days.
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The third chapter builds upon the work of the first two chapters. It combines
the theories of how stretching transports the existing axonal framework and the de-
mands that growth places on neuronal cell bodies. Since stretching has not yet been
considered to contribute to the process, two new measurements were conceived which
are meant to weigh stretching’s contribution to slow axonal transport. The first de-
termines the portion of the axon where stretching accounts for greater than half of
necessary anterograde flux (this necessary flux was modeled in Chapter 2). The sec-
ond measures the contribution that stretching makes to total anterograde transport
in the axon (referred to as anterograde momentum). Whereas the first measure refers
to a relative position along the axon, the value of the second measure gives infor-
mation about stretching’s total contribution in the axon. It was shown, for both of
these measures, that stretching can be dominant as a form of anterograde flux in
the distal half of the axon (in the case of the first measure) and can contribute to
nearly half of all necessary anterograde flux (in the case of the second measure). The
main hindrance to stretching’s effects was shown to be substrate adhesions. It was
concluded that stretching axons may be an effective way of accelerating regeneration,

specifically because it simultaneously increases elongation and slow transport.

If stretching of the axonal framework is significant, then PDE models of slow
axonal transport must account for these effects. Chapter 4 contains some of my
preliminary attempts at analyzing PDE models of slow axonal transport. Here, a
model where diffusion is the only mode of transport is solved analytically for the case
of no growth (steady-state length) and is solved asymptotically for the case of small
growth. Given the analysis of PDE models that did not consider stretching (86, 60, 33],
there would seem to be many future projects involving the analysis (analytical and

numerical) of elongation and transport with the effects of axonal stretching included.

This thesis challenges the tip-growth model and introduces a model where axial

- forces, along with intrinsic and extrinsic factors (viscoelasticity and friction, respec-
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tively), determine the rate of elongation and the magnitude of deformation of the
axon. It (1) demonstrates that axons grown on substrates respond to forces and
undergo non-uniform deformation, and this deformation is greatest near the distal
end, (2) predicts the flux that must occur in response to axonal growth and protein
degradation in order to sustain healthy elongation, (3) shows that stretching not only
can increase the rate of elongation, but can play a major role in the slow transport of
axonal proteins, and (4) lays the foundation for the incorporation of axonal stretching
into PDE models of elongation and tra.nspbrt. Neurites, in their quest to become in-
nervated axons, undergo bouts of elongation, retraction, turning, and branching. The
search for therapies that produce rapid rates of regeneration is much like the quest of
the neurite. As the evidence continues to mount, researchers should turn away from
pursuing therapies that assume the tip-growth model and follow the guidance cues
provided by studies that have revealed the importance of forces and axonal stretching.
With this thesis, I hope that the neuroscience community is one step closer to moving

in that direction and achieving a breakthrough in the treatment of damaged nerves.

114



BIBLIOGRAPHY

(1] L. Abe, N. Ochiai, N. Ichimura, A. Tsujino, J. Sun, and Y. Hara. Internodes can
nearly double in length with gradual elongation of the adult rat axon. J. Orthop.
Res., 22:571-577, 2004.

[2] M. Aeschlimann. Biophysical models of azonal pathfinding. PhD thesis, Univer-
sity of Lausanne, 2000.

[3] M. Aeschlimann and L. Tettoni. Biophysical model of axonal pathfinding. Neu-
rocomputing, 38:87-92, 2001.

[4] P.W. Baas and F.J. Ahmad. Force generation by cytoskeletal motor proteins as
a regulator of axonal elongation and retraction. Trends Cell Biol., 11:244-249,
2001.

[5] P.W. Baas, C. Vidya Nadar, and K.A. Myers. Axonal transport of microtubules:
the long and short of it. Traffic, 7:490-498, 2006.

[6] J.R. Bamburg, D. Bray, and K. Chapman. Assembly of microtubules at the tip
of growing axons. Nature, 321:788-790, 1986.

[7) R. Bernal, P. A. Pullarkat, and F. Melo. Mechanical properties of axons. Phys.
Rev. Lett., 99(1):018301, 2007.

[8] F. Bradke and C.G. Dotti. The role of local actin instability in axon formation.
Science, 283:1931-1934, 1999.

[9] D. Bray. Surface movements during the growth of single explanted neurons. Proc.
Natl. Acad. Sci. USA, 65:905-910, 1970.

[10] D. Bray. Branching patterns of individual sympathetic neurons in culture. J.
Cell Biol., 56:702-712, 1973.

[11] D. Bray. Axonal growth in response to experimentally applied mechanical ten-
sion. Dev. Biol., 102:379-389, 1984.

115



[12] A. Brown. Slow axonal transport: stop and go traffic in the axon. Nat. Rev.
Mol. Cell Biol., 1:153-156, 2000.

(13] A. Brown. Axonal transport of membranous and nonmembranous cargoes: a
unified perspective. J. Cell Biol., 160:817-821, 2003.

[14] A. Brown, L. Wang, and P. Jung. Stochastic simulation of neurofilament trans-
port in axons: the.

(15] K.B. Buck and J.Q. Zheng. Growth cone turning induced by direct local modi-
fication of microtubule dynamics. J. Neurosci., 22:9358-9367, 2002.

[16] R.G. Buschman. Integral Transformations, Operational Calculus, and General-
ized Functions. Kluwer Academic Publishers, 1996.

[17] R.B. Campenot. The regulation of nerve fiber length by intercalated elongation
and retraction. Brain Res., 352:149-154, 1985.

(18] R.B. Campenot and H. Eng. Protein synthesis in axons and its possible functions.
J. Neurocytol., 29:793-398, 2000.

[19] C.M. Cesa, N. Kirchgessner, D. Mayer, U.S. Schwarz, B. Hoffman, and R. Merkel.
Micropatterned silicone elastomer substrates for high resolution analysis of cel-
lular force patterns. Rev. Sci. Instrum., 78:034301, 2007.

[20] S.R. Chada and P.J. Hollenbeck. Mitochondrial movement and positioning in
axons: the role of growth factor signaling. J. Ezp. Biol., 206:1985-1992.

[21] S.R. Chada and P.J. Hollenbeck. Nerve goﬁh factor signaling regulates motility
and docking of axonal mitochondria. Curr. Biol., 14:1272-1276, 2004.

[22] D.T. Chang and I.J. Reynolds. Mitochondrial trafficking and morphology in
healthy and injured neurons. Prog. Neurobiol., 80:241-268, 2006.

[23] S. Chang, V.I. Rodionov, G.G. Borisy, and S.V. Popov. Transport and turnover
of microtubules in frog neurons depend on the pattern of axonal growth. J.
Neurosci.

[24] S. Chang, T.M. Svitkina, G.G. Borisy, and S.V. Popov. Speckle microscopic
evaluation of microtubule transport in growing nerve processes. Nat. Cell Biol.,
1:399-403, 1999.

[25] T.J. Dennerll, P. Lamoureux, R.E. Buxbaum, and S.R. Heidemann. The cy-
tomechanics of axonal elongation and retraction. J. Cell Biol., 109:3073-3083,
1989.

[26] E. W. Dent and F. B. Gertler. Cytoskeletal dynamics and transport in growth
cone motility and axon guidance. Neuron, 40:209-227, 2003.

116



[27] A. Desai and T.J. Mitchison. Microtubule polymerization dynamics. Annu. Rev.
Cell Dev. Biol., 13:83-117, 1997.

(28] G. Doetsch. Guide to the Applications of the Laplace and Z-Transforms. Van
Norstrand Reinhold, London, 1971.

[29] C.G. Dotti, C.A. Sullivan, and G.A. Banker. The establishment of polarity by
hippocampal neurons in culture. J. Neurosci., 8:1454-1468, 1988.

[30] H. Eng, K. Lund, and R.B. Campenot. Synthesis of beta-tubulin, actin, and
other proteins in axons of sympathetic neurons in compartmented cultures. J.
Neurosci., 19:1-9, 1999.

[31] K. Franze and J. Guck. The biophysics of neuronal growth. Rep. Prog. Phys.,
73:094601, 2010.

[32] R.L. Frederick and J.M. Shaw. Moving mitochondria: establishing distribution
of an essential organelle. Traffic, 8:1668-1675, 2007.

[33] A. Friedman and G. Craciun. A model of intracellular transport of particles in
an axon. J. Math. Biol., 51:217-246, 2005.

[34] C.G. Galbraith and M.P. Sheetz. A micromachined device provides a new bend
on fibroblast traction forces. Proc. Natl. Acad. Sci. USA., 94:9114-9118, 1997.

[35] P. Godement, C.L. Wang, and C.A. Mason. Retinal axon divergence in the
optic chiasm: dynamics of growth cone behavior at the midline. J. Neurosci.,
14:7024-7039, 1994.

[36] B.P. Graham and A. van Ooyen. Mathematical modelling and numerical simu-
lation of the morphological development of neurons. BMC Neurosci., 7(Suppl 1:
S9):1-12, 2006.

[37] S.R. Heidemann, P. Lamoureux, K. Ngo, M. Reynolds, and R.E. Buxbaum.
Open-dish incubator for live cell imagin with an inverted microscope. Biotech-
niques, 35:708-714,716, 2003.

[38] S.R. Heidemann and D. Wirtz. Towards a regional approach to cell mechanics.
Trends Cell Biol., 14:160-166, 2004.

[39] N. Hirokawa. Cross-linker system between neurofilaments, microtubules, and
membranous organelles in frog axons revealed by the quick-freeze, deep-etching
method. J. Cell Biol., 94:129-142, 1982.

[40] N. Hirokawa, Y. Noda, Y. Tanaka, and S. Niwa. Kinesin superfamily proteins
and intracellular transport. Nat. Rev. Mol. Cell Biol., 10:682-696, 2009.

[41] N. Hirokawa, S. Terada, T. Funakoshi, and S. Takeda. Slow axonal transport:
the subunit transport model. Trends Cell Biol., 7:384-388, 1997.

117



[42] A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. J. Physiol., 117:500-
544, 1952.

[43] P.N. Hoffman. A conditioning lesion induces changes in gene expression and
axonal transport that enhance regeneration by increasing the intrinsic growth
state of axons. Ezp. Neurol., 223:11-18.

[44] P.J. Hollenbeck. The pattern and mechanism of mitochondrial transport in ax-
ons. Front Biosci., 1:d91-d102, 1996.

[45] K. Kadoya, S. Tsukada, P. Lu, G. Coppola, D. Geschwind, M.T. Filbin,
A. Blesch, and M.S. Tuszynski. Combined intrinsic and extrinsic neuronal mech-
anisms facilitate bridging axonal regeneration one year after spinal cord injury.
Neuron, 64:165-172.

[46] G. Kiddie, D. McLean, A. Van Ooyen, and B. Graham. Biologically plausible
models of neurite outgrowth. Prog. Brain Res., 147:67-80, 2005.

[47] A. Kis, S. Kasas, B. Babic, A.J. Kulik, W. Benoit, G.A. Briggs, C. Schonen-
berger, S. Catsicas, and L. Forro. Nanomechanics of microtubules. Phys. Rev.
Lett., 89:248101, 2002.

[48] A.V. Kuznetsov and A.A. Avramenko. A macroscopic model of traffic jams in
axons. Math. Biosci., 218:142-152, 2009.

[49] F. Lafont, M. Rouget, A. Rousselet, C. Valenza, and A. Prochiantz. Specific
responses of axons and dendrites to cytoskeleton perturbations: an in vitro study.
J. Cell Sci., 104 (Pt. 2):433-443, 1993.

[50] P. Lamoureux, R.E. Buxbaum, and S.R. Heidemann. Direct evidence that growth
cones pull. Nature, 340:159-162, 1989.

[51] P. Lamoureux, G. Ruthel, R.E. Buxbaum, and S.R. Heidemann. Mechanical
tension can specify axonal fate in hippocampal neurons.

[52] A.C. Lee and D.M. Suter. Quantitative analysis of microtubule dynamics during
adhesion-mediated growth cone guidance. Dev. Neurobiol., 68:1363-1377, 2008.

(53] V. Lemmon, S.M. Burden, H.R. Payne, G.J. Elmslie, and M.L. Hlavin. Neurite
growth on different substrates: permissive versus instructive influences and the
role of adhesive strength. J. Neurosci., 12:818-826, 1992.

[54] P.C. Letourneau and A.H. Ressler. Inibition of neurite initiation and growth by
taxol. J. Cell Biol., 98:1355-1362, 1984.

[55] P.C. Letourneau, T.A. Shattuck, and A.H. Ressler. Pull and push in neurite
elongation: observations on the effects of different concentrations of cytochalasin
b and taxol. Cell Motil. Cytoskeleton, 8:193-209, 1987.

118



[56] S.S. Lim, K.J. Edson, P.C. Letrourneau, and G.G. Borisy. A test of microtubule
translocation during neurite elongation. J. Cell Biol., 111:123-130, 1990.

[57] P. Lovell and L.L. Moroz. The largest growth cones in the animal kingdom:
an illustrated guide to the dynamics of Aplysia neuronal growth in cell culture.
Integr. Comp. Biol., 46:847-870, 2006.

(58] G. Maheshwari, G. Brown, D.A. Lauffenburger, A. Wells, and L.G. Griffith. Cell
adhesion and motility depend on nanoscale rgd clustering. J. Cell Sct., 113:1677-
1686, 2000.

[59] W. Mandemakers, V.A. Morais, and B. De Strooper. A cell biological perspective
on mitochondrial dysfunction in parkinson disease and other neurodegenerative
diseases. J. Cell Sci., 120:1707-1716, 2007.

[60] D.R. McLean and B.P. Graham. Mathematical formulation and analysis of a
continuum model for tubulin-driven neurite elongation. Proc. R. Soc. Lond. A,
460:2437-2456, 2004.

[61] K.E. Miller and S.R. Heidemann. What is slow axonal transport? Ezp. Cell
Res., 314:1981-1990, 2008.

[62] K.E. Miller and D.C. Samuels. The axon as a metabolic compartment: pro-
tein degradation, transport, and maximum length of an axon. J. Theor. Biol.,
186:373-379, 1997.

[63] K.E. Miller and M.P. Sheetz. Axonal mitochondrial transport and potential are
correlated. J. Cell Sci., 117:2791-2804, 2004.

[64] K.E. Miller and M.P. Sheetz. Direct evidence for coherent low velocity axonal
transport of mitochondria. J. Cell Biol., 173:373-381, 2006.

[65] J.R. Morris and R.J. Lasek. Monomer-ploymer equilibria in the axon: direct
measurement of tubulin and actin as polymer and monomer in axoplasm. J. Cell
Biol., 98:2064-2076, 1984.

[66] R.L. Morris and P.J. Hollenbeck. The regulation of bidirectional mitochondrial
transport is coordinated with axonal outgrowth. J. Cell Sci., 104 (Pt. 3):917-927,
1993.

[67] K.A. Myers and P.W. Baas. Kinesin-5 regulates the growth of the axon by acting
as a brake on its microtubule array. J. Cell Biol., 178:1081-1091, 2007.

[68] S. Okabe and N. Hirokawa. Turnover of fluorescently labelled tubulin and actin
in the axon. Nature, 343:479-482, 1990.

[69] S. Okabe and N. Hirokawa. Differential behavior of photoactivated microtubules
in growing axons of mouse and frog neurons. J. Cell Biol., 117:105-120, 1992.

119



[70] S. Okabe and N. Hirokawa. Do photobleached microtubules move? re-evaluation
of fluorescence laser photobleaching both in vitro and in growing Xenopus axon.
J. Cell Biol., 120:1177-1186, 1993.

[71] M. O’Toole, R. Bagri, R. Latham, and K.E. Miller. Modeling mitochondrial
dynamics during in vivo axonal elongation. J. Theor. Biol., 255:369-377, 2008.

[72) M. O’Toole, P. Lamoureux, and K.E. Miller. A physical model of axonal elon-
gation: force, viscosity, and adhesions govern the mode of outgrowth. Biophys.
J., 94:2610-2620, 2008.

(73] B.J. Pfister, D.P. Bonislawski, D.H. Smith, and A.S. Cohen. Stretch-grown axons
retain the ability to transmit active electrical signals.

[74] B.J. Pfister, A. Iwata, D.F. Meaney, and D.H. Smith. Extreme stretch growth
of integrated axons. J. Neurosci., 24:7978-7983, 2004.

[75] L.A. Pfister, M. Papaloizos, H.P. Merkle, and B. Gander. Nerve conduits and
growth factor delivery in preipheral nerve repair. J. Peripher. Nerv. Syst., 12:65—
82, 2007.

[76] W. Rall. Branching dendritic trees and motoneuron membrane sensitivity. Erp.
Neurol., 1:491-527, 1959.

[77] S.S. Reinsch, T.J. Mitchison, and M. Kirschner. Microtubule polymer assembly
and transport during axonal elongation. J. Cell Biol., 115:365-379, 1991.

[78] F. Rossi, S. Gianola, and L. Corvetti. Regulation of intrinsic neuronal properties
for axon growth and regeneration. Prog. Neurobiol., 81:1-28, 2007.

[79] K. Rowshan, N.F. Jones, and R. Gupta. Current surgical techniques of peripheral
nerve repair. Oper. Tech. Othop., 14:163-170, 2004.

[80] S. Roy, M.J. Winton, M.M. Black, J.Q. Trojanowski, and V.M. Lee. Rapid and
itermittent cotransport of slow component-b proteins. J. Neurosci., 27:3131-
3138, 2007.

[81] M. Sato, T.Z. Wong, D.T. Brown, and R.D. Allen. Rheological properties of
living cytoplasm: a preliminary investigation of squid axoplasm (Loligo pealei).
Cell Motil., 4:7-23, 1984.

[82] A.W. Schaefer, V.T. Schoonderwoert, L. Ji, N. Mederios, G. Danuser, and
P. Forscher. Coordination of actin filament and microtubule dynamics during
neurite outgrowth. Dev. Cell, 15:146-162, 2008.

[83] B.J. Schnapp and T.S. Reese. Cytoplasmic structure in rapid-frozen axons. J.
Cell Biol., 94:667-669, 1982.

120



[84] A.K.Sharma, S. Bajada, and P.K. Thomas. Age changes in the tibial and plantar
nerves of the rat. J. Anat., 130:417-428, 1980.

(85] G.I. Sinclair, P.W. Baas, and S.R. Heidemann. Role of microtubules in the
cytoplasmic compartmentation of neurons. ii. endocytosis in the growth cone
and neurite shaft. Brain Res., 450:60-68, 1988.

[86] D.A. Smith and R.M. Simmons. Models of motor-assisted transport of intracel-
lular particles. Biophys. J., 80:45-68, 2001.

[87] D.H. Smith. Stretch growth of integrated axon tracts. Prog. Neurobiol., 89:231-
239, 2009.

[88] L.R. Stanford. Conduction velocity variations minimize conduction time differ-
ences among retinal ganglion cell axons. Science, 238:358-360, 1987.

[89] L.R. Stanford. X-cells in the cat retina: relationships between the morphology
and physiology of a class of cat retinal gnaglion cells. J. Neurophysiol., 58:940-
964, 1987.

[90] D.C. Van Essen. A tension-based theory of morphogenesis and compact wiring
in the central nervous system. Nature, 385:313-318, 1997.

[91] M.P. Van Veen and J. Van Pelt. Neuritic growth rate described by modeling
microtubule dynamics. Bull. Math. Biol., 56:249-273, 1994.

[92] O.I. Wagner, J.- Lifshitz, P.A. Janmey, M. Linden, T.K. McIntosh, and J.F.
Leterrier. Mechanisms of mitochondria-neurofilament interactions. J. Neurosci.,
23:9046-9058, 2003.

[93] P. Weiss. Nerve pattern: the mechanics of nerve growth. Growth (Suppl. Third
Growth Symp.), 5:163-203, 1941.

[94] S. Yamada, D. Wirtz, and S.C. Kuo. Mechanics of living cells measured by laser
tracking microrheology. Biophys. J., 78:1736-1747, 2000.

[95] A.Yuan, T. Sasaki, M.V. Rao, A. Kumar, V. Kanumuri, D.S. Dunlop, R.K. Liem,
and R.A. Nixon. Neurofilaments form a highly stable stationary cytoskelton after
reaching a critical level in axons. J. Neurosci., 29:11316-11329, 2009.

[96] K.M. Zareba. Circulation over the centuries: William harvey (1578-1657). Car-
diol. J., 14:214-215, 2007.

[97] J. Zheng, R.E. Buxbaum, and S.R. Heidemann. Investigation of microtubule
assembly and organization accompanying tension-induced neurite initiation. J.
Cell Sci., 104:1239-1250, 1993.

121

9



[98] J. Zheng, R.E. Buxbaum, and S.R. Heidemann. Measurements of growth cone
adhesion to culture surfaces by micromanipulation. J. Cell Biol., 127:2049-2060,
1994. :

[99] J. Zheng, P. Lamoureux, V. Santiago, T. Dennerll, R.E. Buxbaum, and S.R.
Heidemann. Tensile regulation of axonal elongation and initiation. J. Neurosci.,
11:1117-1125, 1991.

122






